1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * libata-core.c - helper library for ATA 4 * 5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 6 * Copyright 2003-2004 Jeff Garzik 7 * 8 * libata documentation is available via 'make {ps|pdf}docs', 9 * as Documentation/driver-api/libata.rst 10 * 11 * Hardware documentation available from http://www.t13.org/ and 12 * http://www.sata-io.org/ 13 * 14 * Standards documents from: 15 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 16 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 17 * http://www.sata-io.org (SATA) 18 * http://www.compactflash.org (CF) 19 * http://www.qic.org (QIC157 - Tape and DSC) 20 * http://www.ce-ata.org (CE-ATA: not supported) 21 * 22 * libata is essentially a library of internal helper functions for 23 * low-level ATA host controller drivers. As such, the API/ABI is 24 * likely to change as new drivers are added and updated. 25 * Do not depend on ABI/API stability. 26 */ 27 28 #include <linux/kernel.h> 29 #include <linux/module.h> 30 #include <linux/pci.h> 31 #include <linux/init.h> 32 #include <linux/list.h> 33 #include <linux/mm.h> 34 #include <linux/spinlock.h> 35 #include <linux/blkdev.h> 36 #include <linux/delay.h> 37 #include <linux/timer.h> 38 #include <linux/time.h> 39 #include <linux/interrupt.h> 40 #include <linux/completion.h> 41 #include <linux/suspend.h> 42 #include <linux/workqueue.h> 43 #include <linux/scatterlist.h> 44 #include <linux/io.h> 45 #include <linux/log2.h> 46 #include <linux/slab.h> 47 #include <linux/glob.h> 48 #include <scsi/scsi.h> 49 #include <scsi/scsi_cmnd.h> 50 #include <scsi/scsi_host.h> 51 #include <linux/libata.h> 52 #include <asm/byteorder.h> 53 #include <linux/unaligned.h> 54 #include <linux/cdrom.h> 55 #include <linux/ratelimit.h> 56 #include <linux/leds.h> 57 #include <linux/pm_runtime.h> 58 #include <linux/platform_device.h> 59 #include <asm/setup.h> 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/libata.h> 63 64 #include "libata.h" 65 #include "libata-transport.h" 66 67 const struct ata_port_operations ata_base_port_ops = { 68 .reset.prereset = ata_std_prereset, 69 .reset.postreset = ata_std_postreset, 70 .error_handler = ata_std_error_handler, 71 .sched_eh = ata_std_sched_eh, 72 .end_eh = ata_std_end_eh, 73 }; 74 75 static unsigned int ata_dev_init_params(struct ata_device *dev, 76 u16 heads, u16 sectors); 77 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 78 static void ata_dev_xfermask(struct ata_device *dev); 79 static u64 ata_dev_quirks(const struct ata_device *dev); 80 static u64 ata_dev_get_quirk_value(struct ata_device *dev, u64 quirk); 81 82 static DEFINE_IDA(ata_ida); 83 84 #ifdef CONFIG_ATA_FORCE 85 struct ata_force_param { 86 const char *name; 87 u64 value; 88 u8 cbl; 89 u8 spd_limit; 90 unsigned int xfer_mask; 91 u64 quirk_on; 92 u64 quirk_off; 93 unsigned int pflags_on; 94 u16 lflags_on; 95 u16 lflags_off; 96 }; 97 98 struct ata_force_ent { 99 int port; 100 int device; 101 struct ata_force_param param; 102 }; 103 104 static struct ata_force_ent *ata_force_tbl; 105 static int ata_force_tbl_size; 106 107 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata; 108 /* param_buf is thrown away after initialization, disallow read */ 109 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 110 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)"); 111 #endif 112 113 static int atapi_enabled = 1; 114 module_param(atapi_enabled, int, 0444); 115 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 116 117 static int atapi_dmadir = 0; 118 module_param(atapi_dmadir, int, 0444); 119 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 120 121 int atapi_passthru16 = 1; 122 module_param(atapi_passthru16, int, 0444); 123 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 124 125 int libata_fua = 0; 126 module_param_named(fua, libata_fua, int, 0444); 127 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 128 129 static int ata_ignore_hpa; 130 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 131 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 132 133 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 134 module_param_named(dma, libata_dma_mask, int, 0444); 135 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 136 137 static int ata_probe_timeout; 138 module_param(ata_probe_timeout, int, 0444); 139 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 140 141 int libata_noacpi = 0; 142 module_param_named(noacpi, libata_noacpi, int, 0444); 143 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 144 145 int libata_allow_tpm = 0; 146 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 147 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 148 149 static int atapi_an; 150 module_param(atapi_an, int, 0444); 151 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 152 153 MODULE_AUTHOR("Jeff Garzik"); 154 MODULE_DESCRIPTION("Library module for ATA devices"); 155 MODULE_LICENSE("GPL"); 156 MODULE_VERSION(DRV_VERSION); 157 158 static inline bool ata_dev_print_info(const struct ata_device *dev) 159 { 160 struct ata_eh_context *ehc = &dev->link->eh_context; 161 162 return ehc->i.flags & ATA_EHI_PRINTINFO; 163 } 164 165 /** 166 * ata_link_next - link iteration helper 167 * @link: the previous link, NULL to start 168 * @ap: ATA port containing links to iterate 169 * @mode: iteration mode, one of ATA_LITER_* 170 * 171 * LOCKING: 172 * Host lock or EH context. 173 * 174 * RETURNS: 175 * Pointer to the next link. 176 */ 177 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 178 enum ata_link_iter_mode mode) 179 { 180 BUG_ON(mode != ATA_LITER_EDGE && 181 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 182 183 /* NULL link indicates start of iteration */ 184 if (!link) 185 switch (mode) { 186 case ATA_LITER_EDGE: 187 case ATA_LITER_PMP_FIRST: 188 if (sata_pmp_attached(ap)) 189 return ap->pmp_link; 190 fallthrough; 191 case ATA_LITER_HOST_FIRST: 192 return &ap->link; 193 } 194 195 /* we just iterated over the host link, what's next? */ 196 if (link == &ap->link) 197 switch (mode) { 198 case ATA_LITER_HOST_FIRST: 199 if (sata_pmp_attached(ap)) 200 return ap->pmp_link; 201 fallthrough; 202 case ATA_LITER_PMP_FIRST: 203 if (unlikely(ap->slave_link)) 204 return ap->slave_link; 205 fallthrough; 206 case ATA_LITER_EDGE: 207 return NULL; 208 } 209 210 /* slave_link excludes PMP */ 211 if (unlikely(link == ap->slave_link)) 212 return NULL; 213 214 /* we were over a PMP link */ 215 if (++link < ap->pmp_link + ap->nr_pmp_links) 216 return link; 217 218 if (mode == ATA_LITER_PMP_FIRST) 219 return &ap->link; 220 221 return NULL; 222 } 223 EXPORT_SYMBOL_GPL(ata_link_next); 224 225 /** 226 * ata_dev_next - device iteration helper 227 * @dev: the previous device, NULL to start 228 * @link: ATA link containing devices to iterate 229 * @mode: iteration mode, one of ATA_DITER_* 230 * 231 * LOCKING: 232 * Host lock or EH context. 233 * 234 * RETURNS: 235 * Pointer to the next device. 236 */ 237 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 238 enum ata_dev_iter_mode mode) 239 { 240 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 241 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 242 243 /* NULL dev indicates start of iteration */ 244 if (!dev) 245 switch (mode) { 246 case ATA_DITER_ENABLED: 247 case ATA_DITER_ALL: 248 dev = link->device; 249 goto check; 250 case ATA_DITER_ENABLED_REVERSE: 251 case ATA_DITER_ALL_REVERSE: 252 dev = link->device + ata_link_max_devices(link) - 1; 253 goto check; 254 } 255 256 next: 257 /* move to the next one */ 258 switch (mode) { 259 case ATA_DITER_ENABLED: 260 case ATA_DITER_ALL: 261 if (++dev < link->device + ata_link_max_devices(link)) 262 goto check; 263 return NULL; 264 case ATA_DITER_ENABLED_REVERSE: 265 case ATA_DITER_ALL_REVERSE: 266 if (--dev >= link->device) 267 goto check; 268 return NULL; 269 } 270 271 check: 272 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 273 !ata_dev_enabled(dev)) 274 goto next; 275 return dev; 276 } 277 EXPORT_SYMBOL_GPL(ata_dev_next); 278 279 /** 280 * ata_dev_phys_link - find physical link for a device 281 * @dev: ATA device to look up physical link for 282 * 283 * Look up physical link which @dev is attached to. Note that 284 * this is different from @dev->link only when @dev is on slave 285 * link. For all other cases, it's the same as @dev->link. 286 * 287 * LOCKING: 288 * Don't care. 289 * 290 * RETURNS: 291 * Pointer to the found physical link. 292 */ 293 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 294 { 295 struct ata_port *ap = dev->link->ap; 296 297 if (!ap->slave_link) 298 return dev->link; 299 if (!dev->devno) 300 return &ap->link; 301 return ap->slave_link; 302 } 303 304 #ifdef CONFIG_ATA_FORCE 305 /** 306 * ata_force_cbl - force cable type according to libata.force 307 * @ap: ATA port of interest 308 * 309 * Force cable type according to libata.force and whine about it. 310 * The last entry which has matching port number is used, so it 311 * can be specified as part of device force parameters. For 312 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 313 * same effect. 314 * 315 * LOCKING: 316 * EH context. 317 */ 318 void ata_force_cbl(struct ata_port *ap) 319 { 320 int i; 321 322 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 323 const struct ata_force_ent *fe = &ata_force_tbl[i]; 324 325 if (fe->port != -1 && fe->port != ap->print_id) 326 continue; 327 328 if (fe->param.cbl == ATA_CBL_NONE) 329 continue; 330 331 ap->cbl = fe->param.cbl; 332 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 333 return; 334 } 335 } 336 337 /** 338 * ata_force_pflags - force port flags according to libata.force 339 * @ap: ATA port of interest 340 * 341 * Force port flags according to libata.force and whine about it. 342 * 343 * LOCKING: 344 * EH context. 345 */ 346 static void ata_force_pflags(struct ata_port *ap) 347 { 348 int i; 349 350 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 351 const struct ata_force_ent *fe = &ata_force_tbl[i]; 352 353 if (fe->port != -1 && fe->port != ap->print_id) 354 continue; 355 356 /* let pflags stack */ 357 if (fe->param.pflags_on) { 358 ap->pflags |= fe->param.pflags_on; 359 ata_port_notice(ap, 360 "FORCE: port flag 0x%x forced -> 0x%x\n", 361 fe->param.pflags_on, ap->pflags); 362 } 363 } 364 } 365 366 /** 367 * ata_force_link_limits - force link limits according to libata.force 368 * @link: ATA link of interest 369 * 370 * Force link flags and SATA spd limit according to libata.force 371 * and whine about it. When only the port part is specified 372 * (e.g. 1:), the limit applies to all links connected to both 373 * the host link and all fan-out ports connected via PMP. If the 374 * device part is specified as 0 (e.g. 1.00:), it specifies the 375 * first fan-out link not the host link. Device number 15 always 376 * points to the host link whether PMP is attached or not. If the 377 * controller has slave link, device number 16 points to it. 378 * 379 * LOCKING: 380 * EH context. 381 */ 382 static void ata_force_link_limits(struct ata_link *link) 383 { 384 bool did_spd = false; 385 int linkno = link->pmp; 386 int i; 387 388 if (ata_is_host_link(link)) 389 linkno += 15; 390 391 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 392 const struct ata_force_ent *fe = &ata_force_tbl[i]; 393 394 if (fe->port != -1 && fe->port != link->ap->print_id) 395 continue; 396 397 if (fe->device != -1 && fe->device != linkno) 398 continue; 399 400 /* only honor the first spd limit */ 401 if (!did_spd && fe->param.spd_limit) { 402 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 403 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 404 fe->param.name); 405 did_spd = true; 406 } 407 408 /* let lflags stack */ 409 if (fe->param.lflags_on) { 410 link->flags |= fe->param.lflags_on; 411 ata_link_notice(link, 412 "FORCE: link flag 0x%x forced -> 0x%x\n", 413 fe->param.lflags_on, link->flags); 414 } 415 if (fe->param.lflags_off) { 416 link->flags &= ~fe->param.lflags_off; 417 ata_link_notice(link, 418 "FORCE: link flag 0x%x cleared -> 0x%x\n", 419 fe->param.lflags_off, link->flags); 420 } 421 } 422 } 423 424 /** 425 * ata_force_xfermask - force xfermask according to libata.force 426 * @dev: ATA device of interest 427 * 428 * Force xfer_mask according to libata.force and whine about it. 429 * For consistency with link selection, device number 15 selects 430 * the first device connected to the host link. 431 * 432 * LOCKING: 433 * EH context. 