1 /*
2 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
5 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 *
19 */
20
21 /***********************\
22 * PHY related functions *
23 \***********************/
24
25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <linux/sort.h>
30 #include <linux/unaligned.h>
31
32 #include "ath5k.h"
33 #include "reg.h"
34 #include "rfbuffer.h"
35 #include "rfgain.h"
36 #include "../regd.h"
37
38
39 /**
40 * DOC: PHY related functions
41 *
42 * Here we handle the low-level functions related to baseband
43 * and analog frontend (RF) parts. This is by far the most complex
44 * part of the hw code so make sure you know what you are doing.
45 *
46 * Here is a list of what this is all about:
47 *
48 * - Channel setting/switching
49 *
50 * - Automatic Gain Control (AGC) calibration
51 *
52 * - Noise Floor calibration
53 *
54 * - I/Q imbalance calibration (QAM correction)
55 *
56 * - Calibration due to thermal changes (gain_F)
57 *
58 * - Spur noise mitigation
59 *
60 * - RF/PHY initialization for the various operating modes and bwmodes
61 *
62 * - Antenna control
63 *
64 * - TX power control per channel/rate/packet type
65 *
66 * Also have in mind we never got documentation for most of these
67 * functions, what we have comes mostly from Atheros's code, reverse
68 * engineering and patent docs/presentations etc.
69 */
70
71
72 /******************\
73 * Helper functions *
74 \******************/
75
76 /**
77 * ath5k_hw_radio_revision() - Get the PHY Chip revision
78 * @ah: The &struct ath5k_hw
79 * @band: One of enum nl80211_band
80 *
81 * Returns the revision number of a 2GHz, 5GHz or single chip
82 * radio.
83 */
84 u16
ath5k_hw_radio_revision(struct ath5k_hw * ah,enum nl80211_band band)85 ath5k_hw_radio_revision(struct ath5k_hw *ah, enum nl80211_band band)
86 {
87 unsigned int i;
88 u32 srev;
89 u16 ret;
90
91 /*
92 * Set the radio chip access register
93 */
94 switch (band) {
95 case NL80211_BAND_2GHZ:
96 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
97 break;
98 case NL80211_BAND_5GHZ:
99 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
100 break;
101 default:
102 return 0;
103 }
104
105 usleep_range(2000, 2500);
106
107 /* ...wait until PHY is ready and read the selected radio revision */
108 ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
109
110 for (i = 0; i < 8; i++)
111 ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
112
113 if (ah->ah_version == AR5K_AR5210) {
114 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(256)) >> 28) & 0xf;
115 ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
116 } else {
117 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
118 ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
119 ((srev & 0x0f) << 4), 8);
120 }
121
122 /* Reset to the 5GHz mode */
123 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
124
125 return ret;
126 }
127
128 /**
129 * ath5k_channel_ok() - Check if a channel is supported by the hw
130 * @ah: The &struct ath5k_hw
131 * @channel: The &struct ieee80211_channel
132 *
133 * Note: We don't do any regulatory domain checks here, it's just
134 * a sanity check.
135 */
136 bool
ath5k_channel_ok(struct ath5k_hw * ah,struct ieee80211_channel * channel)137 ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel)
138 {
139 u16 freq = channel->center_freq;
140
141 /* Check if the channel is in our supported range */
142 if (channel->band == NL80211_BAND_2GHZ) {
143 if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
144 (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
145 return true;
146 } else if (channel->band == NL80211_BAND_5GHZ)
147 if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
148 (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
149 return true;
150
151 return false;
152 }
153
154 /**
155 * ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise
156 * @ah: The &struct ath5k_hw
157 * @channel: The &struct ieee80211_channel
158 */
159 bool
ath5k_hw_chan_has_spur_noise(struct ath5k_hw * ah,struct ieee80211_channel * channel)160 ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
161 struct ieee80211_channel *channel)
162 {
163 u8 refclk_freq;
164
165 if ((ah->ah_radio == AR5K_RF5112) ||
166 (ah->ah_radio == AR5K_RF5413) ||
167 (ah->ah_radio == AR5K_RF2413) ||
168 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
169 refclk_freq = 40;
170 else
171 refclk_freq = 32;
172
173 if ((channel->center_freq % refclk_freq != 0) &&
174 ((channel->center_freq % refclk_freq < 10) ||
175 (channel->center_freq % refclk_freq > 22)))
176 return true;
177 else
178 return false;
179 }
180
181 /**
182 * ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer
183 * @ah: The &struct ath5k_hw
184 * @rf_regs: The struct ath5k_rf_reg
185 * @val: New value
186 * @reg_id: RF register ID
187 * @set: Indicate we need to swap data
188 *
189 * This is an internal function used to modify RF Banks before
190 * writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more
191 * infos.
192 */
193 static unsigned int
ath5k_hw_rfb_op(struct ath5k_hw * ah,const struct ath5k_rf_reg * rf_regs,u32 val,u8 reg_id,bool set)194 ath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs,
195 u32 val, u8 reg_id, bool set)
196 {
197 const struct ath5k_rf_reg *rfreg = NULL;
198 u8 offset, bank, num_bits, col, position;
199 u16 entry;
200 u32 mask, data, last_bit, bits_shifted, first_bit;
201 u32 *rfb;
202 s32 bits_left;
203 int i;
204
205 data = 0;
206 rfb = ah->ah_rf_banks;
207
208 for (i = 0; i < ah->ah_rf_regs_count; i++) {
209 if (rf_regs[i].index == reg_id) {
210 rfreg = &rf_regs[i];
211 break;
212 }
213 }
214
215 if (rfb == NULL || rfreg == NULL) {
216 ATH5K_PRINTF("Rf register not found!\n");
217 /* should not happen */
218 return 0;
219 }
220
221 bank = rfreg->bank;
222 num_bits = rfreg->field.len;
223 first_bit = rfreg->field.pos;
224 col = rfreg->field.col;
225
226 /* first_bit is an offset from bank's
227 * start. Since we have all banks on
228 * the same array, we use this offset
229 * to mark each bank's start */
230 offset = ah->ah_offset[bank];
231
232 /* Boundary check */
233 if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
234 ATH5K_PRINTF("invalid values at offset %u\n", offset);
235 return 0;
236 }
237
238 entry = ((first_bit - 1) / 8) + offset;
239 position = (first_bit - 1) % 8;
240
241 if (set)
242 data = ath5k_hw_bitswap(val, num_bits);
243
244 for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
245 position = 0, entry++) {
246
247 last_bit = (position + bits_left > 8) ? 8 :
248 position + bits_left;
249
250 mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
251 (col * 8);
252
253 if (set) {
254 rfb[entry] &= ~mask;
255 rfb[entry] |= ((data << position) << (col * 8)) & mask;
256 data >>= (8 - position);
257 } else {
258 data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
259 << bits_shifted;
260 bits_shifted += last_bit - position;
261 }
262
263 bits_left -= 8 - position;
264 }
265
266 data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
267
268 return data;
269 }
270
271 /**
272 * ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212
273 * @ah: the &struct ath5k_hw
274 * @channel: the currently set channel upon reset
275 *
276 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
277 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
278 *
279 * Since delta slope is floating point we split it on its exponent and
280 * mantissa and provide these values on hw.
281 *
282 * For more infos i think this patent is related
283 * "http://www.freepatentsonline.com/7184495.html"
284 */
285 static inline int
ath5k_hw_write_ofdm_timings(struct ath5k_hw * ah,struct ieee80211_channel * channel)286 ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
287 struct ieee80211_channel *channel)
288 {
289 /* Get exponent and mantissa and set it */
290 u32 coef_scaled, coef_exp, coef_man,
291 ds_coef_exp, ds_coef_man, clock;
292
293 BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
294 (channel->hw_value == AR5K_MODE_11B));
295
296 /* Get coefficient
297 * ALGO: coef = (5 * clock / carrier_freq) / 2
298 * we scale coef by shifting clock value by 24 for
299 * better precision since we use integers */
300 switch (ah->ah_bwmode) {
301 case AR5K_BWMODE_40MHZ:
302 clock = 40 * 2;
303 break;
304 case AR5K_BWMODE_10MHZ:
305 clock = 40 / 2;
306 break;
307 case AR5K_BWMODE_5MHZ:
308 clock = 40 / 4;
309 break;
310 default:
311 clock = 40;
312 break;
313 }
314 coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
315
316 /* Get exponent
317 * ALGO: coef_exp = 14 - highest set bit position */
318 coef_exp = ilog2(coef_scaled);
319
320 /* Doesn't make sense if it's zero*/
321 if (!coef_scaled || !coef_exp)
322 return -EINVAL;
323
324 /* Note: we've shifted coef_scaled by 24 */
325 coef_exp = 14 - (coef_exp - 24);
326
327
328 /* Get mantissa (significant digits)
329 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
330 coef_man = coef_scaled +
331 (1 << (24 - coef_exp - 1));
332
333 /* Calculate delta slope coefficient exponent
334 * and mantissa (remove scaling) and set them on hw */
335 ds_coef_man = coef_man >> (24 - coef_exp);
336 ds_coef_exp = coef_exp - 16;
337
338 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
339 AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
340 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
341 AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
342
343 return 0;
344 }
345
346 /**
347 * ath5k_hw_phy_disable() - Disable PHY
348 * @ah: The &struct ath5k_hw
349 */
ath5k_hw_phy_disable(struct ath5k_hw * ah)350 int ath5k_hw_phy_disable(struct ath5k_hw *ah)
351 {
352 /*Just a try M.F.*/
353 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
354
355 return 0;
356 }
357
358 /**
359 * ath5k_hw_wait_for_synth() - Wait for synth to settle
360 * @ah: The &struct ath5k_hw
361 * @channel: The &struct ieee80211_channel
362 */
363 static void
ath5k_hw_wait_for_synth(struct ath5k_hw * ah,struct ieee80211_channel * channel)364 ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
365 struct ieee80211_channel *channel)
366 {
367 /*
368 * On 5211+ read activation -> rx delay
369 * and use it (100ns steps).
370 */
371 if (ah->ah_version != AR5K_AR5210) {
372 u32 delay;
373 delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
374 AR5K_PHY_RX_DELAY_M;
375 delay = (channel->hw_value == AR5K_MODE_11B) ?
376 ((delay << 2) / 22) : (delay / 10);
377 if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
378 delay = delay << 1;
379 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
380 delay = delay << 2;
381 /* XXX: /2 on turbo ? Let's be safe
382 * for now */
383 usleep_range(100 + delay, 100 + (2 * delay));
384 } else {
385 usleep_range(1000, 1500);
386 }
387 }
388
389
390 /**********************\
391 * RF Gain optimization *
392 \**********************/
393
394 /**
395 * DOC: RF Gain optimization
396 *
397 * This code is used to optimize RF gain on different environments
398 * (temperature mostly) based on feedback from a power detector.
399 *
400 * It's only used on RF5111 and RF5112, later RF chips seem to have
401 * auto adjustment on hw -notice they have a much smaller BANK 7 and
402 * no gain optimization ladder-.
403 *
404 * For more infos check out this patent doc
405 * "http://www.freepatentsonline.com/7400691.html"
406 *
407 * This paper describes power drops as seen on the receiver due to
408 * probe packets
409 * "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
410 * %20of%20Power%20Control.pdf"
411 *
412 * And this is the MadWiFi bug entry related to the above
413 * "http://madwifi-project.org/ticket/1659"
414 * with various measurements and diagrams
415 */
416
417 /**
418 * ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach
419 * @ah: The &struct ath5k_hw
420 */
ath5k_hw_rfgain_opt_init(struct ath5k_hw * ah)421 int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
422 {
423 /* Initialize the gain optimization values */
424 switch (ah->ah_radio) {
425 case AR5K_RF5111:
426 ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
427 ah->ah_gain.g_low = 20;
428 ah->ah_gain.g_high = 35;
429 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
430 break;
431 case AR5K_RF5112:
432 ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
433 ah->ah_gain.g_low = 20;
434 ah->ah_gain.g_high = 85;
435 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
436 break;
437 default:
438 return -EINVAL;
439 }
440
441 return 0;
442 }
443
444 /**
445 * ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet
446 * @ah: The &struct ath5k_hw
447 *
448 * Schedules a gain probe check on the next transmitted packet.
449 * That means our next packet is going to be sent with lower
450 * tx power and a Peak to Average Power Detector (PAPD) will try
451 * to measure the gain.
452 *
453 * TODO: Force a tx packet (bypassing PCU arbitrator etc)
454 * just after we enable the probe so that we don't mess with
455 * standard traffic.
456 */
457 static void
ath5k_hw_request_rfgain_probe(struct ath5k_hw * ah)458 ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
459 {
460
461 /* Skip if gain calibration is inactive or
462 * we already handle a probe request */
463 if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
464 return;
465
466 /* Send the packet with 2dB below max power as
467 * patent doc suggest */
468 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
469 AR5K_PHY_PAPD_PROBE_TXPOWER) |
470 AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
471
472 ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
473
474 }
475
476 /**
477 * ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction
478 * @ah: The &struct ath5k_hw
479 *
480 * Calculate Gain_F measurement correction
481 * based on the current step for RF5112 rev. 2
482 */
483 static u32
ath5k_hw_rf_gainf_corr(struct ath5k_hw * ah)484 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
485 {
486 u32 mix, step;
487 const struct ath5k_gain_opt *go;
488 const struct ath5k_gain_opt_step *g_step;
489 const struct ath5k_rf_reg *rf_regs;
490
491 /* Only RF5112 Rev. 2 supports it */
492 if ((ah->ah_radio != AR5K_RF5112) ||
493 (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
494 return 0;
495
496 go = &rfgain_opt_5112;
497 rf_regs = rf_regs_5112a;
498 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
499
500 g_step = &go->go_step[ah->ah_gain.g_step_idx];
501
502 if (ah->ah_rf_banks == NULL)
503 return 0;
504
505 ah->ah_gain.g_f_corr = 0;
506
507 /* No VGA (Variable Gain Amplifier) override, skip */
508 if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
509 return 0;
510
511 /* Mix gain stepping */
512 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
513
514 /* Mix gain override */
515 mix = g_step->gos_param[0];
516
517 switch (mix) {
518 case 3:
519 ah->ah_gain.g_f_corr = step * 2;
520 break;
521 case 2:
522 ah->ah_gain.g_f_corr = (step - 5) * 2;
523 break;
524 case 1:
525 ah->ah_gain.g_f_corr = step;
526 break;
527 default:
528 ah->ah_gain.g_f_corr = 0;
529 break;
530 }
531
532 return ah->ah_gain.g_f_corr;
533 }
534
535 /**
536 * ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector
537 * @ah: The &struct ath5k_hw
538 *
539 * Check if current gain_F measurement is in the range of our
540 * power detector windows. If we get a measurement outside range
541 * we know it's not accurate (detectors can't measure anything outside
542 * their detection window) so we must ignore it.
