xref: /linux/include/linux/bpf.h (revision 015e7b0b0e8e51f7321ec2aafc1d7fc0a8a5536f)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #ifndef _LINUX_BPF_H
5 #define _LINUX_BPF_H 1
6 
7 #include <uapi/linux/bpf.h>
8 #include <uapi/linux/filter.h>
9 
10 #include <crypto/sha2.h>
11 #include <linux/workqueue.h>
12 #include <linux/file.h>
13 #include <linux/percpu.h>
14 #include <linux/err.h>
15 #include <linux/rbtree_latch.h>
16 #include <linux/numa.h>
17 #include <linux/mm_types.h>
18 #include <linux/wait.h>
19 #include <linux/refcount.h>
20 #include <linux/mutex.h>
21 #include <linux/module.h>
22 #include <linux/kallsyms.h>
23 #include <linux/capability.h>
24 #include <linux/sched/mm.h>
25 #include <linux/slab.h>
26 #include <linux/percpu-refcount.h>
27 #include <linux/stddef.h>
28 #include <linux/bpfptr.h>
29 #include <linux/btf.h>
30 #include <linux/rcupdate_trace.h>
31 #include <linux/static_call.h>
32 #include <linux/memcontrol.h>
33 #include <linux/cfi.h>
34 #include <asm/rqspinlock.h>
35 
36 struct bpf_verifier_env;
37 struct bpf_verifier_log;
38 struct perf_event;
39 struct bpf_prog;
40 struct bpf_prog_aux;
41 struct bpf_map;
42 struct bpf_arena;
43 struct sock;
44 struct seq_file;
45 struct btf;
46 struct btf_type;
47 struct exception_table_entry;
48 struct seq_operations;
49 struct bpf_iter_aux_info;
50 struct bpf_local_storage;
51 struct bpf_local_storage_map;
52 struct kobject;
53 struct mem_cgroup;
54 struct module;
55 struct bpf_func_state;
56 struct ftrace_ops;
57 struct cgroup;
58 struct bpf_token;
59 struct user_namespace;
60 struct super_block;
61 struct inode;
62 
63 extern struct idr btf_idr;
64 extern spinlock_t btf_idr_lock;
65 extern struct kobject *btf_kobj;
66 extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma;
67 extern bool bpf_global_ma_set;
68 
69 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64);
70 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data,
71 					struct bpf_iter_aux_info *aux);
72 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data);
73 typedef unsigned int (*bpf_func_t)(const void *,
74 				   const struct bpf_insn *);
75 struct bpf_iter_seq_info {
76 	const struct seq_operations *seq_ops;
77 	bpf_iter_init_seq_priv_t init_seq_private;
78 	bpf_iter_fini_seq_priv_t fini_seq_private;
79 	u32 seq_priv_size;
80 };
81 
82 /* map is generic key/value storage optionally accessible by eBPF programs */
83 struct bpf_map_ops {
84 	/* funcs callable from userspace (via syscall) */
85 	int (*map_alloc_check)(union bpf_attr *attr);
86 	struct bpf_map *(*map_alloc)(union bpf_attr *attr);
87 	void (*map_release)(struct bpf_map *map, struct file *map_file);
88 	void (*map_free)(struct bpf_map *map);
89 	int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key);
90 	void (*map_release_uref)(struct bpf_map *map);
91 	void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key);
92 	int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr,
93 				union bpf_attr __user *uattr);
94 	int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key,
95 					  void *value, u64 flags);
96 	int (*map_lookup_and_delete_batch)(struct bpf_map *map,
97 					   const union bpf_attr *attr,
98 					   union bpf_attr __user *uattr);
99 	int (*map_update_batch)(struct bpf_map *map, struct file *map_file,
100 				const union bpf_attr *attr,
101 				union bpf_attr __user *uattr);
102 	int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr,
103 				union bpf_attr __user *uattr);
104 
105 	/* funcs callable from userspace and from eBPF programs */
106 	void *(*map_lookup_elem)(struct bpf_map *map, void *key);
107 	long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags);
108 	long (*map_delete_elem)(struct bpf_map *map, void *key);
109 	long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags);
110 	long (*map_pop_elem)(struct bpf_map *map, void *value);
111 	long (*map_peek_elem)(struct bpf_map *map, void *value);
112 	void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu);
113 	int (*map_get_hash)(struct bpf_map *map, u32 hash_buf_size, void *hash_buf);
114 
115 	/* funcs called by prog_array and perf_event_array map */
116 	void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file,
117 				int fd);
118 	/* If need_defer is true, the implementation should guarantee that
119 	 * the to-be-put element is still alive before the bpf program, which
120 	 * may manipulate it, exists.
121 	 */
122 	void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer);
123 	int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf);
124 	u32 (*map_fd_sys_lookup_elem)(void *ptr);
125 	void (*map_seq_show_elem)(struct bpf_map *map, void *key,
126 				  struct seq_file *m);
127 	int (*map_check_btf)(const struct bpf_map *map,
128 			     const struct btf *btf,
129 			     const struct btf_type *key_type,
130 			     const struct btf_type *value_type);
131 
132 	/* Prog poke tracking helpers. */
133 	int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux);
134 	void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux);
135 	void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old,
136 			     struct bpf_prog *new);
137 
138 	/* Direct value access helpers. */
139 	int (*map_direct_value_addr)(const struct bpf_map *map,
140 				     u64 *imm, u32 off);
141 	int (*map_direct_value_meta)(const struct bpf_map *map,
142 				     u64 imm, u32 *off);
143 	int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma);
144 	__poll_t (*map_poll)(struct bpf_map *map, struct file *filp,
145 			     struct poll_table_struct *pts);
146 	unsigned long (*map_get_unmapped_area)(struct file *filep, unsigned long addr,
147 					       unsigned long len, unsigned long pgoff,
148 					       unsigned long flags);
149 
150 	/* Functions called by bpf_local_storage maps */
151 	int (*map_local_storage_charge)(struct bpf_local_storage_map *smap,
152 					void *owner, u32 size);
153 	void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap,
154 					   void *owner, u32 size);
155 	struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner);
156 
157 	/* Misc helpers.*/
158 	long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags);
159 
160 	/* map_meta_equal must be implemented for maps that can be
161 	 * used as an inner map.  It is a runtime check to ensure
162 	 * an inner map can be inserted to an outer map.
163 	 *
164 	 * Some properties of the inner map has been used during the
165 	 * verification time.  When inserting an inner map at the runtime,
166 	 * map_meta_equal has to ensure the inserting map has the same
167 	 * properties that the verifier has used earlier.
168 	 */
169 	bool (*map_meta_equal)(const struct bpf_map *meta0,
170 			       const struct bpf_map *meta1);
171 
172 
173 	int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env,
174 					      struct bpf_func_state *caller,
175 					      struct bpf_func_state *callee);
176 	long (*map_for_each_callback)(struct bpf_map *map,
177 				     bpf_callback_t callback_fn,
178 				     void *callback_ctx, u64 flags);
179 
180 	u64 (*map_mem_usage)(const struct bpf_map *map);
181 
182 	/* BTF id of struct allocated by map_alloc */
183 	int *map_btf_id;
184 
185 	/* bpf_iter info used to open a seq_file */
186 	const struct bpf_iter_seq_info *iter_seq_info;
187 };
188 
189 enum {
190 	/* Support at most 11 fields in a BTF type */
191 	BTF_FIELDS_MAX	   = 11,
192 };
193 
194 enum btf_field_type {
195 	BPF_SPIN_LOCK  = (1 << 0),
196 	BPF_TIMER      = (1 << 1),
197 	BPF_KPTR_UNREF = (1 << 2),
198 	BPF_KPTR_REF   = (1 << 3),
199 	BPF_KPTR_PERCPU = (1 << 4),
200 	BPF_KPTR       = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU,
201 	BPF_LIST_HEAD  = (1 << 5),
202 	BPF_LIST_NODE  = (1 << 6),
203 	BPF_RB_ROOT    = (1 << 7),
204 	BPF_RB_NODE    = (1 << 8),
205 	BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE,
206 	BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD,
207 	BPF_REFCOUNT   = (1 << 9),
208 	BPF_WORKQUEUE  = (1 << 10),
209 	BPF_UPTR       = (1 << 11),
210 	BPF_RES_SPIN_LOCK = (1 << 12),
211 	BPF_TASK_WORK  = (1 << 13),
212 };
213 
214 enum bpf_cgroup_storage_type {
215 	BPF_CGROUP_STORAGE_SHARED,
216 	BPF_CGROUP_STORAGE_PERCPU,
217 	__BPF_CGROUP_STORAGE_MAX
218 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX
219 };
220 
221 #ifdef CONFIG_CGROUP_BPF
222 # define for_each_cgroup_storage_type(stype) \
223 	for (stype = 0; stype < MAX_BPF_CGROUP_STORAGE_TYPE; stype++)
224 #else
225 # define for_each_cgroup_storage_type(stype) for (; false; )
226 #endif /* CONFIG_CGROUP_BPF */
227 
228 typedef void (*btf_dtor_kfunc_t)(void *);
229 
230 struct btf_field_kptr {
231 	struct btf *btf;
232 	struct module *module;
233 	/* dtor used if btf_is_kernel(btf), otherwise the type is
234 	 * program-allocated, dtor is NULL,  and __bpf_obj_drop_impl is used
235 	 */
236 	btf_dtor_kfunc_t dtor;
237 	u32 btf_id;
238 };
239 
240 struct btf_field_graph_root {
241 	struct btf *btf;
242 	u32 value_btf_id;
243 	u32 node_offset;
244 	struct btf_record *value_rec;
245 };
246 
247 struct btf_field {
248 	u32 offset;
249 	u32 size;
250 	enum btf_field_type type;
251 	union {
252 		struct btf_field_kptr kptr;
253 		struct btf_field_graph_root graph_root;
254 	};
255 };
256 
257 struct btf_record {
258 	u32 cnt;
259 	u32 field_mask;
260 	int spin_lock_off;
261 	int res_spin_lock_off;
262 	int timer_off;
263 	int wq_off;
264 	int refcount_off;
265 	int task_work_off;
266 	struct btf_field fields[];
267 };
268 
269 /* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */
270 struct bpf_rb_node_kern {
271 	struct rb_node rb_node;
272 	void *owner;
273 } __attribute__((aligned(8)));
274 
275 /* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */
276 struct bpf_list_node_kern {
277 	struct list_head list_head;
278 	void *owner;
279 } __attribute__((aligned(8)));
280 
281 /* 'Ownership' of program-containing map is claimed by the first program
282  * that is going to use this map or by the first program which FD is
283  * stored in the map to make sure that all callers and callees have the
284  * same prog type, JITed flag and xdp_has_frags flag.
285  */
286 struct bpf_map_owner {
287 	enum bpf_prog_type type;
288 	bool jited;
289 	bool xdp_has_frags;
290 	u64 storage_cookie[MAX_BPF_CGROUP_STORAGE_TYPE];
291 	const struct btf_type *attach_func_proto;
292 	enum bpf_attach_type expected_attach_type;
293 };
294 
295 struct bpf_map {
296 	u8 sha[SHA256_DIGEST_SIZE];
297 	const struct bpf_map_ops *ops;
298 	struct bpf_map *inner_map_meta;
299 #ifdef CONFIG_SECURITY
300 	void *security;
301 #endif
302 	enum bpf_map_type map_type;
303 	u32 key_size;
304 	u32 value_size;
305 	u32 max_entries;
306 	u64 map_extra; /* any per-map-type extra fields */
307 	u32 map_flags;
308 	u32 id;
309 	struct btf_record *record;
310 	int numa_node;
311 	u32 btf_key_type_id;
312 	u32 btf_value_type_id;
313 	u32 btf_vmlinux_value_type_id;
314 	struct btf *btf;
315 #ifdef CONFIG_MEMCG
316 	struct obj_cgroup *objcg;
317 #endif
318 	char name[BPF_OBJ_NAME_LEN];
319 	struct mutex freeze_mutex;
320 	atomic64_t refcnt;
321 	atomic64_t usercnt;
322 	/* rcu is used before freeing and work is only used during freeing */
323 	union {
324 		struct work_struct work;
325 		struct rcu_head rcu;
326 	};
327 	atomic64_t writecnt;
328 	spinlock_t owner_lock;
329 	struct bpf_map_owner *owner;
330 	bool bypass_spec_v1;
331 	bool frozen; /* write-once; write-protected by freeze_mutex */
332 	bool free_after_mult_rcu_gp;
333 	bool free_after_rcu_gp;
334 	atomic64_t sleepable_refcnt;
335 	s64 __percpu *elem_count;
336 	u64 cookie; /* write-once */
337 	char *excl_prog_sha;
338 };
339 
340 static inline const char *btf_field_type_name(enum btf_field_type type)
341 {
342 	switch (type) {
343 	case BPF_SPIN_LOCK:
344 		return "bpf_spin_lock";
345 	case BPF_RES_SPIN_LOCK:
346 		return "bpf_res_spin_lock";
347 	case BPF_TIMER:
348 		return "bpf_timer";
349 	case BPF_WORKQUEUE:
350 		return "bpf_wq";
351 	case BPF_KPTR_UNREF:
352 	case BPF_KPTR_REF:
353 		return "kptr";
354 	case BPF_KPTR_PERCPU:
355 		return "percpu_kptr";
356 	case BPF_UPTR:
357 		return "uptr";
358 	case BPF_LIST_HEAD:
359 		return "bpf_list_head";
360 	case BPF_LIST_NODE:
361 		return "bpf_list_node";
362 	case BPF_RB_ROOT:
363 		return "bpf_rb_root";
364 	case BPF_RB_NODE:
365 		return "bpf_rb_node";
366 	case BPF_REFCOUNT:
367 		return "bpf_refcount";
368 	case BPF_TASK_WORK:
369 		return "bpf_task_work";
370 	default:
371 		WARN_ON_ONCE(1);
372 		return "unknown";
373 	}
374 }
375 
376 #if IS_ENABLED(CONFIG_DEBUG_KERNEL)
377 #define BPF_WARN_ONCE(cond, format...) WARN_ONCE(cond, format)
378 #else
379 #define BPF_WARN_ONCE(cond, format...) BUILD_BUG_ON_INVALID(cond)
380 #endif
381 
382 static inline u32 btf_field_type_size(enum btf_field_type type)
383 {
384 	switch (type) {
385 	case BPF_SPIN_LOCK:
386 		return sizeof(struct bpf_spin_lock);
387 	case BPF_RES_SPIN_LOCK:
388 		return sizeof(struct bpf_res_spin_lock);
389 	case BPF_TIMER:
390 		return sizeof(struct bpf_timer);
391 	case BPF_WORKQUEUE:
392 		return sizeof(struct bpf_wq);
393 	case BPF_KPTR_UNREF:
394 	case BPF_KPTR_REF:
395 	case BPF_KPTR_PERCPU:
396 	case BPF_UPTR:
397 		return sizeof(u64);
398 	case BPF_LIST_HEAD:
399 		return sizeof(struct bpf_list_head);
400 	case BPF_LIST_NODE:
401 		return sizeof(struct bpf_list_node);
402 	case BPF_RB_ROOT:
403 		return sizeof(struct bpf_rb_root);
404 	case BPF_RB_NODE:
405 		return sizeof(struct bpf_rb_node);
406 	case BPF_REFCOUNT:
407 		return sizeof(struct bpf_refcount);
408 	case BPF_TASK_WORK:
409 		return sizeof(struct bpf_task_work);
410 	default:
411 		WARN_ON_ONCE(1);
412 		return 0;
413 	}
414 }
415 
416 static inline u32 btf_field_type_align(enum btf_field_type type)
417 {
418 	switch (type) {
419 	case BPF_SPIN_LOCK:
420 		return __alignof__(struct bpf_spin_lock);
421 	case BPF_RES_SPIN_LOCK:
422 		return __alignof__(struct bpf_res_spin_lock);
423 	case BPF_TIMER:
424 		return __alignof__(struct bpf_timer);
425 	case BPF_WORKQUEUE:
426 		return __alignof__(struct bpf_wq);
427 	case BPF_KPTR_UNREF:
428 	case BPF_KPTR_REF:
429 	case BPF_KPTR_PERCPU:
430 	case BPF_UPTR:
431 		return __alignof__(u64);
432 	case BPF_LIST_HEAD:
433 		return __alignof__(struct bpf_list_head);
434 	case BPF_LIST_NODE:
435 		return __alignof__(struct bpf_list_node);
436 	case BPF_RB_ROOT:
437 		return __alignof__(struct bpf_rb_root);
438 	case BPF_RB_NODE:
439 		return __alignof__(struct bpf_rb_node);
440 	case BPF_REFCOUNT:
441 		return __alignof__(struct bpf_refcount);
442 	case BPF_TASK_WORK:
443 		return __alignof__(struct bpf_task_work);
444 	default:
445 		WARN_ON_ONCE(1);
446 		return 0;
447 	}
448 }
449 
450 static inline void bpf_obj_init_field(const struct btf_field *field, void *addr)
451 {
452 	memset(addr, 0, field->size);
453 
454 	switch (field->type) {
455 	case BPF_REFCOUNT:
456 		refcount_set((refcount_t *)addr, 1);
457 		break;
458 	case BPF_RB_NODE:
459 		RB_CLEAR_NODE((struct rb_node *)addr);
460 		break;
461 	case BPF_LIST_HEAD:
462 	case BPF_LIST_NODE:
463 		INIT_LIST_HEAD((struct list_head *)addr);
464 		break;
465 	case BPF_RB_ROOT:
466 		/* RB_ROOT_CACHED 0-inits, no need to do anything after memset */
467 	case BPF_SPIN_LOCK:
468 	case BPF_RES_SPIN_LOCK:
469 	case BPF_TIMER:
470 	case BPF_WORKQUEUE:
471 	case BPF_KPTR_UNREF:
472 	case BPF_KPTR_REF:
473 	case BPF_KPTR_PERCPU:
474 	case BPF_UPTR:
475 	case BPF_TASK_WORK:
476 		break;
477 	default:
478 		WARN_ON_ONCE(1);
479 		return;
480 	}
481 }
482 
483 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type)
484 {
485 	if (IS_ERR_OR_NULL(rec))
486 		return false;
487 	return rec->field_mask & type;
488 }
489 
490 static inline void bpf_obj_init(const struct btf_record *rec, void *obj)
491 {
492 	int i;
493 
494 	if (IS_ERR_OR_NULL(rec))
495 		return;
496 	for (i = 0; i < rec->cnt; i++)
497 		bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset);
498 }
499 
500 /* 'dst' must be a temporary buffer and should not point to memory that is being
501  * used in parallel by a bpf program or bpf syscall, otherwise the access from
502  * the bpf program or bpf syscall may be corrupted by the reinitialization,
503  * leading to weird problems. Even 'dst' is newly-allocated from bpf memory
504  * allocator, it is still possible for 'dst' to be used in parallel by a bpf
505  * program or bpf syscall.