434 */ 435 static void ata_force_xfermask(struct ata_device *dev) 436 { 437 int devno = dev->link->pmp + dev->devno; 438 int alt_devno = devno; 439 int i; 440 441 /* allow n.15/16 for devices attached to host port */ 442 if (ata_is_host_link(dev->link)) 443 alt_devno += 15; 444 445 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 446 const struct ata_force_ent *fe = &ata_force_tbl[i]; 447 unsigned int pio_mask, mwdma_mask, udma_mask; 448 449 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 450 continue; 451 452 if (fe->device != -1 && fe->device != devno && 453 fe->device != alt_devno) 454 continue; 455 456 if (!fe->param.xfer_mask) 457 continue; 458 459 ata_unpack_xfermask(fe->param.xfer_mask, 460 &pio_mask, &mwdma_mask, &udma_mask); 461 if (udma_mask) 462 dev->udma_mask = udma_mask; 463 else if (mwdma_mask) { 464 dev->udma_mask = 0; 465 dev->mwdma_mask = mwdma_mask; 466 } else { 467 dev->udma_mask = 0; 468 dev->mwdma_mask = 0; 469 dev->pio_mask = pio_mask; 470 } 471 472 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 473 fe->param.name); 474 return; 475 } 476 } 477 478 static const struct ata_force_ent * 479 ata_force_get_fe_for_dev(struct ata_device *dev) 480 { 481 const struct ata_force_ent *fe; 482 int devno = dev->link->pmp + dev->devno; 483 int alt_devno = devno; 484 int i; 485 486 /* allow n.15/16 for devices attached to host port */ 487 if (ata_is_host_link(dev->link)) 488 alt_devno += 15; 489 490 for (i = 0; i < ata_force_tbl_size; i++) { 491 fe = &ata_force_tbl[i]; 492 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 493 continue; 494 495 if (fe->device != -1 && fe->device != devno && 496 fe->device != alt_devno) 497 continue; 498 499 return fe; 500 } 501 502 return NULL; 503 } 504 505 /** 506 * ata_force_quirks - force quirks according to libata.force 507 * @dev: ATA device of interest 508 * 509 * Force quirks according to libata.force and whine about it. 510 * For consistency with link selection, device number 15 selects 511 * the first device connected to the host link. 512 * 513 * LOCKING: 514 * EH context. 515 */ 516 static void ata_force_quirks(struct ata_device *dev) 517 { 518 const struct ata_force_ent *fe = ata_force_get_fe_for_dev(dev); 519 520 if (!fe) 521 return; 522 523 if (!(~dev->quirks & fe->param.quirk_on) && 524 !(dev->quirks & fe->param.quirk_off)) 525 return; 526 527 dev->quirks |= fe->param.quirk_on; 528 dev->quirks &= ~fe->param.quirk_off; 529 530 ata_dev_notice(dev, "FORCE: modified (%s)\n", fe->param.name); 531 } 532 #else 533 static inline void ata_force_pflags(struct ata_port *ap) { } 534 static inline void ata_force_link_limits(struct ata_link *link) { } 535 static inline void ata_force_xfermask(struct ata_device *dev) { } 536 static inline void ata_force_quirks(struct ata_device *dev) { } 537 #endif 538 539 /** 540 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 541 * @opcode: SCSI opcode 542 * 543 * Determine ATAPI command type from @opcode. 544 * 545 * LOCKING: 546 * None. 547 * 548 * RETURNS: 549 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 550 */ 551 int atapi_cmd_type(u8 opcode) 552 { 553 switch (opcode) { 554 case GPCMD_READ_10: 555 case GPCMD_READ_12: 556 return ATAPI_READ; 557 558 case GPCMD_WRITE_10: 559 case GPCMD_WRITE_12: 560 case GPCMD_WRITE_AND_VERIFY_10: 561 return ATAPI_WRITE; 562 563 case GPCMD_READ_CD: 564 case GPCMD_READ_CD_MSF: 565 return ATAPI_READ_CD; 566 567 case ATA_16: 568 case ATA_12: 569 if (atapi_passthru16) 570 return ATAPI_PASS_THRU; 571 fallthrough; 572 default: 573 return ATAPI_MISC; 574 } 575 } 576 EXPORT_SYMBOL_GPL(atapi_cmd_type); 577 578 static const u8 ata_rw_cmds[] = { 579 /* pio multi */ 580 ATA_CMD_READ_MULTI, 581 ATA_CMD_WRITE_MULTI, 582 ATA_CMD_READ_MULTI_EXT, 583 ATA_CMD_WRITE_MULTI_EXT, 584 0, 585 0, 586 0, 587 0, 588 /* pio */ 589 ATA_CMD_PIO_READ, 590 ATA_CMD_PIO_WRITE, 591 ATA_CMD_PIO_READ_EXT, 592 ATA_CMD_PIO_WRITE_EXT, 593 0, 594 0, 595 0, 596 0, 597 /* dma */ 598 ATA_CMD_READ, 599 ATA_CMD_WRITE, 600 ATA_CMD_READ_EXT, 601 ATA_CMD_WRITE_EXT, 602 0, 603 0, 604 0, 605 ATA_CMD_WRITE_FUA_EXT 606 }; 607 608 /** 609 * ata_set_rwcmd_protocol - set taskfile r/w command and protocol 610 * @dev: target device for the taskfile 611 * @tf: taskfile to examine and configure 612 * 613 * Examine the device configuration and tf->flags to determine 614 * the proper read/write command and protocol to use for @tf. 615 * 616 * LOCKING: 617 * caller. 618 */ 619 static bool ata_set_rwcmd_protocol(struct ata_device *dev, 620 struct ata_taskfile *tf) 621 { 622 u8 cmd; 623 624 int index, fua, lba48, write; 625 626 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 627 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 628 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 629 630 if (dev->flags & ATA_DFLAG_PIO) { 631 tf->protocol = ATA_PROT_PIO; 632 index = dev->multi_count ? 0 : 8; 633 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 634 /* Unable to use DMA due to host limitation */ 635 tf->protocol = ATA_PROT_PIO; 636 index = dev->multi_count ? 0 : 8; 637 } else { 638 tf->protocol = ATA_PROT_DMA; 639 index = 16; 640 } 641 642 cmd = ata_rw_cmds[index + fua + lba48 + write]; 643 if (!cmd) 644 return false; 645 646 tf->command = cmd; 647 648 return true; 649 } 650 651 /** 652 * ata_tf_read_block - Read block address from ATA taskfile 653 * @tf: ATA taskfile of interest 654 * @dev: ATA device @tf belongs to 655 * 656 * LOCKING: 657 * None. 658 * 659 * Read block address from @tf. This function can handle all 660 * three address formats - LBA, LBA48 and CHS. tf->protocol and 661 * flags select the address format to use. 662 * 663 * RETURNS: 664 * Block address read from @tf. 665 */ 666 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev) 667 { 668 u64 block = 0; 669 670 if (tf->flags & ATA_TFLAG_LBA) { 671 if (tf->flags & ATA_TFLAG_LBA48) { 672 block |= (u64)tf->hob_lbah << 40; 673 block |= (u64)tf->hob_lbam << 32; 674 block |= (u64)tf->hob_lbal << 24; 675 } else 676 block |= (tf->device & 0xf) << 24; 677 678 block |= tf->lbah << 16; 679 block |= tf->lbam << 8; 680 block |= tf->lbal; 681 } else { 682 u32 cyl, head, sect; 683 684 cyl = tf->lbam | (tf->lbah << 8); 685 head = tf->device & 0xf; 686 sect = tf->lbal; 687 688 if (!sect) { 689 ata_dev_warn(dev, 690 "device reported invalid CHS sector 0\n"); 691 return U64_MAX; 692 } 693 694 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 695 } 696 697 return block; 698 } 699 700 /* 701 * Set a taskfile command duration limit index. 702 */ 703 static inline void ata_set_tf_cdl(struct ata_queued_cmd *qc, int cdl) 704 { 705 struct ata_taskfile *tf = &qc->tf; 706 707 if (tf->protocol == ATA_PROT_NCQ) 708 tf->auxiliary |= cdl; 709 else 710 tf->feature |= cdl; 711 712 /* 713 * Mark this command as having a CDL and request the result 714 * task file so that we can inspect the sense data available 715 * bit on completion. 716 */ 717 qc->flags |= ATA_QCFLAG_HAS_CDL | ATA_QCFLAG_RESULT_TF; 718 } 719 720 /** 721 * ata_build_rw_tf - Build ATA taskfile for given read/write request 722 * @qc: Metadata associated with the taskfile to build 723 * @block: Block address 724 * @n_block: Number of blocks 725 * @tf_flags: RW/FUA etc... 726 * @cdl: Command duration limit index 727 * @class: IO priority class 728 * 729 * LOCKING: 730 * None. 731 * 732 * Build ATA taskfile for the command @qc for read/write request described 733 * by @block, @n_block, @tf_flags and @class. 734 * 735 * RETURNS: 736 * 737 * 0 on success, -ERANGE if the request is too large for @dev, 738 * -EINVAL if the request is invalid. 739 */ 740 int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block, 741 unsigned int tf_flags, int cdl, int class) 742 { 743 struct ata_taskfile *tf = &qc->tf; 744 struct ata_device *dev = qc->dev; 745 746 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 747 tf->flags |= tf_flags; 748 749 if (ata_ncq_enabled(dev)) { 750 /* yay, NCQ */ 751 if (!lba_48_ok(block, n_block)) 752 return -ERANGE; 753 754 tf->protocol = ATA_PROT_NCQ; 755 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 756 757 if (tf->flags & ATA_TFLAG_WRITE) 758 tf->command = ATA_CMD_FPDMA_WRITE; 759 else 760 tf->command = ATA_CMD_FPDMA_READ; 761 762 tf->nsect = qc->hw_tag << 3; 763 tf->hob_feature = (n_block >> 8) & 0xff; 764 tf->feature = n_block & 0xff; 765 766 tf->hob_lbah = (block >> 40) & 0xff; 767 tf->hob_lbam = (block >> 32) & 0xff; 768 tf->hob_lbal = (block >> 24) & 0xff; 769 tf->lbah = (block >> 16) & 0xff; 770 tf->lbam = (block >> 8) & 0xff; 771 tf->lbal = block & 0xff; 772 773 tf->device = ATA_LBA; 774 if (tf->flags & ATA_TFLAG_FUA) 775 tf->device |= 1 << 7; 776 777 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED && 778 class == IOPRIO_CLASS_RT) 779 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO; 780 781 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl) 782 ata_set_tf_cdl(qc, cdl); 783 784 } else if (dev->flags & ATA_DFLAG_LBA) { 785 tf->flags |= ATA_TFLAG_LBA; 786 787 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl) 788 ata_set_tf_cdl(qc, cdl); 789 790 /* Both FUA writes and a CDL index require 48-bit commands */ 791 if (!(tf->flags & ATA_TFLAG_FUA) && 792 !(qc->flags & ATA_QCFLAG_HAS_CDL) && 793 lba_28_ok(block, n_block)) { 794 /* use LBA28 */ 795 tf->device |= (block >> 24) & 0xf; 796 } else if (lba_48_ok(block, n_block)) { 797 if (!(dev->flags & ATA_DFLAG_LBA48)) 798 return -ERANGE; 799 800 /* use LBA48 */ 801 tf->flags |= ATA_TFLAG_LBA48; 802 803 tf->hob_nsect = (n_block >> 8) & 0xff; 804 805 tf->hob_lbah = (block >> 40) & 0xff; 806 tf->hob_lbam = (block >> 32) & 0xff; 807 tf->hob_lbal = (block >> 24) & 0xff; 808 } else { 809 /* request too large even for LBA48 */ 810 return -ERANGE; 811 } 812 813 if (unlikely(!ata_set_rwcmd_protocol(dev, tf))) 814 return -EINVAL; 815 816 tf->nsect = n_block & 0xff; 817 818 tf->lbah = (block >> 16) & 0xff; 819 tf->lbam = (block >> 8) & 0xff; 820 tf->lbal = block & 0xff; 821 822 tf->device |= ATA_LBA; 823 } else { 824 /* CHS */ 825 u32 sect, head, cyl, track; 826 827 /* The request -may- be too large for CHS addressing. */ 828 if (!lba_28_ok(block, n_block)) 829 return -ERANGE; 830 831 if (unlikely(!ata_set_rwcmd_protocol(dev, tf))) 832 return -EINVAL; 833 834 /* Convert LBA to CHS */ 835 track = (u32)block / dev->sectors; 836 cyl = track / dev->heads; 837 head = track % dev->heads; 838 sect = (u32)block % dev->sectors + 1; 839 840 /* Check whether the converted CHS can fit. 841 Cylinder: 0-65535 842 Head: 0-15 843 Sector: 1-255*/ 844 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 845 return -ERANGE; 846 847 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 848 tf->lbal = sect; 849 tf->lbam = cyl; 850 tf->lbah = cyl >> 8; 851 tf->device |= head; 852 } 853 854 return 0; 855 } 856 857 /** 858 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 859 * @pio_mask: pio_mask 860 * @mwdma_mask: mwdma_mask 861 * @udma_mask: udma_mask 862 * 863 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 864 * unsigned int xfer_mask. 865 * 866 * LOCKING: 867 * None. 868 * 869 * RETURNS: 870 * Packed xfer_mask. 871 */ 872 unsigned int ata_pack_xfermask(unsigned int pio_mask, 873 unsigned int mwdma_mask, 874 unsigned int udma_mask) 875 { 876 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 877 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 878 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 879 } 880 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 881 882 /** 883 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 884 * @xfer_mask: xfer_mask to unpack 885 * @pio_mask: resulting pio_mask 886 * @mwdma_mask: resulting mwdma_mask 887 * @udma_mask: resulting udma_mask 888 * 889 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 890 * Any NULL destination masks will be ignored. 891 */ 892 void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask, 893 unsigned int *mwdma_mask, unsigned int *udma_mask) 894 { 895 if (pio_mask) 896 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 897 if (mwdma_mask) 898 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 899 if (udma_mask) 900 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 901 } 902 903 static const struct ata_xfer_ent { 904 int shift, bits; 905 u8 base; 906 } ata_xfer_tbl[] = { 907 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 908 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 909 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 910 { -1, }, 911 }; 912 913 /** 914 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 915 * @xfer_mask: xfer_mask of interest 916 * 917 * Return matching XFER_* value for @xfer_mask. Only the highest 918 * bit of @xfer_mask is considered. 919 * 920 * LOCKING: 921 * None. 922 * 923 * RETURNS: 924 * Matching XFER_* value, 0xff if no match found. 925 */ 926 u8 ata_xfer_mask2mode(unsigned int xfer_mask) 927 { 928 int highbit = fls(xfer_mask) - 1; 929 const struct ata_xfer_ent *ent; 930 931 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 932 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 933 return ent->base + highbit - ent->shift; 934 return 0xff; 935 } 936 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 937 938 /** 939 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 940 * @xfer_mode: XFER_* of interest 941 * 942 * Return matching xfer_mask for @xfer_mode. 943 * 944 * LOCKING: 945 * None. 946 * 947 * RETURNS: 948 * Matching xfer_mask, 0 if no match found. 949 */ 950 unsigned int ata_xfer_mode2mask(u8 xfer_mode) 951 { 952 const struct ata_xfer_ent *ent; 953 954 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 955 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 956 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 957 & ~((1 << ent->shift) - 1); 958 return 0; 959 } 960 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 961 962 /** 963 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 964 * @xfer_mode: XFER_* of interest 965 * 966 * Return matching xfer_shift for @xfer_mode. 967 * 968 * LOCKING: 969 * None. 970 * 971 * RETURNS: 972 * Matching xfer_shift, -1 if no match found. 