543 *
544 * Returns true if readback was O.K. or false on failure
545 */
546 static bool
ath5k_hw_rf_check_gainf_readback(struct ath5k_hw * ah)547 ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
548 {
549 const struct ath5k_rf_reg *rf_regs;
550 u32 step, mix_ovr, level[4];
551
552 if (ah->ah_rf_banks == NULL)
553 return false;
554
555 if (ah->ah_radio == AR5K_RF5111) {
556
557 rf_regs = rf_regs_5111;
558 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
559
560 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
561 false);
562
563 level[0] = 0;
564 level[1] = (step == 63) ? 50 : step + 4;
565 level[2] = (step != 63) ? 64 : level[0];
566 level[3] = level[2] + 50;
567
568 ah->ah_gain.g_high = level[3] -
569 (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
570 ah->ah_gain.g_low = level[0] +
571 (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
572 } else {
573
574 rf_regs = rf_regs_5112;
575 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
576
577 mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
578 false);
579
580 level[0] = level[2] = 0;
581
582 if (mix_ovr == 1) {
583 level[1] = level[3] = 83;
584 } else {
585 level[1] = level[3] = 107;
586 ah->ah_gain.g_high = 55;
587 }
588 }
589
590 return (ah->ah_gain.g_current >= level[0] &&
591 ah->ah_gain.g_current <= level[1]) ||
592 (ah->ah_gain.g_current >= level[2] &&
593 ah->ah_gain.g_current <= level[3]);
594 }
595
596 /**
597 * ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment
598 * @ah: The &struct ath5k_hw
599 *
600 * Choose the right target gain based on current gain
601 * and RF gain optimization ladder
602 */
603 static s8
ath5k_hw_rf_gainf_adjust(struct ath5k_hw * ah)604 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
605 {
606 const struct ath5k_gain_opt *go;
607 const struct ath5k_gain_opt_step *g_step;
608 int ret = 0;
609
610 switch (ah->ah_radio) {
611 case AR5K_RF5111:
612 go = &rfgain_opt_5111;
613 break;
614 case AR5K_RF5112:
615 go = &rfgain_opt_5112;
616 break;
617 default:
618 return 0;
619 }
620
621 g_step = &go->go_step[ah->ah_gain.g_step_idx];
622
623 if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
624
625 /* Reached maximum */
626 if (ah->ah_gain.g_step_idx == 0)
627 return -1;
628
629 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
630 ah->ah_gain.g_target >= ah->ah_gain.g_high &&
631 ah->ah_gain.g_step_idx > 0;
632 g_step = &go->go_step[ah->ah_gain.g_step_idx])
633 ah->ah_gain.g_target -= 2 *
634 (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
635 g_step->gos_gain);
636
637 ret = 1;
638 goto done;
639 }
640
641 if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
642
643 /* Reached minimum */
644 if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
645 return -2;
646
647 for (ah->ah_gain.g_target = ah->ah_gain.g_current;
648 ah->ah_gain.g_target <= ah->ah_gain.g_low &&
649 ah->ah_gain.g_step_idx < go->go_steps_count - 1;
650 g_step = &go->go_step[ah->ah_gain.g_step_idx])
651 ah->ah_gain.g_target -= 2 *
652 (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
653 g_step->gos_gain);
654
655 ret = 2;
656 goto done;
657 }
658
659 done:
660 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
661 "ret %d, gain step %u, current gain %u, target gain %u\n",
662 ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
663 ah->ah_gain.g_target);
664
665 return ret;
666 }
667
668 /**
669 * ath5k_hw_gainf_calibrate() - Do a gain_F calibration
670 * @ah: The &struct ath5k_hw
671 *
672 * Main callback for thermal RF gain calibration engine
673 * Check for a new gain reading and schedule an adjustment
674 * if needed.
675 *
676 * Returns one of enum ath5k_rfgain codes
677 */
678 enum ath5k_rfgain
ath5k_hw_gainf_calibrate(struct ath5k_hw * ah)679 ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
680 {
681 u32 data, type;
682 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
683
684 if (ah->ah_rf_banks == NULL ||
685 ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
686 return AR5K_RFGAIN_INACTIVE;
687
688 /* No check requested, either engine is inactive
689 * or an adjustment is already requested */
690 if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
691 goto done;
692
693 /* Read the PAPD (Peak to Average Power Detector)
694 * register */
695 data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
696
697 /* No probe is scheduled, read gain_F measurement */
698 if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
699 ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
700 type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
701
702 /* If tx packet is CCK correct the gain_F measurement
703 * by cck ofdm gain delta */
704 if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
705 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
706 ah->ah_gain.g_current +=
707 ee->ee_cck_ofdm_gain_delta;
708 else
709 ah->ah_gain.g_current +=
710 AR5K_GAIN_CCK_PROBE_CORR;
711 }
712
713 /* Further correct gain_F measurement for
714 * RF5112A radios */
715 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
716 ath5k_hw_rf_gainf_corr(ah);
717 ah->ah_gain.g_current =
718 ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
719 (ah->ah_gain.g_current - ah->ah_gain.g_f_corr) :
720 0;
721 }
722
723 /* Check if measurement is ok and if we need
724 * to adjust gain, schedule a gain adjustment,
725 * else switch back to the active state */
726 if (ath5k_hw_rf_check_gainf_readback(ah) &&
727 AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
728 ath5k_hw_rf_gainf_adjust(ah)) {
729 ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
730 } else {
731 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
732 }
733 }
734
735 done:
736 return ah->ah_gain.g_state;
737 }
738
739 /**
740 * ath5k_hw_rfgain_init() - Write initial RF gain settings to hw
741 * @ah: The &struct ath5k_hw
742 * @band: One of enum nl80211_band
743 *
744 * Write initial RF gain table to set the RF sensitivity.
745 *
746 * NOTE: This one works on all RF chips and has nothing to do
747 * with Gain_F calibration
748 */
749 static int
ath5k_hw_rfgain_init(struct ath5k_hw * ah,enum nl80211_band band)750 ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum nl80211_band band)
751 {
752 const struct ath5k_ini_rfgain *ath5k_rfg;
753 unsigned int i, size, index;
754
755 switch (ah->ah_radio) {
756 case AR5K_RF5111:
757 ath5k_rfg = rfgain_5111;
758 size = ARRAY_SIZE(rfgain_5111);
759 break;
760 case AR5K_RF5112:
761 ath5k_rfg = rfgain_5112;
762 size = ARRAY_SIZE(rfgain_5112);
763 break;
764 case AR5K_RF2413:
765 ath5k_rfg = rfgain_2413;
766 size = ARRAY_SIZE(rfgain_2413);
767 break;
768 case AR5K_RF2316:
769 ath5k_rfg = rfgain_2316;
770 size = ARRAY_SIZE(rfgain_2316);
771 break;
772 case AR5K_RF5413:
773 ath5k_rfg = rfgain_5413;
774 size = ARRAY_SIZE(rfgain_5413);
775 break;
776 case AR5K_RF2317:
777 case AR5K_RF2425:
778 ath5k_rfg = rfgain_2425;
779 size = ARRAY_SIZE(rfgain_2425);
780 break;
781 default:
782 return -EINVAL;
783 }
784
785 index = (band == NL80211_BAND_2GHZ) ? 1 : 0;
786
787 for (i = 0; i < size; i++) {
788 AR5K_REG_WAIT(i);
789 ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
790 (u32)ath5k_rfg[i].rfg_register);
791 }
792
793 return 0;
794 }
795
796
797 /********************\
798 * RF Registers setup *
799 \********************/
800
801 /**
802 * ath5k_hw_rfregs_init() - Initialize RF register settings
803 * @ah: The &struct ath5k_hw
804 * @channel: The &struct ieee80211_channel
805 * @mode: One of enum ath5k_driver_mode
806 *
807 * Setup RF registers by writing RF buffer on hw. For
808 * more infos on this, check out rfbuffer.h
809 */
810 static int
ath5k_hw_rfregs_init(struct ath5k_hw * ah,struct ieee80211_channel * channel,unsigned int mode)811 ath5k_hw_rfregs_init(struct ath5k_hw *ah,
812 struct ieee80211_channel *channel,
813 unsigned int mode)
814 {
815 const struct ath5k_rf_reg *rf_regs;
816 const struct ath5k_ini_rfbuffer *ini_rfb;
817 const struct ath5k_gain_opt *go = NULL;
818 const struct ath5k_gain_opt_step *g_step;
819 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
820 u8 ee_mode = 0;
821 u32 *rfb;
822 int i, obdb = -1, bank = -1;
823
824 switch (ah->ah_radio) {
825 case AR5K_RF5111:
826 rf_regs = rf_regs_5111;
827 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
828 ini_rfb = rfb_5111;
829 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
830 go = &rfgain_opt_5111;
831 break;
832 case AR5K_RF5112:
833 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
834 rf_regs = rf_regs_5112a;
835 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
836 ini_rfb = rfb_5112a;
837 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
838 } else {
839 rf_regs = rf_regs_5112;
840 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
841 ini_rfb = rfb_5112;
842 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
843 }
844 go = &rfgain_opt_5112;
845 break;
846 case AR5K_RF2413:
847 rf_regs = rf_regs_2413;
848 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
849 ini_rfb = rfb_2413;
850 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
851 break;
852 case AR5K_RF2316:
853 rf_regs = rf_regs_2316;
854 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
855 ini_rfb = rfb_2316;
856 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
857 break;
858 case AR5K_RF5413:
859 rf_regs = rf_regs_5413;
860 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
861 ini_rfb = rfb_5413;
862 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
863 break;
864 case AR5K_RF2317:
865 rf_regs = rf_regs_2425;
866 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
867 ini_rfb = rfb_2317;
868 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
869 break;
870 case AR5K_RF2425:
871 rf_regs = rf_regs_2425;
872 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
873 if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
874 ini_rfb = rfb_2425;
875 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
876 } else {
877 ini_rfb = rfb_2417;
878 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
879 }
880 break;
881 default:
882 return -EINVAL;
883 }
884
885 /* If it's the first time we set RF buffer, allocate
886 * ah->ah_rf_banks based on ah->ah_rf_banks_size
887 * we set above */
888 if (ah->ah_rf_banks == NULL) {
889 ah->ah_rf_banks = kmalloc_array(ah->ah_rf_banks_size,
890 sizeof(u32),
891 GFP_KERNEL);
892 if (ah->ah_rf_banks == NULL) {
893 ATH5K_ERR(ah, "out of memory\n");
894 return -ENOMEM;
895 }
896 }
897
898 /* Copy values to modify them */
899 rfb = ah->ah_rf_banks;
900
901 for (i = 0; i < ah->ah_rf_banks_size; i++) {
902 if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
903 ATH5K_ERR(ah, "invalid bank\n");
904 return -EINVAL;
905 }
906
907 /* Bank changed, write down the offset */
908 if (bank != ini_rfb[i].rfb_bank) {
909 bank = ini_rfb[i].rfb_bank;
910 ah->ah_offset[bank] = i;
911 }
912
913 rfb[i] = ini_rfb[i].rfb_mode_data[mode];
914 }
915
916 /* Set Output and Driver bias current (OB/DB) */
917 if (channel->band == NL80211_BAND_2GHZ) {
918
919 if (channel->hw_value == AR5K_MODE_11B)
920 ee_mode = AR5K_EEPROM_MODE_11B;
921 else
922 ee_mode = AR5K_EEPROM_MODE_11G;
923
924 /* For RF511X/RF211X combination we
925 * use b_OB and b_DB parameters stored
926 * in eeprom on ee->ee_ob[ee_mode][0]
927 *
928 * For all other chips we use OB/DB for 2GHz
929 * stored in the b/g modal section just like
930 * 802.11a on ee->ee_ob[ee_mode][1] */
931 if ((ah->ah_radio == AR5K_RF5111) ||
932 (ah->ah_radio == AR5K_RF5112))
933 obdb = 0;
934 else
935 obdb = 1;
936
937 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
938 AR5K_RF_OB_2GHZ, true);
939
940 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
941 AR5K_RF_DB_2GHZ, true);
942
943 /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
944 } else if ((channel->band == NL80211_BAND_5GHZ) ||
945 (ah->ah_radio == AR5K_RF5111)) {
946
947 /* For 11a, Turbo and XR we need to choose
948 * OB/DB based on frequency range */
949 ee_mode = AR5K_EEPROM_MODE_11A;
950 obdb = channel->center_freq >= 5725 ? 3 :
951 (channel->center_freq >= 5500 ? 2 :
952 (channel->center_freq >= 5260 ? 1 :
953 (channel->center_freq > 4000 ? 0 : -1)));
954
955 if (obdb < 0)
956 return -EINVAL;
957
958 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
959 AR5K_RF_OB_5GHZ, true);
960
961 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
962 AR5K_RF_DB_5GHZ, true);
963 }
964
965 g_step = &go->go_step[ah->ah_gain.g_step_idx];
966
967 /* Set turbo mode (N/A on RF5413) */
968 if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
969 (ah->ah_radio != AR5K_RF5413))
970 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
971
972 /* Bank Modifications (chip-specific) */
973 if (ah->ah_radio == AR5K_RF5111) {
974
975 /* Set gain_F settings according to current step */
976 if (channel->hw_value != AR5K_MODE_11B) {
977
978 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
979 AR5K_PHY_FRAME_CTL_TX_CLIP,
980 g_step->gos_param[0]);
981
982 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
983 AR5K_RF_PWD_90, true);
984
985 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
986 AR5K_RF_PWD_84, true);
987
988 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
989 AR5K_RF_RFGAIN_SEL, true);
990
991 /* We programmed gain_F parameters, switch back
992 * to active state */
993 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
994
995 }
996
997 /* Bank 6/7 setup */
998
999 ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
1000 AR5K_RF_PWD_XPD, true);
1001
1002 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
1003 AR5K_RF_XPD_GAIN, true);
1004
1005 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1006 AR5K_RF_GAIN_I, true);
1007
1008 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1009 AR5K_RF_PLO_SEL, true);
1010
1011 /* Tweak power detectors for half/quarter rate support */
1012 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1013 ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1014 u8 wait_i;
1015
1016 ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
1017 AR5K_RF_WAIT_S, true);
1018
1019 wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1020 0x1f : 0x10;
1021
1022 ath5k_hw_rfb_op(ah, rf_regs, wait_i,
1023 AR5K_RF_WAIT_I, true);
1024 ath5k_hw_rfb_op(ah, rf_regs, 3,
1025 AR5K_RF_MAX_TIME, true);
1026
1027 }
1028 }
1029
1030 if (ah->ah_radio == AR5K_RF5112) {
1031
1032 /* Set gain_F settings according to current step */
1033 if (channel->hw_value != AR5K_MODE_11B) {
1034
1035 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
1036 AR5K_RF_MIXGAIN_OVR, true);
1037
1038 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
1039 AR5K_RF_PWD_138, true);
1040
1041 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
1042 AR5K_RF_PWD_137, true);
1043
1044 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
1045 AR5K_RF_PWD_136, true);
1046
1047 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
1048 AR5K_RF_PWD_132, true);
1049
1050 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
1051 AR5K_RF_PWD_131, true);
1052
1053 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
1054 AR5K_RF_PWD_130, true);
1055
1056 /* We programmed gain_F parameters, switch back
1057 * to active state */
1058 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
1059 }
1060
1061 /* Bank 6/7 setup */
1062
1063 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1064 AR5K_RF_XPD_SEL, true);
1065
1066 if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
1067 /* Rev. 1 supports only one xpd */
1068 ath5k_hw_rfb_op(ah, rf_regs,
1069 ee->ee_x_gain[ee_mode],
1070 AR5K_RF_XPD_GAIN, true);
1071
1072 } else {
1073 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
1074 if (ee->ee_pd_gains[ee_mode] > 1) {
1075 ath5k_hw_rfb_op(ah, rf_regs,
1076 pdg_curve_to_idx[0],
1077 AR5K_RF_PD_GAIN_LO, true);
1078 ath5k_hw_rfb_op(ah, rf_regs,
1079 pdg_curve_to_idx[1],
1080 AR5K_RF_PD_GAIN_HI, true);
1081 } else {
1082 ath5k_hw_rfb_op(ah, rf_regs,
1083 pdg_curve_to_idx[0],
1084 AR5K_RF_PD_GAIN_LO, true);
1085 ath5k_hw_rfb_op(ah, rf_regs,
1086 pdg_curve_to_idx[0],
1087 AR5K_RF_PD_GAIN_HI, true);
1088 }
1089
1090 /* Lower synth voltage on Rev 2 */
1091 if (ah->ah_radio == AR5K_RF5112 &&
1092 (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) {
1093 ath5k_hw_rfb_op(ah, rf_regs, 2,
1094 AR5K_RF_HIGH_VC_CP, true);
1095
1096 ath5k_hw_rfb_op(ah, rf_regs, 2,
1097 AR5K_RF_MID_VC_CP, true);
1098
1099 ath5k_hw_rfb_op(ah, rf_regs, 2,
1100 AR5K_RF_LOW_VC_CP, true);
1101
1102 ath5k_hw_rfb_op(ah, rf_regs, 2,
1103 AR5K_RF_PUSH_UP, true);
1104 }
1105
1106 /* Decrease power consumption on 5213+ BaseBand */
1107 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
1108 ath5k_hw_rfb_op(ah, rf_regs, 1,
1109 AR5K_RF_PAD2GND, true);
1110
1111 ath5k_hw_rfb_op(ah, rf_regs, 1,
1112 AR5K_RF_XB2_LVL, true);
1113
1114 ath5k_hw_rfb_op(ah, rf_regs, 1,
1115 AR5K_RF_XB5_LVL, true);
1116
1117 ath5k_hw_rfb_op(ah, rf_regs, 1,
1118 AR5K_RF_PWD_167, true);
1119
1120 ath5k_hw_rfb_op(ah, rf_regs, 1,
1121 AR5K_RF_PWD_166, true);
1122 }
1123 }
1124
1125 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1126 AR5K_RF_GAIN_I, true);
1127
1128 /* Tweak power detector for half/quarter rates */
1129 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1130 ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1131 u8 pd_delay;
1132
1133 pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1134 0xf : 0x8;
1135
1136 ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
1137 AR5K_RF_PD_PERIOD_A, true);
1138 ath5k_hw_rfb_op(ah, rf_regs, 0xf,
1139 AR5K_RF_PD_DELAY_A, true);
1140
1141 }
1142 }
1143
1144 if (ah->ah_radio == AR5K_RF5413 &&
1145 channel->band == NL80211_BAND_2GHZ) {
1146
1147 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
1148 true);
1149
1150 /* Set optimum value for early revisions (on pci-e chips) */
1151 if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1152 ah->ah_mac_srev < AR5K_SREV_AR5413)
1153 ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1154 AR5K_RF_PWD_ICLOBUF_2G, true);
1155
1156 }
1157
1158 /* Write RF banks on hw */
1159 for (i = 0; i < ah->ah_rf_banks_size; i++) {
1160 AR5K_REG_WAIT(i);
1161 ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1162 }
1163
1164 return 0;
1165 }
1166
1167
1168 /**************************\
1169 PHY/RF channel functions
1170 \**************************/
1171
1172 /**
1173 * ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110
1174 * @channel: The &struct ieee80211_channel
1175 *
1176 * Map channel frequency to IEEE channel number and convert it
1177 * to an internal channel value used by the RF5110 chipset.
