1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * libata-core.c - helper library for ATA
4 *
5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
6 * Copyright 2003-2004 Jeff Garzik
7 *
8 * libata documentation is available via 'make {ps|pdf}docs',
9 * as Documentation/driver-api/libata.rst
10 *
11 * Hardware documentation available from http://www.t13.org/ and
12 * http://www.sata-io.org/
13 *
14 * Standards documents from:
15 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
16 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
17 * http://www.sata-io.org (SATA)
18 * http://www.compactflash.org (CF)
19 * http://www.qic.org (QIC157 - Tape and DSC)
20 * http://www.ce-ata.org (CE-ATA: not supported)
21 *
22 * libata is essentially a library of internal helper functions for
23 * low-level ATA host controller drivers. As such, the API/ABI is
24 * likely to change as new drivers are added and updated.
25 * Do not depend on ABI/API stability.
26 */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/spinlock.h>
35 #include <linux/blkdev.h>
36 #include <linux/delay.h>
37 #include <linux/timer.h>
38 #include <linux/time.h>
39 #include <linux/interrupt.h>
40 #include <linux/completion.h>
41 #include <linux/suspend.h>
42 #include <linux/workqueue.h>
43 #include <linux/scatterlist.h>
44 #include <linux/io.h>
45 #include <linux/log2.h>
46 #include <linux/slab.h>
47 #include <linux/glob.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_cmnd.h>
50 #include <scsi/scsi_host.h>
51 #include <linux/libata.h>
52 #include <asm/byteorder.h>
53 #include <linux/unaligned.h>
54 #include <linux/cdrom.h>
55 #include <linux/ratelimit.h>
56 #include <linux/leds.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/platform_device.h>
59 #include <asm/setup.h>
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/libata.h>
63
64 #include "libata.h"
65 #include "libata-transport.h"
66
67 const struct ata_port_operations ata_base_port_ops = {
68 .reset.prereset = ata_std_prereset,
69 .reset.postreset = ata_std_postreset,
70 .error_handler = ata_std_error_handler,
71 .sched_eh = ata_std_sched_eh,
72 .end_eh = ata_std_end_eh,
73 };
74
75 static unsigned int ata_dev_init_params(struct ata_device *dev,
76 u16 heads, u16 sectors);
77 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
78 static void ata_dev_xfermask(struct ata_device *dev);
79 static unsigned int ata_dev_quirks(const struct ata_device *dev);
80
81 static DEFINE_IDA(ata_ida);
82
83 #ifdef CONFIG_ATA_FORCE
84 struct ata_force_param {
85 const char *name;
86 u8 cbl;
87 u8 spd_limit;
88 unsigned int xfer_mask;
89 unsigned int quirk_on;
90 unsigned int quirk_off;
91 unsigned int pflags_on;
92 u16 lflags_on;
93 u16 lflags_off;
94 };
95
96 struct ata_force_ent {
97 int port;
98 int device;
99 struct ata_force_param param;
100 };
101
102 static struct ata_force_ent *ata_force_tbl;
103 static int ata_force_tbl_size;
104
105 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
106 /* param_buf is thrown away after initialization, disallow read */
107 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
108 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
109 #endif
110
111 static int atapi_enabled = 1;
112 module_param(atapi_enabled, int, 0444);
113 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
114
115 static int atapi_dmadir = 0;
116 module_param(atapi_dmadir, int, 0444);
117 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
118
119 int atapi_passthru16 = 1;
120 module_param(atapi_passthru16, int, 0444);
121 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
122
123 int libata_fua = 0;
124 module_param_named(fua, libata_fua, int, 0444);
125 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
126
127 static int ata_ignore_hpa;
128 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
129 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
130
131 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
132 module_param_named(dma, libata_dma_mask, int, 0444);
133 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
134
135 static int ata_probe_timeout;
136 module_param(ata_probe_timeout, int, 0444);
137 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
138
139 int libata_noacpi = 0;
140 module_param_named(noacpi, libata_noacpi, int, 0444);
141 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
142
143 int libata_allow_tpm = 0;
144 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
145 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
146
147 static int atapi_an;
148 module_param(atapi_an, int, 0444);
149 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
150
151 MODULE_AUTHOR("Jeff Garzik");
152 MODULE_DESCRIPTION("Library module for ATA devices");
153 MODULE_LICENSE("GPL");
154 MODULE_VERSION(DRV_VERSION);
155
ata_dev_print_info(const struct ata_device * dev)156 static inline bool ata_dev_print_info(const struct ata_device *dev)
157 {
158 struct ata_eh_context *ehc = &dev->link->eh_context;
159
160 return ehc->i.flags & ATA_EHI_PRINTINFO;
161 }
162
163 /**
164 * ata_link_next - link iteration helper
165 * @link: the previous link, NULL to start
166 * @ap: ATA port containing links to iterate
167 * @mode: iteration mode, one of ATA_LITER_*
168 *
169 * LOCKING:
170 * Host lock or EH context.
171 *
172 * RETURNS:
173 * Pointer to the next link.
174 */
ata_link_next(struct ata_link * link,struct ata_port * ap,enum ata_link_iter_mode mode)175 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
176 enum ata_link_iter_mode mode)
177 {
178 BUG_ON(mode != ATA_LITER_EDGE &&
179 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
180
181 /* NULL link indicates start of iteration */
182 if (!link)
183 switch (mode) {
184 case ATA_LITER_EDGE:
185 case ATA_LITER_PMP_FIRST:
186 if (sata_pmp_attached(ap))
187 return ap->pmp_link;
188 fallthrough;
189 case ATA_LITER_HOST_FIRST:
190 return &ap->link;
191 }
192
193 /* we just iterated over the host link, what's next? */
194 if (link == &ap->link)
195 switch (mode) {
196 case ATA_LITER_HOST_FIRST:
197 if (sata_pmp_attached(ap))
198 return ap->pmp_link;
199 fallthrough;
200 case ATA_LITER_PMP_FIRST:
201 if (unlikely(ap->slave_link))
202 return ap->slave_link;
203 fallthrough;
204 case ATA_LITER_EDGE:
205 return NULL;
206 }
207
208 /* slave_link excludes PMP */
209 if (unlikely(link == ap->slave_link))
210 return NULL;
211
212 /* we were over a PMP link */
213 if (++link < ap->pmp_link + ap->nr_pmp_links)
214 return link;
215
216 if (mode == ATA_LITER_PMP_FIRST)
217 return &ap->link;
218
219 return NULL;
220 }
221 EXPORT_SYMBOL_GPL(ata_link_next);
222
223 /**
224 * ata_dev_next - device iteration helper
225 * @dev: the previous device, NULL to start
226 * @link: ATA link containing devices to iterate
227 * @mode: iteration mode, one of ATA_DITER_*
228 *
229 * LOCKING:
230 * Host lock or EH context.
231 *
232 * RETURNS:
233 * Pointer to the next device.
234 */
ata_dev_next(struct ata_device * dev,struct ata_link * link,enum ata_dev_iter_mode mode)235 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
236 enum ata_dev_iter_mode mode)
237 {
238 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
239 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
240
241 /* NULL dev indicates start of iteration */
242 if (!dev)
243 switch (mode) {
244 case ATA_DITER_ENABLED:
245 case ATA_DITER_ALL:
246 dev = link->device;
247 goto check;
248 case ATA_DITER_ENABLED_REVERSE:
249 case ATA_DITER_ALL_REVERSE:
250 dev = link->device + ata_link_max_devices(link) - 1;
251 goto check;
252 }
253
254 next:
255 /* move to the next one */
256 switch (mode) {
257 case ATA_DITER_ENABLED:
258 case ATA_DITER_ALL:
259 if (++dev < link->device + ata_link_max_devices(link))
260 goto check;
261 return NULL;
262 case ATA_DITER_ENABLED_REVERSE:
263 case ATA_DITER_ALL_REVERSE:
264 if (--dev >= link->device)
265 goto check;
266 return NULL;
267 }
268
269 check:
270 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
271 !ata_dev_enabled(dev))
272 goto next;
273 return dev;
274 }
275 EXPORT_SYMBOL_GPL(ata_dev_next);
276
277 /**
278 * ata_dev_phys_link - find physical link for a device
279 * @dev: ATA device to look up physical link for
280 *
281 * Look up physical link which @dev is attached to. Note that
282 * this is different from @dev->link only when @dev is on slave
283 * link. For all other cases, it's the same as @dev->link.
284 *
285 * LOCKING:
286 * Don't care.
287 *
288 * RETURNS:
289 * Pointer to the found physical link.
290 */
ata_dev_phys_link(struct ata_device * dev)291 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
292 {
293 struct ata_port *ap = dev->link->ap;
294
295 if (!ap->slave_link)
296 return dev->link;
297 if (!dev->devno)
298 return &ap->link;
299 return ap->slave_link;
300 }
301
302 #ifdef CONFIG_ATA_FORCE
303 /**
304 * ata_force_cbl - force cable type according to libata.force
305 * @ap: ATA port of interest
306 *
307 * Force cable type according to libata.force and whine about it.
308 * The last entry which has matching port number is used, so it
309 * can be specified as part of device force parameters. For
310 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
311 * same effect.
312 *
313 * LOCKING:
314 * EH context.
315 */
ata_force_cbl(struct ata_port * ap)316 void ata_force_cbl(struct ata_port *ap)
317 {
318 int i;
319
320 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
321 const struct ata_force_ent *fe = &ata_force_tbl[i];
322
323 if (fe->port != -1 && fe->port != ap->print_id)
324 continue;
325
326 if (fe->param.cbl == ATA_CBL_NONE)
327 continue;
328
329 ap->cbl = fe->param.cbl;
330 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
331 return;
332 }
333 }
334
335 /**
336 * ata_force_pflags - force port flags according to libata.force
337 * @ap: ATA port of interest
338 *
339 * Force port flags according to libata.force and whine about it.
340 *
341 * LOCKING:
342 * EH context.
343 */
ata_force_pflags(struct ata_port * ap)344 static void ata_force_pflags(struct ata_port *ap)
345 {
346 int i;
347
348 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
349 const struct ata_force_ent *fe = &ata_force_tbl[i];
350
351 if (fe->port != -1 && fe->port != ap->print_id)
352 continue;
353
354 /* let pflags stack */
355 if (fe->param.pflags_on) {
356 ap->pflags |= fe->param.pflags_on;
357 ata_port_notice(ap,
358 "FORCE: port flag 0x%x forced -> 0x%x\n",
359 fe->param.pflags_on, ap->pflags);
360 }
361 }
362 }
363
364 /**
365 * ata_force_link_limits - force link limits according to libata.force
366 * @link: ATA link of interest
367 *
368 * Force link flags and SATA spd limit according to libata.force
369 * and whine about it. When only the port part is specified
370 * (e.g. 1:), the limit applies to all links connected to both
371 * the host link and all fan-out ports connected via PMP. If the
372 * device part is specified as 0 (e.g. 1.00:), it specifies the
373 * first fan-out link not the host link. Device number 15 always
374 * points to the host link whether PMP is attached or not. If the
375 * controller has slave link, device number 16 points to it.
376 *
377 * LOCKING:
378 * EH context.
379 */
ata_force_link_limits(struct ata_link * link)380 static void ata_force_link_limits(struct ata_link *link)
381 {
382 bool did_spd = false;
383 int linkno = link->pmp;
384 int i;
385
386 if (ata_is_host_link(link))
387 linkno += 15;
388
389 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
390 const struct ata_force_ent *fe = &ata_force_tbl[i];
391
392 if (fe->port != -1 && fe->port != link->ap->print_id)
393 continue;
394
395 if (fe->device != -1 && fe->device != linkno)
396 continue;
397
398 /* only honor the first spd limit */
399 if (!did_spd && fe->param.spd_limit) {
400 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
401 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
402 fe->param.name);
403 did_spd = true;
404 }
405
406 /* let lflags stack */
407 if (fe->param.lflags_on) {
408 link->flags |= fe->param.lflags_on;
409 ata_link_notice(link,
410 "FORCE: link flag 0x%x forced -> 0x%x\n",
411 fe->param.lflags_on, link->flags);
412 }
413 if (fe->param.lflags_off) {
414 link->flags &= ~fe->param.lflags_off;
415 ata_link_notice(link,
416 "FORCE: link flag 0x%x cleared -> 0x%x\n",
417 fe->param.lflags_off, link->flags);
418 }
419 }
420 }
421
422 /**
423 * ata_force_xfermask - force xfermask according to libata.force
424 * @dev: ATA device of interest
425 *
426 * Force xfer_mask according to libata.force and whine about it.
427 * For consistency with link selection, device number 15 selects
428 * the first device connected to the host link.
429 *
430 * LOCKING:
431 * EH context.
432 */
ata_force_xfermask(struct ata_device * dev)433 static void ata_force_xfermask(struct ata_device *dev)
434 {
435 int devno = dev->link->pmp + dev->devno;
436 int alt_devno = devno;
437 int i;
438
439 /* allow n.15/16 for devices attached to host port */
440 if (ata_is_host_link(dev->link))
441 alt_devno += 15;
442
443 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
444 const struct ata_force_ent *fe = &ata_force_tbl[i];
445 unsigned int pio_mask, mwdma_mask, udma_mask;
446
447 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
448 continue;
449
450 if (fe->device != -1 && fe->device != devno &&
451 fe->device != alt_devno)
452 continue;
453
454 if (!fe->param.xfer_mask)
455 continue;
456
457 ata_unpack_xfermask(fe->param.xfer_mask,
458 &pio_mask, &mwdma_mask, &udma_mask);
459 if (udma_mask)
460 dev->udma_mask = udma_mask;
461 else if (mwdma_mask) {
462 dev->udma_mask = 0;
463 dev->mwdma_mask = mwdma_mask;
464 } else {
465 dev->udma_mask = 0;
466 dev->mwdma_mask = 0;
467 dev->pio_mask = pio_mask;
468 }
469
470 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
471 fe->param.name);
472 return;
473 }
474 }
475
476 /**
477 * ata_force_quirks - force quirks according to libata.force
478 * @dev: ATA device of interest
479 *
480 * Force quirks according to libata.force and whine about it.
481 * For consistency with link selection, device number 15 selects
482 * the first device connected to the host link.
483 *
484 * LOCKING:
485 * EH context.
486 */
ata_force_quirks(struct ata_device * dev)487 static void ata_force_quirks(struct ata_device *dev)
488 {
489 int devno = dev->link->pmp + dev->devno;
490 int alt_devno = devno;
491 int i;
492
493 /* allow n.15/16 for devices attached to host port */
494 if (ata_is_host_link(dev->link))
495 alt_devno += 15;
496
497 for (i = 0; i < ata_force_tbl_size; i++) {
498 const struct ata_force_ent *fe = &ata_force_tbl[i];
499
500 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
501 continue;
502
503 if (fe->device != -1 && fe->device != devno &&
504 fe->device != alt_devno)
505 continue;
506
507 if (!(~dev->quirks & fe->param.quirk_on) &&
508 !(dev->quirks & fe->param.quirk_off))
509 continue;
510
511 dev->quirks |= fe->param.quirk_on;
512 dev->quirks &= ~fe->param.quirk_off;
513
514 ata_dev_notice(dev, "FORCE: modified (%s)\n",
515 fe->param.name);
516 }
517 }
518 #else
ata_force_pflags(struct ata_port * ap)519 static inline void ata_force_pflags(struct ata_port *ap) { }
ata_force_link_limits(struct ata_link * link)520 static inline void ata_force_link_limits(struct ata_link *link) { }
ata_force_xfermask(struct ata_device * dev)521 static inline void ata_force_xfermask(struct ata_device *dev) { }
ata_force_quirks(struct ata_device * dev)522 static inline void ata_force_quirks(struct ata_device *dev) { }
523 #endif
524
525 /**
526 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
527 * @opcode: SCSI opcode
528 *
529 * Determine ATAPI command type from @opcode.
530 *
531 * LOCKING:
532 * None.
533 *
534 * RETURNS:
535 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
536 */
atapi_cmd_type(u8 opcode)537 int atapi_cmd_type(u8 opcode)
538 {
539 switch (opcode) {
540 case GPCMD_READ_10:
541 case GPCMD_READ_12:
542 return ATAPI_READ;
543
544 case GPCMD_WRITE_10:
545 case GPCMD_WRITE_12:
546 case GPCMD_WRITE_AND_VERIFY_10:
547 return ATAPI_WRITE;
548
549 case GPCMD_READ_CD:
550 case GPCMD_READ_CD_MSF:
551 return ATAPI_READ_CD;
552
553 case ATA_16:
554 case ATA_12:
555 if (atapi_passthru16)
556 return ATAPI_PASS_THRU;
557 fallthrough;
558 default:
559 return ATAPI_MISC;
560 }
561 }
562 EXPORT_SYMBOL_GPL(atapi_cmd_type);
563
564 static const u8 ata_rw_cmds[] = {
565 /* pio multi */
566 ATA_CMD_READ_MULTI,
567 ATA_CMD_WRITE_MULTI,
568 ATA_CMD_READ_MULTI_EXT,
569 ATA_CMD_WRITE_MULTI_EXT,
570 0,
571 0,
572 0,
573 0,
574 /* pio */
575 ATA_CMD_PIO_READ,
576 ATA_CMD_PIO_WRITE,
577 ATA_CMD_PIO_READ_EXT,
578 ATA_CMD_PIO_WRITE_EXT,
579 0,
580 0,
581 0,
582 0,
583 /* dma */
584 ATA_CMD_READ,
585 ATA_CMD_WRITE,
586 ATA_CMD_READ_EXT,
587 ATA_CMD_WRITE_EXT,
588 0,
589 0,
590 0,
591 ATA_CMD_WRITE_FUA_EXT
592 };
593
594 /**
595 * ata_set_rwcmd_protocol - set taskfile r/w command and protocol
596 * @dev: target device for the taskfile
597 * @tf: taskfile to examine and configure
598 *
599 * Examine the device configuration and tf->flags to determine
600 * the proper read/write command and protocol to use for @tf.
601 *
602 * LOCKING:
603 * caller.
604 */
ata_set_rwcmd_protocol(struct ata_device * dev,struct ata_taskfile * tf)605 static bool ata_set_rwcmd_protocol(struct ata_device *dev,
606 struct ata_taskfile *tf)
607 {
608 u8 cmd;
609
610 int index, fua, lba48, write;
611
612 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
613 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
614 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
615
616 if (dev->flags & ATA_DFLAG_PIO) {
617 tf->protocol = ATA_PROT_PIO;
618 index = dev->multi_count ? 0 : 8;
619 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
620 /* Unable to use DMA due to host limitation */
621 tf->protocol = ATA_PROT_PIO;
622 index = dev->multi_count ? 0 : 8;
623 } else {
624 tf->protocol = ATA_PROT_DMA;
625 index = 16;
626 }
627
628 cmd = ata_rw_cmds[index + fua + lba48 + write];
629 if (!cmd)
630 return false;
631
632 tf->command = cmd;
633
634 return true;
635 }
636
637 /**
638 * ata_tf_read_block - Read block address from ATA taskfile
639 * @tf: ATA taskfile of interest
640 * @dev: ATA device @tf belongs to
641 *
642 * LOCKING:
643 * None.
644 *
645 * Read block address from @tf. This function can handle all
646 * three address formats - LBA, LBA48 and CHS. tf->protocol and
647 * flags select the address format to use.
648 *
649 * RETURNS:
650 * Block address read from @tf.
651 */
ata_tf_read_block(const struct ata_taskfile * tf,struct ata_device * dev)652 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
653 {
654 u64 block = 0;
655
656 if (tf->flags & ATA_TFLAG_LBA) {
657 if (tf->flags & ATA_TFLAG_LBA48) {
658 block |= (u64)tf->hob_lbah << 40;
659 block |= (u64)tf->hob_lbam << 32;
660 block |= (u64)tf->hob_lbal << 24;
661 } else
662 block |= (tf->device & 0xf) << 24;
663
664 block |= tf->lbah << 16;
665 block |= tf->lbam << 8;
666 block |= tf->lbal;
667 } else {
668 u32 cyl, head, sect;
669
670 cyl = tf->lbam | (tf->lbah << 8);
671 head = tf->device & 0xf;
672 sect = tf->lbal;
673
674 if (!sect) {
675 ata_dev_warn(dev,
676 "device reported invalid CHS sector 0\n");
677 return U64_MAX;
678 }
679
680 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
681 }
682
683 return block;
684 }
685
686 /*
687 * Set a taskfile command duration limit index.
688 */
ata_set_tf_cdl(struct ata_queued_cmd * qc,int cdl)689 static inline void ata_set_tf_cdl(struct ata_queued_cmd *qc, int cdl)
690 {
691 struct ata_taskfile *tf = &qc->tf;
692
693 if (tf->protocol == ATA_PROT_NCQ)
694 tf->auxiliary |= cdl;
695 else
696 tf->feature |= cdl;
697
698 /*
699 * Mark this command as having a CDL and request the result
700 * task file so that we can inspect the sense data available
701 * bit on completion.
702 */
703 qc->flags |= ATA_QCFLAG_HAS_CDL | ATA_QCFLAG_RESULT_TF;
704 }
705
706 /**
707 * ata_build_rw_tf - Build ATA taskfile for given read/write request
708 * @qc: Metadata associated with the taskfile to build
709 * @block: Block address
710 * @n_block: Number of blocks
711 * @tf_flags: RW/FUA etc...
712 * @cdl: Command duration limit index
713 * @class: IO priority class
714 *
715 * LOCKING:
716 * None.
717 *
718 * Build ATA taskfile for the command @qc for read/write request described
719 * by @block, @n_block, @tf_flags and @class.
720 *
721 * RETURNS:
722 *
723 * 0 on success, -ERANGE if the request is too large for @dev,
724 * -EINVAL if the request is invalid.
725 */
ata_build_rw_tf(struct ata_queued_cmd * qc,u64 block,u32 n_block,unsigned int tf_flags,int cdl,int class)726 int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block,
727 unsigned int tf_flags, int cdl, int class)
728 {
729 struct ata_taskfile *tf = &qc->tf;
730 struct ata_device *dev = qc->dev;
731
732 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
733 tf->flags |= tf_flags;
734
735 if (ata_ncq_enabled(dev)) {
736 /* yay, NCQ */
737 if (!lba_48_ok(block, n_block))
738 return -ERANGE;
739
740 tf->protocol = ATA_PROT_NCQ;
741 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
742
743 if (tf->flags & ATA_TFLAG_WRITE)
744 tf->command = ATA_CMD_FPDMA_WRITE;
745 else
746 tf->command = ATA_CMD_FPDMA_READ;
747
748 tf->nsect = qc->hw_tag << 3;
749 tf->hob_feature = (n_block >> 8) & 0xff;
750 tf->feature = n_block & 0xff;
751
752 tf->hob_lbah = (block >> 40) & 0xff;
753 tf->hob_lbam = (block >> 32) & 0xff;
754 tf->hob_lbal = (block >> 24) & 0xff;
755 tf->lbah = (block >> 16) & 0xff;
756 tf->lbam = (block >> 8) & 0xff;
757 tf->lbal = block & 0xff;
758
759 tf->device = ATA_LBA;
760 if (tf->flags & ATA_TFLAG_FUA)
761 tf->device |= 1 << 7;
762
763 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED &&
764 class == IOPRIO_CLASS_RT)
765 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
766
767 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
768 ata_set_tf_cdl(qc, cdl);
769
770 } else if (dev->flags & ATA_DFLAG_LBA) {
771 tf->flags |= ATA_TFLAG_LBA;
772
773 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
774 ata_set_tf_cdl(qc, cdl);
775
776 /* Both FUA writes and a CDL index require 48-bit commands */
777 if (!(tf->flags & ATA_TFLAG_FUA) &&
778 !(qc->flags & ATA_QCFLAG_HAS_CDL) &&
779 lba_28_ok(block, n_block)) {
780 /* use LBA28 */
781 tf->device |= (block >> 24) & 0xf;
782 } else if (lba_48_ok(block, n_block)) {
783 if (!(dev->flags & ATA_DFLAG_LBA48))
784 return -ERANGE;
785
786 /* use LBA48 */
787 tf->flags |= ATA_TFLAG_LBA48;
788
789 tf->hob_nsect = (n_block >> 8) & 0xff;
790
791 tf->hob_lbah = (block >> 40) & 0xff;
792 tf->hob_lbam = (block >> 32) & 0xff;
793 tf->hob_lbal = (block >> 24) & 0xff;
794 } else {
795 /* request too large even for LBA48 */
796 return -ERANGE;
797 }
798
799 if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
800 return -EINVAL;
801
802 tf->nsect = n_block & 0xff;
803
804 tf->lbah = (block >> 16) & 0xff;
805 tf->lbam = (block >> 8) & 0xff;
806 tf->lbal = block & 0xff;
807
808 tf->device |= ATA_LBA;
809 } else {
810 /* CHS */
811 u32 sect, head, cyl, track;
812
813 /* The request -may- be too large for CHS addressing. */
814 if (!lba_28_ok(block, n_block))
815 return -ERANGE;
816
817 if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
818 return -EINVAL;
819
820 /* Convert LBA to CHS */
821 track = (u32)block / dev->sectors;
822 cyl = track / dev->heads;
823 head = track % dev->heads;
824 sect = (u32)block % dev->sectors + 1;
825
826 /* Check whether the converted CHS can fit.
827 Cylinder: 0-65535
828 Head: 0-15
829 Sector: 1-255*/
830 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
831 return -ERANGE;
832
833 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
834 tf->lbal = sect;
835 tf->lbam = cyl;
836 tf->lbah = cyl >> 8;
837 tf->device |= head;
838 }
839
840 return 0;
841 }
842
843 /**
844 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
845 * @pio_mask: pio_mask
846 * @mwdma_mask: mwdma_mask
847 * @udma_mask: udma_mask
848 *
849 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
850 * unsigned int xfer_mask.
851 *
852 * LOCKING:
853 * None.
854 *
855 * RETURNS:
856 * Packed xfer_mask.
857 */
ata_pack_xfermask(unsigned int pio_mask,unsigned int mwdma_mask,unsigned int udma_mask)858 unsigned int ata_pack_xfermask(unsigned int pio_mask,
859 unsigned int mwdma_mask,
860 unsigned int udma_mask)
861 {
862 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
863 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
864 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
865 }
866 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
867
868 /**
869 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
870 * @xfer_mask: xfer_mask to unpack
871 * @pio_mask: resulting pio_mask
872 * @mwdma_mask: resulting mwdma_mask
873 * @udma_mask: resulting udma_mask
874 *
875 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
876 * Any NULL destination masks will be ignored.
877 */
ata_unpack_xfermask(unsigned int xfer_mask,unsigned int * pio_mask,unsigned int * mwdma_mask,unsigned int * udma_mask)878 void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask,
879 unsigned int *mwdma_mask, unsigned int *udma_mask)
880 {
881 if (pio_mask)
882 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
883 if (mwdma_mask)
884 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
885 if (udma_mask)
886 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
887 }
888
889 static const struct ata_xfer_ent {
890 int shift, bits;
891 u8 base;
892 } ata_xfer_tbl[] = {
893 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
894 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
895 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
896 { -1, },
897 };
898
899 /**
900 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
901 * @xfer_mask: xfer_mask of interest
902 *
903 * Return matching XFER_* value for @xfer_mask. Only the highest
904 * bit of @xfer_mask is considered.
905 *
906 * LOCKING:
907 * None.
908 *
909 * RETURNS:
910 * Matching XFER_* value, 0xff if no match found.
911 */
ata_xfer_mask2mode(unsigned int xfer_mask)912 u8 ata_xfer_mask2mode(unsigned int xfer_mask)
913 {
914 int highbit = fls(xfer_mask) - 1;
915 const struct ata_xfer_ent *ent;
916
917 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
918 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
919 return ent->base + highbit - ent->shift;
920 return 0xff;
921 }
922 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
923
924 /**
925 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
926 * @xfer_mode: XFER_* of interest
927 *
928 * Return matching xfer_mask for @xfer_mode.
929 *
930 * LOCKING:
931 * None.
932 *
933 * RETURNS:
934 * Matching xfer_mask, 0 if no match found.
935 */
ata_xfer_mode2mask(u8 xfer_mode)936 unsigned int ata_xfer_mode2mask(u8 xfer_mode)
937 {
938 const struct ata_xfer_ent *ent;
939
940 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
941 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
942 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
943 & ~((1 << ent->shift) - 1);
944 return 0;
945 }
946 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
947
948 /**
949 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
950 * @xfer_mode: XFER_* of interest
951 *
952 * Return matching xfer_shift for @xfer_mode.
953 *
954 * LOCKING:
955 * None.
956 *
957 * RETURNS:
958 * Matching xfer_shift, -1 if no match found.