973 */ 974 int ata_xfer_mode2shift(u8 xfer_mode) 975 { 976 const struct ata_xfer_ent *ent; 977 978 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 979 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 980 return ent->shift; 981 return -1; 982 } 983 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 984 985 /** 986 * ata_mode_string - convert xfer_mask to string 987 * @xfer_mask: mask of bits supported; only highest bit counts. 988 * 989 * Determine string which represents the highest speed 990 * (highest bit in @modemask). 991 * 992 * LOCKING: 993 * None. 994 * 995 * RETURNS: 996 * Constant C string representing highest speed listed in 997 * @mode_mask, or the constant C string "<n/a>". 998 */ 999 const char *ata_mode_string(unsigned int xfer_mask) 1000 { 1001 static const char * const xfer_mode_str[] = { 1002 "PIO0", 1003 "PIO1", 1004 "PIO2", 1005 "PIO3", 1006 "PIO4", 1007 "PIO5", 1008 "PIO6", 1009 "MWDMA0", 1010 "MWDMA1", 1011 "MWDMA2", 1012 "MWDMA3", 1013 "MWDMA4", 1014 "UDMA/16", 1015 "UDMA/25", 1016 "UDMA/33", 1017 "UDMA/44", 1018 "UDMA/66", 1019 "UDMA/100", 1020 "UDMA/133", 1021 "UDMA7", 1022 }; 1023 int highbit; 1024 1025 highbit = fls(xfer_mask) - 1; 1026 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 1027 return xfer_mode_str[highbit]; 1028 return "<n/a>"; 1029 } 1030 EXPORT_SYMBOL_GPL(ata_mode_string); 1031 1032 const char *sata_spd_string(unsigned int spd) 1033 { 1034 static const char * const spd_str[] = { 1035 "1.5 Gbps", 1036 "3.0 Gbps", 1037 "6.0 Gbps", 1038 }; 1039 1040 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1041 return "<unknown>"; 1042 return spd_str[spd - 1]; 1043 } 1044 1045 /** 1046 * ata_dev_classify - determine device type based on ATA-spec signature 1047 * @tf: ATA taskfile register set for device to be identified 1048 * 1049 * Determine from taskfile register contents whether a device is 1050 * ATA or ATAPI, as per "Signature and persistence" section 1051 * of ATA/PI spec (volume 1, sect 5.14). 1052 * 1053 * LOCKING: 1054 * None. 1055 * 1056 * RETURNS: 1057 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP, 1058 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure. 1059 */ 1060 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1061 { 1062 /* Apple's open source Darwin code hints that some devices only 1063 * put a proper signature into the LBA mid/high registers, 1064 * So, we only check those. It's sufficient for uniqueness. 1065 * 1066 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1067 * signatures for ATA and ATAPI devices attached on SerialATA, 1068 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1069 * spec has never mentioned about using different signatures 1070 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1071 * Multiplier specification began to use 0x69/0x96 to identify 1072 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1073 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1074 * 0x69/0x96 shortly and described them as reserved for 1075 * SerialATA. 1076 * 1077 * We follow the current spec and consider that 0x69/0x96 1078 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1079 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1080 * SEMB signature. This is worked around in 1081 * ata_dev_read_id(). 1082 */ 1083 if (tf->lbam == 0 && tf->lbah == 0) 1084 return ATA_DEV_ATA; 1085 1086 if (tf->lbam == 0x14 && tf->lbah == 0xeb) 1087 return ATA_DEV_ATAPI; 1088 1089 if (tf->lbam == 0x69 && tf->lbah == 0x96) 1090 return ATA_DEV_PMP; 1091 1092 if (tf->lbam == 0x3c && tf->lbah == 0xc3) 1093 return ATA_DEV_SEMB; 1094 1095 if (tf->lbam == 0xcd && tf->lbah == 0xab) 1096 return ATA_DEV_ZAC; 1097 1098 return ATA_DEV_UNKNOWN; 1099 } 1100 EXPORT_SYMBOL_GPL(ata_dev_classify); 1101 1102 /** 1103 * ata_id_string - Convert IDENTIFY DEVICE page into string 1104 * @id: IDENTIFY DEVICE results we will examine 1105 * @s: string into which data is output 1106 * @ofs: offset into identify device page 1107 * @len: length of string to return. must be an even number. 1108 * 1109 * The strings in the IDENTIFY DEVICE page are broken up into 1110 * 16-bit chunks. Run through the string, and output each 1111 * 8-bit chunk linearly, regardless of platform. 1112 * 1113 * LOCKING: 1114 * caller. 1115 */ 1116 1117 void ata_id_string(const u16 *id, unsigned char *s, 1118 unsigned int ofs, unsigned int len) 1119 { 1120 unsigned int c; 1121 1122 BUG_ON(len & 1); 1123 1124 while (len > 0) { 1125 c = id[ofs] >> 8; 1126 *s = c; 1127 s++; 1128 1129 c = id[ofs] & 0xff; 1130 *s = c; 1131 s++; 1132 1133 ofs++; 1134 len -= 2; 1135 } 1136 } 1137 EXPORT_SYMBOL_GPL(ata_id_string); 1138 1139 /** 1140 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1141 * @id: IDENTIFY DEVICE results we will examine 1142 * @s: string into which data is output 1143 * @ofs: offset into identify device page 1144 * @len: length of string to return. must be an odd number. 1145 * 1146 * This function is identical to ata_id_string except that it 1147 * trims trailing spaces and terminates the resulting string with 1148 * null. @len must be actual maximum length (even number) + 1. 1149 * 1150 * LOCKING: 1151 * caller. 1152 */ 1153 void ata_id_c_string(const u16 *id, unsigned char *s, 1154 unsigned int ofs, unsigned int len) 1155 { 1156 unsigned char *p; 1157 1158 ata_id_string(id, s, ofs, len - 1); 1159 1160 p = s + strnlen(s, len - 1); 1161 while (p > s && p[-1] == ' ') 1162 p--; 1163 *p = '\0'; 1164 } 1165 EXPORT_SYMBOL_GPL(ata_id_c_string); 1166 1167 static u64 ata_id_n_sectors(const u16 *id) 1168 { 1169 if (ata_id_has_lba(id)) { 1170 if (ata_id_has_lba48(id)) 1171 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1172 1173 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1174 } 1175 1176 if (ata_id_current_chs_valid(id)) 1177 return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] * 1178 (u32)id[ATA_ID_CUR_SECTORS]; 1179 1180 return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] * 1181 (u32)id[ATA_ID_SECTORS]; 1182 } 1183 1184 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1185 { 1186 u64 sectors = 0; 1187 1188 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1189 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1190 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1191 sectors |= (tf->lbah & 0xff) << 16; 1192 sectors |= (tf->lbam & 0xff) << 8; 1193 sectors |= (tf->lbal & 0xff); 1194 1195 return sectors; 1196 } 1197 1198 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1199 { 1200 u64 sectors = 0; 1201 1202 sectors |= (tf->device & 0x0f) << 24; 1203 sectors |= (tf->lbah & 0xff) << 16; 1204 sectors |= (tf->lbam & 0xff) << 8; 1205 sectors |= (tf->lbal & 0xff); 1206 1207 return sectors; 1208 } 1209 1210 /** 1211 * ata_read_native_max_address - Read native max address 1212 * @dev: target device 1213 * @max_sectors: out parameter for the result native max address 1214 * 1215 * Perform an LBA48 or LBA28 native size query upon the device in 1216 * question. 1217 * 1218 * RETURNS: 1219 * 0 on success, -EACCES if command is aborted by the drive. 1220 * -EIO on other errors. 1221 */ 1222 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1223 { 1224 unsigned int err_mask; 1225 struct ata_taskfile tf; 1226 int lba48 = ata_id_has_lba48(dev->id); 1227 1228 ata_tf_init(dev, &tf); 1229 1230 /* always clear all address registers */ 1231 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1232 1233 if (lba48) { 1234 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1235 tf.flags |= ATA_TFLAG_LBA48; 1236 } else 1237 tf.command = ATA_CMD_READ_NATIVE_MAX; 1238 1239 tf.protocol = ATA_PROT_NODATA; 1240 tf.device |= ATA_LBA; 1241 1242 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1243 if (err_mask) { 1244 ata_dev_warn(dev, 1245 "failed to read native max address (err_mask=0x%x)\n", 1246 err_mask); 1247 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED)) 1248 return -EACCES; 1249 return -EIO; 1250 } 1251 1252 if (lba48) 1253 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1254 else 1255 *max_sectors = ata_tf_to_lba(&tf) + 1; 1256 if (dev->quirks & ATA_QUIRK_HPA_SIZE) 1257 (*max_sectors)--; 1258 return 0; 1259 } 1260 1261 /** 1262 * ata_set_max_sectors - Set max sectors 1263 * @dev: target device 1264 * @new_sectors: new max sectors value to set for the device 1265 * 1266 * Set max sectors of @dev to @new_sectors. 1267 * 1268 * RETURNS: 1269 * 0 on success, -EACCES if command is aborted or denied (due to 1270 * previous non-volatile SET_MAX) by the drive. -EIO on other 1271 * errors. 1272 */ 1273 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1274 { 1275 unsigned int err_mask; 1276 struct ata_taskfile tf; 1277 int lba48 = ata_id_has_lba48(dev->id); 1278 1279 new_sectors--; 1280 1281 ata_tf_init(dev, &tf); 1282 1283 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1284 1285 if (lba48) { 1286 tf.command = ATA_CMD_SET_MAX_EXT; 1287 tf.flags |= ATA_TFLAG_LBA48; 1288 1289 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1290 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1291 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1292 } else { 1293 tf.command = ATA_CMD_SET_MAX; 1294 1295 tf.device |= (new_sectors >> 24) & 0xf; 1296 } 1297 1298 tf.protocol = ATA_PROT_NODATA; 1299 tf.device |= ATA_LBA; 1300 1301 tf.lbal = (new_sectors >> 0) & 0xff; 1302 tf.lbam = (new_sectors >> 8) & 0xff; 1303 tf.lbah = (new_sectors >> 16) & 0xff; 1304 1305 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1306 if (err_mask) { 1307 ata_dev_warn(dev, 1308 "failed to set max address (err_mask=0x%x)\n", 1309 err_mask); 1310 if (err_mask == AC_ERR_DEV && 1311 (tf.error & (ATA_ABORTED | ATA_IDNF))) 1312 return -EACCES; 1313 return -EIO; 1314 } 1315 1316 return 0; 1317 } 1318 1319 /** 1320 * ata_hpa_resize - Resize a device with an HPA set 1321 * @dev: Device to resize 1322 * 1323 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1324 * it if required to the full size of the media. The caller must check 1325 * the drive has the HPA feature set enabled. 1326 * 1327 * RETURNS: 1328 * 0 on success, -errno on failure. 1329 */ 1330 static int ata_hpa_resize(struct ata_device *dev) 1331 { 1332 bool print_info = ata_dev_print_info(dev); 1333 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1334 u64 sectors = ata_id_n_sectors(dev->id); 1335 u64 native_sectors; 1336 int rc; 1337 1338 /* do we need to do it? */ 1339 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) || 1340 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1341 (dev->quirks & ATA_QUIRK_BROKEN_HPA)) 1342 return 0; 1343 1344 /* read native max address */ 1345 rc = ata_read_native_max_address(dev, &native_sectors); 1346 if (rc) { 1347 /* If device aborted the command or HPA isn't going to 1348 * be unlocked, skip HPA resizing. 1349 */ 1350 if (rc == -EACCES || !unlock_hpa) { 1351 ata_dev_warn(dev, 1352 "HPA support seems broken, skipping HPA handling\n"); 1353 dev->quirks |= ATA_QUIRK_BROKEN_HPA; 1354 1355 /* we can continue if device aborted the command */ 1356 if (rc == -EACCES) 1357 rc = 0; 1358 } 1359 1360 return rc; 1361 } 1362 dev->n_native_sectors = native_sectors; 1363 1364 /* nothing to do? */ 1365 if (native_sectors <= sectors || !unlock_hpa) { 1366 if (!print_info || native_sectors == sectors) 1367 return 0; 1368 1369 if (native_sectors > sectors) 1370 ata_dev_info(dev, 1371 "HPA detected: current %llu, native %llu\n", 1372 (unsigned long long)sectors, 1373 (unsigned long long)native_sectors); 1374 else if (native_sectors < sectors) 1375 ata_dev_warn(dev, 1376 "native sectors (%llu) is smaller than sectors (%llu)\n", 1377 (unsigned long long)native_sectors, 1378 (unsigned long long)sectors); 1379 return 0; 1380 } 1381 1382 /* let's unlock HPA */ 1383 rc = ata_set_max_sectors(dev, native_sectors); 1384 if (rc == -EACCES) { 1385 /* if device aborted the command, skip HPA resizing */ 1386 ata_dev_warn(dev, 1387 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1388 (unsigned long long)sectors, 1389 (unsigned long long)native_sectors); 1390 dev->quirks |= ATA_QUIRK_BROKEN_HPA; 1391 return 0; 1392 } else if (rc) 1393 return rc; 1394 1395 /* re-read IDENTIFY data */ 1396 rc = ata_dev_reread_id(dev, 0); 1397 if (rc) { 1398 ata_dev_err(dev, 1399 "failed to re-read IDENTIFY data after HPA resizing\n"); 1400 return rc; 1401 } 1402 1403 if (print_info) { 1404 u64 new_sectors = ata_id_n_sectors(dev->id); 1405 ata_dev_info(dev, 1406 "HPA unlocked: %llu -> %llu, native %llu\n", 1407 (unsigned long long)sectors, 1408 (unsigned long long)new_sectors, 1409 (unsigned long long)native_sectors); 1410 } 1411 1412 return 0; 1413 } 1414 1415 /** 1416 * ata_dump_id - IDENTIFY DEVICE info debugging output 1417 * @dev: device from which the information is fetched 1418 * @id: IDENTIFY DEVICE page to dump 1419 * 1420 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1421 * page. 1422 * 1423 * LOCKING: 1424 * caller. 1425 */ 1426 1427 static inline void ata_dump_id(struct ata_device *dev, const u16 *id) 1428 { 1429 ata_dev_dbg(dev, 1430 "49==0x%04x 53==0x%04x 63==0x%04x 64==0x%04x 75==0x%04x\n" 1431 "80==0x%04x 81==0x%04x 82==0x%04x 83==0x%04x 84==0x%04x\n" 1432 "88==0x%04x 93==0x%04x\n", 1433 id[49], id[53], id[63], id[64], id[75], id[80], 1434 id[81], id[82], id[83], id[84], id[88], id[93]); 1435 } 1436 1437 /** 1438 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1439 * @id: IDENTIFY data to compute xfer mask from 1440 * 1441 * Compute the xfermask for this device. This is not as trivial 1442 * as it seems if we must consider early devices correctly. 