1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2009 Alexander Motin <mav@FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification, immediately at the beginning of the file.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include <sys/param.h>
30
31 #ifdef _KERNEL
32 #include "opt_scsi.h"
33
34 #include <sys/systm.h>
35 #include <sys/libkern.h>
36 #include <sys/kernel.h>
37 #include <sys/sysctl.h>
38 #else
39 #include <errno.h>
40 #include <stdio.h>
41 #include <stdlib.h>
42 #include <string.h>
43 #ifndef min
44 #define min(a,b) (((a)<(b))?(a):(b))
45 #endif
46 #endif
47
48 #include <cam/cam.h>
49 #include <cam/cam_ccb.h>
50 #include <cam/cam_queue.h>
51 #include <cam/cam_xpt.h>
52 #include <sys/ata.h>
53 #include <cam/ata/ata_all.h>
54 #include <sys/sbuf.h>
55 #include <sys/endian.h>
56
57 int
ata_version(int ver)58 ata_version(int ver)
59 {
60 int bit;
61
62 if (ver == 0xffff)
63 return 0;
64 for (bit = 15; bit >= 0; bit--)
65 if (ver & (1<<bit))
66 return bit;
67 return 0;
68 }
69
70 char *
ata_op_string(struct ata_cmd * cmd)71 ata_op_string(struct ata_cmd *cmd)
72 {
73
74 if (cmd->control & 0x04)
75 return ("SOFT_RESET");
76 switch (cmd->command) {
77 case 0x00:
78 switch (cmd->features) {
79 case 0x00: return ("NOP FLUSHQUEUE");
80 case 0x01: return ("NOP AUTOPOLL");
81 }
82 return ("NOP");
83 case 0x03: return ("CFA_REQUEST_EXTENDED_ERROR");
84 case 0x06:
85 switch (cmd->features) {
86 case 0x01: return ("DSM TRIM");
87 }
88 return "DSM";
89 case 0x07:
90 switch (cmd->features) {
91 case 0x01: return ("DSM_XL TRIM");
92 }
93 return "DSM_XL";
94 case 0x08: return ("DEVICE_RESET");
95 case 0x0b: return ("REQUEST_SENSE_DATA_EXT");
96 case 0x12: return ("GET_PHYSICAL_ELEMENT_STATUS");
97 case 0x20: return ("READ");
98 case 0x24: return ("READ48");
99 case 0x25: return ("READ_DMA48");
100 case 0x26: return ("READ_DMA_QUEUED48");
101 case 0x27: return ("READ_NATIVE_MAX_ADDRESS48");
102 case 0x29: return ("READ_MUL48");
103 case 0x2a: return ("READ_STREAM_DMA48");
104 case 0x2b: return ("READ_STREAM48");
105 case 0x2f: return ("READ_LOG_EXT");
106 case 0x30: return ("WRITE");
107 case 0x34: return ("WRITE48");
108 case 0x35: return ("WRITE_DMA48");
109 case 0x36: return ("WRITE_DMA_QUEUED48");
110 case 0x37: return ("SET_MAX_ADDRESS48");
111 case 0x39: return ("WRITE_MUL48");
112 case 0x3a: return ("WRITE_STREAM_DMA48");
113 case 0x3b: return ("WRITE_STREAM48");
114 case 0x3d: return ("WRITE_DMA_FUA48");
115 case 0x3e: return ("WRITE_DMA_QUEUED_FUA48");
116 case 0x3f: return ("WRITE_LOG_EXT");
117 case 0x40: return ("READ_VERIFY");
118 case 0x42: return ("READ_VERIFY48");
119 case 0x44:
120 switch (cmd->features) {
121 case 0x01: return ("ZERO_EXT TRIM");
122 }
123 return "ZERO_EXT";
124 case 0x45:
125 switch (cmd->features) {
126 case 0x55: return ("WRITE_UNCORRECTABLE48 PSEUDO");
127 case 0xaa: return ("WRITE_UNCORRECTABLE48 FLAGGED");
128 }
129 return "WRITE_UNCORRECTABLE48";
130 case 0x47: return ("READ_LOG_DMA_EXT");
131 case 0x4a: return ("ZAC_MANAGEMENT_IN");
132 case 0x51: return ("CONFIGURE_STREAM");
133 case 0x57: return ("WRITE_LOG_DMA_EXT");
134 case 0x5b: return ("TRUSTED_NON_DATA");
135 case 0x5c: return ("TRUSTED_RECEIVE");
136 case 0x5d: return ("TRUSTED_RECEIVE_DMA");
137 case 0x5e: return ("TRUSTED_SEND");
138 case 0x5f: return ("TRUSTED_SEND_DMA");
139 case 0x60: return ("READ_FPDMA_QUEUED");
140 case 0x61: return ("WRITE_FPDMA_QUEUED");
141 case 0x63:
142 switch (cmd->features & 0xf) {
143 case 0x00: return ("NCQ_NON_DATA ABORT NCQ QUEUE");
144 case 0x01: return ("NCQ_NON_DATA DEADLINE HANDLING");
145 case 0x02: return ("NCQ_NON_DATA HYBRID DEMOTE BY SIZE");
146 case 0x03: return ("NCQ_NON_DATA HYBRID CHANGE BY LBA RANGE");
147 case 0x04: return ("NCQ_NON_DATA HYBRID CONTROL");
148 case 0x05: return ("NCQ_NON_DATA SET FEATURES");
149 /*
150 * XXX KDM need common decoding between NCQ and non-NCQ
151 * versions of SET FEATURES.
