xref: /linux/drivers/net/wireless/ath/ath10k/pci.c (revision be54f8c558027a218423134dd9b8c7c46d92204a)
1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (c) 2005-2011 Atheros Communications Inc.
4  * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
5  * Copyright (c) 2022-2024 Qualcomm Innovation Center, Inc. All rights reserved.
6  */
7 
8 #include <linux/pci.h>
9 #include <linux/module.h>
10 #include <linux/interrupt.h>
11 #include <linux/spinlock.h>
12 #include <linux/bitops.h>
13 
14 #include "core.h"
15 #include "debug.h"
16 #include "coredump.h"
17 
18 #include "targaddrs.h"
19 #include "bmi.h"
20 
21 #include "hif.h"
22 #include "htc.h"
23 
24 #include "ce.h"
25 #include "pci.h"
26 
27 enum ath10k_pci_reset_mode {
28 	ATH10K_PCI_RESET_AUTO = 0,
29 	ATH10K_PCI_RESET_WARM_ONLY = 1,
30 };
31 
32 static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
33 static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
34 
35 module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
36 MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
37 
38 module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
39 MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
40 
41 /* how long wait to wait for target to initialise, in ms */
42 #define ATH10K_PCI_TARGET_WAIT 3000
43 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
44 
45 /* Maximum number of bytes that can be handled atomically by
46  * diag read and write.
47  */
48 #define ATH10K_DIAG_TRANSFER_LIMIT	0x5000
49 
50 #define QCA99X0_PCIE_BAR0_START_REG    0x81030
51 #define QCA99X0_CPU_MEM_ADDR_REG       0x4d00c
52 #define QCA99X0_CPU_MEM_DATA_REG       0x4d010
53 
54 static const struct pci_device_id ath10k_pci_id_table[] = {
55 	/* PCI-E QCA988X V2 (Ubiquiti branded) */
56 	{ PCI_VDEVICE(UBIQUITI, QCA988X_2_0_DEVICE_ID_UBNT) },
57 
58 	{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
59 	{ PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
60 	{ PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
61 	{ PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
62 	{ PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
63 	{ PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
64 	{ PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
65 	{ PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
66 	{0}
67 };
68 
69 static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
70 	/* QCA988X pre 2.0 chips are not supported because they need some nasty
71 	 * hacks. ath10k doesn't have them and these devices crash horribly
72 	 * because of that.
73 	 */
74 	{ QCA988X_2_0_DEVICE_ID_UBNT, QCA988X_HW_2_0_CHIP_ID_REV },
75 	{ QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
76 
77 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
78 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
79 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
80 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
81 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
82 
83 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
84 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
85 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
86 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
87 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
88 
89 	{ QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
90 
91 	{ QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
92 
93 	{ QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
94 
95 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
96 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
97 
98 	{ QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
99 };
100 
101 static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
102 static int ath10k_pci_cold_reset(struct ath10k *ar);
103 static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
104 static int ath10k_pci_init_irq(struct ath10k *ar);
105 static int ath10k_pci_deinit_irq(struct ath10k *ar);
106 static int ath10k_pci_request_irq(struct ath10k *ar);
107 static void ath10k_pci_free_irq(struct ath10k *ar);
108 static int ath10k_pci_bmi_wait(struct ath10k *ar,
109 			       struct ath10k_ce_pipe *tx_pipe,
110 			       struct ath10k_ce_pipe *rx_pipe,
111 			       struct bmi_xfer *xfer);
112 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
113 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
114 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
115 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
116 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
117 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
118 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
119 
120 static const struct ce_attr pci_host_ce_config_wlan[] = {
121 	/* CE0: host->target HTC control and raw streams */
122 	{
123 		.flags = CE_ATTR_FLAGS,
124 		.src_nentries = 16,
125 		.src_sz_max = 256,
126 		.dest_nentries = 0,
127 		.send_cb = ath10k_pci_htc_tx_cb,
128 	},
129 
130 	/* CE1: target->host HTT + HTC control */
131 	{
132 		.flags = CE_ATTR_FLAGS,
133 		.src_nentries = 0,
134 		.src_sz_max = 2048,
135 		.dest_nentries = 512,
136 		.recv_cb = ath10k_pci_htt_htc_rx_cb,
137 	},
138 
139 	/* CE2: target->host WMI */
140 	{
141 		.flags = CE_ATTR_FLAGS,
142 		.src_nentries = 0,
143 		.src_sz_max = 2048,
144 		.dest_nentries = 128,
145 		.recv_cb = ath10k_pci_htc_rx_cb,
146 	},
147 
148 	/* CE3: host->target WMI */
149 	{
150 		.flags = CE_ATTR_FLAGS,
151 		.src_nentries = 32,
152 		.src_sz_max = 2048,
153 		.dest_nentries = 0,
154 		.send_cb = ath10k_pci_htc_tx_cb,
155 	},
156 
157 	/* CE4: host->target HTT */
158 	{
159 		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
160 		.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
161 		.src_sz_max = 256,
162 		.dest_nentries = 0,
163 		.send_cb = ath10k_pci_htt_tx_cb,
164 	},
165 
166 	/* CE5: target->host HTT (HIF->HTT) */
167 	{
168 		.flags = CE_ATTR_FLAGS,
169 		.src_nentries = 0,
170 		.src_sz_max = 512,
171 		.dest_nentries = 512,
172 		.recv_cb = ath10k_pci_htt_rx_cb,
173 	},
174 
175 	/* CE6: target autonomous hif_memcpy */
176 	{
177 		.flags = CE_ATTR_FLAGS,
178 		.src_nentries = 0,
179 		.src_sz_max = 0,
180 		.dest_nentries = 0,
181 	},
182 
183 	/* CE7: ce_diag, the Diagnostic Window */
184 	{
185 		.flags = CE_ATTR_FLAGS | CE_ATTR_POLL,
186 		.src_nentries = 2,
187 		.src_sz_max = DIAG_TRANSFER_LIMIT,
188 		.dest_nentries = 2,
189 	},
190 
191 	/* CE8: target->host pktlog */
192 	{
193 		.flags = CE_ATTR_FLAGS,
194 		.src_nentries = 0,
195 		.src_sz_max = 2048,
196 		.dest_nentries = 128,
197 		.recv_cb = ath10k_pci_pktlog_rx_cb,
198 	},
199 
200 	/* CE9 target autonomous qcache memcpy */
201 	{
202 		.flags = CE_ATTR_FLAGS,
203 		.src_nentries = 0,
204 		.src_sz_max = 0,
205 		.dest_nentries = 0,
206 	},
207 
208 	/* CE10: target autonomous hif memcpy */
209 	{
210 		.flags = CE_ATTR_FLAGS,
211 		.src_nentries = 0,
212 		.src_sz_max = 0,
213 		.dest_nentries = 0,
214 	},
215 
216 	/* CE11: target autonomous hif memcpy */
217 	{
218 		.flags = CE_ATTR_FLAGS,
219 		.src_nentries = 0,
220 		.src_sz_max = 0,
221 		.dest_nentries = 0,
222 	},
223 };
224 
225 /* Target firmware's Copy Engine configuration. */
226 static const struct ce_pipe_config pci_target_ce_config_wlan[] = {
227 	/* CE0: host->target HTC control and raw streams */
228 	{
229 		.pipenum = __cpu_to_le32(0),
230 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
231 		.nentries = __cpu_to_le32(32),
232 		.nbytes_max = __cpu_to_le32(256),
233 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
234 		.reserved = __cpu_to_le32(0),
235 	},
236 
237 	/* CE1: target->host HTT + HTC control */
238 	{
239 		.pipenum = __cpu_to_le32(1),
240 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
241 		.nentries = __cpu_to_le32(32),
242 		.nbytes_max = __cpu_to_le32(2048),
243 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
244 		.reserved = __cpu_to_le32(0),
245 	},
246 
247 	/* CE2: target->host WMI */
248 	{
249 		.pipenum = __cpu_to_le32(2),
250 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
251 		.nentries = __cpu_to_le32(64),
252 		.nbytes_max = __cpu_to_le32(2048),
253 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
254 		.reserved = __cpu_to_le32(0),
255 	},
256 
257 	/* CE3: host->target WMI */
258 	{
259 		.pipenum = __cpu_to_le32(3),
260 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
261 		.nentries = __cpu_to_le32(32),
262 		.nbytes_max = __cpu_to_le32(2048),
263 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
264 		.reserved = __cpu_to_le32(0),
265 	},
266 
267 	/* CE4: host->target HTT */
268 	{
269 		.pipenum = __cpu_to_le32(4),
270 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
271 		.nentries = __cpu_to_le32(256),
272 		.nbytes_max = __cpu_to_le32(256),
273 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
274 		.reserved = __cpu_to_le32(0),
275 	},
276 
277 	/* NB: 50% of src nentries, since tx has 2 frags */
278 
279 	/* CE5: target->host HTT (HIF->HTT) */
280 	{
281 		.pipenum = __cpu_to_le32(5),
282 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
283 		.nentries = __cpu_to_le32(32),
284 		.nbytes_max = __cpu_to_le32(512),
285 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
286 		.reserved = __cpu_to_le32(0),
287 	},
288 
289 	/* CE6: Reserved for target autonomous hif_memcpy */
290 	{
291 		.pipenum = __cpu_to_le32(6),
292 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
293 		.nentries = __cpu_to_le32(32),
294 		.nbytes_max = __cpu_to_le32(4096),
295 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
296 		.reserved = __cpu_to_le32(0),
297 	},
298 
299 	/* CE7 used only by Host */
300 	{
301 		.pipenum = __cpu_to_le32(7),
302 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
303 		.nentries = __cpu_to_le32(0),
304 		.nbytes_max = __cpu_to_le32(0),
305 		.flags = __cpu_to_le32(0),
306 		.reserved = __cpu_to_le32(0),
307 	},
308 
309 	/* CE8 target->host packtlog */
310 	{
311 		.pipenum = __cpu_to_le32(8),
312 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
313 		.nentries = __cpu_to_le32(64),
314 		.nbytes_max = __cpu_to_le32(2048),
315 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
316 		.reserved = __cpu_to_le32(0),
317 	},
318 
319 	/* CE9 target autonomous qcache memcpy */
320 	{
321 		.pipenum = __cpu_to_le32(9),
322 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
323 		.nentries = __cpu_to_le32(32),
324 		.nbytes_max = __cpu_to_le32(2048),
325 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
326 		.reserved = __cpu_to_le32(0),
327 	},
328 
329 	/* It not necessary to send target wlan configuration for CE10 & CE11
330 	 * as these CEs are not actively used in target.
331 	 */
332 };
333 
334 /*
335  * Map from service/endpoint to Copy Engine.
336  * This table is derived from the CE_PCI TABLE, above.
337  * It is passed to the Target at startup for use by firmware.
338  */
339 static const struct ce_service_to_pipe pci_target_service_to_ce_map_wlan[] = {
340 	{
341 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
342 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
343 		__cpu_to_le32(3),
344 	},
345 	{
346 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
347 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
348 		__cpu_to_le32(2),
349 	},
350 	{
351 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
352 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
353 		__cpu_to_le32(3),
354 	},
355 	{
356 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
357 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
358 		__cpu_to_le32(2),
359 	},
360 	{
361 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
362 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
363 		__cpu_to_le32(3),
364 	},
365 	{
366 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
367 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
368 		__cpu_to_le32(2),
369 	},
370 	{
371 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
372 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
373 		__cpu_to_le32(3),
374 	},
375 	{
376 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
377 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
378 		__cpu_to_le32(2),
379 	},
380 	{
381 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
382 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
383 		__cpu_to_le32(3),
384 	},
385 	{
386 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
387 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
388 		__cpu_to_le32(2),
389 	},
390 	{
391 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
392 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
393 		__cpu_to_le32(0),
394 	},
395 	{
396 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
397 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
398 		__cpu_to_le32(1),
399 	},
400 	{ /* not used */
401 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
402 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
403 		__cpu_to_le32(0),
404 	},
405 	{ /* not used */
406 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
407 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
408 		__cpu_to_le32(1),
409 	},
410 	{
411 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
412 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
413 		__cpu_to_le32(4),
414 	},
415 	{
416 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
417 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
418 		__cpu_to_le32(5),
419 	},
420 
421 	/* (Additions here) */
422 
423 	{ /* must be last */
424 		__cpu_to_le32(0),
425 		__cpu_to_le32(0),
426 		__cpu_to_le32(0),
427 	},
428 };
429 
ath10k_pci_is_awake(struct ath10k * ar)430 static bool ath10k_pci_is_awake(struct ath10k *ar)
431 {
432 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
433 	u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
434 			   RTC_STATE_ADDRESS);
435 
436 	return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
437 }
438 
__ath10k_pci_wake(struct ath10k * ar)439 static void __ath10k_pci_wake(struct ath10k *ar)
440 {
441 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
442 
443 	lockdep_assert_held(&ar_pci->ps_lock);
444 
445 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
446 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
447 
448 	iowrite32(PCIE_SOC_WAKE_V_MASK,
449 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
450 		  PCIE_SOC_WAKE_ADDRESS);
451 }
452 
__ath10k_pci_sleep(struct ath10k * ar)453 static void __ath10k_pci_sleep(struct ath10k *ar)
454 {
455 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
456 
457 	lockdep_assert_held(&ar_pci->ps_lock);
458 
459 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
460 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
461 
462 	iowrite32(PCIE_SOC_WAKE_RESET,
463 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
464 		  PCIE_SOC_WAKE_ADDRESS);
465 	ar_pci->ps_awake = false;
466 }
467 
ath10k_pci_wake_wait(struct ath10k * ar)468 static int ath10k_pci_wake_wait(struct ath10k *ar)
469 {
470 	int tot_delay = 0;
471 	int curr_delay = 5;
472 
473 	while (tot_delay < PCIE_WAKE_TIMEOUT) {
474 		if (ath10k_pci_is_awake(ar)) {
475 			if (tot_delay > PCIE_WAKE_LATE_US)
476 				ath10k_warn(ar, "device wakeup took %d ms which is unusually long, otherwise it works normally.\n",
477 					    tot_delay / 1000);
478 			return 0;
479 		}
480 
481 		udelay(curr_delay);
482 		tot_delay += curr_delay;
483 
484 		if (curr_delay < 50)
485 			curr_delay += 5;
486 	}
487 
488 	return -ETIMEDOUT;
489 }
490 
ath10k_pci_force_wake(struct ath10k * ar)491 static int ath10k_pci_force_wake(struct ath10k *ar)
492 {
493 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
494 	unsigned long flags;
495 	int ret = 0;
496 
497 	if (ar_pci->pci_ps)
498 		return ret;
499 
500 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
501 
502 	if (!ar_pci->ps_awake) {
503 		iowrite32(PCIE_SOC_WAKE_V_MASK,
504 			  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
505 			  PCIE_SOC_WAKE_ADDRESS);
506 
507 		ret = ath10k_pci_wake_wait(ar);
508 		if (ret == 0)
509 			ar_pci->ps_awake = true;
510 	}
511 
512 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
513 
514 	return ret;
515 }
516 
ath10k_pci_force_sleep(struct ath10k * ar)517 static void ath10k_pci_force_sleep(struct ath10k *ar)
518 {
519 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
520 	unsigned long flags;
521 
522 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
523 
524 	iowrite32(PCIE_SOC_WAKE_RESET,
525 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
526 		  PCIE_SOC_WAKE_ADDRESS);
527 	ar_pci->ps_awake = false;
528 
529 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
530 }
531 
ath10k_pci_wake(struct ath10k * ar)532 static int ath10k_pci_wake(struct ath10k *ar)
533 {
534 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
535 	unsigned long flags;
536 	int ret = 0;
537 
538 	if (ar_pci->pci_ps == 0)
539 		return ret;
540 
541 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
542 
543 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
544 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
545 
546 	/* This function can be called very frequently. To avoid excessive
547 	 * CPU stalls for MMIO reads use a cache var to hold the device state.