959 */
ata_xfer_mode2shift(u8 xfer_mode)960 int ata_xfer_mode2shift(u8 xfer_mode)
961 {
962 const struct ata_xfer_ent *ent;
963
964 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
965 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
966 return ent->shift;
967 return -1;
968 }
969 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
970
971 /**
972 * ata_mode_string - convert xfer_mask to string
973 * @xfer_mask: mask of bits supported; only highest bit counts.
974 *
975 * Determine string which represents the highest speed
976 * (highest bit in @modemask).
977 *
978 * LOCKING:
979 * None.
980 *
981 * RETURNS:
982 * Constant C string representing highest speed listed in
983 * @mode_mask, or the constant C string "<n/a>".
984 */
ata_mode_string(unsigned int xfer_mask)985 const char *ata_mode_string(unsigned int xfer_mask)
986 {
987 static const char * const xfer_mode_str[] = {
988 "PIO0",
989 "PIO1",
990 "PIO2",
991 "PIO3",
992 "PIO4",
993 "PIO5",
994 "PIO6",
995 "MWDMA0",
996 "MWDMA1",
997 "MWDMA2",
998 "MWDMA3",
999 "MWDMA4",
1000 "UDMA/16",
1001 "UDMA/25",
1002 "UDMA/33",
1003 "UDMA/44",
1004 "UDMA/66",
1005 "UDMA/100",
1006 "UDMA/133",
1007 "UDMA7",
1008 };
1009 int highbit;
1010
1011 highbit = fls(xfer_mask) - 1;
1012 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1013 return xfer_mode_str[highbit];
1014 return "<n/a>";
1015 }
1016 EXPORT_SYMBOL_GPL(ata_mode_string);
1017
sata_spd_string(unsigned int spd)1018 const char *sata_spd_string(unsigned int spd)
1019 {
1020 static const char * const spd_str[] = {
1021 "1.5 Gbps",
1022 "3.0 Gbps",
1023 "6.0 Gbps",
1024 };
1025
1026 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1027 return "<unknown>";
1028 return spd_str[spd - 1];
1029 }
1030
1031 /**
1032 * ata_dev_classify - determine device type based on ATA-spec signature
1033 * @tf: ATA taskfile register set for device to be identified
1034 *
1035 * Determine from taskfile register contents whether a device is
1036 * ATA or ATAPI, as per "Signature and persistence" section
1037 * of ATA/PI spec (volume 1, sect 5.14).
1038 *
1039 * LOCKING:
1040 * None.
1041 *
1042 * RETURNS:
1043 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1044 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1045 */
ata_dev_classify(const struct ata_taskfile * tf)1046 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1047 {
1048 /* Apple's open source Darwin code hints that some devices only
1049 * put a proper signature into the LBA mid/high registers,
1050 * So, we only check those. It's sufficient for uniqueness.
1051 *
1052 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1053 * signatures for ATA and ATAPI devices attached on SerialATA,
1054 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1055 * spec has never mentioned about using different signatures
1056 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1057 * Multiplier specification began to use 0x69/0x96 to identify
1058 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1059 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1060 * 0x69/0x96 shortly and described them as reserved for
1061 * SerialATA.
1062 *
1063 * We follow the current spec and consider that 0x69/0x96
1064 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1065 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1066 * SEMB signature. This is worked around in
1067 * ata_dev_read_id().
1068 */
1069 if (tf->lbam == 0 && tf->lbah == 0)
1070 return ATA_DEV_ATA;
1071
1072 if (tf->lbam == 0x14 && tf->lbah == 0xeb)
1073 return ATA_DEV_ATAPI;
1074
1075 if (tf->lbam == 0x69 && tf->lbah == 0x96)
1076 return ATA_DEV_PMP;
1077
1078 if (tf->lbam == 0x3c && tf->lbah == 0xc3)
1079 return ATA_DEV_SEMB;
1080
1081 if (tf->lbam == 0xcd && tf->lbah == 0xab)
1082 return ATA_DEV_ZAC;
1083
1084 return ATA_DEV_UNKNOWN;
1085 }
1086 EXPORT_SYMBOL_GPL(ata_dev_classify);
1087
1088 /**
1089 * ata_id_string - Convert IDENTIFY DEVICE page into string
1090 * @id: IDENTIFY DEVICE results we will examine
1091 * @s: string into which data is output
1092 * @ofs: offset into identify device page
1093 * @len: length of string to return. must be an even number.
1094 *
1095 * The strings in the IDENTIFY DEVICE page are broken up into
1096 * 16-bit chunks. Run through the string, and output each
1097 * 8-bit chunk linearly, regardless of platform.
1098 *
1099 * LOCKING:
1100 * caller.
1101 */
1102
ata_id_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1103 void ata_id_string(const u16 *id, unsigned char *s,
1104 unsigned int ofs, unsigned int len)
1105 {
1106 unsigned int c;
1107
1108 BUG_ON(len & 1);
1109
1110 while (len > 0) {
1111 c = id[ofs] >> 8;
1112 *s = c;
1113 s++;
1114
1115 c = id[ofs] & 0xff;
1116 *s = c;
1117 s++;
1118
1119 ofs++;
1120 len -= 2;
1121 }
1122 }
1123 EXPORT_SYMBOL_GPL(ata_id_string);
1124
1125 /**
1126 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1127 * @id: IDENTIFY DEVICE results we will examine
1128 * @s: string into which data is output
1129 * @ofs: offset into identify device page
1130 * @len: length of string to return. must be an odd number.
1131 *
1132 * This function is identical to ata_id_string except that it
1133 * trims trailing spaces and terminates the resulting string with
1134 * null. @len must be actual maximum length (even number) + 1.
1135 *
1136 * LOCKING:
1137 * caller.
1138 */
ata_id_c_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1139 void ata_id_c_string(const u16 *id, unsigned char *s,
1140 unsigned int ofs, unsigned int len)
1141 {
1142 unsigned char *p;
1143
1144 ata_id_string(id, s, ofs, len - 1);
1145
1146 p = s + strnlen(s, len - 1);
1147 while (p > s && p[-1] == ' ')
1148 p--;
1149 *p = '\0';
1150 }
1151 EXPORT_SYMBOL_GPL(ata_id_c_string);
1152
ata_id_n_sectors(const u16 * id)1153 static u64 ata_id_n_sectors(const u16 *id)
1154 {
1155 if (ata_id_has_lba(id)) {
1156 if (ata_id_has_lba48(id))
1157 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1158
1159 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1160 }
1161
1162 if (ata_id_current_chs_valid(id))
1163 return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] *
1164 (u32)id[ATA_ID_CUR_SECTORS];
1165
1166 return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] *
1167 (u32)id[ATA_ID_SECTORS];
1168 }
1169
ata_tf_to_lba48(const struct ata_taskfile * tf)1170 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1171 {
1172 u64 sectors = 0;
1173
1174 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1175 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1176 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1177 sectors |= (tf->lbah & 0xff) << 16;
1178 sectors |= (tf->lbam & 0xff) << 8;
1179 sectors |= (tf->lbal & 0xff);
1180
1181 return sectors;
1182 }
1183
ata_tf_to_lba(const struct ata_taskfile * tf)1184 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1185 {
1186 u64 sectors = 0;
1187
1188 sectors |= (tf->device & 0x0f) << 24;
1189 sectors |= (tf->lbah & 0xff) << 16;
1190 sectors |= (tf->lbam & 0xff) << 8;
1191 sectors |= (tf->lbal & 0xff);
1192
1193 return sectors;
1194 }
1195
1196 /**
1197 * ata_read_native_max_address - Read native max address
1198 * @dev: target device
1199 * @max_sectors: out parameter for the result native max address
1200 *
1201 * Perform an LBA48 or LBA28 native size query upon the device in
1202 * question.
1203 *
1204 * RETURNS:
1205 * 0 on success, -EACCES if command is aborted by the drive.
1206 * -EIO on other errors.
1207 */
ata_read_native_max_address(struct ata_device * dev,u64 * max_sectors)1208 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1209 {
1210 unsigned int err_mask;
1211 struct ata_taskfile tf;
1212 int lba48 = ata_id_has_lba48(dev->id);
1213
1214 ata_tf_init(dev, &tf);
1215
1216 /* always clear all address registers */
1217 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1218
1219 if (lba48) {
1220 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1221 tf.flags |= ATA_TFLAG_LBA48;
1222 } else
1223 tf.command = ATA_CMD_READ_NATIVE_MAX;
1224
1225 tf.protocol = ATA_PROT_NODATA;
1226 tf.device |= ATA_LBA;
1227
1228 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1229 if (err_mask) {
1230 ata_dev_warn(dev,
1231 "failed to read native max address (err_mask=0x%x)\n",
1232 err_mask);
1233 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
1234 return -EACCES;
1235 return -EIO;
1236 }
1237
1238 if (lba48)
1239 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1240 else
1241 *max_sectors = ata_tf_to_lba(&tf) + 1;
1242 if (dev->quirks & ATA_QUIRK_HPA_SIZE)
1243 (*max_sectors)--;
1244 return 0;
1245 }
1246
1247 /**
1248 * ata_set_max_sectors - Set max sectors
1249 * @dev: target device
1250 * @new_sectors: new max sectors value to set for the device
1251 *
1252 * Set max sectors of @dev to @new_sectors.
1253 *
1254 * RETURNS:
1255 * 0 on success, -EACCES if command is aborted or denied (due to
1256 * previous non-volatile SET_MAX) by the drive. -EIO on other
1257 * errors.
1258 */
ata_set_max_sectors(struct ata_device * dev,u64 new_sectors)1259 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1260 {
1261 unsigned int err_mask;
1262 struct ata_taskfile tf;
1263 int lba48 = ata_id_has_lba48(dev->id);
1264
1265 new_sectors--;
1266
1267 ata_tf_init(dev, &tf);
1268
1269 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1270
1271 if (lba48) {
1272 tf.command = ATA_CMD_SET_MAX_EXT;
1273 tf.flags |= ATA_TFLAG_LBA48;
1274
1275 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1276 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1277 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1278 } else {
1279 tf.command = ATA_CMD_SET_MAX;
1280
1281 tf.device |= (new_sectors >> 24) & 0xf;
1282 }
1283
1284 tf.protocol = ATA_PROT_NODATA;
1285 tf.device |= ATA_LBA;
1286
1287 tf.lbal = (new_sectors >> 0) & 0xff;
1288 tf.lbam = (new_sectors >> 8) & 0xff;
1289 tf.lbah = (new_sectors >> 16) & 0xff;
1290
1291 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1292 if (err_mask) {
1293 ata_dev_warn(dev,
1294 "failed to set max address (err_mask=0x%x)\n",
1295 err_mask);
1296 if (err_mask == AC_ERR_DEV &&
1297 (tf.error & (ATA_ABORTED | ATA_IDNF)))
1298 return -EACCES;
1299 return -EIO;
1300 }
1301
1302 return 0;
1303 }
1304
1305 /**
1306 * ata_hpa_resize - Resize a device with an HPA set
1307 * @dev: Device to resize
1308 *
1309 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1310 * it if required to the full size of the media. The caller must check
1311 * the drive has the HPA feature set enabled.
1312 *
1313 * RETURNS:
1314 * 0 on success, -errno on failure.
1315 */
ata_hpa_resize(struct ata_device * dev)1316 static int ata_hpa_resize(struct ata_device *dev)
1317 {
1318 bool print_info = ata_dev_print_info(dev);
1319 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1320 u64 sectors = ata_id_n_sectors(dev->id);
1321 u64 native_sectors;
1322 int rc;
1323
1324 /* do we need to do it? */
1325 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1326 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1327 (dev->quirks & ATA_QUIRK_BROKEN_HPA))
1328 return 0;
1329
1330 /* read native max address */
1331 rc = ata_read_native_max_address(dev, &native_sectors);
1332 if (rc) {
1333 /* If device aborted the command or HPA isn't going to
1334 * be unlocked, skip HPA resizing.
1335 */
1336 if (rc == -EACCES || !unlock_hpa) {
1337 ata_dev_warn(dev,
1338 "HPA support seems broken, skipping HPA handling\n");
1339 dev->quirks |= ATA_QUIRK_BROKEN_HPA;
1340
1341 /* we can continue if device aborted the command */
1342 if (rc == -EACCES)
1343 rc = 0;
1344 }
1345
1346 return rc;
1347 }
1348 dev->n_native_sectors = native_sectors;
1349
1350 /* nothing to do? */
1351 if (native_sectors <= sectors || !unlock_hpa) {
1352 if (!print_info || native_sectors == sectors)
1353 return 0;
1354
1355 if (native_sectors > sectors)
1356 ata_dev_info(dev,
1357 "HPA detected: current %llu, native %llu\n",
1358 (unsigned long long)sectors,
1359 (unsigned long long)native_sectors);
1360 else if (native_sectors < sectors)
1361 ata_dev_warn(dev,
1362 "native sectors (%llu) is smaller than sectors (%llu)\n",
1363 (unsigned long long)native_sectors,
1364 (unsigned long long)sectors);
1365 return 0;
1366 }
1367
1368 /* let's unlock HPA */
1369 rc = ata_set_max_sectors(dev, native_sectors);
1370 if (rc == -EACCES) {
1371 /* if device aborted the command, skip HPA resizing */
1372 ata_dev_warn(dev,
1373 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1374 (unsigned long long)sectors,
1375 (unsigned long long)native_sectors);
1376 dev->quirks |= ATA_QUIRK_BROKEN_HPA;
1377 return 0;
1378 } else if (rc)
1379 return rc;
1380
1381 /* re-read IDENTIFY data */
1382 rc = ata_dev_reread_id(dev, 0);
1383 if (rc) {
1384 ata_dev_err(dev,
1385 "failed to re-read IDENTIFY data after HPA resizing\n");
1386 return rc;
1387 }
1388
1389 if (print_info) {
1390 u64 new_sectors = ata_id_n_sectors(dev->id);
1391 ata_dev_info(dev,
1392 "HPA unlocked: %llu -> %llu, native %llu\n",
1393 (unsigned long long)sectors,
1394 (unsigned long long)new_sectors,
1395 (unsigned long long)native_sectors);
1396 }
1397
1398 return 0;
1399 }
1400
1401 /**
1402 * ata_dump_id - IDENTIFY DEVICE info debugging output
1403 * @dev: device from which the information is fetched
1404 * @id: IDENTIFY DEVICE page to dump
1405 *
1406 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1407 * page.
1408 *
1409 * LOCKING:
1410 * caller.
1411 */
1412
ata_dump_id(struct ata_device * dev,const u16 * id)1413 static inline void ata_dump_id(struct ata_device *dev, const u16 *id)
1414 {
1415 ata_dev_dbg(dev,
1416 "49==0x%04x 53==0x%04x 63==0x%04x 64==0x%04x 75==0x%04x\n"
1417 "80==0x%04x 81==0x%04x 82==0x%04x 83==0x%04x 84==0x%04x\n"
1418 "88==0x%04x 93==0x%04x\n",
1419 id[49], id[53], id[63], id[64], id[75], id[80],
1420 id[81], id[82], id[83], id[84], id[88], id[93]);
1421 }
1422
1423 /**
1424 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1425 * @id: IDENTIFY data to compute xfer mask from
1426 *
1427 * Compute the xfermask for this device. This is not as trivial
1428 * as it seems if we must consider early devices correctly.
1429 *
1430 * FIXME: pre IDE drive timing (do we care ?).
1431 *
1432 * LOCKING:
1433 * None.
1434 *
1435 * RETURNS:
1436 * Computed xfermask
1437 */
ata_id_xfermask(const u16 * id)1438 unsigned int ata_id_xfermask(const u16 *id)
1439 {
1440 unsigned int pio_mask, mwdma_mask, udma_mask;
1441
1442 /* Usual case. Word 53 indicates word 64 is valid */
1443 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1444 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1445 pio_mask <<= 3;
1446 pio_mask |= 0x7;
1447 } else {
1448 /* If word 64 isn't valid then Word 51 high byte holds
1449 * the PIO timing number for the maximum. Turn it into
1450 * a mask.
1451 */
1452 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1453 if (mode < 5) /* Valid PIO range */
1454 pio_mask = (2 << mode) - 1;
1455 else
1456 pio_mask = 1;
1457
1458 /* But wait.. there's more. Design your standards by
1459 * committee and you too can get a free iordy field to
1460 * process. However it is the speeds not the modes that
1461 * are supported... Note drivers using the timing API
1462 * will get this right anyway
1463 */
1464 }
1465
1466 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1467
1468 if (ata_id_is_cfa(id)) {
1469 /*
1470 * Process compact flash extended modes
1471 */
1472 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1473 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1474
1475 if (pio)
1476 pio_mask |= (1 << 5);
1477 if (pio > 1)
1478 pio_mask |= (1 << 6);
1479 if (dma)
1480 mwdma_mask |= (1 << 3);
1481 if (dma > 1)
1482 mwdma_mask |= (1 << 4);
1483 }
1484
1485 udma_mask = 0;
1486 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1487 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1488
1489 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1490 }
1491 EXPORT_SYMBOL_GPL(ata_id_xfermask);
1492
ata_qc_complete_internal(struct ata_queued_cmd * qc)1493 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1494 {
1495 struct completion *waiting = qc->private_data;
1496
1497 complete(waiting);
1498 }
1499
1500 /**
1501 * ata_exec_internal - execute libata internal command
1502 * @dev: Device to which the command is sent
1503 * @tf: Taskfile registers for the command and the result
1504 * @cdb: CDB for packet command
1505 * @dma_dir: Data transfer direction of the command
1506 * @buf: Data buffer of the command
1507 * @buflen: Length of data buffer
1508 * @timeout: Timeout in msecs (0 for default)
1509 *
1510 * Executes libata internal command with timeout. @tf contains
1511 * the command on entry and the result on return. Timeout and error
1512 * conditions are reported via the return value. No recovery action
1513 * is taken after a command times out. It is the caller's duty to
1514 * clean up after timeout.
1515 *
1516 * LOCKING:
1517 * None. Should be called with kernel context, might sleep.
1518 *
1519 * RETURNS:
1520 * Zero on success, AC_ERR_* mask on failure
1521 */
ata_exec_internal(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,enum dma_data_direction dma_dir,void * buf,unsigned int buflen,unsigned int timeout)1522 unsigned int ata_exec_internal(struct ata_device *dev, struct ata_taskfile *tf,
1523 const u8 *cdb, enum dma_data_direction dma_dir,
1524 void *buf, unsigned int buflen,
1525 unsigned int timeout)
1526 {
1527 struct ata_link *link = dev->link;
1528 struct ata_port *ap = link->ap;
1529 u8 command = tf->command;
1530 struct ata_queued_cmd *qc;
1531 struct scatterlist sgl;
1532 unsigned int preempted_tag;
1533 u32 preempted_sactive;
1534 u64 preempted_qc_active;
1535 int preempted_nr_active_links;
1536 bool auto_timeout = false;
1537 DECLARE_COMPLETION_ONSTACK(wait);
1538 unsigned long flags;
1539 unsigned int err_mask;
1540 int rc;
1541
1542 if (WARN_ON(dma_dir != DMA_NONE && !buf))
1543 return AC_ERR_INVALID;
1544
1545 spin_lock_irqsave(ap->lock, flags);
1546
1547 /* No internal command while frozen */
1548 if (ata_port_is_frozen(ap)) {
1549 spin_unlock_irqrestore(ap->lock, flags);
1550 return AC_ERR_SYSTEM;
1551 }
1552
1553 /* Initialize internal qc */
1554 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1555
1556 qc->tag = ATA_TAG_INTERNAL;
1557 qc->hw_tag = 0;
1558 qc->scsicmd = NULL;
1559 qc->ap = ap;
1560 qc->dev = dev;
1561 ata_qc_reinit(qc);
1562
1563 preempted_tag = link->active_tag;
1564 preempted_sactive = link->sactive;
1565 preempted_qc_active = ap->qc_active;
1566 preempted_nr_active_links = ap->nr_active_links;
1567 link->active_tag = ATA_TAG_POISON;
1568 link->sactive = 0;
1569 ap->qc_active = 0;
1570 ap->nr_active_links = 0;
1571
1572 /* Prepare and issue qc */
1573 qc->tf = *tf;
1574 if (cdb)
1575 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1576
1577 /* Some SATA bridges need us to indicate data xfer direction */
1578 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1579 dma_dir == DMA_FROM_DEVICE)
1580 qc->tf.feature |= ATAPI_DMADIR;
1581
1582 qc->flags |= ATA_QCFLAG_RESULT_TF;
1583 qc->dma_dir = dma_dir;
1584 if (dma_dir != DMA_NONE) {
1585 sg_init_one(&sgl, buf, buflen);
1586 ata_sg_init(qc, &sgl, 1);
1587 qc->nbytes = buflen;
1588 }
1589
1590 qc->private_data = &wait;
1591 qc->complete_fn = ata_qc_complete_internal;
1592
1593 ata_qc_issue(qc);
1594
1595 spin_unlock_irqrestore(ap->lock, flags);
1596
1597 if (!timeout) {
1598 if (ata_probe_timeout) {
1599 timeout = ata_probe_timeout * 1000;
1600 } else {
1601 timeout = ata_internal_cmd_timeout(dev, command);
1602 auto_timeout = true;
1603 }
1604 }
1605
1606 ata_eh_release(ap);
1607
1608 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1609
1610 ata_eh_acquire(ap);
1611
1612 ata_sff_flush_pio_task(ap);
1613
1614 if (!rc) {
1615 /*
1616 * We are racing with irq here. If we lose, the following test
1617 * prevents us from completing the qc twice. If we win, the port
1618 * is frozen and will be cleaned up by ->post_internal_cmd().
1619 */
1620 spin_lock_irqsave(ap->lock, flags);
1621 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1622 qc->err_mask |= AC_ERR_TIMEOUT;
1623 ata_port_freeze(ap);
1624 ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n",
1625 timeout, command);
1626 }
1627 spin_unlock_irqrestore(ap->lock, flags);
1628 }
1629
1630 if (ap->ops->post_internal_cmd)
1631 ap->ops->post_internal_cmd(qc);
1632
1633 /* Perform minimal error analysis */
1634 if (qc->flags & ATA_QCFLAG_EH) {
1635 if (qc->result_tf.status & (ATA_ERR | ATA_DF))
1636 qc->err_mask |= AC_ERR_DEV;
1637
1638 if (!qc->err_mask)
1639 qc->err_mask |= AC_ERR_OTHER;
1640
1641 if (qc->err_mask & ~AC_ERR_OTHER)
1642 qc->err_mask &= ~AC_ERR_OTHER;
1643 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1644 qc->result_tf.status |= ATA_SENSE;
1645 }
1646
1647 /* Finish up */
1648 spin_lock_irqsave(ap->lock, flags);
1649
1650 *tf = qc->result_tf;
1651 err_mask = qc->err_mask;
1652
1653 ata_qc_free(qc);
1654 link->active_tag = preempted_tag;
1655 link->sactive = preempted_sactive;
1656 ap->qc_active = preempted_qc_active;
1657 ap->nr_active_links = preempted_nr_active_links;
1658
1659 spin_unlock_irqrestore(ap->lock, flags);
1660
1661 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1662 ata_internal_cmd_timed_out(dev, command);
1663
1664 return err_mask;
1665 }
1666
1667 /**
1668 * ata_pio_need_iordy - check if iordy needed
1669 * @adev: ATA device
1670 *
1671 * Check if the current speed of the device requires IORDY. Used
1672 * by various controllers for chip configuration.
1673 */
ata_pio_need_iordy(const struct ata_device * adev)1674 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1675 {
1676 /* Don't set IORDY if we're preparing for reset. IORDY may
1677 * lead to controller lock up on certain controllers if the
1678 * port is not occupied. See bko#11703 for details.
1679 */
1680 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1681 return 0;
1682 /* Controller doesn't support IORDY. Probably a pointless
1683 * check as the caller should know this.
1684 */
1685 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1686 return 0;
1687 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1688 if (ata_id_is_cfa(adev->id)
1689 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1690 return 0;
1691 /* PIO3 and higher it is mandatory */
1692 if (adev->pio_mode > XFER_PIO_2)
1693 return 1;
1694 /* We turn it on when possible */
1695 if (ata_id_has_iordy(adev->id))
1696 return 1;
1697 return 0;
1698 }
1699 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1700
1701 /**
1702 * ata_pio_mask_no_iordy - Return the non IORDY mask
1703 * @adev: ATA device
1704 *
1705 * Compute the highest mode possible if we are not using iordy. Return
1706 * -1 if no iordy mode is available.
1707 */
ata_pio_mask_no_iordy(const struct ata_device * adev)1708 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1709 {
1710 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1711 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1712 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1713 /* Is the speed faster than the drive allows non IORDY ? */
1714 if (pio) {
1715 /* This is cycle times not frequency - watch the logic! */
1716 if (pio > 240) /* PIO2 is 240nS per cycle */
1717 return 3 << ATA_SHIFT_PIO;
1718 return 7 << ATA_SHIFT_PIO;
1719 }
1720 }
1721 return 3 << ATA_SHIFT_PIO;
1722 }
1723
1724 /**
1725 * ata_do_dev_read_id - default ID read method
1726 * @dev: device
1727 * @tf: proposed taskfile
1728 * @id: data buffer
1729 *
1730 * Issue the identify taskfile and hand back the buffer containing
1731 * identify data. For some RAID controllers and for pre ATA devices
1732 * this function is wrapped or replaced by the driver
1733 */
ata_do_dev_read_id(struct ata_device * dev,struct ata_taskfile * tf,__le16 * id)1734 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1735 struct ata_taskfile *tf, __le16 *id)
1736 {
1737 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1738 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1739 }
1740 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1741
1742 /**
1743 * ata_dev_read_id - Read ID data from the specified device
1744 * @dev: target device
1745 * @p_class: pointer to class of the target device (may be changed)
1746 * @flags: ATA_READID_* flags
1747 * @id: buffer to read IDENTIFY data into
1748 *
1749 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1750 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1751 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1752 * for pre-ATA4 drives.
1753 *
1754 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1755 * now we abort if we hit that case.
1756 *
1757 * LOCKING:
1758 * Kernel thread context (may sleep)
1759 *
1760 * RETURNS:
1761 * 0 on success, -errno otherwise.
1762 */
ata_dev_read_id(struct ata_device * dev,unsigned int * p_class,unsigned int flags,u16 * id)1763 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1764 unsigned int flags, u16 *id)
1765 {
1766 struct ata_port *ap = dev->link->ap;
1767 unsigned int class = *p_class;
1768 struct ata_taskfile tf;
1769 unsigned int err_mask = 0;
1770 const char *reason;
1771 bool is_semb = class == ATA_DEV_SEMB;
1772 int may_fallback = 1, tried_spinup = 0;
1773 int rc;
1774
1775 retry:
1776 ata_tf_init(dev, &tf);
1777
1778 switch (class) {
1779 case ATA_DEV_SEMB:
1780 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1781 fallthrough;
1782 case ATA_DEV_ATA:
1783 case ATA_DEV_ZAC:
1784 tf.command = ATA_CMD_ID_ATA;
1785 break;
1786 case ATA_DEV_ATAPI:
1787 tf.command = ATA_CMD_ID_ATAPI;
1788 break;
1789 default:
1790 rc = -ENODEV;
1791 reason = "unsupported class";
1792 goto err_out;
1793 }
1794
1795 tf.protocol = ATA_PROT_PIO;
1796
1797 /* Some devices choke if TF registers contain garbage. Make
1798 * sure those are properly initialized.
1799 */
1800 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1801
1802 /* Device presence detection is unreliable on some
1803 * controllers. Always poll IDENTIFY if available.
1804 */
1805 tf.flags |= ATA_TFLAG_POLLING;
1806
1807 if (ap->ops->read_id)
1808 err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id);
1809 else
1810 err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id);
1811
1812 if (err_mask) {
1813 if (err_mask & AC_ERR_NODEV_HINT) {
1814 ata_dev_dbg(dev, "NODEV after polling detection\n");
1815 return -ENOENT;
1816 }
1817
1818 if (is_semb) {
1819 ata_dev_info(dev,
1820 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1821 /* SEMB is not supported yet */
1822 *p_class = ATA_DEV_SEMB_UNSUP;
1823 return 0;
1824 }
1825
1826 if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) {
1827 /* Device or controller might have reported
1828 * the wrong device class. Give a shot at the
1829 * other IDENTIFY if the current one is
1830 * aborted by the device.
1831 */
1832 if (may_fallback) {
1833 may_fallback = 0;
1834
1835 if (class == ATA_DEV_ATA)
1836 class = ATA_DEV_ATAPI;
1837 else
1838 class = ATA_DEV_ATA;
1839 goto retry;
1840 }
1841
1842 /* Control reaches here iff the device aborted
1843 * both flavors of IDENTIFYs which happens
1844 * sometimes with phantom devices.