1178 */
1179 static u32
ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel * channel)1180 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1181 {
1182 u32 athchan;
1183
1184 athchan = (ath5k_hw_bitswap(
1185 (ieee80211_frequency_to_channel(
1186 channel->center_freq) - 24) / 2, 5)
1187 << 1) | (1 << 6) | 0x1;
1188 return athchan;
1189 }
1190
1191 /**
1192 * ath5k_hw_rf5110_channel() - Set channel frequency on RF5110
1193 * @ah: The &struct ath5k_hw
1194 * @channel: The &struct ieee80211_channel
1195 */
1196 static int
ath5k_hw_rf5110_channel(struct ath5k_hw * ah,struct ieee80211_channel * channel)1197 ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1198 struct ieee80211_channel *channel)
1199 {
1200 u32 data;
1201
1202 /*
1203 * Set the channel and wait
1204 */
1205 data = ath5k_hw_rf5110_chan2athchan(channel);
1206 ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1207 ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1208 usleep_range(1000, 1500);
1209
1210 return 0;
1211 }
1212
1213 /**
1214 * ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111
1215 * @ieee: IEEE channel number
1216 * @athchan: The &struct ath5k_athchan_2ghz
1217 *
1218 * In order to enable the RF2111 frequency converter on RF5111/2111 setups
1219 * we need to add some offsets and extra flags to the data values we pass
1220 * on to the PHY. So for every 2GHz channel this function gets called
1221 * to do the conversion.
1222 */
1223 static int
ath5k_hw_rf5111_chan2athchan(unsigned int ieee,struct ath5k_athchan_2ghz * athchan)1224 ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1225 struct ath5k_athchan_2ghz *athchan)
1226 {
1227 int channel;
1228
1229 /* Cast this value to catch negative channel numbers (>= -19) */
1230 channel = (int)ieee;
1231
1232 /*
1233 * Map 2GHz IEEE channel to 5GHz Atheros channel
1234 */
1235 if (channel <= 13) {
1236 athchan->a2_athchan = 115 + channel;
1237 athchan->a2_flags = 0x46;
1238 } else if (channel == 14) {
1239 athchan->a2_athchan = 124;
1240 athchan->a2_flags = 0x44;
1241 } else if (channel >= 15 && channel <= 26) {
1242 athchan->a2_athchan = ((channel - 14) * 4) + 132;
1243 athchan->a2_flags = 0x46;
1244 } else
1245 return -EINVAL;
1246
1247 return 0;
1248 }
1249
1250 /**
1251 * ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111
1252 * @ah: The &struct ath5k_hw
1253 * @channel: The &struct ieee80211_channel
1254 */
1255 static int
ath5k_hw_rf5111_channel(struct ath5k_hw * ah,struct ieee80211_channel * channel)1256 ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1257 struct ieee80211_channel *channel)
1258 {
1259 struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1260 unsigned int ath5k_channel =
1261 ieee80211_frequency_to_channel(channel->center_freq);
1262 u32 data0, data1, clock;
1263 int ret;
1264
1265 /*
1266 * Set the channel on the RF5111 radio
1267 */
1268 data0 = data1 = 0;
1269
1270 if (channel->band == NL80211_BAND_2GHZ) {
1271 /* Map 2GHz channel to 5GHz Atheros channel ID */
1272 ret = ath5k_hw_rf5111_chan2athchan(
1273 ieee80211_frequency_to_channel(channel->center_freq),
1274 &ath5k_channel_2ghz);
1275 if (ret)
1276 return ret;
1277
1278 ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1279 data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1280 << 5) | (1 << 4);
1281 }
1282
1283 if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1284 clock = 1;
1285 data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1286 (clock << 1) | (1 << 10) | 1;
1287 } else {
1288 clock = 0;
1289 data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1290 << 2) | (clock << 1) | (1 << 10) | 1;
1291 }
1292
1293 ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1294 AR5K_RF_BUFFER);
1295 ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1296 AR5K_RF_BUFFER_CONTROL_3);
1297
1298 return 0;
1299 }
1300
1301 /**
1302 * ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer
1303 * @ah: The &struct ath5k_hw
1304 * @channel: The &struct ieee80211_channel
1305 *
1306 * On RF5112/2112 and newer we don't need to do any conversion.
1307 * We pass the frequency value after a few modifications to the
1308 * chip directly.
1309 *
1310 * NOTE: Make sure channel frequency given is within our range or else
1311 * we might damage the chip ! Use ath5k_channel_ok before calling this one.
1312 */
1313 static int
ath5k_hw_rf5112_channel(struct ath5k_hw * ah,struct ieee80211_channel * channel)1314 ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1315 struct ieee80211_channel *channel)
1316 {
1317 u32 data, data0, data1, data2;
1318 u16 c;
1319
1320 data = data0 = data1 = data2 = 0;
1321 c = channel->center_freq;
1322
1323 /* My guess based on code:
1324 * 2GHz RF has 2 synth modes, one with a Local Oscillator
1325 * at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz
1326 * (3040/2). data0 is used to set the PLL divider and data1
1327 * selects synth mode. */
1328 if (c < 4800) {
1329 /* Channel 14 and all frequencies with 2Hz spacing
1330 * below/above (non-standard channels) */
1331 if (!((c - 2224) % 5)) {
1332 /* Same as (c - 2224) / 5 */
1333 data0 = ((2 * (c - 704)) - 3040) / 10;
1334 data1 = 1;
1335 /* Channel 1 and all frequencies with 5Hz spacing
1336 * below/above (standard channels without channel 14) */
1337 } else if (!((c - 2192) % 5)) {
1338 /* Same as (c - 2192) / 5 */
1339 data0 = ((2 * (c - 672)) - 3040) / 10;
1340 data1 = 0;
1341 } else
1342 return -EINVAL;
1343
1344 data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1345 /* This is more complex, we have a single synthesizer with
1346 * 4 reference clock settings (?) based on frequency spacing
1347 * and set using data2. LO is at 4800Hz and data0 is again used
1348 * to set some divider.
1349 *
1350 * NOTE: There is an old atheros presentation at Stanford
1351 * that mentions a method called dual direct conversion
1352 * with 1GHz sliding IF for RF5110. Maybe that's what we
1353 * have here, or an updated version. */
1354 } else if ((c % 5) != 2 || c > 5435) {
1355 if (!(c % 20) && c >= 5120) {
1356 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1357 data2 = ath5k_hw_bitswap(3, 2);
1358 } else if (!(c % 10)) {
1359 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1360 data2 = ath5k_hw_bitswap(2, 2);
1361 } else if (!(c % 5)) {
1362 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1363 data2 = ath5k_hw_bitswap(1, 2);
1364 } else
1365 return -EINVAL;
1366 } else {
1367 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1368 data2 = ath5k_hw_bitswap(0, 2);
1369 }
1370
1371 data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1372
1373 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1374 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1375
1376 return 0;
1377 }
1378
1379 /**
1380 * ath5k_hw_rf2425_channel() - Set channel frequency on RF2425
1381 * @ah: The &struct ath5k_hw
1382 * @channel: The &struct ieee80211_channel
1383 *
1384 * AR2425/2417 have a different 2GHz RF so code changes
1385 * a little bit from RF5112.
1386 */
1387 static int
ath5k_hw_rf2425_channel(struct ath5k_hw * ah,struct ieee80211_channel * channel)1388 ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1389 struct ieee80211_channel *channel)
1390 {
1391 u32 data, data0, data2;
1392 u16 c;
1393
1394 data = data0 = data2 = 0;
1395 c = channel->center_freq;
1396
1397 if (c < 4800) {
1398 data0 = ath5k_hw_bitswap((c - 2272), 8);
1399 data2 = 0;
1400 /* ? 5GHz ? */
1401 } else if ((c % 5) != 2 || c > 5435) {
1402 if (!(c % 20) && c < 5120)
1403 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1404 else if (!(c % 10))
1405 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1406 else if (!(c % 5))
1407 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1408 else
1409 return -EINVAL;
1410 data2 = ath5k_hw_bitswap(1, 2);
1411 } else {
1412 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1413 data2 = ath5k_hw_bitswap(0, 2);
1414 }
1415
1416 data = (data0 << 4) | data2 << 2 | 0x1001;
1417
1418 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1419 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1420
1421 return 0;
1422 }
1423
1424 /**
1425 * ath5k_hw_channel() - Set a channel on the radio chip
1426 * @ah: The &struct ath5k_hw
1427 * @channel: The &struct ieee80211_channel
1428 *
1429 * This is the main function called to set a channel on the
1430 * radio chip based on the radio chip version.
1431 */
1432 static int
ath5k_hw_channel(struct ath5k_hw * ah,struct ieee80211_channel * channel)1433 ath5k_hw_channel(struct ath5k_hw *ah,
1434 struct ieee80211_channel *channel)
1435 {
1436 int ret;
1437 /*
1438 * Check bounds supported by the PHY (we don't care about regulatory
1439 * restrictions at this point).
1440 */
1441 if (!ath5k_channel_ok(ah, channel)) {
1442 ATH5K_ERR(ah,
1443 "channel frequency (%u MHz) out of supported "
1444 "band range\n",
1445 channel->center_freq);
1446 return -EINVAL;
1447 }
1448
1449 /*
1450 * Set the channel and wait
1451 */
1452 switch (ah->ah_radio) {
1453 case AR5K_RF5110:
1454 ret = ath5k_hw_rf5110_channel(ah, channel);
1455 break;
1456 case AR5K_RF5111:
1457 ret = ath5k_hw_rf5111_channel(ah, channel);
1458 break;
1459 case AR5K_RF2317:
1460 case AR5K_RF2425:
1461 ret = ath5k_hw_rf2425_channel(ah, channel);
1462 break;
1463 default:
1464 ret = ath5k_hw_rf5112_channel(ah, channel);
1465 break;
1466 }
1467
1468 if (ret)
1469 return ret;
1470
1471 /* Set JAPAN setting for channel 14 */
1472 if (channel->center_freq == 2484) {
1473 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1474 AR5K_PHY_CCKTXCTL_JAPAN);
1475 } else {
1476 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1477 AR5K_PHY_CCKTXCTL_WORLD);
1478 }
1479
1480 ah->ah_current_channel = channel;
1481
1482 return 0;
1483 }
1484
1485
1486 /*****************\
1487 PHY calibration
1488 \*****************/
1489
1490 /**
1491 * DOC: PHY Calibration routines
1492 *
1493 * Noise floor calibration: When we tell the hardware to
1494 * perform a noise floor calibration by setting the
1495 * AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically
1496 * sample-and-hold the minimum noise level seen at the antennas.
1497 * This value is then stored in a ring buffer of recently measured
1498 * noise floor values so we have a moving window of the last few
1499 * samples. The median of the values in the history is then loaded
1500 * into the hardware for its own use for RSSI and CCA measurements.
1501 * This type of calibration doesn't interfere with traffic.
1502 *
1503 * AGC calibration: When we tell the hardware to perform
1504 * an AGC (Automatic Gain Control) calibration by setting the
1505 * AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does
1506 * a calibration on the DC offsets of ADCs. During this period
1507 * rx/tx gets disabled so we have to deal with it on the driver
1508 * part.
1509 *
1510 * I/Q calibration: When we tell the hardware to perform
1511 * an I/Q calibration, it tries to correct I/Q imbalance and
1512 * fix QAM constellation by sampling data from rxed frames.
1513 * It doesn't interfere with traffic.
1514 *
1515 * For more infos on AGC and I/Q calibration check out patent doc
1516 * #03/094463.
1517 */
1518
1519 /**
1520 * ath5k_hw_read_measured_noise_floor() - Read measured NF from hw
1521 * @ah: The &struct ath5k_hw
1522 */
1523 static s32
ath5k_hw_read_measured_noise_floor(struct ath5k_hw * ah)1524 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1525 {
1526 s32 val;
1527
1528 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1529 return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1530 }
1531
1532 /**
1533 * ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer
1534 * @ah: The &struct ath5k_hw
1535 */
1536 void
ath5k_hw_init_nfcal_hist(struct ath5k_hw * ah)1537 ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1538 {
1539 int i;
1540
1541 ah->ah_nfcal_hist.index = 0;
1542 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1543 ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1544 }
1545
1546 /**
1547 * ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer
1548 * @ah: The &struct ath5k_hw
1549 * @noise_floor: The NF we got from hw
1550 */
ath5k_hw_update_nfcal_hist(struct ath5k_hw * ah,s16 noise_floor)1551 static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1552 {
1553 struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1554 hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1);
1555 hist->nfval[hist->index] = noise_floor;
1556 }
1557
cmps16(const void * a,const void * b)1558 static int cmps16(const void *a, const void *b)
1559 {
1560 return *(s16 *)a - *(s16 *)b;
1561 }
1562
1563 /**
1564 * ath5k_hw_get_median_noise_floor() - Get median NF from history buffer
1565 * @ah: The &struct ath5k_hw
1566 */
1567 static s16
ath5k_hw_get_median_noise_floor(struct ath5k_hw * ah)1568 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1569 {
1570 s16 sorted_nfval[ATH5K_NF_CAL_HIST_MAX];
1571 int i;
1572
1573 memcpy(sorted_nfval, ah->ah_nfcal_hist.nfval, sizeof(sorted_nfval));
1574 sort(sorted_nfval, ATH5K_NF_CAL_HIST_MAX, sizeof(s16), cmps16, NULL);
1575 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1576 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1577 "cal %d:%d\n", i, sorted_nfval[i]);
1578 }
1579 return sorted_nfval[(ATH5K_NF_CAL_HIST_MAX - 1) / 2];
1580 }
1581
1582 /**
1583 * ath5k_hw_update_noise_floor() - Update NF on hardware
1584 * @ah: The &struct ath5k_hw
1585 *
1586 * This is the main function we call to perform a NF calibration,
1587 * it reads NF from hardware, calculates the median and updates
1588 * NF on hw.