1443 * 1444 * FIXME: pre IDE drive timing (do we care ?). 1445 * 1446 * LOCKING: 1447 * None. 1448 * 1449 * RETURNS: 1450 * Computed xfermask 1451 */ 1452 unsigned int ata_id_xfermask(const u16 *id) 1453 { 1454 unsigned int pio_mask, mwdma_mask, udma_mask; 1455 1456 /* Usual case. Word 53 indicates word 64 is valid */ 1457 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1458 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1459 pio_mask <<= 3; 1460 pio_mask |= 0x7; 1461 } else { 1462 /* If word 64 isn't valid then Word 51 high byte holds 1463 * the PIO timing number for the maximum. Turn it into 1464 * a mask. 1465 */ 1466 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1467 if (mode < 5) /* Valid PIO range */ 1468 pio_mask = (2 << mode) - 1; 1469 else 1470 pio_mask = 1; 1471 1472 /* But wait.. there's more. Design your standards by 1473 * committee and you too can get a free iordy field to 1474 * process. However it is the speeds not the modes that 1475 * are supported... Note drivers using the timing API 1476 * will get this right anyway 1477 */ 1478 } 1479 1480 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1481 1482 if (ata_id_is_cfa(id)) { 1483 /* 1484 * Process compact flash extended modes 1485 */ 1486 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1487 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1488 1489 if (pio) 1490 pio_mask |= (1 << 5); 1491 if (pio > 1) 1492 pio_mask |= (1 << 6); 1493 if (dma) 1494 mwdma_mask |= (1 << 3); 1495 if (dma > 1) 1496 mwdma_mask |= (1 << 4); 1497 } 1498 1499 udma_mask = 0; 1500 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1501 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1502 1503 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1504 } 1505 EXPORT_SYMBOL_GPL(ata_id_xfermask); 1506 1507 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1508 { 1509 struct completion *waiting = qc->private_data; 1510 1511 complete(waiting); 1512 } 1513 1514 /** 1515 * ata_exec_internal - execute libata internal command 1516 * @dev: Device to which the command is sent 1517 * @tf: Taskfile registers for the command and the result 1518 * @cdb: CDB for packet command 1519 * @dma_dir: Data transfer direction of the command 1520 * @buf: Data buffer of the command 1521 * @buflen: Length of data buffer 1522 * @timeout: Timeout in msecs (0 for default) 1523 * 1524 * Executes libata internal command with timeout. @tf contains 1525 * the command on entry and the result on return. Timeout and error 1526 * conditions are reported via the return value. No recovery action 1527 * is taken after a command times out. It is the caller's duty to 1528 * clean up after timeout. 1529 * 1530 * LOCKING: 1531 * None. Should be called with kernel context, might sleep. 1532 * 1533 * RETURNS: 1534 * Zero on success, AC_ERR_* mask on failure 1535 */ 1536 unsigned int ata_exec_internal(struct ata_device *dev, struct ata_taskfile *tf, 1537 const u8 *cdb, enum dma_data_direction dma_dir, 1538 void *buf, unsigned int buflen, 1539 unsigned int timeout) 1540 { 1541 struct ata_link *link = dev->link; 1542 struct ata_port *ap = link->ap; 1543 u8 command = tf->command; 1544 struct ata_queued_cmd *qc; 1545 struct scatterlist sgl; 1546 unsigned int preempted_tag; 1547 u32 preempted_sactive; 1548 u64 preempted_qc_active; 1549 int preempted_nr_active_links; 1550 bool auto_timeout = false; 1551 DECLARE_COMPLETION_ONSTACK(wait); 1552 unsigned long flags; 1553 unsigned int err_mask; 1554 int rc; 1555 1556 if (WARN_ON(dma_dir != DMA_NONE && !buf)) 1557 return AC_ERR_INVALID; 1558 1559 spin_lock_irqsave(ap->lock, flags); 1560 1561 /* No internal command while frozen */ 1562 if (ata_port_is_frozen(ap)) { 1563 spin_unlock_irqrestore(ap->lock, flags); 1564 return AC_ERR_SYSTEM; 1565 } 1566 1567 /* Initialize internal qc */ 1568 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL); 1569 1570 qc->tag = ATA_TAG_INTERNAL; 1571 qc->hw_tag = 0; 1572 qc->scsicmd = NULL; 1573 qc->ap = ap; 1574 qc->dev = dev; 1575 ata_qc_reinit(qc); 1576 1577 preempted_tag = link->active_tag; 1578 preempted_sactive = link->sactive; 1579 preempted_qc_active = ap->qc_active; 1580 preempted_nr_active_links = ap->nr_active_links; 1581 link->active_tag = ATA_TAG_POISON; 1582 link->sactive = 0; 1583 ap->qc_active = 0; 1584 ap->nr_active_links = 0; 1585 1586 /* Prepare and issue qc */ 1587 qc->tf = *tf; 1588 if (cdb) 1589 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1590 1591 /* Some SATA bridges need us to indicate data xfer direction */ 1592 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && 1593 dma_dir == DMA_FROM_DEVICE) 1594 qc->tf.feature |= ATAPI_DMADIR; 1595 1596 qc->flags |= ATA_QCFLAG_RESULT_TF; 1597 qc->dma_dir = dma_dir; 1598 if (dma_dir != DMA_NONE) { 1599 sg_init_one(&sgl, buf, buflen); 1600 ata_sg_init(qc, &sgl, 1); 1601 qc->nbytes = buflen; 1602 } 1603 1604 qc->private_data = &wait; 1605 qc->complete_fn = ata_qc_complete_internal; 1606 1607 ata_qc_issue(qc); 1608 1609 spin_unlock_irqrestore(ap->lock, flags); 1610 1611 if (!timeout) { 1612 if (ata_probe_timeout) { 1613 timeout = ata_probe_timeout * 1000; 1614 } else { 1615 timeout = ata_internal_cmd_timeout(dev, command); 1616 auto_timeout = true; 1617 } 1618 } 1619 1620 ata_eh_release(ap); 1621 1622 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1623 1624 ata_eh_acquire(ap); 1625 1626 ata_sff_flush_pio_task(ap); 1627 1628 if (!rc) { 1629 /* 1630 * We are racing with irq here. If we lose, the following test 1631 * prevents us from completing the qc twice. If we win, the port 1632 * is frozen and will be cleaned up by ->post_internal_cmd(). 1633 */ 1634 spin_lock_irqsave(ap->lock, flags); 1635 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1636 qc->err_mask |= AC_ERR_TIMEOUT; 1637 ata_port_freeze(ap); 1638 ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n", 1639 timeout, command); 1640 } 1641 spin_unlock_irqrestore(ap->lock, flags); 1642 } 1643 1644 if (ap->ops->post_internal_cmd) 1645 ap->ops->post_internal_cmd(qc); 1646 1647 /* Perform minimal error analysis */ 1648 if (qc->flags & ATA_QCFLAG_EH) { 1649 if (qc->result_tf.status & (ATA_ERR | ATA_DF)) 1650 qc->err_mask |= AC_ERR_DEV; 1651 1652 if (!qc->err_mask) 1653 qc->err_mask |= AC_ERR_OTHER; 1654 1655 if (qc->err_mask & ~AC_ERR_OTHER) 1656 qc->err_mask &= ~AC_ERR_OTHER; 1657 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) { 1658 qc->result_tf.status |= ATA_SENSE; 1659 } 1660 1661 /* Finish up */ 1662 spin_lock_irqsave(ap->lock, flags); 1663 1664 *tf = qc->result_tf; 1665 err_mask = qc->err_mask; 1666 1667 ata_qc_free(qc); 1668 link->active_tag = preempted_tag; 1669 link->sactive = preempted_sactive; 1670 ap->qc_active = preempted_qc_active; 1671 ap->nr_active_links = preempted_nr_active_links; 1672 1673 spin_unlock_irqrestore(ap->lock, flags); 1674 1675 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1676 ata_internal_cmd_timed_out(dev, command); 1677 1678 return err_mask; 1679 } 1680 1681 /** 1682 * ata_pio_need_iordy - check if iordy needed 1683 * @adev: ATA device 1684 * 1685 * Check if the current speed of the device requires IORDY. Used 1686 * by various controllers for chip configuration. 1687 */ 1688 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1689 { 1690 /* Don't set IORDY if we're preparing for reset. IORDY may 1691 * lead to controller lock up on certain controllers if the 1692 * port is not occupied. See bko#11703 for details. 1693 */ 1694 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1695 return 0; 1696 /* Controller doesn't support IORDY. Probably a pointless 1697 * check as the caller should know this. 1698 */ 1699 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1700 return 0; 1701 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1702 if (ata_id_is_cfa(adev->id) 1703 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1704 return 0; 1705 /* PIO3 and higher it is mandatory */ 1706 if (adev->pio_mode > XFER_PIO_2) 1707 return 1; 1708 /* We turn it on when possible */ 1709 if (ata_id_has_iordy(adev->id)) 1710 return 1; 1711 return 0; 1712 } 1713 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 1714 1715 /** 1716 * ata_pio_mask_no_iordy - Return the non IORDY mask 1717 * @adev: ATA device 1718 * 1719 * Compute the highest mode possible if we are not using iordy. Return 1720 * -1 if no iordy mode is available. 1721 */ 1722 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1723 { 1724 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1725 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1726 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1727 /* Is the speed faster than the drive allows non IORDY ? */ 1728 if (pio) { 1729 /* This is cycle times not frequency - watch the logic! */ 1730 if (pio > 240) /* PIO2 is 240nS per cycle */ 1731 return 3 << ATA_SHIFT_PIO; 1732 return 7 << ATA_SHIFT_PIO; 1733 } 1734 } 1735 return 3 << ATA_SHIFT_PIO; 1736 } 1737 1738 /** 1739 * ata_do_dev_read_id - default ID read method 1740 * @dev: device 1741 * @tf: proposed taskfile 1742 * @id: data buffer 1743 * 1744 * Issue the identify taskfile and hand back the buffer containing 1745 * identify data. For some RAID controllers and for pre ATA devices 1746 * this function is wrapped or replaced by the driver 1747 */ 1748 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1749 struct ata_taskfile *tf, __le16 *id) 1750 { 1751 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1752 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1753 } 1754 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 1755 1756 /** 1757 * ata_dev_read_id - Read ID data from the specified device 1758 * @dev: target device 1759 * @p_class: pointer to class of the target device (may be changed) 1760 * @flags: ATA_READID_* flags 1761 * @id: buffer to read IDENTIFY data into 1762 * 1763 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1764 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1765 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1766 * for pre-ATA4 drives. 1767 * 1768 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1769 * now we abort if we hit that case. 1770 * 1771 * LOCKING: 1772 * Kernel thread context (may sleep) 1773 * 1774 * RETURNS: 1775 * 0 on success, -errno otherwise. 1776 */ 1777 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1778 unsigned int flags, u16 *id) 1779 { 1780 struct ata_port *ap = dev->link->ap; 1781 unsigned int class = *p_class; 1782 struct ata_taskfile tf; 1783 unsigned int err_mask = 0; 1784 const char *reason; 1785 bool is_semb = class == ATA_DEV_SEMB; 1786 int may_fallback = 1, tried_spinup = 0; 1787 int rc; 1788 1789 retry: 1790 ata_tf_init(dev, &tf); 1791 1792 switch (class) { 1793 case ATA_DEV_SEMB: 1794 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1795 fallthrough; 1796 case ATA_DEV_ATA: 1797 case ATA_DEV_ZAC: 1798 tf.command = ATA_CMD_ID_ATA; 1799 break; 1800 case ATA_DEV_ATAPI: 1801 tf.command = ATA_CMD_ID_ATAPI; 1802 break; 1803 default: 1804 rc = -ENODEV; 1805 reason = "unsupported class"; 1806 goto err_out; 1807 } 1808 1809 tf.protocol = ATA_PROT_PIO; 1810 1811 /* Some devices choke if TF registers contain garbage. Make 1812 * sure those are properly initialized. 1813 */ 1814 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1815 1816 /* Device presence detection is unreliable on some 1817 * controllers. Always poll IDENTIFY if available. 1818 */ 1819 tf.flags |= ATA_TFLAG_POLLING; 1820 1821 if (ap->ops->read_id) 1822 err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id); 1823 else 1824 err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id); 1825 1826 if (err_mask) { 1827 if (err_mask & AC_ERR_NODEV_HINT) { 1828 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1829 return -ENOENT; 1830 } 1831 1832 if (is_semb) { 1833 ata_dev_info(dev, 1834 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1835 /* SEMB is not supported yet */ 1836 *p_class = ATA_DEV_SEMB_UNSUP; 1837 return 0; 1838 } 1839 1840 if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) { 1841 /* Device or controller might have reported 1842 * the wrong device class. Give a shot at the 1843 * other IDENTIFY if the current one is 1844 * aborted by the device. 1845 */ 1846 if (may_fallback) { 1847 may_fallback = 0; 1848 1849 if (class == ATA_DEV_ATA) 1850 class = ATA_DEV_ATAPI; 1851 else 1852 class = ATA_DEV_ATA; 1853 goto retry; 1854 } 1855 1856 /* Control reaches here iff the device aborted 1857 * both flavors of IDENTIFYs which happens 1858 * sometimes with phantom devices. 