1845 */
1846 ata_dev_dbg(dev,
1847 "both IDENTIFYs aborted, assuming NODEV\n");
1848 return -ENOENT;
1849 }
1850
1851 rc = -EIO;
1852 reason = "I/O error";
1853 goto err_out;
1854 }
1855
1856 if (dev->quirks & ATA_QUIRK_DUMP_ID) {
1857 ata_dev_info(dev, "dumping IDENTIFY data, "
1858 "class=%d may_fallback=%d tried_spinup=%d\n",
1859 class, may_fallback, tried_spinup);
1860 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET,
1861 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1862 }
1863
1864 /* Falling back doesn't make sense if ID data was read
1865 * successfully at least once.
1866 */
1867 may_fallback = 0;
1868
1869 swap_buf_le16(id, ATA_ID_WORDS);
1870
1871 /* sanity check */
1872 rc = -EINVAL;
1873 reason = "device reports invalid type";
1874
1875 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1876 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1877 goto err_out;
1878 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1879 ata_id_is_ata(id)) {
1880 ata_dev_dbg(dev,
1881 "host indicates ignore ATA devices, ignored\n");
1882 return -ENOENT;
1883 }
1884 } else {
1885 if (ata_id_is_ata(id))
1886 goto err_out;
1887 }
1888
1889 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1890 tried_spinup = 1;
1891 /*
1892 * Drive powered-up in standby mode, and requires a specific
1893 * SET_FEATURES spin-up subcommand before it will accept
1894 * anything other than the original IDENTIFY command.
1895 */
1896 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1897 if (err_mask && id[2] != 0x738c) {
1898 rc = -EIO;
1899 reason = "SPINUP failed";
1900 goto err_out;
1901 }
1902 /*
1903 * If the drive initially returned incomplete IDENTIFY info,
1904 * we now must reissue the IDENTIFY command.
1905 */
1906 if (id[2] == 0x37c8)
1907 goto retry;
1908 }
1909
1910 if ((flags & ATA_READID_POSTRESET) &&
1911 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1912 /*
1913 * The exact sequence expected by certain pre-ATA4 drives is:
1914 * SRST RESET
1915 * IDENTIFY (optional in early ATA)
1916 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1917 * anything else..
1918 * Some drives were very specific about that exact sequence.
1919 *
1920 * Note that ATA4 says lba is mandatory so the second check
1921 * should never trigger.
1922 */
1923 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1924 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1925 if (err_mask) {
1926 rc = -EIO;
1927 reason = "INIT_DEV_PARAMS failed";
1928 goto err_out;
1929 }
1930
1931 /* current CHS translation info (id[53-58]) might be
1932 * changed. reread the identify device info.
1933 */
1934 flags &= ~ATA_READID_POSTRESET;
1935 goto retry;
1936 }
1937 }
1938
1939 *p_class = class;
1940
1941 return 0;
1942
1943 err_out:
1944 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1945 reason, err_mask);
1946 return rc;
1947 }
1948
ata_dev_power_init_tf(struct ata_device * dev,struct ata_taskfile * tf,bool set_active)1949 bool ata_dev_power_init_tf(struct ata_device *dev, struct ata_taskfile *tf,
1950 bool set_active)
1951 {
1952 /* Only applies to ATA and ZAC devices */
1953 if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC)
1954 return false;
1955
1956 ata_tf_init(dev, tf);
1957 tf->flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1958 tf->protocol = ATA_PROT_NODATA;
1959
1960 if (set_active) {
1961 /* VERIFY for 1 sector at lba=0 */
1962 tf->command = ATA_CMD_VERIFY;
1963 tf->nsect = 1;
1964 if (dev->flags & ATA_DFLAG_LBA) {
1965 tf->flags |= ATA_TFLAG_LBA;
1966 tf->device |= ATA_LBA;
1967 } else {
1968 /* CHS */
1969 tf->lbal = 0x1; /* sect */
1970 }
1971 } else {
1972 tf->command = ATA_CMD_STANDBYNOW1;
1973 }
1974
1975 return true;
1976 }
1977
ata_dev_power_is_active(struct ata_device * dev)1978 static bool ata_dev_power_is_active(struct ata_device *dev)
1979 {
1980 struct ata_taskfile tf;
1981 unsigned int err_mask;
1982
1983 ata_tf_init(dev, &tf);
1984 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1985 tf.protocol = ATA_PROT_NODATA;
1986 tf.command = ATA_CMD_CHK_POWER;
1987
1988 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1989 if (err_mask) {
1990 ata_dev_err(dev, "Check power mode failed (err_mask=0x%x)\n",
1991 err_mask);
1992 /*
1993 * Assume we are in standby mode so that we always force a
1994 * spinup in ata_dev_power_set_active().
1995 */
1996 return false;
1997 }
1998
1999 ata_dev_dbg(dev, "Power mode: 0x%02x\n", tf.nsect);
2000
2001 /* Active or idle */
2002 return tf.nsect == 0xff;
2003 }
2004
2005 /**
2006 * ata_dev_power_set_standby - Set a device power mode to standby
2007 * @dev: target device
2008 *
2009 * Issue a STANDBY IMMEDIATE command to set a device power mode to standby.
2010 * For an HDD device, this spins down the disks.
2011 *
2012 * LOCKING:
2013 * Kernel thread context (may sleep).
2014 */
ata_dev_power_set_standby(struct ata_device * dev)2015 void ata_dev_power_set_standby(struct ata_device *dev)
2016 {
2017 unsigned long ap_flags = dev->link->ap->flags;
2018 struct ata_taskfile tf;
2019 unsigned int err_mask;
2020
2021 /* If the device is already sleeping or in standby, do nothing. */
2022 if ((dev->flags & ATA_DFLAG_SLEEPING) ||
2023 !ata_dev_power_is_active(dev))
2024 return;
2025
2026 /*
2027 * Some odd clown BIOSes issue spindown on power off (ACPI S4 or S5)
2028 * causing some drives to spin up and down again. For these, do nothing
2029 * if we are being called on shutdown.
2030 */
2031 if ((ap_flags & ATA_FLAG_NO_POWEROFF_SPINDOWN) &&
2032 system_state == SYSTEM_POWER_OFF)
2033 return;
2034
2035 if ((ap_flags & ATA_FLAG_NO_HIBERNATE_SPINDOWN) &&
2036 system_entering_hibernation())
2037 return;
2038
2039 /* Issue STANDBY IMMEDIATE command only if supported by the device */
2040 if (!ata_dev_power_init_tf(dev, &tf, false))
2041 return;
2042
2043 ata_dev_notice(dev, "Entering standby power mode\n");
2044
2045 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2046 if (err_mask)
2047 ata_dev_err(dev, "STANDBY IMMEDIATE failed (err_mask=0x%x)\n",
2048 err_mask);
2049 }
2050
2051 /**
2052 * ata_dev_power_set_active - Set a device power mode to active
2053 * @dev: target device
2054 *
2055 * Issue a VERIFY command to enter to ensure that the device is in the
2056 * active power mode. For a spun-down HDD (standby or idle power mode),
2057 * the VERIFY command will complete after the disk spins up.
2058 *
2059 * LOCKING:
2060 * Kernel thread context (may sleep).
2061 */
ata_dev_power_set_active(struct ata_device * dev)2062 void ata_dev_power_set_active(struct ata_device *dev)
2063 {
2064 struct ata_taskfile tf;
2065 unsigned int err_mask;
2066
2067 /*
2068 * Issue READ VERIFY SECTORS command for 1 sector at lba=0 only
2069 * if supported by the device.
2070 */
2071 if (!ata_dev_power_init_tf(dev, &tf, true))
2072 return;
2073
2074 /*
2075 * Check the device power state & condition and force a spinup with
2076 * VERIFY command only if the drive is not already ACTIVE or IDLE.
2077 */
2078 if (ata_dev_power_is_active(dev))
2079 return;
2080
2081 ata_dev_notice(dev, "Entering active power mode\n");
2082
2083 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2084 if (err_mask)
2085 ata_dev_err(dev, "VERIFY failed (err_mask=0x%x)\n",
2086 err_mask);
2087 }
2088
2089 /**
2090 * ata_read_log_page - read a specific log page
2091 * @dev: target device
2092 * @log: log to read
2093 * @page: page to read
2094 * @buf: buffer to store read page
2095 * @sectors: number of sectors to read
2096 *
2097 * Read log page using READ_LOG_EXT command.
2098 *
2099 * LOCKING:
2100 * Kernel thread context (may sleep).
2101 *
2102 * RETURNS:
2103 * 0 on success, AC_ERR_* mask otherwise.
2104 */
ata_read_log_page(struct ata_device * dev,u8 log,u8 page,void * buf,unsigned int sectors)2105 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2106 u8 page, void *buf, unsigned int sectors)
2107 {
2108 unsigned long ap_flags = dev->link->ap->flags;
2109 struct ata_taskfile tf;
2110 unsigned int err_mask;
2111 bool dma = false;
2112
2113 ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page);
2114
2115 /*
2116 * Return error without actually issuing the command on controllers
2117 * which e.g. lockup on a read log page.
2118 */
2119 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2120 return AC_ERR_DEV;
2121
2122 retry:
2123 ata_tf_init(dev, &tf);
2124 if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
2125 !(dev->quirks & ATA_QUIRK_NO_DMA_LOG)) {
2126 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2127 tf.protocol = ATA_PROT_DMA;
2128 dma = true;
2129 } else {
2130 tf.command = ATA_CMD_READ_LOG_EXT;
2131 tf.protocol = ATA_PROT_PIO;
2132 dma = false;
2133 }
2134 tf.lbal = log;
2135 tf.lbam = page;
2136 tf.nsect = sectors;
2137 tf.hob_nsect = sectors >> 8;
2138 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2139
2140 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2141 buf, sectors * ATA_SECT_SIZE, 0);
2142
2143 if (err_mask) {
2144 if (dma) {
2145 dev->quirks |= ATA_QUIRK_NO_DMA_LOG;
2146 if (!ata_port_is_frozen(dev->link->ap))
2147 goto retry;
2148 }
2149 ata_dev_err(dev,
2150 "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n",
2151 (unsigned int)log, (unsigned int)page, err_mask);
2152 }
2153
2154 return err_mask;
2155 }
2156
ata_clear_log_directory(struct ata_device * dev)2157 static inline void ata_clear_log_directory(struct ata_device *dev)
2158 {
2159 memset(dev->gp_log_dir, 0, ATA_SECT_SIZE);
2160 }
2161
ata_read_log_directory(struct ata_device * dev)2162 static int ata_read_log_directory(struct ata_device *dev)
2163 {
2164 u16 version;
2165
2166 /* If the log page is already cached, do nothing. */
2167 version = get_unaligned_le16(&dev->gp_log_dir[0]);
2168 if (version == 0x0001)
2169 return 0;
2170
2171 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, dev->gp_log_dir, 1)) {
2172 ata_clear_log_directory(dev);
2173 return -EIO;
2174 }
2175
2176 version = get_unaligned_le16(&dev->gp_log_dir[0]);
2177 if (version != 0x0001)
2178 ata_dev_warn_once(dev,
2179 "Invalid log directory version 0x%04x\n",
2180 version);
2181
2182 return 0;
2183 }
2184
ata_log_supported(struct ata_device * dev,u8 log)2185 static int ata_log_supported(struct ata_device *dev, u8 log)
2186 {
2187 if (dev->quirks & ATA_QUIRK_NO_LOG_DIR)
2188 return 0;
2189
2190 if (ata_read_log_directory(dev))
2191 return 0;
2192
2193 return get_unaligned_le16(&dev->gp_log_dir[log * 2]);
2194 }
2195
ata_identify_page_supported(struct ata_device * dev,u8 page)2196 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2197 {
2198 unsigned int err, i;
2199
2200 if (dev->quirks & ATA_QUIRK_NO_ID_DEV_LOG)
2201 return false;
2202
2203 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2204 /*
2205 * IDENTIFY DEVICE data log is defined as mandatory starting
2206 * with ACS-3 (ATA version 10). Warn about the missing log
2207 * for drives which implement this ATA level or above.
2208 */
2209 if (ata_id_major_version(dev->id) >= 10)
2210 ata_dev_warn(dev,
2211 "ATA Identify Device Log not supported\n");
2212 dev->quirks |= ATA_QUIRK_NO_ID_DEV_LOG;
2213 return false;
2214 }
2215
2216 /*
2217 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2218 * supported.
2219 */
2220 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0,
2221 dev->sector_buf, 1);
2222 if (err)
2223 return false;
2224
2225 for (i = 0; i < dev->sector_buf[8]; i++) {
2226 if (dev->sector_buf[9 + i] == page)
2227 return true;
2228 }
2229
2230 return false;
2231 }
2232
ata_do_link_spd_quirk(struct ata_device * dev)2233 static int ata_do_link_spd_quirk(struct ata_device *dev)
2234 {
2235 struct ata_link *plink = ata_dev_phys_link(dev);
2236 u32 target, target_limit;
2237
2238 if (!sata_scr_valid(plink))
2239 return 0;
2240
2241 if (dev->quirks & ATA_QUIRK_1_5_GBPS)
2242 target = 1;
2243 else
2244 return 0;
2245
2246 target_limit = (1 << target) - 1;
2247
2248 /* if already on stricter limit, no need to push further */
2249 if (plink->sata_spd_limit <= target_limit)
2250 return 0;
2251
2252 plink->sata_spd_limit = target_limit;
2253
2254 /* Request another EH round by returning -EAGAIN if link is
2255 * going faster than the target speed. Forward progress is
2256 * guaranteed by setting sata_spd_limit to target_limit above.
2257 */
2258 if (plink->sata_spd > target) {
2259 ata_dev_info(dev, "applying link speed limit quirk to %s\n",
2260 sata_spd_string(target));
2261 return -EAGAIN;
2262 }
2263 return 0;
2264 }
2265
ata_dev_knobble(struct ata_device * dev)2266 static inline bool ata_dev_knobble(struct ata_device *dev)
2267 {
2268 struct ata_port *ap = dev->link->ap;
2269
2270 if (ata_dev_quirks(dev) & ATA_QUIRK_BRIDGE_OK)
2271 return false;
2272
2273 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2274 }
2275
ata_dev_config_ncq_send_recv(struct ata_device * dev)2276 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2277 {
2278 unsigned int err_mask;
2279
2280 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2281 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2282 return;
2283 }
2284 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2285 0, dev->sector_buf, 1);
2286 if (!err_mask) {
2287 u8 *cmds = dev->ncq_send_recv_cmds;
2288
2289 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2290 memcpy(cmds, dev->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2291
2292 if (dev->quirks & ATA_QUIRK_NO_NCQ_TRIM) {
2293 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2294 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2295 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2296 }
2297 }
2298 }
2299
ata_dev_config_ncq_non_data(struct ata_device * dev)2300 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2301 {
2302 unsigned int err_mask;
2303
2304 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2305 ata_dev_warn(dev,
2306 "NCQ Non-Data Log not supported\n");
2307 return;
2308 }
2309 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2310 0, dev->sector_buf, 1);
2311 if (!err_mask)
2312 memcpy(dev->ncq_non_data_cmds, dev->sector_buf,
2313 ATA_LOG_NCQ_NON_DATA_SIZE);
2314 }
2315
ata_dev_config_ncq_prio(struct ata_device * dev)2316 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2317 {
2318 unsigned int err_mask;
2319
2320 if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2321 return;
2322
2323 err_mask = ata_read_log_page(dev,
2324 ATA_LOG_IDENTIFY_DEVICE,
2325 ATA_LOG_SATA_SETTINGS,
2326 dev->sector_buf, 1);
2327 if (err_mask)
2328 goto not_supported;
2329
2330 if (!(dev->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2331 goto not_supported;
2332
2333 dev->flags |= ATA_DFLAG_NCQ_PRIO;
2334
2335 return;
2336
2337 not_supported:
2338 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED;
2339 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2340 }
2341
ata_dev_check_adapter(struct ata_device * dev,unsigned short vendor_id)2342 static bool ata_dev_check_adapter(struct ata_device *dev,
2343 unsigned short vendor_id)
2344 {
2345 struct pci_dev *pcidev = NULL;
2346 struct device *parent_dev = NULL;
2347
2348 for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2349 parent_dev = parent_dev->parent) {
2350 if (dev_is_pci(parent_dev)) {
2351 pcidev = to_pci_dev(parent_dev);
2352 if (pcidev->vendor == vendor_id)
2353 return true;
2354 break;
2355 }
2356 }
2357
2358 return false;
2359 }
2360
ata_dev_config_ncq(struct ata_device * dev,char * desc,size_t desc_sz)2361 static int ata_dev_config_ncq(struct ata_device *dev,
2362 char *desc, size_t desc_sz)
2363 {
2364 struct ata_port *ap = dev->link->ap;
2365 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2366 unsigned int err_mask;
2367 char *aa_desc = "";
2368
2369 if (!ata_id_has_ncq(dev->id)) {
2370 desc[0] = '\0';
2371 return 0;
2372 }
2373 if (!IS_ENABLED(CONFIG_SATA_HOST))
2374 return 0;
2375 if (dev->quirks & ATA_QUIRK_NONCQ) {
2376 snprintf(desc, desc_sz, "NCQ (not used)");
2377 return 0;
2378 }
2379
2380 if (dev->quirks & ATA_QUIRK_NO_NCQ_ON_ATI &&
2381 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2382 snprintf(desc, desc_sz, "NCQ (not used)");
2383 return 0;
2384 }
2385
2386 if (ap->flags & ATA_FLAG_NCQ) {
2387 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2388 dev->flags |= ATA_DFLAG_NCQ;
2389 }
2390
2391 if (!(dev->quirks & ATA_QUIRK_BROKEN_FPDMA_AA) &&
2392 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2393 ata_id_has_fpdma_aa(dev->id)) {
2394 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2395 SATA_FPDMA_AA);
2396 if (err_mask) {
2397 ata_dev_err(dev,
2398 "failed to enable AA (error_mask=0x%x)\n",
2399 err_mask);
2400 if (err_mask != AC_ERR_DEV) {
2401 dev->quirks |= ATA_QUIRK_BROKEN_FPDMA_AA;
2402 return -EIO;
2403 }
2404 } else
2405 aa_desc = ", AA";
2406 }
2407
2408 if (hdepth >= ddepth)
2409 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2410 else
2411 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2412 ddepth, aa_desc);
2413
2414 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2415 if (ata_id_has_ncq_send_and_recv(dev->id))
2416 ata_dev_config_ncq_send_recv(dev);
2417 if (ata_id_has_ncq_non_data(dev->id))
2418 ata_dev_config_ncq_non_data(dev);
2419 if (ata_id_has_ncq_prio(dev->id))
2420 ata_dev_config_ncq_prio(dev);
2421 }
2422
2423 return 0;
2424 }
2425
ata_dev_config_sense_reporting(struct ata_device * dev)2426 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2427 {
2428 unsigned int err_mask;
2429
2430 if (!ata_id_has_sense_reporting(dev->id))
2431 return;
2432
2433 if (ata_id_sense_reporting_enabled(dev->id))
2434 return;
2435
2436 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2437 if (err_mask) {
2438 ata_dev_dbg(dev,
2439 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2440 err_mask);
2441 }
2442 }
2443
ata_dev_config_zac(struct ata_device * dev)2444 static void ata_dev_config_zac(struct ata_device *dev)
2445 {
2446 unsigned int err_mask;
2447 u8 *identify_buf = dev->sector_buf;
2448
2449 dev->zac_zones_optimal_open = U32_MAX;
2450 dev->zac_zones_optimal_nonseq = U32_MAX;
2451 dev->zac_zones_max_open = U32_MAX;
2452
2453 if (!ata_dev_is_zac(dev))
2454 return;
2455
2456 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2457 ata_dev_warn(dev,
2458 "ATA Zoned Information Log not supported\n");
2459 return;
2460 }
2461
2462 /*
2463 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2464 */
2465 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2466 ATA_LOG_ZONED_INFORMATION,
2467 identify_buf, 1);
2468 if (!err_mask) {
2469 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2470
2471 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2472 if ((zoned_cap >> 63))
2473 dev->zac_zoned_cap = (zoned_cap & 1);
2474 opt_open = get_unaligned_le64(&identify_buf[24]);
2475 if ((opt_open >> 63))
2476 dev->zac_zones_optimal_open = (u32)opt_open;
2477 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2478 if ((opt_nonseq >> 63))
2479 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2480 max_open = get_unaligned_le64(&identify_buf[40]);
2481 if ((max_open >> 63))
2482 dev->zac_zones_max_open = (u32)max_open;
2483 }
2484 }
2485
ata_dev_config_trusted(struct ata_device * dev)2486 static void ata_dev_config_trusted(struct ata_device *dev)
2487 {
2488 u64 trusted_cap;
2489 unsigned int err;
2490
2491 if (!ata_id_has_trusted(dev->id))
2492 return;
2493
2494 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2495 ata_dev_warn(dev,
2496 "Security Log not supported\n");
2497 return;
2498 }
2499
2500 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2501 dev->sector_buf, 1);
2502 if (err)
2503 return;
2504
2505 trusted_cap = get_unaligned_le64(&dev->sector_buf[40]);
2506 if (!(trusted_cap & (1ULL << 63))) {
2507 ata_dev_dbg(dev,
2508 "Trusted Computing capability qword not valid!\n");
2509 return;
2510 }
2511
2512 if (trusted_cap & (1 << 0))
2513 dev->flags |= ATA_DFLAG_TRUSTED;
2514 }
2515
ata_dev_cleanup_cdl_resources(struct ata_device * dev)2516 static void ata_dev_cleanup_cdl_resources(struct ata_device *dev)
2517 {
2518 kfree(dev->cdl);
2519 dev->cdl = NULL;
2520 }
2521
ata_dev_init_cdl_resources(struct ata_device * dev)2522 static int ata_dev_init_cdl_resources(struct ata_device *dev)
2523 {
2524 struct ata_cdl *cdl = dev->cdl;
2525 unsigned int err_mask;
2526
2527 if (!cdl) {
2528 cdl = kzalloc(sizeof(*cdl), GFP_KERNEL);
2529 if (!cdl)
2530 return -ENOMEM;
2531 dev->cdl = cdl;
2532 }
2533
2534 err_mask = ata_read_log_page(dev, ATA_LOG_CDL, 0, cdl->desc_log_buf,
2535 ATA_LOG_CDL_SIZE / ATA_SECT_SIZE);
2536 if (err_mask) {
2537 ata_dev_warn(dev, "Read Command Duration Limits log failed\n");
2538 ata_dev_cleanup_cdl_resources(dev);
2539 return -EIO;
2540 }
2541
2542 return 0;
2543 }
2544
ata_dev_config_cdl(struct ata_device * dev)2545 static void ata_dev_config_cdl(struct ata_device *dev)
2546 {
2547 unsigned int err_mask;
2548 bool cdl_enabled;
2549 u64 val;
2550 int ret;
2551
2552 if (ata_id_major_version(dev->id) < 11)
2553 goto not_supported;
2554
2555 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE) ||
2556 !ata_identify_page_supported(dev, ATA_LOG_SUPPORTED_CAPABILITIES) ||
2557 !ata_identify_page_supported(dev, ATA_LOG_CURRENT_SETTINGS))
2558 goto not_supported;
2559
2560 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2561 ATA_LOG_SUPPORTED_CAPABILITIES,
2562 dev->sector_buf, 1);
2563 if (err_mask)
2564 goto not_supported;
2565
2566 /* Check Command Duration Limit Supported bits */
2567 val = get_unaligned_le64(&dev->sector_buf[168]);
2568 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(0)))
2569 goto not_supported;
2570
2571 /* Warn the user if command duration guideline is not supported */
2572 if (!(val & BIT_ULL(1)))
2573 ata_dev_warn(dev,
2574 "Command duration guideline is not supported\n");
2575
2576 /*
2577 * We must have support for the sense data for successful NCQ commands
2578 * log indicated by the successful NCQ command sense data supported bit.
2579 */
2580 val = get_unaligned_le64(&dev->sector_buf[8]);
2581 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(47))) {
2582 ata_dev_warn(dev,
2583 "CDL supported but Successful NCQ Command Sense Data is not supported\n");
2584 goto not_supported;
2585 }
2586
2587 /* Without NCQ autosense, the successful NCQ commands log is useless. */
2588 if (!ata_id_has_ncq_autosense(dev->id)) {
2589 ata_dev_warn(dev,
2590 "CDL supported but NCQ autosense is not supported\n");
2591 goto not_supported;
2592 }
2593
2594 /*
2595 * If CDL is marked as enabled, make sure the feature is enabled too.
2596 * Conversely, if CDL is disabled, make sure the feature is turned off.
2597 */
2598 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2599 ATA_LOG_CURRENT_SETTINGS,
2600 dev->sector_buf, 1);
2601 if (err_mask)
2602 goto not_supported;
2603
2604 val = get_unaligned_le64(&dev->sector_buf[8]);
2605 cdl_enabled = val & BIT_ULL(63) && val & BIT_ULL(21);
2606 if (dev->flags & ATA_DFLAG_CDL_ENABLED) {
2607 if (!cdl_enabled) {
2608 /* Enable CDL on the device */
2609 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 1);
2610 if (err_mask) {
2611 ata_dev_err(dev,
2612 "Enable CDL feature failed\n");
2613 goto not_supported;
2614 }
2615 }
2616 } else {
2617 if (cdl_enabled) {
2618 /* Disable CDL on the device */
2619 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 0);
2620 if (err_mask) {
2621 ata_dev_err(dev,
2622 "Disable CDL feature failed\n");
2623 goto not_supported;
2624 }
2625 }
2626 }
2627
2628 /*
2629 * While CDL itself has to be enabled using sysfs, CDL requires that
2630 * sense data for successful NCQ commands is enabled to work properly.
2631 * Just like ata_dev_config_sense_reporting(), enable it unconditionally
2632 * if supported.
2633 */
2634 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(18))) {
2635 err_mask = ata_dev_set_feature(dev,
2636 SETFEATURE_SENSE_DATA_SUCC_NCQ, 0x1);
2637 if (err_mask) {
2638 ata_dev_warn(dev,
2639 "failed to enable Sense Data for successful NCQ commands, Emask 0x%x\n",
2640 err_mask);
2641 goto not_supported;
2642 }
2643 }
2644
2645 /* CDL is supported: allocate and initialize needed resources. */
2646 ret = ata_dev_init_cdl_resources(dev);
2647 if (ret) {
2648 ata_dev_warn(dev, "Initialize CDL resources failed\n");
2649 goto not_supported;
2650 }
2651
2652 dev->flags |= ATA_DFLAG_CDL;
2653
2654 return;
2655
2656 not_supported:
2657 dev->flags &= ~(ATA_DFLAG_CDL | ATA_DFLAG_CDL_ENABLED);
2658 ata_dev_cleanup_cdl_resources(dev);
2659 }
2660
ata_dev_config_lba(struct ata_device * dev)2661 static int ata_dev_config_lba(struct ata_device *dev)
2662 {
2663 const u16 *id = dev->id;
2664 const char *lba_desc;
2665 char ncq_desc[32];
2666 int ret;
2667
2668 dev->flags |= ATA_DFLAG_LBA;
2669
2670 if (ata_id_has_lba48(id)) {
2671 lba_desc = "LBA48";
2672 dev->flags |= ATA_DFLAG_LBA48;
2673 if (dev->n_sectors >= (1UL << 28) &&
2674 ata_id_has_flush_ext(id))
2675 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2676 } else {
2677 lba_desc = "LBA";
2678 }
2679
2680 /* config NCQ */
2681 ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2682
2683 /* print device info to dmesg */
2684 if (ata_dev_print_info(dev))
2685 ata_dev_info(dev,
2686 "%llu sectors, multi %u: %s %s\n",
2687 (unsigned long long)dev->n_sectors,
2688 dev->multi_count, lba_desc, ncq_desc);
2689
2690 return ret;
2691 }
2692
ata_dev_config_chs(struct ata_device * dev)2693 static void ata_dev_config_chs(struct ata_device *dev)
2694 {
2695 const u16 *id = dev->id;
2696
2697 if (ata_id_current_chs_valid(id)) {
2698 /* Current CHS translation is valid. */
2699 dev->cylinders = id[54];
2700 dev->heads = id[55];
2701 dev->sectors = id[56];
2702 } else {
2703 /* Default translation */
2704 dev->cylinders = id[1];
2705 dev->heads = id[3];
2706 dev->sectors = id[6];
2707 }
2708
2709 /* print device info to dmesg */
2710 if (ata_dev_print_info(dev))
2711 ata_dev_info(dev,
2712 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2713 (unsigned long long)dev->n_sectors,
2714 dev->multi_count, dev->cylinders,
2715 dev->heads, dev->sectors);
2716 }
2717
ata_dev_config_fua(struct ata_device * dev)2718 static void ata_dev_config_fua(struct ata_device *dev)
2719 {
2720 /* Ignore FUA support if its use is disabled globally */
2721 if (!libata_fua)
2722 goto nofua;
2723
2724 /* Ignore devices without support for WRITE DMA FUA EXT */
2725 if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id))
2726 goto nofua;
2727
2728 /* Ignore known bad devices and devices that lack NCQ support */
2729 if (!ata_ncq_supported(dev) || (dev->quirks & ATA_QUIRK_NO_FUA))
2730 goto nofua;
2731
2732 dev->flags |= ATA_DFLAG_FUA;
2733
2734 return;
2735
2736 nofua:
2737 dev->flags &= ~ATA_DFLAG_FUA;
2738 }
2739
ata_dev_config_devslp(struct ata_device * dev)2740 static void ata_dev_config_devslp(struct ata_device *dev)
2741 {
2742 u8 *sata_setting = dev->sector_buf;
2743 unsigned int err_mask;
2744 int i, j;
2745
2746 /*
2747 * Check device sleep capability. Get DevSlp timing variables
2748 * from SATA Settings page of Identify Device Data Log.