1589 */
1590 void
ath5k_hw_update_noise_floor(struct ath5k_hw * ah)1591 ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1592 {
1593 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1594 u32 val;
1595 s16 nf, threshold;
1596 u8 ee_mode;
1597
1598 /* keep last value if calibration hasn't completed */
1599 if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1600 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1601 "NF did not complete in calibration window\n");
1602
1603 return;
1604 }
1605
1606 ah->ah_cal_mask |= AR5K_CALIBRATION_NF;
1607
1608 ee_mode = ath5k_eeprom_mode_from_channel(ah, ah->ah_current_channel);
1609
1610 /* completed NF calibration, test threshold */
1611 nf = ath5k_hw_read_measured_noise_floor(ah);
1612 threshold = ee->ee_noise_floor_thr[ee_mode];
1613
1614 if (nf > threshold) {
1615 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1616 "noise floor failure detected; "
1617 "read %d, threshold %d\n",
1618 nf, threshold);
1619
1620 nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1621 }
1622
1623 ath5k_hw_update_nfcal_hist(ah, nf);
1624 nf = ath5k_hw_get_median_noise_floor(ah);
1625
1626 /* load noise floor (in .5 dBm) so the hardware will use it */
1627 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1628 val |= (nf * 2) & AR5K_PHY_NF_M;
1629 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1630
1631 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1632 ~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1633
1634 ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1635 0, false);
1636
1637 /*
1638 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1639 * so that we're not capped by the median we just loaded.
1640 * This will be used as the initial value for the next noise
1641 * floor calibration.
1642 */
1643 val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1644 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1645 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1646 AR5K_PHY_AGCCTL_NF_EN |
1647 AR5K_PHY_AGCCTL_NF_NOUPDATE |
1648 AR5K_PHY_AGCCTL_NF);
1649
1650 ah->ah_noise_floor = nf;
1651
1652 ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF;
1653
1654 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1655 "noise floor calibrated: %d\n", nf);
1656 }
1657
1658 /**
1659 * ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110
1660 * @ah: The &struct ath5k_hw
1661 * @channel: The &struct ieee80211_channel
1662 *
1663 * Do a complete PHY calibration (AGC + NF + I/Q) on RF5110
1664 */
1665 static int
ath5k_hw_rf5110_calibrate(struct ath5k_hw * ah,struct ieee80211_channel * channel)1666 ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1667 struct ieee80211_channel *channel)
1668 {
1669 u32 phy_sig, phy_agc, phy_sat, beacon;
1670 int ret;
1671
1672 if (!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL))
1673 return 0;
1674
1675 /*
1676 * Disable beacons and RX/TX queues, wait
1677 */
1678 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1679 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1680 beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1681 ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1682
1683 usleep_range(2000, 2500);
1684
1685 /*
1686 * Set the channel (with AGC turned off)
1687 */
1688 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1689 udelay(10);
1690 ret = ath5k_hw_channel(ah, channel);
1691
1692 /*
1693 * Activate PHY and wait
1694 */
1695 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1696 usleep_range(1000, 1500);
1697
1698 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1699
1700 if (ret)
1701 return ret;
1702
1703 /*
1704 * Calibrate the radio chip
1705 */
1706
1707 /* Remember normal state */
1708 phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1709 phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1710 phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1711
1712 /* Update radio registers */
1713 ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1714 AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1715
1716 ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1717 AR5K_PHY_AGCCOARSE_LO)) |
1718 AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1719 AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1720
1721 ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1722 AR5K_PHY_ADCSAT_THR)) |
1723 AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1724 AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1725
1726 udelay(20);
1727
1728 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1729 udelay(10);
1730 ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1731 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1732
1733 usleep_range(1000, 1500);
1734
1735 /*
1736 * Enable calibration and wait until completion
1737 */
1738 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1739
1740 ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1741 AR5K_PHY_AGCCTL_CAL, 0, false);
1742
1743 /* Reset to normal state */
1744 ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1745 ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1746 ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1747
1748 if (ret) {
1749 ATH5K_ERR(ah, "calibration timeout (%uMHz)\n",
1750 channel->center_freq);
1751 return ret;
1752 }
1753
1754 /*
1755 * Re-enable RX/TX and beacons
1756 */
1757 AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1758 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1759 ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1760
1761 return 0;
1762 }
1763
1764 /**
1765 * ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer
1766 * @ah: The &struct ath5k_hw
1767 */
1768 static int
ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw * ah)1769 ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1770 {
1771 u32 i_pwr, q_pwr;
1772 s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1773 int i;
1774
1775 /* Skip if I/Q calibration is not needed or if it's still running */
1776 if (!ah->ah_iq_cal_needed)
1777 return -EINVAL;
1778 else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) {
1779 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1780 "I/Q calibration still running");
1781 return -EBUSY;
1782 }
1783
1784 /* Calibration has finished, get the results and re-run */
1785
1786 /* Work around for empty results which can apparently happen on 5212:
1787 * Read registers up to 10 times until we get both i_pr and q_pwr */
1788 for (i = 0; i <= 10; i++) {
1789 iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1790 i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1791 q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1792 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1793 "iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1794 if (i_pwr && q_pwr)
1795 break;
1796 }
1797
1798 i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1799
1800 if (ah->ah_version == AR5K_AR5211)
1801 q_coffd = q_pwr >> 6;
1802 else
1803 q_coffd = q_pwr >> 7;
1804
1805 /* In case i_coffd became zero, cancel calibration
1806 * not only it's too small, it'll also result a divide
1807 * by zero later on. */
1808 if (i_coffd == 0 || q_coffd < 2)
1809 return -ECANCELED;
1810
1811 /* Protect against loss of sign bits */
1812
1813 i_coff = (-iq_corr) / i_coffd;
1814 i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1815
1816 if (ah->ah_version == AR5K_AR5211)
1817 q_coff = (i_pwr / q_coffd) - 64;
1818 else
1819 q_coff = (i_pwr / q_coffd) - 128;
1820 q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1821
1822 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1823 "new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1824 i_coff, q_coff, i_coffd, q_coffd);
1825
1826 /* Commit new I/Q values (set enable bit last to match HAL sources) */
1827 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1828 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1829 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1830
1831 /* Re-enable calibration -if we don't we'll commit
1832 * the same values again and again */
1833 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1834 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1835 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1836
1837 return 0;
1838 }
1839
1840 /**
1841 * ath5k_hw_phy_calibrate() - Perform a PHY calibration
1842 * @ah: The &struct ath5k_hw
1843 * @channel: The &struct ieee80211_channel
1844 *
1845 * The main function we call from above to perform
1846 * a short or full PHY calibration based on RF chip
1847 * and current channel
1848 */
1849 int
ath5k_hw_phy_calibrate(struct ath5k_hw * ah,struct ieee80211_channel * channel)1850 ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1851 struct ieee80211_channel *channel)
1852 {
1853 int ret;
1854
1855 if (ah->ah_radio == AR5K_RF5110)
1856 return ath5k_hw_rf5110_calibrate(ah, channel);
1857
1858 ret = ath5k_hw_rf511x_iq_calibrate(ah);
1859 if (ret) {
1860 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1861 "No I/Q correction performed (%uMHz)\n",
1862 channel->center_freq);
1863
1864 /* Happens all the time if there is not much
1865 * traffic, consider it normal behaviour. */
1866 ret = 0;
1867 }
1868
1869 /* On full calibration request a PAPD probe for
1870 * gainf calibration if needed */
1871 if ((ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
1872 (ah->ah_radio == AR5K_RF5111 ||
1873 ah->ah_radio == AR5K_RF5112) &&
1874 channel->hw_value != AR5K_MODE_11B)
1875 ath5k_hw_request_rfgain_probe(ah);
1876
1877 /* Update noise floor */
1878 if (!(ah->ah_cal_mask & AR5K_CALIBRATION_NF))
1879 ath5k_hw_update_noise_floor(ah);
1880
1881 return ret;
1882 }
1883
1884
1885 /***************************\
1886 * Spur mitigation functions *
1887 \***************************/
1888
1889 /**
1890 * ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter
1891 * @ah: The &struct ath5k_hw
1892 * @channel: The &struct ieee80211_channel
1893 *
1894 * This function gets called during PHY initialization to
1895 * configure the spur filter for the given channel. Spur is noise
1896 * generated due to "reflection" effects, for more information on this
1897 * method check out patent US7643810
1898 */
1899 static void
ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw * ah,struct ieee80211_channel * channel)1900 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1901 struct ieee80211_channel *channel)
1902 {
1903 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1904 u32 mag_mask[4] = {0, 0, 0, 0};
1905 u32 pilot_mask[2] = {0, 0};
1906 /* Note: fbin values are scaled up by 2 */
1907 u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1908 s32 spur_delta_phase, spur_freq_sigma_delta;
1909 s32 spur_offset, num_symbols_x16;
1910 u8 num_symbol_offsets, i, freq_band;
1911
1912 /* Convert current frequency to fbin value (the same way channels
1913 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1914 * up by 2 so we can compare it later */
1915 if (channel->band == NL80211_BAND_2GHZ) {
1916 chan_fbin = (channel->center_freq - 2300) * 10;
1917 freq_band = AR5K_EEPROM_BAND_2GHZ;
1918 } else {
1919 chan_fbin = (channel->center_freq - 4900) * 10;
1920 freq_band = AR5K_EEPROM_BAND_5GHZ;
1921 }
1922
1923 /* Check if any spur_chan_fbin from EEPROM is
1924 * within our current channel's spur detection range */
1925 spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1926 spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1927 /* XXX: Half/Quarter channels ?*/
1928 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1929 spur_detection_window *= 2;
1930
1931 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1932 spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1933
1934 /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1935 * so it's zero if we got nothing from EEPROM */
1936 if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1937 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1938 break;
1939 }
1940
1941 if ((chan_fbin - spur_detection_window <=
1942 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1943 (chan_fbin + spur_detection_window >=
1944 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1945 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1946 break;
1947 }
1948 }
1949
1950 /* We need to enable spur filter for this channel */
1951 if (spur_chan_fbin) {
1952 spur_offset = spur_chan_fbin - chan_fbin;
1953 /*
1954 * Calculate deltas:
1955 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1956 * spur_delta_phase -> spur_offset / chip_freq << 11
1957 * Note: Both values have 100Hz resolution
1958 */
1959 switch (ah->ah_bwmode) {
1960 case AR5K_BWMODE_40MHZ:
1961 /* Both sample_freq and chip_freq are 80MHz */
1962 spur_delta_phase = (spur_offset << 16) / 25;
1963 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1964 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1965 break;
1966 case AR5K_BWMODE_10MHZ:
1967 /* Both sample_freq and chip_freq are 20MHz (?) */
1968 spur_delta_phase = (spur_offset << 18) / 25;
1969 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1970 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1971 break;
1972 case AR5K_BWMODE_5MHZ:
1973 /* Both sample_freq and chip_freq are 10MHz (?) */
1974 spur_delta_phase = (spur_offset << 19) / 25;
1975 spur_freq_sigma_delta = (spur_delta_phase >> 10);
1976 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
1977 break;
1978 default:
1979 if (channel->band == NL80211_BAND_5GHZ) {
1980 /* Both sample_freq and chip_freq are 40MHz */
1981 spur_delta_phase = (spur_offset << 17) / 25;
1982 spur_freq_sigma_delta =
1983 (spur_delta_phase >> 10);
1984 symbol_width =
1985 AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1986 } else {
1987 /* sample_freq -> 40MHz chip_freq -> 44MHz
1988 * (for b compatibility) */
1989 spur_delta_phase = (spur_offset << 17) / 25;
1990 spur_freq_sigma_delta =
1991 (spur_offset << 8) / 55;
1992 symbol_width =
1993 AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1994 }
1995 break;
1996 }
1997
1998 /* Calculate pilot and magnitude masks */
1999
2000 /* Scale up spur_offset by 1000 to switch to 100HZ resolution
2001 * and divide by symbol_width to find how many symbols we have
2002 * Note: number of symbols is scaled up by 16 */
2003 num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
2004
2005 /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
2006 if (!(num_symbols_x16 & 0xF))
2007 /* _X_ */
2008 num_symbol_offsets = 3;
2009 else
2010 /* _xx_ */
2011 num_symbol_offsets = 4;
2012
2013 for (i = 0; i < num_symbol_offsets; i++) {
2014
2015 /* Calculate pilot mask */
2016 s32 curr_sym_off =
2017 (num_symbols_x16 / 16) + i + 25;
2018
2019 /* Pilot magnitude mask seems to be a way to
2020 * declare the boundaries for our detection
2021 * window or something, it's 2 for the middle
2022 * value(s) where the symbol is expected to be
2023 * and 1 on the boundary values */
2024 u8 plt_mag_map =
2025 (i == 0 || i == (num_symbol_offsets - 1))
2026 ? 1 : 2;
2027
2028 if (curr_sym_off >= 0 && curr_sym_off <= 32) {
2029 if (curr_sym_off <= 25)
2030 pilot_mask[0] |= 1 << curr_sym_off;
2031 else if (curr_sym_off >= 27)
2032 pilot_mask[0] |= 1 << (curr_sym_off - 1);
2033 } else if (curr_sym_off >= 33 && curr_sym_off <= 52)
2034 pilot_mask[1] |= 1 << (curr_sym_off - 33);
2035
2036 /* Calculate magnitude mask (for viterbi decoder) */
2037 if (curr_sym_off >= -1 && curr_sym_off <= 14)
2038 mag_mask[0] |=
2039 plt_mag_map << (curr_sym_off + 1) * 2;
2040 else if (curr_sym_off >= 15 && curr_sym_off <= 30)
2041 mag_mask[1] |=
2042 plt_mag_map << (curr_sym_off - 15) * 2;
2043 else if (curr_sym_off >= 31 && curr_sym_off <= 46)
2044 mag_mask[2] |=
2045 plt_mag_map << (curr_sym_off - 31) * 2;
2046 else if (curr_sym_off >= 47 && curr_sym_off <= 53)
2047 mag_mask[3] |=
2048 plt_mag_map << (curr_sym_off - 47) * 2;
2049
2050 }
2051
2052 /* Write settings on hw to enable spur filter */
2053 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2054 AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
2055 /* XXX: Self correlator also ? */
2056 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
2057 AR5K_PHY_IQ_PILOT_MASK_EN |
2058 AR5K_PHY_IQ_CHAN_MASK_EN |
2059 AR5K_PHY_IQ_SPUR_FILT_EN);
2060
2061 /* Set delta phase and freq sigma delta */
2062 ath5k_hw_reg_write(ah,
2063 AR5K_REG_SM(spur_delta_phase,
2064 AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
2065 AR5K_REG_SM(spur_freq_sigma_delta,
2066 AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
2067 AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
2068 AR5K_PHY_TIMING_11);
2069
2070 /* Write pilot masks */
2071 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
2072 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2073 AR5K_PHY_TIMING_8_PILOT_MASK_2,
2074 pilot_mask[1]);
2075
2076 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
2077 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2078 AR5K_PHY_TIMING_10_PILOT_MASK_2,
2079 pilot_mask[1]);
2080
2081 /* Write magnitude masks */
2082 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
2083 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
2084 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
2085 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2086 AR5K_PHY_BIN_MASK_CTL_MASK_4,
2087 mag_mask[3]);
2088
2089 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
2090 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
2091 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
2092 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2093 AR5K_PHY_BIN_MASK2_4_MASK_4,
2094 mag_mask[3]);
2095
2096 } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
2097 AR5K_PHY_IQ_SPUR_FILT_EN) {
2098 /* Clean up spur mitigation settings and disable filter */
2099 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2100 AR5K_PHY_BIN_MASK_CTL_RATE, 0);
2101 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
2102 AR5K_PHY_IQ_PILOT_MASK_EN |
2103 AR5K_PHY_IQ_CHAN_MASK_EN |
2104 AR5K_PHY_IQ_SPUR_FILT_EN);
2105 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
2106
2107 /* Clear pilot masks */
2108 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
2109 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2110 AR5K_PHY_TIMING_8_PILOT_MASK_2,
2111 0);
2112
2113 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
2114 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2115 AR5K_PHY_TIMING_10_PILOT_MASK_2,
2116 0);
2117
2118 /* Clear magnitude masks */
2119 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
2120 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
2121 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
2122 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2123 AR5K_PHY_BIN_MASK_CTL_MASK_4,
2124 0);
2125
2126 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
2127 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
2128 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
2129 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2130 AR5K_PHY_BIN_MASK2_4_MASK_4,
2131 0);
2132 }
2133 }
2134
2135
2136 /*****************\
2137 * Antenna control *
2138 \*****************/
2139
2140 /**
2141 * DOC: Antenna control
2142 *
2143 * Hw supports up to 14 antennas ! I haven't found any card that implements
2144 * that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2
2145 * for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX)
2146 * omnidirectional or sectorial and antennas 3-14 sectorial (or directional).