506  */
507 static inline void check_and_init_map_value(struct bpf_map *map, void *dst)
508 {
509 	bpf_obj_init(map->record, dst);
510 }
511 
512 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and
513  * forced to use 'long' read/writes to try to atomically copy long counters.
514  * Best-effort only.  No barriers here, since it _will_ race with concurrent
515  * updates from BPF programs. Called from bpf syscall and mostly used with
516  * size 8 or 16 bytes, so ask compiler to inline it.
517  */
518 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size)
519 {
520 	const long *lsrc = src;
521 	long *ldst = dst;
522 
523 	size /= sizeof(long);
524 	while (size--)
525 		data_race(*ldst++ = *lsrc++);
526 }
527 
528 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */
529 static inline void bpf_obj_memcpy(struct btf_record *rec,
530 				  void *dst, void *src, u32 size,
531 				  bool long_memcpy)
532 {
533 	u32 curr_off = 0;
534 	int i;
535 
536 	if (IS_ERR_OR_NULL(rec)) {
537 		if (long_memcpy)
538 			bpf_long_memcpy(dst, src, round_up(size, 8));
539 		else
540 			memcpy(dst, src, size);
541 		return;
542 	}
543 
544 	for (i = 0; i < rec->cnt; i++) {
545 		u32 next_off = rec->fields[i].offset;
546 		u32 sz = next_off - curr_off;
547 
548 		memcpy(dst + curr_off, src + curr_off, sz);
549 		curr_off += rec->fields[i].size + sz;
550 	}
551 	memcpy(dst + curr_off, src + curr_off, size - curr_off);
552 }
553 
554 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src)
555 {
556 	bpf_obj_memcpy(map->record, dst, src, map->value_size, false);
557 }
558 
559 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src)
560 {
561 	bpf_obj_memcpy(map->record, dst, src, map->value_size, true);
562 }
563 
564 static inline void bpf_obj_swap_uptrs(const struct btf_record *rec, void *dst, void *src)
565 {
566 	unsigned long *src_uptr, *dst_uptr;
567 	const struct btf_field *field;
568 	int i;
569 
570 	if (!btf_record_has_field(rec, BPF_UPTR))
571 		return;
572 
573 	for (i = 0, field = rec->fields; i < rec->cnt; i++, field++) {
574 		if (field->type != BPF_UPTR)
575 			continue;
576 
577 		src_uptr = src + field->offset;
578 		dst_uptr = dst + field->offset;
579 		swap(*src_uptr, *dst_uptr);
580 	}
581 }
582 
583 static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size)
584 {
585 	u32 curr_off = 0;
586 	int i;
587 
588 	if (IS_ERR_OR_NULL(rec)) {
589 		memset(dst, 0, size);
590 		return;
591 	}
592 
593 	for (i = 0; i < rec->cnt; i++) {
594 		u32 next_off = rec->fields[i].offset;
595 		u32 sz = next_off - curr_off;
596 
597 		memset(dst + curr_off, 0, sz);
598 		curr_off += rec->fields[i].size + sz;
599 	}
600 	memset(dst + curr_off, 0, size - curr_off);
601 }
602 
603 static inline void zero_map_value(struct bpf_map *map, void *dst)
604 {
605 	bpf_obj_memzero(map->record, dst, map->value_size);
606 }
607 
608 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
609 			   bool lock_src);
610 void bpf_timer_cancel_and_free(void *timer);
611 void bpf_wq_cancel_and_free(void *timer);
612 void bpf_task_work_cancel_and_free(void *timer);
613 void bpf_list_head_free(const struct btf_field *field, void *list_head,
614 			struct bpf_spin_lock *spin_lock);
615 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
616 		      struct bpf_spin_lock *spin_lock);
617 u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena);
618 u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena);
619 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size);
620 
621 struct bpf_offload_dev;
622 struct bpf_offloaded_map;
623 
624 struct bpf_map_dev_ops {
625 	int (*map_get_next_key)(struct bpf_offloaded_map *map,
626 				void *key, void *next_key);
627 	int (*map_lookup_elem)(struct bpf_offloaded_map *map,
628 			       void *key, void *value);
629 	int (*map_update_elem)(struct bpf_offloaded_map *map,
630 			       void *key, void *value, u64 flags);
631 	int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key);
632 };
633 
634 struct bpf_offloaded_map {
635 	struct bpf_map map;
636 	struct net_device *netdev;
637 	const struct bpf_map_dev_ops *dev_ops;
638 	void *dev_priv;
639 	struct list_head offloads;
640 };
641 
642 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map)
643 {
644 	return container_of(map, struct bpf_offloaded_map, map);
645 }
646 
647 static inline bool bpf_map_offload_neutral(const struct bpf_map *map)
648 {
649 	return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
650 }
651 
652 static inline bool bpf_map_support_seq_show(const struct bpf_map *map)
653 {
654 	return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) &&
655 		map->ops->map_seq_show_elem;
656 }
657 
658 int map_check_no_btf(const struct bpf_map *map,
659 		     const struct btf *btf,
660 		     const struct btf_type *key_type,
661 		     const struct btf_type *value_type);
662 
663 bool bpf_map_meta_equal(const struct bpf_map *meta0,
664 			const struct bpf_map *meta1);
665 
666 static inline bool bpf_map_has_internal_structs(struct bpf_map *map)
667 {
668 	return btf_record_has_field(map->record, BPF_TIMER | BPF_WORKQUEUE | BPF_TASK_WORK);
669 }
670 
671 void bpf_map_free_internal_structs(struct bpf_map *map, void *obj);
672 
673 int bpf_dynptr_from_file_sleepable(struct file *file, u32 flags,
674 				   struct bpf_dynptr *ptr__uninit);
675 
676 extern const struct bpf_map_ops bpf_map_offload_ops;
677 
678 /* bpf_type_flag contains a set of flags that are applicable to the values of
679  * arg_type, ret_type and reg_type. For example, a pointer value may be null,
680  * or a memory is read-only. We classify types into two categories: base types
681  * and extended types. Extended types are base types combined with a type flag.
682  *
683  * Currently there are no more than 32 base types in arg_type, ret_type and
684  * reg_types.
685  */
686 #define BPF_BASE_TYPE_BITS	8
687 
688 enum bpf_type_flag {
689 	/* PTR may be NULL. */
690 	PTR_MAYBE_NULL		= BIT(0 + BPF_BASE_TYPE_BITS),
691 
692 	/* MEM is read-only. When applied on bpf_arg, it indicates the arg is
693 	 * compatible with both mutable and immutable memory.
694 	 */
695 	MEM_RDONLY		= BIT(1 + BPF_BASE_TYPE_BITS),
696 
697 	/* MEM points to BPF ring buffer reservation. */
698 	MEM_RINGBUF		= BIT(2 + BPF_BASE_TYPE_BITS),
699 
700 	/* MEM is in user address space. */
701 	MEM_USER		= BIT(3 + BPF_BASE_TYPE_BITS),
702 
703 	/* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged
704 	 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In
705 	 * order to drop this tag, it must be passed into bpf_per_cpu_ptr()
706 	 * or bpf_this_cpu_ptr(), which will return the pointer corresponding
707 	 * to the specified cpu.
708 	 */
709 	MEM_PERCPU		= BIT(4 + BPF_BASE_TYPE_BITS),
710 
711 	/* Indicates that the argument will be released. */
712 	OBJ_RELEASE		= BIT(5 + BPF_BASE_TYPE_BITS),
713 
714 	/* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark
715 	 * unreferenced and referenced kptr loaded from map value using a load
716 	 * instruction, so that they can only be dereferenced but not escape the
717 	 * BPF program into the kernel (i.e. cannot be passed as arguments to
718 	 * kfunc or bpf helpers).
719 	 */
720 	PTR_UNTRUSTED		= BIT(6 + BPF_BASE_TYPE_BITS),
721 
722 	/* MEM can be uninitialized. */
723 	MEM_UNINIT		= BIT(7 + BPF_BASE_TYPE_BITS),
724 
725 	/* DYNPTR points to memory local to the bpf program. */
726 	DYNPTR_TYPE_LOCAL	= BIT(8 + BPF_BASE_TYPE_BITS),
727 
728 	/* DYNPTR points to a kernel-produced ringbuf record. */
729 	DYNPTR_TYPE_RINGBUF	= BIT(9 + BPF_BASE_TYPE_BITS),
730 
731 	/* Size is known at compile time. */
732 	MEM_FIXED_SIZE		= BIT(10 + BPF_BASE_TYPE_BITS),
733 
734 	/* MEM is of an allocated object of type in program BTF. This is used to
735 	 * tag PTR_TO_BTF_ID allocated using bpf_obj_new.
736 	 */
737 	MEM_ALLOC		= BIT(11 + BPF_BASE_TYPE_BITS),
738 
739 	/* PTR was passed from the kernel in a trusted context, and may be
740 	 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions.
741 	 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above.
742 	 * PTR_UNTRUSTED refers to a kptr that was read directly from a map
743 	 * without invoking bpf_kptr_xchg(). What we really need to know is
744 	 * whether a pointer is safe to pass to a kfunc or BPF helper function.
745 	 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF
746 	 * helpers, they do not cover all possible instances of unsafe
747 	 * pointers. For example, a pointer that was obtained from walking a
748 	 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the
749 	 * fact that it may be NULL, invalid, etc. This is due to backwards
750 	 * compatibility requirements, as this was the behavior that was first
751 	 * introduced when kptrs were added. The behavior is now considered
752 	 * deprecated, and PTR_UNTRUSTED will eventually be removed.
753 	 *
754 	 * PTR_TRUSTED, on the other hand, is a pointer that the kernel
755 	 * guarantees to be valid and safe to pass to kfuncs and BPF helpers.
756 	 * For example, pointers passed to tracepoint arguments are considered
757 	 * PTR_TRUSTED, as are pointers that are passed to struct_ops
758 	 * callbacks. As alluded to above, pointers that are obtained from
759 	 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a
760 	 * struct task_struct *task is PTR_TRUSTED, then accessing
761 	 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored
762 	 * in a BPF register. Similarly, pointers passed to certain programs
763 	 * types such as kretprobes are not guaranteed to be valid, as they may
764 	 * for example contain an object that was recently freed.
765 	 */
766 	PTR_TRUSTED		= BIT(12 + BPF_BASE_TYPE_BITS),
767 
768 	/* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */
769 	MEM_RCU			= BIT(13 + BPF_BASE_TYPE_BITS),
770 
771 	/* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning.
772 	 * Currently only valid for linked-list and rbtree nodes. If the nodes
773 	 * have a bpf_refcount_field, they must be tagged MEM_RCU as well.
774 	 */
775 	NON_OWN_REF		= BIT(14 + BPF_BASE_TYPE_BITS),
776 
777 	/* DYNPTR points to sk_buff */
778 	DYNPTR_TYPE_SKB		= BIT(15 + BPF_BASE_TYPE_BITS),
779 
780 	/* DYNPTR points to xdp_buff */
781 	DYNPTR_TYPE_XDP		= BIT(16 + BPF_BASE_TYPE_BITS),
782 
783 	/* Memory must be aligned on some architectures, used in combination with
784 	 * MEM_FIXED_SIZE.
785 	 */
786 	MEM_ALIGNED		= BIT(17 + BPF_BASE_TYPE_BITS),
787 
788 	/* MEM is being written to, often combined with MEM_UNINIT. Non-presence
789 	 * of MEM_WRITE means that MEM is only being read. MEM_WRITE without the
790 	 * MEM_UNINIT means that memory needs to be initialized since it is also
791 	 * read.
792 	 */
793 	MEM_WRITE		= BIT(18 + BPF_BASE_TYPE_BITS),
794 
795 	/* DYNPTR points to skb_metadata_end()-skb_metadata_len() */
796 	DYNPTR_TYPE_SKB_META	= BIT(19 + BPF_BASE_TYPE_BITS),
797 
798 	/* DYNPTR points to file */
799 	DYNPTR_TYPE_FILE	= BIT(20 + BPF_BASE_TYPE_BITS),
800 
801 	__BPF_TYPE_FLAG_MAX,
802 	__BPF_TYPE_LAST_FLAG	= __BPF_TYPE_FLAG_MAX - 1,
803 };
804 
805 #define DYNPTR_TYPE_FLAG_MASK	(DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \
806 				 | DYNPTR_TYPE_XDP | DYNPTR_TYPE_SKB_META | DYNPTR_TYPE_FILE)
807 
808 /* Max number of base types. */
809 #define BPF_BASE_TYPE_LIMIT	(1UL << BPF_BASE_TYPE_BITS)
810 
811 /* Max number of all types. */
812 #define BPF_TYPE_LIMIT		(__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1))
813 
814 /* function argument constraints */
815 enum bpf_arg_type {
816 	ARG_DONTCARE = 0,	/* unused argument in helper function */
817 
818 	/* the following constraints used to prototype
819 	 * bpf_map_lookup/update/delete_elem() functions
820 	 */
821 	ARG_CONST_MAP_PTR,	/* const argument used as pointer to bpf_map */
822 	ARG_PTR_TO_MAP_KEY,	/* pointer to stack used as map key */
823 	ARG_PTR_TO_MAP_VALUE,	/* pointer to stack used as map value */
824 
825 	/* Used to prototype bpf_memcmp() and other functions that access data
826 	 * on eBPF program stack
827 	 */
828 	ARG_PTR_TO_MEM,		/* pointer to valid memory (stack, packet, map value) */
829 	ARG_PTR_TO_ARENA,
830 
831 	ARG_CONST_SIZE,		/* number of bytes accessed from memory */
832 	ARG_CONST_SIZE_OR_ZERO,	/* number of bytes accessed from memory or 0 */
833 
834 	ARG_PTR_TO_CTX,		/* pointer to context */
835 	ARG_ANYTHING,		/* any (initialized) argument is ok */
836 	ARG_PTR_TO_SPIN_LOCK,	/* pointer to bpf_spin_lock */
837 	ARG_PTR_TO_SOCK_COMMON,	/* pointer to sock_common */
838 	ARG_PTR_TO_SOCKET,	/* pointer to bpf_sock (fullsock) */
839 	ARG_PTR_TO_BTF_ID,	/* pointer to in-kernel struct */
840 	ARG_PTR_TO_RINGBUF_MEM,	/* pointer to dynamically reserved ringbuf memory */
841 	ARG_CONST_ALLOC_SIZE_OR_ZERO,	/* number of allocated bytes requested */
842 	ARG_PTR_TO_BTF_ID_SOCK_COMMON,	/* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */
843 	ARG_PTR_TO_PERCPU_BTF_ID,	/* pointer to in-kernel percpu type */
844 	ARG_PTR_TO_FUNC,	/* pointer to a bpf program function */
845 	ARG_PTR_TO_STACK,	/* pointer to stack */
846 	ARG_PTR_TO_CONST_STR,	/* pointer to a null terminated read-only string */
847 	ARG_PTR_TO_TIMER,	/* pointer to bpf_timer */
848 	ARG_KPTR_XCHG_DEST,	/* pointer to destination that kptrs are bpf_kptr_xchg'd into */
849 	ARG_PTR_TO_DYNPTR,      /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */
850 	__BPF_ARG_TYPE_MAX,
851 
852 	/* Extended arg_types. */
853 	ARG_PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE,
854 	ARG_PTR_TO_MEM_OR_NULL		= PTR_MAYBE_NULL | ARG_PTR_TO_MEM,
855 	ARG_PTR_TO_CTX_OR_NULL		= PTR_MAYBE_NULL | ARG_PTR_TO_CTX,
856 	ARG_PTR_TO_SOCKET_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET,
857 	ARG_PTR_TO_STACK_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_STACK,
858 	ARG_PTR_TO_BTF_ID_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID,
859 	/* Pointer to memory does not need to be initialized, since helper function
860 	 * fills all bytes or clears them in error case.