2749 */
2750 if (!ata_id_has_devslp(dev->id) ||
2751 !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2752 return;
2753
2754 err_mask = ata_read_log_page(dev,
2755 ATA_LOG_IDENTIFY_DEVICE,
2756 ATA_LOG_SATA_SETTINGS,
2757 sata_setting, 1);
2758 if (err_mask)
2759 return;
2760
2761 dev->flags |= ATA_DFLAG_DEVSLP;
2762 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2763 j = ATA_LOG_DEVSLP_OFFSET + i;
2764 dev->devslp_timing[i] = sata_setting[j];
2765 }
2766 }
2767
ata_dev_config_cpr(struct ata_device * dev)2768 static void ata_dev_config_cpr(struct ata_device *dev)
2769 {
2770 unsigned int err_mask;
2771 size_t buf_len;
2772 int i, nr_cpr = 0;
2773 struct ata_cpr_log *cpr_log = NULL;
2774 u8 *desc, *buf = NULL;
2775
2776 if (ata_id_major_version(dev->id) < 11)
2777 goto out;
2778
2779 buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES);
2780 if (buf_len == 0)
2781 goto out;
2782
2783 /*
2784 * Read the concurrent positioning ranges log (0x47). We can have at
2785 * most 255 32B range descriptors plus a 64B header. This log varies in
2786 * size, so use the size reported in the GPL directory. Reading beyond
2787 * the supported length will result in an error.
2788 */
2789 buf_len <<= 9;
2790 buf = kzalloc(buf_len, GFP_KERNEL);
2791 if (!buf)
2792 goto out;
2793
2794 err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2795 0, buf, buf_len >> 9);
2796 if (err_mask)
2797 goto out;
2798
2799 nr_cpr = buf[0];
2800 if (!nr_cpr)
2801 goto out;
2802
2803 cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL);
2804 if (!cpr_log)
2805 goto out;
2806
2807 cpr_log->nr_cpr = nr_cpr;
2808 desc = &buf[64];
2809 for (i = 0; i < nr_cpr; i++, desc += 32) {
2810 cpr_log->cpr[i].num = desc[0];
2811 cpr_log->cpr[i].num_storage_elements = desc[1];
2812 cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]);
2813 cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]);
2814 }
2815
2816 out:
2817 swap(dev->cpr_log, cpr_log);
2818 kfree(cpr_log);
2819 kfree(buf);
2820 }
2821
2822 /*
2823 * Configure features related to link power management.
2824 */
ata_dev_config_lpm(struct ata_device * dev)2825 static void ata_dev_config_lpm(struct ata_device *dev)
2826 {
2827 struct ata_port *ap = dev->link->ap;
2828 unsigned int err_mask;
2829
2830 if (ap->flags & ATA_FLAG_NO_LPM) {
2831 /*
2832 * When the port does not support LPM, we cannot support it on
2833 * the device either.
2834 */
2835 dev->quirks |= ATA_QUIRK_NOLPM;
2836 } else {
2837 /*
2838 * Some WD SATA-1 drives have issues with LPM, turn on NOLPM for
2839 * them.
2840 */
2841 if ((dev->quirks & ATA_QUIRK_WD_BROKEN_LPM) &&
2842 (dev->id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2843 dev->quirks |= ATA_QUIRK_NOLPM;
2844
2845 /* ATI specific quirk */
2846 if ((dev->quirks & ATA_QUIRK_NO_LPM_ON_ATI) &&
2847 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI))
2848 dev->quirks |= ATA_QUIRK_NOLPM;
2849 }
2850
2851 if (dev->quirks & ATA_QUIRK_NOLPM &&
2852 ap->target_lpm_policy != ATA_LPM_MAX_POWER) {
2853 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2854 ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2855 }
2856
2857 /*
2858 * Device Initiated Power Management (DIPM) is normally disabled by
2859 * default on a device. However, DIPM may have been enabled and that
2860 * setting kept even after COMRESET because of the Software Settings
2861 * Preservation feature. So if the port does not support DIPM and the
2862 * device does, disable DIPM on the device.
2863 */
2864 if (ap->flags & ATA_FLAG_NO_DIPM && ata_id_has_dipm(dev->id)) {
2865 err_mask = ata_dev_set_feature(dev,
2866 SETFEATURES_SATA_DISABLE, SATA_DIPM);
2867 if (err_mask && err_mask != AC_ERR_DEV)
2868 ata_dev_err(dev, "Disable DIPM failed, Emask 0x%x\n",
2869 err_mask);
2870 }
2871 }
2872
ata_dev_print_features(struct ata_device * dev)2873 static void ata_dev_print_features(struct ata_device *dev)
2874 {
2875 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2876 return;
2877
2878 ata_dev_info(dev,
2879 "Features:%s%s%s%s%s%s%s%s%s%s\n",
2880 dev->flags & ATA_DFLAG_FUA ? " FUA" : "",
2881 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2882 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2883 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2884 ata_id_has_hipm(dev->id) ? " HIPM" : "",
2885 ata_id_has_dipm(dev->id) ? " DIPM" : "",
2886 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2887 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2888 dev->flags & ATA_DFLAG_CDL ? " CDL" : "",
2889 dev->cpr_log ? " CPR" : "");
2890 }
2891
2892 /**
2893 * ata_dev_configure - Configure the specified ATA/ATAPI device
2894 * @dev: Target device to configure
2895 *
2896 * Configure @dev according to @dev->id. Generic and low-level
2897 * driver specific fixups are also applied.
2898 *
2899 * LOCKING:
2900 * Kernel thread context (may sleep)
2901 *
2902 * RETURNS:
2903 * 0 on success, -errno otherwise
2904 */
ata_dev_configure(struct ata_device * dev)2905 int ata_dev_configure(struct ata_device *dev)
2906 {
2907 struct ata_port *ap = dev->link->ap;
2908 bool print_info = ata_dev_print_info(dev);
2909 const u16 *id = dev->id;
2910 unsigned int xfer_mask;
2911 unsigned int err_mask;
2912 char revbuf[7]; /* XYZ-99\0 */
2913 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2914 char modelbuf[ATA_ID_PROD_LEN+1];
2915 int rc;
2916
2917 if (!ata_dev_enabled(dev)) {
2918 ata_dev_dbg(dev, "no device\n");
2919 return 0;
2920 }
2921
2922 /* Clear the general purpose log directory cache. */
2923 ata_clear_log_directory(dev);
2924
2925 /* Set quirks */
2926 dev->quirks |= ata_dev_quirks(dev);
2927 ata_force_quirks(dev);
2928
2929 if (dev->quirks & ATA_QUIRK_DISABLE) {
2930 ata_dev_info(dev, "unsupported device, disabling\n");
2931 ata_dev_disable(dev);
2932 return 0;
2933 }
2934
2935 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2936 dev->class == ATA_DEV_ATAPI) {
2937 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2938 atapi_enabled ? "not supported with this driver"
2939 : "disabled");
2940 ata_dev_disable(dev);
2941 return 0;
2942 }
2943
2944 rc = ata_do_link_spd_quirk(dev);
2945 if (rc)
2946 return rc;
2947
2948 /* let ACPI work its magic */
2949 rc = ata_acpi_on_devcfg(dev);
2950 if (rc)
2951 return rc;
2952
2953 /* massage HPA, do it early as it might change IDENTIFY data */
2954 rc = ata_hpa_resize(dev);
2955 if (rc)
2956 return rc;
2957
2958 /* print device capabilities */
2959 ata_dev_dbg(dev,
2960 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2961 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2962 __func__,
2963 id[49], id[82], id[83], id[84],
2964 id[85], id[86], id[87], id[88]);
2965
2966 /* initialize to-be-configured parameters */
2967 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2968 dev->max_sectors = 0;
2969 dev->cdb_len = 0;
2970 dev->n_sectors = 0;
2971 dev->cylinders = 0;
2972 dev->heads = 0;
2973 dev->sectors = 0;
2974 dev->multi_count = 0;
2975
2976 /*
2977 * common ATA, ATAPI feature tests
2978 */
2979
2980 /* find max transfer mode; for printk only */
2981 xfer_mask = ata_id_xfermask(id);
2982
2983 ata_dump_id(dev, id);
2984
2985 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2986 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2987 sizeof(fwrevbuf));
2988
2989 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2990 sizeof(modelbuf));
2991
2992 /* ATA-specific feature tests */
2993 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2994 if (ata_id_is_cfa(id)) {
2995 /* CPRM may make this media unusable */
2996 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2997 ata_dev_warn(dev,
2998 "supports DRM functions and may not be fully accessible\n");
2999 snprintf(revbuf, 7, "CFA");
3000 } else {
3001 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
3002 /* Warn the user if the device has TPM extensions */
3003 if (ata_id_has_tpm(id))
3004 ata_dev_warn(dev,
3005 "supports DRM functions and may not be fully accessible\n");
3006 }
3007
3008 dev->n_sectors = ata_id_n_sectors(id);
3009
3010 /* get current R/W Multiple count setting */
3011 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
3012 unsigned int max = dev->id[47] & 0xff;
3013 unsigned int cnt = dev->id[59] & 0xff;
3014 /* only recognize/allow powers of two here */
3015 if (is_power_of_2(max) && is_power_of_2(cnt))
3016 if (cnt <= max)
3017 dev->multi_count = cnt;
3018 }
3019
3020 /* print device info to dmesg */
3021 if (print_info)
3022 ata_dev_info(dev, "%s: %s, %s, max %s\n",
3023 revbuf, modelbuf, fwrevbuf,
3024 ata_mode_string(xfer_mask));
3025
3026 if (ata_id_has_lba(id)) {
3027 rc = ata_dev_config_lba(dev);
3028 if (rc)
3029 return rc;
3030 } else {
3031 ata_dev_config_chs(dev);
3032 }
3033
3034 ata_dev_config_lpm(dev);
3035 ata_dev_config_fua(dev);
3036 ata_dev_config_devslp(dev);
3037 ata_dev_config_sense_reporting(dev);
3038 ata_dev_config_zac(dev);
3039 ata_dev_config_trusted(dev);
3040 ata_dev_config_cpr(dev);
3041 ata_dev_config_cdl(dev);
3042 dev->cdb_len = 32;
3043
3044 if (print_info)
3045 ata_dev_print_features(dev);
3046 }
3047
3048 /* ATAPI-specific feature tests */
3049 else if (dev->class == ATA_DEV_ATAPI) {
3050 const char *cdb_intr_string = "";
3051 const char *atapi_an_string = "";
3052 const char *dma_dir_string = "";
3053 u32 sntf;
3054
3055 rc = atapi_cdb_len(id);
3056 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
3057 ata_dev_warn(dev, "unsupported CDB len %d\n", rc);
3058 rc = -EINVAL;
3059 goto err_out_nosup;
3060 }
3061 dev->cdb_len = (unsigned int) rc;
3062
3063 /* Enable ATAPI AN if both the host and device have
3064 * the support. If PMP is attached, SNTF is required
3065 * to enable ATAPI AN to discern between PHY status
3066 * changed notifications and ATAPI ANs.
3067 */
3068 if (atapi_an &&
3069 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
3070 (!sata_pmp_attached(ap) ||
3071 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
3072 /* issue SET feature command to turn this on */
3073 err_mask = ata_dev_set_feature(dev,
3074 SETFEATURES_SATA_ENABLE, SATA_AN);
3075 if (err_mask)
3076 ata_dev_err(dev,
3077 "failed to enable ATAPI AN (err_mask=0x%x)\n",
3078 err_mask);
3079 else {
3080 dev->flags |= ATA_DFLAG_AN;
3081 atapi_an_string = ", ATAPI AN";
3082 }
3083 }
3084
3085 if (ata_id_cdb_intr(dev->id)) {
3086 dev->flags |= ATA_DFLAG_CDB_INTR;
3087 cdb_intr_string = ", CDB intr";
3088 }
3089
3090 if (atapi_dmadir || (dev->quirks & ATA_QUIRK_ATAPI_DMADIR) ||
3091 atapi_id_dmadir(dev->id)) {
3092 dev->flags |= ATA_DFLAG_DMADIR;
3093 dma_dir_string = ", DMADIR";
3094 }
3095
3096 if (ata_id_has_da(dev->id)) {
3097 dev->flags |= ATA_DFLAG_DA;
3098 zpodd_init(dev);
3099 }
3100
3101 /* print device info to dmesg */
3102 if (print_info)
3103 ata_dev_info(dev,
3104 "ATAPI: %s, %s, max %s%s%s%s\n",
3105 modelbuf, fwrevbuf,
3106 ata_mode_string(xfer_mask),
3107 cdb_intr_string, atapi_an_string,
3108 dma_dir_string);
3109 }
3110
3111 /* determine max_sectors */
3112 dev->max_sectors = ATA_MAX_SECTORS;
3113 if (dev->flags & ATA_DFLAG_LBA48)
3114 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3115
3116 /* Limit PATA drive on SATA cable bridge transfers to udma5,
3117 200 sectors */
3118 if (ata_dev_knobble(dev)) {
3119 if (print_info)
3120 ata_dev_info(dev, "applying bridge limits\n");
3121 dev->udma_mask &= ATA_UDMA5;
3122 dev->max_sectors = ATA_MAX_SECTORS;
3123 }
3124
3125 if ((dev->class == ATA_DEV_ATAPI) &&
3126 (atapi_command_packet_set(id) == TYPE_TAPE)) {
3127 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
3128 dev->quirks |= ATA_QUIRK_STUCK_ERR;
3129 }
3130
3131 if (dev->quirks & ATA_QUIRK_MAX_SEC_128)
3132 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
3133 dev->max_sectors);
3134
3135 if (dev->quirks & ATA_QUIRK_MAX_SEC_1024)
3136 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
3137 dev->max_sectors);
3138
3139 if (dev->quirks & ATA_QUIRK_MAX_SEC_LBA48)
3140 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3141
3142 if (ap->ops->dev_config)
3143 ap->ops->dev_config(dev);
3144
3145 if (dev->quirks & ATA_QUIRK_DIAGNOSTIC) {
3146 /* Let the user know. We don't want to disallow opens for
3147 rescue purposes, or in case the vendor is just a blithering
3148 idiot. Do this after the dev_config call as some controllers
3149 with buggy firmware may want to avoid reporting false device
3150 bugs */
3151
3152 if (print_info) {
3153 ata_dev_warn(dev,
3154 "Drive reports diagnostics failure. This may indicate a drive\n");
3155 ata_dev_warn(dev,
3156 "fault or invalid emulation. Contact drive vendor for information.\n");
3157 }
3158 }
3159
3160 if ((dev->quirks & ATA_QUIRK_FIRMWARE_WARN) && print_info) {
3161 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
3162 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
3163 }
3164
3165 return 0;
3166
3167 err_out_nosup:
3168 return rc;
3169 }
3170
3171 /**
3172 * ata_cable_40wire - return 40 wire cable type
3173 * @ap: port
3174 *
3175 * Helper method for drivers which want to hardwire 40 wire cable
3176 * detection.
3177 */
3178
ata_cable_40wire(struct ata_port * ap)3179 int ata_cable_40wire(struct ata_port *ap)
3180 {
3181 return ATA_CBL_PATA40;
3182 }
3183 EXPORT_SYMBOL_GPL(ata_cable_40wire);
3184
3185 /**
3186 * ata_cable_80wire - return 80 wire cable type
3187 * @ap: port
3188 *
3189 * Helper method for drivers which want to hardwire 80 wire cable
3190 * detection.
3191 */
3192
ata_cable_80wire(struct ata_port * ap)3193 int ata_cable_80wire(struct ata_port *ap)
3194 {
3195 return ATA_CBL_PATA80;
3196 }
3197 EXPORT_SYMBOL_GPL(ata_cable_80wire);
3198
3199 /**
3200 * ata_cable_unknown - return unknown PATA cable.
3201 * @ap: port
3202 *
3203 * Helper method for drivers which have no PATA cable detection.
3204 */
3205
ata_cable_unknown(struct ata_port * ap)3206 int ata_cable_unknown(struct ata_port *ap)
3207 {
3208 return ATA_CBL_PATA_UNK;
3209 }
3210 EXPORT_SYMBOL_GPL(ata_cable_unknown);
3211
3212 /**
3213 * ata_cable_ignore - return ignored PATA cable.
3214 * @ap: port
3215 *
3216 * Helper method for drivers which don't use cable type to limit
3217 * transfer mode.
3218 */
ata_cable_ignore(struct ata_port * ap)3219 int ata_cable_ignore(struct ata_port *ap)
3220 {
3221 return ATA_CBL_PATA_IGN;
3222 }
3223 EXPORT_SYMBOL_GPL(ata_cable_ignore);
3224
3225 /**
3226 * ata_cable_sata - return SATA cable type
3227 * @ap: port
3228 *
3229 * Helper method for drivers which have SATA cables
3230 */
3231
ata_cable_sata(struct ata_port * ap)3232 int ata_cable_sata(struct ata_port *ap)
3233 {
3234 return ATA_CBL_SATA;
3235 }
3236 EXPORT_SYMBOL_GPL(ata_cable_sata);
3237
3238 /**
3239 * sata_print_link_status - Print SATA link status
3240 * @link: SATA link to printk link status about
3241 *
3242 * This function prints link speed and status of a SATA link.
3243 *
3244 * LOCKING:
3245 * None.
3246 */
sata_print_link_status(struct ata_link * link)3247 static void sata_print_link_status(struct ata_link *link)
3248 {
3249 u32 sstatus, scontrol, tmp;
3250
3251 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3252 return;
3253 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3254 return;
3255
3256 if (ata_phys_link_online(link)) {
3257 tmp = (sstatus >> 4) & 0xf;
3258 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3259 sata_spd_string(tmp), sstatus, scontrol);
3260 } else {
3261 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3262 sstatus, scontrol);
3263 }
3264 }
3265
3266 /**
3267 * ata_dev_pair - return other device on cable
3268 * @adev: device
3269 *
3270 * Obtain the other device on the same cable, or if none is
3271 * present NULL is returned
3272 */
3273
ata_dev_pair(struct ata_device * adev)3274 struct ata_device *ata_dev_pair(struct ata_device *adev)
3275 {
3276 struct ata_link *link = adev->link;
3277 struct ata_device *pair = &link->device[1 - adev->devno];
3278 if (!ata_dev_enabled(pair))
3279 return NULL;
3280 return pair;
3281 }
3282 EXPORT_SYMBOL_GPL(ata_dev_pair);
3283
3284 #ifdef CONFIG_ATA_ACPI
3285 /**
3286 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3287 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3288 * @cycle: cycle duration in ns
3289 *
3290 * Return matching xfer mode for @cycle. The returned mode is of
3291 * the transfer type specified by @xfer_shift. If @cycle is too
3292 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3293 * than the fastest known mode, the fasted mode is returned.
3294 *
3295 * LOCKING:
3296 * None.
3297 *
3298 * RETURNS:
3299 * Matching xfer_mode, 0xff if no match found.
3300 */
ata_timing_cycle2mode(unsigned int xfer_shift,int cycle)3301 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3302 {
3303 u8 base_mode = 0xff, last_mode = 0xff;
3304 const struct ata_xfer_ent *ent;
3305 const struct ata_timing *t;
3306
3307 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3308 if (ent->shift == xfer_shift)
3309 base_mode = ent->base;
3310
3311 for (t = ata_timing_find_mode(base_mode);
3312 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3313 unsigned short this_cycle;
3314
3315 switch (xfer_shift) {
3316 case ATA_SHIFT_PIO:
3317 case ATA_SHIFT_MWDMA:
3318 this_cycle = t->cycle;
3319 break;
3320 case ATA_SHIFT_UDMA:
3321 this_cycle = t->udma;
3322 break;
3323 default:
3324 return 0xff;
3325 }
3326
3327 if (cycle > this_cycle)
3328 break;
3329
3330 last_mode = t->mode;
3331 }
3332
3333 return last_mode;
3334 }
3335 #endif
3336
3337 /**
3338 * ata_down_xfermask_limit - adjust dev xfer masks downward
3339 * @dev: Device to adjust xfer masks
3340 * @sel: ATA_DNXFER_* selector
3341 *
3342 * Adjust xfer masks of @dev downward. Note that this function
3343 * does not apply the change. Invoking ata_set_mode() afterwards
3344 * will apply the limit.
3345 *
3346 * LOCKING:
3347 * Inherited from caller.
3348 *
3349 * RETURNS:
3350 * 0 on success, negative errno on failure
3351 */
ata_down_xfermask_limit(struct ata_device * dev,unsigned int sel)3352 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3353 {
3354 char buf[32];
3355 unsigned int orig_mask, xfer_mask;
3356 unsigned int pio_mask, mwdma_mask, udma_mask;
3357 int quiet, highbit;
3358
3359 quiet = !!(sel & ATA_DNXFER_QUIET);
3360 sel &= ~ATA_DNXFER_QUIET;
3361
3362 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3363 dev->mwdma_mask,
3364 dev->udma_mask);
3365 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3366
3367 switch (sel) {
3368 case ATA_DNXFER_PIO:
3369 highbit = fls(pio_mask) - 1;
3370 pio_mask &= ~(1 << highbit);
3371 break;
3372
3373 case ATA_DNXFER_DMA:
3374 if (udma_mask) {
3375 highbit = fls(udma_mask) - 1;
3376 udma_mask &= ~(1 << highbit);
3377 if (!udma_mask)
3378 return -ENOENT;
3379 } else if (mwdma_mask) {
3380 highbit = fls(mwdma_mask) - 1;
3381 mwdma_mask &= ~(1 << highbit);
3382 if (!mwdma_mask)
3383 return -ENOENT;
3384 }
3385 break;
3386
3387 case ATA_DNXFER_40C:
3388 udma_mask &= ATA_UDMA_MASK_40C;
3389 break;
3390
3391 case ATA_DNXFER_FORCE_PIO0:
3392 pio_mask &= 1;
3393 fallthrough;
3394 case ATA_DNXFER_FORCE_PIO:
3395 mwdma_mask = 0;
3396 udma_mask = 0;
3397 break;
3398
3399 default:
3400 BUG();
3401 }
3402
3403 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3404
3405 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3406 return -ENOENT;
3407
3408 if (!quiet) {
3409 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3410 snprintf(buf, sizeof(buf), "%s:%s",
3411 ata_mode_string(xfer_mask),
3412 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3413 else
3414 snprintf(buf, sizeof(buf), "%s",
3415 ata_mode_string(xfer_mask));
3416
3417 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3418 }
3419
3420 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3421 &dev->udma_mask);
3422
3423 return 0;
3424 }
3425
ata_dev_set_mode(struct ata_device * dev)3426 static int ata_dev_set_mode(struct ata_device *dev)
3427 {
3428 struct ata_port *ap = dev->link->ap;
3429 struct ata_eh_context *ehc = &dev->link->eh_context;
3430 const bool nosetxfer = dev->quirks & ATA_QUIRK_NOSETXFER;
3431 const char *dev_err_whine = "";
3432 int ign_dev_err = 0;
3433 unsigned int err_mask = 0;
3434 int rc;
3435
3436 dev->flags &= ~ATA_DFLAG_PIO;
3437 if (dev->xfer_shift == ATA_SHIFT_PIO)
3438 dev->flags |= ATA_DFLAG_PIO;
3439
3440 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3441 dev_err_whine = " (SET_XFERMODE skipped)";
3442 else {
3443 if (nosetxfer)
3444 ata_dev_warn(dev,
3445 "NOSETXFER but PATA detected - can't "
3446 "skip SETXFER, might malfunction\n");
3447 err_mask = ata_dev_set_xfermode(dev);
3448 }
3449
3450 if (err_mask & ~AC_ERR_DEV)
3451 goto fail;
3452
3453 /* revalidate */
3454 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3455 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3456 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3457 if (rc)
3458 return rc;
3459
3460 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3461 /* Old CFA may refuse this command, which is just fine */
3462 if (ata_id_is_cfa(dev->id))
3463 ign_dev_err = 1;
3464 /* Catch several broken garbage emulations plus some pre
3465 ATA devices */
3466 if (ata_id_major_version(dev->id) == 0 &&
3467 dev->pio_mode <= XFER_PIO_2)
3468 ign_dev_err = 1;
3469 /* Some very old devices and some bad newer ones fail
3470 any kind of SET_XFERMODE request but support PIO0-2
3471 timings and no IORDY */
3472 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3473 ign_dev_err = 1;
3474 }
3475 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3476 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3477 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3478 dev->dma_mode == XFER_MW_DMA_0 &&
3479 (dev->id[63] >> 8) & 1)
3480 ign_dev_err = 1;
3481
3482 /* if the device is actually configured correctly, ignore dev err */
3483 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3484 ign_dev_err = 1;
3485
3486 if (err_mask & AC_ERR_DEV) {
3487 if (!ign_dev_err)
3488 goto fail;
3489 else
3490 dev_err_whine = " (device error ignored)";
3491 }
3492
3493 ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n",
3494 dev->xfer_shift, (int)dev->xfer_mode);
3495
3496 if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3497 ehc->i.flags & ATA_EHI_DID_HARDRESET)
3498 ata_dev_info(dev, "configured for %s%s\n",
3499 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3500 dev_err_whine);
3501
3502 return 0;
3503
3504 fail:
3505 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3506 return -EIO;
3507 }
3508
3509 /**
3510 * ata_set_mode - Program timings and issue SET FEATURES - XFER
3511 * @link: link on which timings will be programmed
3512 * @r_failed_dev: out parameter for failed device
3513 *
3514 * Standard implementation of the function used to tune and set
3515 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3516 * ata_dev_set_mode() fails, pointer to the failing device is
3517 * returned in @r_failed_dev.
3518 *
3519 * LOCKING:
3520 * PCI/etc. bus probe sem.
3521 *
3522 * RETURNS:
3523 * 0 on success, negative errno otherwise
3524 */
3525
ata_set_mode(struct ata_link * link,struct ata_device ** r_failed_dev)3526 int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3527 {
3528 struct ata_port *ap = link->ap;
3529 struct ata_device *dev;
3530 int rc = 0, used_dma = 0, found = 0;
3531
3532 /* step 1: calculate xfer_mask */
3533 ata_for_each_dev(dev, link, ENABLED) {
3534 unsigned int pio_mask, dma_mask;
3535 unsigned int mode_mask;
3536
3537 mode_mask = ATA_DMA_MASK_ATA;
3538 if (dev->class == ATA_DEV_ATAPI)
3539 mode_mask = ATA_DMA_MASK_ATAPI;
3540 else if (ata_id_is_cfa(dev->id))
3541 mode_mask = ATA_DMA_MASK_CFA;
3542
3543 ata_dev_xfermask(dev);
3544 ata_force_xfermask(dev);
3545
3546 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3547
3548 if (libata_dma_mask & mode_mask)
3549 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3550 dev->udma_mask);
3551 else
3552 dma_mask = 0;
3553
3554 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3555 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3556
3557 found = 1;
3558 if (ata_dma_enabled(dev))
3559 used_dma = 1;
3560 }
3561 if (!found)
3562 goto out;
3563
3564 /* step 2: always set host PIO timings */
3565 ata_for_each_dev(dev, link, ENABLED) {
3566 if (dev->pio_mode == 0xff) {
3567 ata_dev_warn(dev, "no PIO support\n");
3568 rc = -EINVAL;
3569 goto out;
3570 }
3571
3572 dev->xfer_mode = dev->pio_mode;
3573 dev->xfer_shift = ATA_SHIFT_PIO;
3574 if (ap->ops->set_piomode)
3575 ap->ops->set_piomode(ap, dev);
3576 }
3577
3578 /* step 3: set host DMA timings */
3579 ata_for_each_dev(dev, link, ENABLED) {
3580 if (!ata_dma_enabled(dev))
3581 continue;
3582
3583 dev->xfer_mode = dev->dma_mode;
3584 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3585 if (ap->ops->set_dmamode)
3586 ap->ops->set_dmamode(ap, dev);
3587 }
3588
3589 /* step 4: update devices' xfer mode */
3590 ata_for_each_dev(dev, link, ENABLED) {
3591 rc = ata_dev_set_mode(dev);
3592 if (rc)
3593 goto out;
3594 }
3595
3596 /* Record simplex status. If we selected DMA then the other
3597 * host channels are not permitted to do so.