2147 *
2148 * We can have a single antenna for RX and multiple antennas for TX.
2149 * RX antenna is our "default" antenna (usually antenna 1) set on
2150 * DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor
2151 * (0 for automatic selection, 1 - 14 antenna number).
2152 *
2153 * We can let hw do all the work doing fast antenna diversity for both
2154 * tx and rx or we can do things manually. Here are the options we have
2155 * (all are bits of STA_ID1 register):
2156 *
2157 * AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX
2158 * control descriptor, use the default antenna to transmit or else use the last
2159 * antenna on which we received an ACK.
2160 *
2161 * AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to
2162 * the antenna on which we got the ACK for that frame.
2163 *
2164 * AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the
2165 * one on the TX descriptor.
2166 *
2167 * AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames
2168 * (ACKs etc), or else use current antenna (the one we just used for TX).
2169 *
2170 * Using the above we support the following scenarios:
2171 *
2172 * AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically
2173 *
2174 * AR5K_ANTMODE_FIXED_A -> Only antenna A (MAIN) is present
2175 *
2176 * AR5K_ANTMODE_FIXED_B -> Only antenna B (AUX) is present
2177 *
2178 * AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap
2179 *
2180 * AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc
2181 *
2182 * AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc
2183 *
2184 * AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx-
2185 *
2186 * Also note that when setting antenna to F on tx descriptor card inverts
2187 * current tx antenna.
2188 */
2189
2190 /**
2191 * ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer
2192 * @ah: The &struct ath5k_hw
2193 * @ant: Antenna number
2194 */
2195 static void
ath5k_hw_set_def_antenna(struct ath5k_hw * ah,u8 ant)2196 ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
2197 {
2198 if (ah->ah_version != AR5K_AR5210)
2199 ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
2200 }
2201
2202 /**
2203 * ath5k_hw_set_fast_div() - Enable/disable fast rx antenna diversity
2204 * @ah: The &struct ath5k_hw
2205 * @ee_mode: One of enum ath5k_driver_mode
2206 * @enable: True to enable, false to disable
2207 */
2208 static void
ath5k_hw_set_fast_div(struct ath5k_hw * ah,u8 ee_mode,bool enable)2209 ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
2210 {
2211 switch (ee_mode) {
2212 case AR5K_EEPROM_MODE_11G:
2213 /* XXX: This is set to
2214 * disabled on initvals !!! */
2215 case AR5K_EEPROM_MODE_11A:
2216 if (enable)
2217 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
2218 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2219 else
2220 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2221 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2222 break;
2223 case AR5K_EEPROM_MODE_11B:
2224 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2225 AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2226 break;
2227 default:
2228 return;
2229 }
2230
2231 if (enable) {
2232 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2233 AR5K_PHY_RESTART_DIV_GC, 4);
2234
2235 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2236 AR5K_PHY_FAST_ANT_DIV_EN);
2237 } else {
2238 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2239 AR5K_PHY_RESTART_DIV_GC, 0);
2240
2241 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2242 AR5K_PHY_FAST_ANT_DIV_EN);
2243 }
2244 }
2245
2246 /**
2247 * ath5k_hw_set_antenna_switch() - Set up antenna switch table
2248 * @ah: The &struct ath5k_hw
2249 * @ee_mode: One of enum ath5k_driver_mode
2250 *
2251 * Switch table comes from EEPROM and includes information on controlling
2252 * the 2 antenna RX attenuators
2253 */
2254 void
ath5k_hw_set_antenna_switch(struct ath5k_hw * ah,u8 ee_mode)2255 ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
2256 {
2257 u8 ant0, ant1;
2258
2259 /*
2260 * In case a fixed antenna was set as default
2261 * use the same switch table twice.
2262 */
2263 if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
2264 ant0 = ant1 = AR5K_ANT_SWTABLE_A;
2265 else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
2266 ant0 = ant1 = AR5K_ANT_SWTABLE_B;
2267 else {
2268 ant0 = AR5K_ANT_SWTABLE_A;
2269 ant1 = AR5K_ANT_SWTABLE_B;
2270 }
2271
2272 /* Set antenna idle switch table */
2273 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
2274 AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
2275 (ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
2276 AR5K_PHY_ANT_CTL_TXRX_EN));
2277
2278 /* Set antenna switch tables */
2279 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
2280 AR5K_PHY_ANT_SWITCH_TABLE_0);
2281 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
2282 AR5K_PHY_ANT_SWITCH_TABLE_1);
2283 }
2284
2285 /**
2286 * ath5k_hw_set_antenna_mode() - Set antenna operating mode
2287 * @ah: The &struct ath5k_hw
2288 * @ant_mode: One of enum ath5k_ant_mode
2289 */
2290 void
ath5k_hw_set_antenna_mode(struct ath5k_hw * ah,u8 ant_mode)2291 ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
2292 {
2293 struct ieee80211_channel *channel = ah->ah_current_channel;
2294 bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
2295 bool use_def_for_sg;
2296 int ee_mode;
2297 u8 def_ant, tx_ant;
2298 u32 sta_id1 = 0;
2299
2300 /* if channel is not initialized yet we can't set the antennas
2301 * so just store the mode. it will be set on the next reset */
2302 if (channel == NULL) {
2303 ah->ah_ant_mode = ant_mode;
2304 return;
2305 }
2306
2307 def_ant = ah->ah_def_ant;
2308
2309 ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
2310
2311 switch (ant_mode) {
2312 case AR5K_ANTMODE_DEFAULT:
2313 tx_ant = 0;
2314 use_def_for_tx = false;
2315 update_def_on_tx = false;
2316 use_def_for_rts = false;
2317 use_def_for_sg = false;
2318 fast_div = true;
2319 break;
2320 case AR5K_ANTMODE_FIXED_A:
2321 def_ant = 1;
2322 tx_ant = 1;
2323 use_def_for_tx = true;
2324 update_def_on_tx = false;
2325 use_def_for_rts = true;
2326 use_def_for_sg = true;
2327 fast_div = false;
2328 break;
2329 case AR5K_ANTMODE_FIXED_B:
2330 def_ant = 2;
2331 tx_ant = 2;
2332 use_def_for_tx = true;
2333 update_def_on_tx = false;
2334 use_def_for_rts = true;
2335 use_def_for_sg = true;
2336 fast_div = false;
2337 break;
2338 case AR5K_ANTMODE_SINGLE_AP:
2339 def_ant = 1; /* updated on tx */
2340 tx_ant = 0;
2341 use_def_for_tx = true;
2342 update_def_on_tx = true;
2343 use_def_for_rts = true;
2344 use_def_for_sg = true;
2345 fast_div = true;
2346 break;
2347 case AR5K_ANTMODE_SECTOR_AP:
2348 tx_ant = 1; /* variable */
2349 use_def_for_tx = false;
2350 update_def_on_tx = false;
2351 use_def_for_rts = true;
2352 use_def_for_sg = false;
2353 fast_div = false;
2354 break;
2355 case AR5K_ANTMODE_SECTOR_STA:
2356 tx_ant = 1; /* variable */
2357 use_def_for_tx = true;
2358 update_def_on_tx = false;
2359 use_def_for_rts = true;
2360 use_def_for_sg = false;
2361 fast_div = true;
2362 break;
2363 case AR5K_ANTMODE_DEBUG:
2364 def_ant = 1;
2365 tx_ant = 2;
2366 use_def_for_tx = false;
2367 update_def_on_tx = false;
2368 use_def_for_rts = false;
2369 use_def_for_sg = false;
2370 fast_div = false;
2371 break;
2372 default:
2373 return;
2374 }
2375
2376 ah->ah_tx_ant = tx_ant;
2377 ah->ah_ant_mode = ant_mode;
2378 ah->ah_def_ant = def_ant;
2379
2380 sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2381 sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2382 sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2383 sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2384
2385 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2386
2387 if (sta_id1)
2388 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2389
2390 ath5k_hw_set_antenna_switch(ah, ee_mode);
2391 /* Note: set diversity before default antenna
2392 * because it won't work correctly */
2393 ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2394 ath5k_hw_set_def_antenna(ah, def_ant);
2395 }
2396
2397
2398 /****************\
2399 * TX power setup *
2400 \****************/
2401
2402 /*
2403 * Helper functions
2404 */
2405
2406 /**
2407 * ath5k_get_interpolated_value() - Get interpolated Y val between two points
2408 * @target: X value of the middle point
2409 * @x_left: X value of the left point
2410 * @x_right: X value of the right point
2411 * @y_left: Y value of the left point
2412 * @y_right: Y value of the right point
2413 */
2414 static s16
ath5k_get_interpolated_value(s16 target,s16 x_left,s16 x_right,s16 y_left,s16 y_right)2415 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2416 s16 y_left, s16 y_right)
2417 {
2418 s16 ratio, result;
2419
2420 /* Avoid divide by zero and skip interpolation
2421 * if we have the same point */
2422 if ((x_left == x_right) || (y_left == y_right))
2423 return y_left;
2424
2425 /*
2426 * Since we use ints and not fps, we need to scale up in
2427 * order to get a sane ratio value (or else we 'll eg. get
2428 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2429 * to have some accuracy both for 0.5 and 0.25 steps.
2430 */
2431 ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left));
2432
2433 /* Now scale down to be in range */
2434 result = y_left + (ratio * (target - x_left) / 100);
2435
2436 return result;
2437 }
2438
2439 /**
2440 * ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the
2441 * linear PCDAC curve
2442 * @stepL: Left array with y values (pcdac steps)
2443 * @stepR: Right array with y values (pcdac steps)
2444 * @pwrL: Left array with x values (power steps)
2445 * @pwrR: Right array with x values (power steps)
2446 *
2447 * Since we have the top of the curve and we draw the line below
2448 * until we reach 1 (1 pcdac step) we need to know which point
2449 * (x value) that is so that we don't go below x axis and have negative
2450 * pcdac values when creating the curve, or fill the table with zeros.
2451 */
2452 static s16
ath5k_get_linear_pcdac_min(const u8 * stepL,const u8 * stepR,const s16 * pwrL,const s16 * pwrR)2453 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2454 const s16 *pwrL, const s16 *pwrR)
2455 {
2456 s8 tmp;
2457 s16 min_pwrL, min_pwrR;
2458 s16 pwr_i;
2459
2460 /* Some vendors write the same pcdac value twice !!! */
2461 if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2462 return max(pwrL[0], pwrR[0]);
2463
2464 if (pwrL[0] == pwrL[1])
2465 min_pwrL = pwrL[0];
2466 else {
2467 pwr_i = pwrL[0];
2468 do {
2469 pwr_i--;
2470 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2471 pwrL[0], pwrL[1],
2472 stepL[0], stepL[1]);
2473 } while (tmp > 1);
2474
2475 min_pwrL = pwr_i;
2476 }
2477
2478 if (pwrR[0] == pwrR[1])
2479 min_pwrR = pwrR[0];
2480 else {
2481 pwr_i = pwrR[0];
2482 do {
2483 pwr_i--;
2484 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2485 pwrR[0], pwrR[1],
2486 stepR[0], stepR[1]);
2487 } while (tmp > 1);
2488
2489 min_pwrR = pwr_i;
2490 }
2491
2492 /* Keep the right boundary so that it works for both curves */
2493 return max(min_pwrL, min_pwrR);
2494 }
2495
2496 /**
2497 * ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve
2498 * @pmin: Minimum power value (xmin)
2499 * @pmax: Maximum power value (xmax)
2500 * @pwr: Array of power steps (x values)
2501 * @vpd: Array of matching PCDAC/PDADC steps (y values)
2502 * @num_points: Number of provided points
2503 * @vpd_table: Array to fill with the full PCDAC/PDADC values (y values)
2504 * @type: One of enum ath5k_powertable_type (eeprom.h)
2505 *
2506 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2507 * Power to PCDAC curve.
2508 *
2509 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2510 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2511 * PCDAC/PDADC step for each curve is 64 but we can write more than
2512 * one curves on hw so we can go up to 128 (which is the max step we
2513 * can write on the final table).
2514 *
2515 * We write y values (PCDAC/PDADC steps) on hw.
2516 */
2517 static void
ath5k_create_power_curve(s16 pmin,s16 pmax,const s16 * pwr,const u8 * vpd,u8 num_points,u8 * vpd_table,u8 type)2518 ath5k_create_power_curve(s16 pmin, s16 pmax,
2519 const s16 *pwr, const u8 *vpd,
2520 u8 num_points,
2521 u8 *vpd_table, u8 type)
2522 {
2523 u8 idx[2] = { 0, 1 };
2524 s16 pwr_i = 2 * pmin;
2525 int i;
2526
2527 if (num_points < 2)
2528 return;
2529
2530 /* We want the whole line, so adjust boundaries
2531 * to cover the entire power range. Note that
2532 * power values are already 0.25dB so no need
2533 * to multiply pwr_i by 2 */
2534 if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2535 pwr_i = pmin;
2536 pmin = 0;
2537 pmax = 63;
2538 }
2539
2540 /* Find surrounding turning points (TPs)
2541 * and interpolate between them */
2542 for (i = 0; (i <= (u16) (pmax - pmin)) &&
2543 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2544
2545 /* We passed the right TP, move to the next set of TPs
2546 * if we pass the last TP, extrapolate above using the last
2547 * two TPs for ratio */
2548 if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2549 idx[0]++;
2550 idx[1]++;
2551 }
2552
2553 vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2554 pwr[idx[0]], pwr[idx[1]],
2555 vpd[idx[0]], vpd[idx[1]]);
2556
2557 /* Increase by 0.5dB
2558 * (0.25 dB units) */
2559 pwr_i += 2;
2560 }
2561 }
2562
2563 /**
2564 * ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers
2565 * for a given channel.