152 */
153 case 0x06: return ("NCQ_NON_DATA ZERO EXT");
154 case 0x07: return ("NCQ_NON_DATA ZAC MANAGEMENT OUT");
155 }
156 return ("NCQ_NON_DATA");
157 case 0x64:
158 switch (cmd->sector_count_exp & 0xf) {
159 case 0x00: return ("SEND_FPDMA_QUEUED DATA SET MANAGEMENT");
160 case 0x01: return ("SEND_FPDMA_QUEUED HYBRID EVICT");
161 case 0x02: return ("SEND_FPDMA_QUEUED WRITE LOG DMA EXT");
162 case 0x03: return ("SEND_FPDMA_QUEUED ZAC MANAGEMENT OUT");
163 case 0x04: return ("SEND_FPDMA_QUEUED DATA SET MANAGEMENT XL");
164 }
165 return ("SEND_FPDMA_QUEUED");
166 case 0x65:
167 switch (cmd->sector_count_exp & 0xf) {
168 case 0x01: return ("RECEIVE_FPDMA_QUEUED READ LOG DMA EXT");
169 case 0x02: return ("RECEIVE_FPDMA_QUEUED ZAC MANAGEMENT IN");
170 }
171 return ("RECEIVE_FPDMA_QUEUED");
172 case 0x67:
173 if (cmd->features == 0xec)
174 return ("SEP_ATTN IDENTIFY");
175 switch (cmd->lba_low) {
176 case 0x00: return ("SEP_ATTN READ BUFFER");
177 case 0x02: return ("SEP_ATTN RECEIVE DIAGNOSTIC RESULTS");
178 case 0x80: return ("SEP_ATTN WRITE BUFFER");
179 case 0x82: return ("SEP_ATTN SEND DIAGNOSTIC");
180 }
181 return ("SEP_ATTN");
182 case 0x70: return ("SEEK");
183 case 0x77: return ("SET_DATE_TIME_EXT");
184 case 0x78:
185 switch (cmd->features) {
186 case 0x00: return ("GET_NATIVE_MAX_ADDRESS_EXT");
187 case 0x01: return ("SET_ACCESSIBLE_MAX_ADDRESS_EXT");
188 case 0x02: return ("FREEZE_ACCESSIBLE_MAX_ADDRESS_EXT");
189 }
190 return ("ACCESSIBLE_MAX_ADDRESS_CONFIGURATION");
191 case 0x7C: return ("REMOVE_ELEMENT_AND_TRUNCATE");
192 case 0x87: return ("CFA_TRANSLATE_SECTOR");
193 case 0x90: return ("EXECUTE_DEVICE_DIAGNOSTIC");
194 case 0x92: return ("DOWNLOAD_MICROCODE");
195 case 0x93: return ("DOWNLOAD_MICROCODE_DMA");
196 case 0x9a: return ("ZAC_MANAGEMENT_OUT");
197 case 0xa0: return ("PACKET");
198 case 0xa1: return ("ATAPI_IDENTIFY");
199 case 0xa2: return ("SERVICE");
200 case 0xb0:
201 switch(cmd->features) {
202 case 0xd0: return ("SMART READ ATTR VALUES");
203 case 0xd1: return ("SMART READ ATTR THRESHOLDS");
204 case 0xd3: return ("SMART SAVE ATTR VALUES");
205 case 0xd4: return ("SMART EXECUTE OFFLINE IMMEDIATE");
206 case 0xd5: return ("SMART READ LOG");
207 case 0xd6: return ("SMART WRITE LOG");
208 case 0xd8: return ("SMART ENABLE OPERATION");
209 case 0xd9: return ("SMART DISABLE OPERATION");
210 case 0xda: return ("SMART RETURN STATUS");
211 }
212 return ("SMART");
213 case 0xb1: return ("DEVICE CONFIGURATION");
214 case 0xb2: return ("SET_SECTOR_CONFIGURATION_EXT");
215 case 0xb4:
216 switch(cmd->features) {
217 case 0x00: return ("SANITIZE_STATUS_EXT");
218 case 0x11: return ("CRYPTO_SCRAMBLE_EXT");
219 case 0x12: return ("BLOCK_ERASE_EXT");
220 case 0x14: return ("OVERWRITE_EXT");
221 case 0x20: return ("SANITIZE_FREEZE_LOCK_EXT");
222 case 0x40: return ("SANITIZE_ANTIFREEZE_LOCK_EXT");
223 }
224 return ("SANITIZE_DEVICE");
225 case 0xc0: return ("CFA_ERASE");
226 case 0xc4: return ("READ_MUL");
227 case 0xc5: return ("WRITE_MUL");
228 case 0xc6: return ("SET_MULTI");
229 case 0xc7: return ("READ_DMA_QUEUED");
230 case 0xc8: return ("READ_DMA");
231 case 0xca: return ("WRITE_DMA");
232 case 0xcc: return ("WRITE_DMA_QUEUED");
233 case 0xcd: return ("CFA_WRITE_MULTIPLE_WITHOUT_ERASE");
234 case 0xce: return ("WRITE_MUL_FUA48");
235 case 0xd1: return ("CHECK_MEDIA_CARD_TYPE");
236 case 0xda: return ("GET_MEDIA_STATUS");
237 case 0xde: return ("MEDIA_LOCK");
238 case 0xdf: return ("MEDIA_UNLOCK");
239 case 0xe0: return ("STANDBY_IMMEDIATE");
240 case 0xe1: return ("IDLE_IMMEDIATE");
241 case 0xe2: return ("STANDBY");
242 case 0xe3: return ("IDLE");
243 case 0xe4: return ("READ_BUFFER/PM");
244 case 0xe5: return ("CHECK_POWER_MODE");
245 case 0xe6: return ("SLEEP");
246 case 0xe7: return ("FLUSHCACHE");
247 case 0xe8: return ("WRITE_BUFFER/PM");
248 case 0xe9: return ("READ_BUFFER_DMA");
249 case 0xea: return ("FLUSHCACHE48");
250 case 0xeb: return ("WRITE_BUFFER_DMA");
251 case 0xec: return ("ATA_IDENTIFY");
252 case 0xed: return ("MEDIA_EJECT");
253 case 0xef:
254 /*
255 * XXX KDM need common decoding between NCQ and non-NCQ
256 * versions of SET FEATURES.
257 */
258 switch (cmd->features) {
259 case 0x02: return ("SETFEATURES ENABLE WCACHE");
260 case 0x03: return ("SETFEATURES SET TRANSFER MODE");
261 case 0x05: return ("SETFEATURES ENABLE APM");
262 case 0x06: return ("SETFEATURES ENABLE PUIS");
263 case 0x07: return ("SETFEATURES SPIN-UP");
264 case 0x0b: return ("SETFEATURES ENABLE WRITE READ VERIFY");
265 case 0x0c: return ("SETFEATURES ENABLE DEVICE LIFE CONTROL");
266 case 0x10: return ("SETFEATURES ENABLE SATA FEATURE");
267 case 0x41: return ("SETFEATURES ENABLE FREEFALL CONTROL");
268 case 0x43: return ("SETFEATURES SET MAX HOST INT SECT TIMES");
269 case 0x45: return ("SETFEATURES SET RATE BASIS");
270 case 0x4a: return ("SETFEATURES EXTENDED POWER CONDITIONS");
271 case 0x50: return ("SETFEATURES ADVANCED BACKGROUD OPERATION");
272 case 0x55: return ("SETFEATURES DISABLE RCACHE");
273 case 0x5d: return ("SETFEATURES ENABLE RELIRQ");
274 case 0x5e: return ("SETFEATURES ENABLE SRVIRQ");
275 case 0x62: return ("SETFEATURES LONG PHYS SECT ALIGN ERC");
276 case 0x63: return ("SETFEATURES DSN");
277 case 0x66: return ("SETFEATURES DISABLE DEFAULTS");
278 case 0x82: return ("SETFEATURES DISABLE WCACHE");
279 case 0x85: return ("SETFEATURES DISABLE APM");
280 case 0x86: return ("SETFEATURES DISABLE PUIS");
281 case 0x8b: return ("SETFEATURES DISABLE WRITE READ VERIFY");