861 	 */
862 	ARG_PTR_TO_UNINIT_MEM		= MEM_UNINIT | MEM_WRITE | ARG_PTR_TO_MEM,
863 	/* Pointer to valid memory of size known at compile time. */
864 	ARG_PTR_TO_FIXED_SIZE_MEM	= MEM_FIXED_SIZE | ARG_PTR_TO_MEM,
865 
866 	/* This must be the last entry. Its purpose is to ensure the enum is
867 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
868 	 */
869 	__BPF_ARG_TYPE_LIMIT	= BPF_TYPE_LIMIT,
870 };
871 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
872 
873 /* type of values returned from helper functions */
874 enum bpf_return_type {
875 	RET_INTEGER,			/* function returns integer */
876 	RET_VOID,			/* function doesn't return anything */
877 	RET_PTR_TO_MAP_VALUE,		/* returns a pointer to map elem value */
878 	RET_PTR_TO_SOCKET,		/* returns a pointer to a socket */
879 	RET_PTR_TO_TCP_SOCK,		/* returns a pointer to a tcp_sock */
880 	RET_PTR_TO_SOCK_COMMON,		/* returns a pointer to a sock_common */
881 	RET_PTR_TO_MEM,			/* returns a pointer to memory */
882 	RET_PTR_TO_MEM_OR_BTF_ID,	/* returns a pointer to a valid memory or a btf_id */
883 	RET_PTR_TO_BTF_ID,		/* returns a pointer to a btf_id */
884 	__BPF_RET_TYPE_MAX,
885 
886 	/* Extended ret_types. */
887 	RET_PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE,
888 	RET_PTR_TO_SOCKET_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_SOCKET,
889 	RET_PTR_TO_TCP_SOCK_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK,
890 	RET_PTR_TO_SOCK_COMMON_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON,
891 	RET_PTR_TO_RINGBUF_MEM_OR_NULL	= PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM,
892 	RET_PTR_TO_DYNPTR_MEM_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_MEM,
893 	RET_PTR_TO_BTF_ID_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID,
894 	RET_PTR_TO_BTF_ID_TRUSTED	= PTR_TRUSTED	 | RET_PTR_TO_BTF_ID,
895 
896 	/* This must be the last entry. Its purpose is to ensure the enum is
897 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
898 	 */
899 	__BPF_RET_TYPE_LIMIT	= BPF_TYPE_LIMIT,
900 };
901 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
902 
903 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs
904  * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL
905  * instructions after verifying
906  */
907 struct bpf_func_proto {
908 	u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
909 	bool gpl_only;
910 	bool pkt_access;
911 	bool might_sleep;
912 	/* set to true if helper follows contract for llvm
913 	 * attribute bpf_fastcall:
914 	 * - void functions do not scratch r0
915 	 * - functions taking N arguments scratch only registers r1-rN
916 	 */
917 	bool allow_fastcall;
918 	enum bpf_return_type ret_type;
919 	union {
920 		struct {
921 			enum bpf_arg_type arg1_type;
922 			enum bpf_arg_type arg2_type;
923 			enum bpf_arg_type arg3_type;
924 			enum bpf_arg_type arg4_type;
925 			enum bpf_arg_type arg5_type;
926 		};
927 		enum bpf_arg_type arg_type[5];
928 	};
929 	union {
930 		struct {
931 			u32 *arg1_btf_id;
932 			u32 *arg2_btf_id;
933 			u32 *arg3_btf_id;
934 			u32 *arg4_btf_id;
935 			u32 *arg5_btf_id;
936 		};
937 		u32 *arg_btf_id[5];
938 		struct {
939 			size_t arg1_size;
940 			size_t arg2_size;
941 			size_t arg3_size;
942 			size_t arg4_size;
943 			size_t arg5_size;
944 		};
945 		size_t arg_size[5];
946 	};
947 	int *ret_btf_id; /* return value btf_id */
948 	bool (*allowed)(const struct bpf_prog *prog);
949 };
950 
951 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is
952  * the first argument to eBPF programs.
953  * For socket filters: 'struct bpf_context *' == 'struct sk_buff *'
954  */
955 struct bpf_context;
956 
957 enum bpf_access_type {
958 	BPF_READ = 1,
959 	BPF_WRITE = 2
960 };
961 
962 /* types of values stored in eBPF registers */
963 /* Pointer types represent:
964  * pointer
965  * pointer + imm
966  * pointer + (u16) var
967  * pointer + (u16) var + imm
968  * if (range > 0) then [ptr, ptr + range - off) is safe to access
969  * if (id > 0) means that some 'var' was added
970  * if (off > 0) means that 'imm' was added
971  */
972 enum bpf_reg_type {
973 	NOT_INIT = 0,		 /* nothing was written into register */
974 	SCALAR_VALUE,		 /* reg doesn't contain a valid pointer */
975 	PTR_TO_CTX,		 /* reg points to bpf_context */
976 	CONST_PTR_TO_MAP,	 /* reg points to struct bpf_map */
977 	PTR_TO_MAP_VALUE,	 /* reg points to map element value */
978 	PTR_TO_MAP_KEY,		 /* reg points to a map element key */
979 	PTR_TO_STACK,		 /* reg == frame_pointer + offset */
980 	PTR_TO_PACKET_META,	 /* skb->data - meta_len */
981 	PTR_TO_PACKET,		 /* reg points to skb->data */
982 	PTR_TO_PACKET_END,	 /* skb->data + headlen */
983 	PTR_TO_FLOW_KEYS,	 /* reg points to bpf_flow_keys */
984 	PTR_TO_SOCKET,		 /* reg points to struct bpf_sock */
985 	PTR_TO_SOCK_COMMON,	 /* reg points to sock_common */
986 	PTR_TO_TCP_SOCK,	 /* reg points to struct tcp_sock */
987 	PTR_TO_TP_BUFFER,	 /* reg points to a writable raw tp's buffer */
988 	PTR_TO_XDP_SOCK,	 /* reg points to struct xdp_sock */
989 	/* PTR_TO_BTF_ID points to a kernel struct that does not need
990 	 * to be null checked by the BPF program. This does not imply the
991 	 * pointer is _not_ null and in practice this can easily be a null
992 	 * pointer when reading pointer chains. The assumption is program
993 	 * context will handle null pointer dereference typically via fault
994 	 * handling. The verifier must keep this in mind and can make no
995 	 * assumptions about null or non-null when doing branch analysis.
996 	 * Further, when passed into helpers the helpers can not, without
997 	 * additional context, assume the value is non-null.
998 	 */
999 	PTR_TO_BTF_ID,
1000 	PTR_TO_MEM,		 /* reg points to valid memory region */
1001 	PTR_TO_ARENA,
1002 	PTR_TO_BUF,		 /* reg points to a read/write buffer */
1003 	PTR_TO_FUNC,		 /* reg points to a bpf program function */
1004 	PTR_TO_INSN,		 /* reg points to a bpf program instruction */
1005 	CONST_PTR_TO_DYNPTR,	 /* reg points to a const struct bpf_dynptr */
1006 	__BPF_REG_TYPE_MAX,
1007 
1008 	/* Extended reg_types. */
1009 	PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | PTR_TO_MAP_VALUE,
1010 	PTR_TO_SOCKET_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_SOCKET,
1011 	PTR_TO_SOCK_COMMON_OR_NULL	= PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON,
1012 	PTR_TO_TCP_SOCK_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_TCP_SOCK,
1013 	/* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not
1014 	 * been checked for null. Used primarily to inform the verifier
1015 	 * an explicit null check is required for this struct.
1016 	 */
1017 	PTR_TO_BTF_ID_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_BTF_ID,
1018 
1019 	/* This must be the last entry. Its purpose is to ensure the enum is
1020 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
1021 	 */
1022 	__BPF_REG_TYPE_LIMIT	= BPF_TYPE_LIMIT,
1023 };
1024 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
1025 
1026 /* The information passed from prog-specific *_is_valid_access
1027  * back to the verifier.
1028  */
1029 struct bpf_insn_access_aux {
1030 	enum bpf_reg_type reg_type;
1031 	bool is_ldsx;
1032 	union {
1033 		int ctx_field_size;
1034 		struct {
1035 			struct btf *btf;
1036 			u32 btf_id;
1037 			u32 ref_obj_id;
1038 		};
1039 	};
1040 	struct bpf_verifier_log *log; /* for verbose logs */
1041 	bool is_retval; /* is accessing function return value ? */
1042 };
1043 
1044 static inline void
1045 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size)
1046 {
1047 	aux->ctx_field_size = size;
1048 }
1049 
1050 static bool bpf_is_ldimm64(const struct bpf_insn *insn)
1051 {
1052 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
1053 }
1054 
1055 static inline bool bpf_pseudo_func(const struct bpf_insn *insn)
1056 {
1057 	return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
1058 }
1059 
1060 /* Given a BPF_ATOMIC instruction @atomic_insn, return true if it is an
1061  * atomic load or store, and false if it is a read-modify-write instruction.
1062  */
1063 static inline bool
1064 bpf_atomic_is_load_store(const struct bpf_insn *atomic_insn)
1065 {
1066 	switch (atomic_insn->imm) {
1067 	case BPF_LOAD_ACQ:
1068 	case BPF_STORE_REL:
1069 		return true;
1070 	default:
1071 		return false;
1072 	}
1073 }
1074 
1075 struct bpf_prog_ops {
1076 	int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr,
1077 			union bpf_attr __user *uattr);
1078 };
1079 
1080 struct bpf_reg_state;
1081 struct bpf_verifier_ops {
1082 	/* return eBPF function prototype for verification */
1083 	const struct bpf_func_proto *
1084 	(*get_func_proto)(enum bpf_func_id func_id,
1085 			  const struct bpf_prog *prog);
1086 
1087 	/* return true if 'size' wide access at offset 'off' within bpf_context
1088 	 * with 'type' (read or write) is allowed
1089 	 */
1090 	bool (*is_valid_access)(int off, int size, enum bpf_access_type type,
1091 				const struct bpf_prog *prog,
1092 				struct bpf_insn_access_aux *info);
1093 	int (*gen_prologue)(struct bpf_insn *insn, bool direct_write,
1094 			    const struct bpf_prog *prog);
1095 	int (*gen_epilogue)(struct bpf_insn *insn, const struct bpf_prog *prog,
1096 			    s16 ctx_stack_off);
1097 	int (*gen_ld_abs)(const struct bpf_insn *orig,
1098 			  struct bpf_insn *insn_buf);
1099 	u32 (*convert_ctx_access)(enum bpf_access_type type,
1100 				  const struct bpf_insn *src,
1101 				  struct bpf_insn *dst,
1102 				  struct bpf_prog *prog, u32 *target_size);
1103 	int (*btf_struct_access)(struct bpf_verifier_log *log,
1104 				 const struct bpf_reg_state *reg,
1105 				 int off, int size);
1106 };
1107 
1108 struct bpf_prog_offload_ops {
1109 	/* verifier basic callbacks */
1110 	int (*insn_hook)(struct bpf_verifier_env *env,
1111 			 int insn_idx, int prev_insn_idx);
1112 	int (*finalize)(struct bpf_verifier_env *env);
1113 	/* verifier optimization callbacks (called after .finalize) */
1114 	int (*replace_insn)(struct bpf_verifier_env *env, u32 off,
1115 			    struct bpf_insn *insn);
1116 	int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt);
1117 	/* program management callbacks */
1118 	int (*prepare)(struct bpf_prog *prog);
1119 	int (*translate)(struct bpf_prog *prog);
1120 	void (*destroy)(struct bpf_prog *prog);
1121 };
1122 
1123 struct bpf_prog_offload {
1124 	struct bpf_prog		*prog;
1125 	struct net_device	*netdev;
1126 	struct bpf_offload_dev	*offdev;
1127 	void			*dev_priv;
1128 	struct list_head	offloads;
1129 	bool			dev_state;
1130 	bool			opt_failed;
1131 	void			*jited_image;
1132 	u32			jited_len;
1133 };
1134 
1135 /* The longest tracepoint has 12 args.
1136  * See include/trace/bpf_probe.h
1137  */
1138 #define MAX_BPF_FUNC_ARGS 12
1139 
1140 /* The maximum number of arguments passed through registers
1141  * a single function may have.
1142  */
1143 #define MAX_BPF_FUNC_REG_ARGS 5
1144 
1145 /* The argument is a structure or a union. */
1146 #define BTF_FMODEL_STRUCT_ARG		BIT(0)
1147 
1148 /* The argument is signed. */
1149 #define BTF_FMODEL_SIGNED_ARG		BIT(1)
1150 
1151 struct btf_func_model {
1152 	u8 ret_size;
1153 	u8 ret_flags;
1154 	u8 nr_args;
1155 	u8 arg_size[MAX_BPF_FUNC_ARGS];
1156 	u8 arg_flags[MAX_BPF_FUNC_ARGS];
1157 };
1158 
1159 /* Restore arguments before returning from trampoline to let original function
1160  * continue executing. This flag is used for fentry progs when there are no
1161  * fexit progs.
1162  */
1163 #define BPF_TRAMP_F_RESTORE_REGS	BIT(0)
1164 /* Call original function after fentry progs, but before fexit progs.
1165  * Makes sense for fentry/fexit, normal calls and indirect calls.
1166  */
1167 #define BPF_TRAMP_F_CALL_ORIG		BIT(1)
1168 /* Skip current frame and return to parent.  Makes sense for fentry/fexit
1169  * programs only. Should not be used with normal calls and indirect calls.
1170  */
1171 #define BPF_TRAMP_F_SKIP_FRAME		BIT(2)
1172 /* Store IP address of the caller on the trampoline stack,
1173  * so it's available for trampoline's programs.
1174  */
1175 #define BPF_TRAMP_F_IP_ARG		BIT(3)
1176 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */
1177 #define BPF_TRAMP_F_RET_FENTRY_RET	BIT(4)
1178 
1179 /* Get original function from stack instead of from provided direct address.
1180  * Makes sense for trampolines with fexit or fmod_ret programs.
1181  */
1182 #define BPF_TRAMP_F_ORIG_STACK		BIT(5)
1183 
1184 /* This trampoline is on a function with another ftrace_ops with IPMODIFY,
1185  * e.g., a live patch. This flag is set and cleared by ftrace call backs,
1186  */
1187 #define BPF_TRAMP_F_SHARE_IPMODIFY	BIT(6)
1188 
1189 /* Indicate that current trampoline is in a tail call context. Then, it has to
1190  * cache and restore tail_call_cnt to avoid infinite tail call loop.
1191  */
1192 #define BPF_TRAMP_F_TAIL_CALL_CTX	BIT(7)
1193 
1194 /*
1195  * Indicate the trampoline should be suitable to receive indirect calls;
1196  * without this indirectly calling the generated code can result in #UD/#CP,
1197  * depending on the CFI options.
1198  *
1199  * Used by bpf_struct_ops.
1200  *
1201  * Incompatible with FENTRY usage, overloads @func_addr argument.
1202  */
1203 #define BPF_TRAMP_F_INDIRECT		BIT(8)
1204 
1205 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50
1206  * bytes on x86.
1207  */
1208 enum {
1209 #if defined(__s390x__)
1210 	BPF_MAX_TRAMP_LINKS = 27,
1211 #else
1212 	BPF_MAX_TRAMP_LINKS = 38,
1213 #endif
1214 };
1215 
1216 struct bpf_tramp_links {
1217 	struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS];
1218 	int nr_links;
1219 };
1220 
1221 struct bpf_tramp_run_ctx;
1222 
1223 /* Different use cases for BPF trampoline:
1224  * 1. replace nop at the function entry (kprobe equivalent)
1225  *    flags = BPF_TRAMP_F_RESTORE_REGS
1226  *    fentry = a set of programs to run before returning from trampoline
1227  *
1228  * 2. replace nop at the function entry (kprobe + kretprobe equivalent)
1229  *    flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME
1230  *    orig_call = fentry_ip + MCOUNT_INSN_SIZE
1231  *    fentry = a set of program to run before calling original function
1232  *    fexit = a set of program to run after original function
1233  *
1234  * 3. replace direct call instruction anywhere in the function body
1235  *    or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid)
1236  *    With flags = 0
1237  *      fentry = a set of programs to run before returning from trampoline
1238  *    With flags = BPF_TRAMP_F_CALL_ORIG
1239  *      orig_call = original callback addr or direct function addr
1240  *      fentry = a set of program to run before calling original function
1241  *      fexit = a set of program to run after original function
1242  */
1243 struct bpf_tramp_image;
1244 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
1245 				const struct btf_func_model *m, u32 flags,
1246 				struct bpf_tramp_links *tlinks,
1247 				void *func_addr);
1248 void *arch_alloc_bpf_trampoline(unsigned int size);
1249 void arch_free_bpf_trampoline(void *image, unsigned int size);
1250 int __must_check arch_protect_bpf_trampoline(void *image, unsigned int size);
1251 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
1252 			     struct bpf_tramp_links *tlinks, void *func_addr);
1253 
1254 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
1255 					     struct bpf_tramp_run_ctx *run_ctx);
1256 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start,
1257 					     struct bpf_tramp_run_ctx *run_ctx);
1258 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr);
1259 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr);
1260 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog,
1261 				      struct bpf_tramp_run_ctx *run_ctx);
1262 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start,
1263 				      struct bpf_tramp_run_ctx *run_ctx);
1264 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog);
1265 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog);
1266 
1267 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_JMP
1268 static inline bool bpf_trampoline_use_jmp(u64 flags)
1269 {
1270 	return flags & BPF_TRAMP_F_CALL_ORIG && !(flags & BPF_TRAMP_F_SKIP_FRAME);
1271 }
1272 #else
1273 static inline bool bpf_trampoline_use_jmp(u64 flags)
1274 {
1275 	return false;
1276 }
1277 #endif
1278 
1279 struct bpf_ksym {
1280 	unsigned long		 start;
1281 	unsigned long		 end;
1282 	char			 name[KSYM_NAME_LEN];
1283 	struct list_head	 lnode;
1284 	struct latch_tree_node	 tnode;
1285 	bool			 prog;
1286 };
1287 
1288 enum bpf_tramp_prog_type {
1289 	BPF_TRAMP_FENTRY,
1290 	BPF_TRAMP_FEXIT,
1291 	BPF_TRAMP_MODIFY_RETURN,
1292 	BPF_TRAMP_MAX,
1293 	BPF_TRAMP_REPLACE, /* more than MAX */
1294 };
1295 
1296 struct bpf_tramp_image {
1297 	void *image;
1298 	int size;
1299 	struct bpf_ksym ksym;
1300 	struct percpu_ref pcref;
1301 	void *ip_after_call;
1302 	void *ip_epilogue;
1303 	union {
1304 		struct rcu_head rcu;
1305 		struct work_struct work;
1306 	};
1307 };
1308 
1309 struct bpf_trampoline {
1310 	/* hlist for trampoline_table */
1311 	struct hlist_node hlist;
1312 	struct ftrace_ops *fops;
1313 	/* serializes access to fields of this trampoline */
1314 	struct mutex mutex;
1315 	refcount_t refcnt;
1316 	u32 flags;
1317 	u64 key;
1318 	struct {
1319 		struct btf_func_model model;
1320 		void *addr;
1321 		bool ftrace_managed;
1322 	} func;
1323 	/* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF
1324 	 * program by replacing one of its functions. func.addr is the address
1325 	 * of the function it replaced.