2566 * @ah: The &struct ath5k_hw
2567 * @channel: The &struct ieee80211_channel
2568 * @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier
2569 * @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier
2570 *
2571 * Get the surrounding per-channel power calibration piers
2572 * for a given frequency so that we can interpolate between
2573 * them and come up with an appropriate dataset for our current
2574 * channel.
2575 */
2576 static void
ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw * ah,struct ieee80211_channel * channel,struct ath5k_chan_pcal_info ** pcinfo_l,struct ath5k_chan_pcal_info ** pcinfo_r)2577 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2578 struct ieee80211_channel *channel,
2579 struct ath5k_chan_pcal_info **pcinfo_l,
2580 struct ath5k_chan_pcal_info **pcinfo_r)
2581 {
2582 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2583 struct ath5k_chan_pcal_info *pcinfo;
2584 u8 idx_l, idx_r;
2585 u8 mode, max, i;
2586 u32 target = channel->center_freq;
2587
2588 idx_l = 0;
2589 idx_r = 0;
2590
2591 switch (channel->hw_value) {
2592 case AR5K_EEPROM_MODE_11A:
2593 pcinfo = ee->ee_pwr_cal_a;
2594 mode = AR5K_EEPROM_MODE_11A;
2595 break;
2596 case AR5K_EEPROM_MODE_11B:
2597 pcinfo = ee->ee_pwr_cal_b;
2598 mode = AR5K_EEPROM_MODE_11B;
2599 break;
2600 case AR5K_EEPROM_MODE_11G:
2601 default:
2602 pcinfo = ee->ee_pwr_cal_g;
2603 mode = AR5K_EEPROM_MODE_11G;
2604 break;
2605 }
2606 max = ee->ee_n_piers[mode] - 1;
2607
2608 /* Frequency is below our calibrated
2609 * range. Use the lowest power curve
2610 * we have */
2611 if (target < pcinfo[0].freq) {
2612 idx_l = idx_r = 0;
2613 goto done;
2614 }
2615
2616 /* Frequency is above our calibrated
2617 * range. Use the highest power curve
2618 * we have */
2619 if (target > pcinfo[max].freq) {
2620 idx_l = idx_r = max;
2621 goto done;
2622 }
2623
2624 /* Frequency is inside our calibrated
2625 * channel range. Pick the surrounding
2626 * calibration piers so that we can
2627 * interpolate */
2628 for (i = 0; i <= max; i++) {
2629
2630 /* Frequency matches one of our calibration
2631 * piers, no need to interpolate, just use
2632 * that calibration pier */
2633 if (pcinfo[i].freq == target) {
2634 idx_l = idx_r = i;
2635 goto done;
2636 }
2637
2638 /* We found a calibration pier that's above
2639 * frequency, use this pier and the previous
2640 * one to interpolate */
2641 if (target < pcinfo[i].freq) {
2642 idx_r = i;
2643 idx_l = idx_r - 1;
2644 goto done;
2645 }
2646 }
2647
2648 done:
2649 *pcinfo_l = &pcinfo[idx_l];
2650 *pcinfo_r = &pcinfo[idx_r];
2651 }
2652
2653 /**
2654 * ath5k_get_rate_pcal_data() - Get the interpolated per-rate power
2655 * calibration data
2656 * @ah: The &struct ath5k_hw *ah,
2657 * @channel: The &struct ieee80211_channel
2658 * @rates: The &struct ath5k_rate_pcal_info to fill
2659 *
2660 * Get the surrounding per-rate power calibration data
2661 * for a given frequency and interpolate between power
2662 * values to set max target power supported by hw for
2663 * each rate on this frequency.
2664 */
2665 static void
ath5k_get_rate_pcal_data(struct ath5k_hw * ah,struct ieee80211_channel * channel,struct ath5k_rate_pcal_info * rates)2666 ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2667 struct ieee80211_channel *channel,
2668 struct ath5k_rate_pcal_info *rates)
2669 {
2670 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2671 struct ath5k_rate_pcal_info *rpinfo;
2672 u8 idx_l, idx_r;
2673 u8 mode, max, i;
2674 u32 target = channel->center_freq;
2675
2676 idx_l = 0;
2677 idx_r = 0;
2678
2679 switch (channel->hw_value) {
2680 case AR5K_MODE_11A:
2681 rpinfo = ee->ee_rate_tpwr_a;
2682 mode = AR5K_EEPROM_MODE_11A;
2683 break;
2684 case AR5K_MODE_11B:
2685 rpinfo = ee->ee_rate_tpwr_b;
2686 mode = AR5K_EEPROM_MODE_11B;
2687 break;
2688 case AR5K_MODE_11G:
2689 default:
2690 rpinfo = ee->ee_rate_tpwr_g;
2691 mode = AR5K_EEPROM_MODE_11G;
2692 break;
2693 }
2694 max = ee->ee_rate_target_pwr_num[mode] - 1;
2695
2696 /* Get the surrounding calibration
2697 * piers - same as above */
2698 if (target < rpinfo[0].freq) {
2699 idx_l = idx_r = 0;
2700 goto done;
2701 }
2702
2703 if (target > rpinfo[max].freq) {
2704 idx_l = idx_r = max;
2705 goto done;
2706 }
2707
2708 for (i = 0; i <= max; i++) {
2709
2710 if (rpinfo[i].freq == target) {
2711 idx_l = idx_r = i;
2712 goto done;
2713 }
2714
2715 if (target < rpinfo[i].freq) {
2716 idx_r = i;
2717 idx_l = idx_r - 1;
2718 goto done;
2719 }
2720 }
2721
2722 done:
2723 /* Now interpolate power value, based on the frequency */
2724 rates->freq = target;
2725
2726 rates->target_power_6to24 =
2727 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2728 rpinfo[idx_r].freq,
2729 rpinfo[idx_l].target_power_6to24,
2730 rpinfo[idx_r].target_power_6to24);
2731
2732 rates->target_power_36 =
2733 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2734 rpinfo[idx_r].freq,
2735 rpinfo[idx_l].target_power_36,
2736 rpinfo[idx_r].target_power_36);
2737
2738 rates->target_power_48 =
2739 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2740 rpinfo[idx_r].freq,
2741 rpinfo[idx_l].target_power_48,
2742 rpinfo[idx_r].target_power_48);
2743
2744 rates->target_power_54 =
2745 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2746 rpinfo[idx_r].freq,
2747 rpinfo[idx_l].target_power_54,
2748 rpinfo[idx_r].target_power_54);
2749 }
2750
2751 /**
2752 * ath5k_get_max_ctl_power() - Get max edge power for a given frequency
2753 * @ah: the &struct ath5k_hw
2754 * @channel: The &struct ieee80211_channel
2755 *
2756 * Get the max edge power for this channel if
2757 * we have such data from EEPROM's Conformance Test
2758 * Limits (CTL), and limit max power if needed.
2759 */
2760 static void
ath5k_get_max_ctl_power(struct ath5k_hw * ah,struct ieee80211_channel * channel)2761 ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2762 struct ieee80211_channel *channel)
2763 {
2764 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2765 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2766 struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2767 u8 *ctl_val = ee->ee_ctl;
2768 s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2769 s16 edge_pwr = 0;
2770 u8 rep_idx;
2771 u8 i, ctl_mode;
2772 u8 ctl_idx = 0xFF;
2773 u32 target = channel->center_freq;
2774
2775 ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2776
2777 switch (channel->hw_value) {
2778 case AR5K_MODE_11A:
2779 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2780 ctl_mode |= AR5K_CTL_TURBO;
2781 else
2782 ctl_mode |= AR5K_CTL_11A;
2783 break;
2784 case AR5K_MODE_11G:
2785 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2786 ctl_mode |= AR5K_CTL_TURBOG;
2787 else
2788 ctl_mode |= AR5K_CTL_11G;
2789 break;
2790 case AR5K_MODE_11B:
2791 ctl_mode |= AR5K_CTL_11B;
2792 break;
2793 default:
2794 return;
2795 }
2796
2797 for (i = 0; i < ee->ee_ctls; i++) {
2798 if (ctl_val[i] == ctl_mode) {
2799 ctl_idx = i;
2800 break;
2801 }
2802 }
2803
2804 /* If we have a CTL dataset available grab it and find the
2805 * edge power for our frequency */
2806 if (ctl_idx == 0xFF)
2807 return;
2808
2809 /* Edge powers are sorted by frequency from lower
2810 * to higher. Each CTL corresponds to 8 edge power
2811 * measurements. */
2812 rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2813
2814 /* Don't do boundaries check because we
2815 * might have more that one bands defined
2816 * for this mode */
2817
2818 /* Get the edge power that's closer to our
2819 * frequency */
2820 for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2821 rep_idx += i;
2822 if (target <= rep[rep_idx].freq)
2823 edge_pwr = (s16) rep[rep_idx].edge;
2824 }
2825
2826 if (edge_pwr)
2827 ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr);
2828 }
2829
2830
2831 /*
2832 * Power to PCDAC table functions
2833 */
2834
2835 /**
2836 * DOC: Power to PCDAC table functions
2837 *
2838 * For RF5111 we have an XPD -eXternal Power Detector- curve
2839 * for each calibrated channel. Each curve has 0,5dB Power steps
2840 * on x axis and PCDAC steps (offsets) on y axis and looks like an
2841 * exponential function. To recreate the curve we read 11 points
2842 * from eeprom (eeprom.c) and interpolate here.
2843 *
2844 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
2845 * for each calibrated channel on 0, -6, -12 and -18dBm but we only
2846 * use the higher (3) and the lower (0) curves. Each curve again has 0.5dB
2847 * power steps on x axis and PCDAC steps on y axis and looks like a
2848 * linear function. To recreate the curve and pass the power values
2849 * on hw, we get 4 points for xpd 0 (lower gain -> max power)
2850 * and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c)
2851 * and interpolate here.
2852 *
2853 * For a given channel we get the calibrated points (piers) for it or
2854 * -if we don't have calibration data for this specific channel- from the
2855 * available surrounding channels we have calibration data for, after we do a
2856 * linear interpolation between them. Then since we have our calibrated points
2857 * for this channel, we do again a linear interpolation between them to get the
2858 * whole curve.
2859 *
2860 * We finally write the Y values of the curve(s) (the PCDAC values) on hw
2861 */
2862
2863 /**
2864 * ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111
2865 * @ah: The &struct ath5k_hw
2866 * @table_min: Minimum power (x min)
2867 * @table_max: Maximum power (x max)
2868 *
2869 * No further processing is needed for RF5111, the only thing we have to
2870 * do is fill the values below and above calibration range since eeprom data
2871 * may not cover the entire PCDAC table.
2872 */
2873 static void
ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw * ah,s16 * table_min,s16 * table_max)2874 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2875 s16 *table_max)
2876 {
2877 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2878 u8 *pcdac_tmp = ah->ah_txpower.tmpL[0];
2879 u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2880 s16 min_pwr, max_pwr;
2881
2882 /* Get table boundaries */
2883 min_pwr = table_min[0];
2884 pcdac_0 = pcdac_tmp[0];
2885
2886 max_pwr = table_max[0];
2887 pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2888
2889 /* Extrapolate below minimum using pcdac_0 */
2890 pcdac_i = 0;
2891 for (i = 0; i < min_pwr; i++)
2892 pcdac_out[pcdac_i++] = pcdac_0;
2893
2894 /* Copy values from pcdac_tmp */
2895 pwr_idx = min_pwr;
2896 for (i = 0; pwr_idx <= max_pwr &&
2897 pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2898 pcdac_out[pcdac_i++] = pcdac_tmp[i];
2899 pwr_idx++;
2900 }
2901
2902 /* Extrapolate above maximum */
2903 while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2904 pcdac_out[pcdac_i++] = pcdac_n;
2905
2906 }
2907
2908 /**
2909 * ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves
2910 * @ah: The &struct ath5k_hw
2911 * @table_min: Minimum power (x min)
2912 * @table_max: Maximum power (x max)
2913 * @pdcurves: Number of pd curves
2914 *
2915 * Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112
2916 * RFX112 can have up to 2 curves (one for low txpower range and one for
2917 * higher txpower range). We need to put them both on pcdac_out and place
2918 * them in the correct location. In case we only have one curve available
2919 * just fit it on pcdac_out (it's supposed to cover the entire range of
2920 * available pwr levels since it's always the higher power curve). Extrapolate
2921 * below and above final table if needed.
2922 */
2923 static void
ath5k_combine_linear_pcdac_curves(struct ath5k_hw * ah,s16 * table_min,s16 * table_max,u8 pdcurves)2924 ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2925 s16 *table_max, u8 pdcurves)
2926 {
2927 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
2928 u8 *pcdac_low_pwr;
2929 u8 *pcdac_high_pwr;
2930 u8 *pcdac_tmp;
2931 u8 pwr;
2932 s16 max_pwr_idx;
2933 s16 min_pwr_idx;
2934 s16 mid_pwr_idx = 0;
2935 /* Edge flag turns on the 7nth bit on the PCDAC
2936 * to declare the higher power curve (force values
2937 * to be greater than 64). If we only have one curve
2938 * we don't need to set this, if we have 2 curves and
2939 * fill the table backwards this can also be used to
2940 * switch from higher power curve to lower power curve */
2941 u8 edge_flag;
2942 int i;
2943
2944 /* When we have only one curve available
2945 * that's the higher power curve. If we have
2946 * two curves the first is the high power curve
2947 * and the next is the low power curve. */
2948 if (pdcurves > 1) {
2949 pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2950 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2951 mid_pwr_idx = table_max[1] - table_min[1] - 1;
2952 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2953
2954 /* If table size goes beyond 31.5dB, keep the
2955 * upper 31.5dB range when setting tx power.
2956 * Note: 126 = 31.5 dB in quarter dB steps */
2957 if (table_max[0] - table_min[1] > 126)
2958 min_pwr_idx = table_max[0] - 126;
2959 else
2960 min_pwr_idx = table_min[1];
2961
2962 /* Since we fill table backwards
2963 * start from high power curve */
2964 pcdac_tmp = pcdac_high_pwr;
2965
2966 edge_flag = 0x40;
2967 } else {
2968 pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2969 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2970 min_pwr_idx = table_min[0];
2971 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2972 pcdac_tmp = pcdac_high_pwr;
2973 edge_flag = 0;
2974 }
2975
2976 /* This is used when setting tx power*/
2977 ah->ah_txpower.txp_min_idx = min_pwr_idx / 2;
2978
2979 /* Fill Power to PCDAC table backwards */
2980 pwr = max_pwr_idx;
2981 for (i = 63; i >= 0; i--) {
2982 /* Entering lower power range, reset
2983 * edge flag and set pcdac_tmp to lower
2984 * power curve.*/
2985 if (edge_flag == 0x40 &&
2986 (2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2987 edge_flag = 0x00;
2988 pcdac_tmp = pcdac_low_pwr;
2989 pwr = mid_pwr_idx / 2;
2990 }
2991
2992 /* Don't go below 1, extrapolate below if we have
2993 * already switched to the lower power curve -or
2994 * we only have one curve and edge_flag is zero
2995 * anyway */
2996 if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2997 while (i >= 0) {
2998 pcdac_out[i] = pcdac_out[i + 1];
2999 i--;
3000 }
3001 break;
3002 }
3003
3004 pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
3005
3006 /* Extrapolate above if pcdac is greater than
3007 * 126 -this can happen because we OR pcdac_out
3008 * value with edge_flag on high power curve */
3009 if (pcdac_out[i] > 126)
3010 pcdac_out[i] = 126;
3011
3012 /* Decrease by a 0.5dB step */
3013 pwr--;
3014 }
3015 }
3016
3017 /**
3018 * ath5k_write_pcdac_table() - Write the PCDAC values on hw
3019 * @ah: The &struct ath5k_hw
3020 */
3021 static void
ath5k_write_pcdac_table(struct ath5k_hw * ah)3022 ath5k_write_pcdac_table(struct ath5k_hw *ah)
3023 {
3024 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
3025 int i;
3026
3027 /*
3028 * Write TX power values
3029 */
3030 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3031 ath5k_hw_reg_write(ah,
3032 (((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) |
3033 (((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16),
3034 AR5K_PHY_PCDAC_TXPOWER(i));
3035 }
3036 }
3037
3038
3039 /*
3040 * Power to PDADC table functions
3041 */
3042
3043 /**
3044 * DOC: Power to PDADC table functions
3045 *
3046 * For RF2413 and later we have a Power to PDADC table (Power Detector)
3047 * instead of a PCDAC (Power Control) and 4 pd gain curves for each
3048 * calibrated channel. Each curve has power on x axis in 0.5 db steps and
3049 * PDADC steps on y axis and looks like an exponential function like the
3050 * RF5111 curve.