548 	 */
549 	if (!ar_pci->ps_awake) {
550 		__ath10k_pci_wake(ar);
551 
552 		ret = ath10k_pci_wake_wait(ar);
553 		if (ret == 0)
554 			ar_pci->ps_awake = true;
555 	}
556 
557 	if (ret == 0) {
558 		ar_pci->ps_wake_refcount++;
559 		WARN_ON(ar_pci->ps_wake_refcount == 0);
560 	}
561 
562 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
563 
564 	return ret;
565 }
566 
ath10k_pci_sleep(struct ath10k * ar)567 static void ath10k_pci_sleep(struct ath10k *ar)
568 {
569 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
570 	unsigned long flags;
571 
572 	if (ar_pci->pci_ps == 0)
573 		return;
574 
575 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
576 
577 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
578 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
579 
580 	if (WARN_ON(ar_pci->ps_wake_refcount == 0))
581 		goto skip;
582 
583 	ar_pci->ps_wake_refcount--;
584 
585 	mod_timer(&ar_pci->ps_timer, jiffies +
586 		  msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
587 
588 skip:
589 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
590 }
591 
ath10k_pci_ps_timer(struct timer_list * t)592 static void ath10k_pci_ps_timer(struct timer_list *t)
593 {
594 	struct ath10k_pci *ar_pci = timer_container_of(ar_pci, t, ps_timer);
595 	struct ath10k *ar = ar_pci->ar;
596 	unsigned long flags;
597 
598 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
599 
600 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
601 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
602 
603 	if (ar_pci->ps_wake_refcount > 0)
604 		goto skip;
605 
606 	__ath10k_pci_sleep(ar);
607 
608 skip:
609 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
610 }
611 
ath10k_pci_sleep_sync(struct ath10k * ar)612 static void ath10k_pci_sleep_sync(struct ath10k *ar)
613 {
614 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
615 	unsigned long flags;
616 
617 	if (ar_pci->pci_ps == 0) {
618 		ath10k_pci_force_sleep(ar);
619 		return;
620 	}
621 
622 	timer_delete_sync(&ar_pci->ps_timer);
623 
624 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
625 	WARN_ON(ar_pci->ps_wake_refcount > 0);
626 	__ath10k_pci_sleep(ar);
627 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
628 }
629 
ath10k_bus_pci_write32(struct ath10k * ar,u32 offset,u32 value)630 static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
631 {
632 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
633 	int ret;
634 
635 	if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
636 		ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
637 			    offset, offset + sizeof(value), ar_pci->mem_len);
638 		return;
639 	}
640 
641 	ret = ath10k_pci_wake(ar);
642 	if (ret) {
643 		ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
644 			    value, offset, ret);
645 		return;
646 	}
647 
648 	iowrite32(value, ar_pci->mem + offset);
649 	ath10k_pci_sleep(ar);
650 }
651 
ath10k_bus_pci_read32(struct ath10k * ar,u32 offset)652 static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
653 {
654 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
655 	u32 val;
656 	int ret;
657 
658 	if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
659 		ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
660 			    offset, offset + sizeof(val), ar_pci->mem_len);
661 		return 0;
662 	}
663 
664 	ret = ath10k_pci_wake(ar);
665 	if (ret) {
666 		ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
667 			    offset, ret);
668 		return 0xffffffff;
669 	}
670 
671 	val = ioread32(ar_pci->mem + offset);
672 	ath10k_pci_sleep(ar);
673 
674 	return val;
675 }
676 
ath10k_pci_write32(struct ath10k * ar,u32 offset,u32 value)677 inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
678 {
679 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
680 
681 	ce->bus_ops->write32(ar, offset, value);
682 }
683 
ath10k_pci_read32(struct ath10k * ar,u32 offset)684 inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
685 {
686 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
687 
688 	return ce->bus_ops->read32(ar, offset);
689 }
690 
ath10k_pci_soc_read32(struct ath10k * ar,u32 addr)691 u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
692 {
693 	return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
694 }
695 
ath10k_pci_soc_write32(struct ath10k * ar,u32 addr,u32 val)696 void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
697 {
698 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
699 }
700 
ath10k_pci_reg_read32(struct ath10k * ar,u32 addr)701 u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
702 {
703 	return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
704 }
705 
ath10k_pci_reg_write32(struct ath10k * ar,u32 addr,u32 val)706 void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
707 {
708 	ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
709 }
710 
ath10k_pci_irq_pending(struct ath10k * ar)711 bool ath10k_pci_irq_pending(struct ath10k *ar)
712 {
713 	u32 cause;
714 
715 	/* Check if the shared legacy irq is for us */
716 	cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
717 				  PCIE_INTR_CAUSE_ADDRESS);
718 	if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
719 		return true;
720 
721 	return false;
722 }
723 
ath10k_pci_disable_and_clear_intx_irq(struct ath10k * ar)724 void ath10k_pci_disable_and_clear_intx_irq(struct ath10k *ar)
725 {
726 	/* IMPORTANT: INTR_CLR register has to be set after
727 	 * INTR_ENABLE is set to 0, otherwise interrupt can not be
728 	 * really cleared.
729 	 */
730 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
731 			   0);
732 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
733 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
734 
735 	/* IMPORTANT: this extra read transaction is required to
736 	 * flush the posted write buffer.
737 	 */
738 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
739 				PCIE_INTR_ENABLE_ADDRESS);
740 }
741 
ath10k_pci_enable_intx_irq(struct ath10k * ar)742 void ath10k_pci_enable_intx_irq(struct ath10k *ar)
743 {
744 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
745 			   PCIE_INTR_ENABLE_ADDRESS,
746 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
747 
748 	/* IMPORTANT: this extra read transaction is required to
749 	 * flush the posted write buffer.
750 	 */
751 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
752 				PCIE_INTR_ENABLE_ADDRESS);
753 }
754 
ath10k_pci_get_irq_method(struct ath10k * ar)755 static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
756 {
757 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
758 
759 	if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
760 		return "msi";
761 
762 	return "legacy";
763 }
764 
__ath10k_pci_rx_post_buf(struct ath10k_pci_pipe * pipe)765 static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
766 {
767 	struct ath10k *ar = pipe->hif_ce_state;
768 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
769 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
770 	struct sk_buff *skb;
771 	dma_addr_t paddr;
772 	int ret;
773 
774 	skb = dev_alloc_skb(pipe->buf_sz);
775 	if (!skb)
776 		return -ENOMEM;
777 
778 	WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
779 
780 	paddr = dma_map_single(ar->dev, skb->data,
781 			       skb->len + skb_tailroom(skb),
782 			       DMA_FROM_DEVICE);
783 	if (unlikely(dma_mapping_error(ar->dev, paddr))) {
784 		ath10k_warn(ar, "failed to dma map pci rx buf\n");
785 		dev_kfree_skb_any(skb);
786 		return -EIO;
787 	}
788 
789 	ATH10K_SKB_RXCB(skb)->paddr = paddr;
790 
791 	spin_lock_bh(&ce->ce_lock);
792 	ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr);
793 	spin_unlock_bh(&ce->ce_lock);
794 	if (ret) {
795 		dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
796 				 DMA_FROM_DEVICE);
797 		dev_kfree_skb_any(skb);
798 		return ret;
799 	}
800 
801 	return 0;
802 }
803 
ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe * pipe)804 static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
805 {
806 	struct ath10k *ar = pipe->hif_ce_state;
807 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
808 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
809 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
810 	int ret, num;
811 
812 	if (pipe->buf_sz == 0)
813 		return;
814 
815 	if (!ce_pipe->dest_ring)
816 		return;
817 
818 	spin_lock_bh(&ce->ce_lock);
819 	num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
820 	spin_unlock_bh(&ce->ce_lock);
821 
822 	while (num >= 0) {
823 		ret = __ath10k_pci_rx_post_buf(pipe);
824 		if (ret) {
825 			if (ret == -ENOSPC)
826 				break;
827 			ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
828 			mod_timer(&ar_pci->rx_post_retry, jiffies +
829 				  ATH10K_PCI_RX_POST_RETRY_MS);
830 			break;
831 		}
832 		num--;
833 	}
834 }
835 
ath10k_pci_rx_post(struct ath10k * ar)836 void ath10k_pci_rx_post(struct ath10k *ar)
837 {
838 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
839 	int i;
840 
841 	for (i = 0; i < CE_COUNT; i++)
842 		ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
843 }
844 
ath10k_pci_rx_replenish_retry(struct timer_list * t)845 void ath10k_pci_rx_replenish_retry(struct timer_list *t)
846 {
847 	struct ath10k_pci *ar_pci = timer_container_of(ar_pci, t,
848 						       rx_post_retry);
849 	struct ath10k *ar = ar_pci->ar;
850 
851 	ath10k_pci_rx_post(ar);
852 }
853 
ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k * ar,u32 addr)854 static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
855 {
856 	u32 val = 0, region = addr & 0xfffff;
857 
858 	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
859 				 & 0x7ff) << 21;
860 	val |= 0x100000 | region;
861 	return val;
862 }
863 
864 /* Refactor from ath10k_pci_qca988x_targ_cpu_to_ce_addr.
865  * Support to access target space below 1M for qca6174 and qca9377.
866  * If target space is below 1M, the bit[20] of converted CE addr is 0.
867  * Otherwise bit[20] of converted CE addr is 1.
868  */
ath10k_pci_qca6174_targ_cpu_to_ce_addr(struct ath10k * ar,u32 addr)869 static u32 ath10k_pci_qca6174_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
870 {
871 	u32 val = 0, region = addr & 0xfffff;
872 
873 	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
874 				 & 0x7ff) << 21;
875 	val |= ((addr >= 0x100000) ? 0x100000 : 0) | region;
876 	return val;
877 }
878 
ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k * ar,u32 addr)879 static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
880 {
881 	u32 val = 0, region = addr & 0xfffff;
882 
883 	val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
884 	val |= 0x100000 | region;
885 	return val;
886 }
887 
ath10k_pci_targ_cpu_to_ce_addr(struct ath10k * ar,u32 addr)888 static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
889 {
890 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
891 
892 	if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr))
893 		return -EOPNOTSUPP;
894 
895 	return ar_pci->targ_cpu_to_ce_addr(ar, addr);
896 }
897 
898 /*
899  * Diagnostic read/write access is provided for startup/config/debug usage.
900  * Caller must guarantee proper alignment, when applicable, and single user
901  * at any moment.
902  */
ath10k_pci_diag_read_mem(struct ath10k * ar,u32 address,void * data,int nbytes)903 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
904 				    int nbytes)
905 {
906 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
907 	int ret = 0;
908 	u32 *buf;
909 	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
910 	struct ath10k_ce_pipe *ce_diag;
911 	/* Host buffer address in CE space */
912 	u32 ce_data;
913 	dma_addr_t ce_data_base = 0;
914 	void *data_buf;
915 	int i;
916 
917 	mutex_lock(&ar_pci->ce_diag_mutex);
918 	ce_diag = ar_pci->ce_diag;
919 
920 	/*
921 	 * Allocate a temporary bounce buffer to hold caller's data
922 	 * to be DMA'ed from Target. This guarantees
923 	 *   1) 4-byte alignment
924 	 *   2) Buffer in DMA-able space
925 	 */
926 	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
927 
928 	data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
929 				      GFP_ATOMIC);
930 	if (!data_buf) {
931 		ret = -ENOMEM;
932 		goto done;
933 	}
934 
935 	/* The address supplied by the caller is in the
936 	 * Target CPU virtual address space.
937 	 *
938 	 * In order to use this address with the diagnostic CE,
939 	 * convert it from Target CPU virtual address space
940 	 * to CE address space
941 	 */
942 	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
943 
944 	remaining_bytes = nbytes;
945 	ce_data = ce_data_base;
946 	while (remaining_bytes) {
947 		nbytes = min_t(unsigned int, remaining_bytes,
948 			       DIAG_TRANSFER_LIMIT);
949 
950 		ret = ath10k_ce_rx_post_buf(ce_diag, &ce_data, ce_data);
951 		if (ret != 0)
952 			goto done;
953 
954 		/* Request CE to send from Target(!) address to Host buffer */
955 		ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0, 0);
956 		if (ret)
957 			goto done;
958 
959 		i = 0;
960 		while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
961 			udelay(DIAG_ACCESS_CE_WAIT_US);
962 			i += DIAG_ACCESS_CE_WAIT_US;
963 
964 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
965 				ret = -EBUSY;
966 				goto done;
967 			}
968 		}
969 
970 		i = 0;
971 		while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
972 						     &completed_nbytes) != 0) {
973 			udelay(DIAG_ACCESS_CE_WAIT_US);
974 			i += DIAG_ACCESS_CE_WAIT_US;
975 
976 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
977 				ret = -EBUSY;
978 				goto done;
979 			}
980 		}
981 
982 		if (nbytes != completed_nbytes) {
983 			ret = -EIO;
984 			goto done;
985 		}
986 
987 		if (*buf != ce_data) {
988 			ret = -EIO;
989 			goto done;
990 		}
991 
992 		remaining_bytes -= nbytes;
993 		memcpy(data, data_buf, nbytes);
994 
995 		address += nbytes;
996 		data += nbytes;
997 	}
998 
999 done:
1000 
1001 	if (data_buf)
1002 		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1003 				  ce_data_base);
1004 
1005 	mutex_unlock(&ar_pci->ce_diag_mutex);
1006 
1007 	return ret;
1008 }
1009 
ath10k_pci_diag_read32(struct ath10k * ar,u32 address,u32 * value)1010 static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
1011 {
1012 	__le32 val = 0;
1013 	int ret;
1014 
1015 	ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
1016 	*value = __le32_to_cpu(val);
1017 
1018 	return ret;
1019 }
1020 
__ath10k_pci_diag_read_hi(struct ath10k * ar,void * dest,u32 src,u32 len)1021 static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
1022 				     u32 src, u32 len)
1023 {
1024 	u32 host_addr, addr;
1025 	int ret;
1026 
1027 	host_addr = host_interest_item_address(src);
1028 
1029 	ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
1030 	if (ret != 0) {
1031 		ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
1032 			    src, ret);
1033 		return ret;
1034 	}
1035 
1036 	ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1037 	if (ret != 0) {
1038 		ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1039 			    addr, len, ret);
1040 		return ret;
1041 	}
1042 
1043 	return 0;
1044 }
1045 
1046 #define ath10k_pci_diag_read_hi(ar, dest, src, len)		\
1047 	__ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1048 
ath10k_pci_diag_write_mem(struct ath10k * ar,u32 address,const void * data,int nbytes)1049 int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1050 			      const void *data, int nbytes)
1051 {
1052 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1053 	int ret = 0;
1054 	u32 *buf;
1055 	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
1056 	struct ath10k_ce_pipe *ce_diag;
1057 	void *data_buf;
1058 	dma_addr_t ce_data_base = 0;
1059 	int i;
1060 
1061 	mutex_lock(&ar_pci->ce_diag_mutex);
1062 	ce_diag = ar_pci->ce_diag;
1063 
1064 	/*
1065 	 * Allocate a temporary bounce buffer to hold caller's data
1066 	 * to be DMA'ed to Target. This guarantees
1067 	 *   1) 4-byte alignment
1068 	 *   2) Buffer in DMA-able space
1069 	 */
1070 	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
1071 
1072 	data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
1073 				      GFP_ATOMIC);
1074 	if (!data_buf) {
1075 		ret = -ENOMEM;
1076 		goto done;
1077 	}
1078 
1079 	/*
1080 	 * The address supplied by the caller is in the
1081 	 * Target CPU virtual address space.