1326 	 */
1327 	struct bpf_prog *extension_prog;
1328 	/* list of BPF programs using this trampoline */
1329 	struct hlist_head progs_hlist[BPF_TRAMP_MAX];
1330 	/* Number of attached programs. A counter per kind. */
1331 	int progs_cnt[BPF_TRAMP_MAX];
1332 	/* Executable image of trampoline */
1333 	struct bpf_tramp_image *cur_image;
1334 };
1335 
1336 struct bpf_attach_target_info {
1337 	struct btf_func_model fmodel;
1338 	long tgt_addr;
1339 	struct module *tgt_mod;
1340 	const char *tgt_name;
1341 	const struct btf_type *tgt_type;
1342 };
1343 
1344 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */
1345 
1346 struct bpf_dispatcher_prog {
1347 	struct bpf_prog *prog;
1348 	refcount_t users;
1349 };
1350 
1351 struct bpf_dispatcher {
1352 	/* dispatcher mutex */
1353 	struct mutex mutex;
1354 	void *func;
1355 	struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX];
1356 	int num_progs;
1357 	void *image;
1358 	void *rw_image;
1359 	u32 image_off;
1360 	struct bpf_ksym ksym;
1361 #ifdef CONFIG_HAVE_STATIC_CALL
1362 	struct static_call_key *sc_key;
1363 	void *sc_tramp;
1364 #endif
1365 };
1366 
1367 #ifndef __bpfcall
1368 #define __bpfcall __nocfi
1369 #endif
1370 
1371 static __always_inline __bpfcall unsigned int bpf_dispatcher_nop_func(
1372 	const void *ctx,
1373 	const struct bpf_insn *insnsi,
1374 	bpf_func_t bpf_func)
1375 {
1376 	return bpf_func(ctx, insnsi);
1377 }
1378 
1379 /* the implementation of the opaque uapi struct bpf_dynptr */
1380 struct bpf_dynptr_kern {
1381 	void *data;
1382 	/* Size represents the number of usable bytes of dynptr data.
1383 	 * If for example the offset is at 4 for a local dynptr whose data is
1384 	 * of type u64, the number of usable bytes is 4.
1385 	 *
1386 	 * The upper 8 bits are reserved. It is as follows:
1387 	 * Bits 0 - 23 = size
1388 	 * Bits 24 - 30 = dynptr type
1389 	 * Bit 31 = whether dynptr is read-only
1390 	 */
1391 	u32 size;
1392 	u32 offset;
1393 } __aligned(8);
1394 
1395 enum bpf_dynptr_type {
1396 	BPF_DYNPTR_TYPE_INVALID,
1397 	/* Points to memory that is local to the bpf program */
1398 	BPF_DYNPTR_TYPE_LOCAL,
1399 	/* Underlying data is a ringbuf record */
1400 	BPF_DYNPTR_TYPE_RINGBUF,
1401 	/* Underlying data is a sk_buff */
1402 	BPF_DYNPTR_TYPE_SKB,
1403 	/* Underlying data is a xdp_buff */
1404 	BPF_DYNPTR_TYPE_XDP,
1405 	/* Points to skb_metadata_end()-skb_metadata_len() */
1406 	BPF_DYNPTR_TYPE_SKB_META,
1407 	/* Underlying data is a file */
1408 	BPF_DYNPTR_TYPE_FILE,
1409 };
1410 
1411 int bpf_dynptr_check_size(u64 size);
1412 u64 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr);
1413 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u64 len);
1414 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u64 len);
1415 bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr);
1416 int __bpf_dynptr_write(const struct bpf_dynptr_kern *dst, u64 offset,
1417 		       void *src, u64 len, u64 flags);
1418 void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr *p, u64 offset,
1419 			    void *buffer__opt, u64 buffer__szk);
1420 
1421 static inline int bpf_dynptr_check_off_len(const struct bpf_dynptr_kern *ptr, u64 offset, u64 len)
1422 {
1423 	u64 size = __bpf_dynptr_size(ptr);
1424 
1425 	if (len > size || offset > size - len)
1426 		return -E2BIG;
1427 
1428 	return 0;
1429 }
1430 
1431 #ifdef CONFIG_BPF_JIT
1432 int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1433 			     struct bpf_trampoline *tr,
1434 			     struct bpf_prog *tgt_prog);
1435 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1436 			       struct bpf_trampoline *tr,
1437 			       struct bpf_prog *tgt_prog);
1438 struct bpf_trampoline *bpf_trampoline_get(u64 key,
1439 					  struct bpf_attach_target_info *tgt_info);
1440 void bpf_trampoline_put(struct bpf_trampoline *tr);
1441 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs);
1442 
1443 /*
1444  * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn
1445  * indirection with a direct call to the bpf program. If the architecture does
1446  * not have STATIC_CALL, avoid a double-indirection.
1447  */
1448 #ifdef CONFIG_HAVE_STATIC_CALL
1449 
1450 #define __BPF_DISPATCHER_SC_INIT(_name)				\
1451 	.sc_key = &STATIC_CALL_KEY(_name),			\
1452 	.sc_tramp = STATIC_CALL_TRAMP_ADDR(_name),
1453 
1454 #define __BPF_DISPATCHER_SC(name)				\
1455 	DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func)
1456 
1457 #define __BPF_DISPATCHER_CALL(name)				\
1458 	static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func)
1459 
1460 #define __BPF_DISPATCHER_UPDATE(_d, _new)			\
1461 	__static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new))
1462 
1463 #else
1464 #define __BPF_DISPATCHER_SC_INIT(name)
1465 #define __BPF_DISPATCHER_SC(name)
1466 #define __BPF_DISPATCHER_CALL(name)		bpf_func(ctx, insnsi)
1467 #define __BPF_DISPATCHER_UPDATE(_d, _new)
1468 #endif
1469 
1470 #define BPF_DISPATCHER_INIT(_name) {				\
1471 	.mutex = __MUTEX_INITIALIZER(_name.mutex),		\
1472 	.func = &_name##_func,					\
1473 	.progs = {},						\
1474 	.num_progs = 0,						\
1475 	.image = NULL,						\
1476 	.image_off = 0,						\
1477 	.ksym = {						\
1478 		.name  = #_name,				\
1479 		.lnode = LIST_HEAD_INIT(_name.ksym.lnode),	\
1480 	},							\
1481 	__BPF_DISPATCHER_SC_INIT(_name##_call)			\
1482 }
1483 
1484 #define DEFINE_BPF_DISPATCHER(name)					\
1485 	__BPF_DISPATCHER_SC(name);					\
1486 	noinline __bpfcall unsigned int bpf_dispatcher_##name##_func(	\
1487 		const void *ctx,					\
1488 		const struct bpf_insn *insnsi,				\
1489 		bpf_func_t bpf_func)					\
1490 	{								\
1491 		return __BPF_DISPATCHER_CALL(name);			\
1492 	}								\
1493 	EXPORT_SYMBOL(bpf_dispatcher_##name##_func);			\
1494 	struct bpf_dispatcher bpf_dispatcher_##name =			\
1495 		BPF_DISPATCHER_INIT(bpf_dispatcher_##name);
1496 
1497 #define DECLARE_BPF_DISPATCHER(name)					\
1498 	unsigned int bpf_dispatcher_##name##_func(			\
1499 		const void *ctx,					\
1500 		const struct bpf_insn *insnsi,				\
1501 		bpf_func_t bpf_func);					\
1502 	extern struct bpf_dispatcher bpf_dispatcher_##name;
1503 
1504 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func
1505 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name)
1506 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from,
1507 				struct bpf_prog *to);
1508 /* Called only from JIT-enabled code, so there's no need for stubs. */
1509 void bpf_image_ksym_init(void *data, unsigned int size, struct bpf_ksym *ksym);
1510 void bpf_image_ksym_add(struct bpf_ksym *ksym);
1511 void bpf_image_ksym_del(struct bpf_ksym *ksym);
1512 void bpf_ksym_add(struct bpf_ksym *ksym);
1513 void bpf_ksym_del(struct bpf_ksym *ksym);
1514 int bpf_jit_charge_modmem(u32 size);
1515 void bpf_jit_uncharge_modmem(u32 size);
1516 bool bpf_prog_has_trampoline(const struct bpf_prog *prog);
1517 #else
1518 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1519 					   struct bpf_trampoline *tr,
1520 					   struct bpf_prog *tgt_prog)
1521 {
1522 	return -ENOTSUPP;
1523 }
1524 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1525 					     struct bpf_trampoline *tr,
1526 					     struct bpf_prog *tgt_prog)
1527 {
1528 	return -ENOTSUPP;
1529 }
1530 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key,
1531 							struct bpf_attach_target_info *tgt_info)
1532 {
1533 	return NULL;
1534 }
1535 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {}
1536 #define DEFINE_BPF_DISPATCHER(name)
1537 #define DECLARE_BPF_DISPATCHER(name)
1538 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func
1539 #define BPF_DISPATCHER_PTR(name) NULL
1540 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d,
1541 					      struct bpf_prog *from,
1542 					      struct bpf_prog *to) {}
1543 static inline bool is_bpf_image_address(unsigned long address)
1544 {
1545 	return false;
1546 }
1547 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
1548 {
1549 	return false;
1550 }
1551 #endif
1552 
1553 struct bpf_func_info_aux {
1554 	u16 linkage;
1555 	bool unreliable;
1556 	bool called : 1;
1557 	bool verified : 1;
1558 };
1559 
1560 enum bpf_jit_poke_reason {
1561 	BPF_POKE_REASON_TAIL_CALL,
1562 };
1563 
1564 /* Descriptor of pokes pointing /into/ the JITed image. */
1565 struct bpf_jit_poke_descriptor {
1566 	void *tailcall_target;
1567 	void *tailcall_bypass;
1568 	void *bypass_addr;
1569 	void *aux;
1570 	union {
1571 		struct {
1572 			struct bpf_map *map;
1573 			u32 key;
1574 		} tail_call;
1575 	};
1576 	bool tailcall_target_stable;
1577 	u8 adj_off;
1578 	u16 reason;
1579 	u32 insn_idx;
1580 };
1581 
1582 /* reg_type info for ctx arguments */
1583 struct bpf_ctx_arg_aux {
1584 	u32 offset;
1585 	enum bpf_reg_type reg_type;
1586 	struct btf *btf;
1587 	u32 btf_id;
1588 	u32 ref_obj_id;
1589 	bool refcounted;
1590 };
1591 
1592 struct btf_mod_pair {
1593 	struct btf *btf;
1594 	struct module *module;
1595 };
1596 
1597 struct bpf_kfunc_desc_tab;
1598 
1599 enum bpf_stream_id {
1600 	BPF_STDOUT = 1,
1601 	BPF_STDERR = 2,
1602 };
1603 
1604 struct bpf_stream_elem {
1605 	struct llist_node node;
1606 	int total_len;
1607 	int consumed_len;
1608 	char str[];
1609 };
1610 
1611 enum {
1612 	/* 100k bytes */
1613 	BPF_STREAM_MAX_CAPACITY = 100000ULL,
1614 };
1615 
1616 struct bpf_stream {
1617 	atomic_t capacity;
1618 	struct llist_head log;	/* list of in-flight stream elements in LIFO order */
1619 
1620 	struct mutex lock;  /* lock protecting backlog_{head,tail} */
1621 	struct llist_node *backlog_head; /* list of in-flight stream elements in FIFO order */
1622 	struct llist_node *backlog_tail; /* tail of the list above */
1623 };
1624 
1625 struct bpf_stream_stage {
1626 	struct llist_head log;
1627 	int len;
1628 };
1629 
1630 struct bpf_prog_aux {
1631 	atomic64_t refcnt;
1632 	u32 used_map_cnt;
1633 	u32 used_btf_cnt;
1634 	u32 max_ctx_offset;
1635 	u32 max_pkt_offset;
1636 	u32 max_tp_access;
1637 	u32 stack_depth;
1638 	u32 id;
1639 	u32 func_cnt; /* used by non-func prog as the number of func progs */
1640 	u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */
1641 	u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */
1642 	u32 attach_btf_id; /* in-kernel BTF type id to attach to */
1643 	u32 attach_st_ops_member_off;
1644 	u32 ctx_arg_info_size;
1645 	u32 max_rdonly_access;
1646 	u32 max_rdwr_access;
1647 	u32 subprog_start;
1648 	struct btf *attach_btf;
1649 	struct bpf_ctx_arg_aux *ctx_arg_info;
1650 	void __percpu *priv_stack_ptr;
1651 	struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */
1652 	struct bpf_prog *dst_prog;
1653 	struct bpf_trampoline *dst_trampoline;
1654 	enum bpf_prog_type saved_dst_prog_type;
1655 	enum bpf_attach_type saved_dst_attach_type;
1656 	bool verifier_zext; /* Zero extensions has been inserted by verifier. */
1657 	bool dev_bound; /* Program is bound to the netdev. */
1658 	bool offload_requested; /* Program is bound and offloaded to the netdev. */
1659 	bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */
1660 	bool attach_tracing_prog; /* true if tracing another tracing program */
1661 	bool func_proto_unreliable;
1662 	bool tail_call_reachable;
1663 	bool xdp_has_frags;
1664 	bool exception_cb;
1665 	bool exception_boundary;
1666 	bool is_extended; /* true if extended by freplace program */
1667 	bool jits_use_priv_stack;
1668 	bool priv_stack_requested;
1669 	bool changes_pkt_data;
1670 	bool might_sleep;
1671 	bool kprobe_write_ctx;
1672 	u64 prog_array_member_cnt; /* counts how many times as member of prog_array */
1673 	struct mutex ext_mutex; /* mutex for is_extended and prog_array_member_cnt */
1674 	struct bpf_arena *arena;
1675 	void (*recursion_detected)(struct bpf_prog *prog); /* callback if recursion is detected */
1676 	/* BTF_KIND_FUNC_PROTO for valid attach_btf_id */
1677 	const struct btf_type *attach_func_proto;
1678 	/* function name for valid attach_btf_id */
1679 	const char *attach_func_name;
1680 	struct bpf_prog **func;
1681 	struct bpf_prog_aux *main_prog_aux;
1682 	void *jit_data; /* JIT specific data. arch dependent */
1683 	struct bpf_jit_poke_descriptor *poke_tab;
1684 	struct bpf_kfunc_desc_tab *kfunc_tab;
1685 	struct bpf_kfunc_btf_tab *kfunc_btf_tab;
1686 	u32 size_poke_tab;
1687 #ifdef CONFIG_FINEIBT
1688 	struct bpf_ksym ksym_prefix;
1689 #endif
1690 	struct bpf_ksym ksym;
1691 	const struct bpf_prog_ops *ops;
1692 	const struct bpf_struct_ops *st_ops;
1693 	struct bpf_map **used_maps;
1694 	struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */
1695 	struct btf_mod_pair *used_btfs;
1696 	struct bpf_prog *prog;
1697 	struct user_struct *user;
1698 	u64 load_time; /* ns since boottime */
1699 	u32 verified_insns;
1700 	int cgroup_atype; /* enum cgroup_bpf_attach_type */
1701 	struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1702 	char name[BPF_OBJ_NAME_LEN];
1703 	u64 (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp, u64, u64);
1704 #ifdef CONFIG_SECURITY
1705 	void *security;
1706 #endif
1707 	struct bpf_token *token;
1708 	struct bpf_prog_offload *offload;
1709 	struct btf *btf;
1710 	struct bpf_func_info *func_info;
1711 	struct bpf_func_info_aux *func_info_aux;
1712 	/* bpf_line_info loaded from userspace.  linfo->insn_off
1713 	 * has the xlated insn offset.
1714 	 * Both the main and sub prog share the same linfo.
1715 	 * The subprog can access its first linfo by
1716 	 * using the linfo_idx.
1717 	 */
1718 	struct bpf_line_info *linfo;
1719 	/* jited_linfo is the jited addr of the linfo.  It has a
1720 	 * one to one mapping to linfo:
1721 	 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off.
1722 	 * Both the main and sub prog share the same jited_linfo.
1723 	 * The subprog can access its first jited_linfo by
1724 	 * using the linfo_idx.
1725 	 */
1726 	void **jited_linfo;
1727 	u32 func_info_cnt;
1728 	u32 nr_linfo;
1729 	/* subprog can use linfo_idx to access its first linfo and
1730 	 * jited_linfo.