1859 */ 1860 ata_dev_dbg(dev, 1861 "both IDENTIFYs aborted, assuming NODEV\n"); 1862 return -ENOENT; 1863 } 1864 1865 rc = -EIO; 1866 reason = "I/O error"; 1867 goto err_out; 1868 } 1869 1870 if (dev->quirks & ATA_QUIRK_DUMP_ID) { 1871 ata_dev_info(dev, "dumping IDENTIFY data, " 1872 "class=%d may_fallback=%d tried_spinup=%d\n", 1873 class, may_fallback, tried_spinup); 1874 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 1875 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1876 } 1877 1878 /* Falling back doesn't make sense if ID data was read 1879 * successfully at least once. 1880 */ 1881 may_fallback = 0; 1882 1883 swap_buf_le16(id, ATA_ID_WORDS); 1884 1885 /* sanity check */ 1886 rc = -EINVAL; 1887 reason = "device reports invalid type"; 1888 1889 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) { 1890 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1891 goto err_out; 1892 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1893 ata_id_is_ata(id)) { 1894 ata_dev_dbg(dev, 1895 "host indicates ignore ATA devices, ignored\n"); 1896 return -ENOENT; 1897 } 1898 } else { 1899 if (ata_id_is_ata(id)) 1900 goto err_out; 1901 } 1902 1903 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1904 tried_spinup = 1; 1905 /* 1906 * Drive powered-up in standby mode, and requires a specific 1907 * SET_FEATURES spin-up subcommand before it will accept 1908 * anything other than the original IDENTIFY command. 1909 */ 1910 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1911 if (err_mask && id[2] != 0x738c) { 1912 rc = -EIO; 1913 reason = "SPINUP failed"; 1914 goto err_out; 1915 } 1916 /* 1917 * If the drive initially returned incomplete IDENTIFY info, 1918 * we now must reissue the IDENTIFY command. 1919 */ 1920 if (id[2] == 0x37c8) 1921 goto retry; 1922 } 1923 1924 if ((flags & ATA_READID_POSTRESET) && 1925 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) { 1926 /* 1927 * The exact sequence expected by certain pre-ATA4 drives is: 1928 * SRST RESET 1929 * IDENTIFY (optional in early ATA) 1930 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 1931 * anything else.. 1932 * Some drives were very specific about that exact sequence. 1933 * 1934 * Note that ATA4 says lba is mandatory so the second check 1935 * should never trigger. 1936 */ 1937 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 1938 err_mask = ata_dev_init_params(dev, id[3], id[6]); 1939 if (err_mask) { 1940 rc = -EIO; 1941 reason = "INIT_DEV_PARAMS failed"; 1942 goto err_out; 1943 } 1944 1945 /* current CHS translation info (id[53-58]) might be 1946 * changed. reread the identify device info. 1947 */ 1948 flags &= ~ATA_READID_POSTRESET; 1949 goto retry; 1950 } 1951 } 1952 1953 *p_class = class; 1954 1955 return 0; 1956 1957 err_out: 1958 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 1959 reason, err_mask); 1960 return rc; 1961 } 1962 1963 bool ata_dev_power_init_tf(struct ata_device *dev, struct ata_taskfile *tf, 1964 bool set_active) 1965 { 1966 /* Only applies to ATA and ZAC devices */ 1967 if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) 1968 return false; 1969 1970 ata_tf_init(dev, tf); 1971 tf->flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1972 tf->protocol = ATA_PROT_NODATA; 1973 1974 if (set_active) { 1975 /* VERIFY for 1 sector at lba=0 */ 1976 tf->command = ATA_CMD_VERIFY; 1977 tf->nsect = 1; 1978 if (dev->flags & ATA_DFLAG_LBA) { 1979 tf->flags |= ATA_TFLAG_LBA; 1980 tf->device |= ATA_LBA; 1981 } else { 1982 /* CHS */ 1983 tf->lbal = 0x1; /* sect */ 1984 } 1985 } else { 1986 tf->command = ATA_CMD_STANDBYNOW1; 1987 } 1988 1989 return true; 1990 } 1991 1992 static bool ata_dev_power_is_active(struct ata_device *dev) 1993 { 1994 struct ata_taskfile tf; 1995 unsigned int err_mask; 1996 1997 ata_tf_init(dev, &tf); 1998 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1999 tf.protocol = ATA_PROT_NODATA; 2000 tf.command = ATA_CMD_CHK_POWER; 2001 2002 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 2003 if (err_mask) { 2004 ata_dev_err(dev, "Check power mode failed (err_mask=0x%x)\n", 2005 err_mask); 2006 /* 2007 * Assume we are in standby mode so that we always force a 2008 * spinup in ata_dev_power_set_active(). 2009 */ 2010 return false; 2011 } 2012 2013 ata_dev_dbg(dev, "Power mode: 0x%02x\n", tf.nsect); 2014 2015 /* Active or idle */ 2016 return tf.nsect == 0xff; 2017 } 2018 2019 /** 2020 * ata_dev_power_set_standby - Set a device power mode to standby 2021 * @dev: target device 2022 * 2023 * Issue a STANDBY IMMEDIATE command to set a device power mode to standby. 2024 * For an HDD device, this spins down the disks. 2025 * 2026 * LOCKING: 2027 * Kernel thread context (may sleep). 2028 */ 2029 void ata_dev_power_set_standby(struct ata_device *dev) 2030 { 2031 unsigned long ap_flags = dev->link->ap->flags; 2032 struct ata_taskfile tf; 2033 unsigned int err_mask; 2034 2035 /* If the device is already sleeping or in standby, do nothing. */ 2036 if ((dev->flags & ATA_DFLAG_SLEEPING) || 2037 !ata_dev_power_is_active(dev)) 2038 return; 2039 2040 /* 2041 * Some odd clown BIOSes issue spindown on power off (ACPI S4 or S5) 2042 * causing some drives to spin up and down again. For these, do nothing 2043 * if we are being called on shutdown. 2044 */ 2045 if ((ap_flags & ATA_FLAG_NO_POWEROFF_SPINDOWN) && 2046 system_state == SYSTEM_POWER_OFF) 2047 return; 2048 2049 if ((ap_flags & ATA_FLAG_NO_HIBERNATE_SPINDOWN) && 2050 system_entering_hibernation()) 2051 return; 2052 2053 /* Issue STANDBY IMMEDIATE command only if supported by the device */ 2054 if (!ata_dev_power_init_tf(dev, &tf, false)) 2055 return; 2056 2057 ata_dev_notice(dev, "Entering standby power mode\n"); 2058 2059 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 2060 if (err_mask) 2061 ata_dev_err(dev, "STANDBY IMMEDIATE failed (err_mask=0x%x)\n", 2062 err_mask); 2063 } 2064 2065 /** 2066 * ata_dev_power_set_active - Set a device power mode to active 2067 * @dev: target device 2068 * 2069 * Issue a VERIFY command to enter to ensure that the device is in the 2070 * active power mode. For a spun-down HDD (standby or idle power mode), 2071 * the VERIFY command will complete after the disk spins up. 2072 * 2073 * LOCKING: 2074 * Kernel thread context (may sleep). 2075 */ 2076 void ata_dev_power_set_active(struct ata_device *dev) 2077 { 2078 struct ata_taskfile tf; 2079 unsigned int err_mask; 2080 2081 /* 2082 * Issue READ VERIFY SECTORS command for 1 sector at lba=0 only 2083 * if supported by the device. 2084 */ 2085 if (!ata_dev_power_init_tf(dev, &tf, true)) 2086 return; 2087 2088 /* 2089 * Check the device power state & condition and force a spinup with 2090 * VERIFY command only if the drive is not already ACTIVE or IDLE. 2091 */ 2092 if (ata_dev_power_is_active(dev)) 2093 return; 2094 2095 ata_dev_notice(dev, "Entering active power mode\n"); 2096 2097 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 2098 if (err_mask) 2099 ata_dev_err(dev, "VERIFY failed (err_mask=0x%x)\n", 2100 err_mask); 2101 } 2102 2103 /** 2104 * ata_read_log_page - read a specific log page 2105 * @dev: target device 2106 * @log: log to read 2107 * @page: page to read 2108 * @buf: buffer to store read page 2109 * @sectors: number of sectors to read 2110 * 2111 * Read log page using READ_LOG_EXT command. 2112 * 2113 * LOCKING: 2114 * Kernel thread context (may sleep). 2115 * 2116 * RETURNS: 2117 * 0 on success, AC_ERR_* mask otherwise. 2118 */ 2119 unsigned int ata_read_log_page(struct ata_device *dev, u8 log, 2120 u8 page, void *buf, unsigned int sectors) 2121 { 2122 unsigned long ap_flags = dev->link->ap->flags; 2123 struct ata_taskfile tf; 2124 unsigned int err_mask; 2125 bool dma = false; 2126 2127 ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page); 2128 2129 /* 2130 * Return error without actually issuing the command on controllers 2131 * which e.g. lockup on a read log page. 2132 */ 2133 if (ap_flags & ATA_FLAG_NO_LOG_PAGE) 2134 return AC_ERR_DEV; 2135 2136 retry: 2137 ata_tf_init(dev, &tf); 2138 if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) && 2139 !(dev->quirks & ATA_QUIRK_NO_DMA_LOG)) { 2140 tf.command = ATA_CMD_READ_LOG_DMA_EXT; 2141 tf.protocol = ATA_PROT_DMA; 2142 dma = true; 2143 } else { 2144 tf.command = ATA_CMD_READ_LOG_EXT; 2145 tf.protocol = ATA_PROT_PIO; 2146 dma = false; 2147 } 2148 tf.lbal = log; 2149 tf.lbam = page; 2150 tf.nsect = sectors; 2151 tf.hob_nsect = sectors >> 8; 2152 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE; 2153 2154 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 2155 buf, sectors * ATA_SECT_SIZE, 0); 2156 2157 if (err_mask) { 2158 if (dma) { 2159 dev->quirks |= ATA_QUIRK_NO_DMA_LOG; 2160 if (!ata_port_is_frozen(dev->link->ap)) 2161 goto retry; 2162 } 2163 ata_dev_err(dev, 2164 "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n", 2165 (unsigned int)log, (unsigned int)page, err_mask); 2166 } 2167 2168 return err_mask; 2169 } 2170 2171 static inline void ata_clear_log_directory(struct ata_device *dev) 2172 { 2173 memset(dev->gp_log_dir, 0, ATA_SECT_SIZE); 2174 } 2175 2176 static int ata_read_log_directory(struct ata_device *dev) 2177 { 2178 u16 version; 2179 2180 /* If the log page is already cached, do nothing. */ 2181 version = get_unaligned_le16(&dev->gp_log_dir[0]); 2182 if (version == 0x0001) 2183 return 0; 2184 2185 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, dev->gp_log_dir, 1)) { 2186 ata_clear_log_directory(dev); 2187 return -EIO; 2188 } 2189 2190 version = get_unaligned_le16(&dev->gp_log_dir[0]); 2191 if (version != 0x0001) 2192 ata_dev_warn_once(dev, 2193 "Invalid log directory version 0x%04x\n", 2194 version); 2195 2196 return 0; 2197 } 2198 2199 static int ata_log_supported(struct ata_device *dev, u8 log) 2200 { 2201 if (dev->quirks & ATA_QUIRK_NO_LOG_DIR) 2202 return 0; 2203 2204 if (ata_read_log_directory(dev)) 2205 return 0; 2206 2207 return get_unaligned_le16(&dev->gp_log_dir[log * 2]); 2208 } 2209 2210 static bool ata_identify_page_supported(struct ata_device *dev, u8 page) 2211 { 2212 unsigned int err, i; 2213 2214 if (dev->quirks & ATA_QUIRK_NO_ID_DEV_LOG) 2215 return false; 2216 2217 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) { 2218 /* 2219 * IDENTIFY DEVICE data log is defined as mandatory starting 2220 * with ACS-3 (ATA version 10). Warn about the missing log 2221 * for drives which implement this ATA level or above. 2222 */ 2223 if (ata_id_major_version(dev->id) >= 10) 2224 ata_dev_warn(dev, 2225 "ATA Identify Device Log not supported\n"); 2226 dev->quirks |= ATA_QUIRK_NO_ID_DEV_LOG; 2227 return false; 2228 } 2229 2230 /* 2231 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is 2232 * supported. 2233 */ 2234 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, 2235 dev->sector_buf, 1); 2236 if (err) 2237 return false; 2238 2239 for (i = 0; i < dev->sector_buf[8]; i++) { 2240 if (dev->sector_buf[9 + i] == page) 2241 return true; 2242 } 2243 2244 return false; 2245 } 2246 2247 static int ata_do_link_spd_quirk(struct ata_device *dev) 2248 { 2249 struct ata_link *plink = ata_dev_phys_link(dev); 2250 u32 target, target_limit; 2251 2252 if (!sata_scr_valid(plink)) 2253 return 0; 2254 2255 if (dev->quirks & ATA_QUIRK_1_5_GBPS) 2256 target = 1; 2257 else 2258 return 0; 2259 2260 target_limit = (1 << target) - 1; 2261 2262 /* if already on stricter limit, no need to push further */ 2263 if (plink->sata_spd_limit <= target_limit) 2264 return 0; 2265 2266 plink->sata_spd_limit = target_limit; 2267 2268 /* Request another EH round by returning -EAGAIN if link is 2269 * going faster than the target speed. Forward progress is 2270 * guaranteed by setting sata_spd_limit to target_limit above. 2271 */ 2272 if (plink->sata_spd > target) { 2273 ata_dev_info(dev, "applying link speed limit quirk to %s\n", 2274 sata_spd_string(target)); 2275 return -EAGAIN; 2276 } 2277 return 0; 2278 } 2279 2280 static inline bool ata_dev_knobble(struct ata_device *dev) 2281 { 2282 struct ata_port *ap = dev->link->ap; 2283 2284 if (ata_dev_quirks(dev) & ATA_QUIRK_BRIDGE_OK) 2285 return false; 2286 2287 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2288 } 2289 2290 static void ata_dev_config_ncq_send_recv(struct ata_device *dev) 2291 { 2292 unsigned int err_mask; 2293 2294 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) { 2295 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n"); 2296 return; 2297 } 2298 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, 2299 0, dev->sector_buf, 1); 2300 if (!err_mask) { 2301 u8 *cmds = dev->ncq_send_recv_cmds; 2302 2303 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; 2304 memcpy(cmds, dev->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE); 2305 2306 if (dev->quirks & ATA_QUIRK_NO_NCQ_TRIM) { 2307 ata_dev_dbg(dev, "disabling queued TRIM support\n"); 2308 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &= 2309 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM; 2310 } 2311 } 2312 } 2313 2314 static void ata_dev_config_ncq_non_data(struct ata_device *dev) 2315 { 2316 unsigned int err_mask; 2317 2318 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) { 2319 ata_dev_warn(dev, 2320 "NCQ Non-Data Log not supported\n"); 2321 return; 2322 } 2323 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA, 2324 0, dev->sector_buf, 1); 2325 if (!err_mask) 2326 memcpy(dev->ncq_non_data_cmds, dev->sector_buf, 2327 ATA_LOG_NCQ_NON_DATA_SIZE); 2328 } 2329 2330 static void ata_dev_config_ncq_prio(struct ata_device *dev) 2331 { 2332 unsigned int err_mask; 2333 2334 if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS)) 2335 return; 2336 2337 err_mask = ata_read_log_page(dev, 2338 ATA_LOG_IDENTIFY_DEVICE, 2339 ATA_LOG_SATA_SETTINGS, 2340 dev->sector_buf, 1); 2341 if (err_mask) 2342 goto not_supported; 2343 2344 if (!