3598 */
3599 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3600 ap->host->simplex_claimed = ap;
3601
3602 out:
3603 if (rc)
3604 *r_failed_dev = dev;
3605 return rc;
3606 }
3607 EXPORT_SYMBOL_GPL(ata_set_mode);
3608
3609 /**
3610 * ata_wait_ready - wait for link to become ready
3611 * @link: link to be waited on
3612 * @deadline: deadline jiffies for the operation
3613 * @check_ready: callback to check link readiness
3614 *
3615 * Wait for @link to become ready. @check_ready should return
3616 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3617 * link doesn't seem to be occupied, other errno for other error
3618 * conditions.
3619 *
3620 * Transient -ENODEV conditions are allowed for
3621 * ATA_TMOUT_FF_WAIT.
3622 *
3623 * LOCKING:
3624 * EH context.
3625 *
3626 * RETURNS:
3627 * 0 if @link is ready before @deadline; otherwise, -errno.
3628 */
ata_wait_ready(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3629 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3630 int (*check_ready)(struct ata_link *link))
3631 {
3632 unsigned long start = jiffies;
3633 unsigned long nodev_deadline;
3634 int warned = 0;
3635
3636 /* choose which 0xff timeout to use, read comment in libata.h */
3637 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3638 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3639 else
3640 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3641
3642 /* Slave readiness can't be tested separately from master. On
3643 * M/S emulation configuration, this function should be called
3644 * only on the master and it will handle both master and slave.
3645 */
3646 WARN_ON(link == link->ap->slave_link);
3647
3648 if (time_after(nodev_deadline, deadline))
3649 nodev_deadline = deadline;
3650
3651 while (1) {
3652 unsigned long now = jiffies;
3653 int ready, tmp;
3654
3655 ready = tmp = check_ready(link);
3656 if (ready > 0)
3657 return 0;
3658
3659 /*
3660 * -ENODEV could be transient. Ignore -ENODEV if link
3661 * is online. Also, some SATA devices take a long
3662 * time to clear 0xff after reset. Wait for
3663 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3664 * offline.
3665 *
3666 * Note that some PATA controllers (pata_ali) explode
3667 * if status register is read more than once when
3668 * there's no device attached.
3669 */
3670 if (ready == -ENODEV) {
3671 if (ata_link_online(link))
3672 ready = 0;
3673 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3674 !ata_link_offline(link) &&
3675 time_before(now, nodev_deadline))
3676 ready = 0;
3677 }
3678
3679 if (ready)
3680 return ready;
3681 if (time_after(now, deadline))
3682 return -EBUSY;
3683
3684 if (!warned && time_after(now, start + 5 * HZ) &&
3685 (deadline - now > 3 * HZ)) {
3686 ata_link_warn(link,
3687 "link is slow to respond, please be patient "
3688 "(ready=%d)\n", tmp);
3689 warned = 1;
3690 }
3691
3692 ata_msleep(link->ap, 50);
3693 }
3694 }
3695
3696 /**
3697 * ata_wait_after_reset - wait for link to become ready after reset
3698 * @link: link to be waited on
3699 * @deadline: deadline jiffies for the operation
3700 * @check_ready: callback to check link readiness
3701 *
3702 * Wait for @link to become ready after reset.
3703 *
3704 * LOCKING:
3705 * EH context.
3706 *
3707 * RETURNS:
3708 * 0 if @link is ready before @deadline; otherwise, -errno.
3709 */
ata_wait_after_reset(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3710 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3711 int (*check_ready)(struct ata_link *link))
3712 {
3713 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3714
3715 return ata_wait_ready(link, deadline, check_ready);
3716 }
3717 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3718
3719 /**
3720 * ata_std_prereset - prepare for reset
3721 * @link: ATA link to be reset
3722 * @deadline: deadline jiffies for the operation
3723 *
3724 * @link is about to be reset. Initialize it. Failure from
3725 * prereset makes libata abort whole reset sequence and give up
3726 * that port, so prereset should be best-effort. It does its
3727 * best to prepare for reset sequence but if things go wrong, it
3728 * should just whine, not fail.
3729 *
3730 * LOCKING:
3731 * Kernel thread context (may sleep)
3732 *
3733 * RETURNS:
3734 * Always 0.
3735 */
ata_std_prereset(struct ata_link * link,unsigned long deadline)3736 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3737 {
3738 struct ata_port *ap = link->ap;
3739 struct ata_eh_context *ehc = &link->eh_context;
3740 const unsigned int *timing = sata_ehc_deb_timing(ehc);
3741 int rc;
3742
3743 /* if we're about to do hardreset, nothing more to do */
3744 if (ehc->i.action & ATA_EH_HARDRESET)
3745 return 0;
3746
3747 /* if SATA, resume link */
3748 if (ap->flags & ATA_FLAG_SATA) {
3749 rc = sata_link_resume(link, timing, deadline);
3750 /* whine about phy resume failure but proceed */
3751 if (rc && rc != -EOPNOTSUPP)
3752 ata_link_warn(link,
3753 "failed to resume link for reset (errno=%d)\n",
3754 rc);
3755 }
3756
3757 /* no point in trying softreset on offline link */
3758 if (ata_phys_link_offline(link))
3759 ehc->i.action &= ~ATA_EH_SOFTRESET;
3760
3761 return 0;
3762 }
3763 EXPORT_SYMBOL_GPL(ata_std_prereset);
3764
3765 /**
3766 * ata_std_postreset - standard postreset callback
3767 * @link: the target ata_link
3768 * @classes: classes of attached devices
3769 *
3770 * This function is invoked after a successful reset. Note that
3771 * the device might have been reset more than once using
3772 * different reset methods before postreset is invoked.
3773 *
3774 * LOCKING:
3775 * Kernel thread context (may sleep)
3776 */
ata_std_postreset(struct ata_link * link,unsigned int * classes)3777 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3778 {
3779 u32 serror;
3780
3781 /* reset complete, clear SError */
3782 if (!sata_scr_read(link, SCR_ERROR, &serror))
3783 sata_scr_write(link, SCR_ERROR, serror);
3784
3785 /* print link status */
3786 sata_print_link_status(link);
3787 }
3788 EXPORT_SYMBOL_GPL(ata_std_postreset);
3789
3790 /**
3791 * ata_dev_same_device - Determine whether new ID matches configured device
3792 * @dev: device to compare against
3793 * @new_class: class of the new device
3794 * @new_id: IDENTIFY page of the new device
3795 *
3796 * Compare @new_class and @new_id against @dev and determine
3797 * whether @dev is the device indicated by @new_class and
3798 * @new_id.
3799 *
3800 * LOCKING:
3801 * None.
3802 *
3803 * RETURNS:
3804 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3805 */
ata_dev_same_device(struct ata_device * dev,unsigned int new_class,const u16 * new_id)3806 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3807 const u16 *new_id)
3808 {
3809 const u16 *old_id = dev->id;
3810 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3811 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3812
3813 if (dev->class != new_class) {
3814 ata_dev_info(dev, "class mismatch %d != %d\n",
3815 dev->class, new_class);
3816 return 0;
3817 }
3818
3819 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3820 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3821 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3822 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3823
3824 if (strcmp(model[0], model[1])) {
3825 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3826 model[0], model[1]);
3827 return 0;
3828 }
3829
3830 if (strcmp(serial[0], serial[1])) {
3831 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3832 serial[0], serial[1]);
3833 return 0;
3834 }
3835
3836 return 1;
3837 }
3838
3839 /**
3840 * ata_dev_reread_id - Re-read IDENTIFY data
3841 * @dev: target ATA device
3842 * @readid_flags: read ID flags
3843 *
3844 * Re-read IDENTIFY page and make sure @dev is still attached to
3845 * the port.
3846 *
3847 * LOCKING:
3848 * Kernel thread context (may sleep)
3849 *
3850 * RETURNS:
3851 * 0 on success, negative errno otherwise
3852 */
ata_dev_reread_id(struct ata_device * dev,unsigned int readid_flags)3853 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3854 {
3855 unsigned int class = dev->class;
3856 u16 *id = (void *)dev->sector_buf;
3857 int rc;
3858
3859 /* read ID data */
3860 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3861 if (rc)
3862 return rc;
3863
3864 /* is the device still there? */
3865 if (!ata_dev_same_device(dev, class, id))
3866 return -ENODEV;
3867
3868 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3869 return 0;
3870 }
3871
3872 /**
3873 * ata_dev_revalidate - Revalidate ATA device
3874 * @dev: device to revalidate
3875 * @new_class: new class code
3876 * @readid_flags: read ID flags
3877 *
3878 * Re-read IDENTIFY page, make sure @dev is still attached to the
3879 * port and reconfigure it according to the new IDENTIFY page.
3880 *
3881 * LOCKING:
3882 * Kernel thread context (may sleep)
3883 *
3884 * RETURNS:
3885 * 0 on success, negative errno otherwise
3886 */
ata_dev_revalidate(struct ata_device * dev,unsigned int new_class,unsigned int readid_flags)3887 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3888 unsigned int readid_flags)
3889 {
3890 u64 n_sectors = dev->n_sectors;
3891 u64 n_native_sectors = dev->n_native_sectors;
3892 int rc;
3893
3894 if (!ata_dev_enabled(dev))
3895 return -ENODEV;
3896
3897 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3898 if (ata_class_enabled(new_class) && new_class == ATA_DEV_PMP) {
3899 ata_dev_info(dev, "class mismatch %u != %u\n",
3900 dev->class, new_class);
3901 rc = -ENODEV;
3902 goto fail;
3903 }
3904
3905 /* re-read ID */
3906 rc = ata_dev_reread_id(dev, readid_flags);
3907 if (rc)
3908 goto fail;
3909
3910 /* configure device according to the new ID */
3911 rc = ata_dev_configure(dev);
3912 if (rc)
3913 goto fail;
3914
3915 /* verify n_sectors hasn't changed */
3916 if (dev->class != ATA_DEV_ATA || !n_sectors ||
3917 dev->n_sectors == n_sectors)
3918 return 0;
3919
3920 /* n_sectors has changed */
3921 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3922 (unsigned long long)n_sectors,
3923 (unsigned long long)dev->n_sectors);
3924
3925 /*
3926 * Something could have caused HPA to be unlocked
3927 * involuntarily. If n_native_sectors hasn't changed and the
3928 * new size matches it, keep the device.
3929 */
3930 if (dev->n_native_sectors == n_native_sectors &&
3931 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3932 ata_dev_warn(dev,
3933 "new n_sectors matches native, probably "
3934 "late HPA unlock, n_sectors updated\n");
3935 /* use the larger n_sectors */
3936 return 0;
3937 }
3938
3939 /*
3940 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
3941 * unlocking HPA in those cases.
3942 *
3943 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3944 */
3945 if (dev->n_native_sectors == n_native_sectors &&
3946 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3947 !(dev->quirks & ATA_QUIRK_BROKEN_HPA)) {
3948 ata_dev_warn(dev,
3949 "old n_sectors matches native, probably "
3950 "late HPA lock, will try to unlock HPA\n");
3951 /* try unlocking HPA */
3952 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3953 rc = -EIO;
3954 } else
3955 rc = -ENODEV;
3956
3957 /* restore original n_[native_]sectors and fail */
3958 dev->n_native_sectors = n_native_sectors;
3959 dev->n_sectors = n_sectors;
3960 fail:
3961 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3962 return rc;
3963 }
3964
3965 static const char * const ata_quirk_names[] = {
3966 [__ATA_QUIRK_DIAGNOSTIC] = "diagnostic",
3967 [__ATA_QUIRK_NODMA] = "nodma",
3968 [__ATA_QUIRK_NONCQ] = "noncq",
3969 [__ATA_QUIRK_MAX_SEC_128] = "maxsec128",
3970 [__ATA_QUIRK_BROKEN_HPA] = "brokenhpa",
3971 [__ATA_QUIRK_DISABLE] = "disable",
3972 [__ATA_QUIRK_HPA_SIZE] = "hpasize",
3973 [__ATA_QUIRK_IVB] = "ivb",
3974 [__ATA_QUIRK_STUCK_ERR] = "stuckerr",
3975 [__ATA_QUIRK_BRIDGE_OK] = "bridgeok",
3976 [__ATA_QUIRK_ATAPI_MOD16_DMA] = "atapimod16dma",
3977 [__ATA_QUIRK_FIRMWARE_WARN] = "firmwarewarn",
3978 [__ATA_QUIRK_1_5_GBPS] = "1.5gbps",
3979 [__ATA_QUIRK_NOSETXFER] = "nosetxfer",
3980 [__ATA_QUIRK_BROKEN_FPDMA_AA] = "brokenfpdmaaa",
3981 [__ATA_QUIRK_DUMP_ID] = "dumpid",
3982 [__ATA_QUIRK_MAX_SEC_LBA48] = "maxseclba48",
3983 [__ATA_QUIRK_ATAPI_DMADIR] = "atapidmadir",
3984 [__ATA_QUIRK_NO_NCQ_TRIM] = "noncqtrim",
3985 [__ATA_QUIRK_NOLPM] = "nolpm",
3986 [__ATA_QUIRK_WD_BROKEN_LPM] = "wdbrokenlpm",
3987 [__ATA_QUIRK_ZERO_AFTER_TRIM] = "zeroaftertrim",
3988 [__ATA_QUIRK_NO_DMA_LOG] = "nodmalog",
3989 [__ATA_QUIRK_NOTRIM] = "notrim",
3990 [__ATA_QUIRK_MAX_SEC_1024] = "maxsec1024",
3991 [__ATA_QUIRK_MAX_TRIM_128M] = "maxtrim128m",
3992 [__ATA_QUIRK_NO_NCQ_ON_ATI] = "noncqonati",
3993 [__ATA_QUIRK_NO_LPM_ON_ATI] = "nolpmonati",
3994 [__ATA_QUIRK_NO_ID_DEV_LOG] = "noiddevlog",
3995 [__ATA_QUIRK_NO_LOG_DIR] = "nologdir",
3996 [__ATA_QUIRK_NO_FUA] = "nofua",
3997 };
3998
ata_dev_print_quirks(const struct ata_device * dev,const char * model,const char * rev,unsigned int quirks)3999 static void ata_dev_print_quirks(const struct ata_device *dev,
4000 const char *model, const char *rev,
4001 unsigned int quirks)
4002 {
4003 struct ata_eh_context *ehc = &dev->link->eh_context;
4004 int n = 0, i;
4005 size_t sz;
4006 char *str;
4007
4008 if (!ata_dev_print_info(dev) || ehc->i.flags & ATA_EHI_DID_PRINT_QUIRKS)
4009 return;
4010
4011 ehc->i.flags |= ATA_EHI_DID_PRINT_QUIRKS;
4012
4013 if (!quirks)
4014 return;
4015
4016 sz = 64 + ARRAY_SIZE(ata_quirk_names) * 16;
4017 str = kmalloc(sz, GFP_KERNEL);
4018 if (!str)
4019 return;
4020
4021 n = snprintf(str, sz, "Model '%s', rev '%s', applying quirks:",
4022 model, rev);
4023
4024 for (i = 0; i < ARRAY_SIZE(ata_quirk_names); i++) {
4025 if (quirks & (1U << i))
4026 n += snprintf(str + n, sz - n,
4027 " %s", ata_quirk_names[i]);
4028 }
4029
4030 ata_dev_warn(dev, "%s\n", str);
4031
4032 kfree(str);
4033 }
4034
4035 struct ata_dev_quirks_entry {
4036 const char *model_num;
4037 const char *model_rev;
4038 unsigned int quirks;
4039 };
4040
4041 static const struct ata_dev_quirks_entry __ata_dev_quirks[] = {
4042 /* Devices with DMA related problems under Linux */
4043 { "WDC AC11000H", NULL, ATA_QUIRK_NODMA },
4044 { "WDC AC22100H", NULL, ATA_QUIRK_NODMA },
4045 { "WDC AC32500H", NULL, ATA_QUIRK_NODMA },
4046 { "WDC AC33100H", NULL, ATA_QUIRK_NODMA },
4047 { "WDC AC31600H", NULL, ATA_QUIRK_NODMA },
4048 { "WDC AC32100H", "24.09P07", ATA_QUIRK_NODMA },
4049 { "WDC AC23200L", "21.10N21", ATA_QUIRK_NODMA },
4050 { "Compaq CRD-8241B", NULL, ATA_QUIRK_NODMA },
4051 { "CRD-8400B", NULL, ATA_QUIRK_NODMA },
4052 { "CRD-848[02]B", NULL, ATA_QUIRK_NODMA },
4053 { "CRD-84", NULL, ATA_QUIRK_NODMA },
4054 { "SanDisk SDP3B", NULL, ATA_QUIRK_NODMA },
4055 { "SanDisk SDP3B-64", NULL, ATA_QUIRK_NODMA },
4056 { "SANYO CD-ROM CRD", NULL, ATA_QUIRK_NODMA },
4057 { "HITACHI CDR-8", NULL, ATA_QUIRK_NODMA },
4058 { "HITACHI CDR-8[34]35", NULL, ATA_QUIRK_NODMA },
4059 { "Toshiba CD-ROM XM-6202B", NULL, ATA_QUIRK_NODMA },
4060 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_QUIRK_NODMA },
4061 { "CD-532E-A", NULL, ATA_QUIRK_NODMA },
4062 { "E-IDE CD-ROM CR-840", NULL, ATA_QUIRK_NODMA },
4063 { "CD-ROM Drive/F5A", NULL, ATA_QUIRK_NODMA },
4064 { "WPI CDD-820", NULL, ATA_QUIRK_NODMA },
4065 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_QUIRK_NODMA },
4066 { "SAMSUNG CD-ROM SC", NULL, ATA_QUIRK_NODMA },
4067 { "ATAPI CD-ROM DRIVE 40X MAXIMUM", NULL, ATA_QUIRK_NODMA },
4068 { "_NEC DV5800A", NULL, ATA_QUIRK_NODMA },
4069 { "SAMSUNG CD-ROM SN-124", "N001", ATA_QUIRK_NODMA },
4070 { "Seagate STT20000A", NULL, ATA_QUIRK_NODMA },
4071 { " 2GB ATA Flash Disk", "ADMA428M", ATA_QUIRK_NODMA },
4072 { "VRFDFC22048UCHC-TE*", NULL, ATA_QUIRK_NODMA },
4073 /* Odd clown on sil3726/4726 PMPs */
4074 { "Config Disk", NULL, ATA_QUIRK_DISABLE },
4075 /* Similar story with ASMedia 1092 */
4076 { "ASMT109x- Config", NULL, ATA_QUIRK_DISABLE },
4077
4078 /* Weird ATAPI devices */
4079 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_QUIRK_MAX_SEC_128 },
4080 { "QUANTUM DAT DAT72-000", NULL, ATA_QUIRK_ATAPI_MOD16_DMA },
4081 { "Slimtype DVD A DS8A8SH", NULL, ATA_QUIRK_MAX_SEC_LBA48 },
4082 { "Slimtype DVD A DS8A9SH", NULL, ATA_QUIRK_MAX_SEC_LBA48 },
4083
4084 /*
4085 * Causes silent data corruption with higher max sects.
4086 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4087 */
4088 { "ST380013AS", "3.20", ATA_QUIRK_MAX_SEC_1024 },
4089
4090 /*
4091 * These devices time out with higher max sects.
4092 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4093 */
4094 { "LITEON CX1-JB*-HP", NULL, ATA_QUIRK_MAX_SEC_1024 },
4095 { "LITEON EP1-*", NULL, ATA_QUIRK_MAX_SEC_1024 },
4096
4097 /* Devices we expect to fail diagnostics */
4098
4099 /* Devices where NCQ should be avoided */
4100 /* NCQ is slow */
4101 { "WDC WD740ADFD-00", NULL, ATA_QUIRK_NONCQ },
4102 { "WDC WD740ADFD-00NLR1", NULL, ATA_QUIRK_NONCQ },
4103 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4104 { "FUJITSU MHT2060BH", NULL, ATA_QUIRK_NONCQ },
4105 /* NCQ is broken */
4106 { "Maxtor *", "BANC*", ATA_QUIRK_NONCQ },
4107 { "Maxtor 7V300F0", "VA111630", ATA_QUIRK_NONCQ },
4108 { "ST380817AS", "3.42", ATA_QUIRK_NONCQ },
4109 { "ST3160023AS", "3.42", ATA_QUIRK_NONCQ },
4110 { "OCZ CORE_SSD", "02.10104", ATA_QUIRK_NONCQ },
4111
4112 /* Seagate NCQ + FLUSH CACHE firmware bug */
4113 { "ST31500341AS", "SD1[5-9]", ATA_QUIRK_NONCQ |
4114 ATA_QUIRK_FIRMWARE_WARN },
4115
4116 { "ST31000333AS", "SD1[5-9]", ATA_QUIRK_NONCQ |
4117 ATA_QUIRK_FIRMWARE_WARN },
4118
4119 { "ST3640[36]23AS", "SD1[5-9]", ATA_QUIRK_NONCQ |
4120 ATA_QUIRK_FIRMWARE_WARN },
4121
4122 { "ST3320[68]13AS", "SD1[5-9]", ATA_QUIRK_NONCQ |
4123 ATA_QUIRK_FIRMWARE_WARN },
4124
4125 /* drives which fail FPDMA_AA activation (some may freeze afterwards)
4126 the ST disks also have LPM issues */
4127 { "ST1000LM024 HN-M101MBB", NULL, ATA_QUIRK_BROKEN_FPDMA_AA |
4128 ATA_QUIRK_NOLPM },
4129 { "VB0250EAVER", "HPG7", ATA_QUIRK_BROKEN_FPDMA_AA },
4130
4131 /* Blacklist entries taken from Silicon Image 3124/3132
4132 Windows driver .inf file - also several Linux problem reports */
4133 { "HTS541060G9SA00", "MB3OC60D", ATA_QUIRK_NONCQ },
4134 { "HTS541080G9SA00", "MB4OC60D", ATA_QUIRK_NONCQ },
4135 { "HTS541010G9SA00", "MBZOC60D", ATA_QUIRK_NONCQ },
4136
4137 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4138 { "C300-CTFDDAC128MAG", "0001", ATA_QUIRK_NONCQ },
4139
4140 /* Sandisk SD7/8/9s lock up hard on large trims */
4141 { "SanDisk SD[789]*", NULL, ATA_QUIRK_MAX_TRIM_128M },
4142
4143 /* devices which puke on READ_NATIVE_MAX */
4144 { "HDS724040KLSA80", "KFAOA20N", ATA_QUIRK_BROKEN_HPA },
4145 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_QUIRK_BROKEN_HPA },
4146 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_QUIRK_BROKEN_HPA },
4147 { "MAXTOR 6L080L4", "A93.0500", ATA_QUIRK_BROKEN_HPA },
4148
4149 /* this one allows HPA unlocking but fails IOs on the area */
4150 { "OCZ-VERTEX", "1.30", ATA_QUIRK_BROKEN_HPA },
4151
4152 /* Devices which report 1 sector over size HPA */
4153 { "ST340823A", NULL, ATA_QUIRK_HPA_SIZE },
4154 { "ST320413A", NULL, ATA_QUIRK_HPA_SIZE },
4155 { "ST310211A", NULL, ATA_QUIRK_HPA_SIZE },
4156
4157 /* Devices which get the IVB wrong */
4158 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_QUIRK_IVB },
4159 /* Maybe we should just add all TSSTcorp devices... */
4160 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_QUIRK_IVB },
4161
4162 /* Devices that do not need bridging limits applied */
4163 { "MTRON MSP-SATA*", NULL, ATA_QUIRK_BRIDGE_OK },
4164 { "BUFFALO HD-QSU2/R5", NULL, ATA_QUIRK_BRIDGE_OK },
4165
4166 /* Devices which aren't very happy with higher link speeds */
4167 { "WD My Book", NULL, ATA_QUIRK_1_5_GBPS },
4168 { "Seagate FreeAgent GoFlex", NULL, ATA_QUIRK_1_5_GBPS },
4169
4170 /*
4171 * Devices which choke on SETXFER. Applies only if both the
4172 * device and controller are SATA.
4173 */
4174 { "PIONEER DVD-RW DVRTD08", NULL, ATA_QUIRK_NOSETXFER },
4175 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_QUIRK_NOSETXFER },
4176 { "PIONEER DVD-RW DVR-215", NULL, ATA_QUIRK_NOSETXFER },
4177 { "PIONEER DVD-RW DVR-212D", NULL, ATA_QUIRK_NOSETXFER },
4178 { "PIONEER DVD-RW DVR-216D", NULL, ATA_QUIRK_NOSETXFER },
4179
4180 /* These specific Pioneer models have LPM issues */
4181 { "PIONEER BD-RW BDR-207M", NULL, ATA_QUIRK_NOLPM },
4182 { "PIONEER BD-RW BDR-205", NULL, ATA_QUIRK_NOLPM },
4183
4184 /* Crucial devices with broken LPM support */
4185 { "CT*0BX*00SSD1", NULL, ATA_QUIRK_NOLPM },
4186
4187 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4188 { "Crucial_CT512MX100*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4189 ATA_QUIRK_ZERO_AFTER_TRIM |
4190 ATA_QUIRK_NOLPM },
4191 /* 512GB MX100 with newer firmware has only LPM issues */
4192 { "Crucial_CT512MX100*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM |
4193 ATA_QUIRK_NOLPM },
4194
4195 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4196 { "Crucial_CT480M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4197 ATA_QUIRK_ZERO_AFTER_TRIM |
4198 ATA_QUIRK_NOLPM },
4199 { "Crucial_CT960M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4200 ATA_QUIRK_ZERO_AFTER_TRIM |
4201 ATA_QUIRK_NOLPM },
4202
4203 /* AMD Radeon devices with broken LPM support */
4204 { "R3SL240G", NULL, ATA_QUIRK_NOLPM },
4205
4206 /* Apacer models with LPM issues */
4207 { "Apacer AS340*", NULL, ATA_QUIRK_NOLPM },
4208
4209 /* These specific Samsung models/firmware-revs do not handle LPM well */
4210 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_QUIRK_NOLPM },
4211 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_QUIRK_NOLPM },
4212 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_QUIRK_NOLPM },
4213 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_QUIRK_NOLPM },
4214
4215 /* devices that don't properly handle queued TRIM commands */
4216 { "Micron_M500IT_*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4217 ATA_QUIRK_ZERO_AFTER_TRIM },
4218 { "Micron_M500_*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4219 ATA_QUIRK_ZERO_AFTER_TRIM },
4220 { "Micron_M5[15]0_*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4221 ATA_QUIRK_ZERO_AFTER_TRIM },
4222 { "Micron_1100_*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4223 ATA_QUIRK_ZERO_AFTER_TRIM, },
4224 { "Crucial_CT*M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4225 ATA_QUIRK_ZERO_AFTER_TRIM },
4226 { "Crucial_CT*M550*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4227 ATA_QUIRK_ZERO_AFTER_TRIM },
4228 { "Crucial_CT*MX100*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4229 ATA_QUIRK_ZERO_AFTER_TRIM },
4230 { "Samsung SSD 840 EVO*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4231 ATA_QUIRK_NO_DMA_LOG |
4232 ATA_QUIRK_ZERO_AFTER_TRIM },
4233 { "Samsung SSD 840*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4234 ATA_QUIRK_ZERO_AFTER_TRIM },
4235 { "Samsung SSD 850*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4236 ATA_QUIRK_ZERO_AFTER_TRIM },
4237 { "Samsung SSD 860*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4238 ATA_QUIRK_ZERO_AFTER_TRIM |
4239 ATA_QUIRK_NO_NCQ_ON_ATI |
4240 ATA_QUIRK_NO_LPM_ON_ATI },
4241 { "Samsung SSD 870*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4242 ATA_QUIRK_ZERO_AFTER_TRIM |
4243 ATA_QUIRK_NO_NCQ_ON_ATI |
4244 ATA_QUIRK_NO_LPM_ON_ATI },
4245 { "SAMSUNG*MZ7LH*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4246 ATA_QUIRK_ZERO_AFTER_TRIM |
4247 ATA_QUIRK_NO_NCQ_ON_ATI |
4248 ATA_QUIRK_NO_LPM_ON_ATI },
4249 { "FCCT*M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4250 ATA_QUIRK_ZERO_AFTER_TRIM },
4251
4252 /* devices that don't properly handle TRIM commands */
4253 { "SuperSSpeed S238*", NULL, ATA_QUIRK_NOTRIM },
4254 { "M88V29*", NULL, ATA_QUIRK_NOTRIM },
4255
4256 /*
4257 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4258 * (Return Zero After Trim) flags in the ATA Command Set are
4259 * unreliable in the sense that they only define what happens if
4260 * the device successfully executed the DSM TRIM command. TRIM
4261 * is only advisory, however, and the device is free to silently
4262 * ignore all or parts of the request.