1731 	 * main prog always has linfo_idx == 0
1732 	 */
1733 	u32 linfo_idx;
1734 	struct module *mod;
1735 	u32 num_exentries;
1736 	struct exception_table_entry *extable;
1737 	union {
1738 		struct work_struct work;
1739 		struct rcu_head	rcu;
1740 	};
1741 	struct bpf_stream stream[2];
1742 };
1743 
1744 struct bpf_prog {
1745 	u16			pages;		/* Number of allocated pages */
1746 	u16			jited:1,	/* Is our filter JIT'ed? */
1747 				jit_requested:1,/* archs need to JIT the prog */
1748 				gpl_compatible:1, /* Is filter GPL compatible? */
1749 				cb_access:1,	/* Is control block accessed? */
1750 				dst_needed:1,	/* Do we need dst entry? */
1751 				blinding_requested:1, /* needs constant blinding */
1752 				blinded:1,	/* Was blinded */
1753 				is_func:1,	/* program is a bpf function */
1754 				kprobe_override:1, /* Do we override a kprobe? */
1755 				has_callchain_buf:1, /* callchain buffer allocated? */
1756 				enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
1757 				call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
1758 				call_get_func_ip:1, /* Do we call get_func_ip() */
1759 				tstamp_type_access:1, /* Accessed __sk_buff->tstamp_type */
1760 				sleepable:1;	/* BPF program is sleepable */
1761 	enum bpf_prog_type	type;		/* Type of BPF program */
1762 	enum bpf_attach_type	expected_attach_type; /* For some prog types */
1763 	u32			len;		/* Number of filter blocks */
1764 	u32			jited_len;	/* Size of jited insns in bytes */
1765 	union {
1766 		u8 digest[SHA256_DIGEST_SIZE];
1767 		u8 tag[BPF_TAG_SIZE];
1768 	};
1769 	struct bpf_prog_stats __percpu *stats;
1770 	int __percpu		*active;
1771 	unsigned int		(*bpf_func)(const void *ctx,
1772 					    const struct bpf_insn *insn);
1773 	struct bpf_prog_aux	*aux;		/* Auxiliary fields */
1774 	struct sock_fprog_kern	*orig_prog;	/* Original BPF program */
1775 	/* Instructions for interpreter */
1776 	union {
1777 		DECLARE_FLEX_ARRAY(struct sock_filter, insns);
1778 		DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi);
1779 	};
1780 };
1781 
1782 struct bpf_array_aux {
1783 	/* Programs with direct jumps into programs part of this array. */
1784 	struct list_head poke_progs;
1785 	struct bpf_map *map;
1786 	struct mutex poke_mutex;
1787 	struct work_struct work;
1788 };
1789 
1790 struct bpf_link {
1791 	atomic64_t refcnt;
1792 	u32 id;
1793 	enum bpf_link_type type;
1794 	const struct bpf_link_ops *ops;
1795 	struct bpf_prog *prog;
1796 
1797 	u32 flags;
1798 	enum bpf_attach_type attach_type;
1799 
1800 	/* rcu is used before freeing, work can be used to schedule that
1801 	 * RCU-based freeing before that, so they never overlap
1802 	 */
1803 	union {
1804 		struct rcu_head rcu;
1805 		struct work_struct work;
1806 	};
1807 	/* whether BPF link itself has "sleepable" semantics, which can differ
1808 	 * from underlying BPF program having a "sleepable" semantics, as BPF
1809 	 * link's semantics is determined by target attach hook
1810 	 */
1811 	bool sleepable;
1812 };
1813 
1814 struct bpf_link_ops {
1815 	void (*release)(struct bpf_link *link);
1816 	/* deallocate link resources callback, called without RCU grace period
1817 	 * waiting
1818 	 */
1819 	void (*dealloc)(struct bpf_link *link);
1820 	/* deallocate link resources callback, called after RCU grace period;
1821 	 * if either the underlying BPF program is sleepable or BPF link's
1822 	 * target hook is sleepable, we'll go through tasks trace RCU GP and
1823 	 * then "classic" RCU GP; this need for chaining tasks trace and
1824 	 * classic RCU GPs is designated by setting bpf_link->sleepable flag
1825 	 */
1826 	void (*dealloc_deferred)(struct bpf_link *link);
1827 	int (*detach)(struct bpf_link *link);
1828 	int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog,
1829 			   struct bpf_prog *old_prog);
1830 	void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq);
1831 	int (*fill_link_info)(const struct bpf_link *link,
1832 			      struct bpf_link_info *info);
1833 	int (*update_map)(struct bpf_link *link, struct bpf_map *new_map,
1834 			  struct bpf_map *old_map);
1835 	__poll_t (*poll)(struct file *file, struct poll_table_struct *pts);
1836 };
1837 
1838 struct bpf_tramp_link {
1839 	struct bpf_link link;
1840 	struct hlist_node tramp_hlist;
1841 	u64 cookie;
1842 };
1843 
1844 struct bpf_shim_tramp_link {
1845 	struct bpf_tramp_link link;
1846 	struct bpf_trampoline *trampoline;
1847 };
1848 
1849 struct bpf_tracing_link {
1850 	struct bpf_tramp_link link;
1851 	struct bpf_trampoline *trampoline;
1852 	struct bpf_prog *tgt_prog;
1853 };
1854 
1855 struct bpf_raw_tp_link {
1856 	struct bpf_link link;
1857 	struct bpf_raw_event_map *btp;
1858 	u64 cookie;
1859 };
1860 
1861 struct bpf_link_primer {
1862 	struct bpf_link *link;
1863 	struct file *file;
1864 	int fd;
1865 	u32 id;
1866 };
1867 
1868 struct bpf_mount_opts {
1869 	kuid_t uid;
1870 	kgid_t gid;
1871 	umode_t mode;
1872 
1873 	/* BPF token-related delegation options */
1874 	u64 delegate_cmds;
1875 	u64 delegate_maps;
1876 	u64 delegate_progs;
1877 	u64 delegate_attachs;
1878 };
1879 
1880 struct bpf_token {
1881 	struct work_struct work;
1882 	atomic64_t refcnt;
1883 	struct user_namespace *userns;
1884 	u64 allowed_cmds;
1885 	u64 allowed_maps;
1886 	u64 allowed_progs;
1887 	u64 allowed_attachs;
1888 #ifdef CONFIG_SECURITY
1889 	void *security;
1890 #endif
1891 };
1892 
1893 struct bpf_struct_ops_value;
1894 struct btf_member;
1895 
1896 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64
1897 /**
1898  * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to
1899  *			   define a BPF_MAP_TYPE_STRUCT_OPS map type composed
1900  *			   of BPF_PROG_TYPE_STRUCT_OPS progs.
1901  * @verifier_ops: A structure of callbacks that are invoked by the verifier
1902  *		  when determining whether the struct_ops progs in the
1903  *		  struct_ops map are valid.
1904  * @init: A callback that is invoked a single time, and before any other
1905  *	  callback, to initialize the structure. A nonzero return value means
1906  *	  the subsystem could not be initialized.
1907  * @check_member: When defined, a callback invoked by the verifier to allow
1908  *		  the subsystem to determine if an entry in the struct_ops map
1909  *		  is valid. A nonzero return value means that the map is
1910  *		  invalid and should be rejected by the verifier.
1911  * @init_member: A callback that is invoked for each member of the struct_ops
1912  *		 map to allow the subsystem to initialize the member. A nonzero
1913  *		 value means the member could not be initialized. This callback
1914  *		 is exclusive with the @type, @type_id, @value_type, and
1915  *		 @value_id fields.
1916  * @reg: A callback that is invoked when the struct_ops map has been
1917  *	 initialized and is being attached to. Zero means the struct_ops map
1918  *	 has been successfully registered and is live. A nonzero return value
1919  *	 means the struct_ops map could not be registered.
1920  * @unreg: A callback that is invoked when the struct_ops map should be
1921  *	   unregistered.
1922  * @update: A callback that is invoked when the live struct_ops map is being
1923  *	    updated to contain new values. This callback is only invoked when
1924  *	    the struct_ops map is loaded with BPF_F_LINK. If not defined, the
1925  *	    it is assumed that the struct_ops map cannot be updated.
1926  * @validate: A callback that is invoked after all of the members have been
1927  *	      initialized. This callback should perform static checks on the
1928  *	      map, meaning that it should either fail or succeed
1929  *	      deterministically. A struct_ops map that has been validated may
1930  *	      not necessarily succeed in being registered if the call to @reg
1931  *	      fails. For example, a valid struct_ops map may be loaded, but
1932  *	      then fail to be registered due to there being another active
1933  *	      struct_ops map on the system in the subsystem already. For this
1934  *	      reason, if this callback is not defined, the check is skipped as
1935  *	      the struct_ops map will have final verification performed in
1936  *	      @reg.
1937  * @cfi_stubs: Pointer to a structure of stub functions for CFI. These stubs
1938  *	       provide the correct Control Flow Integrity hashes for the
1939  *	       trampolines generated by BPF struct_ops.
1940  * @owner: The module that owns this struct_ops. Used for module reference
1941  *	   counting to ensure the module providing the struct_ops cannot be
1942  *	   unloaded while in use.
1943  * @name: The name of the struct bpf_struct_ops object.
1944  * @func_models: Func models
1945  */
1946 struct bpf_struct_ops {
1947 	const struct bpf_verifier_ops *verifier_ops;
1948 	int (*init)(struct btf *btf);
1949 	int (*check_member)(const struct btf_type *t,
1950 			    const struct btf_member *member,
1951 			    const struct bpf_prog *prog);
1952 	int (*init_member)(const struct btf_type *t,
1953 			   const struct btf_member *member,
1954 			   void *kdata, const void *udata);
1955 	int (*reg)(void *kdata, struct bpf_link *link);
1956 	void (*unreg)(void *kdata, struct bpf_link *link);
1957 	int (*update)(void *kdata, void *old_kdata, struct bpf_link *link);
1958 	int (*validate)(void *kdata);
1959 	void *cfi_stubs;
1960 	struct module *owner;
1961 	const char *name;
1962 	struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS];
1963 };
1964 
1965 /* Every member of a struct_ops type has an instance even a member is not
1966  * an operator (function pointer). The "info" field will be assigned to
1967  * prog->aux->ctx_arg_info of BPF struct_ops programs to provide the
1968  * argument information required by the verifier to verify the program.
1969  *
1970  * btf_ctx_access() will lookup prog->aux->ctx_arg_info to find the
1971  * corresponding entry for an given argument.
1972  */
1973 struct bpf_struct_ops_arg_info {
1974 	struct bpf_ctx_arg_aux *info;
1975 	u32 cnt;
1976 };
1977 
1978 struct bpf_struct_ops_desc {
1979 	struct bpf_struct_ops *st_ops;
1980 
1981 	const struct btf_type *type;
1982 	const struct btf_type *value_type;
1983 	u32 type_id;
1984 	u32 value_id;
1985 
1986 	/* Collection of argument information for each member */
1987 	struct bpf_struct_ops_arg_info *arg_info;
1988 };
1989 
1990 enum bpf_struct_ops_state {
1991 	BPF_STRUCT_OPS_STATE_INIT,
1992 	BPF_STRUCT_OPS_STATE_INUSE,
1993 	BPF_STRUCT_OPS_STATE_TOBEFREE,
1994 	BPF_STRUCT_OPS_STATE_READY,
1995 };
1996 
1997 struct bpf_struct_ops_common_value {
1998 	refcount_t refcnt;
1999 	enum bpf_struct_ops_state state;
2000 };
2001 
2002 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL)
2003 /* This macro helps developer to register a struct_ops type and generate
2004  * type information correctly. Developers should use this macro to register
2005  * a struct_ops type instead of calling __register_bpf_struct_ops() directly.
2006  */
2007 #define register_bpf_struct_ops(st_ops, type)				\
2008 	({								\
2009 		struct bpf_struct_ops_##type {				\
2010 			struct bpf_struct_ops_common_value common;	\
2011 			struct type data ____cacheline_aligned_in_smp;	\
2012 		};							\
2013 		BTF_TYPE_EMIT(struct bpf_struct_ops_##type);		\
2014 		__register_bpf_struct_ops(st_ops);			\
2015 	})
2016 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA))
2017 bool bpf_struct_ops_get(const void *kdata);
2018 void bpf_struct_ops_put(const void *kdata);
2019 int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff);
2020 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key,
2021 				       void *value);
2022 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks,
2023 				      struct bpf_tramp_link *link,
2024 				      const struct btf_func_model *model,
2025 				      void *stub_func,
2026 				      void **image, u32 *image_off,
2027 				      bool allow_alloc);
2028 void bpf_struct_ops_image_free(void *image);
2029 static inline bool bpf_try_module_get(const void *data, struct module *owner)
2030 {
2031 	if (owner == BPF_MODULE_OWNER)
2032 		return bpf_struct_ops_get(data);
2033 	else
2034 		return try_module_get(owner);
2035 }
2036 static inline void bpf_module_put(const void *data, struct module *owner)
2037 {
2038 	if (owner == BPF_MODULE_OWNER)
2039 		bpf_struct_ops_put(data);
2040 	else
2041 		module_put(owner);
2042 }
2043 int bpf_struct_ops_link_create(union bpf_attr *attr);
2044 u32 bpf_struct_ops_id(const void *kdata);
2045 
2046 #ifdef CONFIG_NET
2047 /* Define it here to avoid the use of forward declaration */
2048 struct bpf_dummy_ops_state {
2049 	int val;
2050 };
2051 
2052 struct bpf_dummy_ops {
2053 	int (*test_1)(struct bpf_dummy_ops_state *cb);
2054 	int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2,
2055 		      char a3, unsigned long a4);
2056 	int (*test_sleepable)(struct bpf_dummy_ops_state *cb);
2057 };
2058 
2059 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr,
2060 			    union bpf_attr __user *uattr);
2061 #endif
2062 int bpf_struct_ops_desc_init(struct bpf_struct_ops_desc *st_ops_desc,
2063 			     struct btf *btf,
2064 			     struct bpf_verifier_log *log);
2065 void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map);
2066 void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc);
2067 #else
2068 #define register_bpf_struct_ops(st_ops, type) ({ (void *)(st_ops); 0; })
2069 static inline bool bpf_try_module_get(const void *data, struct module *owner)
2070 {
2071 	return try_module_get(owner);
2072 }
2073 static inline void bpf_module_put(const void *data, struct module *owner)
2074 {
2075 	module_put(owner);
2076 }
2077 static inline int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff)
2078 {
2079 	return -ENOTSUPP;
2080 }
2081 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map,
2082 						     void *key,
2083 						     void *value)
2084 {
2085 	return -EINVAL;
2086 }
2087 static inline int bpf_struct_ops_link_create(union bpf_attr *attr)
2088 {
2089 	return -EOPNOTSUPP;
2090 }
2091 static inline void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map)
2092 {
2093 }
2094 
2095 static inline void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc)
2096 {
2097 }
2098 
2099 #endif
2100 
2101 int bpf_prog_ctx_arg_info_init(struct bpf_prog *prog,
2102 			       const struct bpf_ctx_arg_aux *info, u32 cnt);
2103 
2104 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
2105 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
2106 				    int cgroup_atype,
2107 				    enum bpf_attach_type attach_type);
2108 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog);
2109 #else
2110 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
2111 						  int cgroup_atype,
2112 						  enum bpf_attach_type attach_type)
2113 {
2114 	return -EOPNOTSUPP;
2115 }
2116 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
2117 {
2118 }
2119 #endif
2120 
2121 struct bpf_array {
2122 	struct bpf_map map;
2123 	u32 elem_size;
2124 	u32 index_mask;
2125 	struct bpf_array_aux *aux;
2126 	union {
2127 		DECLARE_FLEX_ARRAY(char, value) __aligned(8);
2128 		DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8);
2129 		DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8);
2130 	};
2131 };
2132 
2133 /*
2134  * The bpf_array_get_next_key() function may be used for all array-like
2135  * maps, i.e., maps with u32 keys with range [0 ,..., max_entries)
2136  */
2137 int bpf_array_get_next_key(struct bpf_map *map, void *key, void *next_key);
2138 
2139 #define BPF_COMPLEXITY_LIMIT_INSNS      1000000 /* yes. 1M insns */
2140 #define MAX_TAIL_CALL_CNT 33
2141 
2142 /* Maximum number of loops for bpf_loop and bpf_iter_num.
2143  * It's enum to expose it (and thus make it discoverable) through BTF.
2144  */
2145 enum {
2146 	BPF_MAX_LOOPS = 8 * 1024 * 1024,
2147 	BPF_MAX_TIMED_LOOPS = 0xffff,
2148 };
2149 
2150 #define BPF_F_ACCESS_MASK	(BPF_F_RDONLY |		\
2151 				 BPF_F_RDONLY_PROG |	\
2152 				 BPF_F_WRONLY |		\
2153 				 BPF_F_WRONLY_PROG)
2154 
2155 #define BPF_MAP_CAN_READ	BIT(0)
2156 #define BPF_MAP_CAN_WRITE	BIT(1)
2157 
2158 /* Maximum number of user-producer ring buffer samples that can be drained in
2159  * a call to bpf_user_ringbuf_drain().
2160  */
2161 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024)
2162 
2163 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map)
2164 {
2165 	u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
2166 
2167 	/* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is
2168 	 * not possible.
2169 	 */
2170 	if (access_flags & BPF_F_RDONLY_PROG)
2171 		return BPF_MAP_CAN_READ;
2172 	else if (access_flags & BPF_F_WRONLY_PROG)
2173 		return BPF_MAP_CAN_WRITE;
2174 	else
2175 		return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE;
2176 }
2177 
2178 static inline bool bpf_map_flags_access_ok(u32 access_flags)
2179 {
2180 	return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) !=
2181 	       (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
2182 }
2183 
2184 static inline struct bpf_map_owner *bpf_map_owner_alloc(struct bpf_map *map)
2185 {
2186 	return kzalloc(sizeof(*map->owner), GFP_ATOMIC);
2187 }
2188 
2189 static inline void bpf_map_owner_free(struct bpf_map *map)
2190 {
2191 	kfree(map->owner);
2192 }
2193 
2194 struct bpf_event_entry {
2195 	struct perf_event *event;
2196 	struct file *perf_file;
2197 	struct file *map_file;
2198 	struct rcu_head rcu;
2199 };
2200 
2201 static inline bool map_type_contains_progs(struct bpf_map *map)
2202 {
2203 	return map->map_type == BPF_MAP_TYPE_PROG_ARRAY ||
2204 	       map->map_type == BPF_MAP_TYPE_DEVMAP ||
2205 	       map->map_type == BPF_MAP_TYPE_CPUMAP;
2206 }
2207 
2208 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp);
2209 int bpf_prog_calc_tag(struct bpf_prog *fp);
2210 
2211 const struct bpf_func_proto *bpf_get_trace_printk_proto(void);
2212 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void);
2213 
2214 const struct bpf_func_proto *bpf_get_perf_event_read_value_proto(void);
2215 
2216 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src,
2217 					unsigned long off, unsigned long len);
2218 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type,
2219 					const struct bpf_insn *src,
2220 					struct bpf_insn *dst,
2221 					struct bpf_prog *prog,
2222 					u32 *target_size);
2223 
2224 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2225 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy);
2226 
2227 /* an array of programs to be executed under rcu_lock.
2228  *
2229  * Typical usage:
2230  * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run);
2231  *
2232  * the structure returned by bpf_prog_array_alloc() should be populated
2233  * with program pointers and the last pointer must be NULL.
2234  * The user has to keep refcnt on the program and make sure the program
2235  * is removed from the array before bpf_prog_put().
2236  * The 'struct bpf_prog_array *' should only be replaced with xchg()
2237  * since other cpus are walking the array of pointers in parallel.