(dev->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3))) 2345 goto not_supported; 2346 2347 dev->flags |= ATA_DFLAG_NCQ_PRIO; 2348 2349 return; 2350 2351 not_supported: 2352 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED; 2353 dev->flags &= ~ATA_DFLAG_NCQ_PRIO; 2354 } 2355 2356 static bool ata_dev_check_adapter(struct ata_device *dev, 2357 unsigned short vendor_id) 2358 { 2359 struct pci_dev *pcidev = NULL; 2360 struct device *parent_dev = NULL; 2361 2362 for (parent_dev = dev->tdev.parent; parent_dev != NULL; 2363 parent_dev = parent_dev->parent) { 2364 if (dev_is_pci(parent_dev)) { 2365 pcidev = to_pci_dev(parent_dev); 2366 if (pcidev->vendor == vendor_id) 2367 return true; 2368 break; 2369 } 2370 } 2371 2372 return false; 2373 } 2374 2375 bool ata_adapter_is_online(struct ata_port *ap) 2376 { 2377 struct device *dev; 2378 2379 if (!ap || !ap->host) 2380 return false; 2381 2382 dev = ap->host->dev; 2383 if (!dev) 2384 return false; 2385 2386 if (dev_is_pci(dev) && 2387 pci_channel_offline(to_pci_dev(dev))) 2388 return false; 2389 2390 return true; 2391 } 2392 2393 static int ata_dev_config_ncq(struct ata_device *dev, 2394 char *desc, size_t desc_sz) 2395 { 2396 struct ata_port *ap = dev->link->ap; 2397 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2398 unsigned int err_mask; 2399 char *aa_desc = ""; 2400 2401 if (!ata_id_has_ncq(dev->id)) { 2402 desc[0] = '\0'; 2403 return 0; 2404 } 2405 if (!IS_ENABLED(CONFIG_SATA_HOST)) 2406 return 0; 2407 if (dev->quirks & ATA_QUIRK_NONCQ) { 2408 snprintf(desc, desc_sz, "NCQ (not used)"); 2409 return 0; 2410 } 2411 2412 if (dev->quirks & ATA_QUIRK_NO_NCQ_ON_ATI && 2413 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) { 2414 snprintf(desc, desc_sz, "NCQ (not used)"); 2415 return 0; 2416 } 2417 2418 if (ap->flags & ATA_FLAG_NCQ) { 2419 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE); 2420 dev->flags |= ATA_DFLAG_NCQ; 2421 } 2422 2423 if (!(dev->quirks & ATA_QUIRK_BROKEN_FPDMA_AA) && 2424 (ap->flags & ATA_FLAG_FPDMA_AA) && 2425 ata_id_has_fpdma_aa(dev->id)) { 2426 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2427 SATA_FPDMA_AA); 2428 if (err_mask) { 2429 ata_dev_err(dev, 2430 "failed to enable AA (error_mask=0x%x)\n", 2431 err_mask); 2432 if (err_mask != AC_ERR_DEV) { 2433 dev->quirks |= ATA_QUIRK_BROKEN_FPDMA_AA; 2434 return -EIO; 2435 } 2436 } else 2437 aa_desc = ", AA"; 2438 } 2439 2440 if (hdepth >= ddepth) 2441 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2442 else 2443 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2444 ddepth, aa_desc); 2445 2446 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) { 2447 if (ata_id_has_ncq_send_and_recv(dev->id)) 2448 ata_dev_config_ncq_send_recv(dev); 2449 if (ata_id_has_ncq_non_data(dev->id)) 2450 ata_dev_config_ncq_non_data(dev); 2451 if (ata_id_has_ncq_prio(dev->id)) 2452 ata_dev_config_ncq_prio(dev); 2453 } 2454 2455 return 0; 2456 } 2457 2458 static void ata_dev_config_sense_reporting(struct ata_device *dev) 2459 { 2460 unsigned int err_mask; 2461 2462 if (!ata_id_has_sense_reporting(dev->id)) 2463 return; 2464 2465 if (ata_id_sense_reporting_enabled(dev->id)) 2466 return; 2467 2468 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1); 2469 if (err_mask) { 2470 ata_dev_dbg(dev, 2471 "failed to enable Sense Data Reporting, Emask 0x%x\n", 2472 err_mask); 2473 } 2474 } 2475 2476 static void ata_dev_config_zac(struct ata_device *dev) 2477 { 2478 unsigned int err_mask; 2479 u8 *identify_buf = dev->sector_buf; 2480 2481 dev->zac_zones_optimal_open = U32_MAX; 2482 dev->zac_zones_optimal_nonseq = U32_MAX; 2483 dev->zac_zones_max_open = U32_MAX; 2484 2485 if (!ata_dev_is_zac(dev)) 2486 return; 2487 2488 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) { 2489 ata_dev_warn(dev, 2490 "ATA Zoned Information Log not supported\n"); 2491 return; 2492 } 2493 2494 /* 2495 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information) 2496 */ 2497 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2498 ATA_LOG_ZONED_INFORMATION, 2499 identify_buf, 1); 2500 if (!err_mask) { 2501 u64 zoned_cap, opt_open, opt_nonseq, max_open; 2502 2503 zoned_cap = get_unaligned_le64(&identify_buf[8]); 2504 if ((zoned_cap >> 63)) 2505 dev->zac_zoned_cap = (zoned_cap & 1); 2506 opt_open = get_unaligned_le64(&identify_buf[24]); 2507 if ((opt_open >> 63)) 2508 dev->zac_zones_optimal_open = (u32)opt_open; 2509 opt_nonseq = get_unaligned_le64(&identify_buf[32]); 2510 if ((opt_nonseq >> 63)) 2511 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq; 2512 max_open = get_unaligned_le64(&identify_buf[40]); 2513 if ((max_open >> 63)) 2514 dev->zac_zones_max_open = (u32)max_open; 2515 } 2516 } 2517 2518 static void ata_dev_config_trusted(struct ata_device *dev) 2519 { 2520 u64 trusted_cap; 2521 unsigned int err; 2522 2523 if (!ata_id_has_trusted(dev->id)) 2524 return; 2525 2526 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) { 2527 ata_dev_warn(dev, 2528 "Security Log not supported\n"); 2529 return; 2530 } 2531 2532 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY, 2533 dev->sector_buf, 1); 2534 if (err) 2535 return; 2536 2537 trusted_cap = get_unaligned_le64(&dev->sector_buf[40]); 2538 if (!(trusted_cap & (1ULL << 63))) { 2539 ata_dev_dbg(dev, 2540 "Trusted Computing capability qword not valid!\n"); 2541 return; 2542 } 2543 2544 if (trusted_cap & (1 << 0)) 2545 dev->flags |= ATA_DFLAG_TRUSTED; 2546 } 2547 2548 static void ata_dev_cleanup_cdl_resources(struct ata_device *dev) 2549 { 2550 kfree(dev->cdl); 2551 dev->cdl = NULL; 2552 } 2553 2554 static int ata_dev_init_cdl_resources(struct ata_device *dev) 2555 { 2556 struct ata_cdl *cdl = dev->cdl; 2557 unsigned int err_mask; 2558 2559 if (!cdl) { 2560 cdl = kzalloc(sizeof(*cdl), GFP_KERNEL); 2561 if (!cdl) 2562 return -ENOMEM; 2563 dev->cdl = cdl; 2564 } 2565 2566 err_mask = ata_read_log_page(dev, ATA_LOG_CDL, 0, cdl->desc_log_buf, 2567 ATA_LOG_CDL_SIZE / ATA_SECT_SIZE); 2568 if (err_mask) { 2569 ata_dev_warn(dev, "Read Command Duration Limits log failed\n"); 2570 ata_dev_cleanup_cdl_resources(dev); 2571 return -EIO; 2572 } 2573 2574 return 0; 2575 } 2576 2577 static void ata_dev_config_cdl(struct ata_device *dev) 2578 { 2579 unsigned int err_mask; 2580 bool cdl_enabled; 2581 u64 val; 2582 int ret; 2583 2584 if (ata_id_major_version(dev->id) < 11) 2585 goto not_supported; 2586 2587 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE) || 2588 !ata_identify_page_supported(dev, ATA_LOG_SUPPORTED_CAPABILITIES) || 2589 !ata_identify_page_supported(dev, ATA_LOG_CURRENT_SETTINGS)) 2590 goto not_supported; 2591 2592 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2593 ATA_LOG_SUPPORTED_CAPABILITIES, 2594 dev->sector_buf, 1); 2595 if (err_mask) 2596 goto not_supported; 2597 2598 /* Check Command Duration Limit Supported bits */ 2599 val = get_unaligned_le64(&dev->sector_buf[168]); 2600 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(0))) 2601 goto not_supported; 2602 2603 /* Warn the user if command duration guideline is not supported */ 2604 if (!(val & BIT_ULL(1))) 2605 ata_dev_warn(dev, 2606 "Command duration guideline is not supported\n"); 2607 2608 /* 2609 * We must have support for the sense data for successful NCQ commands 2610 * log indicated by the successful NCQ command sense data supported bit. 2611 */ 2612 val = get_unaligned_le64(&dev->sector_buf[8]); 2613 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(47))) { 2614 ata_dev_warn(dev, 2615 "CDL supported but Successful NCQ Command Sense Data is not supported\n"); 2616 goto not_supported; 2617 } 2618 2619 /* Without NCQ autosense, the successful NCQ commands log is useless. */ 2620 if (!ata_id_has_ncq_autosense(dev->id)) { 2621 ata_dev_warn(dev, 2622 "CDL supported but NCQ autosense is not supported\n"); 2623 goto not_supported; 2624 } 2625 2626 /* 2627 * If CDL is marked as enabled, make sure the feature is enabled too. 2628 * Conversely, if CDL is disabled, make sure the feature is turned off. 2629 */ 2630 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2631 ATA_LOG_CURRENT_SETTINGS, 2632 dev->sector_buf, 1); 2633 if (err_mask) 2634 goto not_supported; 2635 2636 val = get_unaligned_le64(&dev->sector_buf[8]); 2637 cdl_enabled = val & BIT_ULL(63) && val & BIT_ULL(21); 2638 if (dev->flags & ATA_DFLAG_CDL_ENABLED) { 2639 if (!cdl_enabled) { 2640 /* Enable CDL on the device */ 2641 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 1); 2642 if (err_mask) { 2643 ata_dev_err(dev, 2644 "Enable CDL feature failed\n"); 2645 goto not_supported; 2646 } 2647 } 2648 } else { 2649 if (cdl_enabled) { 2650 /* Disable CDL on the device */ 2651 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 0); 2652 if (err_mask) { 2653 ata_dev_err(dev, 2654 "Disable CDL feature failed\n"); 2655 goto not_supported; 2656 } 2657 } 2658 } 2659 2660 /* 2661 * While CDL itself has to be enabled using sysfs, CDL requires that 2662 * sense data for successful NCQ commands is enabled to work properly. 2663 * Just like ata_dev_config_sense_reporting(), enable it unconditionally 2664 * if supported. 2665 */ 2666 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(18))) { 2667 err_mask = ata_dev_set_feature(dev, 2668 SETFEATURE_SENSE_DATA_SUCC_NCQ, 0x1); 2669 if (err_mask) { 2670 ata_dev_warn(dev, 2671 "failed to enable Sense Data for successful NCQ commands, Emask 0x%x\n", 2672 err_mask); 2673 goto not_supported; 2674 } 2675 } 2676 2677 /* CDL is supported: allocate and initialize needed resources. */ 2678 ret = ata_dev_init_cdl_resources(dev); 2679 if (ret) { 2680 ata_dev_warn(dev, "Initialize CDL resources failed\n"); 2681 goto not_supported; 2682 } 2683 2684 dev->flags |= ATA_DFLAG_CDL; 2685 2686 return; 2687 2688 not_supported: 2689 dev->flags &= ~(ATA_DFLAG_CDL | ATA_DFLAG_CDL_ENABLED); 2690 ata_dev_cleanup_cdl_resources(dev); 2691 } 2692 2693 static int ata_dev_config_lba(struct ata_device *dev) 2694 { 2695 const u16 *id = dev->id; 2696 const char *lba_desc; 2697 char ncq_desc[32]; 2698 int ret; 2699 2700 dev->flags |= ATA_DFLAG_LBA; 2701 2702 if (ata_id_has_lba48(id)) { 2703 lba_desc = "LBA48"; 2704 dev->flags |= ATA_DFLAG_LBA48; 2705 if (dev->n_sectors >= (1UL << 28) && 2706 ata_id_has_flush_ext(id)) 2707 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2708 } else { 2709 lba_desc = "LBA"; 2710 } 2711 2712 /* config NCQ */ 2713 ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2714 2715 /* print device info to dmesg */ 2716 if (ata_dev_print_info(dev)) 2717 ata_dev_info(dev, 2718 "%llu sectors, multi %u: %s %s\n", 2719 (unsigned long long)dev->n_sectors, 2720 dev->multi_count, lba_desc, ncq_desc); 2721 2722 return ret; 2723 } 2724 2725 static void ata_dev_config_chs(struct ata_device *dev) 2726 { 2727 const u16 *id = dev->id; 2728 2729 if (ata_id_current_chs_valid(id)) { 2730 /* Current CHS translation is valid. */ 2731 dev->cylinders = id[54]; 2732 dev->heads = id[55]; 2733 dev->sectors = id[56]; 2734 } else { 2735 /* Default translation */ 2736 dev->cylinders = id[1]; 2737 dev->heads = id[3]; 2738 dev->sectors = id[6]; 2739 } 2740 2741 /* print device info to dmesg */ 2742 if (ata_dev_print_info(dev)) 2743 ata_dev_info(dev, 2744 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2745 (unsigned long long)dev->n_sectors, 2746 dev->multi_count, dev->cylinders, 2747 dev->heads, dev->sectors); 2748 } 2749 2750 static void ata_dev_config_fua(struct ata_device *dev) 2751 { 2752 /* Ignore FUA support if its use is disabled globally */ 2753 if (!libata_fua) 2754 goto nofua; 2755 2756 /* Ignore devices without support for WRITE DMA FUA EXT */ 2757 if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id)) 2758 goto nofua; 2759 2760 /* Ignore known bad devices and devices that lack NCQ support */ 2761 if (!ata_ncq_supported(dev) || (dev->quirks & ATA_QUIRK_NO_FUA)) 2762 goto nofua; 2763 2764 dev->flags |= ATA_DFLAG_FUA; 2765 2766 return; 2767 2768 nofua: 2769 dev->flags &= ~ATA_DFLAG_FUA; 2770 } 2771 2772 static void ata_dev_config_devslp(struct ata_device *dev) 2773 { 2774 u8 *sata_setting = dev->sector_buf; 2775 unsigned int err_mask; 2776 int i, j; 2777 2778 /* 2779 * Check device sleep capability. Get DevSlp timing variables 2780 * from SATA Settings page of Identify Device Data Log. 2781 */ 2782 if (!ata_id_has_devslp(dev->id) || 2783 !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS)) 2784 return; 2785 2786 err_mask = ata_read_log_page(dev, 2787 ATA_LOG_IDENTIFY_DEVICE, 2788 ATA_LOG_SATA_SETTINGS, 2789 sata_setting, 1); 2790 if (err_mask) 2791 return; 2792 2793 dev->flags |= ATA_DFLAG_DEVSLP; 2794 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2795 j = ATA_LOG_DEVSLP_OFFSET + i; 2796 dev->devslp_timing[i] = sata_setting[j]; 2797 } 2798 } 2799 2800 static void ata_dev_config_cpr(struct ata_device *dev) 2801 { 2802 unsigned int err_mask; 2803 size_t buf_len; 2804 int i, nr_cpr = 0; 2805 struct ata_cpr_log *cpr_log = NULL; 2806 u8 *desc, *buf = NULL; 2807 2808 if (ata_id_major_version(dev->id) < 11) 2809 goto out; 2810 2811 buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES); 2812 if (buf_len == 0) 2813 goto out; 2814 2815 /* 2816 * Read the concurrent positioning ranges log (0x47). We can have at 2817 * most 255 32B range descriptors plus a 64B header. This log varies in 2818 * size, so use the size reported in the GPL directory. Reading beyond 2819 * the supported length will result in an error. 