282 case 0x8c: return ("SETFEATURES DISABLE DEVICE LIFE CONTROL");
283 case 0x90: return ("SETFEATURES DISABLE SATA FEATURE");
284 case 0xaa: return ("SETFEATURES ENABLE RCACHE");
285 case 0xC1: return ("SETFEATURES DISABLE FREEFALL CONTROL");
286 case 0xC3: return ("SETFEATURES SENSE DATA REPORTING");
287 case 0xC4: return ("SETFEATURES NCQ SENSE DATA RETURN");
288 case 0xCC: return ("SETFEATURES ENABLE DEFAULTS");
289 case 0xdd: return ("SETFEATURES DISABLE RELIRQ");
290 case 0xde: return ("SETFEATURES DISABLE SRVIRQ");
291 }
292 return "SETFEATURES";
293 case 0xf1: return ("SECURITY_SET_PASSWORD");
294 case 0xf2: return ("SECURITY_UNLOCK");
295 case 0xf3: return ("SECURITY_ERASE_PREPARE");
296 case 0xf4: return ("SECURITY_ERASE_UNIT");
297 case 0xf5: return ("SECURITY_FREEZE_LOCK");
298 case 0xf6: return ("SECURITY_DISABLE_PASSWORD");
299 case 0xf8: return ("READ_NATIVE_MAX_ADDRESS");
300 case 0xf9: return ("SET_MAX_ADDRESS");
301 }
302 return "UNKNOWN";
303 }
304
305 char *
ata_cmd_string(struct ata_cmd * cmd,char * cmd_string,size_t len)306 ata_cmd_string(struct ata_cmd *cmd, char *cmd_string, size_t len)
307 {
308 struct sbuf sb;
309 int error;
310
311 if (len == 0)
312 return ("");
313
314 sbuf_new(&sb, cmd_string, len, SBUF_FIXEDLEN);
315 ata_cmd_sbuf(cmd, &sb);
316
317 error = sbuf_finish(&sb);
318 if (error != 0 &&
319 #ifdef _KERNEL
320 error != ENOMEM)
321 #else
322 errno != ENOMEM)
323 #endif
324 return ("");
325
326 return(sbuf_data(&sb));
327 }
328
329 void
ata_cmd_sbuf(struct ata_cmd * cmd,struct sbuf * sb)330 ata_cmd_sbuf(struct ata_cmd *cmd, struct sbuf *sb)
331 {
332 sbuf_printf(sb, "%02x %02x %02x %02x "
333 "%02x %02x %02x %02x %02x %02x %02x %02x",
334 cmd->command, cmd->features,
335 cmd->lba_low, cmd->lba_mid, cmd->lba_high, cmd->device,
336 cmd->lba_low_exp, cmd->lba_mid_exp, cmd->lba_high_exp,
337 cmd->features_exp, cmd->sector_count, cmd->sector_count_exp);
338 }
339
340 char *
ata_res_string(struct ata_res * res,char * res_string,size_t len)341 ata_res_string(struct ata_res *res, char *res_string, size_t len)
342 {
343 struct sbuf sb;
344 int error;
345
346 if (len == 0)
347 return ("");
348
349 sbuf_new(&sb, res_string, len, SBUF_FIXEDLEN);
350 ata_res_sbuf(res, &sb);
351
352 error = sbuf_finish(&sb);
353 if (error != 0 &&
354 #ifdef _KERNEL
355 error != ENOMEM)
356 #else
357 errno != ENOMEM)
358 #endif
359 return ("");
360
361 return(sbuf_data(&sb));
362 }
363
364 int
ata_res_sbuf(struct ata_res * res,struct sbuf * sb)365 ata_res_sbuf(struct ata_res *res, struct sbuf *sb)
366 {
367
368 sbuf_printf(sb, "%02x %02x %02x %02x "
369 "%02x %02x %02x %02x %02x %02x %02x",
370 res->status, res->error,
371 res->lba_low, res->lba_mid, res->lba_high, res->device,
372 res->lba_low_exp, res->lba_mid_exp, res->lba_high_exp,
373 res->sector_count, res->sector_count_exp);
374
375 return (0);
376 }
377
378 /*
379 * ata_command_sbuf() returns 0 for success and -1 for failure.
380 */
381 int
ata_command_sbuf(struct ccb_ataio * ataio,struct sbuf * sb)382 ata_command_sbuf(struct ccb_ataio *ataio, struct sbuf *sb)
383 {
384
385 sbuf_printf(sb, "%s. ACB: ",
386 ata_op_string(&ataio->cmd));
387 ata_cmd_sbuf(&ataio->cmd, sb);
388
389 return(0);
390 }
391
392 /*
393 * ata_status_abuf() returns 0 for success and -1 for failure.
394 */
395 int
ata_status_sbuf(struct ccb_ataio * ataio,struct sbuf * sb)396 ata_status_sbuf(struct ccb_ataio *ataio, struct sbuf *sb)
397 {
398
399 sbuf_printf(sb, "ATA status: %02x (%s%s%s%s%s%s%s%s)",
400 ataio->res.status,
401 (ataio->res.status & 0x80) ? "BSY " : "",
402 (ataio->res.status & 0x40) ? "DRDY " : "",
403 (ataio->res.status & 0x20) ? "DF " : "",
404 (ataio->res.status & 0x10) ? "SERV " : "",
405 (ataio->res.status & 0x08) ? "DRQ " : "",
406 (ataio->res.status & 0x04) ? "CORR " : "",
407 (ataio->res.status & 0x02) ? "IDX " : "",
408 (ataio->res.status & 0x01) ? "ERR" : "");
409 if (ataio->res.status & 1) {
410 sbuf_printf(sb, ", error: %02x (%s%s%s%s%s%s%s%s)",
411 ataio->res.error,
412 (ataio->res.error & 0x80) ? "ICRC " : "",
413 (ataio->res.error & 0x40) ? "UNC " : "",
414 (ataio->res.error & 0x20) ? "MC " : "",
415 (ataio->res.error & 0x10) ? "IDNF " : "",
416 (ataio->res.error & 0x08) ? "MCR " : "",
417 (ataio->res.error & 0x04) ? "ABRT " : "",
418 (ataio->res.error & 0x02) ? "NM " : "",
419 (ataio->res.error & 0x01) ? "ILI" : "");
420 }
421
422 return(0);
423 }
424
425 void
ata_print_ident(struct ata_params * ident_data)426 ata_print_ident(struct ata_params *ident_data)
427 {
428 const char *proto;
429 char ata[12], sata[12];
430
431 ata_print_ident_short(ident_data);
432
433 proto = (ident_data->config == ATA_PROTO_CFA) ? "CFA" :
434 (ident_data->config & ATA_PROTO_ATAPI) ? "ATAPI" : "ATA";
435 if (ata_version(ident_data->version_major) == 0) {
436 snprintf(ata, sizeof(ata), "%s", proto);
437 } else if (ata_version(ident_data->version_major) <= 7) {
438 snprintf(ata, sizeof(ata), "%s-%d", proto,
439 ata_version(ident_data->version_major));
440 } else if (ata_version(ident_data->version_major) == 8) {
441 snprintf(ata, sizeof(ata), "%s8-ACS", proto);
442 } else {
443 snprintf(ata, sizeof(ata), "ACS-%d %s",
444 ata_version(ident_data->version_major) - 7, proto);
445 }
446 if (ident_data->satacapabilities && ident_data->satacapabilities != 0xffff) {
447 if (ident_data->satacapabilities & ATA_SATA_GEN3)
448 snprintf(sata, sizeof(sata), " SATA 3.x");
449 else if (ident_data->satacapabilities & ATA_SATA_GEN2)
450 snprintf(sata, sizeof(sata), " SATA 2.x");