1082 	 *
1083 	 * In order to use this address with the diagnostic CE,
1084 	 * convert it from
1085 	 *    Target CPU virtual address space
1086 	 * to
1087 	 *    CE address space
1088 	 */
1089 	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1090 
1091 	remaining_bytes = nbytes;
1092 	while (remaining_bytes) {
1093 		/* FIXME: check cast */
1094 		nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1095 
1096 		/* Copy caller's data to allocated DMA buf */
1097 		memcpy(data_buf, data, nbytes);
1098 
1099 		/* Set up to receive directly into Target(!) address */
1100 		ret = ath10k_ce_rx_post_buf(ce_diag, &address, address);
1101 		if (ret != 0)
1102 			goto done;
1103 
1104 		/*
1105 		 * Request CE to send caller-supplied data that
1106 		 * was copied to bounce buffer to Target(!) address.
1107 		 */
1108 		ret = ath10k_ce_send(ce_diag, NULL, ce_data_base, nbytes, 0, 0);
1109 		if (ret != 0)
1110 			goto done;
1111 
1112 		i = 0;
1113 		while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
1114 			udelay(DIAG_ACCESS_CE_WAIT_US);
1115 			i += DIAG_ACCESS_CE_WAIT_US;
1116 
1117 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1118 				ret = -EBUSY;
1119 				goto done;
1120 			}
1121 		}
1122 
1123 		i = 0;
1124 		while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
1125 						     &completed_nbytes) != 0) {
1126 			udelay(DIAG_ACCESS_CE_WAIT_US);
1127 			i += DIAG_ACCESS_CE_WAIT_US;
1128 
1129 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1130 				ret = -EBUSY;
1131 				goto done;
1132 			}
1133 		}
1134 
1135 		if (nbytes != completed_nbytes) {
1136 			ret = -EIO;
1137 			goto done;
1138 		}
1139 
1140 		if (*buf != address) {
1141 			ret = -EIO;
1142 			goto done;
1143 		}
1144 
1145 		remaining_bytes -= nbytes;
1146 		address += nbytes;
1147 		data += nbytes;
1148 	}
1149 
1150 done:
1151 	if (data_buf) {
1152 		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1153 				  ce_data_base);
1154 	}
1155 
1156 	if (ret != 0)
1157 		ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1158 			    address, ret);
1159 
1160 	mutex_unlock(&ar_pci->ce_diag_mutex);
1161 
1162 	return ret;
1163 }
1164 
ath10k_pci_diag_write32(struct ath10k * ar,u32 address,u32 value)1165 static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1166 {
1167 	__le32 val = __cpu_to_le32(value);
1168 
1169 	return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1170 }
1171 
1172 /* Called by lower (CE) layer when a send to Target completes. */
ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe * ce_state)1173 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1174 {
1175 	struct ath10k *ar = ce_state->ar;
1176 	struct sk_buff_head list;
1177 	struct sk_buff *skb;
1178 
1179 	__skb_queue_head_init(&list);
1180 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1181 		/* no need to call tx completion for NULL pointers */
1182 		if (skb == NULL)
1183 			continue;
1184 
1185 		__skb_queue_tail(&list, skb);
1186 	}
1187 
1188 	while ((skb = __skb_dequeue(&list)))
1189 		ath10k_htc_tx_completion_handler(ar, skb);
1190 }
1191 
ath10k_pci_process_rx_cb(struct ath10k_ce_pipe * ce_state,void (* callback)(struct ath10k * ar,struct sk_buff * skb))1192 static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1193 				     void (*callback)(struct ath10k *ar,
1194 						      struct sk_buff *skb))
1195 {
1196 	struct ath10k *ar = ce_state->ar;
1197 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1198 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1199 	struct sk_buff *skb;
1200 	struct sk_buff_head list;
1201 	void *transfer_context;
1202 	unsigned int nbytes, max_nbytes;
1203 
1204 	__skb_queue_head_init(&list);
1205 	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1206 					     &nbytes) == 0) {
1207 		skb = transfer_context;
1208 		max_nbytes = skb->len + skb_tailroom(skb);
1209 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1210 				 max_nbytes, DMA_FROM_DEVICE);
1211 
1212 		if (unlikely(max_nbytes < nbytes)) {
1213 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1214 				    nbytes, max_nbytes);
1215 			dev_kfree_skb_any(skb);
1216 			continue;
1217 		}
1218 
1219 		skb_put(skb, nbytes);
1220 		__skb_queue_tail(&list, skb);
1221 	}
1222 
1223 	while ((skb = __skb_dequeue(&list))) {
1224 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1225 			   ce_state->id, skb->len);
1226 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1227 				skb->data, skb->len);
1228 
1229 		callback(ar, skb);
1230 	}
1231 
1232 	ath10k_pci_rx_post_pipe(pipe_info);
1233 }
1234 
ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe * ce_state,void (* callback)(struct ath10k * ar,struct sk_buff * skb))1235 static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
1236 					 void (*callback)(struct ath10k *ar,
1237 							  struct sk_buff *skb))
1238 {
1239 	struct ath10k *ar = ce_state->ar;
1240 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1241 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1242 	struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
1243 	struct sk_buff *skb;
1244 	struct sk_buff_head list;
1245 	void *transfer_context;
1246 	unsigned int nbytes, max_nbytes, nentries;
1247 	int orig_len;
1248 
1249 	/* No need to acquire ce_lock for CE5, since this is the only place CE5
1250 	 * is processed other than init and deinit. Before releasing CE5
1251 	 * buffers, interrupts are disabled. Thus CE5 access is serialized.
1252 	 */
1253 	__skb_queue_head_init(&list);
1254 	while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
1255 						    &nbytes) == 0) {
1256 		skb = transfer_context;
1257 		max_nbytes = skb->len + skb_tailroom(skb);
1258 
1259 		if (unlikely(max_nbytes < nbytes)) {
1260 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1261 				    nbytes, max_nbytes);
1262 			continue;
1263 		}
1264 
1265 		dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1266 					max_nbytes, DMA_FROM_DEVICE);
1267 		skb_put(skb, nbytes);
1268 		__skb_queue_tail(&list, skb);
1269 	}
1270 
1271 	nentries = skb_queue_len(&list);
1272 	while ((skb = __skb_dequeue(&list))) {
1273 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1274 			   ce_state->id, skb->len);
1275 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1276 				skb->data, skb->len);
1277 
1278 		orig_len = skb->len;
1279 		callback(ar, skb);
1280 		skb_push(skb, orig_len - skb->len);
1281 		skb_reset_tail_pointer(skb);
1282 		skb_trim(skb, 0);
1283 
1284 		/*let device gain the buffer again*/
1285 		dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1286 					   skb->len + skb_tailroom(skb),
1287 					   DMA_FROM_DEVICE);
1288 	}
1289 	ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
1290 }
1291 
1292 /* Called by lower (CE) layer when data is received from the Target. */
ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe * ce_state)1293 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1294 {
1295 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1296 }
1297 
ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe * ce_state)1298 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1299 {
1300 	/* CE4 polling needs to be done whenever CE pipe which transports
1301 	 * HTT Rx (target->host) is processed.
1302 	 */
1303 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1304 
1305 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1306 }
1307 
1308 /* Called by lower (CE) layer when data is received from the Target.
1309  * Only 10.4 firmware uses separate CE to transfer pktlog data.
1310  */
ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe * ce_state)1311 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1312 {
1313 	ath10k_pci_process_rx_cb(ce_state,
1314 				 ath10k_htt_rx_pktlog_completion_handler);
1315 }
1316 
1317 /* Called by lower (CE) layer when a send to HTT Target completes. */
ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe * ce_state)1318 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1319 {
1320 	struct ath10k *ar = ce_state->ar;
1321 	struct sk_buff *skb;
1322 
1323 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1324 		/* no need to call tx completion for NULL pointers */
1325 		if (!skb)
1326 			continue;
1327 
1328 		dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1329 				 skb->len, DMA_TO_DEVICE);
1330 		ath10k_htt_hif_tx_complete(ar, skb);
1331 	}
1332 }
1333 
ath10k_pci_htt_rx_deliver(struct ath10k * ar,struct sk_buff * skb)1334 static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1335 {
1336 	skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1337 	ath10k_htt_t2h_msg_handler(ar, skb);
1338 }
1339 
1340 /* Called by lower (CE) layer when HTT data is received from the Target. */
ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe * ce_state)1341 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1342 {
1343 	/* CE4 polling needs to be done whenever CE pipe which transports
1344 	 * HTT Rx (target->host) is processed.
1345 	 */
1346 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1347 
1348 	ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1349 }
1350 
ath10k_pci_hif_tx_sg(struct ath10k * ar,u8 pipe_id,struct ath10k_hif_sg_item * items,int n_items)1351 int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1352 			 struct ath10k_hif_sg_item *items, int n_items)
1353 {
1354 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1355 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1356 	struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1357 	struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1358 	struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1359 	unsigned int nentries_mask;
1360 	unsigned int sw_index;
1361 	unsigned int write_index;
1362 	int err, i = 0;
1363 
1364 	spin_lock_bh(&ce->ce_lock);
1365 
1366 	nentries_mask = src_ring->nentries_mask;
1367 	sw_index = src_ring->sw_index;
1368 	write_index = src_ring->write_index;
1369 
1370 	if (unlikely(CE_RING_DELTA(nentries_mask,
1371 				   write_index, sw_index - 1) < n_items)) {
1372 		err = -ENOBUFS;
1373 		goto err;
1374 	}
1375 
1376 	for (i = 0; i < n_items - 1; i++) {
1377 		ath10k_dbg(ar, ATH10K_DBG_PCI,
1378 			   "pci tx item %d paddr %pad len %d n_items %d\n",
1379 			   i, &items[i].paddr, items[i].len, n_items);
1380 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1381 				items[i].vaddr, items[i].len);
1382 
1383 		err = ath10k_ce_send_nolock(ce_pipe,
1384 					    items[i].transfer_context,
1385 					    items[i].paddr,
1386 					    items[i].len,
1387 					    items[i].transfer_id,
1388 					    CE_SEND_FLAG_GATHER);
1389 		if (err)
1390 			goto err;
1391 	}
1392 
1393 	/* `i` is equal to `n_items -1` after for() */
1394 
1395 	ath10k_dbg(ar, ATH10K_DBG_PCI,
1396 		   "pci tx item %d paddr %pad len %d n_items %d\n",
1397 		   i, &items[i].paddr, items[i].len, n_items);
1398 	ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1399 			items[i].vaddr, items[i].len);
1400 
1401 	err = ath10k_ce_send_nolock(ce_pipe,
1402 				    items[i].transfer_context,
1403 				    items[i].paddr,
1404 				    items[i].len,
1405 				    items[i].transfer_id,
1406 				    0);
1407 	if (err)
1408 		goto err;
1409 
1410 	spin_unlock_bh(&ce->ce_lock);
1411 	return 0;
1412 
1413 err:
1414 	for (; i > 0; i--)
1415 		__ath10k_ce_send_revert(ce_pipe);
1416 
1417 	spin_unlock_bh(&ce->ce_lock);
1418 	return err;
1419 }
1420 
ath10k_pci_hif_diag_read(struct ath10k * ar,u32 address,void * buf,size_t buf_len)1421 int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1422 			     size_t buf_len)
1423 {
1424 	return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1425 }
1426 
ath10k_pci_hif_get_free_queue_number(struct ath10k * ar,u8 pipe)1427 u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1428 {
1429 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1430 
1431 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1432 
1433 	return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1434 }
1435 
ath10k_pci_dump_registers(struct ath10k * ar,struct ath10k_fw_crash_data * crash_data)1436 static void ath10k_pci_dump_registers(struct ath10k *ar,
1437 				      struct ath10k_fw_crash_data *crash_data)
1438 {
1439 	__le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1440 	int i, ret;
1441 
1442 	lockdep_assert_held(&ar->dump_mutex);
1443 
1444 	ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1445 				      hi_failure_state,
1446 				      REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1447 	if (ret) {
1448 		ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1449 		return;
1450 	}
1451 
1452 	BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1453 
1454 	ath10k_err(ar, "firmware register dump:\n");
1455 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1456 		ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1457 			   i,
1458 			   __le32_to_cpu(reg_dump_values[i]),
1459 			   __le32_to_cpu(reg_dump_values[i + 1]),
1460 			   __le32_to_cpu(reg_dump_values[i + 2]),
1461 			   __le32_to_cpu(reg_dump_values[i + 3]));
1462 
1463 	if (!crash_data)
1464 		return;
1465 
1466 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1467 		crash_data->registers[i] = reg_dump_values[i];
1468 }
1469 
ath10k_pci_dump_memory_section(struct ath10k * ar,const struct ath10k_mem_region * mem_region,u8 * buf,size_t buf_len)1470 static int ath10k_pci_dump_memory_section(struct ath10k *ar,
1471 					  const struct ath10k_mem_region *mem_region,
1472 					  u8 *buf, size_t buf_len)
1473 {
1474 	const struct ath10k_mem_section *cur_section, *next_section;
1475 	unsigned int count, section_size, skip_size;
1476 	int ret, i, j;
1477 
1478 	if (!mem_region || !buf)
1479 		return 0;
1480 
1481 	cur_section = &mem_region->section_table.sections[0];
1482 
1483 	if (mem_region->start > cur_section->start) {
1484 		ath10k_warn(ar, "incorrect memdump region 0x%x with section start address 0x%x.\n",
1485 			    mem_region->start, cur_section->start);
1486 		return 0;
1487 	}
1488 
1489 	skip_size = cur_section->start - mem_region->start;
1490 
1491 	/* fill the gap between the first register section and register
1492 	 * start address
1493 	 */
1494 	for (i = 0; i < skip_size; i++) {
1495 		*buf = ATH10K_MAGIC_NOT_COPIED;
1496 		buf++;
1497 	}
1498 
1499 	count = 0;
1500 
1501 	for (i = 0; cur_section != NULL; i++) {
1502 		section_size = cur_section->end - cur_section->start;
1503 
1504 		if (section_size <= 0) {
1505 			ath10k_warn(ar, "incorrect ramdump format with start address 0x%x and stop address 0x%x\n",
1506 				    cur_section->start,
1507 				    cur_section->end);
1508 			break;
1509 		}
1510 
1511 		if ((i + 1) == mem_region->section_table.size) {
1512 			/* last section */
1513 			next_section = NULL;
1514 			skip_size = 0;
1515 		} else {
1516 			next_section = cur_section + 1;
1517 
1518 			if (cur_section->end > next_section->start) {
1519 				ath10k_warn(ar, "next ramdump section 0x%x is smaller than current end address 0x%x\n",
1520 					    next_section->start,
1521 					    cur_section->end);
1522 				break;
1523 			}
1524 
1525 			skip_size = next_section->start - cur_section->end;
1526 		}
1527 
1528 		if (buf_len < (skip_size + section_size)) {
1529 			ath10k_warn(ar, "ramdump buffer is too small: %zu\n", buf_len);
1530 			break;
1531 		}
1532 
1533 		buf_len -= skip_size + section_size;
1534 
1535 		/* read section to dest memory */
1536 		ret = ath10k_pci_diag_read_mem(ar, cur_section->start,
1537 					       buf, section_size);
1538 		if (ret) {
1539 			ath10k_warn(ar, "failed to read ramdump from section 0x%x: %d\n",
1540 				    cur_section->start, ret);
1541 			break;
1542 		}
1543 
1544 		buf += section_size;
1545 		count += section_size;
1546 
1547 		/* fill in the gap between this section and the next */
1548 		for (j = 0; j < skip_size; j++) {
1549 			*buf = ATH10K_MAGIC_NOT_COPIED;
1550 			buf++;
1551 		}
1552 
1553 		count += skip_size;
1554 
1555 		if (!next_section)
1556 			/* this was the last section */
1557 			break;
1558 
1559 		cur_section = next_section;
1560 	}
1561 
1562 	return count;
1563 }
1564 
ath10k_pci_set_ram_config(struct ath10k * ar,u32 config)1565 static int ath10k_pci_set_ram_config(struct ath10k *ar, u32 config)
1566 {
1567 	u32 val;
1568 
1569 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1570 			   FW_RAM_CONFIG_ADDRESS, config);
1571 
1572 	val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1573 				FW_RAM_CONFIG_ADDRESS);
1574 	if (val != config) {
1575 		ath10k_warn(ar, "failed to set RAM config from 0x%x to 0x%x\n",
1576 			    val, config);
1577 		return -EIO;
1578 	}
1579 
1580 	return 0;
1581 }
1582 
1583 /* Always returns the length */
ath10k_pci_dump_memory_sram(struct ath10k * ar,const struct ath10k_mem_region * region,u8 * buf)1584 static int ath10k_pci_dump_memory_sram(struct ath10k *ar,
1585 				       const struct ath10k_mem_region *region,
1586 				       u8 *buf)
1587 {
1588 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1589 	u32 base_addr, i;
1590 
1591 	base_addr = ioread32(ar_pci->mem + QCA99X0_PCIE_BAR0_START_REG);
1592 	base_addr += region->start;
1593 
1594 	for (i = 0; i < region->len; i += 4) {
1595 		iowrite32(base_addr + i, ar_pci->mem + QCA99X0_CPU_MEM_ADDR_REG);
1596 		*(u32 *)(buf + i) = ioread32(ar_pci->mem + QCA99X0_CPU_MEM_DATA_REG);
1597 	}
1598 
1599 	return region->len;
1600 }
1601 
1602 /* if an error happened returns < 0, otherwise the length */
ath10k_pci_dump_memory_reg(struct ath10k * ar,const struct ath10k_mem_region * region,u8 * buf)1603 static int ath10k_pci_dump_memory_reg(struct ath10k *ar,
1604 				      const struct ath10k_mem_region *region,
1605 				      u8 *buf)
1606 {
1607 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1608 	u32 i;
1609 	int ret;
1610 
1611 	mutex_lock(&ar->conf_mutex);
1612 	if (ar->state != ATH10K_STATE_ON) {
1613 		ath10k_warn(ar, "Skipping pci_dump_memory_reg invalid state\n");
1614 		ret = -EIO;
1615 		goto done;
1616 	}
1617 
1618 	for (i = 0; i < region->len; i += 4)
1619 		*(u32 *)(buf + i) = ioread32(ar_pci->mem + region->start + i);
1620 
1621 	ret = region->len;
1622 done:
1623 	mutex_unlock(&ar->conf_mutex);
1624 	return ret;
1625 }
1626 
1627 /* if an error happened returns < 0, otherwise the length */
ath10k_pci_dump_memory_generic(struct ath10k * ar,const struct ath10k_mem_region * current_region,u8 * buf)1628 static int ath10k_pci_dump_memory_generic(struct ath10k *ar,
1629 					  const struct ath10k_mem_region *current_region,
1630 					  u8 *buf)
1631 {
1632 	int ret;
1633 
1634 	if (current_region->section_table.size > 0)
1635 		/* Copy each section individually. */
1636 		return ath10k_pci_dump_memory_section(ar,
1637 						      current_region,
1638 						      buf,
1639 						      current_region->len);
1640 
1641 	/* No individual memory sections defined so we can
1642 	 * copy the entire memory region.