2820 */ 2821 buf_len <<= 9; 2822 buf = kzalloc(buf_len, GFP_KERNEL); 2823 if (!buf) 2824 goto out; 2825 2826 err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES, 2827 0, buf, buf_len >> 9); 2828 if (err_mask) 2829 goto out; 2830 2831 nr_cpr = buf[0]; 2832 if (!nr_cpr) 2833 goto out; 2834 2835 cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL); 2836 if (!cpr_log) 2837 goto out; 2838 2839 cpr_log->nr_cpr = nr_cpr; 2840 desc = &buf[64]; 2841 for (i = 0; i < nr_cpr; i++, desc += 32) { 2842 cpr_log->cpr[i].num = desc[0]; 2843 cpr_log->cpr[i].num_storage_elements = desc[1]; 2844 cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]); 2845 cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]); 2846 } 2847 2848 out: 2849 swap(dev->cpr_log, cpr_log); 2850 kfree(cpr_log); 2851 kfree(buf); 2852 } 2853 2854 /* 2855 * Configure features related to link power management. 2856 */ 2857 static void ata_dev_config_lpm(struct ata_device *dev) 2858 { 2859 struct ata_port *ap = dev->link->ap; 2860 unsigned int err_mask; 2861 2862 if (ap->flags & ATA_FLAG_NO_LPM) { 2863 /* 2864 * When the port does not support LPM, we cannot support it on 2865 * the device either. 2866 */ 2867 dev->quirks |= ATA_QUIRK_NOLPM; 2868 } else { 2869 /* 2870 * Some WD SATA-1 drives have issues with LPM, turn on NOLPM for 2871 * them. 2872 */ 2873 if ((dev->quirks & ATA_QUIRK_WD_BROKEN_LPM) && 2874 (dev->id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2) 2875 dev->quirks |= ATA_QUIRK_NOLPM; 2876 2877 /* ATI specific quirk */ 2878 if ((dev->quirks & ATA_QUIRK_NO_LPM_ON_ATI) && 2879 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) 2880 dev->quirks |= ATA_QUIRK_NOLPM; 2881 } 2882 2883 if (dev->quirks & ATA_QUIRK_NOLPM && 2884 ap->target_lpm_policy != ATA_LPM_MAX_POWER) { 2885 ata_dev_warn(dev, "LPM support broken, forcing max_power\n"); 2886 ap->target_lpm_policy = ATA_LPM_MAX_POWER; 2887 } 2888 2889 /* 2890 * Device Initiated Power Management (DIPM) is normally disabled by 2891 * default on a device. However, DIPM may have been enabled and that 2892 * setting kept even after COMRESET because of the Software Settings 2893 * Preservation feature. So if the port does not support DIPM and the 2894 * device does, disable DIPM on the device. 2895 */ 2896 if (ap->flags & ATA_FLAG_NO_DIPM && ata_id_has_dipm(dev->id)) { 2897 err_mask = ata_dev_set_feature(dev, 2898 SETFEATURES_SATA_DISABLE, SATA_DIPM); 2899 if (err_mask && err_mask != AC_ERR_DEV) 2900 ata_dev_err(dev, "Disable DIPM failed, Emask 0x%x\n", 2901 err_mask); 2902 } 2903 } 2904 2905 static void ata_dev_print_features(struct ata_device *dev) 2906 { 2907 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK) && !dev->cpr_log && 2908 !ata_id_has_hipm(dev->id) && !ata_id_has_dipm(dev->id)) 2909 return; 2910 2911 ata_dev_info(dev, 2912 "Features:%s%s%s%s%s%s%s%s%s%s\n", 2913 dev->flags & ATA_DFLAG_FUA ? " FUA" : "", 2914 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "", 2915 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "", 2916 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "", 2917 ata_id_has_hipm(dev->id) ? " HIPM" : "", 2918 ata_id_has_dipm(dev->id) ? " DIPM" : "", 2919 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "", 2920 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "", 2921 dev->flags & ATA_DFLAG_CDL ? " CDL" : "", 2922 dev->cpr_log ? " CPR" : ""); 2923 } 2924 2925 /** 2926 * ata_dev_configure - Configure the specified ATA/ATAPI device 2927 * @dev: Target device to configure 2928 * 2929 * Configure @dev according to @dev->id. Generic and low-level 2930 * driver specific fixups are also applied. 2931 * 2932 * LOCKING: 2933 * Kernel thread context (may sleep) 2934 * 2935 * RETURNS: 2936 * 0 on success, -errno otherwise 2937 */ 2938 int ata_dev_configure(struct ata_device *dev) 2939 { 2940 struct ata_port *ap = dev->link->ap; 2941 bool print_info = ata_dev_print_info(dev); 2942 const u16 *id = dev->id; 2943 unsigned int xfer_mask; 2944 unsigned int err_mask; 2945 char revbuf[7]; /* XYZ-99\0 */ 2946 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2947 char modelbuf[ATA_ID_PROD_LEN+1]; 2948 int rc; 2949 2950 if (!ata_dev_enabled(dev)) { 2951 ata_dev_dbg(dev, "no device\n"); 2952 return 0; 2953 } 2954 2955 /* Clear the general purpose log directory cache. */ 2956 ata_clear_log_directory(dev); 2957 2958 /* Set quirks */ 2959 dev->quirks |= ata_dev_quirks(dev); 2960 ata_force_quirks(dev); 2961 2962 if (dev->quirks & ATA_QUIRK_DISABLE) { 2963 ata_dev_info(dev, "unsupported device, disabling\n"); 2964 ata_dev_disable(dev); 2965 return 0; 2966 } 2967 2968 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2969 dev->class == ATA_DEV_ATAPI) { 2970 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2971 atapi_enabled ? "not supported with this driver" 2972 : "disabled"); 2973 ata_dev_disable(dev); 2974 return 0; 2975 } 2976 2977 rc = ata_do_link_spd_quirk(dev); 2978 if (rc) 2979 return rc; 2980 2981 /* let ACPI work its magic */ 2982 rc = ata_acpi_on_devcfg(dev); 2983 if (rc) 2984 return rc; 2985 2986 /* massage HPA, do it early as it might change IDENTIFY data */ 2987 rc = ata_hpa_resize(dev); 2988 if (rc) 2989 return rc; 2990 2991 /* print device capabilities */ 2992 ata_dev_dbg(dev, 2993 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2994 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2995 __func__, 2996 id[49], id[82], id[83], id[84], 2997 id[85], id[86], id[87], id[88]); 2998 2999 /* initialize to-be-configured parameters */ 3000 dev->flags &= ~ATA_DFLAG_CFG_MASK; 3001 dev->max_sectors = 0; 3002 dev->cdb_len = 0; 3003 dev->n_sectors = 0; 3004 dev->cylinders = 0; 3005 dev->heads = 0; 3006 dev->sectors = 0; 3007 dev->multi_count = 0; 3008 3009 /* 3010 * common ATA, ATAPI feature tests 3011 */ 3012 3013 /* find max transfer mode; for printk only */ 3014 xfer_mask = ata_id_xfermask(id); 3015 3016 ata_dump_id(dev, id); 3017 3018 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 3019 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 3020 sizeof(fwrevbuf)); 3021 3022 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 3023 sizeof(modelbuf)); 3024 3025 /* ATA-specific feature tests */ 3026 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) { 3027 if (ata_id_is_cfa(id)) { 3028 /* CPRM may make this media unusable */ 3029 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 3030 ata_dev_warn(dev, 3031 "supports DRM functions and may not be fully accessible\n"); 3032 snprintf(revbuf, 7, "CFA"); 3033 } else { 3034 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 3035 /* Warn the user if the device has TPM extensions */ 3036 if (ata_id_has_tpm(id)) 3037 ata_dev_warn(dev, 3038 "supports DRM functions and may not be fully accessible\n"); 3039 } 3040 3041 dev->n_sectors = ata_id_n_sectors(id); 3042 if (ata_id_is_locked(id)) { 3043 /* 3044 * If Security locked, set capacity to zero to prevent 3045 * any I/O, e.g. partition scanning, as any I/O to a 3046 * locked drive will result in user visible errors. 3047 */ 3048 ata_dev_info(dev, 3049 "Security locked, setting capacity to zero\n"); 3050 dev->n_sectors = 0; 3051 } 3052 3053 /* get current R/W Multiple count setting */ 3054 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 3055 unsigned int max = dev->id[47] & 0xff; 3056 unsigned int cnt = dev->id[59] & 0xff; 3057 /* only recognize/allow powers of two here */ 3058 if (is_power_of_2(max) && is_power_of_2(cnt)) 3059 if (cnt <= max) 3060 dev->multi_count = cnt; 3061 } 3062 3063 /* print device info to dmesg */ 3064 if (print_info) 3065 ata_dev_info(dev, "%s: %s, %s, max %s\n", 3066 revbuf, modelbuf, fwrevbuf, 3067 ata_mode_string(xfer_mask)); 3068 3069 if (ata_id_has_lba(id)) { 3070 rc = ata_dev_config_lba(dev); 3071 if (rc) 3072 return rc; 3073 } else { 3074 ata_dev_config_chs(dev); 3075 } 3076 3077 ata_dev_config_lpm(dev); 3078 ata_dev_config_fua(dev); 3079 ata_dev_config_devslp(dev); 3080 ata_dev_config_sense_reporting(dev); 3081 ata_dev_config_zac(dev); 3082 ata_dev_config_trusted(dev); 3083 ata_dev_config_cpr(dev); 3084 ata_dev_config_cdl(dev); 3085 dev->cdb_len = 32; 3086 3087 if (print_info) 3088 ata_dev_print_features(dev); 3089 } 3090 3091 /* ATAPI-specific feature tests */ 3092 else if (dev->class == ATA_DEV_ATAPI) { 3093 const char *cdb_intr_string = ""; 3094 const char *atapi_an_string = ""; 3095 const char *dma_dir_string = ""; 3096 u32 sntf; 3097 3098 rc = atapi_cdb_len(id); 3099 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 3100 ata_dev_warn(dev, "unsupported CDB len %d\n", rc); 3101 rc = -EINVAL; 3102 goto err_out_nosup; 3103 } 3104 dev->cdb_len = (unsigned int) rc; 3105 3106 /* Enable ATAPI AN if both the host and device have 3107 * the support. If PMP is attached, SNTF is required 3108 * to enable ATAPI AN to discern between PHY status 3109 * changed notifications and ATAPI ANs. 3110 */ 3111 if (atapi_an && 3112 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 3113 (!sata_pmp_attached(ap) || 3114 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 3115 /* issue SET feature command to turn this on */ 3116 err_mask = ata_dev_set_feature(dev, 3117 SETFEATURES_SATA_ENABLE, SATA_AN); 3118 if (err_mask) 3119 ata_dev_err(dev, 3120 "failed to enable ATAPI AN (err_mask=0x%x)\n", 3121 err_mask); 3122 else { 3123 dev->flags |= ATA_DFLAG_AN; 3124 atapi_an_string = ", ATAPI AN"; 3125 } 3126 } 3127 3128 if (ata_id_cdb_intr(dev->id)) { 3129 dev->flags |= ATA_DFLAG_CDB_INTR; 3130 cdb_intr_string = ", CDB intr"; 3131 } 3132 3133 if (atapi_dmadir || (dev->quirks & ATA_QUIRK_ATAPI_DMADIR) || 3134 atapi_id_dmadir(dev->id)) { 3135 dev->flags |= ATA_DFLAG_DMADIR; 3136 dma_dir_string = ", DMADIR"; 3137 } 3138 3139 if (ata_id_has_da(dev->id)) { 3140 dev->flags |= ATA_DFLAG_DA; 3141 zpodd_init(dev); 3142 } 3143 3144 /* print device info to dmesg */ 3145 if (print_info) 3146 ata_dev_info(dev, 3147 "ATAPI: %s, %s, max %s%s%s%s\n", 3148 modelbuf, fwrevbuf, 3149 ata_mode_string(xfer_mask), 3150 cdb_intr_string, atapi_an_string, 3151 dma_dir_string); 3152 3153 ata_dev_config_lpm(dev); 3154 3155 if (print_info) 3156 ata_dev_print_features(dev); 3157 } 3158 3159 /* determine max_sectors */ 3160 dev->max_sectors = ATA_MAX_SECTORS; 3161 if (dev->flags & ATA_DFLAG_LBA48) 3162 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 3163 3164 /* Limit PATA drive on SATA cable bridge transfers to udma5, 3165 200 sectors */ 3166 if (ata_dev_knobble(dev)) { 3167 if (print_info) 3168 ata_dev_info(dev, "applying bridge limits\n"); 3169 dev->udma_mask &= ATA_UDMA5; 3170 dev->max_sectors = ATA_MAX_SECTORS; 3171 } 3172 3173 if ((dev->class == ATA_DEV_ATAPI) && 3174 (atapi_command_packet_set(id) == TYPE_TAPE)) { 3175 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 3176 dev->quirks |= ATA_QUIRK_STUCK_ERR; 3177 } 3178 3179 if (dev->quirks & ATA_QUIRK_MAX_SEC) 3180 dev->max_sectors = min_t(unsigned int, dev->max_sectors, 3181 ata_dev_get_quirk_value(dev, 3182 ATA_QUIRK_MAX_SEC)); 3183 3184 if (dev->quirks & ATA_QUIRK_MAX_SEC_LBA48) 3185 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 3186 3187 if (ap->ops->dev_config) 3188 ap->ops->dev_config(dev); 3189 3190 if (dev->quirks & ATA_QUIRK_DIAGNOSTIC) { 3191 /* Let the user know. We don't want to disallow opens for 3192 rescue purposes, or in case the vendor is just a blithering 3193 idiot. Do this after the dev_config call as some controllers 3194 with buggy firmware may want to avoid reporting false device 3195 bugs */ 3196 3197 if (print_info) { 3198 ata_dev_warn(dev, 3199 "Drive reports diagnostics failure. This may indicate a drive\n"); 3200 ata_dev_warn(dev, 3201 "fault or invalid emulation. Contact drive vendor for information.\n"); 3202 } 3203 } 3204 3205 if ((dev->quirks & ATA_QUIRK_FIRMWARE_WARN) && print_info) { 3206 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 3207 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 3208 } 3209 3210 return 0; 3211 3212 err_out_nosup: 3213 return rc; 3214 } 3215 3216 /** 3217 * ata_cable_40wire - return 40 wire cable type 3218 * @ap: port 3219 * 3220 * Helper method for drivers which want to hardwire 40 wire cable 3221 * detection. 3222 */ 3223 3224 int ata_cable_40wire(struct ata_port *ap) 3225 { 3226 return ATA_CBL_PATA40; 3227 } 3228 EXPORT_SYMBOL_GPL(ata_cable_40wire); 3229 3230 /** 3231 * ata_cable_80wire - return 80 wire cable type 3232 * @ap: port 3233 * 3234 * Helper method for drivers which want to hardwire 80 wire cable 3235 * detection. 3236 */ 3237 3238 int ata_cable_80wire(struct ata_port *ap) 3239 { 3240 return ATA_CBL_PATA80; 3241 } 3242 EXPORT_SYMBOL_GPL(ata_cable_80wire); 3243 3244 /** 3245 * ata_cable_unknown - return unknown PATA cable. 3246 * @ap: port 3247 * 3248 * Helper method for drivers which have no PATA cable detection. 3249 */ 3250 3251 int ata_cable_unknown(struct ata_port *ap) 3252 { 3253 return ATA_CBL_PATA_UNK; 3254 } 3255 EXPORT_SYMBOL_GPL(ata_cable_unknown); 3256 3257 /** 3258 * ata_cable_ignore - return ignored PATA cable. 