3051 *
3052 * To recreate the curves we read the points from eeprom (eeprom.c)
3053 * and interpolate here. Note that in most cases only 2 (higher and lower)
3054 * curves are used (like RF5112) but vendors have the opportunity to include
3055 * all 4 curves on eeprom. The final curve (higher power) has an extra
3056 * point for better accuracy like RF5112.
3057 *
3058 * The process is similar to what we do above for RF5111/5112
3059 */
3060
3061 /**
3062 * ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves
3063 * @ah: The &struct ath5k_hw
3064 * @pwr_min: Minimum power (x min)
3065 * @pwr_max: Maximum power (x max)
3066 * @pdcurves: Number of available curves
3067 *
3068 * Combine the various pd curves and create the final Power to PDADC table
3069 * We can have up to 4 pd curves, we need to do a similar process
3070 * as we do for RF5112. This time we don't have an edge_flag but we
3071 * set the gain boundaries on a separate register.
3072 */
3073 static void
ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw * ah,s16 * pwr_min,s16 * pwr_max,u8 pdcurves)3074 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
3075 s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
3076 {
3077 u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
3078 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3079 u8 *pdadc_tmp;
3080 s16 pdadc_0;
3081 u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
3082 u8 pd_gain_overlap;
3083
3084 /* Note: Register value is initialized on initvals
3085 * there is no feedback from hw.
3086 * XXX: What about pd_gain_overlap from EEPROM ? */
3087 pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
3088 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
3089
3090 /* Create final PDADC table */
3091 for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
3092 pdadc_tmp = ah->ah_txpower.tmpL[pdg];
3093
3094 if (pdg == pdcurves - 1)
3095 /* 2 dB boundary stretch for last
3096 * (higher power) curve */
3097 gain_boundaries[pdg] = pwr_max[pdg] + 4;
3098 else
3099 /* Set gain boundary in the middle
3100 * between this curve and the next one */
3101 gain_boundaries[pdg] =
3102 (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
3103
3104 /* Sanity check in case our 2 db stretch got out of
3105 * range. */
3106 if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
3107 gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
3108
3109 /* For the first curve (lower power)
3110 * start from 0 dB */
3111 if (pdg == 0)
3112 pdadc_0 = 0;
3113 else
3114 /* For the other curves use the gain overlap */
3115 pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
3116 pd_gain_overlap;
3117
3118 /* Force each power step to be at least 0.5 dB */
3119 if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
3120 pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
3121 else
3122 pwr_step = 1;
3123
3124 /* If pdadc_0 is negative, we need to extrapolate
3125 * below this pdgain by a number of pwr_steps */
3126 while ((pdadc_0 < 0) && (pdadc_i < 128)) {
3127 s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
3128 pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
3129 pdadc_0++;
3130 }
3131
3132 /* Set last pwr level, using gain boundaries */
3133 pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
3134 /* Limit it to be inside pwr range */
3135 table_size = pwr_max[pdg] - pwr_min[pdg];
3136 max_idx = min(pdadc_n, table_size);
3137
3138 /* Fill pdadc_out table */
3139 while (pdadc_0 < max_idx && pdadc_i < 128)
3140 pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
3141
3142 /* Need to extrapolate above this pdgain? */
3143 if (pdadc_n <= max_idx)
3144 continue;
3145
3146 /* Force each power step to be at least 0.5 dB */
3147 if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
3148 pwr_step = pdadc_tmp[table_size - 1] -
3149 pdadc_tmp[table_size - 2];
3150 else
3151 pwr_step = 1;
3152
3153 /* Extrapolate above */
3154 while ((pdadc_0 < (s16) pdadc_n) &&
3155 (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
3156 s16 tmp = pdadc_tmp[table_size - 1] +
3157 (pdadc_0 - max_idx) * pwr_step;
3158 pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
3159 pdadc_0++;
3160 }
3161 }
3162
3163 while (pdg < AR5K_EEPROM_N_PD_GAINS) {
3164 gain_boundaries[pdg] = gain_boundaries[pdg - 1];
3165 pdg++;
3166 }
3167
3168 while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
3169 pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
3170 pdadc_i++;
3171 }
3172
3173 /* Set gain boundaries */
3174 ath5k_hw_reg_write(ah,
3175 AR5K_REG_SM(pd_gain_overlap,
3176 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
3177 AR5K_REG_SM(gain_boundaries[0],
3178 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
3179 AR5K_REG_SM(gain_boundaries[1],
3180 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
3181 AR5K_REG_SM(gain_boundaries[2],
3182 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
3183 AR5K_REG_SM(gain_boundaries[3],
3184 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
3185 AR5K_PHY_TPC_RG5);
3186
3187 /* Used for setting rate power table */
3188 ah->ah_txpower.txp_min_idx = pwr_min[0];
3189
3190 }
3191
3192 /**
3193 * ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw
3194 * @ah: The &struct ath5k_hw
3195 * @ee_mode: One of enum ath5k_driver_mode
3196 */
3197 static void
ath5k_write_pwr_to_pdadc_table(struct ath5k_hw * ah,u8 ee_mode)3198 ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
3199 {
3200 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3201 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3202 u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
3203 u8 pdcurves = ee->ee_pd_gains[ee_mode];
3204 u32 reg;
3205 u8 i;
3206
3207 /* Select the right pdgain curves */
3208
3209 /* Clear current settings */
3210 reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
3211 reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
3212 AR5K_PHY_TPC_RG1_PDGAIN_2 |
3213 AR5K_PHY_TPC_RG1_PDGAIN_3 |
3214 AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3215
3216 /*
3217 * Use pd_gains curve from eeprom
3218 *
3219 * This overrides the default setting from initvals
3220 * in case some vendors (e.g. Zcomax) don't use the default
3221 * curves. If we don't honor their settings we 'll get a
3222 * 5dB (1 * gain overlap ?) drop.
3223 */
3224 reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3225
3226 switch (pdcurves) {
3227 case 3:
3228 reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
3229 fallthrough;
3230 case 2:
3231 reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
3232 fallthrough;
3233 case 1:
3234 reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
3235 break;
3236 }
3237 ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
3238
3239 /*
3240 * Write TX power values
3241 */
3242 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3243 u32 val = get_unaligned_le32(&pdadc_out[4 * i]);
3244 ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i));
3245 }
3246 }
3247
3248
3249 /*
3250 * Common code for PCDAC/PDADC tables
3251 */
3252
3253 /**
3254 * ath5k_setup_channel_powertable() - Set up power table for this channel
3255 * @ah: The &struct ath5k_hw
3256 * @channel: The &struct ieee80211_channel
3257 * @ee_mode: One of enum ath5k_driver_mode
3258 * @type: One of enum ath5k_powertable_type (eeprom.h)
3259 *
3260 * This is the main function that uses all of the above
3261 * to set PCDAC/PDADC table on hw for the current channel.
3262 * This table is used for tx power calibration on the baseband,
3263 * without it we get weird tx power levels and in some cases
3264 * distorted spectral mask
3265 */
3266 static int
ath5k_setup_channel_powertable(struct ath5k_hw * ah,struct ieee80211_channel * channel,u8 ee_mode,u8 type)3267 ath5k_setup_channel_powertable(struct ath5k_hw *ah,
3268 struct ieee80211_channel *channel,
3269 u8 ee_mode, u8 type)
3270 {
3271 struct ath5k_pdgain_info *pdg_L, *pdg_R;
3272 struct ath5k_chan_pcal_info *pcinfo_L;
3273 struct ath5k_chan_pcal_info *pcinfo_R;
3274 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3275 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
3276 s16 table_min[AR5K_EEPROM_N_PD_GAINS];
3277 s16 table_max[AR5K_EEPROM_N_PD_GAINS];
3278 u8 *tmpL;
3279 u8 *tmpR;
3280 u32 target = channel->center_freq;
3281 int pdg, i;
3282
3283 /* Get surrounding freq piers for this channel */
3284 ath5k_get_chan_pcal_surrounding_piers(ah, channel,
3285 &pcinfo_L,
3286 &pcinfo_R);
3287
3288 /* Loop over pd gain curves on
3289 * surrounding freq piers by index */
3290 for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
3291
3292 /* Fill curves in reverse order
3293 * from lower power (max gain)
3294 * to higher power. Use curve -> idx
3295 * backmapping we did on eeprom init */
3296 u8 idx = pdg_curve_to_idx[pdg];
3297
3298 /* Grab the needed curves by index */
3299 pdg_L = &pcinfo_L->pd_curves[idx];
3300 pdg_R = &pcinfo_R->pd_curves[idx];
3301
3302 /* Initialize the temp tables */
3303 tmpL = ah->ah_txpower.tmpL[pdg];
3304 tmpR = ah->ah_txpower.tmpR[pdg];
3305
3306 /* Set curve's x boundaries and create
3307 * curves so that they cover the same
3308 * range (if we don't do that one table
3309 * will have values on some range and the
3310 * other one won't have any so interpolation
3311 * will fail) */
3312 table_min[pdg] = min(pdg_L->pd_pwr[0],
3313 pdg_R->pd_pwr[0]) / 2;
3314
3315 table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3316 pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
3317
3318 /* Now create the curves on surrounding channels
3319 * and interpolate if needed to get the final
3320 * curve for this gain on this channel */
3321 switch (type) {
3322 case AR5K_PWRTABLE_LINEAR_PCDAC:
3323 /* Override min/max so that we don't loose
3324 * accuracy (don't divide by 2) */
3325 table_min[pdg] = min(pdg_L->pd_pwr[0],
3326 pdg_R->pd_pwr[0]);
3327
3328 table_max[pdg] =
3329 max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3330 pdg_R->pd_pwr[pdg_R->pd_points - 1]);
3331
3332 /* Override minimum so that we don't get
3333 * out of bounds while extrapolating
3334 * below. Don't do this when we have 2
3335 * curves and we are on the high power curve
3336 * because table_min is ok in this case */
3337 if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
3338
3339 table_min[pdg] =
3340 ath5k_get_linear_pcdac_min(pdg_L->pd_step,
3341 pdg_R->pd_step,
3342 pdg_L->pd_pwr,
3343 pdg_R->pd_pwr);
3344
3345 /* Don't go too low because we will
3346 * miss the upper part of the curve.
3347 * Note: 126 = 31.5dB (max power supported)
3348 * in 0.25dB units */
3349 if (table_max[pdg] - table_min[pdg] > 126)
3350 table_min[pdg] = table_max[pdg] - 126;
3351 }
3352
3353 fallthrough;
3354 case AR5K_PWRTABLE_PWR_TO_PCDAC:
3355 case AR5K_PWRTABLE_PWR_TO_PDADC:
3356
3357 ath5k_create_power_curve(table_min[pdg],
3358 table_max[pdg],
3359 pdg_L->pd_pwr,
3360 pdg_L->pd_step,
3361 pdg_L->pd_points, tmpL, type);
3362
3363 /* We are in a calibration
3364 * pier, no need to interpolate
3365 * between freq piers */
3366 if (pcinfo_L == pcinfo_R)
3367 continue;
3368
3369 ath5k_create_power_curve(table_min[pdg],
3370 table_max[pdg],
3371 pdg_R->pd_pwr,
3372 pdg_R->pd_step,
3373 pdg_R->pd_points, tmpR, type);
3374 break;
3375 default:
3376 return -EINVAL;
3377 }
3378
3379 /* Interpolate between curves
3380 * of surrounding freq piers to
3381 * get the final curve for this
3382 * pd gain. Re-use tmpL for interpolation
3383 * output */
3384 for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
3385 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
3386 tmpL[i] = (u8) ath5k_get_interpolated_value(target,
3387 (s16) pcinfo_L->freq,
3388 (s16) pcinfo_R->freq,
3389 (s16) tmpL[i],
3390 (s16) tmpR[i]);
3391 }
3392 }
3393
3394 /* Now we have a set of curves for this
3395 * channel on tmpL (x range is table_max - table_min
3396 * and y values are tmpL[pdg][]) sorted in the same
3397 * order as EEPROM (because we've used the backmapping).
3398 * So for RF5112 it's from higher power to lower power
3399 * and for RF2413 it's from lower power to higher power.
3400 * For RF5111 we only have one curve. */
3401
3402 /* Fill min and max power levels for this
3403 * channel by interpolating the values on
3404 * surrounding channels to complete the dataset */
3405 ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
3406 (s16) pcinfo_L->freq,
3407 (s16) pcinfo_R->freq,
3408 pcinfo_L->min_pwr, pcinfo_R->min_pwr);
3409
3410 ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
3411 (s16) pcinfo_L->freq,
3412 (s16) pcinfo_R->freq,
3413 pcinfo_L->max_pwr, pcinfo_R->max_pwr);
3414
3415 /* Fill PCDAC/PDADC table */
3416 switch (type) {
3417 case AR5K_PWRTABLE_LINEAR_PCDAC:
3418 /* For RF5112 we can have one or two curves
3419 * and each curve covers a certain power lvl
3420 * range so we need to do some more processing */
3421 ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
3422 ee->ee_pd_gains[ee_mode]);
3423
3424 /* Set txp.offset so that we can
3425 * match max power value with max
3426 * table index */
3427 ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
3428 break;
3429 case AR5K_PWRTABLE_PWR_TO_PCDAC:
3430 /* We are done for RF5111 since it has only
3431 * one curve, just fit the curve on the table */
3432 ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
3433
3434 /* No rate powertable adjustment for RF5111 */
3435 ah->ah_txpower.txp_min_idx = 0;
3436 ah->ah_txpower.txp_offset = 0;
3437 break;
3438 case AR5K_PWRTABLE_PWR_TO_PDADC:
3439 /* Set PDADC boundaries and fill
3440 * final PDADC table */
3441 ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
3442 ee->ee_pd_gains[ee_mode]);
3443
3444 /* Set txp.offset, note that table_min
3445 * can be negative */
3446 ah->ah_txpower.txp_offset = table_min[0];
3447 break;
3448 default:
3449 return -EINVAL;
3450 }
3451
3452 ah->ah_txpower.txp_setup = true;
3453
3454 return 0;
3455 }
3456
3457 /**
3458 * ath5k_write_channel_powertable() - Set power table for current channel on hw
3459 * @ah: The &struct ath5k_hw
3460 * @ee_mode: One of enum ath5k_driver_mode
3461 * @type: One of enum ath5k_powertable_type (eeprom.h)
3462 */
3463 static void
ath5k_write_channel_powertable(struct ath5k_hw * ah,u8 ee_mode,u8 type)3464 ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
3465 {
3466 if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
3467 ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
3468 else
3469 ath5k_write_pcdac_table(ah);
3470 }
3471
3472
3473 /**
3474 * DOC: Per-rate tx power setting
3475 *
3476 * This is the code that sets the desired tx power limit (below
3477 * maximum) on hw for each rate (we also have TPC that sets
3478 * power per packet type). We do that by providing an index on the
3479 * PCDAC/PDADC table we set up above, for each rate.