1643 	 */
1644 	ret = ath10k_pci_diag_read_mem(ar,
1645 				       current_region->start,
1646 				       buf,
1647 				       current_region->len);
1648 	if (ret) {
1649 		ath10k_warn(ar, "failed to copy ramdump region %s: %d\n",
1650 			    current_region->name, ret);
1651 		return ret;
1652 	}
1653 
1654 	return current_region->len;
1655 }
1656 
ath10k_pci_dump_memory(struct ath10k * ar,struct ath10k_fw_crash_data * crash_data)1657 static void ath10k_pci_dump_memory(struct ath10k *ar,
1658 				   struct ath10k_fw_crash_data *crash_data)
1659 {
1660 	const struct ath10k_hw_mem_layout *mem_layout;
1661 	const struct ath10k_mem_region *current_region;
1662 	struct ath10k_dump_ram_data_hdr *hdr;
1663 	u32 count, shift;
1664 	size_t buf_len;
1665 	int ret, i;
1666 	u8 *buf;
1667 
1668 	lockdep_assert_held(&ar->dump_mutex);
1669 
1670 	if (!crash_data)
1671 		return;
1672 
1673 	mem_layout = ath10k_coredump_get_mem_layout(ar);
1674 	if (!mem_layout)
1675 		return;
1676 
1677 	current_region = &mem_layout->region_table.regions[0];
1678 
1679 	buf = crash_data->ramdump_buf;
1680 	buf_len = crash_data->ramdump_buf_len;
1681 
1682 	memset(buf, 0, buf_len);
1683 
1684 	for (i = 0; i < mem_layout->region_table.size; i++) {
1685 		count = 0;
1686 
1687 		if (current_region->len > buf_len) {
1688 			ath10k_warn(ar, "memory region %s size %d is larger that remaining ramdump buffer size %zu\n",
1689 				    current_region->name,
1690 				    current_region->len,
1691 				    buf_len);
1692 			break;
1693 		}
1694 
1695 		/* To get IRAM dump, the host driver needs to switch target
1696 		 * ram config from DRAM to IRAM.
1697 		 */
1698 		if (current_region->type == ATH10K_MEM_REGION_TYPE_IRAM1 ||
1699 		    current_region->type == ATH10K_MEM_REGION_TYPE_IRAM2) {
1700 			shift = current_region->start >> 20;
1701 
1702 			ret = ath10k_pci_set_ram_config(ar, shift);
1703 			if (ret) {
1704 				ath10k_warn(ar, "failed to switch ram config to IRAM for section %s: %d\n",
1705 					    current_region->name, ret);
1706 				break;
1707 			}
1708 		}
1709 
1710 		/* Reserve space for the header. */
1711 		hdr = (void *)buf;
1712 		buf += sizeof(*hdr);
1713 		buf_len -= sizeof(*hdr);
1714 
1715 		switch (current_region->type) {
1716 		case ATH10K_MEM_REGION_TYPE_IOSRAM:
1717 			count = ath10k_pci_dump_memory_sram(ar, current_region, buf);
1718 			break;
1719 		case ATH10K_MEM_REGION_TYPE_IOREG:
1720 			ret = ath10k_pci_dump_memory_reg(ar, current_region, buf);
1721 			if (ret < 0)
1722 				break;
1723 
1724 			count = ret;
1725 			break;
1726 		default:
1727 			ret = ath10k_pci_dump_memory_generic(ar, current_region, buf);
1728 			if (ret < 0)
1729 				break;
1730 
1731 			count = ret;
1732 			break;
1733 		}
1734 
1735 		hdr->region_type = cpu_to_le32(current_region->type);
1736 		hdr->start = cpu_to_le32(current_region->start);
1737 		hdr->length = cpu_to_le32(count);
1738 
1739 		if (count == 0)
1740 			/* Note: the header remains, just with zero length. */
1741 			break;
1742 
1743 		buf += count;
1744 		buf_len -= count;
1745 
1746 		current_region++;
1747 	}
1748 }
1749 
ath10k_pci_fw_dump_work(struct work_struct * work)1750 static void ath10k_pci_fw_dump_work(struct work_struct *work)
1751 {
1752 	struct ath10k_pci *ar_pci = container_of(work, struct ath10k_pci,
1753 						 dump_work);
1754 	struct ath10k_fw_crash_data *crash_data;
1755 	struct ath10k *ar = ar_pci->ar;
1756 	char guid[UUID_STRING_LEN + 1];
1757 
1758 	mutex_lock(&ar->dump_mutex);
1759 
1760 	spin_lock_bh(&ar->data_lock);
1761 	ar->stats.fw_crash_counter++;
1762 	spin_unlock_bh(&ar->data_lock);
1763 
1764 	crash_data = ath10k_coredump_new(ar);
1765 
1766 	if (crash_data)
1767 		scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid);
1768 	else
1769 		scnprintf(guid, sizeof(guid), "n/a");
1770 
1771 	ath10k_err(ar, "firmware crashed! (guid %s)\n", guid);
1772 	ath10k_print_driver_info(ar);
1773 	ath10k_pci_dump_registers(ar, crash_data);
1774 	ath10k_ce_dump_registers(ar, crash_data);
1775 	ath10k_pci_dump_memory(ar, crash_data);
1776 
1777 	mutex_unlock(&ar->dump_mutex);
1778 
1779 	ath10k_core_start_recovery(ar);
1780 }
1781 
ath10k_pci_fw_crashed_dump(struct ath10k * ar)1782 static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1783 {
1784 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1785 
1786 	queue_work(ar->workqueue, &ar_pci->dump_work);
1787 }
1788 
ath10k_pci_hif_send_complete_check(struct ath10k * ar,u8 pipe,int force)1789 void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1790 					int force)
1791 {
1792 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1793 
1794 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1795 
1796 	if (!force) {
1797 		int resources;
1798 		/*
1799 		 * Decide whether to actually poll for completions, or just
1800 		 * wait for a later chance.
1801 		 * If there seem to be plenty of resources left, then just wait
1802 		 * since checking involves reading a CE register, which is a
1803 		 * relatively expensive operation.
1804 		 */
1805 		resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1806 
1807 		/*
1808 		 * If at least 50% of the total resources are still available,
1809 		 * don't bother checking again yet.
1810 		 */
1811 		if (resources > (ar_pci->attr[pipe].src_nentries >> 1))
1812 			return;
1813 	}
1814 	ath10k_ce_per_engine_service(ar, pipe);
1815 }
1816 
ath10k_pci_rx_retry_sync(struct ath10k * ar)1817 static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
1818 {
1819 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1820 
1821 	timer_delete_sync(&ar_pci->rx_post_retry);
1822 }
1823 
ath10k_pci_hif_map_service_to_pipe(struct ath10k * ar,u16 service_id,u8 * ul_pipe,u8 * dl_pipe)1824 int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1825 				       u8 *ul_pipe, u8 *dl_pipe)
1826 {
1827 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1828 	const struct ce_service_to_pipe *entry;
1829 	bool ul_set = false, dl_set = false;
1830 	int i;
1831 
1832 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1833 
1834 	for (i = 0; i < ARRAY_SIZE(pci_target_service_to_ce_map_wlan); i++) {
1835 		entry = &ar_pci->serv_to_pipe[i];
1836 
1837 		if (__le32_to_cpu(entry->service_id) != service_id)
1838 			continue;
1839 
1840 		switch (__le32_to_cpu(entry->pipedir)) {
1841 		case PIPEDIR_NONE:
1842 			break;
1843 		case PIPEDIR_IN:
1844 			WARN_ON(dl_set);
1845 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1846 			dl_set = true;
1847 			break;
1848 		case PIPEDIR_OUT:
1849 			WARN_ON(ul_set);
1850 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1851 			ul_set = true;
1852 			break;
1853 		case PIPEDIR_INOUT:
1854 			WARN_ON(dl_set);
1855 			WARN_ON(ul_set);
1856 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1857 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1858 			dl_set = true;
1859 			ul_set = true;
1860 			break;
1861 		}
1862 	}
1863 
1864 	if (!ul_set || !dl_set)
1865 		return -ENOENT;
1866 
1867 	return 0;
1868 }
1869 
ath10k_pci_hif_get_default_pipe(struct ath10k * ar,u8 * ul_pipe,u8 * dl_pipe)1870 void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1871 				     u8 *ul_pipe, u8 *dl_pipe)
1872 {
1873 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1874 
1875 	(void)ath10k_pci_hif_map_service_to_pipe(ar,
1876 						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1877 						 ul_pipe, dl_pipe);
1878 }
1879 
ath10k_pci_irq_msi_fw_mask(struct ath10k * ar)1880 void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1881 {
1882 	u32 val;
1883 
1884 	switch (ar->hw_rev) {
1885 	case ATH10K_HW_QCA988X:
1886 	case ATH10K_HW_QCA9887:
1887 	case ATH10K_HW_QCA6174:
1888 	case ATH10K_HW_QCA9377:
1889 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1890 					CORE_CTRL_ADDRESS);
1891 		val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1892 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1893 				   CORE_CTRL_ADDRESS, val);
1894 		break;
1895 	case ATH10K_HW_QCA99X0:
1896 	case ATH10K_HW_QCA9984:
1897 	case ATH10K_HW_QCA9888:
1898 	case ATH10K_HW_QCA4019:
1899 		/* TODO: Find appropriate register configuration for QCA99X0
1900 		 *  to mask irq/MSI.
1901 		 */
1902 		break;
1903 	case ATH10K_HW_WCN3990:
1904 		break;
1905 	}
1906 }
1907 
ath10k_pci_irq_msi_fw_unmask(struct ath10k * ar)1908 static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1909 {
1910 	u32 val;
1911 
1912 	switch (ar->hw_rev) {
1913 	case ATH10K_HW_QCA988X:
1914 	case ATH10K_HW_QCA9887:
1915 	case ATH10K_HW_QCA6174:
1916 	case ATH10K_HW_QCA9377:
1917 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1918 					CORE_CTRL_ADDRESS);
1919 		val |= CORE_CTRL_PCIE_REG_31_MASK;
1920 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1921 				   CORE_CTRL_ADDRESS, val);
1922 		break;
1923 	case ATH10K_HW_QCA99X0:
1924 	case ATH10K_HW_QCA9984:
1925 	case ATH10K_HW_QCA9888:
1926 	case ATH10K_HW_QCA4019:
1927 		/* TODO: Find appropriate register configuration for QCA99X0
1928 		 *  to unmask irq/MSI.
1929 		 */
1930 		break;
1931 	case ATH10K_HW_WCN3990:
1932 		break;
1933 	}
1934 }
1935 
ath10k_pci_irq_disable(struct ath10k * ar)1936 static void ath10k_pci_irq_disable(struct ath10k *ar)
1937 {
1938 	ath10k_ce_disable_interrupts(ar);
1939 	ath10k_pci_disable_and_clear_intx_irq(ar);
1940 	ath10k_pci_irq_msi_fw_mask(ar);
1941 }
1942 
ath10k_pci_irq_sync(struct ath10k * ar)1943 static void ath10k_pci_irq_sync(struct ath10k *ar)
1944 {
1945 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1946 
1947 	synchronize_irq(ar_pci->pdev->irq);
1948 }
1949 
ath10k_pci_irq_enable(struct ath10k * ar)1950 static void ath10k_pci_irq_enable(struct ath10k *ar)
1951 {
1952 	ath10k_ce_enable_interrupts(ar);
1953 	ath10k_pci_enable_intx_irq(ar);
1954 	ath10k_pci_irq_msi_fw_unmask(ar);
1955 }
1956 
ath10k_pci_hif_start(struct ath10k * ar)1957 static int ath10k_pci_hif_start(struct ath10k *ar)
1958 {
1959 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1960 
1961 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1962 
1963 	ath10k_core_napi_enable(ar);
1964 
1965 	ath10k_pci_irq_enable(ar);
1966 	ath10k_pci_rx_post(ar);
1967 
1968 	pcie_capability_clear_and_set_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1969 					   PCI_EXP_LNKCTL_ASPMC,
1970 					   ar_pci->link_ctl & PCI_EXP_LNKCTL_ASPMC);
1971 
1972 	return 0;
1973 }
1974 
ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe * pci_pipe)1975 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1976 {
1977 	struct ath10k *ar;
1978 	struct ath10k_ce_pipe *ce_pipe;
1979 	struct ath10k_ce_ring *ce_ring;
1980 	struct sk_buff *skb;
1981 	int i;
1982 
1983 	ar = pci_pipe->hif_ce_state;
1984 	ce_pipe = pci_pipe->ce_hdl;
1985 	ce_ring = ce_pipe->dest_ring;
1986 
1987 	if (!ce_ring)
1988 		return;
1989 
1990 	if (!pci_pipe->buf_sz)
1991 		return;
1992 
1993 	for (i = 0; i < ce_ring->nentries; i++) {
1994 		skb = ce_ring->per_transfer_context[i];
1995 		if (!skb)
1996 			continue;
1997 
1998 		ce_ring->per_transfer_context[i] = NULL;
1999 
2000 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
2001 				 skb->len + skb_tailroom(skb),
2002 				 DMA_FROM_DEVICE);
2003 		dev_kfree_skb_any(skb);
2004 	}
2005 }
2006 
ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe * pci_pipe)2007 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
2008 {
2009 	struct ath10k *ar;
2010 	struct ath10k_ce_pipe *ce_pipe;
2011 	struct ath10k_ce_ring *ce_ring;
2012 	struct sk_buff *skb;
2013 	int i;
2014 
2015 	ar = pci_pipe->hif_ce_state;
2016 	ce_pipe = pci_pipe->ce_hdl;
2017 	ce_ring = ce_pipe->src_ring;
2018 
2019 	if (!ce_ring)
2020 		return;
2021 
2022 	if (!pci_pipe->buf_sz)
2023 		return;
2024 
2025 	for (i = 0; i < ce_ring->nentries; i++) {
2026 		skb = ce_ring->per_transfer_context[i];
2027 		if (!skb)
2028 			continue;
2029 
2030 		ce_ring->per_transfer_context[i] = NULL;
2031 
2032 		ath10k_htc_tx_completion_handler(ar, skb);
2033 	}
2034 }
2035 
2036 /*
2037  * Cleanup residual buffers for device shutdown:
2038  *    buffers that were enqueued for receive
2039  *    buffers that were to be sent
2040  * Note: Buffers that had completed but which were
2041  * not yet processed are on a completion queue. They
2042  * are handled when the completion thread shuts down.