2238  */
2239 struct bpf_prog_array_item {
2240 	struct bpf_prog *prog;
2241 	union {
2242 		struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
2243 		u64 bpf_cookie;
2244 	};
2245 };
2246 
2247 struct bpf_prog_array {
2248 	struct rcu_head rcu;
2249 	struct bpf_prog_array_item items[];
2250 };
2251 
2252 struct bpf_empty_prog_array {
2253 	struct bpf_prog_array hdr;
2254 	struct bpf_prog *null_prog;
2255 };
2256 
2257 /* to avoid allocating empty bpf_prog_array for cgroups that
2258  * don't have bpf program attached use one global 'bpf_empty_prog_array'
2259  * It will not be modified the caller of bpf_prog_array_alloc()
2260  * (since caller requested prog_cnt == 0)
2261  * that pointer should be 'freed' by bpf_prog_array_free()
2262  */
2263 extern struct bpf_empty_prog_array bpf_empty_prog_array;
2264 
2265 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags);
2266 void bpf_prog_array_free(struct bpf_prog_array *progs);
2267 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */
2268 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs);
2269 int bpf_prog_array_length(struct bpf_prog_array *progs);
2270 bool bpf_prog_array_is_empty(struct bpf_prog_array *array);
2271 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs,
2272 				__u32 __user *prog_ids, u32 cnt);
2273 
2274 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs,
2275 				struct bpf_prog *old_prog);
2276 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index);
2277 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2278 			     struct bpf_prog *prog);
2279 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2280 			     u32 *prog_ids, u32 request_cnt,
2281 			     u32 *prog_cnt);
2282 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2283 			struct bpf_prog *exclude_prog,
2284 			struct bpf_prog *include_prog,
2285 			u64 bpf_cookie,
2286 			struct bpf_prog_array **new_array);
2287 
2288 struct bpf_run_ctx {};
2289 
2290 struct bpf_cg_run_ctx {
2291 	struct bpf_run_ctx run_ctx;
2292 	const struct bpf_prog_array_item *prog_item;
2293 	int retval;
2294 };
2295 
2296 struct bpf_trace_run_ctx {
2297 	struct bpf_run_ctx run_ctx;
2298 	u64 bpf_cookie;
2299 	bool is_uprobe;
2300 };
2301 
2302 struct bpf_tramp_run_ctx {
2303 	struct bpf_run_ctx run_ctx;
2304 	u64 bpf_cookie;
2305 	struct bpf_run_ctx *saved_run_ctx;
2306 };
2307 
2308 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx)
2309 {
2310 	struct bpf_run_ctx *old_ctx = NULL;
2311 
2312 #ifdef CONFIG_BPF_SYSCALL
2313 	old_ctx = current->bpf_ctx;
2314 	current->bpf_ctx = new_ctx;
2315 #endif
2316 	return old_ctx;
2317 }
2318 
2319 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx)
2320 {
2321 #ifdef CONFIG_BPF_SYSCALL
2322 	current->bpf_ctx = old_ctx;
2323 #endif
2324 }
2325 
2326 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */
2327 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE			(1 << 0)
2328 /* BPF program asks to set CN on the packet. */
2329 #define BPF_RET_SET_CN						(1 << 0)
2330 
2331 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx);
2332 
2333 static __always_inline u32
2334 bpf_prog_run_array(const struct bpf_prog_array *array,
2335 		   const void *ctx, bpf_prog_run_fn run_prog)
2336 {
2337 	const struct bpf_prog_array_item *item;
2338 	const struct bpf_prog *prog;
2339 	struct bpf_run_ctx *old_run_ctx;
2340 	struct bpf_trace_run_ctx run_ctx;
2341 	u32 ret = 1;
2342 
2343 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held");
2344 
2345 	if (unlikely(!array))
2346 		return ret;
2347 
2348 	run_ctx.is_uprobe = false;
2349 
2350 	migrate_disable();
2351 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2352 	item = &array->items[0];
2353 	while ((prog = READ_ONCE(item->prog))) {
2354 		run_ctx.bpf_cookie = item->bpf_cookie;
2355 		ret &= run_prog(prog, ctx);
2356 		item++;
2357 	}
2358 	bpf_reset_run_ctx(old_run_ctx);
2359 	migrate_enable();
2360 	return ret;
2361 }
2362 
2363 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs:
2364  *
2365  * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array
2366  * overall. As a result, we must use the bpf_prog_array_free_sleepable
2367  * in order to use the tasks_trace rcu grace period.
2368  *
2369  * When a non-sleepable program is inside the array, we take the rcu read
2370  * section and disable preemption for that program alone, so it can access
2371  * rcu-protected dynamically sized maps.
2372  */
2373 static __always_inline u32
2374 bpf_prog_run_array_uprobe(const struct bpf_prog_array *array,
2375 			  const void *ctx, bpf_prog_run_fn run_prog)
2376 {
2377 	const struct bpf_prog_array_item *item;
2378 	const struct bpf_prog *prog;
2379 	struct bpf_run_ctx *old_run_ctx;
2380 	struct bpf_trace_run_ctx run_ctx;
2381 	u32 ret = 1;
2382 
2383 	might_fault();
2384 	RCU_LOCKDEP_WARN(!rcu_read_lock_trace_held(), "no rcu lock held");
2385 
2386 	if (unlikely(!array))
2387 		return ret;
2388 
2389 	migrate_disable();
2390 
2391 	run_ctx.is_uprobe = true;
2392 
2393 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2394 	item = &array->items[0];
2395 	while ((prog = READ_ONCE(item->prog))) {
2396 		if (!prog->sleepable)
2397 			rcu_read_lock();
2398 
2399 		run_ctx.bpf_cookie = item->bpf_cookie;
2400 		ret &= run_prog(prog, ctx);
2401 		item++;
2402 
2403 		if (!prog->sleepable)
2404 			rcu_read_unlock();
2405 	}
2406 	bpf_reset_run_ctx(old_run_ctx);
2407 	migrate_enable();
2408 	return ret;
2409 }
2410 
2411 bool bpf_jit_bypass_spec_v1(void);
2412 bool bpf_jit_bypass_spec_v4(void);
2413 
2414 #define bpf_rcu_lock_held() \
2415 	(rcu_read_lock_held() || rcu_read_lock_trace_held() || rcu_read_lock_bh_held())
2416 
2417 #ifdef CONFIG_BPF_SYSCALL
2418 DECLARE_PER_CPU(int, bpf_prog_active);
2419 extern struct mutex bpf_stats_enabled_mutex;
2420 
2421 /*
2422  * Block execution of BPF programs attached to instrumentation (perf,
2423  * kprobes, tracepoints) to prevent deadlocks on map operations as any of
2424  * these events can happen inside a region which holds a map bucket lock
2425  * and can deadlock on it.
2426  */
2427 static inline void bpf_disable_instrumentation(void)
2428 {
2429 	migrate_disable();
2430 	this_cpu_inc(bpf_prog_active);
2431 }
2432 
2433 static inline void bpf_enable_instrumentation(void)
2434 {
2435 	this_cpu_dec(bpf_prog_active);
2436 	migrate_enable();
2437 }
2438 
2439 extern const struct super_operations bpf_super_ops;
2440 extern const struct file_operations bpf_map_fops;
2441 extern const struct file_operations bpf_prog_fops;
2442 extern const struct file_operations bpf_iter_fops;
2443 extern const struct file_operations bpf_token_fops;
2444 
2445 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
2446 	extern const struct bpf_prog_ops _name ## _prog_ops; \
2447 	extern const struct bpf_verifier_ops _name ## _verifier_ops;
2448 #define BPF_MAP_TYPE(_id, _ops) \
2449 	extern const struct bpf_map_ops _ops;
2450 #define BPF_LINK_TYPE(_id, _name)
2451 #include <linux/bpf_types.h>
2452 #undef BPF_PROG_TYPE
2453 #undef BPF_MAP_TYPE
2454 #undef BPF_LINK_TYPE
2455 
2456 extern const struct bpf_prog_ops bpf_offload_prog_ops;
2457 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops;
2458 extern const struct bpf_verifier_ops xdp_analyzer_ops;
2459 
2460 struct bpf_prog *bpf_prog_get(u32 ufd);
2461 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type,
2462 				       bool attach_drv);
2463 void bpf_prog_add(struct bpf_prog *prog, int i);
2464 void bpf_prog_sub(struct bpf_prog *prog, int i);
2465 void bpf_prog_inc(struct bpf_prog *prog);
2466 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog);
2467 void bpf_prog_put(struct bpf_prog *prog);
2468 
2469 void bpf_prog_free_id(struct bpf_prog *prog);
2470 void bpf_map_free_id(struct bpf_map *map);
2471 
2472 struct btf_field *btf_record_find(const struct btf_record *rec,
2473 				  u32 offset, u32 field_mask);
2474 void btf_record_free(struct btf_record *rec);
2475 void bpf_map_free_record(struct bpf_map *map);
2476 struct btf_record *btf_record_dup(const struct btf_record *rec);
2477 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b);
2478 void bpf_obj_free_timer(const struct btf_record *rec, void *obj);
2479 void bpf_obj_free_workqueue(const struct btf_record *rec, void *obj);
2480 void bpf_obj_free_task_work(const struct btf_record *rec, void *obj);
2481 void bpf_obj_free_fields(const struct btf_record *rec, void *obj);
2482 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu);
2483 
2484 struct bpf_map *bpf_map_get(u32 ufd);
2485 struct bpf_map *bpf_map_get_with_uref(u32 ufd);
2486 
2487 /*
2488  * The __bpf_map_get() and __btf_get_by_fd() functions parse a file
2489  * descriptor and return a corresponding map or btf object.
2490  * Their names are double underscored to emphasize the fact that they
2491  * do not increase refcnt. To also increase refcnt use corresponding
2492  * bpf_map_get() and btf_get_by_fd() functions.
2493  */
2494 
2495 static inline struct bpf_map *__bpf_map_get(struct fd f)
2496 {
2497 	if (fd_empty(f))
2498 		return ERR_PTR(-EBADF);
2499 	if (unlikely(fd_file(f)->f_op != &bpf_map_fops))
2500 		return ERR_PTR(-EINVAL);
2501 	return fd_file(f)->private_data;
2502 }
2503 
2504 static inline struct btf *__btf_get_by_fd(struct fd f)
2505 {
2506 	if (fd_empty(f))
2507 		return ERR_PTR(-EBADF);
2508 	if (unlikely(fd_file(f)->f_op != &btf_fops))
2509 		return ERR_PTR(-EINVAL);
2510 	return fd_file(f)->private_data;
2511 }
2512 
2513 void bpf_map_inc(struct bpf_map *map);
2514 void bpf_map_inc_with_uref(struct bpf_map *map);
2515 struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref);
2516 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map);
2517 void bpf_map_put_with_uref(struct bpf_map *map);
2518 void bpf_map_put(struct bpf_map *map);
2519 void *bpf_map_area_alloc(u64 size, int numa_node);
2520 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node);
2521 void bpf_map_area_free(void *base);
2522 bool bpf_map_write_active(const struct bpf_map *map);
2523 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr);
2524 int  generic_map_lookup_batch(struct bpf_map *map,
2525 			      const union bpf_attr *attr,
2526 			      union bpf_attr __user *uattr);
2527 int  generic_map_update_batch(struct bpf_map *map, struct file *map_file,
2528 			      const union bpf_attr *attr,
2529 			      union bpf_attr __user *uattr);
2530 int  generic_map_delete_batch(struct bpf_map *map,
2531 			      const union bpf_attr *attr,
2532 			      union bpf_attr __user *uattr);
2533 struct bpf_map *bpf_map_get_curr_or_next(u32 *id);
2534 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id);
2535 
2536 
2537 int bpf_map_alloc_pages(const struct bpf_map *map, int nid,
2538 			unsigned long nr_pages, struct page **page_array);
2539 #ifdef CONFIG_MEMCG
2540 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2541 			   int node);
2542 void *bpf_map_kmalloc_nolock(const struct bpf_map *map, size_t size, gfp_t flags,
2543 			     int node);
2544 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags);
2545 void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size,
2546 		       gfp_t flags);
2547 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size,
2548 				    size_t align, gfp_t flags);
2549 #else
2550 /*
2551  * These specialized allocators have to be macros for their allocations to be
2552  * accounted separately (to have separate alloc_tag).
2553  */
2554 #define bpf_map_kmalloc_node(_map, _size, _flags, _node)	\
2555 		kmalloc_node(_size, _flags, _node)
2556 #define bpf_map_kmalloc_nolock(_map, _size, _flags, _node)	\
2557 		kmalloc_nolock(_size, _flags, _node)
2558 #define bpf_map_kzalloc(_map, _size, _flags)			\
2559 		kzalloc(_size, _flags)
2560 #define bpf_map_kvcalloc(_map, _n, _size, _flags)		\
2561 		kvcalloc(_n, _size, _flags)
2562 #define bpf_map_alloc_percpu(_map, _size, _align, _flags)	\
2563 		__alloc_percpu_gfp(_size, _align, _flags)
2564 #endif
2565 
2566 static inline int
2567 bpf_map_init_elem_count(struct bpf_map *map)
2568 {
2569 	size_t size = sizeof(*map->elem_count), align = size;
2570 	gfp_t flags = GFP_USER | __GFP_NOWARN;
2571 
2572 	map->elem_count = bpf_map_alloc_percpu(map, size, align, flags);
2573 	if (!map->elem_count)
2574 		return -ENOMEM;
2575 
2576 	return 0;
2577 }
2578 
2579 static inline void
2580 bpf_map_free_elem_count(struct bpf_map *map)
2581 {
2582 	free_percpu(map->elem_count);
2583 }
2584 
2585 static inline void bpf_map_inc_elem_count(struct bpf_map *map)
2586 {
2587 	this_cpu_inc(*map->elem_count);
2588 }
2589 
2590 static inline void bpf_map_dec_elem_count(struct bpf_map *map)
2591 {
2592 	this_cpu_dec(*map->elem_count);
2593 }
2594 
2595 extern int sysctl_unprivileged_bpf_disabled;
2596 
2597 bool bpf_token_capable(const struct bpf_token *token, int cap);
2598 
2599 static inline bool bpf_allow_ptr_leaks(const struct bpf_token *token)
2600 {
2601 	return bpf_token_capable(token, CAP_PERFMON);
2602 }
2603 
2604 static inline bool bpf_allow_uninit_stack(const struct bpf_token *token)
2605 {
2606 	return bpf_token_capable(token, CAP_PERFMON);
2607 }
2608 
2609 static inline bool bpf_bypass_spec_v1(const struct bpf_token *token)
2610 {
2611 	return bpf_jit_bypass_spec_v1() ||
2612 		cpu_mitigations_off() ||
2613 		bpf_token_capable(token, CAP_PERFMON);
2614 }
2615 
2616 static inline bool bpf_bypass_spec_v4(const struct bpf_token *token)
2617 {
2618 	return bpf_jit_bypass_spec_v4() ||
2619 		cpu_mitigations_off() ||
2620 		bpf_token_capable(token, CAP_PERFMON);
2621 }
2622 
2623 int bpf_map_new_fd(struct bpf_map *map, int flags);
2624 int bpf_prog_new_fd(struct bpf_prog *prog);
2625 
2626 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2627 		   const struct bpf_link_ops *ops, struct bpf_prog *prog,
2628 		   enum bpf_attach_type attach_type);
2629 void bpf_link_init_sleepable(struct bpf_link *link, enum bpf_link_type type,
2630 			     const struct bpf_link_ops *ops, struct bpf_prog *prog,
2631 			     enum bpf_attach_type attach_type, bool sleepable);
2632 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer);
2633 int bpf_link_settle(struct bpf_link_primer *primer);
2634 void bpf_link_cleanup(struct bpf_link_primer *primer);
2635 void bpf_link_inc(struct bpf_link *link);
2636 struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link);
2637 void bpf_link_put(struct bpf_link *link);
2638 int bpf_link_new_fd(struct bpf_link *link);
2639 struct bpf_link *bpf_link_get_from_fd(u32 ufd);
2640 struct bpf_link *bpf_link_get_curr_or_next(u32 *id);
2641 
2642 void bpf_token_inc(struct bpf_token *token);
2643 void bpf_token_put(struct bpf_token *token);
2644 int bpf_token_create(union bpf_attr *attr);
2645 struct bpf_token *bpf_token_get_from_fd(u32 ufd);
2646 int bpf_token_get_info_by_fd(struct bpf_token *token,
2647 			     const union bpf_attr *attr,
2648 			     union bpf_attr __user *uattr);
2649 
2650 bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd);
2651 bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type);
2652 bool bpf_token_allow_prog_type(const struct bpf_token *token,
2653 			       enum bpf_prog_type prog_type,
2654 			       enum bpf_attach_type attach_type);
2655 
2656 int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname);
2657 int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags);
2658 struct inode *bpf_get_inode(struct super_block *sb, const struct inode *dir,
2659 			    umode_t mode);
2660 
2661 #define BPF_ITER_FUNC_PREFIX "bpf_iter_"
2662 #define DEFINE_BPF_ITER_FUNC(target, args...)			\
2663 	extern int bpf_iter_ ## target(args);			\
2664 	int __init bpf_iter_ ## target(args) { return 0; }
2665 
2666 /*
2667  * The task type of iterators.
2668  *
2669  * For BPF task iterators, they can be parameterized with various
2670  * parameters to visit only some of tasks.
2671  *
2672  * BPF_TASK_ITER_ALL (default)
2673  *	Iterate over resources of every task.
2674  *
2675  * BPF_TASK_ITER_TID
2676  *	Iterate over resources of a task/tid.
2677  *
2678  * BPF_TASK_ITER_TGID
2679  *	Iterate over resources of every task of a process / task group.