3480 *
3481 * For now we only limit txpower based on maximum tx power
3482 * supported by hw (what's inside rate_info) + conformance test
3483 * limits. We need to limit this even more, based on regulatory domain
3484 * etc to be safe. Normally this is done from above so we don't care
3485 * here, all we care is that the tx power we set will be O.K.
3486 * for the hw (e.g. won't create noise on PA etc).
3487 *
3488 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps -
3489 * x values) and is indexed as follows:
3490 * rates[0] - rates[7] -> OFDM rates
3491 * rates[8] - rates[14] -> CCK rates
3492 * rates[15] -> XR rates (they all have the same power)
3493 */
3494
3495 /**
3496 * ath5k_setup_rate_powertable() - Set up rate power table for a given tx power
3497 * @ah: The &struct ath5k_hw
3498 * @max_pwr: The maximum tx power requested in 0.5dB steps
3499 * @rate_info: The &struct ath5k_rate_pcal_info to fill
3500 * @ee_mode: One of enum ath5k_driver_mode
3501 */
3502 static void
ath5k_setup_rate_powertable(struct ath5k_hw * ah,u16 max_pwr,struct ath5k_rate_pcal_info * rate_info,u8 ee_mode)3503 ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3504 struct ath5k_rate_pcal_info *rate_info,
3505 u8 ee_mode)
3506 {
3507 unsigned int i;
3508 u16 *rates;
3509 s16 rate_idx_scaled = 0;
3510
3511 /* max_pwr is power level we got from driver/user in 0.5dB
3512 * units, switch to 0.25dB units so we can compare */
3513 max_pwr *= 2;
3514 max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3515
3516 /* apply rate limits */
3517 rates = ah->ah_txpower.txp_rates_power_table;
3518
3519 /* OFDM rates 6 to 24Mb/s */
3520 for (i = 0; i < 5; i++)
3521 rates[i] = min(max_pwr, rate_info->target_power_6to24);
3522
3523 /* Rest OFDM rates */
3524 rates[5] = min(rates[0], rate_info->target_power_36);
3525 rates[6] = min(rates[0], rate_info->target_power_48);
3526 rates[7] = min(rates[0], rate_info->target_power_54);
3527
3528 /* CCK rates */
3529 /* 1L */
3530 rates[8] = min(rates[0], rate_info->target_power_6to24);
3531 /* 2L */
3532 rates[9] = min(rates[0], rate_info->target_power_36);
3533 /* 2S */
3534 rates[10] = min(rates[0], rate_info->target_power_36);
3535 /* 5L */
3536 rates[11] = min(rates[0], rate_info->target_power_48);
3537 /* 5S */
3538 rates[12] = min(rates[0], rate_info->target_power_48);
3539 /* 11L */
3540 rates[13] = min(rates[0], rate_info->target_power_54);
3541 /* 11S */
3542 rates[14] = min(rates[0], rate_info->target_power_54);
3543
3544 /* XR rates */
3545 rates[15] = min(rates[0], rate_info->target_power_6to24);
3546
3547 /* CCK rates have different peak to average ratio
3548 * so we have to tweak their power so that gainf
3549 * correction works ok. For this we use OFDM to
3550 * CCK delta from eeprom */
3551 if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3552 (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3553 for (i = 8; i <= 15; i++)
3554 rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3555
3556 /* Save min/max and current tx power for this channel
3557 * in 0.25dB units.
3558 *
3559 * Note: We use rates[0] for current tx power because
3560 * it covers most of the rates, in most cases. It's our
3561 * tx power limit and what the user expects to see. */
3562 ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3563 ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
3564
3565 /* Set max txpower for correct OFDM operation on all rates
3566 * -that is the txpower for 54Mbit-, it's used for the PAPD
3567 * gain probe and it's in 0.5dB units */
3568 ah->ah_txpower.txp_ofdm = rates[7];
3569
3570 /* Now that we have all rates setup use table offset to
3571 * match the power range set by user with the power indices
3572 * on PCDAC/PDADC table */
3573 for (i = 0; i < 16; i++) {
3574 rate_idx_scaled = rates[i] + ah->ah_txpower.txp_offset;
3575 /* Don't get out of bounds */
3576 if (rate_idx_scaled > 63)
3577 rate_idx_scaled = 63;
3578 if (rate_idx_scaled < 0)
3579 rate_idx_scaled = 0;
3580 rates[i] = rate_idx_scaled;
3581 }
3582 }
3583
3584
3585 /**
3586 * ath5k_hw_txpower() - Set transmission power limit for a given channel
3587 * @ah: The &struct ath5k_hw
3588 * @channel: The &struct ieee80211_channel
3589 * @txpower: Requested tx power in 0.5dB steps
3590 *
3591 * Combines all of the above to set the requested tx power limit
3592 * on hw.
3593 */
3594 static int
ath5k_hw_txpower(struct ath5k_hw * ah,struct ieee80211_channel * channel,u8 txpower)3595 ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3596 u8 txpower)
3597 {
3598 struct ath5k_rate_pcal_info rate_info;
3599 struct ieee80211_channel *curr_channel = ah->ah_current_channel;
3600 int ee_mode;
3601 u8 type;
3602 int ret;
3603
3604 if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3605 ATH5K_ERR(ah, "invalid tx power: %u\n", txpower);
3606 return -EINVAL;
3607 }
3608
3609 ee_mode = ath5k_eeprom_mode_from_channel(ah, channel);
3610
3611 /* Initialize TX power table */
3612 switch (ah->ah_radio) {
3613 case AR5K_RF5110:
3614 /* TODO */
3615 return 0;
3616 case AR5K_RF5111:
3617 type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3618 break;
3619 case AR5K_RF5112:
3620 type = AR5K_PWRTABLE_LINEAR_PCDAC;
3621 break;
3622 case AR5K_RF2413:
3623 case AR5K_RF5413:
3624 case AR5K_RF2316:
3625 case AR5K_RF2317:
3626 case AR5K_RF2425:
3627 type = AR5K_PWRTABLE_PWR_TO_PDADC;
3628 break;
3629 default:
3630 return -EINVAL;
3631 }
3632
3633 /*
3634 * If we don't change channel/mode skip tx powertable calculation
3635 * and use the cached one.
3636 */
3637 if (!ah->ah_txpower.txp_setup ||
3638 (channel->hw_value != curr_channel->hw_value) ||
3639 (channel->center_freq != curr_channel->center_freq)) {
3640 /* Reset TX power values but preserve requested
3641 * tx power from above */
3642 int requested_txpower = ah->ah_txpower.txp_requested;
3643
3644 memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3645
3646 /* Restore TPC setting and requested tx power */
3647 ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3648
3649 ah->ah_txpower.txp_requested = requested_txpower;
3650
3651 /* Calculate the powertable */
3652 ret = ath5k_setup_channel_powertable(ah, channel,
3653 ee_mode, type);
3654 if (ret)
3655 return ret;
3656 }
3657
3658 /* Write table on hw */
3659 ath5k_write_channel_powertable(ah, ee_mode, type);
3660
3661 /* Limit max power if we have a CTL available */
3662 ath5k_get_max_ctl_power(ah, channel);
3663
3664 /* FIXME: Antenna reduction stuff */
3665
3666 /* FIXME: Limit power on turbo modes */
3667
3668 /* FIXME: TPC scale reduction */
3669
3670 /* Get surrounding channels for per-rate power table
3671 * calibration */
3672 ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3673
3674 /* Setup rate power table */
3675 ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3676
3677 /* Write rate power table on hw */
3678 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3679 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3680 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3681
3682 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3683 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3684 AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3685
3686 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3687 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3688 AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3689
3690 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3691 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3692 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3693
3694 /* FIXME: TPC support */
3695 if (ah->ah_txpower.txp_tpc) {
3696 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3697 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3698
3699 ath5k_hw_reg_write(ah,
3700 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3701 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3702 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3703 AR5K_TPC);
3704 } else {
3705 ath5k_hw_reg_write(ah, AR5K_TUNE_MAX_TXPOWER,
3706 AR5K_PHY_TXPOWER_RATE_MAX);
3707 }
3708
3709 return 0;
3710 }
3711
3712 /**
3713 * ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel
3714 * @ah: The &struct ath5k_hw
3715 * @txpower: The requested tx power limit in 0.5dB steps
3716 *
3717 * This function provides access to ath5k_hw_txpower to the driver in
3718 * case user or an application changes it while PHY is running.
3719 */
3720 int
ath5k_hw_set_txpower_limit(struct ath5k_hw * ah,u8 txpower)3721 ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3722 {
3723 ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER,
3724 "changing txpower to %d\n", txpower);
3725
3726 return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
3727 }
3728
3729
3730 /*************\
3731 Init function
3732 \*************/
3733
3734 /**
3735 * ath5k_hw_phy_init() - Initialize PHY
3736 * @ah: The &struct ath5k_hw
3737 * @channel: The @struct ieee80211_channel
3738 * @mode: One of enum ath5k_driver_mode
3739 * @fast: Try a fast channel switch instead
3740 *
3741 * This is the main function used during reset to initialize PHY
3742 * or do a fast channel change if possible.
3743 *
3744 * NOTE: Do not call this one from the driver, it assumes PHY is in a
3745 * warm reset state !
3746 */
3747 int
ath5k_hw_phy_init(struct ath5k_hw * ah,struct ieee80211_channel * channel,u8 mode,bool fast)3748 ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3749 u8 mode, bool fast)
3750 {
3751 struct ieee80211_channel *curr_channel;
3752 int ret, i;
3753 u32 phy_tst1;
3754 ret = 0;
3755
3756 /*
3757 * Sanity check for fast flag
3758 * Don't try fast channel change when changing modulation
3759 * mode/band. We check for chip compatibility on
3760 * ath5k_hw_reset.
3761 */
3762 curr_channel = ah->ah_current_channel;
3763 if (fast && (channel->hw_value != curr_channel->hw_value))
3764 return -EINVAL;
3765
3766 /*
3767 * On fast channel change we only set the synth parameters
3768 * while PHY is running, enable calibration and skip the rest.
3769 */
3770 if (fast) {
3771 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3772 AR5K_PHY_RFBUS_REQ_REQUEST);
3773 for (i = 0; i < 100; i++) {
3774 if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3775 break;
3776 udelay(5);
3777 }
3778 /* Failed */
3779 if (i >= 100)
3780 return -EIO;
3781
3782 /* Set channel and wait for synth */
3783 ret = ath5k_hw_channel(ah, channel);
3784 if (ret)
3785 return ret;
3786
3787 ath5k_hw_wait_for_synth(ah, channel);
3788 }
3789
3790 /*
3791 * Set TX power
3792 *
3793 * Note: We need to do that before we set
3794 * RF buffer settings on 5211/5212+ so that we
3795 * properly set curve indices.
3796 */
3797 ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_requested ?
3798 ah->ah_txpower.txp_requested * 2 :
3799 AR5K_TUNE_MAX_TXPOWER);
3800 if (ret)
3801 return ret;
3802
3803 /* Write OFDM timings on 5212*/
3804 if (ah->ah_version == AR5K_AR5212 &&
3805 channel->hw_value != AR5K_MODE_11B) {
3806
3807 ret = ath5k_hw_write_ofdm_timings(ah, channel);
3808 if (ret)
3809 return ret;
3810
3811 /* Spur info is available only from EEPROM versions
3812 * greater than 5.3, but the EEPROM routines will use
3813 * static values for older versions */
3814 if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3815 ath5k_hw_set_spur_mitigation_filter(ah,
3816 channel);
3817 }
3818
3819 /* If we used fast channel switching
3820 * we are done, release RF bus and
3821 * fire up NF calibration.
3822 *
3823 * Note: Only NF calibration due to
3824 * channel change, not AGC calibration
3825 * since AGC is still running !
3826 */
3827 if (fast) {
3828 /*
3829 * Release RF Bus grant
3830 */
3831 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3832 AR5K_PHY_RFBUS_REQ_REQUEST);
3833
3834 /*
3835 * Start NF calibration
3836 */
3837 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3838 AR5K_PHY_AGCCTL_NF);
3839
3840 return ret;
3841 }
3842
3843 /*
3844 * For 5210 we do all initialization using
3845 * initvals, so we don't have to modify
3846 * any settings (5210 also only supports
3847 * a/aturbo modes)
3848 */
3849 if (ah->ah_version != AR5K_AR5210) {
3850
3851 /*
3852 * Write initial RF gain settings
3853 * This should work for both 5111/5112
3854 */
3855 ret = ath5k_hw_rfgain_init(ah, channel->band);
3856 if (ret)
3857 return ret;
3858
3859 usleep_range(1000, 1500);
3860
3861 /*
3862 * Write RF buffer
3863 */
3864 ret = ath5k_hw_rfregs_init(ah, channel, mode);
3865 if (ret)
3866 return ret;
3867
3868 /*Enable/disable 802.11b mode on 5111
3869 (enable 2111 frequency converter + CCK)*/
3870 if (ah->ah_radio == AR5K_RF5111) {
3871 if (mode == AR5K_MODE_11B)
3872 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3873 AR5K_TXCFG_B_MODE);
3874 else
3875 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3876 AR5K_TXCFG_B_MODE);
3877 }
3878
3879 } else if (ah->ah_version == AR5K_AR5210) {
3880 usleep_range(1000, 1500);
3881 /* Disable phy and wait */
3882 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3883 usleep_range(1000, 1500);
3884 }
3885
3886 /* Set channel on PHY */
3887 ret = ath5k_hw_channel(ah, channel);
3888 if (ret)
3889 return ret;
3890
3891 /*
3892 * Enable the PHY and wait until completion
3893 * This includes BaseBand and Synthesizer
3894 * activation.
3895 */
3896 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3897
3898 ath5k_hw_wait_for_synth(ah, channel);
3899
3900 /*
3901 * Perform ADC test to see if baseband is ready
3902 * Set tx hold and check adc test register
3903 */
3904 phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3905 ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3906 for (i = 0; i <= 20; i++) {
3907 if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3908 break;
3909 usleep_range(200, 250);
3910 }
3911 ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3912
3913 /*
3914 * Start automatic gain control calibration
3915 *
3916 * During AGC calibration RX path is re-routed to
3917 * a power detector so we don't receive anything.
3918 *
3919 * This method is used to calibrate some static offsets
3920 * used together with on-the fly I/Q calibration (the
3921 * one performed via ath5k_hw_phy_calibrate), which doesn't
3922 * interrupt rx path.
3923 *
3924 * While rx path is re-routed to the power detector we also
3925 * start a noise floor calibration to measure the
3926 * card's noise floor (the noise we measure when we are not
3927 * transmitting or receiving anything).
3928 *
3929 * If we are in a noisy environment, AGC calibration may time
3930 * out and/or noise floor calibration might timeout.
3931 */
3932 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3933 AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3934
3935 /* At the same time start I/Q calibration for QAM constellation
3936 * -no need for CCK- */
3937 ah->ah_iq_cal_needed = false;
3938 if (!(mode == AR5K_MODE_11B)) {
3939 ah->ah_iq_cal_needed = true;
3940 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3941 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3942 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3943 AR5K_PHY_IQ_RUN);
3944 }
3945
3946 /* Wait for gain calibration to finish (we check for I/Q calibration
3947 * during ath5k_phy_calibrate) */
3948 if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3949 AR5K_PHY_AGCCTL_CAL, 0, false)) {
3950 ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n",
3951 channel->center_freq);
3952 }
3953
3954 /* Restore antenna mode */
3955 ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3956
3957 return ret;
3958 }
3959