451 else if (ident_data->satacapabilities & ATA_SATA_GEN1)
452 snprintf(sata, sizeof(sata), " SATA 1.x");
453 else
454 snprintf(sata, sizeof(sata), " SATA");
455 } else
456 sata[0] = 0;
457 printf(" %s%s device\n", ata, sata);
458 }
459
460 void
ata_print_ident_sbuf(struct ata_params * ident_data,struct sbuf * sb)461 ata_print_ident_sbuf(struct ata_params *ident_data, struct sbuf *sb)
462 {
463 const char *proto, *sata;
464 int version;
465
466 ata_print_ident_short_sbuf(ident_data, sb);
467 sbuf_putc(sb, ' ');
468
469 proto = (ident_data->config == ATA_PROTO_CFA) ? "CFA" :
470 (ident_data->config & ATA_PROTO_ATAPI) ? "ATAPI" : "ATA";
471 version = ata_version(ident_data->version_major);
472
473 switch (version) {
474 case 0:
475 sbuf_printf(sb, "%s", proto);
476 break;
477 case 1:
478 case 2:
479 case 3:
480 case 4:
481 case 5:
482 case 6:
483 case 7:
484 sbuf_printf(sb, "%s-%d", proto, version);
485 break;
486 case 8:
487 sbuf_printf(sb, "%s8-ACS", proto);
488 break;
489 default:
490 sbuf_printf(sb, "ACS-%d %s", version - 7, proto);
491 break;
492 }
493
494 if (ident_data->satacapabilities && ident_data->satacapabilities != 0xffff) {
495 if (ident_data->satacapabilities & ATA_SATA_GEN3)
496 sata = " SATA 3.x";
497 else if (ident_data->satacapabilities & ATA_SATA_GEN2)
498 sata = " SATA 2.x";
499 else if (ident_data->satacapabilities & ATA_SATA_GEN1)
500 sata = " SATA 1.x";
501 else
502 sata = " SATA";
503 } else
504 sata = "";
505 sbuf_printf(sb, "%s device\n", sata);
506 }
507
508 void
ata_print_ident_short(struct ata_params * ident_data)509 ata_print_ident_short(struct ata_params *ident_data)
510 {
511 char product[48], revision[16];
512
513 cam_strvis(product, ident_data->model, sizeof(ident_data->model),
514 sizeof(product));
515 cam_strvis(revision, ident_data->revision, sizeof(ident_data->revision),
516 sizeof(revision));
517 printf("<%s %s>", product, revision);
518 }
519
520 void
ata_print_ident_short_sbuf(struct ata_params * ident_data,struct sbuf * sb)521 ata_print_ident_short_sbuf(struct ata_params *ident_data, struct sbuf *sb)
522 {
523
524 sbuf_putc(sb, '<');
525 cam_strvis_sbuf(sb, ident_data->model, sizeof(ident_data->model), 0);
526 sbuf_putc(sb, ' ');
527 cam_strvis_sbuf(sb, ident_data->revision, sizeof(ident_data->revision), 0);
528 sbuf_putc(sb, '>');
529 }
530
531 void
semb_print_ident(struct sep_identify_data * ident_data)532 semb_print_ident(struct sep_identify_data *ident_data)
533 {
534 char in[7], ins[5];
535
536 semb_print_ident_short(ident_data);
537 cam_strvis(in, ident_data->interface_id, 6, sizeof(in));
538 cam_strvis(ins, ident_data->interface_rev, 4, sizeof(ins));
539 printf(" SEMB %s %s device\n", in, ins);
540 }
541
542 void
semb_print_ident_sbuf(struct sep_identify_data * ident_data,struct sbuf * sb)543 semb_print_ident_sbuf(struct sep_identify_data *ident_data, struct sbuf *sb)
544 {
545
546 semb_print_ident_short_sbuf(ident_data, sb);
547
548 sbuf_cat(sb, " SEMB ");
549 cam_strvis_sbuf(sb, ident_data->interface_id, 6, 0);
550 sbuf_putc(sb, ' ');
551 cam_strvis_sbuf(sb, ident_data->interface_rev, 4, 0);
552 sbuf_cat(sb, " device\n");
553 }
554
555 void
semb_print_ident_short(struct sep_identify_data * ident_data)556 semb_print_ident_short(struct sep_identify_data *ident_data)
557 {
558 char vendor[9], product[17], revision[5], fw[5];
559
560 cam_strvis(vendor, ident_data->vendor_id, 8, sizeof(vendor));
561 cam_strvis(product, ident_data->product_id, 16, sizeof(product));
562 cam_strvis(revision, ident_data->product_rev, 4, sizeof(revision));
563 cam_strvis(fw, ident_data->firmware_rev, 4, sizeof(fw));
564 printf("<%s %s %s %s>", vendor, product, revision, fw);
565 }
566
567 void
semb_print_ident_short_sbuf(struct sep_identify_data * ident_data,struct sbuf * sb)568 semb_print_ident_short_sbuf(struct sep_identify_data *ident_data, struct sbuf *sb)
569 {
570
571 sbuf_putc(sb, '<');
572 cam_strvis_sbuf(sb, ident_data->vendor_id, 8, 0);
573 sbuf_putc(sb, ' ');
574 cam_strvis_sbuf(sb, ident_data->product_id, 16, 0);
575 sbuf_putc(sb, ' ');
576 cam_strvis_sbuf(sb, ident_data->product_rev, 4, 0);
577 sbuf_putc(sb, ' ');
578 cam_strvis_sbuf(sb, ident_data->firmware_rev, 4, 0);
579 sbuf_putc(sb, '>');
580 }
581
582 uint32_t
ata_logical_sector_size(struct ata_params * ident_data)583 ata_logical_sector_size(struct ata_params *ident_data)
584 {
585 if ((ident_data->pss & ATA_PSS_VALID_MASK) == ATA_PSS_VALID_VALUE &&
586 (ident_data->pss & ATA_PSS_LSSABOVE512)) {
587 return (((uint32_t)ident_data->lss_1 |
588 ((uint32_t)ident_data->lss_2 << 16)) * 2);
589 }
590 return (512);
591 }
592
593 uint64_t
ata_physical_sector_size(struct ata_params * ident_data)594 ata_physical_sector_size(struct ata_params *ident_data)
595 {
596 if ((ident_data->pss & ATA_PSS_VALID_MASK) == ATA_PSS_VALID_VALUE) {
597 if (ident_data->pss & ATA_PSS_MULTLS) {
598 return ((uint64_t)ata_logical_sector_size(ident_data) *
599 (1 << (ident_data->pss & ATA_PSS_LSPPS)));
600 } else {
601 return (uint64_t)ata_logical_sector_size(ident_data);
602 }
603 }
604 return (512);
605 }
606
607 uint64_t
ata_logical_sector_offset(struct ata_params * ident_data)608 ata_logical_sector_offset(struct ata_params *ident_data)
609 {
610 if ((ident_data->lsalign & 0xc000) == 0x4000) {
611 return ((uint64_t)ata_logical_sector_size(ident_data) *
612 (ident_data->lsalign & 0x3fff));
613 }
614 return (0);
615 }
616
617 void
ata_28bit_cmd(struct ccb_ataio * ataio,uint8_t cmd,uint8_t features,uint32_t lba,uint8_t sector_count)618 ata_28bit_cmd(struct ccb_ataio *ataio, uint8_t cmd, uint8_t features,