2680  */
2681 enum bpf_iter_task_type {
2682 	BPF_TASK_ITER_ALL = 0,
2683 	BPF_TASK_ITER_TID,
2684 	BPF_TASK_ITER_TGID,
2685 };
2686 
2687 struct bpf_iter_aux_info {
2688 	/* for map_elem iter */
2689 	struct bpf_map *map;
2690 
2691 	/* for cgroup iter */
2692 	struct {
2693 		struct cgroup *start; /* starting cgroup */
2694 		enum bpf_cgroup_iter_order order;
2695 	} cgroup;
2696 	struct {
2697 		enum bpf_iter_task_type	type;
2698 		u32 pid;
2699 	} task;
2700 };
2701 
2702 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog,
2703 					union bpf_iter_link_info *linfo,
2704 					struct bpf_iter_aux_info *aux);
2705 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux);
2706 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux,
2707 					struct seq_file *seq);
2708 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux,
2709 					 struct bpf_link_info *info);
2710 typedef const struct bpf_func_proto *
2711 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id,
2712 			     const struct bpf_prog *prog);
2713 
2714 enum bpf_iter_feature {
2715 	BPF_ITER_RESCHED	= BIT(0),
2716 };
2717 
2718 #define BPF_ITER_CTX_ARG_MAX 2
2719 struct bpf_iter_reg {
2720 	const char *target;
2721 	bpf_iter_attach_target_t attach_target;
2722 	bpf_iter_detach_target_t detach_target;
2723 	bpf_iter_show_fdinfo_t show_fdinfo;
2724 	bpf_iter_fill_link_info_t fill_link_info;
2725 	bpf_iter_get_func_proto_t get_func_proto;
2726 	u32 ctx_arg_info_size;
2727 	u32 feature;
2728 	struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX];
2729 	const struct bpf_iter_seq_info *seq_info;
2730 };
2731 
2732 struct bpf_iter_meta {
2733 	__bpf_md_ptr(struct seq_file *, seq);
2734 	u64 session_id;
2735 	u64 seq_num;
2736 };
2737 
2738 struct bpf_iter__bpf_map_elem {
2739 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
2740 	__bpf_md_ptr(struct bpf_map *, map);
2741 	__bpf_md_ptr(void *, key);
2742 	__bpf_md_ptr(void *, value);
2743 };
2744 
2745 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info);
2746 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info);
2747 int bpf_iter_prog_supported(struct bpf_prog *prog);
2748 const struct bpf_func_proto *
2749 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
2750 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog);
2751 int bpf_iter_new_fd(struct bpf_link *link);
2752 bool bpf_link_is_iter(struct bpf_link *link);
2753 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop);
2754 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx);
2755 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux,
2756 			      struct seq_file *seq);
2757 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux,
2758 				struct bpf_link_info *info);
2759 
2760 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
2761 				   struct bpf_func_state *caller,
2762 				   struct bpf_func_state *callee);
2763 
2764 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value);
2765 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value);
2766 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2767 			   u64 flags);
2768 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
2769 			    u64 flags);
2770 
2771 int bpf_stackmap_extract(struct bpf_map *map, void *key, void *value, bool delete);
2772 
2773 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
2774 				 void *key, void *value, u64 map_flags);
2775 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2776 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2777 				void *key, void *value, u64 map_flags);
2778 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2779 
2780 int bpf_get_file_flag(int flags);
2781 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size,
2782 			     size_t actual_size);
2783 
2784 /* verify correctness of eBPF program */
2785 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size);
2786 
2787 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2788 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth);
2789 #endif
2790 
2791 struct btf *bpf_get_btf_vmlinux(void);
2792 
2793 /* Map specifics */
2794 struct xdp_frame;
2795 struct sk_buff;
2796 struct bpf_dtab_netdev;
2797 struct bpf_cpu_map_entry;
2798 
2799 void __dev_flush(struct list_head *flush_list);
2800 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2801 		    struct net_device *dev_rx);
2802 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2803 		    struct net_device *dev_rx);
2804 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2805 			  struct bpf_map *map, bool exclude_ingress);
2806 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
2807 			     const struct bpf_prog *xdp_prog);
2808 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2809 			   const struct bpf_prog *xdp_prog,
2810 			   struct bpf_map *map, bool exclude_ingress);
2811 
2812 void __cpu_map_flush(struct list_head *flush_list);
2813 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
2814 		    struct net_device *dev_rx);
2815 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2816 			     struct sk_buff *skb);
2817 
2818 /* Return map's numa specified by userspace */
2819 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr)
2820 {
2821 	return (attr->map_flags & BPF_F_NUMA_NODE) ?
2822 		attr->numa_node : NUMA_NO_NODE;
2823 }
2824 
2825 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type);
2826 int array_map_alloc_check(union bpf_attr *attr);
2827 
2828 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr,
2829 			  union bpf_attr __user *uattr);
2830 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr,
2831 			  union bpf_attr __user *uattr);
2832 int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2833 			      const union bpf_attr *kattr,
2834 			      union bpf_attr __user *uattr);
2835 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2836 				     const union bpf_attr *kattr,
2837 				     union bpf_attr __user *uattr);
2838 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog,
2839 			     const union bpf_attr *kattr,
2840 			     union bpf_attr __user *uattr);
2841 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2842 				const union bpf_attr *kattr,
2843 				union bpf_attr __user *uattr);
2844 int bpf_prog_test_run_nf(struct bpf_prog *prog,
2845 			 const union bpf_attr *kattr,
2846 			 union bpf_attr __user *uattr);
2847 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
2848 		    const struct bpf_prog *prog,
2849 		    struct bpf_insn_access_aux *info);
2850 
2851 static inline bool bpf_tracing_ctx_access(int off, int size,
2852 					  enum bpf_access_type type)
2853 {
2854 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
2855 		return false;
2856 	if (type != BPF_READ)
2857 		return false;
2858 	if (off % size != 0)
2859 		return false;
2860 	return true;
2861 }
2862 
2863 static inline bool bpf_tracing_btf_ctx_access(int off, int size,
2864 					      enum bpf_access_type type,
2865 					      const struct bpf_prog *prog,
2866 					      struct bpf_insn_access_aux *info)
2867 {
2868 	if (!bpf_tracing_ctx_access(off, size, type))
2869 		return false;
2870 	return btf_ctx_access(off, size, type, prog, info);
2871 }
2872 
2873 int btf_struct_access(struct bpf_verifier_log *log,
2874 		      const struct bpf_reg_state *reg,
2875 		      int off, int size, enum bpf_access_type atype,
2876 		      u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name);
2877 bool btf_struct_ids_match(struct bpf_verifier_log *log,
2878 			  const struct btf *btf, u32 id, int off,
2879 			  const struct btf *need_btf, u32 need_type_id,
2880 			  bool strict);
2881 
2882 int btf_distill_func_proto(struct bpf_verifier_log *log,
2883 			   struct btf *btf,
2884 			   const struct btf_type *func_proto,
2885 			   const char *func_name,
2886 			   struct btf_func_model *m);
2887 
2888 struct bpf_reg_state;
2889 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog);
2890 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
2891 			 struct btf *btf, const struct btf_type *t);
2892 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
2893 				    int comp_idx, const char *tag_key);
2894 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt,
2895 			   int comp_idx, const char *tag_key, int last_id);
2896 
2897 struct bpf_prog *bpf_prog_by_id(u32 id);
2898 struct bpf_link *bpf_link_by_id(u32 id);
2899 
2900 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id,
2901 						 const struct bpf_prog *prog);
2902 void bpf_task_storage_free(struct task_struct *task);
2903 void bpf_cgrp_storage_free(struct cgroup *cgroup);
2904 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog);
2905 const struct btf_func_model *
2906 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2907 			 const struct bpf_insn *insn);
2908 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2909 		       u16 btf_fd_idx, u8 **func_addr);
2910 
2911 struct bpf_core_ctx {
2912 	struct bpf_verifier_log *log;
2913 	const struct btf *btf;
2914 };
2915 
2916 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
2917 				const struct bpf_reg_state *reg,
2918 				const char *field_name, u32 btf_id, const char *suffix);
2919 
2920 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
2921 			       const struct btf *reg_btf, u32 reg_id,
2922 			       const struct btf *arg_btf, u32 arg_id);
2923 
2924 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
2925 		   int relo_idx, void *insn);
2926 
2927 static inline bool unprivileged_ebpf_enabled(void)
2928 {
2929 	return !sysctl_unprivileged_bpf_disabled;
2930 }
2931 
2932 /* Not all bpf prog type has the bpf_ctx.
2933  * For the bpf prog type that has initialized the bpf_ctx,
2934  * this function can be used to decide if a kernel function
2935  * is called by a bpf program.
2936  */
2937 static inline bool has_current_bpf_ctx(void)
2938 {
2939 	return !!current->bpf_ctx;
2940 }
2941 
2942 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog);
2943 
2944 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2945 		     enum bpf_dynptr_type type, u32 offset, u32 size);
2946 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr);
2947 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr);
2948 void bpf_prog_report_arena_violation(bool write, unsigned long addr, unsigned long fault_ip);
2949 
2950 #else /* !CONFIG_BPF_SYSCALL */
2951 static inline struct bpf_prog *bpf_prog_get(u32 ufd)
2952 {
2953 	return ERR_PTR(-EOPNOTSUPP);
2954 }
2955 
2956 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd,
2957 						     enum bpf_prog_type type,
2958 						     bool attach_drv)
2959 {
2960 	return ERR_PTR(-EOPNOTSUPP);
2961 }
2962 
2963 static inline void bpf_prog_add(struct bpf_prog *prog, int i)
2964 {
2965 }
2966 
2967 static inline void bpf_prog_sub(struct bpf_prog *prog, int i)
2968 {
2969 }
2970 
2971 static inline void bpf_prog_put(struct bpf_prog *prog)
2972 {
2973 }
2974 
2975 static inline void bpf_prog_inc(struct bpf_prog *prog)
2976 {
2977 }
2978 
2979 static inline struct bpf_prog *__must_check
2980 bpf_prog_inc_not_zero(struct bpf_prog *prog)
2981 {
2982 	return ERR_PTR(-EOPNOTSUPP);
2983 }
2984 
2985 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2986 				 const struct bpf_link_ops *ops,
2987 				 struct bpf_prog *prog, enum bpf_attach_type attach_type)
2988 {
2989 }
2990 
2991 static inline void bpf_link_init_sleepable(struct bpf_link *link, enum bpf_link_type type,
2992 					   const struct bpf_link_ops *ops, struct bpf_prog *prog,
2993 					   enum bpf_attach_type attach_type, bool sleepable)
2994 {
2995 }
2996 
2997 static inline int bpf_link_prime(struct bpf_link *link,
2998 				 struct bpf_link_primer *primer)
2999 {
3000 	return -EOPNOTSUPP;
3001 }
3002 
3003 static inline int bpf_link_settle(struct bpf_link_primer *primer)
3004 {
3005 	return -EOPNOTSUPP;
3006 }
3007 
3008 static inline void bpf_link_cleanup(struct bpf_link_primer *primer)
3009 {
3010 }
3011 
3012 static inline void bpf_link_inc(struct bpf_link *link)
3013 {
3014 }
3015 
3016 static inline struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link)
3017 {
3018 	return NULL;
3019 }
3020 
3021 static inline void bpf_link_put(struct bpf_link *link)
3022 {
3023 }
3024 
3025 static inline int bpf_obj_get_user(const char __user *pathname, int flags)
3026 {
3027 	return -EOPNOTSUPP;
3028 }
3029 
3030 static inline bool bpf_token_capable(const struct bpf_token *token, int cap)
3031 {
3032 	return capable(cap) || (cap != CAP_SYS_ADMIN && capable(CAP_SYS_ADMIN));
3033 }
3034 
3035 static inline void bpf_token_inc(struct bpf_token *token)
3036 {
3037 }
3038 
3039 static inline void bpf_token_put(struct bpf_token *token)
3040 {
3041 }
3042 
3043 static inline struct bpf_token *bpf_token_get_from_fd(u32 ufd)
3044 {
3045 	return ERR_PTR(-EOPNOTSUPP);
3046 }
3047 
3048 static inline int bpf_token_get_info_by_fd(struct bpf_token *token,
3049 					   const union bpf_attr *attr,
3050 					   union bpf_attr __user *uattr)
3051 {
3052 	return -EOPNOTSUPP;
3053 }
3054 
3055 static inline void __dev_flush(struct list_head *flush_list)
3056 {
3057 }
3058 
3059 struct xdp_frame;
3060 struct bpf_dtab_netdev;
3061 struct bpf_cpu_map_entry;
3062 
3063 static inline
3064 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
3065 		    struct net_device *dev_rx)
3066 {
3067 	return 0;
3068 }
3069 
3070 static inline
3071 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
3072 		    struct net_device *dev_rx)
3073 {
3074 	return 0;
3075 }
3076 
3077 static inline
3078 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
3079 			  struct bpf_map *map, bool exclude_ingress)
3080 {
3081 	return 0;
3082 }
3083 
3084 struct sk_buff;
3085 
3086 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst,
3087 					   struct sk_buff *skb,
3088 					   const struct bpf_prog *xdp_prog)
3089 {
3090 	return 0;
3091 }
3092 
3093 static inline
3094 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
3095 			   const struct bpf_prog *xdp_prog,
3096 			   struct bpf_map *map, bool exclude_ingress)
3097 {
3098 	return 0;
3099 }
3100 
3101 static inline void __cpu_map_flush(struct list_head *flush_list)
3102 {
3103 }
3104 
3105 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu,
3106 				  struct xdp_frame *xdpf,
3107 				  struct net_device *dev_rx)
3108 {
3109 	return 0;
3110 }
3111 
3112 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
3113 					   struct sk_buff *skb)
3114 {
3115 	return -EOPNOTSUPP;
3116 }
3117 
3118 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name,
3119 				enum bpf_prog_type type)
3120 {
3121 	return ERR_PTR(-EOPNOTSUPP);
3122 }
3123 
3124 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog,
3125 					const union bpf_attr *kattr,
3126 					union bpf_attr __user *uattr)
3127 {
3128 	return -ENOTSUPP;
3129 }
3130 
3131 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog,
3132 					const union bpf_attr *kattr,
3133 					union bpf_attr __user *uattr)
3134 {
3135 	return -ENOTSUPP;
3136 }
3137 
3138 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog,
3139 					    const union bpf_attr *kattr,
3140 					    union bpf_attr __user *uattr)
3141 {
3142 	return -ENOTSUPP;
3143 }
3144 
3145 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
3146 						   const union bpf_attr *kattr,
3147 						   union bpf_attr __user *uattr)
3148 {
3149 	return -ENOTSUPP;
3150 }
3151 
3152 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
3153 					      const union bpf_attr *kattr,
3154 					      union bpf_attr __user *uattr)
3155 {
3156 	return -ENOTSUPP;
3157 }
3158 
3159 static inline void bpf_map_put(struct bpf_map *map)
3160 {
3161 }
3162 
3163 static inline struct bpf_prog *bpf_prog_by_id(u32 id)
3164 {
3165 	return ERR_PTR(-ENOTSUPP);
3166 }
3167 
3168 static inline int btf_struct_access(struct bpf_verifier_log *log,
3169 				    const struct bpf_reg_state *reg,
3170 				    int off, int size, enum bpf_access_type atype,
3171 				    u32 *next_btf_id, enum bpf_type_flag *flag,
3172 				    const char **field_name)
3173 {
3174 	return -EACCES;
3175 }
3176 
3177 static inline const struct bpf_func_proto *
3178 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3179 {
3180 	return NULL;
3181 }
3182 
3183 static inline void bpf_task_storage_free(struct task_struct *task)
3184 {
3185 }
3186 
3187 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
3188 {
3189 	return false;
3190 }
3191 
3192 static inline const struct btf_func_model *
3193 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
3194 			 const struct bpf_insn *insn)
3195 {
3196 	return NULL;
3197 }
3198 
3199 static inline int
3200 bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
3201 		   u16 btf_fd_idx, u8 **func_addr)
3202 {
3203 	return -ENOTSUPP;
3204 }
3205 
3206 static inline bool unprivileged_ebpf_enabled(void)
3207 {
3208 	return false;
3209 }
3210 
3211 static inline bool has_current_bpf_ctx(void)
3212 {
3213 	return false;
3214 }
3215 
3216 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog)
3217 {
3218 }
3219 
3220 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup)
3221 {
3222 }
3223 
3224 static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
3225 				   enum bpf_dynptr_type type, u32 offset, u32 size)
3226 {
3227 }
3228 
3229 static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
3230 {
3231 }
3232 
3233 static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
3234 {
3235 }
3236 
3237 static inline void bpf_prog_report_arena_violation(bool write, unsigned long addr,
3238 						   unsigned long fault_ip)
3239 {
3240 }
3241 #endif /* CONFIG_BPF_SYSCALL */
3242 
3243 static __always_inline int
3244 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
3245 {
3246 	int ret = -EFAULT;
3247 
3248 	if (IS_ENABLED(CONFIG_BPF_EVENTS))
3249 		ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
3250 	if (unlikely(ret < 0))
3251 		memset(dst, 0, size);
3252 	return ret;
3253 }
3254 
3255 void __bpf_free_used_btfs(struct btf_mod_pair *used_btfs, u32 len);
3256 
3257 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd,
3258 						 enum bpf_prog_type type)
3259 {
3260 	return bpf_prog_get_type_dev(ufd, type, false);
3261 }
3262 
3263 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
3264 			  struct bpf_map **used_maps, u32 len);
3265 
3266 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool);
3267 
3268 int bpf_prog_offload_compile(struct bpf_prog *prog);
3269 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog);
3270 int bpf_prog_offload_info_fill(struct bpf_prog_info *info,
3271 			       struct bpf_prog *prog);
3272 
3273 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map);
3274 
3275 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value);
3276 int bpf_map_offload_update_elem(struct bpf_map *map,
3277 				void *key, void *value, u64 flags);
3278 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key);
3279 int bpf_map_offload_get_next_key(struct bpf_map *map,
3280 				 void *key, void *next_key);
3281 
3282 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map);
3283 
3284 struct bpf_offload_dev *
3285 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv);
3286 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev);
3287 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev);
3288 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev,
3289 				    struct net_device *netdev);
3290 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev,
3291 				       struct net_device *netdev);
3292 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev);
3293 
3294 void unpriv_ebpf_notify(int new_state);
3295 
3296 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL)
3297 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
3298 			      struct bpf_prog_aux *prog_aux);