4263 *
4264 * Whitelist drives that are known to reliably return zeroes
4265 * after TRIM.
4266 */
4267
4268 /*
4269 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4270 * that model before whitelisting all other intel SSDs.
4271 */
4272 { "INTEL*SSDSC2MH*", NULL, 0 },
4273
4274 { "Micron*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4275 { "Crucial*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4276 { "INTEL*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4277 { "SSD*INTEL*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4278 { "Samsung*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4279 { "SAMSUNG*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4280 { "SAMSUNG*MZ7KM*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4281 { "ST[1248][0248]0[FH]*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4282
4283 /*
4284 * Some WD SATA-I drives spin up and down erratically when the link
4285 * is put into the slumber mode. We don't have full list of the
4286 * affected devices. Disable LPM if the device matches one of the
4287 * known prefixes and is SATA-1. As a side effect LPM partial is
4288 * lost too.
4289 *
4290 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4291 */
4292 { "WDC WD800JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4293 { "WDC WD1200JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4294 { "WDC WD1600JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4295 { "WDC WD2000JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4296 { "WDC WD2500JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4297 { "WDC WD3000JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4298 { "WDC WD3200JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4299
4300 /*
4301 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY
4302 * log page is accessed. Ensure we never ask for this log page with
4303 * these devices.
4304 */
4305 { "SATADOM-ML 3ME", NULL, ATA_QUIRK_NO_LOG_DIR },
4306
4307 /* Buggy FUA */
4308 { "Maxtor", "BANC1G10", ATA_QUIRK_NO_FUA },
4309 { "WDC*WD2500J*", NULL, ATA_QUIRK_NO_FUA },
4310 { "OCZ-VERTEX*", NULL, ATA_QUIRK_NO_FUA },
4311 { "INTEL*SSDSC2CT*", NULL, ATA_QUIRK_NO_FUA },
4312
4313 /* End Marker */
4314 { }
4315 };
4316
ata_dev_quirks(const struct ata_device * dev)4317 static unsigned int ata_dev_quirks(const struct ata_device *dev)
4318 {
4319 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4320 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4321 const struct ata_dev_quirks_entry *ad = __ata_dev_quirks;
4322
4323 /* dev->quirks is an unsigned int. */
4324 BUILD_BUG_ON(__ATA_QUIRK_MAX > 32);
4325
4326 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4327 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4328
4329 while (ad->model_num) {
4330 if (glob_match(ad->model_num, model_num) &&
4331 (!ad->model_rev || glob_match(ad->model_rev, model_rev))) {
4332 ata_dev_print_quirks(dev, model_num, model_rev,
4333 ad->quirks);
4334 return ad->quirks;
4335 }
4336 ad++;
4337 }
4338 return 0;
4339 }
4340
ata_dev_nodma(const struct ata_device * dev)4341 static bool ata_dev_nodma(const struct ata_device *dev)
4342 {
4343 /*
4344 * We do not support polling DMA. Deny DMA for those ATAPI devices
4345 * with CDB-intr (and use PIO) if the LLDD handles only interrupts in
4346 * the HSM_ST_LAST state.
4347 */
4348 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4349 (dev->flags & ATA_DFLAG_CDB_INTR))
4350 return true;
4351 return dev->quirks & ATA_QUIRK_NODMA;
4352 }
4353
4354 /**
4355 * ata_is_40wire - check drive side detection
4356 * @dev: device
4357 *
4358 * Perform drive side detection decoding, allowing for device vendors
4359 * who can't follow the documentation.
4360 */
4361
ata_is_40wire(struct ata_device * dev)4362 static int ata_is_40wire(struct ata_device *dev)
4363 {
4364 if (dev->quirks & ATA_QUIRK_IVB)
4365 return ata_drive_40wire_relaxed(dev->id);
4366 return ata_drive_40wire(dev->id);
4367 }
4368
4369 /**
4370 * cable_is_40wire - 40/80/SATA decider
4371 * @ap: port to consider
4372 *
4373 * This function encapsulates the policy for speed management
4374 * in one place. At the moment we don't cache the result but
4375 * there is a good case for setting ap->cbl to the result when
4376 * we are called with unknown cables (and figuring out if it
4377 * impacts hotplug at all).
4378 *
4379 * Return 1 if the cable appears to be 40 wire.
4380 */
4381
cable_is_40wire(struct ata_port * ap)4382 static int cable_is_40wire(struct ata_port *ap)
4383 {
4384 struct ata_link *link;
4385 struct ata_device *dev;
4386
4387 /* If the controller thinks we are 40 wire, we are. */
4388 if (ap->cbl == ATA_CBL_PATA40)
4389 return 1;
4390
4391 /* If the controller thinks we are 80 wire, we are. */
4392 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4393 return 0;
4394
4395 /* If the system is known to be 40 wire short cable (eg
4396 * laptop), then we allow 80 wire modes even if the drive
4397 * isn't sure.
4398 */
4399 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4400 return 0;
4401
4402 /* If the controller doesn't know, we scan.
4403 *
4404 * Note: We look for all 40 wire detects at this point. Any
4405 * 80 wire detect is taken to be 80 wire cable because
4406 * - in many setups only the one drive (slave if present) will
4407 * give a valid detect
4408 * - if you have a non detect capable drive you don't want it
4409 * to colour the choice
4410 */
4411 ata_for_each_link(link, ap, EDGE) {
4412 ata_for_each_dev(dev, link, ENABLED) {
4413 if (!ata_is_40wire(dev))
4414 return 0;
4415 }
4416 }
4417 return 1;
4418 }
4419
4420 /**
4421 * ata_dev_xfermask - Compute supported xfermask of the given device
4422 * @dev: Device to compute xfermask for
4423 *
4424 * Compute supported xfermask of @dev and store it in
4425 * dev->*_mask. This function is responsible for applying all
4426 * known limits including host controller limits, device quirks, etc...
4427 *
4428 * LOCKING:
4429 * None.
4430 */
ata_dev_xfermask(struct ata_device * dev)4431 static void ata_dev_xfermask(struct ata_device *dev)
4432 {
4433 struct ata_link *link = dev->link;
4434 struct ata_port *ap = link->ap;
4435 struct ata_host *host = ap->host;
4436 unsigned int xfer_mask;
4437
4438 /* controller modes available */
4439 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4440 ap->mwdma_mask, ap->udma_mask);
4441
4442 /* drive modes available */
4443 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4444 dev->mwdma_mask, dev->udma_mask);
4445 xfer_mask &= ata_id_xfermask(dev->id);
4446
4447 /*
4448 * CFA Advanced TrueIDE timings are not allowed on a shared
4449 * cable
4450 */
4451 if (ata_dev_pair(dev)) {
4452 /* No PIO5 or PIO6 */
4453 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4454 /* No MWDMA3 or MWDMA 4 */
4455 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4456 }
4457
4458 if (ata_dev_nodma(dev)) {
4459 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4460 ata_dev_warn(dev,
4461 "device does not support DMA, disabling DMA\n");
4462 }
4463
4464 if ((host->flags & ATA_HOST_SIMPLEX) &&
4465 host->simplex_claimed && host->simplex_claimed != ap) {
4466 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4467 ata_dev_warn(dev,
4468 "simplex DMA is claimed by other device, disabling DMA\n");
4469 }
4470
4471 if (ap->flags & ATA_FLAG_NO_IORDY)
4472 xfer_mask &= ata_pio_mask_no_iordy(dev);
4473
4474 if (ap->ops->mode_filter)
4475 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4476
4477 /* Apply cable rule here. Don't apply it early because when
4478 * we handle hot plug the cable type can itself change.
4479 * Check this last so that we know if the transfer rate was
4480 * solely limited by the cable.
4481 * Unknown or 80 wire cables reported host side are checked
4482 * drive side as well. Cases where we know a 40wire cable
4483 * is used safely for 80 are not checked here.
4484 */
4485 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4486 /* UDMA/44 or higher would be available */
4487 if (cable_is_40wire(ap)) {
4488 ata_dev_warn(dev,
4489 "limited to UDMA/33 due to 40-wire cable\n");
4490 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4491 }
4492
4493 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4494 &dev->mwdma_mask, &dev->udma_mask);
4495 }
4496
4497 /**
4498 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4499 * @dev: Device to which command will be sent
4500 *
4501 * Issue SET FEATURES - XFER MODE command to device @dev
4502 * on port @ap.
4503 *
4504 * LOCKING:
4505 * PCI/etc. bus probe sem.
4506 *
4507 * RETURNS:
4508 * 0 on success, AC_ERR_* mask otherwise.
4509 */
4510
ata_dev_set_xfermode(struct ata_device * dev)4511 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4512 {
4513 struct ata_taskfile tf;
4514
4515 /* set up set-features taskfile */
4516 ata_dev_dbg(dev, "set features - xfer mode\n");
4517
4518 /* Some controllers and ATAPI devices show flaky interrupt
4519 * behavior after setting xfer mode. Use polling instead.
4520 */
4521 ata_tf_init(dev, &tf);
4522 tf.command = ATA_CMD_SET_FEATURES;
4523 tf.feature = SETFEATURES_XFER;
4524 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4525 tf.protocol = ATA_PROT_NODATA;
4526 /* If we are using IORDY we must send the mode setting command */
4527 if (ata_pio_need_iordy(dev))
4528 tf.nsect = dev->xfer_mode;
4529 /* If the device has IORDY and the controller does not - turn it off */
4530 else if (ata_id_has_iordy(dev->id))
4531 tf.nsect = 0x01;
4532 else /* In the ancient relic department - skip all of this */
4533 return 0;
4534
4535 /*
4536 * On some disks, this command causes spin-up, so we need longer
4537 * timeout.
4538 */
4539 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4540 }
4541
4542 /**
4543 * ata_dev_set_feature - Issue SET FEATURES
4544 * @dev: Device to which command will be sent
4545 * @subcmd: The SET FEATURES subcommand to be sent
4546 * @action: The sector count represents a subcommand specific action
4547 *
4548 * Issue SET FEATURES command to device @dev on port @ap with sector count
4549 *
4550 * LOCKING:
4551 * PCI/etc. bus probe sem.
4552 *
4553 * RETURNS:
4554 * 0 on success, AC_ERR_* mask otherwise.
4555 */
ata_dev_set_feature(struct ata_device * dev,u8 subcmd,u8 action)4556 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action)
4557 {
4558 struct ata_taskfile tf;
4559 unsigned int timeout = 0;
4560
4561 /* set up set-features taskfile */
4562 ata_dev_dbg(dev, "set features\n");
4563
4564 ata_tf_init(dev, &tf);
4565 tf.command = ATA_CMD_SET_FEATURES;
4566 tf.feature = subcmd;
4567 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4568 tf.protocol = ATA_PROT_NODATA;
4569 tf.nsect = action;
4570
4571 if (subcmd == SETFEATURES_SPINUP)
4572 timeout = ata_probe_timeout ?
4573 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4574
4575 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4576 }
4577 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4578
4579 /**
4580 * ata_dev_init_params - Issue INIT DEV PARAMS command
4581 * @dev: Device to which command will be sent
4582 * @heads: Number of heads (taskfile parameter)
4583 * @sectors: Number of sectors (taskfile parameter)
4584 *
4585 * LOCKING:
4586 * Kernel thread context (may sleep)
4587 *
4588 * RETURNS:
4589 * 0 on success, AC_ERR_* mask otherwise.
4590 */
ata_dev_init_params(struct ata_device * dev,u16 heads,u16 sectors)4591 static unsigned int ata_dev_init_params(struct ata_device *dev,
4592 u16 heads, u16 sectors)
4593 {
4594 struct ata_taskfile tf;
4595 unsigned int err_mask;
4596
4597 /* Number of sectors per track 1-255. Number of heads 1-16 */
4598 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4599 return AC_ERR_INVALID;
4600
4601 /* set up init dev params taskfile */
4602 ata_dev_dbg(dev, "init dev params\n");
4603
4604 ata_tf_init(dev, &tf);
4605 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4606 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4607 tf.protocol = ATA_PROT_NODATA;
4608 tf.nsect = sectors;
4609 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4610
4611 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4612 /* A clean abort indicates an original or just out of spec drive
4613 and we should continue as we issue the setup based on the
4614 drive reported working geometry */
4615 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
4616 err_mask = 0;
4617
4618 return err_mask;
4619 }
4620
4621 /**
4622 * atapi_check_dma - Check whether ATAPI DMA can be supported
4623 * @qc: Metadata associated with taskfile to check
4624 *
4625 * Allow low-level driver to filter ATA PACKET commands, returning
4626 * a status indicating whether or not it is OK to use DMA for the
4627 * supplied PACKET command.
4628 *
4629 * LOCKING:
4630 * spin_lock_irqsave(host lock)
4631 *
4632 * RETURNS: 0 when ATAPI DMA can be used
4633 * nonzero otherwise
4634 */
atapi_check_dma(struct ata_queued_cmd * qc)4635 int atapi_check_dma(struct ata_queued_cmd *qc)
4636 {
4637 struct ata_port *ap = qc->ap;
4638
4639 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4640 * few ATAPI devices choke on such DMA requests.
4641 */
4642 if (!(qc->dev->quirks & ATA_QUIRK_ATAPI_MOD16_DMA) &&
4643 unlikely(qc->nbytes & 15))
4644 return -EOPNOTSUPP;
4645
4646 if (ap->ops->check_atapi_dma)
4647 return ap->ops->check_atapi_dma(qc);
4648
4649 return 0;
4650 }
4651
4652 /**
4653 * ata_std_qc_defer - Check whether a qc needs to be deferred
4654 * @qc: ATA command in question
4655 *
4656 * Non-NCQ commands cannot run with any other command, NCQ or
4657 * not. As upper layer only knows the queue depth, we are
4658 * responsible for maintaining exclusion. This function checks
4659 * whether a new command @qc can be issued.
4660 *
4661 * LOCKING:
4662 * spin_lock_irqsave(host lock)
4663 *
4664 * RETURNS:
4665 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4666 */
ata_std_qc_defer(struct ata_queued_cmd * qc)4667 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4668 {
4669 struct ata_link *link = qc->dev->link;
4670
4671 if (ata_is_ncq(qc->tf.protocol)) {
4672 if (!ata_tag_valid(link->active_tag))
4673 return 0;
4674 } else {
4675 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4676 return 0;
4677 }
4678
4679 return ATA_DEFER_LINK;
4680 }
4681 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4682
4683 /**
4684 * ata_sg_init - Associate command with scatter-gather table.
4685 * @qc: Command to be associated
4686 * @sg: Scatter-gather table.
4687 * @n_elem: Number of elements in s/g table.
4688 *
4689 * Initialize the data-related elements of queued_cmd @qc
4690 * to point to a scatter-gather table @sg, containing @n_elem
4691 * elements.
4692 *
4693 * LOCKING:
4694 * spin_lock_irqsave(host lock)
4695 */
ata_sg_init(struct ata_queued_cmd * qc,struct scatterlist * sg,unsigned int n_elem)4696 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4697 unsigned int n_elem)
4698 {
4699 qc->sg = sg;
4700 qc->n_elem = n_elem;
4701 qc->cursg = qc->sg;
4702 }
4703
4704 #ifdef CONFIG_HAS_DMA
4705
4706 /**
4707 * ata_sg_clean - Unmap DMA memory associated with command
4708 * @qc: Command containing DMA memory to be released
4709 *
4710 * Unmap all mapped DMA memory associated with this command.
4711 *
4712 * LOCKING:
4713 * spin_lock_irqsave(host lock)
4714 */
ata_sg_clean(struct ata_queued_cmd * qc)4715 static void ata_sg_clean(struct ata_queued_cmd *qc)
4716 {
4717 struct ata_port *ap = qc->ap;
4718 struct scatterlist *sg = qc->sg;
4719 int dir = qc->dma_dir;
4720
4721 WARN_ON_ONCE(sg == NULL);
4722
4723 if (qc->n_elem)
4724 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4725
4726 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4727 qc->sg = NULL;
4728 }
4729
4730 /**
4731 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4732 * @qc: Command with scatter-gather table to be mapped.
4733 *
4734 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4735 *
4736 * LOCKING:
4737 * spin_lock_irqsave(host lock)
4738 *
4739 * RETURNS:
4740 * Zero on success, negative on error.
4741 *
4742 */
ata_sg_setup(struct ata_queued_cmd * qc)4743 static int ata_sg_setup(struct ata_queued_cmd *qc)
4744 {
4745 struct ata_port *ap = qc->ap;
4746 unsigned int n_elem;
4747
4748 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4749 if (n_elem < 1)
4750 return -1;
4751
4752 qc->orig_n_elem = qc->n_elem;
4753 qc->n_elem = n_elem;
4754 qc->flags |= ATA_QCFLAG_DMAMAP;
4755
4756 return 0;
4757 }
4758
4759 #else /* !CONFIG_HAS_DMA */
4760
ata_sg_clean(struct ata_queued_cmd * qc)4761 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
ata_sg_setup(struct ata_queued_cmd * qc)4762 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4763
4764 #endif /* !CONFIG_HAS_DMA */
4765
4766 /**
4767 * swap_buf_le16 - swap halves of 16-bit words in place
4768 * @buf: Buffer to swap
4769 * @buf_words: Number of 16-bit words in buffer.
4770 *
4771 * Swap halves of 16-bit words if needed to convert from
4772 * little-endian byte order to native cpu byte order, or
4773 * vice-versa.
4774 *
4775 * LOCKING:
4776 * Inherited from caller.
4777 */
swap_buf_le16(u16 * buf,unsigned int buf_words)4778 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4779 {
4780 #ifdef __BIG_ENDIAN
4781 unsigned int i;
4782
4783 for (i = 0; i < buf_words; i++)
4784 buf[i] = le16_to_cpu(buf[i]);
4785 #endif /* __BIG_ENDIAN */
4786 }
4787
4788 /**
4789 * ata_qc_free - free unused ata_queued_cmd
4790 * @qc: Command to complete
4791 *
4792 * Designed to free unused ata_queued_cmd object
4793 * in case something prevents using it.
4794 *
4795 * LOCKING:
4796 * spin_lock_irqsave(host lock)
4797 */
ata_qc_free(struct ata_queued_cmd * qc)4798 void ata_qc_free(struct ata_queued_cmd *qc)
4799 {
4800 qc->flags = 0;
4801 if (ata_tag_valid(qc->tag))
4802 qc->tag = ATA_TAG_POISON;
4803 }
4804
__ata_qc_complete(struct ata_queued_cmd * qc)4805 void __ata_qc_complete(struct ata_queued_cmd *qc)
4806 {
4807 struct ata_port *ap;
4808 struct ata_link *link;
4809
4810 if (WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)))
4811 return;
4812
4813 ap = qc->ap;
4814 link = qc->dev->link;
4815
4816 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4817 ata_sg_clean(qc);
4818
4819 /* command should be marked inactive atomically with qc completion */
4820 if (ata_is_ncq(qc->tf.protocol)) {
4821 link->sactive &= ~(1 << qc->hw_tag);
4822 if (!link->sactive)
4823 ap->nr_active_links--;
4824 } else {
4825 link->active_tag = ATA_TAG_POISON;
4826 ap->nr_active_links--;
4827 }
4828
4829 /* clear exclusive status */
4830 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4831 ap->excl_link == link))
4832 ap->excl_link = NULL;
4833
4834 /*
4835 * Mark qc as inactive to prevent the port interrupt handler from
4836 * completing the command twice later, before the error handler is
4837 * called.
4838 */
4839 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4840 ap->qc_active &= ~(1ULL << qc->tag);
4841
4842 /* call completion callback */
4843 qc->complete_fn(qc);
4844 }
4845
fill_result_tf(struct ata_queued_cmd * qc)4846 static void fill_result_tf(struct ata_queued_cmd *qc)
4847 {
4848 struct ata_port *ap = qc->ap;
4849
4850 /*
4851 * rtf may already be filled (e.g. for successful NCQ commands).
4852 * If that is the case, we have nothing to do.
4853 */
4854 if (qc->flags & ATA_QCFLAG_RTF_FILLED)
4855 return;
4856
4857 qc->result_tf.flags = qc->tf.flags;
4858 ap->ops->qc_fill_rtf(qc);
4859 qc->flags |= ATA_QCFLAG_RTF_FILLED;
4860 }
4861
ata_verify_xfer(struct ata_queued_cmd * qc)4862 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4863 {
4864 struct ata_device *dev = qc->dev;
4865
4866 if (!ata_is_data(qc->tf.protocol))
4867 return;
4868
4869 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4870 return;
4871
4872 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4873 }
4874
4875 /**
4876 * ata_qc_complete - Complete an active ATA command
4877 * @qc: Command to complete
4878 *
4879 * Indicate to the mid and upper layers that an ATA command has
4880 * completed, with either an ok or not-ok status.
4881 *
4882 * Refrain from calling this function multiple times when
4883 * successfully completing multiple NCQ commands.
4884 * ata_qc_complete_multiple() should be used instead, which will
4885 * properly update IRQ expect state.
4886 *
4887 * LOCKING:
4888 * spin_lock_irqsave(host lock)
4889 */
ata_qc_complete(struct ata_queued_cmd * qc)4890 void ata_qc_complete(struct ata_queued_cmd *qc)
4891 {
4892 struct ata_port *ap = qc->ap;
4893 struct ata_device *dev = qc->dev;
4894 struct ata_eh_info *ehi = &dev->link->eh_info;
4895
4896 /* Trigger the LED (if available) */
4897 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4898
4899 /*
4900 * In order to synchronize EH with the regular execution path, a qc that
4901 * is owned by EH is marked with ATA_QCFLAG_EH.
4902 *
4903 * The normal execution path is responsible for not accessing a qc owned
4904 * by EH. libata core enforces the rule by returning NULL from
4905 * ata_qc_from_tag() for qcs owned by EH.
4906 */
4907 if (unlikely(qc->err_mask))
4908 qc->flags |= ATA_QCFLAG_EH;
4909
4910 /*
4911 * Finish internal commands without any further processing and always
4912 * with the result TF filled.
4913 */
4914 if (unlikely(ata_tag_internal(qc->tag))) {
4915 fill_result_tf(qc);
4916 trace_ata_qc_complete_internal(qc);
4917 __ata_qc_complete(qc);
4918 return;
4919 }
4920
4921 /* Non-internal qc has failed. Fill the result TF and summon EH. */
4922 if (unlikely(qc->flags & ATA_QCFLAG_EH)) {
4923 fill_result_tf(qc);
4924 trace_ata_qc_complete_failed(qc);
4925 ata_qc_schedule_eh(qc);
4926 return;
4927 }
4928
4929 WARN_ON_ONCE(ata_port_is_frozen(ap));
4930
4931 /* read result TF if requested */
4932 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4933 fill_result_tf(qc);
4934
4935 trace_ata_qc_complete_done(qc);
4936
4937 /*
4938 * For CDL commands that completed without an error, check if we have
4939 * sense data (ATA_SENSE is set). If we do, then the command may have
4940 * been aborted by the device due to a limit timeout using the policy
4941 * 0xD. For these commands, invoke EH to get the command sense data.
4942 */
4943 if (qc->flags & ATA_QCFLAG_HAS_CDL &&
4944 qc->result_tf.status & ATA_SENSE) {
4945 /*
4946 * Tell SCSI EH to not overwrite scmd->result even if this
4947 * command is finished with result SAM_STAT_GOOD.
4948 */
4949 qc->scsicmd->flags |= SCMD_FORCE_EH_SUCCESS;
4950 qc->flags |= ATA_QCFLAG_EH_SUCCESS_CMD;
4951 ehi->dev_action[dev->devno] |= ATA_EH_GET_SUCCESS_SENSE;
4952
4953 /*
4954 * set pending so that ata_qc_schedule_eh() does not trigger
4955 * fast drain, and freeze the port.
4956 */
4957 ap->pflags |= ATA_PFLAG_EH_PENDING;
4958 ata_qc_schedule_eh(qc);
4959 return;
4960 }
4961
4962 /* Some commands need post-processing after successful completion. */
4963 switch (qc->tf.command) {
4964 case ATA_CMD_SET_FEATURES:
4965 if (qc->tf.feature != SETFEATURES_WC_ON &&
4966 qc->tf.feature != SETFEATURES_WC_OFF &&
4967 qc->tf.feature != SETFEATURES_RA_ON &&
4968 qc->tf.feature != SETFEATURES_RA_OFF)
4969 break;
4970 fallthrough;
4971 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4972 case ATA_CMD_SET_MULTI: /* multi_count changed */
4973 /* revalidate device */
4974 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4975 ata_port_schedule_eh(ap);
4976 break;
4977
4978 case ATA_CMD_SLEEP:
4979 dev->flags |= ATA_DFLAG_SLEEPING;
4980 break;
4981 }
4982
4983 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4984 ata_verify_xfer(qc);
4985
4986 __ata_qc_complete(qc);
4987 }
4988 EXPORT_SYMBOL_GPL(ata_qc_complete);
4989
4990 /**
4991 * ata_qc_get_active - get bitmask of active qcs
4992 * @ap: port in question
4993 *
4994 * LOCKING:
4995 * spin_lock_irqsave(host lock)
4996 *
4997 * RETURNS:
4998 * Bitmask of active qcs
4999 */
ata_qc_get_active(struct ata_port * ap)5000 u64 ata_qc_get_active(struct ata_port *ap)
5001 {
5002 u64 qc_active = ap->qc_active;
5003
5004 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */
5005 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
5006 qc_active |= (1 << 0);
5007 qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
5008 }
5009
5010 return qc_active;
5011 }
5012 EXPORT_SYMBOL_GPL(ata_qc_get_active);
5013
5014 /**
5015 * ata_qc_issue - issue taskfile to device
5016 * @qc: command to issue to device
5017 *
5018 * Prepare an ATA command to submission to device.
5019 * This includes mapping the data into a DMA-able
5020 * area, filling in the S/G table, and finally
5021 * writing the taskfile to hardware, starting the command.
5022 *
5023 * LOCKING:
5024 * spin_lock_irqsave(host lock)
5025 */
ata_qc_issue(struct ata_queued_cmd * qc)5026 void ata_qc_issue(struct ata_queued_cmd *qc)
5027 {
5028 struct ata_port *ap = qc->ap;
5029 struct ata_link *link = qc->dev->link;
5030 u8 prot = qc->tf.protocol;
5031
5032 /* Make sure only one non-NCQ command is outstanding. */
5033 WARN_ON_ONCE(ata_tag_valid(link->active_tag));
5034
5035 if (ata_is_ncq(prot)) {
5036 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
5037
5038 if (!link->sactive)
5039 ap->nr_active_links++;
5040 link->sactive |= 1 << qc->hw_tag;
5041 } else {
5042 WARN_ON_ONCE(link->sactive);
5043
5044 ap->nr_active_links++;
5045 link->active_tag = qc->tag;
5046 }
5047
5048 qc->flags |= ATA_QCFLAG_ACTIVE;
5049 ap->qc_active |= 1ULL << qc->tag;
5050
5051 /*
5052 * We guarantee to LLDs that they will have at least one
5053 * non-zero sg if the command is a data command.
5054 */
5055 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
5056 goto sys_err;
5057
5058 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5059 (ap->flags & ATA_FLAG_PIO_DMA)))
5060 if (ata_sg_setup(qc))
5061 goto sys_err;
5062
5063 /* if device is sleeping, schedule reset and abort the link */
5064 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5065 link->eh_info.action |= ATA_EH_RESET;
5066 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5067 ata_link_abort(link);
5068 return;
5069 }
5070
5071 if (ap->ops->qc_prep) {
5072 trace_ata_qc_prep(qc);
5073 qc->err_mask |= ap->ops->qc_prep(qc);
5074 if (unlikely(qc->err_mask))
5075 goto err;
5076 }
5077
5078 trace_ata_qc_issue(qc);
5079 qc->err_mask |= ap->ops->qc_issue(qc);
5080 if (unlikely(qc->err_mask))
5081 goto err;
5082 return;
5083
5084 sys_err:
5085 qc->err_mask |= AC_ERR_SYSTEM;
5086 err:
5087 ata_qc_complete(qc);
5088 }
5089
5090 /**
5091 * ata_phys_link_online - test whether the given link is online
5092 * @link: ATA link to test
5093 *
5094 * Test whether @link is online. Note that this function returns
5095 * 0 if online status of @link cannot be obtained, so
5096 * ata_link_online(link) != !ata_link_offline(link).