619 uint32_t lba, uint8_t sector_count)
620 {
621 bzero(&ataio->cmd, sizeof(ataio->cmd));
622 ataio->cmd.flags = 0;
623 if (cmd == ATA_READ_DMA ||
624 cmd == ATA_READ_DMA_QUEUED ||
625 cmd == ATA_WRITE_DMA ||
626 cmd == ATA_WRITE_DMA_QUEUED ||
627 cmd == ATA_TRUSTED_RECEIVE_DMA ||
628 cmd == ATA_TRUSTED_SEND_DMA ||
629 cmd == ATA_DOWNLOAD_MICROCODE_DMA ||
630 cmd == ATA_READ_BUFFER_DMA ||
631 cmd == ATA_WRITE_BUFFER_DMA)
632 ataio->cmd.flags |= CAM_ATAIO_DMA;
633 ataio->cmd.command = cmd;
634 ataio->cmd.features = features;
635 ataio->cmd.lba_low = lba;
636 ataio->cmd.lba_mid = lba >> 8;
637 ataio->cmd.lba_high = lba >> 16;
638 ataio->cmd.device = ATA_DEV_LBA | ((lba >> 24) & 0x0f);
639 ataio->cmd.sector_count = sector_count;
640 }
641
642 void
ata_48bit_cmd(struct ccb_ataio * ataio,uint8_t cmd,uint16_t features,uint64_t lba,uint16_t sector_count)643 ata_48bit_cmd(struct ccb_ataio *ataio, uint8_t cmd, uint16_t features,
644 uint64_t lba, uint16_t sector_count)
645 {
646
647 ataio->cmd.flags = CAM_ATAIO_48BIT;
648 if (cmd == ATA_READ_DMA48 ||
649 cmd == ATA_READ_DMA_QUEUED48 ||
650 cmd == ATA_READ_STREAM_DMA48 ||
651 cmd == ATA_WRITE_DMA48 ||
652 cmd == ATA_WRITE_DMA_FUA48 ||
653 cmd == ATA_WRITE_DMA_QUEUED48 ||
654 cmd == ATA_WRITE_DMA_QUEUED_FUA48 ||
655 cmd == ATA_WRITE_STREAM_DMA48 ||
656 cmd == ATA_DATA_SET_MANAGEMENT ||
657 cmd == ATA_READ_LOG_DMA_EXT ||
658 cmd == ATA_WRITE_LOG_DMA_EXT)
659 ataio->cmd.flags |= CAM_ATAIO_DMA;
660 ataio->cmd.command = cmd;
661 ataio->cmd.features = features;
662 ataio->cmd.lba_low = lba;
663 ataio->cmd.lba_mid = lba >> 8;
664 ataio->cmd.lba_high = lba >> 16;
665 ataio->cmd.device = ATA_DEV_LBA;
666 ataio->cmd.lba_low_exp = lba >> 24;
667 ataio->cmd.lba_mid_exp = lba >> 32;
668 ataio->cmd.lba_high_exp = lba >> 40;
669 ataio->cmd.features_exp = features >> 8;
670 ataio->cmd.sector_count = sector_count;
671 ataio->cmd.sector_count_exp = sector_count >> 8;
672 ataio->cmd.control = 0;
673 }
674
675 void
ata_ncq_cmd(struct ccb_ataio * ataio,uint8_t cmd,uint64_t lba,uint16_t sector_count)676 ata_ncq_cmd(struct ccb_ataio *ataio, uint8_t cmd,
677 uint64_t lba, uint16_t sector_count)
678 {
679
680 ataio->cmd.flags = CAM_ATAIO_48BIT | CAM_ATAIO_FPDMA;
681 ataio->cmd.command = cmd;
682 ataio->cmd.features = sector_count;
683 ataio->cmd.lba_low = lba;
684 ataio->cmd.lba_mid = lba >> 8;
685 ataio->cmd.lba_high = lba >> 16;
686 ataio->cmd.device = ATA_DEV_LBA;
687 ataio->cmd.lba_low_exp = lba >> 24;
688 ataio->cmd.lba_mid_exp = lba >> 32;
689 ataio->cmd.lba_high_exp = lba >> 40;
690 ataio->cmd.features_exp = sector_count >> 8;
691 ataio->cmd.sector_count = 0;
692 ataio->cmd.sector_count_exp = 0;
693 ataio->cmd.control = 0;
694 }
695
696 void
ata_reset_cmd(struct ccb_ataio * ataio)697 ata_reset_cmd(struct ccb_ataio *ataio)
698 {
699 bzero(&ataio->cmd, sizeof(ataio->cmd));
700 ataio->cmd.flags = CAM_ATAIO_CONTROL | CAM_ATAIO_NEEDRESULT;
701 ataio->cmd.control = 0x04;
702 }
703
704 void
ata_pm_read_cmd(struct ccb_ataio * ataio,int reg,int port)705 ata_pm_read_cmd(struct ccb_ataio *ataio, int reg, int port)
706 {
707 bzero(&ataio->cmd, sizeof(ataio->cmd));
708 ataio->cmd.flags = CAM_ATAIO_NEEDRESULT;
709 ataio->cmd.command = ATA_READ_PM;
710 ataio->cmd.features = reg;
711 ataio->cmd.device = port & 0x0f;
712 }
713
714 void
ata_pm_write_cmd(struct ccb_ataio * ataio,int reg,int port,uint32_t val)715 ata_pm_write_cmd(struct ccb_ataio *ataio, int reg, int port, uint32_t val)
716 {
717 bzero(&ataio->cmd, sizeof(ataio->cmd));
718 ataio->cmd.flags = 0;
719 ataio->cmd.command = ATA_WRITE_PM;
720 ataio->cmd.features = reg;
721 ataio->cmd.sector_count = val;
722 ataio->cmd.lba_low = val >> 8;
723 ataio->cmd.lba_mid = val >> 16;
724 ataio->cmd.lba_high = val >> 24;
725 ataio->cmd.device = port & 0x0f;
726 }
727
728 void
ata_read_log(struct ccb_ataio * ataio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint32_t log_address,uint32_t page_number,uint16_t block_count,uint32_t protocol,uint8_t * data_ptr,uint32_t dxfer_len,uint32_t timeout)729 ata_read_log(struct ccb_ataio *ataio, uint32_t retries,
730 void (*cbfcnp)(struct cam_periph *, union ccb *),
731 uint32_t log_address, uint32_t page_number, uint16_t block_count,
732 uint32_t protocol, uint8_t *data_ptr, uint32_t dxfer_len,
733 uint32_t timeout)
734 {
735 uint64_t lba;
736
737 cam_fill_ataio(ataio,
738 /*retries*/ 1,
739 /*cbfcnp*/ cbfcnp,
740 /*flags*/ CAM_DIR_IN,
741 /*tag_action*/ 0,
742 /*data_ptr*/ data_ptr,
743 /*dxfer_len*/ dxfer_len,
744 /*timeout*/ timeout);
745
746 lba = (((uint64_t)page_number & 0xff00) << 32) |
747 ((page_number & 0x00ff) << 8) |
748 (log_address & 0xff);
749
750 ata_48bit_cmd(ataio,
751 /*cmd*/ (protocol & CAM_ATAIO_DMA) ? ATA_READ_LOG_DMA_EXT :
752 ATA_READ_LOG_EXT,
753 /*features*/ 0,
754 /*lba*/ lba,
755 /*sector_count*/ block_count);
756 }
757
758 void
ata_bswap(int8_t * buf,int len)759 ata_bswap(int8_t *buf, int len)
760 {
761 uint16_t *ptr = (uint16_t*)(buf + len);
762
763 while (--ptr >= (uint16_t*)buf)
764 *ptr = be16toh(*ptr);
765 }
766
767 void
ata_btrim(int8_t * buf,int len)768 ata_btrim(int8_t *buf, int len)
769 {
770 int8_t *ptr;
771
772 for (ptr = buf; ptr < buf+len; ++ptr)
773 if (!*ptr || *ptr == '_')
774 *ptr = ' ';
775 for (ptr = buf + len - 1; ptr >= buf && *ptr == ' '; --ptr)
776 *ptr = 0;
777 }
778
779 void
ata_bpack(int8_t * src,int8_t * dst,int len)780 ata_bpack(int8_t *src, int8_t *dst, int len)
781 {
782 int i, j, blank;
783
784 for (i = j = blank = 0 ; i < len; i++) {