3299 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id);
3300 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr);
3301 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog);
3302 void bpf_dev_bound_netdev_unregister(struct net_device *dev);
3303 
3304 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
3305 {
3306 	return aux->dev_bound;
3307 }
3308 
3309 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux)
3310 {
3311 	return aux->offload_requested;
3312 }
3313 
3314 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs);
3315 
3316 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
3317 {
3318 	return unlikely(map->ops == &bpf_map_offload_ops);
3319 }
3320 
3321 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr);
3322 void bpf_map_offload_map_free(struct bpf_map *map);
3323 u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map);
3324 int bpf_prog_test_run_syscall(struct bpf_prog *prog,
3325 			      const union bpf_attr *kattr,
3326 			      union bpf_attr __user *uattr);
3327 
3328 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog);
3329 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype);
3330 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags);
3331 int sock_map_bpf_prog_query(const union bpf_attr *attr,
3332 			    union bpf_attr __user *uattr);
3333 int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog);
3334 
3335 void sock_map_unhash(struct sock *sk);
3336 void sock_map_destroy(struct sock *sk);
3337 void sock_map_close(struct sock *sk, long timeout);
3338 #else
3339 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
3340 					    struct bpf_prog_aux *prog_aux)
3341 {
3342 	return -EOPNOTSUPP;
3343 }
3344 
3345 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog,
3346 						u32 func_id)
3347 {
3348 	return NULL;
3349 }
3350 
3351 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog,
3352 					  union bpf_attr *attr)
3353 {
3354 	return -EOPNOTSUPP;
3355 }
3356 
3357 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog,
3358 					     struct bpf_prog *old_prog)
3359 {
3360 	return -EOPNOTSUPP;
3361 }
3362 
3363 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev)
3364 {
3365 }
3366 
3367 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
3368 {
3369 	return false;
3370 }
3371 
3372 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux)
3373 {
3374 	return false;
3375 }
3376 
3377 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs)
3378 {
3379 	return false;
3380 }
3381 
3382 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
3383 {
3384 	return false;
3385 }
3386 
3387 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr)
3388 {
3389 	return ERR_PTR(-EOPNOTSUPP);
3390 }
3391 
3392 static inline void bpf_map_offload_map_free(struct bpf_map *map)
3393 {
3394 }
3395 
3396 static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map)
3397 {
3398 	return 0;
3399 }
3400 
3401 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog,
3402 					    const union bpf_attr *kattr,
3403 					    union bpf_attr __user *uattr)
3404 {
3405 	return -ENOTSUPP;
3406 }
3407 
3408 #ifdef CONFIG_BPF_SYSCALL
3409 static inline int sock_map_get_from_fd(const union bpf_attr *attr,
3410 				       struct bpf_prog *prog)
3411 {
3412 	return -EINVAL;
3413 }
3414 
3415 static inline int sock_map_prog_detach(const union bpf_attr *attr,
3416 				       enum bpf_prog_type ptype)
3417 {
3418 	return -EOPNOTSUPP;
3419 }
3420 
3421 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value,
3422 					   u64 flags)
3423 {
3424 	return -EOPNOTSUPP;
3425 }
3426 
3427 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr,
3428 					  union bpf_attr __user *uattr)
3429 {
3430 	return -EINVAL;
3431 }
3432 
3433 static inline int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog)
3434 {
3435 	return -EOPNOTSUPP;
3436 }
3437 #endif /* CONFIG_BPF_SYSCALL */
3438 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */
3439 
3440 static __always_inline void
3441 bpf_prog_inc_misses_counters(const struct bpf_prog_array *array)
3442 {
3443 	const struct bpf_prog_array_item *item;
3444 	struct bpf_prog *prog;
3445 
3446 	if (unlikely(!array))
3447 		return;
3448 
3449 	item = &array->items[0];
3450 	while ((prog = READ_ONCE(item->prog))) {
3451 		bpf_prog_inc_misses_counter(prog);
3452 		item++;
3453 	}
3454 }
3455 
3456 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL)
3457 void bpf_sk_reuseport_detach(struct sock *sk);
3458 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key,
3459 				       void *value);
3460 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key,
3461 				       void *value, u64 map_flags);
3462 #else
3463 static inline void bpf_sk_reuseport_detach(struct sock *sk)
3464 {
3465 }
3466 
3467 #ifdef CONFIG_BPF_SYSCALL
3468 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map,
3469 						     void *key, void *value)
3470 {
3471 	return -EOPNOTSUPP;
3472 }
3473 
3474 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map,
3475 						     void *key, void *value,
3476 						     u64 map_flags)
3477 {
3478 	return -EOPNOTSUPP;
3479 }
3480 #endif /* CONFIG_BPF_SYSCALL */
3481 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */
3482 
3483 #if defined(CONFIG_KEYS) && defined(CONFIG_BPF_SYSCALL)
3484 
3485 struct bpf_key *bpf_lookup_user_key(s32 serial, u64 flags);
3486 struct bpf_key *bpf_lookup_system_key(u64 id);
3487 void bpf_key_put(struct bpf_key *bkey);
3488 int bpf_verify_pkcs7_signature(struct bpf_dynptr *data_p,
3489 			       struct bpf_dynptr *sig_p,
3490 			       struct bpf_key *trusted_keyring);
3491 
3492 #else
3493 static inline struct bpf_key *bpf_lookup_user_key(u32 serial, u64 flags)
3494 {
3495 	return NULL;
3496 }
3497 
3498 static inline struct bpf_key *bpf_lookup_system_key(u64 id)
3499 {
3500 	return NULL;
3501 }
3502 
3503 static inline void bpf_key_put(struct bpf_key *bkey)
3504 {
3505 }
3506 
3507 static inline int bpf_verify_pkcs7_signature(struct bpf_dynptr *data_p,
3508 					     struct bpf_dynptr *sig_p,
3509 					     struct bpf_key *trusted_keyring)
3510 {
3511 	return -EOPNOTSUPP;
3512 }
3513 #endif /* defined(CONFIG_KEYS) && defined(CONFIG_BPF_SYSCALL) */
3514 
3515 /* verifier prototypes for helper functions called from eBPF programs */
3516 extern const struct bpf_func_proto bpf_map_lookup_elem_proto;
3517 extern const struct bpf_func_proto bpf_map_update_elem_proto;
3518 extern const struct bpf_func_proto bpf_map_delete_elem_proto;
3519 extern const struct bpf_func_proto bpf_map_push_elem_proto;
3520 extern const struct bpf_func_proto bpf_map_pop_elem_proto;
3521 extern const struct bpf_func_proto bpf_map_peek_elem_proto;
3522 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto;
3523 
3524 extern const struct bpf_func_proto bpf_get_prandom_u32_proto;
3525 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto;
3526 extern const struct bpf_func_proto bpf_get_numa_node_id_proto;
3527 extern const struct bpf_func_proto bpf_tail_call_proto;
3528 extern const struct bpf_func_proto bpf_ktime_get_ns_proto;
3529 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto;
3530 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto;
3531 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto;
3532 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto;
3533 extern const struct bpf_func_proto bpf_get_current_comm_proto;
3534 extern const struct bpf_func_proto bpf_get_stackid_proto;
3535 extern const struct bpf_func_proto bpf_get_stack_proto;
3536 extern const struct bpf_func_proto bpf_get_stack_sleepable_proto;
3537 extern const struct bpf_func_proto bpf_get_task_stack_proto;
3538 extern const struct bpf_func_proto bpf_get_task_stack_sleepable_proto;
3539 extern const struct bpf_func_proto bpf_get_stackid_proto_pe;
3540 extern const struct bpf_func_proto bpf_get_stack_proto_pe;
3541 extern const struct bpf_func_proto bpf_sock_map_update_proto;
3542 extern const struct bpf_func_proto bpf_sock_hash_update_proto;
3543 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto;
3544 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto;
3545 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto;
3546 extern const struct bpf_func_proto bpf_current_task_under_cgroup_proto;
3547 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto;
3548 extern const struct bpf_func_proto bpf_msg_redirect_map_proto;
3549 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto;
3550 extern const struct bpf_func_proto bpf_sk_redirect_map_proto;
3551 extern const struct bpf_func_proto bpf_spin_lock_proto;
3552 extern const struct bpf_func_proto bpf_spin_unlock_proto;
3553 extern const struct bpf_func_proto bpf_get_local_storage_proto;
3554 extern const struct bpf_func_proto bpf_strtol_proto;
3555 extern const struct bpf_func_proto bpf_strtoul_proto;
3556 extern const struct bpf_func_proto bpf_tcp_sock_proto;
3557 extern const struct bpf_func_proto bpf_jiffies64_proto;
3558 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto;
3559 extern const struct bpf_func_proto bpf_event_output_data_proto;
3560 extern const struct bpf_func_proto bpf_ringbuf_output_proto;
3561 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto;
3562 extern const struct bpf_func_proto bpf_ringbuf_submit_proto;
3563 extern const struct bpf_func_proto bpf_ringbuf_discard_proto;
3564 extern const struct bpf_func_proto bpf_ringbuf_query_proto;
3565 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto;
3566 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto;
3567 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto;
3568 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto;
3569 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto;
3570 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto;
3571 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto;
3572 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto;
3573 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto;
3574 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto;
3575 extern const struct bpf_func_proto bpf_copy_from_user_proto;
3576 extern const struct bpf_func_proto bpf_snprintf_btf_proto;
3577 extern const struct bpf_func_proto bpf_snprintf_proto;
3578 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto;
3579 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto;
3580 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto;
3581 extern const struct bpf_func_proto bpf_sock_from_file_proto;
3582 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto;
3583 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto;
3584 extern const struct bpf_func_proto bpf_task_storage_get_proto;
3585 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto;
3586 extern const struct bpf_func_proto bpf_task_storage_delete_proto;
3587 extern const struct bpf_func_proto bpf_for_each_map_elem_proto;
3588 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto;
3589 extern const struct bpf_func_proto bpf_sk_setsockopt_proto;
3590 extern const struct bpf_func_proto bpf_sk_getsockopt_proto;
3591 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto;
3592 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto;
3593 extern const struct bpf_func_proto bpf_find_vma_proto;
3594 extern const struct bpf_func_proto bpf_loop_proto;
3595 extern const struct bpf_func_proto bpf_copy_from_user_task_proto;
3596 extern const struct bpf_func_proto bpf_set_retval_proto;
3597 extern const struct bpf_func_proto bpf_get_retval_proto;
3598 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto;
3599 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto;
3600 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto;
3601 
3602 const struct bpf_func_proto *tracing_prog_func_proto(
3603   enum bpf_func_id func_id, const struct bpf_prog *prog);
3604 
3605 /* Shared helpers among cBPF and eBPF. */
3606 void bpf_user_rnd_init_once(void);
3607 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3608 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3609 
3610 #if defined(CONFIG_NET)
3611 bool bpf_sock_common_is_valid_access(int off, int size,
3612 				     enum bpf_access_type type,
3613 				     struct bpf_insn_access_aux *info);
3614 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3615 			      struct bpf_insn_access_aux *info);
3616 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3617 				const struct bpf_insn *si,
3618 				struct bpf_insn *insn_buf,
3619 				struct bpf_prog *prog,
3620 				u32 *target_size);
3621 int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
3622 			       struct bpf_dynptr *ptr);
3623 #else
3624 static inline bool bpf_sock_common_is_valid_access(int off, int size,
3625 						   enum bpf_access_type type,
3626 						   struct bpf_insn_access_aux *info)
3627 {
3628 	return false;
3629 }
3630 static inline bool bpf_sock_is_valid_access(int off, int size,
3631 					    enum bpf_access_type type,
3632 					    struct bpf_insn_access_aux *info)
3633 {
3634 	return false;
3635 }
3636 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3637 					      const struct bpf_insn *si,
3638 					      struct bpf_insn *insn_buf,
3639 					      struct bpf_prog *prog,
3640 					      u32 *target_size)
3641 {
3642 	return 0;
3643 }
3644 static inline int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
3645 					     struct bpf_dynptr *ptr)
3646 {
3647 	return -EOPNOTSUPP;
3648 }
3649 #endif
3650 
3651 #ifdef CONFIG_INET
3652 struct sk_reuseport_kern {
3653 	struct sk_buff *skb;
3654 	struct sock *sk;
3655 	struct sock *selected_sk;
3656 	struct sock *migrating_sk;
3657 	void *data_end;
3658 	u32 hash;
3659 	u32 reuseport_id;
3660 	bool bind_inany;
3661 };
3662 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3663 				  struct bpf_insn_access_aux *info);
3664 
3665 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3666 				    const struct bpf_insn *si,
3667 				    struct bpf_insn *insn_buf,
3668 				    struct bpf_prog *prog,
3669 				    u32 *target_size);
3670 
3671 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3672 				  struct bpf_insn_access_aux *info);
3673 
3674 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3675 				    const struct bpf_insn *si,
3676 				    struct bpf_insn *insn_buf,
3677 				    struct bpf_prog *prog,
3678 				    u32 *target_size);
3679 #else
3680 static inline bool bpf_tcp_sock_is_valid_access(int off, int size,
3681 						enum bpf_access_type type,
3682 						struct bpf_insn_access_aux *info)
3683 {
3684 	return false;
3685 }
3686 
3687 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3688 						  const struct bpf_insn *si,
3689 						  struct bpf_insn *insn_buf,
3690 						  struct bpf_prog *prog,
3691 						  u32 *target_size)
3692 {
3693 	return 0;
3694 }
3695 static inline bool bpf_xdp_sock_is_valid_access(int off, int size,
3696 						enum bpf_access_type type,
3697 						struct bpf_insn_access_aux *info)
3698 {
3699 	return false;
3700 }
3701 
3702 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3703 						  const struct bpf_insn *si,
3704 						  struct bpf_insn *insn_buf,
3705 						  struct bpf_prog *prog,
3706 						  u32 *target_size)
3707 {
3708 	return 0;
3709 }
3710 #endif /* CONFIG_INET */
3711 
3712 enum bpf_text_poke_type {
3713 	BPF_MOD_NOP,
3714 	BPF_MOD_CALL,
3715 	BPF_MOD_JUMP,
3716 };
3717 
3718 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type old_t,
3719 		       enum bpf_text_poke_type new_t, void *old_addr,
3720 		       void *new_addr);
3721 
3722 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
3723 			       struct bpf_prog *new, struct bpf_prog *old);
3724 
3725 void *bpf_arch_text_copy(void *dst, void *src, size_t len);
3726 int bpf_arch_text_invalidate(void *dst, size_t len);
3727 
3728 struct btf_id_set;
3729 bool btf_id_set_contains(const struct btf_id_set *set, u32 id);
3730 
3731 #define MAX_BPRINTF_VARARGS		12
3732 #define MAX_BPRINTF_BUF			1024
3733 
3734 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
3735  * arguments representation.
3736  */
3737 #define MAX_BPRINTF_BIN_ARGS	512
3738 
3739 struct bpf_bprintf_buffers {
3740 	char bin_args[MAX_BPRINTF_BIN_ARGS];
3741 	char buf[MAX_BPRINTF_BUF];
3742 };
3743 
3744 struct bpf_bprintf_data {
3745 	u32 *bin_args;
3746 	char *buf;
3747 	bool get_bin_args;
3748 	bool get_buf;
3749 };
3750 
3751 int bpf_bprintf_prepare(const char *fmt, u32 fmt_size, const u64 *raw_args,
3752 			u32 num_args, struct bpf_bprintf_data *data);
3753 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data);
3754 int bpf_try_get_buffers(struct bpf_bprintf_buffers **bufs);
3755 void bpf_put_buffers(void);
3756 
3757 void bpf_prog_stream_init(struct bpf_prog *prog);
3758 void bpf_prog_stream_free(struct bpf_prog *prog);
3759 int bpf_prog_stream_read(struct bpf_prog *prog, enum bpf_stream_id stream_id, void __user *buf, int len);
3760 void bpf_stream_stage_init(struct bpf_stream_stage *ss);
3761 void bpf_stream_stage_free(struct bpf_stream_stage *ss);
3762 __printf(2, 3)
3763 int bpf_stream_stage_printk(struct bpf_stream_stage *ss, const char *fmt, ...);
3764 int bpf_stream_stage_commit(struct bpf_stream_stage *ss, struct bpf_prog *prog,
3765 			    enum bpf_stream_id stream_id);
3766 int bpf_stream_stage_dump_stack(struct bpf_stream_stage *ss);
3767 
3768 #define bpf_stream_printk(ss, ...) bpf_stream_stage_printk(&ss, __VA_ARGS__)
3769 #define bpf_stream_dump_stack(ss) bpf_stream_stage_dump_stack(&ss)
3770 
3771 #define bpf_stream_stage(ss, prog, stream_id, expr)            \
3772 	({                                                     \
3773 		bpf_stream_stage_init(&ss);                    \
3774 		(expr);                                        \
3775 		bpf_stream_stage_commit(&ss, prog, stream_id); \
3776 		bpf_stream_stage_free(&ss);                    \
3777 	})
3778 
3779 #ifdef CONFIG_BPF_LSM
3780 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype);
3781 void bpf_cgroup_atype_put(int cgroup_atype);
3782 #else
3783 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {}
3784 static inline void bpf_cgroup_atype_put(int cgroup_atype) {}
3785 #endif /* CONFIG_BPF_LSM */
3786 
3787 struct key;
3788 
3789 #ifdef CONFIG_KEYS
3790 struct bpf_key {
3791 	struct key *key;
3792 	bool has_ref;
3793 };
3794 #endif /* CONFIG_KEYS */
3795 
3796 static inline bool type_is_alloc(u32 type)
3797 {
3798 	return type & MEM_ALLOC;
3799 }
3800 
3801 static inline gfp_t bpf_memcg_flags(gfp_t flags)
3802 {
3803 	if (memcg_bpf_enabled())
3804 		return flags | __GFP_ACCOUNT;
3805 	return flags;
3806 }
3807 
3808 static inline bool bpf_is_subprog(const struct bpf_prog *prog)
3809 {
3810 	return prog->aux->func_idx != 0;
3811 }
3812 
3813 int bpf_prog_get_file_line(struct bpf_prog *prog, unsigned long ip, const char **filep,
3814 			   const char **linep, int *nump);
3815 struct bpf_prog *bpf_prog_find_from_stack(void);
3816 
3817 int bpf_insn_array_init(struct bpf_map *map, const struct bpf_prog *prog);
3818 int bpf_insn_array_ready(struct bpf_map *map);
3819 void bpf_insn_array_release(struct bpf_map *map);
3820 void bpf_insn_array_adjust(struct bpf_map *map, u32 off, u32 len);
3821 void bpf_insn_array_adjust_after_remove(struct bpf_map *map, u32 off, u32 len);
3822 
3823 #ifdef CONFIG_BPF_SYSCALL
3824 void bpf_prog_update_insn_ptrs(struct bpf_prog *prog, u32 *offsets, void *image);
3825 #else
3826 static inline void
3827 bpf_prog_update_insn_ptrs(struct bpf_prog *prog, u32 *offsets, void *image)
3828 {
3829 }
3830 #endif
3831 
3832 static inline int bpf_map_check_op_flags(struct bpf_map *map, u64 flags, u64 allowed_flags)
3833 {
3834 	if (flags & ~allowed_flags)
3835 		return -EINVAL;
3836 
3837 	if ((flags & BPF_F_LOCK) && !btf_record_has_field(map->record, BPF_SPIN_LOCK))
3838 		return -EINVAL;
3839 
3840 	return 0;
3841 }
3842 
3843 #endif /* _LINUX_BPF_H */
3844