5097 *
5098 * LOCKING:
5099 * None.
5100 *
5101 * RETURNS:
5102 * True if the port online status is available and online.
5103 */
ata_phys_link_online(struct ata_link * link)5104 bool ata_phys_link_online(struct ata_link *link)
5105 {
5106 u32 sstatus;
5107
5108 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5109 ata_sstatus_online(sstatus))
5110 return true;
5111 return false;
5112 }
5113
5114 /**
5115 * ata_phys_link_offline - test whether the given link is offline
5116 * @link: ATA link to test
5117 *
5118 * Test whether @link is offline. Note that this function
5119 * returns 0 if offline status of @link cannot be obtained, so
5120 * ata_link_online(link) != !ata_link_offline(link).
5121 *
5122 * LOCKING:
5123 * None.
5124 *
5125 * RETURNS:
5126 * True if the port offline status is available and offline.
5127 */
ata_phys_link_offline(struct ata_link * link)5128 bool ata_phys_link_offline(struct ata_link *link)
5129 {
5130 u32 sstatus;
5131
5132 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5133 !ata_sstatus_online(sstatus))
5134 return true;
5135 return false;
5136 }
5137
5138 /**
5139 * ata_link_online - test whether the given link is online
5140 * @link: ATA link to test
5141 *
5142 * Test whether @link is online. This is identical to
5143 * ata_phys_link_online() when there's no slave link. When
5144 * there's a slave link, this function should only be called on
5145 * the master link and will return true if any of M/S links is
5146 * online.
5147 *
5148 * LOCKING:
5149 * None.
5150 *
5151 * RETURNS:
5152 * True if the port online status is available and online.
5153 */
ata_link_online(struct ata_link * link)5154 bool ata_link_online(struct ata_link *link)
5155 {
5156 struct ata_link *slave = link->ap->slave_link;
5157
5158 WARN_ON(link == slave); /* shouldn't be called on slave link */
5159
5160 return ata_phys_link_online(link) ||
5161 (slave && ata_phys_link_online(slave));
5162 }
5163 EXPORT_SYMBOL_GPL(ata_link_online);
5164
5165 /**
5166 * ata_link_offline - test whether the given link is offline
5167 * @link: ATA link to test
5168 *
5169 * Test whether @link is offline. This is identical to
5170 * ata_phys_link_offline() when there's no slave link. When
5171 * there's a slave link, this function should only be called on
5172 * the master link and will return true if both M/S links are
5173 * offline.
5174 *
5175 * LOCKING:
5176 * None.
5177 *
5178 * RETURNS:
5179 * True if the port offline status is available and offline.
5180 */
ata_link_offline(struct ata_link * link)5181 bool ata_link_offline(struct ata_link *link)
5182 {
5183 struct ata_link *slave = link->ap->slave_link;
5184
5185 WARN_ON(link == slave); /* shouldn't be called on slave link */
5186
5187 return ata_phys_link_offline(link) &&
5188 (!slave || ata_phys_link_offline(slave));
5189 }
5190 EXPORT_SYMBOL_GPL(ata_link_offline);
5191
5192 #ifdef CONFIG_PM
ata_port_request_pm(struct ata_port * ap,pm_message_t mesg,unsigned int action,unsigned int ehi_flags,bool async)5193 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5194 unsigned int action, unsigned int ehi_flags,
5195 bool async)
5196 {
5197 struct ata_link *link;
5198 unsigned long flags;
5199
5200 spin_lock_irqsave(ap->lock, flags);
5201
5202 /*
5203 * A previous PM operation might still be in progress. Wait for
5204 * ATA_PFLAG_PM_PENDING to clear.
5205 */
5206 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5207 spin_unlock_irqrestore(ap->lock, flags);
5208 ata_port_wait_eh(ap);
5209 spin_lock_irqsave(ap->lock, flags);
5210 }
5211
5212 /* Request PM operation to EH */
5213 ap->pm_mesg = mesg;
5214 ap->pflags |= ATA_PFLAG_PM_PENDING;
5215 ata_for_each_link(link, ap, HOST_FIRST) {
5216 link->eh_info.action |= action;
5217 link->eh_info.flags |= ehi_flags;
5218 }
5219
5220 ata_port_schedule_eh(ap);
5221
5222 spin_unlock_irqrestore(ap->lock, flags);
5223
5224 if (!async)
5225 ata_port_wait_eh(ap);
5226 }
5227
ata_port_suspend(struct ata_port * ap,pm_message_t mesg,bool async)5228 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg,
5229 bool async)
5230 {
5231 /*
5232 * We are about to suspend the port, so we do not care about
5233 * scsi_rescan_device() calls scheduled by previous resume operations.
5234 * The next resume will schedule the rescan again. So cancel any rescan
5235 * that is not done yet.
5236 */
5237 cancel_delayed_work_sync(&ap->scsi_rescan_task);
5238
5239 /*
5240 * On some hardware, device fails to respond after spun down for
5241 * suspend. As the device will not be used until being resumed, we
5242 * do not need to touch the device. Ask EH to skip the usual stuff
5243 * and proceed directly to suspend.
5244 *
5245 * http://thread.gmane.org/gmane.linux.ide/46764
5246 */
5247 ata_port_request_pm(ap, mesg, 0,
5248 ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY |
5249 ATA_EHI_NO_RECOVERY,
5250 async);
5251 }
5252
ata_port_pm_suspend(struct device * dev)5253 static int ata_port_pm_suspend(struct device *dev)
5254 {
5255 struct ata_port *ap = to_ata_port(dev);
5256
5257 if (pm_runtime_suspended(dev))
5258 return 0;
5259
5260 ata_port_suspend(ap, PMSG_SUSPEND, false);
5261 return 0;
5262 }
5263
ata_port_pm_freeze(struct device * dev)5264 static int ata_port_pm_freeze(struct device *dev)
5265 {
5266 struct ata_port *ap = to_ata_port(dev);
5267
5268 if (pm_runtime_suspended(dev))
5269 return 0;
5270
5271 ata_port_suspend(ap, PMSG_FREEZE, false);
5272 return 0;
5273 }
5274
ata_port_pm_poweroff(struct device * dev)5275 static int ata_port_pm_poweroff(struct device *dev)
5276 {
5277 if (!pm_runtime_suspended(dev))
5278 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE, false);
5279 return 0;
5280 }
5281
ata_port_resume(struct ata_port * ap,pm_message_t mesg,bool async)5282 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg,
5283 bool async)
5284 {
5285 ata_port_request_pm(ap, mesg, ATA_EH_RESET,
5286 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET,
5287 async);
5288 }
5289
ata_port_pm_resume(struct device * dev)5290 static int ata_port_pm_resume(struct device *dev)
5291 {
5292 if (!pm_runtime_suspended(dev))
5293 ata_port_resume(to_ata_port(dev), PMSG_RESUME, true);
5294 return 0;
5295 }
5296
5297 /*
5298 * For ODDs, the upper layer will poll for media change every few seconds,
5299 * which will make it enter and leave suspend state every few seconds. And
5300 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5301 * is very little and the ODD may malfunction after constantly being reset.
5302 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5303 * ODD is attached to the port.
5304 */
ata_port_runtime_idle(struct device * dev)5305 static int ata_port_runtime_idle(struct device *dev)
5306 {
5307 struct ata_port *ap = to_ata_port(dev);
5308 struct ata_link *link;
5309 struct ata_device *adev;
5310
5311 ata_for_each_link(link, ap, HOST_FIRST) {
5312 ata_for_each_dev(adev, link, ENABLED)
5313 if (adev->class == ATA_DEV_ATAPI &&
5314 !zpodd_dev_enabled(adev))
5315 return -EBUSY;
5316 }
5317
5318 return 0;
5319 }
5320
ata_port_runtime_suspend(struct device * dev)5321 static int ata_port_runtime_suspend(struct device *dev)
5322 {
5323 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND, false);
5324 return 0;
5325 }
5326
ata_port_runtime_resume(struct device * dev)5327 static int ata_port_runtime_resume(struct device *dev)
5328 {
5329 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME, false);
5330 return 0;
5331 }
5332
5333 static const struct dev_pm_ops ata_port_pm_ops = {
5334 .suspend = ata_port_pm_suspend,
5335 .resume = ata_port_pm_resume,
5336 .freeze = ata_port_pm_freeze,
5337 .thaw = ata_port_pm_resume,
5338 .poweroff = ata_port_pm_poweroff,
5339 .restore = ata_port_pm_resume,
5340
5341 .runtime_suspend = ata_port_runtime_suspend,
5342 .runtime_resume = ata_port_runtime_resume,
5343 .runtime_idle = ata_port_runtime_idle,
5344 };
5345
5346 /* sas ports don't participate in pm runtime management of ata_ports,
5347 * and need to resume ata devices at the domain level, not the per-port
5348 * level. sas suspend/resume is async to allow parallel port recovery
5349 * since sas has multiple ata_port instances per Scsi_Host.
5350 */
ata_sas_port_suspend(struct ata_port * ap)5351 void ata_sas_port_suspend(struct ata_port *ap)
5352 {
5353 ata_port_suspend(ap, PMSG_SUSPEND, true);
5354 }
5355 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5356
ata_sas_port_resume(struct ata_port * ap)5357 void ata_sas_port_resume(struct ata_port *ap)
5358 {
5359 ata_port_resume(ap, PMSG_RESUME, true);
5360 }
5361 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5362
5363 /**
5364 * ata_host_suspend - suspend host
5365 * @host: host to suspend
5366 * @mesg: PM message
5367 *
5368 * Suspend @host. Actual operation is performed by port suspend.
5369 */
ata_host_suspend(struct ata_host * host,pm_message_t mesg)5370 void ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5371 {
5372 host->dev->power.power_state = mesg;
5373 }
5374 EXPORT_SYMBOL_GPL(ata_host_suspend);
5375
5376 /**
5377 * ata_host_resume - resume host
5378 * @host: host to resume
5379 *
5380 * Resume @host. Actual operation is performed by port resume.
5381 */
ata_host_resume(struct ata_host * host)5382 void ata_host_resume(struct ata_host *host)
5383 {
5384 host->dev->power.power_state = PMSG_ON;
5385 }
5386 EXPORT_SYMBOL_GPL(ata_host_resume);
5387 #endif
5388
5389 const struct device_type ata_port_type = {
5390 .name = ATA_PORT_TYPE_NAME,
5391 #ifdef CONFIG_PM
5392 .pm = &ata_port_pm_ops,
5393 #endif
5394 };
5395
5396 /**
5397 * ata_dev_init - Initialize an ata_device structure
5398 * @dev: Device structure to initialize
5399 *
5400 * Initialize @dev in preparation for probing.
5401 *
5402 * LOCKING:
5403 * Inherited from caller.
5404 */
ata_dev_init(struct ata_device * dev)5405 void ata_dev_init(struct ata_device *dev)
5406 {
5407 struct ata_link *link = ata_dev_phys_link(dev);
5408 struct ata_port *ap = link->ap;
5409 unsigned long flags;
5410
5411 /* SATA spd limit is bound to the attached device, reset together */
5412 link->sata_spd_limit = link->hw_sata_spd_limit;
5413 link->sata_spd = 0;
5414
5415 /* High bits of dev->flags are used to record warm plug
5416 * requests which occur asynchronously. Synchronize using
5417 * host lock.
5418 */
5419 spin_lock_irqsave(ap->lock, flags);
5420 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5421 dev->quirks = 0;
5422 spin_unlock_irqrestore(ap->lock, flags);
5423
5424 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5425 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5426 dev->pio_mask = UINT_MAX;
5427 dev->mwdma_mask = UINT_MAX;
5428 dev->udma_mask = UINT_MAX;
5429 }
5430
5431 /**
5432 * ata_link_init - Initialize an ata_link structure
5433 * @ap: ATA port link is attached to
5434 * @link: Link structure to initialize
5435 * @pmp: Port multiplier port number
5436 *
5437 * Initialize @link.
5438 *
5439 * LOCKING:
5440 * Kernel thread context (may sleep)
5441 */
ata_link_init(struct ata_port * ap,struct ata_link * link,int pmp)5442 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5443 {
5444 int i;
5445
5446 /* clear everything except for devices */
5447 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5448 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5449
5450 link->ap = ap;
5451 link->pmp = pmp;
5452 link->active_tag = ATA_TAG_POISON;
5453 link->hw_sata_spd_limit = UINT_MAX;
5454
5455 /* can't use iterator, ap isn't initialized yet */
5456 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5457 struct ata_device *dev = &link->device[i];
5458
5459 dev->link = link;
5460 dev->devno = dev - link->device;
5461 #ifdef CONFIG_ATA_ACPI
5462 dev->gtf_filter = ata_acpi_gtf_filter;
5463 #endif
5464 ata_dev_init(dev);
5465 }
5466 }
5467
5468 /**
5469 * sata_link_init_spd - Initialize link->sata_spd_limit
5470 * @link: Link to configure sata_spd_limit for
5471 *
5472 * Initialize ``link->[hw_]sata_spd_limit`` to the currently
5473 * configured value.
5474 *
5475 * LOCKING:
5476 * Kernel thread context (may sleep).
5477 *
5478 * RETURNS:
5479 * 0 on success, -errno on failure.
5480 */
sata_link_init_spd(struct ata_link * link)5481 int sata_link_init_spd(struct ata_link *link)
5482 {
5483 u8 spd;
5484 int rc;
5485
5486 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5487 if (rc)
5488 return rc;
5489
5490 spd = (link->saved_scontrol >> 4) & 0xf;
5491 if (spd)
5492 link->hw_sata_spd_limit &= (1 << spd) - 1;
5493
5494 ata_force_link_limits(link);
5495
5496 link->sata_spd_limit = link->hw_sata_spd_limit;
5497
5498 return 0;
5499 }
5500
5501 /**
5502 * ata_port_alloc - allocate and initialize basic ATA port resources
5503 * @host: ATA host this allocated port belongs to
5504 *
5505 * Allocate and initialize basic ATA port resources.
5506 *
5507 * RETURNS:
5508 * Allocate ATA port on success, NULL on failure.
5509 *
5510 * LOCKING:
5511 * Inherited from calling layer (may sleep).
5512 */
ata_port_alloc(struct ata_host * host)5513 struct ata_port *ata_port_alloc(struct ata_host *host)
5514 {
5515 struct ata_port *ap;
5516 int id;
5517
5518 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5519 if (!ap)
5520 return NULL;
5521
5522 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5523 ap->lock = &host->lock;
5524 id = ida_alloc_min(&ata_ida, 1, GFP_KERNEL);
5525 if (id < 0) {
5526 kfree(ap);
5527 return NULL;
5528 }
5529 ap->print_id = id;
5530 ap->host = host;
5531 ap->dev = host->dev;
5532
5533 mutex_init(&ap->scsi_scan_mutex);
5534 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5535 INIT_DELAYED_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5536 INIT_LIST_HEAD(&ap->eh_done_q);
5537 init_waitqueue_head(&ap->eh_wait_q);
5538 init_completion(&ap->park_req_pending);
5539 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5540 TIMER_DEFERRABLE);
5541
5542 ap->cbl = ATA_CBL_NONE;
5543
5544 ata_link_init(ap, &ap->link, 0);
5545
5546 #ifdef ATA_IRQ_TRAP
5547 ap->stats.unhandled_irq = 1;
5548 ap->stats.idle_irq = 1;
5549 #endif
5550 ata_sff_port_init(ap);
5551
5552 ata_force_pflags(ap);
5553
5554 return ap;
5555 }
5556 EXPORT_SYMBOL_GPL(ata_port_alloc);
5557
ata_port_free(struct ata_port * ap)5558 void ata_port_free(struct ata_port *ap)
5559 {
5560 if (!ap)
5561 return;
5562
5563 kfree(ap->pmp_link);
5564 kfree(ap->slave_link);
5565 ida_free(&ata_ida, ap->print_id);
5566 kfree(ap);
5567 }
5568 EXPORT_SYMBOL_GPL(ata_port_free);
5569
ata_devres_release(struct device * gendev,void * res)5570 static void ata_devres_release(struct device *gendev, void *res)
5571 {
5572 struct ata_host *host = dev_get_drvdata(gendev);
5573 int i;
5574
5575 for (i = 0; i < host->n_ports; i++) {
5576 struct ata_port *ap = host->ports[i];
5577
5578 if (!ap)
5579 continue;
5580
5581 if (ap->scsi_host)
5582 scsi_host_put(ap->scsi_host);
5583
5584 }
5585
5586 dev_set_drvdata(gendev, NULL);
5587 ata_host_put(host);
5588 }
5589
ata_host_release(struct kref * kref)5590 static void ata_host_release(struct kref *kref)
5591 {
5592 struct ata_host *host = container_of(kref, struct ata_host, kref);
5593 int i;
5594
5595 for (i = 0; i < host->n_ports; i++) {
5596 ata_port_free(host->ports[i]);
5597 host->ports[i] = NULL;
5598 }
5599 kfree(host);
5600 }
5601
ata_host_get(struct ata_host * host)5602 void ata_host_get(struct ata_host *host)
5603 {
5604 kref_get(&host->kref);
5605 }
5606
ata_host_put(struct ata_host * host)5607 void ata_host_put(struct ata_host *host)
5608 {
5609 kref_put(&host->kref, ata_host_release);
5610 }
5611 EXPORT_SYMBOL_GPL(ata_host_put);
5612
5613 /**
5614 * ata_host_alloc - allocate and init basic ATA host resources
5615 * @dev: generic device this host is associated with
5616 * @n_ports: the number of ATA ports associated with this host
5617 *
5618 * Allocate and initialize basic ATA host resources. LLD calls
5619 * this function to allocate a host, initializes it fully and
5620 * attaches it using ata_host_register().
5621 *
5622 * RETURNS:
5623 * Allocate ATA host on success, NULL on failure.
5624 *
5625 * LOCKING:
5626 * Inherited from calling layer (may sleep).
5627 */
ata_host_alloc(struct device * dev,int n_ports)5628 struct ata_host *ata_host_alloc(struct device *dev, int n_ports)
5629 {
5630 struct ata_host *host;
5631 size_t sz;
5632 int i;
5633 void *dr;
5634
5635 /* alloc a container for our list of ATA ports (buses) */
5636 sz = sizeof(struct ata_host) + n_ports * sizeof(void *);
5637 host = kzalloc(sz, GFP_KERNEL);
5638 if (!host)
5639 return NULL;
5640
5641 if (!devres_open_group(dev, NULL, GFP_KERNEL)) {
5642 kfree(host);
5643 return NULL;
5644 }
5645
5646 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5647 if (!dr) {
5648 kfree(host);
5649 goto err_out;
5650 }
5651
5652 devres_add(dev, dr);
5653 dev_set_drvdata(dev, host);
5654
5655 spin_lock_init(&host->lock);
5656 mutex_init(&host->eh_mutex);
5657 host->dev = dev;
5658 host->n_ports = n_ports;
5659 kref_init(&host->kref);
5660
5661 /* allocate ports bound to this host */
5662 for (i = 0; i < n_ports; i++) {
5663 struct ata_port *ap;
5664
5665 ap = ata_port_alloc(host);
5666 if (!ap)
5667 goto err_out;
5668
5669 ap->port_no = i;
5670 host->ports[i] = ap;
5671 }
5672
5673 devres_remove_group(dev, NULL);
5674 return host;
5675
5676 err_out:
5677 devres_release_group(dev, NULL);
5678 return NULL;
5679 }
5680 EXPORT_SYMBOL_GPL(ata_host_alloc);
5681
5682 /**
5683 * ata_host_alloc_pinfo - alloc host and init with port_info array
5684 * @dev: generic device this host is associated with
5685 * @ppi: array of ATA port_info to initialize host with
5686 * @n_ports: number of ATA ports attached to this host
5687 *
5688 * Allocate ATA host and initialize with info from @ppi. If NULL
5689 * terminated, @ppi may contain fewer entries than @n_ports. The
5690 * last entry will be used for the remaining ports.
5691 *
5692 * RETURNS:
5693 * Allocate ATA host on success, NULL on failure.
5694 *
5695 * LOCKING:
5696 * Inherited from calling layer (may sleep).
5697 */
ata_host_alloc_pinfo(struct device * dev,const struct ata_port_info * const * ppi,int n_ports)5698 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5699 const struct ata_port_info * const * ppi,
5700 int n_ports)
5701 {
5702 const struct ata_port_info *pi = &ata_dummy_port_info;
5703 struct ata_host *host;
5704 int i, j;
5705
5706 host = ata_host_alloc(dev, n_ports);
5707 if (!host)
5708 return NULL;
5709
5710 for (i = 0, j = 0; i < host->n_ports; i++) {
5711 struct ata_port *ap = host->ports[i];
5712
5713 if (ppi[j])
5714 pi = ppi[j++];
5715
5716 ap->pio_mask = pi->pio_mask;
5717 ap->mwdma_mask = pi->mwdma_mask;
5718 ap->udma_mask = pi->udma_mask;
5719 ap->flags |= pi->flags;
5720 ap->link.flags |= pi->link_flags;
5721 ap->ops = pi->port_ops;
5722
5723 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5724 host->ops = pi->port_ops;
5725 }
5726
5727 return host;
5728 }
5729 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5730
ata_host_stop(struct device * gendev,void * res)5731 static void ata_host_stop(struct device *gendev, void *res)
5732 {
5733 struct ata_host *host = dev_get_drvdata(gendev);
5734 int i;
5735
5736 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5737
5738 for (i = 0; i < host->n_ports; i++) {
5739 struct ata_port *ap = host->ports[i];
5740
5741 if (ap->ops->port_stop)
5742 ap->ops->port_stop(ap);
5743 }
5744
5745 if (host->ops->host_stop)
5746 host->ops->host_stop(host);
5747 }
5748
5749 /**
5750 * ata_finalize_port_ops - finalize ata_port_operations
5751 * @ops: ata_port_operations to finalize
5752 *
5753 * An ata_port_operations can inherit from another ops and that
5754 * ops can again inherit from another. This can go on as many
5755 * times as necessary as long as there is no loop in the
5756 * inheritance chain.
5757 *
5758 * Ops tables are finalized when the host is started. NULL or
5759 * unspecified entries are inherited from the closet ancestor
5760 * which has the method and the entry is populated with it.
5761 * After finalization, the ops table directly points to all the
5762 * methods and ->inherits is no longer necessary and cleared.
5763 *
5764 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5765 *
5766 * LOCKING:
5767 * None.
5768 */
ata_finalize_port_ops(struct ata_port_operations * ops)5769 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5770 {
5771 static DEFINE_SPINLOCK(lock);
5772 const struct ata_port_operations *cur;
5773 void **begin = (void **)ops;
5774 void **end = (void **)&ops->inherits;
5775 void **pp;
5776
5777 if (!ops || !ops->inherits)
5778 return;
5779
5780 spin_lock(&lock);
5781
5782 for (cur = ops->inherits; cur; cur = cur->inherits) {
5783 void **inherit = (void **)cur;
5784
5785 for (pp = begin; pp < end; pp++, inherit++)
5786 if (!*pp)
5787 *pp = *inherit;
5788 }
5789
5790 for (pp = begin; pp < end; pp++)
5791 if (IS_ERR(*pp))
5792 *pp = NULL;
5793
5794 ops->inherits = NULL;
5795
5796 spin_unlock(&lock);
5797 }
5798
5799 /**
5800 * ata_host_start - start and freeze ports of an ATA host
5801 * @host: ATA host to start ports for
5802 *
5803 * Start and then freeze ports of @host. Started status is
5804 * recorded in host->flags, so this function can be called
5805 * multiple times. Ports are guaranteed to get started only
5806 * once. If host->ops is not initialized yet, it is set to the
5807 * first non-dummy port ops.
5808 *
5809 * LOCKING:
5810 * Inherited from calling layer (may sleep).
5811 *
5812 * RETURNS:
5813 * 0 if all ports are started successfully, -errno otherwise.
5814 */
ata_host_start(struct ata_host * host)5815 int ata_host_start(struct ata_host *host)
5816 {
5817 int have_stop = 0;
5818 void *start_dr = NULL;
5819 int i, rc;
5820
5821 if (host->flags & ATA_HOST_STARTED)
5822 return 0;
5823
5824 ata_finalize_port_ops(host->ops);
5825
5826 for (i = 0; i < host->n_ports; i++) {
5827 struct ata_port *ap = host->ports[i];
5828
5829 ata_finalize_port_ops(ap->ops);
5830
5831 if (!host->ops && !ata_port_is_dummy(ap))
5832 host->ops = ap->ops;
5833
5834 if (ap->ops->port_stop)
5835 have_stop = 1;
5836 }
5837
5838 if (host->ops && host->ops->host_stop)
5839 have_stop = 1;
5840
5841 if (have_stop) {
5842 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5843 if (!start_dr)
5844 return -ENOMEM;
5845 }
5846
5847 for (i = 0; i < host->n_ports; i++) {
5848 struct ata_port *ap = host->ports[i];
5849
5850 if (ap->ops->port_start) {
5851 rc = ap->ops->port_start(ap);
5852 if (rc) {
5853 if (rc != -ENODEV)
5854 dev_err(host->dev,
5855 "failed to start port %d (errno=%d)\n",
5856 i, rc);
5857 goto err_out;
5858 }
5859 }
5860 ata_eh_freeze_port(ap);
5861 }
5862
5863 if (start_dr)
5864 devres_add(host->dev, start_dr);
5865 host->flags |= ATA_HOST_STARTED;
5866 return 0;
5867
5868 err_out:
5869 while (--i >= 0) {
5870 struct ata_port *ap = host->ports[i];
5871
5872 if (ap->ops->port_stop)
5873 ap->ops->port_stop(ap);
5874 }
5875 devres_free(start_dr);
5876 return rc;
5877 }
5878 EXPORT_SYMBOL_GPL(ata_host_start);
5879
5880 /**
5881 * ata_host_init - Initialize a host struct for sas (ipr, libsas)
5882 * @host: host to initialize
5883 * @dev: device host is attached to
5884 * @ops: port_ops
5885 *
5886 */
ata_host_init(struct ata_host * host,struct device * dev,struct ata_port_operations * ops)5887 void ata_host_init(struct ata_host *host, struct device *dev,
5888 struct ata_port_operations *ops)
5889 {
5890 spin_lock_init(&host->lock);
5891 mutex_init(&host->eh_mutex);
5892 host->n_tags = ATA_MAX_QUEUE;
5893 host->dev = dev;
5894 host->ops = ops;
5895 kref_init(&host->kref);
5896 }
5897 EXPORT_SYMBOL_GPL(ata_host_init);
5898
ata_port_probe(struct ata_port * ap)5899 void ata_port_probe(struct ata_port *ap)
5900 {
5901 struct ata_eh_info *ehi = &ap->link.eh_info;
5902 unsigned long flags;
5903
5904 /* kick EH for boot probing */
5905 spin_lock_irqsave(ap->lock, flags);
5906
5907 ehi->probe_mask |= ATA_ALL_DEVICES;
5908 ehi->action |= ATA_EH_RESET;
5909 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5910
5911 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5912 ap->pflags |= ATA_PFLAG_LOADING;
5913 ata_port_schedule_eh(ap);
5914
5915 spin_unlock_irqrestore(ap->lock, flags);
5916 }
5917 EXPORT_SYMBOL_GPL(ata_port_probe);
5918
async_port_probe(void * data,async_cookie_t cookie)5919 static void async_port_probe(void *data, async_cookie_t cookie)
5920 {
5921 struct ata_port *ap = data;
5922
5923 /*
5924 * If we're not allowed to scan this host in parallel,
5925 * we need to wait until all previous scans have completed
5926 * before going further.
5927 * Jeff Garzik says this is only within a controller, so we
5928 * don't need to wait for port 0, only for later ports.
5929 */
5930 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5931 async_synchronize_cookie(cookie);
5932
5933 ata_port_probe(ap);
5934 ata_port_wait_eh(ap);
5935
5936 /* in order to keep device order, we need to synchronize at this point */
5937 async_synchronize_cookie(cookie);
5938
5939 ata_scsi_scan_host(ap, 1);
5940 }
5941
5942 /**
5943 * ata_host_register - register initialized ATA host
5944 * @host: ATA host to register
5945 * @sht: template for SCSI host
5946 *
5947 * Register initialized ATA host. @host is allocated using
5948 * ata_host_alloc() and fully initialized by LLD. This function
5949 * starts ports, registers @host with ATA and SCSI layers and
5950 * probe registered devices.