785 if (blank && src[i] == ' ') continue;
786 if (blank && src[i] != ' ') {
787 dst[j++] = src[i];
788 blank = 0;
789 continue;
790 }
791 if (src[i] == ' ') {
792 blank = 1;
793 if (i == 0)
794 continue;
795 }
796 dst[j++] = src[i];
797 }
798 while (j < len)
799 dst[j++] = 0x00;
800 }
801
802 int
ata_max_pmode(struct ata_params * ap)803 ata_max_pmode(struct ata_params *ap)
804 {
805 if (ap->atavalid & ATA_FLAG_64_70) {
806 if (ap->apiomodes & 0x02)
807 return ATA_PIO4;
808 if (ap->apiomodes & 0x01)
809 return ATA_PIO3;
810 }
811 if (ap->mwdmamodes & 0x04)
812 return ATA_PIO4;
813 if (ap->mwdmamodes & 0x02)
814 return ATA_PIO3;
815 if (ap->mwdmamodes & 0x01)
816 return ATA_PIO2;
817 if ((ap->retired_piomode & ATA_RETIRED_PIO_MASK) == 0x200)
818 return ATA_PIO2;
819 if ((ap->retired_piomode & ATA_RETIRED_PIO_MASK) == 0x100)
820 return ATA_PIO1;
821 if ((ap->retired_piomode & ATA_RETIRED_PIO_MASK) == 0x000)
822 return ATA_PIO0;
823 return ATA_PIO0;
824 }
825
826 int
ata_max_wmode(struct ata_params * ap)827 ata_max_wmode(struct ata_params *ap)
828 {
829 if (ap->mwdmamodes & 0x04)
830 return ATA_WDMA2;
831 if (ap->mwdmamodes & 0x02)
832 return ATA_WDMA1;
833 if (ap->mwdmamodes & 0x01)
834 return ATA_WDMA0;
835 return -1;
836 }
837
838 int
ata_max_umode(struct ata_params * ap)839 ata_max_umode(struct ata_params *ap)
840 {
841 if (ap->atavalid & ATA_FLAG_88) {
842 if (ap->udmamodes & 0x40)
843 return ATA_UDMA6;
844 if (ap->udmamodes & 0x20)
845 return ATA_UDMA5;
846 if (ap->udmamodes & 0x10)
847 return ATA_UDMA4;
848 if (ap->udmamodes & 0x08)
849 return ATA_UDMA3;
850 if (ap->udmamodes & 0x04)
851 return ATA_UDMA2;
852 if (ap->udmamodes & 0x02)
853 return ATA_UDMA1;
854 if (ap->udmamodes & 0x01)
855 return ATA_UDMA0;
856 }
857 return -1;
858 }
859
860 int
ata_max_mode(struct ata_params * ap,int maxmode)861 ata_max_mode(struct ata_params *ap, int maxmode)
862 {
863
864 if (maxmode == 0)
865 maxmode = ATA_DMA_MAX;
866 if (maxmode >= ATA_UDMA0 && ata_max_umode(ap) > 0)
867 return (min(maxmode, ata_max_umode(ap)));
868 if (maxmode >= ATA_WDMA0 && ata_max_wmode(ap) > 0)
869 return (min(maxmode, ata_max_wmode(ap)));
870 return (min(maxmode, ata_max_pmode(ap)));
871 }
872
873 char *
ata_mode2string(int mode)874 ata_mode2string(int mode)
875 {
876 switch (mode) {
877 case -1: return "UNSUPPORTED";
878 case 0: return "NONE";
879 case ATA_PIO0: return "PIO0";
880 case ATA_PIO1: return "PIO1";
881 case ATA_PIO2: return "PIO2";
882 case ATA_PIO3: return "PIO3";
883 case ATA_PIO4: return "PIO4";
884 case ATA_WDMA0: return "WDMA0";
885 case ATA_WDMA1: return "WDMA1";
886 case ATA_WDMA2: return "WDMA2";
887 case ATA_UDMA0: return "UDMA0";
888 case ATA_UDMA1: return "UDMA1";
889 case ATA_UDMA2: return "UDMA2";
890 case ATA_UDMA3: return "UDMA3";
891 case ATA_UDMA4: return "UDMA4";
892 case ATA_UDMA5: return "UDMA5";
893 case ATA_UDMA6: return "UDMA6";
894 default:
895 if (mode & ATA_DMA_MASK)
896 return "BIOSDMA";
897 else
898 return "BIOSPIO";
899 }
900 }
901
902 int
ata_string2mode(char * str)903 ata_string2mode(char *str)
904 {
905 if (!strcasecmp(str, "PIO0")) return (ATA_PIO0);
906 if (!strcasecmp(str, "PIO1")) return (ATA_PIO1);
907 if (!strcasecmp(str, "PIO2")) return (ATA_PIO2);
908 if (!strcasecmp(str, "PIO3")) return (ATA_PIO3);
909 if (!strcasecmp(str, "PIO4")) return (ATA_PIO4);
910 if (!strcasecmp(str, "WDMA0")) return (ATA_WDMA0);
911 if (!strcasecmp(str, "WDMA1")) return (ATA_WDMA1);
912 if (!strcasecmp(str, "WDMA2")) return (ATA_WDMA2);
913 if (!strcasecmp(str, "UDMA0")) return (ATA_UDMA0);
914 if (!strcasecmp(str, "UDMA16")) return (ATA_UDMA0);
915 if (!strcasecmp(str, "UDMA1")) return (ATA_UDMA1);
916 if (!strcasecmp(str, "UDMA25")) return (ATA_UDMA1);
917 if (!strcasecmp(str, "UDMA2")) return (ATA_UDMA2);
918 if (!strcasecmp(str, "UDMA33")) return (ATA_UDMA2);
919 if (!strcasecmp(str, "UDMA3")) return (ATA_UDMA3);
920 if (!strcasecmp(str, "UDMA44")) return (ATA_UDMA3);
921 if (!strcasecmp(str, "UDMA4")) return (ATA_UDMA4);
922 if (!strcasecmp(str, "UDMA66")) return (ATA_UDMA4);
923 if (!strcasecmp(str, "UDMA5")) return (ATA_UDMA5);
924 if (!strcasecmp(str, "UDMA100")) return (ATA_UDMA5);
925 if (!strcasecmp(str, "UDMA6")) return (ATA_UDMA6);
926 if (!strcasecmp(str, "UDMA133")) return (ATA_UDMA6);
927 return (-1);
928 }
929
930 u_int
ata_mode2speed(int mode)931 ata_mode2speed(int mode)
932 {
933 switch (mode) {
934 case ATA_PIO0:
935 default:
936 return (3300);
937 case ATA_PIO1:
938 return (5200);
939 case ATA_PIO2:
940 return (8300);
941 case ATA_PIO3:
942 return (11100);
943 case ATA_PIO4:
944 return (16700);
945 case ATA_WDMA0:
946 return (4200);
947 case ATA_WDMA1:
948 return (13300);
949 case ATA_WDMA2:
950 return (16700);
951 case ATA_UDMA0:
952 return (16700);
953 case ATA_UDMA1:
954 return (25000);
955 case ATA_UDMA2:
956 return (33300);
957 case ATA_UDMA3:
958 return (44400);
959 case ATA_UDMA4:
960 return (66700);
961 case ATA_UDMA5:
962 return (100000);
963 case ATA_UDMA6:
964 return (133000);
965 }
966 }
967
968 u_int
ata_revision2speed(int revision)969 ata_revision2speed(int revision)
970 {
971 switch (revision) {
972 case 1:
973 default:
974 return (150000);
975 case 2:
976 return (300000);
977 case 3:
978 return (600000);
979 }
980 }
981
982 int
ata_speed2revision(u_int speed)983 ata_speed2revision(u_int speed)
984 {
985 switch (speed) {
986 case 0:
987 return (0);
988 case 150000:
989 return (1);
990 case 300000:
991 return (2);
992 case 600000:
993 return (3);
994 default:
995 return (-1);