2043  */
ath10k_pci_buffer_cleanup(struct ath10k * ar)2044 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
2045 {
2046 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2047 	int pipe_num;
2048 
2049 	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
2050 		struct ath10k_pci_pipe *pipe_info;
2051 
2052 		pipe_info = &ar_pci->pipe_info[pipe_num];
2053 		ath10k_pci_rx_pipe_cleanup(pipe_info);
2054 		ath10k_pci_tx_pipe_cleanup(pipe_info);
2055 	}
2056 }
2057 
ath10k_pci_ce_deinit(struct ath10k * ar)2058 void ath10k_pci_ce_deinit(struct ath10k *ar)
2059 {
2060 	int i;
2061 
2062 	for (i = 0; i < CE_COUNT; i++)
2063 		ath10k_ce_deinit_pipe(ar, i);
2064 }
2065 
ath10k_pci_flush(struct ath10k * ar)2066 void ath10k_pci_flush(struct ath10k *ar)
2067 {
2068 	ath10k_pci_rx_retry_sync(ar);
2069 	ath10k_pci_buffer_cleanup(ar);
2070 }
2071 
ath10k_pci_hif_stop(struct ath10k * ar)2072 static void ath10k_pci_hif_stop(struct ath10k *ar)
2073 {
2074 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2075 	unsigned long flags;
2076 
2077 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
2078 
2079 	ath10k_pci_irq_disable(ar);
2080 	ath10k_pci_irq_sync(ar);
2081 
2082 	ath10k_core_napi_sync_disable(ar);
2083 
2084 	cancel_work_sync(&ar_pci->dump_work);
2085 
2086 	/* Most likely the device has HTT Rx ring configured. The only way to
2087 	 * prevent the device from accessing (and possible corrupting) host
2088 	 * memory is to reset the chip now.
2089 	 *
2090 	 * There's also no known way of masking MSI interrupts on the device.
2091 	 * For ranged MSI the CE-related interrupts can be masked. However
2092 	 * regardless how many MSI interrupts are assigned the first one
2093 	 * is always used for firmware indications (crashes) and cannot be
2094 	 * masked. To prevent the device from asserting the interrupt reset it
2095 	 * before proceeding with cleanup.
2096 	 */
2097 	ath10k_pci_safe_chip_reset(ar);
2098 
2099 	ath10k_pci_flush(ar);
2100 
2101 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
2102 	WARN_ON(ar_pci->ps_wake_refcount > 0);
2103 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
2104 }
2105 
ath10k_pci_hif_exchange_bmi_msg(struct ath10k * ar,void * req,u32 req_len,void * resp,u32 * resp_len)2106 int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
2107 				    void *req, u32 req_len,
2108 				    void *resp, u32 *resp_len)
2109 {
2110 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2111 	struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
2112 	struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
2113 	struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
2114 	struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
2115 	dma_addr_t req_paddr = 0;
2116 	dma_addr_t resp_paddr = 0;
2117 	struct bmi_xfer xfer = {};
2118 	void *treq, *tresp = NULL;
2119 	int ret = 0;
2120 
2121 	might_sleep();
2122 
2123 	if (resp && !resp_len)
2124 		return -EINVAL;
2125 
2126 	if (resp && resp_len && *resp_len == 0)
2127 		return -EINVAL;
2128 
2129 	treq = kmemdup(req, req_len, GFP_KERNEL);
2130 	if (!treq)
2131 		return -ENOMEM;
2132 
2133 	req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
2134 	ret = dma_mapping_error(ar->dev, req_paddr);
2135 	if (ret) {
2136 		ret = -EIO;
2137 		goto err_dma;
2138 	}
2139 
2140 	if (resp && resp_len) {
2141 		tresp = kzalloc(*resp_len, GFP_KERNEL);
2142 		if (!tresp) {
2143 			ret = -ENOMEM;
2144 			goto err_req;
2145 		}
2146 
2147 		resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
2148 					    DMA_FROM_DEVICE);
2149 		ret = dma_mapping_error(ar->dev, resp_paddr);
2150 		if (ret) {
2151 			ret = -EIO;
2152 			goto err_req;
2153 		}
2154 
2155 		xfer.wait_for_resp = true;
2156 		xfer.resp_len = 0;
2157 
2158 		ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
2159 	}
2160 
2161 	ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
2162 	if (ret)
2163 		goto err_resp;
2164 
2165 	ret = ath10k_pci_bmi_wait(ar, ce_tx, ce_rx, &xfer);
2166 	if (ret) {
2167 		dma_addr_t unused_buffer;
2168 		unsigned int unused_nbytes;
2169 		unsigned int unused_id;
2170 
2171 		ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
2172 					   &unused_nbytes, &unused_id);
2173 	} else {
2174 		/* non-zero means we did not time out */
2175 		ret = 0;
2176 	}
2177 
2178 err_resp:
2179 	if (resp) {
2180 		dma_addr_t unused_buffer;
2181 
2182 		ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
2183 		dma_unmap_single(ar->dev, resp_paddr,
2184 				 *resp_len, DMA_FROM_DEVICE);
2185 	}
2186 err_req:
2187 	dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
2188 
2189 	if (ret == 0 && resp_len) {
2190 		*resp_len = min(*resp_len, xfer.resp_len);
2191 		memcpy(resp, tresp, *resp_len);
2192 	}
2193 err_dma:
2194 	kfree(treq);
2195 	kfree(tresp);
2196 
2197 	return ret;
2198 }
2199 
ath10k_pci_bmi_send_done(struct ath10k_ce_pipe * ce_state)2200 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
2201 {
2202 	struct bmi_xfer *xfer;
2203 
2204 	if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
2205 		return;
2206 
2207 	xfer->tx_done = true;
2208 }
2209 
ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe * ce_state)2210 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
2211 {
2212 	struct ath10k *ar = ce_state->ar;
2213 	struct bmi_xfer *xfer;
2214 	unsigned int nbytes;
2215 
2216 	if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
2217 					  &nbytes))
2218 		return;
2219 
2220 	if (WARN_ON_ONCE(!xfer))
2221 		return;
2222 
2223 	if (!xfer->wait_for_resp) {
2224 		ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
2225 		return;
2226 	}
2227 
2228 	xfer->resp_len = nbytes;
2229 	xfer->rx_done = true;
2230 }
2231 
ath10k_pci_bmi_wait(struct ath10k * ar,struct ath10k_ce_pipe * tx_pipe,struct ath10k_ce_pipe * rx_pipe,struct bmi_xfer * xfer)2232 static int ath10k_pci_bmi_wait(struct ath10k *ar,
2233 			       struct ath10k_ce_pipe *tx_pipe,
2234 			       struct ath10k_ce_pipe *rx_pipe,
2235 			       struct bmi_xfer *xfer)
2236 {
2237 	unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
2238 	unsigned long started = jiffies;
2239 	unsigned long dur;
2240 	int ret;
2241 
2242 	while (time_before_eq(jiffies, timeout)) {
2243 		ath10k_pci_bmi_send_done(tx_pipe);
2244 		ath10k_pci_bmi_recv_data(rx_pipe);
2245 
2246 		if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) {
2247 			ret = 0;
2248 			goto out;
2249 		}
2250 
2251 		schedule();
2252 	}
2253 
2254 	ret = -ETIMEDOUT;
2255 
2256 out:
2257 	dur = jiffies - started;
2258 	if (dur > HZ)
2259 		ath10k_dbg(ar, ATH10K_DBG_BMI,
2260 			   "bmi cmd took %lu jiffies hz %d ret %d\n",
2261 			   dur, HZ, ret);
2262 	return ret;
2263 }
2264 
2265 /*
2266  * Send an interrupt to the device to wake up the Target CPU
2267  * so it has an opportunity to notice any changed state.
2268  */
ath10k_pci_wake_target_cpu(struct ath10k * ar)2269 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
2270 {
2271 	u32 addr, val;
2272 
2273 	addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS;
2274 	val = ath10k_pci_read32(ar, addr);
2275 	val |= CORE_CTRL_CPU_INTR_MASK;
2276 	ath10k_pci_write32(ar, addr, val);
2277 
2278 	return 0;
2279 }
2280 
ath10k_pci_get_num_banks(struct ath10k * ar)2281 static int ath10k_pci_get_num_banks(struct ath10k *ar)
2282 {
2283 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2284 
2285 	switch (ar_pci->pdev->device) {
2286 	case QCA988X_2_0_DEVICE_ID_UBNT:
2287 	case QCA988X_2_0_DEVICE_ID:
2288 	case QCA99X0_2_0_DEVICE_ID:
2289 	case QCA9888_2_0_DEVICE_ID:
2290 	case QCA9984_1_0_DEVICE_ID:
2291 	case QCA9887_1_0_DEVICE_ID:
2292 		return 1;
2293 	case QCA6164_2_1_DEVICE_ID:
2294 	case QCA6174_2_1_DEVICE_ID:
2295 		switch (MS(ar->bus_param.chip_id, SOC_CHIP_ID_REV)) {
2296 		case QCA6174_HW_1_0_CHIP_ID_REV:
2297 		case QCA6174_HW_1_1_CHIP_ID_REV:
2298 		case QCA6174_HW_2_1_CHIP_ID_REV:
2299 		case QCA6174_HW_2_2_CHIP_ID_REV:
2300 			return 3;
2301 		case QCA6174_HW_1_3_CHIP_ID_REV:
2302 			return 2;
2303 		case QCA6174_HW_3_0_CHIP_ID_REV:
2304 		case QCA6174_HW_3_1_CHIP_ID_REV:
2305 		case QCA6174_HW_3_2_CHIP_ID_REV:
2306 			return 9;
2307 		}
2308 		break;
2309 	case QCA9377_1_0_DEVICE_ID:
2310 		return 9;
2311 	}
2312 
2313 	ath10k_warn(ar, "unknown number of banks, assuming 1\n");
2314 	return 1;
2315 }
2316 
ath10k_bus_get_num_banks(struct ath10k * ar)2317 static int ath10k_bus_get_num_banks(struct ath10k *ar)
2318 {
2319 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2320 
2321 	return ce->bus_ops->get_num_banks(ar);
2322 }
2323 
ath10k_pci_init_config(struct ath10k * ar)2324 int ath10k_pci_init_config(struct ath10k *ar)
2325 {
2326 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2327 	u32 interconnect_targ_addr;
2328 	u32 pcie_state_targ_addr = 0;
2329 	u32 pipe_cfg_targ_addr = 0;
2330 	u32 svc_to_pipe_map = 0;
2331 	u32 pcie_config_flags = 0;
2332 	u32 ealloc_value;
2333 	u32 ealloc_targ_addr;
2334 	u32 flag2_value;
2335 	u32 flag2_targ_addr;
2336 	int ret = 0;
2337 
2338 	/* Download to Target the CE Config and the service-to-CE map */
2339 	interconnect_targ_addr =
2340 		host_interest_item_address(HI_ITEM(hi_interconnect_state));
2341 
2342 	/* Supply Target-side CE configuration */
2343 	ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
2344 				     &pcie_state_targ_addr);
2345 	if (ret != 0) {
2346 		ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
2347 		return ret;
2348 	}
2349 
2350 	if (pcie_state_targ_addr == 0) {
2351 		ret = -EIO;
2352 		ath10k_err(ar, "Invalid pcie state addr\n");
2353 		return ret;
2354 	}
2355 
2356 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2357 					  offsetof(struct pcie_state,
2358 						   pipe_cfg_addr)),
2359 				     &pipe_cfg_targ_addr);
2360 	if (ret != 0) {
2361 		ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
2362 		return ret;
2363 	}
2364 
2365 	if (pipe_cfg_targ_addr == 0) {
2366 		ret = -EIO;
2367 		ath10k_err(ar, "Invalid pipe cfg addr\n");
2368 		return ret;
2369 	}
2370 
2371 	ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
2372 					ar_pci->pipe_config,
2373 					sizeof(struct ce_pipe_config) *
2374 					NUM_TARGET_CE_CONFIG_WLAN);
2375 
2376 	if (ret != 0) {
2377 		ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
2378 		return ret;
2379 	}
2380 
2381 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2382 					  offsetof(struct pcie_state,
2383 						   svc_to_pipe_map)),
2384 				     &svc_to_pipe_map);
2385 	if (ret != 0) {
2386 		ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
2387 		return ret;
2388 	}
2389 
2390 	if (svc_to_pipe_map == 0) {
2391 		ret = -EIO;
2392 		ath10k_err(ar, "Invalid svc_to_pipe map\n");
2393 		return ret;
2394 	}
2395 
2396 	ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2397 					ar_pci->serv_to_pipe,
2398 					sizeof(pci_target_service_to_ce_map_wlan));
2399 	if (ret != 0) {
2400 		ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2401 		return ret;
2402 	}
2403 
2404 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2405 					  offsetof(struct pcie_state,
2406 						   config_flags)),
2407 				     &pcie_config_flags);
2408 	if (ret != 0) {
2409 		ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2410 		return ret;
2411 	}
2412 
2413 	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2414 
2415 	ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2416 					   offsetof(struct pcie_state,
2417 						    config_flags)),
2418 				      pcie_config_flags);
2419 	if (ret != 0) {
2420 		ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2421 		return ret;
2422 	}
2423 
2424 	/* configure early allocation */
2425 	ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2426 
2427 	ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2428 	if (ret != 0) {
2429 		ath10k_err(ar, "Failed to get early alloc val: %d\n", ret);
2430 		return ret;
2431 	}
2432 
2433 	/* first bank is switched to IRAM */
2434 	ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2435 			 HI_EARLY_ALLOC_MAGIC_MASK);
2436 	ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2437 			  HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2438 			 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2439 
2440 	ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2441 	if (ret != 0) {
2442 		ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2443 		return ret;
2444 	}
2445 
2446 	/* Tell Target to proceed with initialization */
2447 	flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2448 
2449 	ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2450 	if (ret != 0) {
2451 		ath10k_err(ar, "Failed to get option val: %d\n", ret);
2452 		return ret;
2453 	}
2454 
2455 	flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2456 
2457 	ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2458 	if (ret != 0) {
2459 		ath10k_err(ar, "Failed to set option val: %d\n", ret);
2460 		return ret;
2461 	}
2462 
2463 	return 0;
2464 }
2465 
ath10k_pci_override_ce_config(struct ath10k * ar)2466 static void ath10k_pci_override_ce_config(struct ath10k *ar)
2467 {
2468 	struct ce_attr *attr;
2469 	struct ce_pipe_config *config;
2470 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2471 
2472 	/* For QCA6174 we're overriding the Copy Engine 5 configuration,
2473 	 * since it is currently used for other feature.