5951 *
5952 * LOCKING:
5953 * Inherited from calling layer (may sleep).
5954 *
5955 * RETURNS:
5956 * 0 on success, -errno otherwise.
5957 */
ata_host_register(struct ata_host * host,const struct scsi_host_template * sht)5958 int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht)
5959 {
5960 int i, rc;
5961
5962 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5963
5964 /* host must have been started */
5965 if (!(host->flags & ATA_HOST_STARTED)) {
5966 dev_err(host->dev, "BUG: trying to register unstarted host\n");
5967 WARN_ON(1);
5968 return -EINVAL;
5969 }
5970
5971 /* Create associated sysfs transport objects */
5972 for (i = 0; i < host->n_ports; i++) {
5973 rc = ata_tport_add(host->dev,host->ports[i]);
5974 if (rc) {
5975 goto err_tadd;
5976 }
5977 }
5978
5979 rc = ata_scsi_add_hosts(host, sht);
5980 if (rc)
5981 goto err_tadd;
5982
5983 /* set cable, sata_spd_limit and report */
5984 for (i = 0; i < host->n_ports; i++) {
5985 struct ata_port *ap = host->ports[i];
5986 unsigned int xfer_mask;
5987
5988 /* set SATA cable type if still unset */
5989 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5990 ap->cbl = ATA_CBL_SATA;
5991
5992 /* init sata_spd_limit to the current value */
5993 sata_link_init_spd(&ap->link);
5994 if (ap->slave_link)
5995 sata_link_init_spd(ap->slave_link);
5996
5997 /* print per-port info to dmesg */
5998 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5999 ap->udma_mask);
6000
6001 if (!ata_port_is_dummy(ap)) {
6002 ata_port_info(ap, "%cATA max %s %s\n",
6003 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6004 ata_mode_string(xfer_mask),
6005 ap->link.eh_info.desc);
6006 ata_ehi_clear_desc(&ap->link.eh_info);
6007 } else
6008 ata_port_info(ap, "DUMMY\n");
6009 }
6010
6011 /* perform each probe asynchronously */
6012 for (i = 0; i < host->n_ports; i++) {
6013 struct ata_port *ap = host->ports[i];
6014 ap->cookie = async_schedule(async_port_probe, ap);
6015 }
6016
6017 return 0;
6018
6019 err_tadd:
6020 while (--i >= 0) {
6021 ata_tport_delete(host->ports[i]);
6022 }
6023 return rc;
6024
6025 }
6026 EXPORT_SYMBOL_GPL(ata_host_register);
6027
6028 /**
6029 * ata_host_activate - start host, request IRQ and register it
6030 * @host: target ATA host
6031 * @irq: IRQ to request
6032 * @irq_handler: irq_handler used when requesting IRQ
6033 * @irq_flags: irq_flags used when requesting IRQ
6034 * @sht: scsi_host_template to use when registering the host
6035 *
6036 * After allocating an ATA host and initializing it, most libata
6037 * LLDs perform three steps to activate the host - start host,
6038 * request IRQ and register it. This helper takes necessary
6039 * arguments and performs the three steps in one go.
6040 *
6041 * An invalid IRQ skips the IRQ registration and expects the host to
6042 * have set polling mode on the port. In this case, @irq_handler
6043 * should be NULL.
6044 *
6045 * LOCKING:
6046 * Inherited from calling layer (may sleep).
6047 *
6048 * RETURNS:
6049 * 0 on success, -errno otherwise.
6050 */
ata_host_activate(struct ata_host * host,int irq,irq_handler_t irq_handler,unsigned long irq_flags,const struct scsi_host_template * sht)6051 int ata_host_activate(struct ata_host *host, int irq,
6052 irq_handler_t irq_handler, unsigned long irq_flags,
6053 const struct scsi_host_template *sht)
6054 {
6055 int i, rc;
6056 char *irq_desc;
6057
6058 rc = ata_host_start(host);
6059 if (rc)
6060 return rc;
6061
6062 /* Special case for polling mode */
6063 if (!irq) {
6064 WARN_ON(irq_handler);
6065 return ata_host_register(host, sht);
6066 }
6067
6068 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6069 dev_driver_string(host->dev),
6070 dev_name(host->dev));
6071 if (!irq_desc)
6072 return -ENOMEM;
6073
6074 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6075 irq_desc, host);
6076 if (rc)
6077 return rc;
6078
6079 for (i = 0; i < host->n_ports; i++)
6080 ata_port_desc_misc(host->ports[i], irq);
6081
6082 rc = ata_host_register(host, sht);
6083 /* if failed, just free the IRQ and leave ports alone */
6084 if (rc)
6085 devm_free_irq(host->dev, irq, host);
6086
6087 return rc;
6088 }
6089 EXPORT_SYMBOL_GPL(ata_host_activate);
6090
6091 /**
6092 * ata_dev_free_resources - Free a device resources
6093 * @dev: Target ATA device
6094 *
6095 * Free resources allocated to support a device features.
6096 *
6097 * LOCKING:
6098 * Kernel thread context (may sleep).
6099 */
ata_dev_free_resources(struct ata_device * dev)6100 void ata_dev_free_resources(struct ata_device *dev)
6101 {
6102 if (zpodd_dev_enabled(dev))
6103 zpodd_exit(dev);
6104
6105 ata_dev_cleanup_cdl_resources(dev);
6106 }
6107
6108 /**
6109 * ata_port_detach - Detach ATA port in preparation of device removal
6110 * @ap: ATA port to be detached
6111 *
6112 * Detach all ATA devices and the associated SCSI devices of @ap;
6113 * then, remove the associated SCSI host. @ap is guaranteed to
6114 * be quiescent on return from this function.
6115 *
6116 * LOCKING:
6117 * Kernel thread context (may sleep).
6118 */
ata_port_detach(struct ata_port * ap)6119 static void ata_port_detach(struct ata_port *ap)
6120 {
6121 unsigned long flags;
6122 struct ata_link *link;
6123 struct ata_device *dev;
6124
6125 /* Ensure ata_port probe has completed */
6126 async_synchronize_cookie(ap->cookie + 1);
6127
6128 /* Wait for any ongoing EH */
6129 ata_port_wait_eh(ap);
6130
6131 mutex_lock(&ap->scsi_scan_mutex);
6132 spin_lock_irqsave(ap->lock, flags);
6133
6134 /* Remove scsi devices */
6135 ata_for_each_link(link, ap, HOST_FIRST) {
6136 ata_for_each_dev(dev, link, ALL) {
6137 if (dev->sdev) {
6138 spin_unlock_irqrestore(ap->lock, flags);
6139 scsi_remove_device(dev->sdev);
6140 spin_lock_irqsave(ap->lock, flags);
6141 dev->sdev = NULL;
6142 }
6143 }
6144 }
6145
6146 /* Tell EH to disable all devices */
6147 ap->pflags |= ATA_PFLAG_UNLOADING;
6148 ata_port_schedule_eh(ap);
6149
6150 spin_unlock_irqrestore(ap->lock, flags);
6151 mutex_unlock(&ap->scsi_scan_mutex);
6152
6153 /* wait till EH commits suicide */
6154 ata_port_wait_eh(ap);
6155
6156 /* it better be dead now */
6157 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6158
6159 cancel_delayed_work_sync(&ap->hotplug_task);
6160 cancel_delayed_work_sync(&ap->scsi_rescan_task);
6161
6162 /* Delete port multiplier link transport devices */
6163 if (ap->pmp_link) {
6164 int i;
6165
6166 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6167 ata_tlink_delete(&ap->pmp_link[i]);
6168 }
6169
6170 /* Remove the associated SCSI host */
6171 scsi_remove_host(ap->scsi_host);
6172 ata_tport_delete(ap);
6173 }
6174
6175 /**
6176 * ata_host_detach - Detach all ports of an ATA host
6177 * @host: Host to detach
6178 *
6179 * Detach all ports of @host.
6180 *
6181 * LOCKING:
6182 * Kernel thread context (may sleep).
6183 */
ata_host_detach(struct ata_host * host)6184 void ata_host_detach(struct ata_host *host)
6185 {
6186 int i;
6187
6188 for (i = 0; i < host->n_ports; i++)
6189 ata_port_detach(host->ports[i]);
6190
6191 /* the host is dead now, dissociate ACPI */
6192 ata_acpi_dissociate(host);
6193 }
6194 EXPORT_SYMBOL_GPL(ata_host_detach);
6195
6196 #ifdef CONFIG_PCI
6197
6198 /**
6199 * ata_pci_remove_one - PCI layer callback for device removal
6200 * @pdev: PCI device that was removed
6201 *
6202 * PCI layer indicates to libata via this hook that hot-unplug or
6203 * module unload event has occurred. Detach all ports. Resource
6204 * release is handled via devres.
6205 *
6206 * LOCKING:
6207 * Inherited from PCI layer (may sleep).
6208 */
ata_pci_remove_one(struct pci_dev * pdev)6209 void ata_pci_remove_one(struct pci_dev *pdev)
6210 {
6211 struct ata_host *host = pci_get_drvdata(pdev);
6212
6213 ata_host_detach(host);
6214 }
6215 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6216
ata_pci_shutdown_one(struct pci_dev * pdev)6217 void ata_pci_shutdown_one(struct pci_dev *pdev)
6218 {
6219 struct ata_host *host = pci_get_drvdata(pdev);
6220 int i;
6221
6222 for (i = 0; i < host->n_ports; i++) {
6223 struct ata_port *ap = host->ports[i];
6224
6225 ap->pflags |= ATA_PFLAG_FROZEN;
6226
6227 /* Disable port interrupts */
6228 if (ap->ops->freeze)
6229 ap->ops->freeze(ap);
6230
6231 /* Stop the port DMA engines */
6232 if (ap->ops->port_stop)
6233 ap->ops->port_stop(ap);
6234 }
6235 }
6236 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6237
6238 /* move to PCI subsystem */
pci_test_config_bits(struct pci_dev * pdev,const struct pci_bits * bits)6239 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6240 {
6241 unsigned long tmp = 0;
6242
6243 switch (bits->width) {
6244 case 1: {
6245 u8 tmp8 = 0;
6246 pci_read_config_byte(pdev, bits->reg, &tmp8);
6247 tmp = tmp8;
6248 break;
6249 }
6250 case 2: {
6251 u16 tmp16 = 0;
6252 pci_read_config_word(pdev, bits->reg, &tmp16);
6253 tmp = tmp16;
6254 break;
6255 }
6256 case 4: {
6257 u32 tmp32 = 0;
6258 pci_read_config_dword(pdev, bits->reg, &tmp32);
6259 tmp = tmp32;
6260 break;
6261 }
6262
6263 default:
6264 return -EINVAL;
6265 }
6266
6267 tmp &= bits->mask;
6268
6269 return (tmp == bits->val) ? 1 : 0;
6270 }
6271 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6272
6273 #ifdef CONFIG_PM
ata_pci_device_do_suspend(struct pci_dev * pdev,pm_message_t mesg)6274 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6275 {
6276 pci_save_state(pdev);
6277 pci_disable_device(pdev);
6278
6279 if (mesg.event & PM_EVENT_SLEEP)
6280 pci_set_power_state(pdev, PCI_D3hot);
6281 }
6282 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6283
ata_pci_device_do_resume(struct pci_dev * pdev)6284 int ata_pci_device_do_resume(struct pci_dev *pdev)
6285 {
6286 int rc;
6287
6288 pci_set_power_state(pdev, PCI_D0);
6289 pci_restore_state(pdev);
6290
6291 rc = pcim_enable_device(pdev);
6292 if (rc) {
6293 dev_err(&pdev->dev,
6294 "failed to enable device after resume (%d)\n", rc);
6295 return rc;
6296 }
6297
6298 pci_set_master(pdev);
6299 return 0;
6300 }
6301 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6302
ata_pci_device_suspend(struct pci_dev * pdev,pm_message_t mesg)6303 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6304 {
6305 struct ata_host *host = pci_get_drvdata(pdev);
6306
6307 ata_host_suspend(host, mesg);
6308
6309 ata_pci_device_do_suspend(pdev, mesg);
6310
6311 return 0;
6312 }
6313 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6314
ata_pci_device_resume(struct pci_dev * pdev)6315 int ata_pci_device_resume(struct pci_dev *pdev)
6316 {
6317 struct ata_host *host = pci_get_drvdata(pdev);
6318 int rc;
6319
6320 rc = ata_pci_device_do_resume(pdev);
6321 if (rc == 0)
6322 ata_host_resume(host);
6323 return rc;
6324 }
6325 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6326 #endif /* CONFIG_PM */
6327 #endif /* CONFIG_PCI */
6328
6329 /**
6330 * ata_platform_remove_one - Platform layer callback for device removal
6331 * @pdev: Platform device that was removed
6332 *
6333 * Platform layer indicates to libata via this hook that hot-unplug or
6334 * module unload event has occurred. Detach all ports. Resource
6335 * release is handled via devres.
6336 *
6337 * LOCKING:
6338 * Inherited from platform layer (may sleep).
6339 */
ata_platform_remove_one(struct platform_device * pdev)6340 void ata_platform_remove_one(struct platform_device *pdev)
6341 {
6342 struct ata_host *host = platform_get_drvdata(pdev);
6343
6344 ata_host_detach(host);
6345 }
6346 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6347
6348 #ifdef CONFIG_ATA_FORCE
6349
6350 #define force_cbl(name, flag) \
6351 { #name, .cbl = (flag) }
6352
6353 #define force_spd_limit(spd, val) \
6354 { #spd, .spd_limit = (val) }
6355
6356 #define force_xfer(mode, shift) \
6357 { #mode, .xfer_mask = (1UL << (shift)) }
6358
6359 #define force_lflag_on(name, flags) \
6360 { #name, .lflags_on = (flags) }
6361
6362 #define force_lflag_onoff(name, flags) \
6363 { "no" #name, .lflags_on = (flags) }, \
6364 { #name, .lflags_off = (flags) }
6365
6366 #define force_pflag_on(name, flags) \
6367 { #name, .pflags_on = (flags) }
6368
6369 #define force_quirk_on(name, flag) \
6370 { #name, .quirk_on = (flag) }
6371
6372 #define force_quirk_onoff(name, flag) \
6373 { "no" #name, .quirk_on = (flag) }, \
6374 { #name, .quirk_off = (flag) }
6375
6376 static const struct ata_force_param force_tbl[] __initconst = {
6377 force_cbl(40c, ATA_CBL_PATA40),
6378 force_cbl(80c, ATA_CBL_PATA80),
6379 force_cbl(short40c, ATA_CBL_PATA40_SHORT),
6380 force_cbl(unk, ATA_CBL_PATA_UNK),
6381 force_cbl(ign, ATA_CBL_PATA_IGN),
6382 force_cbl(sata, ATA_CBL_SATA),
6383
6384 force_spd_limit(1.5Gbps, 1),
6385 force_spd_limit(3.0Gbps, 2),
6386
6387 force_xfer(pio0, ATA_SHIFT_PIO + 0),
6388 force_xfer(pio1, ATA_SHIFT_PIO + 1),
6389 force_xfer(pio2, ATA_SHIFT_PIO + 2),
6390 force_xfer(pio3, ATA_SHIFT_PIO + 3),
6391 force_xfer(pio4, ATA_SHIFT_PIO + 4),
6392 force_xfer(pio5, ATA_SHIFT_PIO + 5),
6393 force_xfer(pio6, ATA_SHIFT_PIO + 6),
6394 force_xfer(mwdma0, ATA_SHIFT_MWDMA + 0),
6395 force_xfer(mwdma1, ATA_SHIFT_MWDMA + 1),
6396 force_xfer(mwdma2, ATA_SHIFT_MWDMA + 2),
6397 force_xfer(mwdma3, ATA_SHIFT_MWDMA + 3),
6398 force_xfer(mwdma4, ATA_SHIFT_MWDMA + 4),
6399 force_xfer(udma0, ATA_SHIFT_UDMA + 0),
6400 force_xfer(udma16, ATA_SHIFT_UDMA + 0),
6401 force_xfer(udma/16, ATA_SHIFT_UDMA + 0),
6402 force_xfer(udma1, ATA_SHIFT_UDMA + 1),
6403 force_xfer(udma25, ATA_SHIFT_UDMA + 1),
6404 force_xfer(udma/25, ATA_SHIFT_UDMA + 1),
6405 force_xfer(udma2, ATA_SHIFT_UDMA + 2),
6406 force_xfer(udma33, ATA_SHIFT_UDMA + 2),
6407 force_xfer(udma/33, ATA_SHIFT_UDMA + 2),
6408 force_xfer(udma3, ATA_SHIFT_UDMA + 3),
6409 force_xfer(udma44, ATA_SHIFT_UDMA + 3),
6410 force_xfer(udma/44, ATA_SHIFT_UDMA + 3),
6411 force_xfer(udma4, ATA_SHIFT_UDMA + 4),
6412 force_xfer(udma66, ATA_SHIFT_UDMA + 4),
6413 force_xfer(udma/66, ATA_SHIFT_UDMA + 4),
6414 force_xfer(udma5, ATA_SHIFT_UDMA + 5),
6415 force_xfer(udma100, ATA_SHIFT_UDMA + 5),
6416 force_xfer(udma/100, ATA_SHIFT_UDMA + 5),
6417 force_xfer(udma6, ATA_SHIFT_UDMA + 6),
6418 force_xfer(udma133, ATA_SHIFT_UDMA + 6),
6419 force_xfer(udma/133, ATA_SHIFT_UDMA + 6),
6420 force_xfer(udma7, ATA_SHIFT_UDMA + 7),
6421
6422 force_lflag_on(nohrst, ATA_LFLAG_NO_HRST),
6423 force_lflag_on(nosrst, ATA_LFLAG_NO_SRST),
6424 force_lflag_on(norst, ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST),
6425 force_lflag_on(rstonce, ATA_LFLAG_RST_ONCE),
6426 force_lflag_onoff(dbdelay, ATA_LFLAG_NO_DEBOUNCE_DELAY),
6427
6428 force_pflag_on(external, ATA_PFLAG_EXTERNAL),
6429
6430 force_quirk_onoff(ncq, ATA_QUIRK_NONCQ),
6431 force_quirk_onoff(ncqtrim, ATA_QUIRK_NO_NCQ_TRIM),
6432 force_quirk_onoff(ncqati, ATA_QUIRK_NO_NCQ_ON_ATI),
6433
6434 force_quirk_onoff(trim, ATA_QUIRK_NOTRIM),
6435 force_quirk_on(trim_zero, ATA_QUIRK_ZERO_AFTER_TRIM),
6436 force_quirk_on(max_trim_128m, ATA_QUIRK_MAX_TRIM_128M),
6437
6438 force_quirk_onoff(dma, ATA_QUIRK_NODMA),
6439 force_quirk_on(atapi_dmadir, ATA_QUIRK_ATAPI_DMADIR),
6440 force_quirk_on(atapi_mod16_dma, ATA_QUIRK_ATAPI_MOD16_DMA),
6441
6442 force_quirk_onoff(dmalog, ATA_QUIRK_NO_DMA_LOG),
6443 force_quirk_onoff(iddevlog, ATA_QUIRK_NO_ID_DEV_LOG),
6444 force_quirk_onoff(logdir, ATA_QUIRK_NO_LOG_DIR),
6445
6446 force_quirk_on(max_sec_128, ATA_QUIRK_MAX_SEC_128),
6447 force_quirk_on(max_sec_1024, ATA_QUIRK_MAX_SEC_1024),
6448 force_quirk_on(max_sec_lba48, ATA_QUIRK_MAX_SEC_LBA48),
6449
6450 force_quirk_onoff(lpm, ATA_QUIRK_NOLPM),
6451 force_quirk_onoff(setxfer, ATA_QUIRK_NOSETXFER),
6452 force_quirk_on(dump_id, ATA_QUIRK_DUMP_ID),
6453 force_quirk_onoff(fua, ATA_QUIRK_NO_FUA),
6454
6455 force_quirk_on(disable, ATA_QUIRK_DISABLE),
6456 };
6457
ata_parse_force_one(char ** cur,struct ata_force_ent * force_ent,const char ** reason)6458 static int __init ata_parse_force_one(char **cur,
6459 struct ata_force_ent *force_ent,
6460 const char **reason)
6461 {
6462 char *start = *cur, *p = *cur;
6463 char *id, *val, *endp;
6464 const struct ata_force_param *match_fp = NULL;
6465 int nr_matches = 0, i;
6466
6467 /* find where this param ends and update *cur */
6468 while (*p != '\0' && *p != ',')
6469 p++;
6470
6471 if (*p == '\0')
6472 *cur = p;
6473 else
6474 *cur = p + 1;
6475
6476 *p = '\0';
6477
6478 /* parse */
6479 p = strchr(start, ':');
6480 if (!p) {
6481 val = strstrip(start);
6482 goto parse_val;
6483 }
6484 *p = '\0';
6485
6486 id = strstrip(start);
6487 val = strstrip(p + 1);
6488
6489 /* parse id */
6490 p = strchr(id, '.');
6491 if (p) {
6492 *p++ = '\0';
6493 force_ent->device = simple_strtoul(p, &endp, 10);
6494 if (p == endp || *endp != '\0') {
6495 *reason = "invalid device";
6496 return -EINVAL;
6497 }
6498 }
6499
6500 force_ent->port = simple_strtoul(id, &endp, 10);
6501 if (id == endp || *endp != '\0') {
6502 *reason = "invalid port/link";
6503 return -EINVAL;
6504 }
6505
6506 parse_val:
6507 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6508 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6509 const struct ata_force_param *fp = &force_tbl[i];
6510
6511 if (strncasecmp(val, fp->name, strlen(val)))
6512 continue;
6513
6514 nr_matches++;
6515 match_fp = fp;
6516
6517 if (strcasecmp(val, fp->name) == 0) {
6518 nr_matches = 1;
6519 break;
6520 }
6521 }
6522
6523 if (!nr_matches) {
6524 *reason = "unknown value";
6525 return -EINVAL;
6526 }
6527 if (nr_matches > 1) {
6528 *reason = "ambiguous value";
6529 return -EINVAL;
6530 }
6531
6532 force_ent->param = *match_fp;
6533
6534 return 0;
6535 }
6536
ata_parse_force_param(void)6537 static void __init ata_parse_force_param(void)
6538 {
6539 int idx = 0, size = 1;
6540 int last_port = -1, last_device = -1;
6541 char *p, *cur, *next;
6542
6543 /* Calculate maximum number of params and allocate ata_force_tbl */
6544 for (p = ata_force_param_buf; *p; p++)
6545 if (*p == ',')
6546 size++;
6547
6548 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6549 if (!ata_force_tbl) {
6550 printk(KERN_WARNING "ata: failed to extend force table, "
6551 "libata.force ignored\n");
6552 return;
6553 }
6554
6555 /* parse and populate the table */
6556 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6557 const char *reason = "";
6558 struct ata_force_ent te = { .port = -1, .device = -1 };
6559
6560 next = cur;
6561 if (ata_parse_force_one(&next, &te, &reason)) {
6562 printk(KERN_WARNING "ata: failed to parse force "
6563 "parameter \"%s\" (%s)\n",
6564 cur, reason);
6565 continue;
6566 }
6567
6568 if (te.port == -1) {
6569 te.port = last_port;
6570 te.device = last_device;
6571 }
6572
6573 ata_force_tbl[idx++] = te;
6574
6575 last_port = te.port;
6576 last_device = te.device;
6577 }
6578
6579 ata_force_tbl_size = idx;
6580 }
6581
ata_free_force_param(void)6582 static void ata_free_force_param(void)
6583 {
6584 kfree(ata_force_tbl);
6585 }
6586 #else
ata_parse_force_param(void)6587 static inline void ata_parse_force_param(void) { }
ata_free_force_param(void)6588 static inline void ata_free_force_param(void) { }
6589 #endif
6590
ata_init(void)6591 static int __init ata_init(void)
6592 {
6593 int rc;
6594
6595 ata_parse_force_param();
6596
6597 rc = ata_sff_init();
6598 if (rc) {
6599 ata_free_force_param();
6600 return rc;
6601 }
6602
6603 libata_transport_init();
6604 ata_scsi_transport_template = ata_attach_transport();
6605 if (!ata_scsi_transport_template) {
6606 ata_sff_exit();
6607 rc = -ENOMEM;
6608 goto err_out;
6609 }
6610
6611 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6612 return 0;
6613
6614 err_out:
6615 return rc;
6616 }
6617
ata_exit(void)6618 static void __exit ata_exit(void)
6619 {
6620 ata_release_transport(ata_scsi_transport_template);
6621 libata_transport_exit();
6622 ata_sff_exit();
6623 ata_free_force_param();
6624 }
6625
6626 subsys_initcall(ata_init);
6627 module_exit(ata_exit);
6628
6629 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6630
ata_ratelimit(void)6631 int ata_ratelimit(void)
6632 {
6633 return __ratelimit(&ratelimit);
6634 }
6635 EXPORT_SYMBOL_GPL(ata_ratelimit);
6636
6637 /**
6638 * ata_msleep - ATA EH owner aware msleep
6639 * @ap: ATA port to attribute the sleep to
6640 * @msecs: duration to sleep in milliseconds
6641 *
6642 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6643 * ownership is released before going to sleep and reacquired
6644 * after the sleep is complete. IOW, other ports sharing the
6645 * @ap->host will be allowed to own the EH while this task is
6646 * sleeping.
6647 *
6648 * LOCKING:
6649 * Might sleep.
6650 */
ata_msleep(struct ata_port * ap,unsigned int msecs)6651 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6652 {
6653 bool owns_eh = ap && ap->host->eh_owner == current;
6654
6655 if (owns_eh)
6656 ata_eh_release(ap);
6657
6658 if (msecs < 20) {
6659 unsigned long usecs = msecs * USEC_PER_MSEC;
6660 usleep_range(usecs, usecs + 50);
6661 } else {
6662 msleep(msecs);
6663 }
6664
6665 if (owns_eh)
6666 ata_eh_acquire(ap);
6667 }
6668 EXPORT_SYMBOL_GPL(ata_msleep);
6669
6670 /**
6671 * ata_wait_register - wait until register value changes
6672 * @ap: ATA port to wait register for, can be NULL
6673 * @reg: IO-mapped register
6674 * @mask: Mask to apply to read register value
6675 * @val: Wait condition
6676 * @interval: polling interval in milliseconds
6677 * @timeout: timeout in milliseconds
6678 *
6679 * Waiting for some bits of register to change is a common
6680 * operation for ATA controllers. This function reads 32bit LE
6681 * IO-mapped register @reg and tests for the following condition.
6682 *
6683 * (*@reg & mask) != val
6684 *
6685 * If the condition is met, it returns; otherwise, the process is
6686 * repeated after @interval_msec until timeout.
6687 *
6688 * LOCKING:
6689 * Kernel thread context (may sleep)
6690 *
6691 * RETURNS:
6692 * The final register value.
6693 */
ata_wait_register(struct ata_port * ap,void __iomem * reg,u32 mask,u32 val,unsigned int interval,unsigned int timeout)6694 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6695 unsigned int interval, unsigned int timeout)
6696 {
6697 unsigned long deadline;
6698 u32 tmp;
6699
6700 tmp = ioread32(reg);
6701
6702 /* Calculate timeout _after_ the first read to make sure
6703 * preceding writes reach the controller before starting to
6704 * eat away the timeout.
6705 */
6706 deadline = ata_deadline(jiffies, timeout);
6707
6708 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6709 ata_msleep(ap, interval);
6710 tmp = ioread32(reg);
6711 }
6712
6713 return tmp;
6714 }
6715 EXPORT_SYMBOL_GPL(ata_wait_register);
6716
6717 /*
6718 * Dummy port_ops
6719 */
ata_dummy_qc_issue(struct ata_queued_cmd * qc)6720 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6721 {
6722 return AC_ERR_SYSTEM;
6723 }
6724
ata_dummy_error_handler(struct ata_port * ap)6725 static void ata_dummy_error_handler(struct ata_port *ap)
6726 {
6727 /* truly dummy */
6728 }
6729
6730 struct ata_port_operations ata_dummy_port_ops = {
6731 .qc_issue = ata_dummy_qc_issue,
6732 .error_handler = ata_dummy_error_handler,
6733 .sched_eh = ata_std_sched_eh,
6734 .end_eh = ata_std_end_eh,
6735 };
6736 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6737
6738 const struct ata_port_info ata_dummy_port_info = {
6739 .port_ops = &ata_dummy_port_ops,
6740 };
6741 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6742
6743 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load);
6744 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command);
6745 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup);
6746 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start);
6747 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status);
6748