996 }
997 }
998
999 int
ata_identify_match(caddr_t identbuffer,caddr_t table_entry)1000 ata_identify_match(caddr_t identbuffer, caddr_t table_entry)
1001 {
1002 struct scsi_inquiry_pattern *entry;
1003 struct ata_params *ident;
1004
1005 entry = (struct scsi_inquiry_pattern *)table_entry;
1006 ident = (struct ata_params *)identbuffer;
1007
1008 if ((cam_strmatch(ident->model, entry->product,
1009 sizeof(ident->model)) == 0)
1010 && (cam_strmatch(ident->revision, entry->revision,
1011 sizeof(ident->revision)) == 0)) {
1012 return (0);
1013 }
1014 return (-1);
1015 }
1016
1017 int
ata_static_identify_match(caddr_t identbuffer,caddr_t table_entry)1018 ata_static_identify_match(caddr_t identbuffer, caddr_t table_entry)
1019 {
1020 struct scsi_static_inquiry_pattern *entry;
1021 struct ata_params *ident;
1022
1023 entry = (struct scsi_static_inquiry_pattern *)table_entry;
1024 ident = (struct ata_params *)identbuffer;
1025
1026 if ((cam_strmatch(ident->model, entry->product,
1027 sizeof(ident->model)) == 0)
1028 && (cam_strmatch(ident->revision, entry->revision,
1029 sizeof(ident->revision)) == 0)) {
1030 return (0);
1031 }
1032 return (-1);
1033 }
1034
1035 void
semb_receive_diagnostic_results(struct ccb_ataio * ataio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,int pcv,uint8_t page_code,uint8_t * data_ptr,uint16_t length,uint32_t timeout)1036 semb_receive_diagnostic_results(struct ccb_ataio *ataio,
1037 uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb*),
1038 uint8_t tag_action, int pcv, uint8_t page_code,
1039 uint8_t *data_ptr, uint16_t length, uint32_t timeout)
1040 {
1041
1042 length = min(length, 1020);
1043 length = (length + 3) & ~3;
1044 cam_fill_ataio(ataio,
1045 retries,
1046 cbfcnp,
1047 /*flags*/CAM_DIR_IN,
1048 tag_action,
1049 data_ptr,
1050 length,
1051 timeout);
1052 ata_28bit_cmd(ataio, ATA_SEP_ATTN,
1053 pcv ? page_code : 0, 0x02, length / 4);
1054 }
1055
1056 void
semb_send_diagnostic(struct ccb_ataio * ataio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t * data_ptr,uint16_t length,uint32_t timeout)1057 semb_send_diagnostic(struct ccb_ataio *ataio,
1058 uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *),
1059 uint8_t tag_action, uint8_t *data_ptr, uint16_t length, uint32_t timeout)
1060 {
1061
1062 length = min(length, 1020);
1063 length = (length + 3) & ~3;
1064 cam_fill_ataio(ataio,
1065 retries,
1066 cbfcnp,
1067 /*flags*/length ? CAM_DIR_OUT : CAM_DIR_NONE,
1068 tag_action,
1069 data_ptr,
1070 length,
1071 timeout);
1072 ata_28bit_cmd(ataio, ATA_SEP_ATTN,
1073 length > 0 ? data_ptr[0] : 0, 0x82, length / 4);
1074 }
1075
1076 void
semb_read_buffer(struct ccb_ataio * ataio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t page_code,uint8_t * data_ptr,uint16_t length,uint32_t timeout)1077 semb_read_buffer(struct ccb_ataio *ataio,
1078 uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb*),
1079 uint8_t tag_action, uint8_t page_code,
1080 uint8_t *data_ptr, uint16_t length, uint32_t timeout)
1081 {
1082
1083 length = min(length, 1020);
1084 length = (length + 3) & ~3;
1085 cam_fill_ataio(ataio,
1086 retries,
1087 cbfcnp,
1088 /*flags*/CAM_DIR_IN,
1089 tag_action,
1090 data_ptr,
1091 length,
1092 timeout);
1093 ata_28bit_cmd(ataio, ATA_SEP_ATTN,
1094 page_code, 0x00, length / 4);
1095 }
1096
1097 void
semb_write_buffer(struct ccb_ataio * ataio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),uint8_t tag_action,uint8_t * data_ptr,uint16_t length,uint32_t timeout)1098 semb_write_buffer(struct ccb_ataio *ataio,
1099 uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *),
1100 uint8_t tag_action, uint8_t *data_ptr, uint16_t length, uint32_t timeout)
1101 {
1102
1103 length = min(length, 1020);
1104 length = (length + 3) & ~3;
1105 cam_fill_ataio(ataio,
1106 retries,
1107 cbfcnp,
1108 /*flags*/length ? CAM_DIR_OUT : CAM_DIR_NONE,
1109 tag_action,
1110 data_ptr,
1111 length,
1112 timeout);
1113 ata_28bit_cmd(ataio, ATA_SEP_ATTN,
1114 length > 0 ? data_ptr[0] : 0, 0x80, length / 4);
1115 }
1116
1117 void
ata_zac_mgmt_out(struct ccb_ataio * ataio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),int use_ncq,uint8_t zm_action,uint64_t zone_id,uint8_t zone_flags,uint16_t sector_count,uint8_t * data_ptr,uint32_t dxfer_len,uint32_t timeout)1118 ata_zac_mgmt_out(struct ccb_ataio *ataio, uint32_t retries,
1119 void (*cbfcnp)(struct cam_periph *, union ccb *),
1120 int use_ncq, uint8_t zm_action, uint64_t zone_id,
1121 uint8_t zone_flags, uint16_t sector_count, uint8_t *data_ptr,
1122 uint32_t dxfer_len, uint32_t timeout)
1123 {
1124 uint8_t command_out, ata_flags;
1125 uint16_t features_out, sectors_out;
1126 uint32_t auxiliary;
1127
1128 if (use_ncq == 0) {
1129 command_out = ATA_ZAC_MANAGEMENT_OUT;
1130 features_out = (zm_action & 0xf) | (zone_flags << 8);
1131 if (dxfer_len == 0) {
1132 ata_flags = 0;
1133 sectors_out = 0;
1134 } else {
1135 ata_flags = CAM_ATAIO_DMA;
1136 /* XXX KDM use sector count? */
1137 sectors_out = ((dxfer_len >> 9) & 0xffff);
1138 }
1139 auxiliary = 0;
1140 } else {
1141 if (dxfer_len == 0) {
1142 command_out = ATA_NCQ_NON_DATA;
1143 features_out = ATA_NCQ_ZAC_MGMT_OUT;
1144 sectors_out = 0;
1145 } else {
1146 command_out = ATA_SEND_FPDMA_QUEUED;
1147
1148 /* Note that we're defaulting to normal priority */
1149 sectors_out = ATA_SFPDMA_ZAC_MGMT_OUT << 8;
1150
1151 /*
1152 * For SEND FPDMA QUEUED, the transfer length is
1153 * encoded in the FEATURE register, and 0 means
1154 * that 65536 512 byte blocks are to be tranferred.