2474 	 */
2475 
2476 	/* Override Host's Copy Engine 5 configuration */
2477 	attr = &ar_pci->attr[5];
2478 	attr->src_sz_max = 0;
2479 	attr->dest_nentries = 0;
2480 
2481 	/* Override Target firmware's Copy Engine configuration */
2482 	config = &ar_pci->pipe_config[5];
2483 	config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2484 	config->nbytes_max = __cpu_to_le32(2048);
2485 
2486 	/* Map from service/endpoint to Copy Engine */
2487 	ar_pci->serv_to_pipe[15].pipenum = __cpu_to_le32(1);
2488 }
2489 
ath10k_pci_alloc_pipes(struct ath10k * ar)2490 int ath10k_pci_alloc_pipes(struct ath10k *ar)
2491 {
2492 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2493 	struct ath10k_pci_pipe *pipe;
2494 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2495 	int i, ret;
2496 
2497 	for (i = 0; i < CE_COUNT; i++) {
2498 		pipe = &ar_pci->pipe_info[i];
2499 		pipe->ce_hdl = &ce->ce_states[i];
2500 		pipe->pipe_num = i;
2501 		pipe->hif_ce_state = ar;
2502 
2503 		ret = ath10k_ce_alloc_pipe(ar, i, &ar_pci->attr[i]);
2504 		if (ret) {
2505 			ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2506 				   i, ret);
2507 			return ret;
2508 		}
2509 
2510 		/* Last CE is Diagnostic Window */
2511 		if (i == CE_DIAG_PIPE) {
2512 			ar_pci->ce_diag = pipe->ce_hdl;
2513 			continue;
2514 		}
2515 
2516 		pipe->buf_sz = (size_t)(ar_pci->attr[i].src_sz_max);
2517 	}
2518 
2519 	return 0;
2520 }
2521 
ath10k_pci_free_pipes(struct ath10k * ar)2522 void ath10k_pci_free_pipes(struct ath10k *ar)
2523 {
2524 	int i;
2525 
2526 	for (i = 0; i < CE_COUNT; i++)
2527 		ath10k_ce_free_pipe(ar, i);
2528 }
2529 
ath10k_pci_init_pipes(struct ath10k * ar)2530 int ath10k_pci_init_pipes(struct ath10k *ar)
2531 {
2532 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2533 	int i, ret;
2534 
2535 	for (i = 0; i < CE_COUNT; i++) {
2536 		ret = ath10k_ce_init_pipe(ar, i, &ar_pci->attr[i]);
2537 		if (ret) {
2538 			ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2539 				   i, ret);
2540 			return ret;
2541 		}
2542 	}
2543 
2544 	return 0;
2545 }
2546 
ath10k_pci_has_fw_crashed(struct ath10k * ar)2547 static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2548 {
2549 	return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2550 	       FW_IND_EVENT_PENDING;
2551 }
2552 
ath10k_pci_fw_crashed_clear(struct ath10k * ar)2553 static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2554 {
2555 	u32 val;
2556 
2557 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2558 	val &= ~FW_IND_EVENT_PENDING;
2559 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2560 }
2561 
ath10k_pci_has_device_gone(struct ath10k * ar)2562 static bool ath10k_pci_has_device_gone(struct ath10k *ar)
2563 {
2564 	u32 val;
2565 
2566 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2567 	return (val == 0xffffffff);
2568 }
2569 
2570 /* this function effectively clears target memory controller assert line */
ath10k_pci_warm_reset_si0(struct ath10k * ar)2571 static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2572 {
2573 	u32 val;
2574 
2575 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2576 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2577 			       val | SOC_RESET_CONTROL_SI0_RST_MASK);
2578 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2579 
2580 	msleep(10);
2581 
2582 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2583 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2584 			       val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2585 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2586 
2587 	msleep(10);
2588 }
2589 
ath10k_pci_warm_reset_cpu(struct ath10k * ar)2590 static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2591 {
2592 	u32 val;
2593 
2594 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2595 
2596 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2597 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2598 			       val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2599 }
2600 
ath10k_pci_warm_reset_ce(struct ath10k * ar)2601 static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2602 {
2603 	u32 val;
2604 
2605 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2606 
2607 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2608 			       val | SOC_RESET_CONTROL_CE_RST_MASK);
2609 	msleep(10);
2610 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2611 			       val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2612 }
2613 
ath10k_pci_warm_reset_clear_lf(struct ath10k * ar)2614 static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2615 {
2616 	u32 val;
2617 
2618 	val = ath10k_pci_soc_read32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS);
2619 	ath10k_pci_soc_write32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS,
2620 			       val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2621 }
2622 
ath10k_pci_warm_reset(struct ath10k * ar)2623 static int ath10k_pci_warm_reset(struct ath10k *ar)
2624 {
2625 	int ret;
2626 
2627 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2628 
2629 	spin_lock_bh(&ar->data_lock);
2630 	ar->stats.fw_warm_reset_counter++;
2631 	spin_unlock_bh(&ar->data_lock);
2632 
2633 	ath10k_pci_irq_disable(ar);
2634 
2635 	/* Make sure the target CPU is not doing anything dangerous, e.g. if it
2636 	 * were to access copy engine while host performs copy engine reset
2637 	 * then it is possible for the device to confuse pci-e controller to
2638 	 * the point of bringing host system to a complete stop (i.e. hang).
2639 	 */
2640 	ath10k_pci_warm_reset_si0(ar);
2641 	ath10k_pci_warm_reset_cpu(ar);
2642 	ath10k_pci_init_pipes(ar);
2643 	ath10k_pci_wait_for_target_init(ar);
2644 
2645 	ath10k_pci_warm_reset_clear_lf(ar);
2646 	ath10k_pci_warm_reset_ce(ar);
2647 	ath10k_pci_warm_reset_cpu(ar);
2648 	ath10k_pci_init_pipes(ar);
2649 
2650 	ret = ath10k_pci_wait_for_target_init(ar);
2651 	if (ret) {
2652 		ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2653 		return ret;
2654 	}
2655 
2656 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2657 
2658 	return 0;
2659 }
2660 
ath10k_pci_qca99x0_soft_chip_reset(struct ath10k * ar)2661 static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
2662 {
2663 	ath10k_pci_irq_disable(ar);
2664 	return ath10k_pci_qca99x0_chip_reset(ar);
2665 }
2666 
ath10k_pci_safe_chip_reset(struct ath10k * ar)2667 static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2668 {
2669 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2670 
2671 	if (!ar_pci->pci_soft_reset)
2672 		return -EOPNOTSUPP;
2673 
2674 	return ar_pci->pci_soft_reset(ar);
2675 }
2676 
ath10k_pci_qca988x_chip_reset(struct ath10k * ar)2677 static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2678 {
2679 	int i, ret;
2680 	u32 val;
2681 
2682 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2683 
2684 	/* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2685 	 * It is thus preferred to use warm reset which is safer but may not be
2686 	 * able to recover the device from all possible fail scenarios.
2687 	 *
2688 	 * Warm reset doesn't always work on first try so attempt it a few
2689 	 * times before giving up.
2690 	 */
2691 	for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2692 		ret = ath10k_pci_warm_reset(ar);
2693 		if (ret) {
2694 			ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2695 				    i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2696 				    ret);
2697 			continue;
2698 		}
2699 
2700 		/* FIXME: Sometimes copy engine doesn't recover after warm
2701 		 * reset. In most cases this needs cold reset. In some of these
2702 		 * cases the device is in such a state that a cold reset may
2703 		 * lock up the host.
2704 		 *
2705 		 * Reading any host interest register via copy engine is
2706 		 * sufficient to verify if device is capable of booting
2707 		 * firmware blob.
2708 		 */
2709 		ret = ath10k_pci_init_pipes(ar);
2710 		if (ret) {
2711 			ath10k_warn(ar, "failed to init copy engine: %d\n",
2712 				    ret);
2713 			continue;
2714 		}
2715 
2716 		ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2717 					     &val);
2718 		if (ret) {
2719 			ath10k_warn(ar, "failed to poke copy engine: %d\n",
2720 				    ret);
2721 			continue;
2722 		}
2723 
2724 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2725 		return 0;
2726 	}
2727 
2728 	if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2729 		ath10k_warn(ar, "refusing cold reset as requested\n");
2730 		return -EPERM;
2731 	}
2732 
2733 	ret = ath10k_pci_cold_reset(ar);
2734 	if (ret) {
2735 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2736 		return ret;
2737 	}
2738 
2739 	ret = ath10k_pci_wait_for_target_init(ar);
2740 	if (ret) {
2741 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2742 			    ret);
2743 		return ret;
2744 	}
2745 
2746 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2747 
2748 	return 0;
2749 }
2750 
ath10k_pci_qca6174_chip_reset(struct ath10k * ar)2751 static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2752 {
2753 	int ret;
2754 
2755 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2756 
2757 	/* FIXME: QCA6174 requires cold + warm reset to work. */
2758 
2759 	ret = ath10k_pci_cold_reset(ar);
2760 	if (ret) {
2761 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2762 		return ret;
2763 	}
2764 
2765 	ret = ath10k_pci_wait_for_target_init(ar);
2766 	if (ret) {
2767 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2768 			    ret);
2769 		return ret;
2770 	}
2771 
2772 	ret = ath10k_pci_warm_reset(ar);
2773 	if (ret) {
2774 		ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2775 		return ret;
2776 	}
2777 
2778 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2779 
2780 	return 0;
2781 }
2782 
ath10k_pci_qca99x0_chip_reset(struct ath10k * ar)2783 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2784 {
2785 	int ret;
2786 
2787 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2788 
2789 	ret = ath10k_pci_cold_reset(ar);
2790 	if (ret) {
2791 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2792 		return ret;
2793 	}
2794 
2795 	ret = ath10k_pci_wait_for_target_init(ar);
2796 	if (ret) {
2797 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2798 			    ret);
2799 		return ret;
2800 	}
2801 
2802 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2803 
2804 	return 0;
2805 }
2806 
ath10k_pci_chip_reset(struct ath10k * ar)2807 static int ath10k_pci_chip_reset(struct ath10k *ar)
2808 {
2809 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2810 
2811 	if (WARN_ON(!ar_pci->pci_hard_reset))
2812 		return -EOPNOTSUPP;
2813 
2814 	return ar_pci->pci_hard_reset(ar);
2815 }
2816 
ath10k_pci_hif_power_up(struct ath10k * ar,enum ath10k_firmware_mode fw_mode)2817 static int ath10k_pci_hif_power_up(struct ath10k *ar,
2818 				   enum ath10k_firmware_mode fw_mode)
2819 {
2820 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2821 	int ret;
2822 
2823 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2824 
2825 	pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2826 				  &ar_pci->link_ctl);
2827 	pcie_capability_clear_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2828 				   PCI_EXP_LNKCTL_ASPMC);
2829 
2830 	/*
2831 	 * Bring the target up cleanly.
2832 	 *
2833 	 * The target may be in an undefined state with an AUX-powered Target
2834 	 * and a Host in WoW mode. If the Host crashes, loses power, or is
2835 	 * restarted (without unloading the driver) then the Target is left
2836 	 * (aux) powered and running. On a subsequent driver load, the Target
2837 	 * is in an unexpected state. We try to catch that here in order to
2838 	 * reset the Target and retry the probe.
2839 	 */
2840 	ret = ath10k_pci_chip_reset(ar);
2841 	if (ret) {
2842 		if (ath10k_pci_has_fw_crashed(ar)) {
2843 			ath10k_warn(ar, "firmware crashed during chip reset\n");
2844 			ath10k_pci_fw_crashed_clear(ar);
2845 			ath10k_pci_fw_crashed_dump(ar);
2846 		}
2847 
2848 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
2849 		goto err_sleep;
2850 	}
2851 
2852 	ret = ath10k_pci_init_pipes(ar);
2853 	if (ret) {
2854 		ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2855 		goto err_sleep;
2856 	}
2857 
2858 	ret = ath10k_pci_init_config(ar);
2859 	if (ret) {
2860 		ath10k_err(ar, "failed to setup init config: %d\n", ret);
2861 		goto err_ce;
2862 	}
2863 
2864 	ret = ath10k_pci_wake_target_cpu(ar);
2865 	if (ret) {
2866 		ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2867 		goto err_ce;
2868 	}
2869 
2870 	return 0;
2871 
2872 err_ce:
2873 	ath10k_pci_ce_deinit(ar);
2874 
2875 err_sleep:
2876 	return ret;
2877 }
2878 
ath10k_pci_hif_power_down(struct ath10k * ar)2879 void ath10k_pci_hif_power_down(struct ath10k *ar)
2880 {
2881 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2882 
2883 	/* Currently hif_power_up performs effectively a reset and hif_stop
2884 	 * resets the chip as well so there's no point in resetting here.
2885 	 */
2886 }
2887 
ath10k_pci_hif_suspend(struct ath10k * ar)2888 static int ath10k_pci_hif_suspend(struct ath10k *ar)
2889 {
2890 	/* Nothing to do; the important stuff is in the driver suspend. */
2891 	return 0;
2892 }
2893 
ath10k_pci_suspend(struct ath10k * ar)2894 static int ath10k_pci_suspend(struct ath10k *ar)
2895 {
2896 	/* The grace timer can still be counting down and ar->ps_awake be true.
2897 	 * It is known that the device may be asleep after resuming regardless
2898 	 * of the SoC powersave state before suspending. Hence make sure the
2899 	 * device is asleep before proceeding.
2900 	 */
2901 	ath10k_pci_sleep_sync(ar);
2902 
2903 	return 0;
2904 }
2905 
ath10k_pci_hif_resume(struct ath10k * ar)2906 static int ath10k_pci_hif_resume(struct ath10k *ar)
2907 {
2908 	/* Nothing to do; the important stuff is in the driver resume. */
2909 	return 0;
2910 }
2911 
ath10k_pci_resume(struct ath10k * ar)2912 static int ath10k_pci_resume(struct ath10k *ar)
2913 {
2914 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2915 	struct pci_dev *pdev = ar_pci->pdev;
2916 	u32 val;
2917 	int ret = 0;
2918 
2919 	ret = ath10k_pci_force_wake(ar);
2920 	if (ret) {
2921 		ath10k_err(ar, "failed to wake up target: %d\n", ret);
2922 		return ret;
2923 	}
2924 
2925 	/* Suspend/Resume resets the PCI configuration space, so we have to
2926 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2927 	 * from interfering with C3 CPU state. pci_restore_state won't help
2928 	 * here since it only restores the first 64 bytes pci config header.