1155 * In practice, it seems unlikely that we'll see
1156 * a transfer that large.
1157 */
1158 if (dxfer_len == (65536 * 512)) {
1159 features_out = 0;
1160 } else {
1161 /*
1162 * Yes, the caller can theoretically send a
1163 * transfer larger than we can handle.
1164 * Anyone using this function needs enough
1165 * knowledge to avoid doing that.
1166 */
1167 features_out = ((dxfer_len >> 9) & 0xffff);
1168 }
1169 }
1170 auxiliary = (zm_action & 0xf) | (zone_flags << 8);
1171
1172 ata_flags = CAM_ATAIO_FPDMA;
1173 }
1174
1175 cam_fill_ataio(ataio,
1176 /*retries*/ retries,
1177 /*cbfcnp*/ cbfcnp,
1178 /*flags*/ (dxfer_len > 0) ? CAM_DIR_OUT : CAM_DIR_NONE,
1179 /*tag_action*/ 0,
1180 /*data_ptr*/ data_ptr,
1181 /*dxfer_len*/ dxfer_len,
1182 /*timeout*/ timeout);
1183
1184 ata_48bit_cmd(ataio,
1185 /*cmd*/ command_out,
1186 /*features*/ features_out,
1187 /*lba*/ zone_id,
1188 /*sector_count*/ sectors_out);
1189
1190 ataio->cmd.flags |= ata_flags;
1191 if (auxiliary != 0) {
1192 ataio->ata_flags |= ATA_FLAG_AUX;
1193 ataio->aux = auxiliary;
1194 }
1195 }
1196
1197 void
ata_zac_mgmt_in(struct ccb_ataio * ataio,uint32_t retries,void (* cbfcnp)(struct cam_periph *,union ccb *),int use_ncq,uint8_t zm_action,uint64_t zone_id,uint8_t zone_flags,uint8_t * data_ptr,uint32_t dxfer_len,uint32_t timeout)1198 ata_zac_mgmt_in(struct ccb_ataio *ataio, uint32_t retries,
1199 void (*cbfcnp)(struct cam_periph *, union ccb *),
1200 int use_ncq, uint8_t zm_action, uint64_t zone_id,
1201 uint8_t zone_flags, uint8_t *data_ptr, uint32_t dxfer_len,
1202 uint32_t timeout)
1203 {
1204 uint8_t command_out, ata_flags;
1205 uint16_t features_out, sectors_out;
1206 uint32_t auxiliary;
1207
1208 if (use_ncq == 0) {
1209 command_out = ATA_ZAC_MANAGEMENT_IN;
1210 /* XXX KDM put a macro here */
1211 features_out = (zm_action & 0xf) | (zone_flags << 8);
1212 ata_flags = CAM_ATAIO_DMA;
1213 sectors_out = ((dxfer_len >> 9) & 0xffff);
1214 auxiliary = 0;
1215 } else {
1216 command_out = ATA_RECV_FPDMA_QUEUED;
1217 sectors_out = ATA_RFPDMA_ZAC_MGMT_IN << 8;
1218 auxiliary = (zm_action & 0xf) | (zone_flags << 8);
1219 ata_flags = CAM_ATAIO_FPDMA;
1220 /*
1221 * For RECEIVE FPDMA QUEUED, the transfer length is
1222 * encoded in the FEATURE register, and 0 means
1223 * that 65536 512 byte blocks are to be tranferred.
1224 * In practice, it is unlikely we will see a transfer that
1225 * large.
1226 */
1227 if (dxfer_len == (65536 * 512)) {
1228 features_out = 0;
1229 } else {
1230 /*
1231 * Yes, the caller can theoretically request a
1232 * transfer larger than we can handle.
1233 * Anyone using this function needs enough
1234 * knowledge to avoid doing that.
1235 */
1236 features_out = ((dxfer_len >> 9) & 0xffff);
1237 }
1238 }
1239
1240 cam_fill_ataio(ataio,
1241 /*retries*/ retries,
1242 /*cbfcnp*/ cbfcnp,
1243 /*flags*/ CAM_DIR_IN,
1244 /*tag_action*/ 0,
1245 /*data_ptr*/ data_ptr,
1246 /*dxfer_len*/ dxfer_len,
1247 /*timeout*/ timeout);
1248
1249 ata_48bit_cmd(ataio,
1250 /*cmd*/ command_out,
1251 /*features*/ features_out,
1252 /*lba*/ zone_id,
1253 /*sector_count*/ sectors_out);
1254
1255 ataio->cmd.flags |= ata_flags;
1256 if (auxiliary != 0) {
1257 ataio->ata_flags |= ATA_FLAG_AUX;
1258 ataio->aux = auxiliary;
1259 }
1260 }
1261
1262 void
ata_param_fixup(struct ata_params * ident_buf)1263 ata_param_fixup(struct ata_params *ident_buf)
1264 {
1265 int16_t *ptr;
1266
1267 for (ptr = (int16_t *)ident_buf;
1268 ptr < (int16_t *)ident_buf + sizeof(struct ata_params)/2; ptr++) {
1269 *ptr = le16toh(*ptr);
1270 }
1271 if (strncmp(ident_buf->model, "FX", 2) &&
1272 strncmp(ident_buf->model, "NEC", 3) &&
1273 strncmp(ident_buf->model, "Pioneer", 7) &&
1274 strncmp(ident_buf->model, "SHARP", 5)) {
1275 ata_bswap(ident_buf->model, sizeof(ident_buf->model));
1276 ata_bswap(ident_buf->revision, sizeof(ident_buf->revision));
1277 ata_bswap(ident_buf->serial, sizeof(ident_buf->serial));
1278 }
1279 ata_btrim(ident_buf->model, sizeof(ident_buf->model));
1280 ata_bpack(ident_buf->model, ident_buf->model, sizeof(ident_buf->model));
1281 ata_btrim(ident_buf->revision, sizeof(ident_buf->revision));
1282 ata_bpack(ident_buf->revision, ident_buf->revision, sizeof(ident_buf->revision));
1283 ata_btrim(ident_buf->serial, sizeof(ident_buf->serial));
1284 ata_bpack(ident_buf->serial, ident_buf->serial, sizeof(ident_buf->serial));
1285 }
1286