2929 	 */
2930 	pci_read_config_dword(pdev, 0x40, &val);
2931 	if ((val & 0x0000ff00) != 0)
2932 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2933 
2934 	return ret;
2935 }
2936 
ath10k_pci_validate_cal(void * data,size_t size)2937 static bool ath10k_pci_validate_cal(void *data, size_t size)
2938 {
2939 	__le16 *cal_words = data;
2940 	u16 checksum = 0;
2941 	size_t i;
2942 
2943 	if (size % 2 != 0)
2944 		return false;
2945 
2946 	for (i = 0; i < size / 2; i++)
2947 		checksum ^= le16_to_cpu(cal_words[i]);
2948 
2949 	return checksum == 0xffff;
2950 }
2951 
ath10k_pci_enable_eeprom(struct ath10k * ar)2952 static void ath10k_pci_enable_eeprom(struct ath10k *ar)
2953 {
2954 	/* Enable SI clock */
2955 	ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);
2956 
2957 	/* Configure GPIOs for I2C operation */
2958 	ath10k_pci_write32(ar,
2959 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2960 			   4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
2961 			   SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
2962 			      GPIO_PIN0_CONFIG) |
2963 			   SM(1, GPIO_PIN0_PAD_PULL));
2964 
2965 	ath10k_pci_write32(ar,
2966 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2967 			   4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
2968 			   SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
2969 			   SM(1, GPIO_PIN0_PAD_PULL));
2970 
2971 	ath10k_pci_write32(ar,
2972 			   GPIO_BASE_ADDRESS +
2973 			   QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
2974 			   1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
2975 
2976 	/* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
2977 	ath10k_pci_write32(ar,
2978 			   SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
2979 			   SM(1, SI_CONFIG_ERR_INT) |
2980 			   SM(1, SI_CONFIG_BIDIR_OD_DATA) |
2981 			   SM(1, SI_CONFIG_I2C) |
2982 			   SM(1, SI_CONFIG_POS_SAMPLE) |
2983 			   SM(1, SI_CONFIG_INACTIVE_DATA) |
2984 			   SM(1, SI_CONFIG_INACTIVE_CLK) |
2985 			   SM(8, SI_CONFIG_DIVIDER));
2986 }
2987 
ath10k_pci_read_eeprom(struct ath10k * ar,u16 addr,u8 * out)2988 static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
2989 {
2990 	u32 reg;
2991 	int wait_limit;
2992 
2993 	/* set device select byte and for the read operation */
2994 	reg = QCA9887_EEPROM_SELECT_READ |
2995 	      SM(addr, QCA9887_EEPROM_ADDR_LO) |
2996 	      SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
2997 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);
2998 
2999 	/* write transmit data, transfer length, and START bit */
3000 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
3001 			   SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
3002 			   SM(4, SI_CS_TX_CNT));
3003 
3004 	/* wait max 1 sec */
3005 	wait_limit = 100000;
3006 
3007 	/* wait for SI_CS_DONE_INT */
3008 	do {
3009 		reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
3010 		if (MS(reg, SI_CS_DONE_INT))
3011 			break;
3012 
3013 		wait_limit--;
3014 		udelay(10);
3015 	} while (wait_limit > 0);
3016 
3017 	if (!MS(reg, SI_CS_DONE_INT)) {
3018 		ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
3019 			   addr);
3020 		return -ETIMEDOUT;
3021 	}
3022 
3023 	/* clear SI_CS_DONE_INT */
3024 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);
3025 
3026 	if (MS(reg, SI_CS_DONE_ERR)) {
3027 		ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
3028 		return -EIO;
3029 	}
3030 
3031 	/* extract receive data */
3032 	reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
3033 	*out = reg;
3034 
3035 	return 0;
3036 }
3037 
ath10k_pci_hif_fetch_cal_eeprom(struct ath10k * ar,void ** data,size_t * data_len)3038 static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
3039 					   size_t *data_len)
3040 {
3041 	u8 *caldata = NULL;
3042 	size_t calsize, i;
3043 	int ret;
3044 
3045 	if (!QCA_REV_9887(ar))
3046 		return -EOPNOTSUPP;
3047 
3048 	calsize = ar->hw_params.cal_data_len;
3049 	caldata = kmalloc(calsize, GFP_KERNEL);
3050 	if (!caldata)
3051 		return -ENOMEM;
3052 
3053 	ath10k_pci_enable_eeprom(ar);
3054 
3055 	for (i = 0; i < calsize; i++) {
3056 		ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
3057 		if (ret)
3058 			goto err_free;
3059 	}
3060 
3061 	if (!ath10k_pci_validate_cal(caldata, calsize))
3062 		goto err_free;
3063 
3064 	*data = caldata;
3065 	*data_len = calsize;
3066 
3067 	return 0;
3068 
3069 err_free:
3070 	kfree(caldata);
3071 
3072 	return -EINVAL;
3073 }
3074 
3075 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
3076 	.tx_sg			= ath10k_pci_hif_tx_sg,
3077 	.diag_read		= ath10k_pci_hif_diag_read,
3078 	.diag_write		= ath10k_pci_diag_write_mem,
3079 	.exchange_bmi_msg	= ath10k_pci_hif_exchange_bmi_msg,
3080 	.start			= ath10k_pci_hif_start,
3081 	.stop			= ath10k_pci_hif_stop,
3082 	.map_service_to_pipe	= ath10k_pci_hif_map_service_to_pipe,
3083 	.get_default_pipe	= ath10k_pci_hif_get_default_pipe,
3084 	.send_complete_check	= ath10k_pci_hif_send_complete_check,
3085 	.get_free_queue_number	= ath10k_pci_hif_get_free_queue_number,
3086 	.power_up		= ath10k_pci_hif_power_up,
3087 	.power_down		= ath10k_pci_hif_power_down,
3088 	.read32			= ath10k_pci_read32,
3089 	.write32		= ath10k_pci_write32,
3090 	.suspend		= ath10k_pci_hif_suspend,
3091 	.resume			= ath10k_pci_hif_resume,
3092 	.fetch_cal_eeprom	= ath10k_pci_hif_fetch_cal_eeprom,
3093 };
3094 
3095 /*
3096  * Top-level interrupt handler for all PCI interrupts from a Target.
3097  * When a block of MSI interrupts is allocated, this top-level handler
3098  * is not used; instead, we directly call the correct sub-handler.
3099  */
ath10k_pci_interrupt_handler(int irq,void * arg)3100 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
3101 {
3102 	struct ath10k *ar = arg;
3103 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3104 	int ret;
3105 
3106 	if (ath10k_pci_has_device_gone(ar))
3107 		return IRQ_NONE;
3108 
3109 	ret = ath10k_pci_force_wake(ar);
3110 	if (ret) {
3111 		ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
3112 		return IRQ_NONE;
3113 	}
3114 
3115 	if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_INTX) &&
3116 	    !ath10k_pci_irq_pending(ar))
3117 		return IRQ_NONE;
3118 
3119 	ath10k_pci_disable_and_clear_intx_irq(ar);
3120 	ath10k_pci_irq_msi_fw_mask(ar);
3121 	napi_schedule(&ar->napi);
3122 
3123 	return IRQ_HANDLED;
3124 }
3125 
ath10k_pci_napi_poll(struct napi_struct * ctx,int budget)3126 static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
3127 {
3128 	struct ath10k *ar = container_of(ctx, struct ath10k, napi);
3129 	int done = 0;
3130 
3131 	if (ath10k_pci_has_fw_crashed(ar)) {
3132 		ath10k_pci_fw_crashed_clear(ar);
3133 		ath10k_pci_fw_crashed_dump(ar);
3134 		napi_complete(ctx);
3135 		return done;
3136 	}
3137 
3138 	ath10k_ce_per_engine_service_any(ar);
3139 
3140 	done = ath10k_htt_txrx_compl_task(ar, budget);
3141 
3142 	if (done < budget) {
3143 		napi_complete_done(ctx, done);
3144 		/* In case of MSI, it is possible that interrupts are received
3145 		 * while NAPI poll is inprogress. So pending interrupts that are
3146 		 * received after processing all copy engine pipes by NAPI poll
3147 		 * will not be handled again. This is causing failure to
3148 		 * complete boot sequence in x86 platform. So before enabling
3149 		 * interrupts safer to check for pending interrupts for
3150 		 * immediate servicing.
3151 		 */
3152 		if (ath10k_ce_interrupt_summary(ar)) {
3153 			napi_schedule(ctx);
3154 			goto out;
3155 		}
3156 		ath10k_pci_enable_intx_irq(ar);
3157 		ath10k_pci_irq_msi_fw_unmask(ar);
3158 	}
3159 
3160 out:
3161 	return done;
3162 }
3163 
ath10k_pci_request_irq_msi(struct ath10k * ar)3164 static int ath10k_pci_request_irq_msi(struct ath10k *ar)
3165 {
3166 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3167 	int ret;
3168 
3169 	ret = request_irq(ar_pci->pdev->irq,
3170 			  ath10k_pci_interrupt_handler,
3171 			  IRQF_SHARED, "ath10k_pci", ar);
3172 	if (ret) {
3173 		ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
3174 			    ar_pci->pdev->irq, ret);
3175 		return ret;
3176 	}
3177 
3178 	return 0;
3179 }
3180 
ath10k_pci_request_irq_intx(struct ath10k * ar)3181 static int ath10k_pci_request_irq_intx(struct ath10k *ar)
3182 {
3183 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3184 	int ret;
3185 
3186 	ret = request_irq(ar_pci->pdev->irq,
3187 			  ath10k_pci_interrupt_handler,
3188 			  IRQF_SHARED, "ath10k_pci", ar);
3189 	if (ret) {
3190 		ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
3191 			    ar_pci->pdev->irq, ret);
3192 		return ret;
3193 	}
3194 
3195 	return 0;
3196 }
3197 
ath10k_pci_request_irq(struct ath10k * ar)3198 static int ath10k_pci_request_irq(struct ath10k *ar)
3199 {
3200 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3201 
3202 	switch (ar_pci->oper_irq_mode) {
3203 	case ATH10K_PCI_IRQ_INTX:
3204 		return ath10k_pci_request_irq_intx(ar);
3205 	case ATH10K_PCI_IRQ_MSI:
3206 		return ath10k_pci_request_irq_msi(ar);
3207 	default:
3208 		return -EINVAL;
3209 	}
3210 }
3211 
ath10k_pci_free_irq(struct ath10k * ar)3212 static void ath10k_pci_free_irq(struct ath10k *ar)
3213 {
3214 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3215 
3216 	free_irq(ar_pci->pdev->irq, ar);
3217 }
3218 
ath10k_pci_init_napi(struct ath10k * ar)3219 void ath10k_pci_init_napi(struct ath10k *ar)
3220 {
3221 	netif_napi_add(ar->napi_dev, &ar->napi, ath10k_pci_napi_poll);
3222 }
3223 
ath10k_pci_init_irq(struct ath10k * ar)3224 static int ath10k_pci_init_irq(struct ath10k *ar)
3225 {
3226 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3227 	int ret;
3228 
3229 	ath10k_pci_init_napi(ar);
3230 
3231 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
3232 		ath10k_info(ar, "limiting irq mode to: %d\n",
3233 			    ath10k_pci_irq_mode);
3234 
3235 	/* Try MSI */
3236 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_INTX) {
3237 		ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
3238 		ret = pci_enable_msi(ar_pci->pdev);
3239 		if (ret == 0)
3240 			return 0;
3241 
3242 		/* MHI failed, try legacy irq next */
3243 	}
3244 
3245 	/* Try legacy irq
3246 	 *
3247 	 * A potential race occurs here: The CORE_BASE write
3248 	 * depends on target correctly decoding AXI address but
3249 	 * host won't know when target writes BAR to CORE_CTRL.
3250 	 * This write might get lost if target has NOT written BAR.
3251 	 * For now, fix the race by repeating the write in below
3252 	 * synchronization checking.
3253 	 */
3254 	ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_INTX;
3255 
3256 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3257 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
3258 
3259 	return 0;
3260 }
3261 
ath10k_pci_deinit_irq_intx(struct ath10k * ar)3262 static void ath10k_pci_deinit_irq_intx(struct ath10k *ar)
3263 {
3264 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3265 			   0);
3266 }
3267 
ath10k_pci_deinit_irq(struct ath10k * ar)3268 static int ath10k_pci_deinit_irq(struct ath10k *ar)
3269 {
3270 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3271 
3272 	switch (ar_pci->oper_irq_mode) {
3273 	case ATH10K_PCI_IRQ_INTX:
3274 		ath10k_pci_deinit_irq_intx(ar);
3275 		break;
3276 	default:
3277 		pci_disable_msi(ar_pci->pdev);
3278 		break;
3279 	}
3280 
3281 	return 0;
3282 }
3283 
ath10k_pci_wait_for_target_init(struct ath10k * ar)3284 int ath10k_pci_wait_for_target_init(struct ath10k *ar)
3285 {
3286 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3287 	unsigned long timeout;
3288 	u32 val;
3289 
3290 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
3291 
3292 	timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
3293 
3294 	do {
3295 		val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
3296 
3297 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
3298 			   val);
3299 
3300 		/* target should never return this */
3301 		if (val == 0xffffffff)
3302 			continue;
3303 
3304 		/* the device has crashed so don't bother trying anymore */
3305 		if (val & FW_IND_EVENT_PENDING)
3306 			break;
3307 
3308 		if (val & FW_IND_INITIALIZED)
3309 			break;
3310 
3311 		if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_INTX)
3312 			/* Fix potential race by repeating CORE_BASE writes */
3313 			ath10k_pci_enable_intx_irq(ar);
3314 
3315 		mdelay(10);
3316 	} while (time_before(jiffies, timeout));
3317 
3318 	ath10k_pci_disable_and_clear_intx_irq(ar);
3319 	ath10k_pci_irq_msi_fw_mask(ar);
3320 
3321 	if (val == 0xffffffff) {
3322 		ath10k_err(ar, "failed to read device register, device is gone\n");
3323 		return -EIO;
3324 	}
3325 
3326 	if (val & FW_IND_EVENT_PENDING) {
3327 		ath10k_warn(ar, "device has crashed during init\n");
3328 		return -ECOMM;
3329 	}
3330 
3331 	if (!(val & FW_IND_INITIALIZED)) {
3332 		ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
3333 			   val);
3334 		return -ETIMEDOUT;
3335 	}
3336 
3337 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
3338 	return 0;
3339 }
3340 
ath10k_pci_cold_reset(struct ath10k * ar)3341 static int ath10k_pci_cold_reset(struct ath10k *ar)
3342 {
3343 	u32 val;
3344 
3345 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
3346 
3347 	spin_lock_bh(&ar->data_lock);
3348 
3349 	ar->stats.fw_cold_reset_counter++;
3350 
3351 	spin_unlock_bh(&ar->data_lock);
3352 
3353 	/* Put Target, including PCIe, into RESET. */
3354 	val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
3355 	val |= 1;
3356 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3357 
3358 	/* After writing into SOC_GLOBAL_RESET to put device into
3359 	 * reset and pulling out of reset pcie may not be stable
3360 	 * for any immediate pcie register access and cause bus error,
3361 	 * add delay before any pcie access request to fix this issue.
3362 	 */
3363 	msleep(20);
3364 
3365 	/* Pull Target, including PCIe, out of RESET. */
3366 	val &= ~1;
3367 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3368 
3369 	msleep(20);
3370 
3371 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
3372 
3373 	return 0;
3374 }
3375 
ath10k_pci_claim(struct ath10k * ar)3376 static int ath10k_pci_claim(struct ath10k *ar)
3377 {
3378 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3379 	struct pci_dev *pdev = ar_pci->pdev;
3380 	int ret;
3381 
3382 	pci_set_drvdata(pdev, ar);
3383 
3384 	ret = pci_enable_device(pdev);
3385 	if (ret) {
3386 		ath10k_err(ar, "failed to enable pci device: %d\n", ret);
3387 		return ret;
3388 	}
3389 
3390 	ret = pci_request_region(pdev, BAR_NUM, "ath");
3391 	if (ret) {
3392 		ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
3393 			   ret);
3394 		goto err_device;
3395 	}
3396 
3397 	/* Target expects 32 bit DMA. Enforce it. */
3398 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3399 	if (ret) {
3400 		ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
3401 		goto err_region;
3402 	}
3403 
3404 	pci_set_master(pdev);
3405 
3406 	/* Arrange for access to Target SoC registers. */
3407 	ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
3408 	ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
3409 	if (!ar_pci->mem) {
3410 		ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
3411 		ret = -EIO;
3412 		goto err_region;
3413 	}
3414 
3415 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%p\n", ar_pci->mem);
3416 	return 0;
3417 
3418 err_region:
3419 	pci_release_region(pdev, BAR_NUM);
3420 
3421 err_device:
3422 	pci_disable_device(pdev);
3423 
3424 	return ret;
3425 }
3426 
ath10k_pci_release(struct ath10k * ar)3427 static void ath10k_pci_release(struct ath10k *ar)
3428 {
3429 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3430 	struct pci_dev *pdev = ar_pci->pdev;
3431 
3432 	pci_iounmap(pdev, ar_pci->mem);
3433 	pci_release_region(pdev, BAR_NUM);
3434 	pci_disable_device(pdev);
3435 }
3436 
ath10k_pci_chip_is_supported(u32 dev_id,u32 chip_id)3437 static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
3438 {
3439 	const struct ath10k_pci_supp_chip *supp_chip;
3440 	int i;
3441 	u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3442 
3443 	for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3444 		supp_chip = &ath10k_pci_supp_chips[i];
3445 
3446 		if (supp_chip->dev_id == dev_id &&
3447 		    supp_chip->rev_id == rev_id)
3448 			return true;
3449 	}
3450 
3451 	return false;
3452 }
3453 
ath10k_pci_setup_resource(struct ath10k * ar)3454 int ath10k_pci_setup_resource(struct ath10k *ar)
3455 {
3456 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3457 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
3458 	int ret;
3459 
3460 	spin_lock_init(&ce->ce_lock);
3461 	spin_lock_init(&ar_pci->ps_lock);
3462 	mutex_init(&ar_pci->ce_diag_mutex);
3463 
3464 	INIT_WORK(&ar_pci->dump_work, ath10k_pci_fw_dump_work);
3465 
3466 	timer_setup(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry, 0);
3467 
3468 	ar_pci->attr = kmemdup(pci_host_ce_config_wlan,
3469 			       sizeof(pci_host_ce_config_wlan),
3470 			       GFP_KERNEL);
3471 	if (!ar_pci->attr)
3472 		return -ENOMEM;
3473 
3474 	ar_pci->pipe_config = kmemdup(pci_target_ce_config_wlan,
3475 				      sizeof(pci_target_ce_config_wlan),
3476 				      GFP_KERNEL);
3477 	if (!ar_pci->pipe_config) {
3478 		ret = -ENOMEM;
3479 		goto err_free_attr;
3480 	}
3481 
3482 	ar_pci->serv_to_pipe = kmemdup(pci_target_service_to_ce_map_wlan,
3483 				       sizeof(pci_target_service_to_ce_map_wlan),
3484 				       GFP_KERNEL);
3485 	if (!ar_pci->serv_to_pipe) {
3486 		ret = -ENOMEM;
3487 		goto err_free_pipe_config;
3488 	}
3489 
3490 	if (QCA_REV_6174(ar) || QCA_REV_9377(ar))
3491 		ath10k_pci_override_ce_config(ar);
3492 
3493 	ret = ath10k_pci_alloc_pipes(ar);
3494 	if (ret) {
3495 		ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3496 			   ret);
3497 		goto err_free_serv_to_pipe;
3498 	}
3499 
3500 	return 0;
3501 
3502 err_free_serv_to_pipe:
3503 	kfree(ar_pci->serv_to_pipe);
3504 err_free_pipe_config:
3505 	kfree(ar_pci->pipe_config);
3506 err_free_attr:
3507 	kfree(ar_pci->attr);
3508 	return ret;
3509 }
3510 
ath10k_pci_release_resource(struct ath10k * ar)3511 void ath10k_pci_release_resource(struct ath10k *ar)
3512 {
3513 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3514 
3515 	ath10k_pci_rx_retry_sync(ar);
3516 	netif_napi_del(&ar->napi);
3517 	ath10k_pci_ce_deinit(ar);
3518 	ath10k_pci_free_pipes(ar);
3519 	kfree(ar_pci->attr);
3520 	kfree(ar_pci->pipe_config);
3521 	kfree(ar_pci->serv_to_pipe);
3522 }
3523 
3524 static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3525 	.read32		= ath10k_bus_pci_read32,
3526 	.write32	= ath10k_bus_pci_write32,
3527 	.get_num_banks	= ath10k_pci_get_num_banks,
3528 };
3529 
ath10k_pci_probe(struct pci_dev * pdev,const struct pci_device_id * pci_dev)3530 static int ath10k_pci_probe(struct pci_dev *pdev,
3531 			    const struct pci_device_id *pci_dev)
3532 {
3533 	int ret = 0;
3534 	struct ath10k *ar;
3535 	struct ath10k_pci *ar_pci;
3536 	enum ath10k_hw_rev hw_rev;
3537 	struct ath10k_bus_params bus_params = {};
3538 	bool pci_ps, is_qca988x = false;
3539 	int (*pci_soft_reset)(struct ath10k *ar);
3540 	int (*pci_hard_reset)(struct ath10k *ar);
3541 	u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr);
3542 
3543 	switch (pci_dev->device) {
3544 	case QCA988X_2_0_DEVICE_ID_UBNT:
3545 	case QCA988X_2_0_DEVICE_ID:
3546 		hw_rev = ATH10K_HW_QCA988X;
3547 		pci_ps = false;
3548 		is_qca988x = true;
3549 		pci_soft_reset = ath10k_pci_warm_reset;
3550 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3551 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3552 		break;
3553 	case QCA9887_1_0_DEVICE_ID:
3554 		hw_rev = ATH10K_HW_QCA9887;
3555 		pci_ps = false;
3556 		pci_soft_reset = ath10k_pci_warm_reset;
3557 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3558 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3559 		break;
3560 	case QCA6164_2_1_DEVICE_ID:
3561 	case QCA6174_2_1_DEVICE_ID:
3562 		hw_rev = ATH10K_HW_QCA6174;
3563 		pci_ps = true;
3564 		pci_soft_reset = ath10k_pci_warm_reset;
3565 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3566 		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3567 		break;
3568 	case QCA99X0_2_0_DEVICE_ID:
3569 		hw_rev = ATH10K_HW_QCA99X0;
3570 		pci_ps = false;
3571 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3572 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3573 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3574 		break;
3575 	case QCA9984_1_0_DEVICE_ID:
3576 		hw_rev = ATH10K_HW_QCA9984;
3577 		pci_ps = false;
3578 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3579 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3580 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3581 		break;
3582 	case QCA9888_2_0_DEVICE_ID:
3583 		hw_rev = ATH10K_HW_QCA9888;
3584 		pci_ps = false;
3585 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3586 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3587 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3588 		break;
3589 	case QCA9377_1_0_DEVICE_ID:
3590 		hw_rev = ATH10K_HW_QCA9377;
3591 		pci_ps = true;
3592 		pci_soft_reset = ath10k_pci_warm_reset;
3593 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3594 		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3595 		break;
3596 	default:
3597 		WARN_ON(1);
3598 		return -EOPNOTSUPP;
3599 	}
3600 
3601 	ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3602 				hw_rev, &ath10k_pci_hif_ops);
3603 	if (!ar) {
3604 		dev_err(&pdev->dev, "failed to allocate core\n");
3605 		return -ENOMEM;
3606 	}
3607 
3608 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3609 		   pdev->vendor, pdev->device,
3610 		   pdev->subsystem_vendor, pdev->subsystem_device);
3611 
3612 	ar_pci = ath10k_pci_priv(ar);
3613 	ar_pci->pdev = pdev;
3614 	ar_pci->dev = &pdev->dev;
3615 	ar_pci->ar = ar;
3616 	ar->dev_id = pci_dev->device;
3617 	ar_pci->pci_ps = pci_ps;
3618 	ar_pci->ce.bus_ops = &ath10k_pci_bus_ops;
3619 	ar_pci->pci_soft_reset = pci_soft_reset;
3620 	ar_pci->pci_hard_reset = pci_hard_reset;
3621 	ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr;
3622 	ar->ce_priv = &ar_pci->ce;
3623 
3624 	ar->id.vendor = pdev->vendor;
3625 	ar->id.device = pdev->device;
3626 	ar->id.subsystem_vendor = pdev->subsystem_vendor;
3627 	ar->id.subsystem_device = pdev->subsystem_device;
3628 
3629 	timer_setup(&ar_pci->ps_timer, ath10k_pci_ps_timer, 0);
3630 
3631 	ret = ath10k_pci_setup_resource(ar);
3632 	if (ret) {
3633 		ath10k_err(ar, "failed to setup resource: %d\n", ret);
3634 		goto err_core_destroy;
3635 	}
3636 
3637 	ret = ath10k_pci_claim(ar);
3638 	if (ret) {
3639 		ath10k_err(ar, "failed to claim device: %d\n", ret);
3640 		goto err_free_pipes;
3641 	}
3642 
3643 	ret = ath10k_pci_force_wake(ar);
3644 	if (ret) {
3645 		ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3646 		goto err_sleep;
3647 	}
3648 
3649 	ath10k_pci_ce_deinit(ar);
3650 	ath10k_pci_irq_disable(ar);
3651 
3652 	ret = ath10k_pci_init_irq(ar);
3653 	if (ret) {
3654 		ath10k_err(ar, "failed to init irqs: %d\n", ret);
3655 		goto err_sleep;
3656 	}
3657 
3658 	ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
3659 		    ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
3660 		    ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3661 
3662 	ret = ath10k_pci_request_irq(ar);
3663 	if (ret) {
3664 		ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3665 		goto err_deinit_irq;
3666 	}
3667 
3668 	bus_params.dev_type = ATH10K_DEV_TYPE_LL;
3669 	bus_params.link_can_suspend = true;
3670 	/* Read CHIP_ID before reset to catch QCA9880-AR1A v1 devices that
3671 	 * fall off the bus during chip_reset. These chips have the same pci
3672 	 * device id as the QCA9880 BR4A or 2R4E. So that's why the check.
3673 	 */
3674 	if (is_qca988x) {
3675 		bus_params.chip_id =
3676 			ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3677 		if (bus_params.chip_id != 0xffffffff) {
3678 			if (!ath10k_pci_chip_is_supported(pdev->device,
3679 							  bus_params.chip_id)) {
3680 				ret = -ENODEV;
3681 				goto err_unsupported;
3682 			}
3683 		}
3684 	}
3685 
3686 	ret = ath10k_pci_chip_reset(ar);
3687 	if (ret) {
3688 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
3689 		goto err_free_irq;
3690 	}
3691 
3692 	bus_params.chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3693 	if (bus_params.chip_id == 0xffffffff) {
3694 		ret = -ENODEV;
3695 		goto err_unsupported;
3696 	}
3697 
3698 	if (!ath10k_pci_chip_is_supported(pdev->device, bus_params.chip_id)) {
3699 		ret = -ENODEV;
3700 		goto err_unsupported;
3701 	}
3702 
3703 	ret = ath10k_core_register(ar, &bus_params);
3704 	if (ret) {
3705 		ath10k_err(ar, "failed to register driver core: %d\n", ret);
3706 		goto err_free_irq;
3707 	}
3708 
3709 	return 0;
3710 
3711 err_unsupported:
3712 	ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3713 		   pdev->device, bus_params.chip_id);
3714 
3715 err_free_irq:
3716 	ath10k_pci_free_irq(ar);
3717 
3718 err_deinit_irq:
3719 	ath10k_pci_release_resource(ar);
3720 
3721 err_sleep:
3722 	ath10k_pci_sleep_sync(ar);
3723 	ath10k_pci_release(ar);
3724 
3725 err_free_pipes:
3726 	ath10k_pci_free_pipes(ar);
3727 
3728 err_core_destroy:
3729 	ath10k_core_destroy(ar);
3730 
3731 	return ret;
3732 }
3733 
ath10k_pci_remove(struct pci_dev * pdev)3734 static void ath10k_pci_remove(struct pci_dev *pdev)
3735 {
3736 	struct ath10k *ar = pci_get_drvdata(pdev);
3737 
3738 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3739 
3740 	if (!ar)
3741 		return;
3742 
3743 	ath10k_core_unregister(ar);
3744 	ath10k_pci_free_irq(ar);
3745 	ath10k_pci_deinit_irq(ar);
3746 	ath10k_pci_release_resource(ar);
3747 	ath10k_pci_sleep_sync(ar);
3748 	ath10k_pci_release(ar);
3749 	ath10k_core_destroy(ar);
3750 }
3751 
3752 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3753 
ath10k_pci_pm_suspend(struct device * dev)3754 static __maybe_unused int ath10k_pci_pm_suspend(struct device *dev)
3755 {
3756 	struct ath10k *ar = dev_get_drvdata(dev);
3757 	int ret;
3758 
3759 	ret = ath10k_pci_suspend(ar);
3760 	if (ret)
3761 		ath10k_warn(ar, "failed to suspend hif: %d\n", ret);
3762 
3763 	return ret;
3764 }
3765 
ath10k_pci_pm_resume(struct device * dev)3766 static __maybe_unused int ath10k_pci_pm_resume(struct device *dev)
3767 {
3768 	struct ath10k *ar = dev_get_drvdata(dev);
3769 	int ret;
3770 
3771 	ret = ath10k_pci_resume(ar);
3772 	if (ret)
3773 		ath10k_warn(ar, "failed to resume hif: %d\n", ret);
3774 
3775 	return ret;
3776 }
3777 
3778 static SIMPLE_DEV_PM_OPS(ath10k_pci_pm_ops,
3779 			 ath10k_pci_pm_suspend,
3780 			 ath10k_pci_pm_resume);
3781 
3782 static struct pci_driver ath10k_pci_driver = {
3783 	.name = "ath10k_pci",
3784 	.id_table = ath10k_pci_id_table,
3785 	.probe = ath10k_pci_probe,
3786 	.remove = ath10k_pci_remove,
3787 #ifdef CONFIG_PM
3788 	.driver.pm = &ath10k_pci_pm_ops,
3789 #endif
3790 };
3791 
ath10k_pci_init(void)3792 static int __init ath10k_pci_init(void)
3793 {
3794 	int ret1, ret2;
3795 
3796 	ret1 = pci_register_driver(&ath10k_pci_driver);
3797 	if (ret1)
3798 		printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3799 		       ret1);
3800 
3801 	ret2 = ath10k_ahb_init();
3802 	if (ret2)
3803 		printk(KERN_ERR "ahb init failed: %d\n", ret2);
3804 
3805 	if (ret1 && ret2)
3806 		return ret1;
3807 
3808 	/* registered to at least one bus */
3809 	return 0;
3810 }
3811 module_init(ath10k_pci_init);
3812 
ath10k_pci_exit(void)3813 static void __exit ath10k_pci_exit(void)
3814 {
3815 	pci_unregister_driver(&ath10k_pci_driver);
3816 	ath10k_ahb_exit();
3817 }
3818 
3819 module_exit(ath10k_pci_exit);
3820 
3821 MODULE_AUTHOR("Qualcomm Atheros");
3822 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros PCIe/AHB 802.11ac WLAN devices");
3823 MODULE_LICENSE("Dual BSD/GPL");
3824 
3825 /* QCA988x 2.0 firmware files */
3826 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3827 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3828 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3829 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3830 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_DATA_FILE);
3831 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3832 
3833 /* QCA9887 1.0 firmware files */
3834 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3835 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_DATA_FILE);
3836 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3837 
3838 /* QCA6174 2.1 firmware files */
3839 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3840 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3841 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_DATA_FILE);
3842 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3843 
3844 /* QCA6174 3.1 firmware files */
3845 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3846 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3847 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3848 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_DATA_FILE);
3849 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3850 
3851 /* QCA9377 1.0 firmware files */
3852 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3853 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3854 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_BOARD_DATA_FILE);
3855