3259 * @ap: port 3260 * 3261 * Helper method for drivers which don't use cable type to limit 3262 * transfer mode. 3263 */ 3264 int ata_cable_ignore(struct ata_port *ap) 3265 { 3266 return ATA_CBL_PATA_IGN; 3267 } 3268 EXPORT_SYMBOL_GPL(ata_cable_ignore); 3269 3270 /** 3271 * ata_cable_sata - return SATA cable type 3272 * @ap: port 3273 * 3274 * Helper method for drivers which have SATA cables 3275 */ 3276 3277 int ata_cable_sata(struct ata_port *ap) 3278 { 3279 return ATA_CBL_SATA; 3280 } 3281 EXPORT_SYMBOL_GPL(ata_cable_sata); 3282 3283 /** 3284 * sata_print_link_status - Print SATA link status 3285 * @link: SATA link to printk link status about 3286 * 3287 * This function prints link speed and status of a SATA link. 3288 * 3289 * LOCKING: 3290 * None. 3291 */ 3292 static void sata_print_link_status(struct ata_link *link) 3293 { 3294 u32 sstatus, scontrol, tmp; 3295 3296 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 3297 return; 3298 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 3299 return; 3300 3301 if (ata_phys_link_online(link)) { 3302 tmp = (sstatus >> 4) & 0xf; 3303 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 3304 sata_spd_string(tmp), sstatus, scontrol); 3305 } else { 3306 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 3307 sstatus, scontrol); 3308 } 3309 } 3310 3311 /** 3312 * ata_dev_pair - return other device on cable 3313 * @adev: device 3314 * 3315 * Obtain the other device on the same cable, or if none is 3316 * present NULL is returned 3317 */ 3318 3319 struct ata_device *ata_dev_pair(struct ata_device *adev) 3320 { 3321 struct ata_link *link = adev->link; 3322 struct ata_device *pair = &link->device[1 - adev->devno]; 3323 if (!ata_dev_enabled(pair)) 3324 return NULL; 3325 return pair; 3326 } 3327 EXPORT_SYMBOL_GPL(ata_dev_pair); 3328 3329 #ifdef CONFIG_ATA_ACPI 3330 /** 3331 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3332 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3333 * @cycle: cycle duration in ns 3334 * 3335 * Return matching xfer mode for @cycle. The returned mode is of 3336 * the transfer type specified by @xfer_shift. If @cycle is too 3337 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3338 * than the fastest known mode, the fasted mode is returned. 3339 * 3340 * LOCKING: 3341 * None. 3342 * 3343 * RETURNS: 3344 * Matching xfer_mode, 0xff if no match found. 3345 */ 3346 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3347 { 3348 u8 base_mode = 0xff, last_mode = 0xff; 3349 const struct ata_xfer_ent *ent; 3350 const struct ata_timing *t; 3351 3352 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3353 if (ent->shift == xfer_shift) 3354 base_mode = ent->base; 3355 3356 for (t = ata_timing_find_mode(base_mode); 3357 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3358 unsigned short this_cycle; 3359 3360 switch (xfer_shift) { 3361 case ATA_SHIFT_PIO: 3362 case ATA_SHIFT_MWDMA: 3363 this_cycle = t->cycle; 3364 break; 3365 case ATA_SHIFT_UDMA: 3366 this_cycle = t->udma; 3367 break; 3368 default: 3369 return 0xff; 3370 } 3371 3372 if (cycle > this_cycle) 3373 break; 3374 3375 last_mode = t->mode; 3376 } 3377 3378 return last_mode; 3379 } 3380 #endif 3381 3382 /** 3383 * ata_down_xfermask_limit - adjust dev xfer masks downward 3384 * @dev: Device to adjust xfer masks 3385 * @sel: ATA_DNXFER_* selector 3386 * 3387 * Adjust xfer masks of @dev downward. Note that this function 3388 * does not apply the change. Invoking ata_set_mode() afterwards 3389 * will apply the limit. 3390 * 3391 * LOCKING: 3392 * Inherited from caller. 3393 * 3394 * RETURNS: 3395 * 0 on success, negative errno on failure 3396 */ 3397 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3398 { 3399 char buf[32]; 3400 unsigned int orig_mask, xfer_mask; 3401 unsigned int pio_mask, mwdma_mask, udma_mask; 3402 int quiet, highbit; 3403 3404 quiet = !!(sel & ATA_DNXFER_QUIET); 3405 sel &= ~ATA_DNXFER_QUIET; 3406 3407 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3408 dev->mwdma_mask, 3409 dev->udma_mask); 3410 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3411 3412 switch (sel) { 3413 case ATA_DNXFER_PIO: 3414 highbit = fls(pio_mask) - 1; 3415 pio_mask &= ~(1 << highbit); 3416 break; 3417 3418 case ATA_DNXFER_DMA: 3419 if (udma_mask) { 3420 highbit = fls(udma_mask) - 1; 3421 udma_mask &= ~(1 << highbit); 3422 if (!udma_mask) 3423 return -ENOENT; 3424 } else if (mwdma_mask) { 3425 highbit = fls(mwdma_mask) - 1; 3426 mwdma_mask &= ~(1 << highbit); 3427 if (!mwdma_mask) 3428 return -ENOENT; 3429 } 3430 break; 3431 3432 case ATA_DNXFER_40C: 3433 udma_mask &= ATA_UDMA_MASK_40C; 3434 break; 3435 3436 case ATA_DNXFER_FORCE_PIO0: 3437 pio_mask &= 1; 3438 fallthrough; 3439 case ATA_DNXFER_FORCE_PIO: 3440 mwdma_mask = 0; 3441 udma_mask = 0; 3442 break; 3443 3444 default: 3445 BUG(); 3446 } 3447 3448 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3449 3450 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3451 return -ENOENT; 3452 3453 if (!quiet) { 3454 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3455 snprintf(buf, sizeof(buf), "%s:%s", 3456 ata_mode_string(xfer_mask), 3457 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3458 else 3459 snprintf(buf, sizeof(buf), "%s", 3460 ata_mode_string(xfer_mask)); 3461 3462 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3463 } 3464 3465 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3466 &dev->udma_mask); 3467 3468 return 0; 3469 } 3470 3471 static int ata_dev_set_mode(struct ata_device *dev) 3472 { 3473 struct ata_port *ap = dev->link->ap; 3474 struct ata_eh_context *ehc = &dev->link->eh_context; 3475 const bool nosetxfer = dev->quirks & ATA_QUIRK_NOSETXFER; 3476 const char *dev_err_whine = ""; 3477 int ign_dev_err = 0; 3478 unsigned int err_mask = 0; 3479 int rc; 3480 3481 dev->flags &= ~ATA_DFLAG_PIO; 3482 if (dev->xfer_shift == ATA_SHIFT_PIO) 3483 dev->flags |= ATA_DFLAG_PIO; 3484 3485 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3486 dev_err_whine = " (SET_XFERMODE skipped)"; 3487 else { 3488 if (nosetxfer) 3489 ata_dev_warn(dev, 3490 "NOSETXFER but PATA detected - can't " 3491 "skip SETXFER, might malfunction\n"); 3492 err_mask = ata_dev_set_xfermode(dev); 3493 } 3494 3495 if (err_mask & ~AC_ERR_DEV) 3496 goto fail; 3497 3498 /* revalidate */ 3499 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3500 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3501 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3502 if (rc) 3503 return rc; 3504 3505 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3506 /* Old CFA may refuse this command, which is just fine */ 3507 if (ata_id_is_cfa(dev->id)) 3508 ign_dev_err = 1; 3509 /* Catch several broken garbage emulations plus some pre 3510 ATA devices */ 3511 if (ata_id_major_version(dev->id) == 0 && 3512 dev->pio_mode <= XFER_PIO_2) 3513 ign_dev_err = 1; 3514 /* Some very old devices and some bad newer ones fail 3515 any kind of SET_XFERMODE request but support PIO0-2 3516 timings and no IORDY */ 3517 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3518 ign_dev_err = 1; 3519 } 3520 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3521 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3522 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3523 dev->dma_mode == XFER_MW_DMA_0 && 3524 (dev->id[63] >> 8) & 1) 3525 ign_dev_err = 1; 3526 3527 /* if the device is actually configured correctly, ignore dev err */ 3528 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3529 ign_dev_err = 1; 3530 3531 if (err_mask & AC_ERR_DEV) { 3532 if (!ign_dev_err) 3533 goto fail; 3534 else 3535 dev_err_whine = " (device error ignored)"; 3536 } 3537 3538 ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n", 3539 dev->xfer_shift, (int)dev->xfer_mode); 3540 3541 if (!(ehc->i.flags & ATA_EHI_QUIET) || 3542 ehc->i.flags & ATA_EHI_DID_HARDRESET) 3543 ata_dev_info(dev, "configured for %s%s\n", 3544 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3545 dev_err_whine); 3546 3547 return 0; 3548 3549 fail: 3550 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3551 return -EIO; 3552 } 3553 3554 /** 3555 * ata_set_mode - Program timings and issue SET FEATURES - XFER 3556 * @link: link on which timings will be programmed 3557 * @r_failed_dev: out parameter for failed device 3558 * 3559 * Standard implementation of the function used to tune and set 3560 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3561 * ata_dev_set_mode() fails, pointer to the failing device is 3562 * returned in @r_failed_dev. 3563 * 3564 * LOCKING: 3565 * PCI/etc. bus probe sem. 3566 * 3567 * RETURNS: 3568 * 0 on success, negative errno otherwise 3569 */ 3570 3571 int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3572 { 3573 struct ata_port *ap = link->ap; 3574 struct ata_device *dev; 3575 int rc = 0, used_dma = 0, found = 0; 3576 3577 /* step 1: calculate xfer_mask */ 3578 ata_for_each_dev(dev, link, ENABLED) { 3579 unsigned int pio_mask, dma_mask; 3580 unsigned int mode_mask; 3581 3582 mode_mask = ATA_DMA_MASK_ATA; 3583 if (dev->class == ATA_DEV_ATAPI) 3584 mode_mask = ATA_DMA_MASK_ATAPI; 3585 else if (ata_id_is_cfa(dev->id)) 3586 mode_mask = ATA_DMA_MASK_CFA; 3587 3588 ata_dev_xfermask(dev); 3589 ata_force_xfermask(dev); 3590 3591 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3592 3593 if (libata_dma_mask & mode_mask) 3594 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3595 dev->udma_mask); 3596 else 3597 dma_mask = 0; 3598 3599 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3600 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3601 3602 found = 1; 3603 if (ata_dma_enabled(dev)) 3604 used_dma = 1; 3605 } 3606 if (!found) 3607 goto out; 3608 3609 /* step 2: always set host PIO timings */ 3610 ata_for_each_dev(dev, link, ENABLED) { 3611 if (dev->pio_mode == 0xff) { 3612 ata_dev_warn(dev, "no PIO support\n"); 3613 rc = -EINVAL; 3614 goto out; 3615 } 3616 3617 dev->xfer_mode = dev->pio_mode; 3618 dev->xfer_shift = ATA_SHIFT_PIO; 3619 if (ap->ops->set_piomode) 3620 ap->ops->set_piomode(ap, dev); 3621 } 3622 3623 /* step 3: set host DMA timings */ 3624 ata_for_each_dev(dev, link, ENABLED) { 3625 if (!ata_dma_enabled(dev)) 3626 continue; 3627 3628 dev->xfer_mode = dev->dma_mode; 3629 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3630 if (ap->ops->set_dmamode) 3631 ap->ops->set_dmamode(ap, dev); 3632 } 3633 3634 /* step 4: update devices' xfer mode */ 3635 ata_for_each_dev(dev, link, ENABLED) { 3636 rc = ata_dev_set_mode(dev); 3637 if (rc) 3638 goto out; 3639 } 3640 3641 /* Record simplex status. If we selected DMA then the other 3642 * host channels are not permitted to do so. 3643 */ 3644 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3645 ap->host->simplex_claimed = ap; 3646 3647 out: 3648 if (rc) 3649 *r_failed_dev = dev; 3650 return rc; 3651 } 3652 EXPORT_SYMBOL_GPL(ata_set_mode); 3653 3654 /** 3655 * ata_wait_ready - wait for link to become ready 3656 * @link: link to be waited on 3657 * @deadline: deadline jiffies for the operation 3658 * @check_ready: callback to check link readiness 3659 * 3660 * Wait for @link to become ready. @check_ready should return 3661 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3662 * link doesn't seem to be occupied, other errno for other error 3663 * conditions. 3664 * 3665 * Transient -ENODEV conditions are allowed for 3666 * ATA_TMOUT_FF_WAIT. 3667 * 3668 * LOCKING: 3669 * EH context. 3670 * 3671 * RETURNS: 3672 * 0 if @link is ready before @deadline; otherwise, -errno. 3673 */ 3674 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3675 int (*check_ready)(struct ata_link *link)) 3676 { 3677 unsigned long start = jiffies; 3678 unsigned long nodev_deadline; 3679 int warned = 0; 3680 3681 /* choose which 0xff timeout to use, read comment in libata.h */ 3682 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3683 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3684 else 3685 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3686 3687 /* Slave readiness can't be tested separately from master. On 3688 * M/S emulation configuration, this function should be called 3689 * only on the master and it will handle both master and slave. 3690 */ 3691 WARN_ON(link == link->ap->slave_link); 3692 3693 if (time_after(nodev_deadline, deadline)) 3694 nodev_deadline = deadline; 3695 3696 while (1) { 3697 unsigned long now = jiffies; 3698 int ready, tmp; 3699 3700 ready = tmp = check_ready(link); 3701 if (ready > 0) 3702 return 0; 3703 3704 /* 3705 * -ENODEV could be transient. Ignore -ENODEV if link 3706 * is online. Also, some SATA devices take a long 3707 * time to clear 0xff after reset. Wait for 3708 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3709 * offline. 3710 * 3711 * Note that some PATA controllers (pata_ali) explode 3712 * if status register is read more than once when 3713 * there's no device attached. 3714 */ 3715 if (ready == -ENODEV) { 3716 if (ata_link_online(link)) 3717 ready = 0; 3718 else if ((link->ap->flags & ATA_FLAG_SATA) && 3719 !ata_link_offline(link) && 3720 time_before(now, nodev_deadline)) 3721 ready = 0; 3722 } 3723 3724 if (ready) 3725 return ready; 3726 if (time_after(now, deadline)) 3727 return -EBUSY; 3728 3729 if (!warned && time_after(now, start + 5 * HZ) && 3730 (deadline - now > 3 * HZ)) { 3731 ata_link_warn(link, 3732 "link is slow to respond, please be patient " 3733 "(ready=%d)\n", tmp); 3734 warned = 1; 3735 } 3736 3737 ata_msleep(link->ap, 50); 3738 } 3739 } 3740 3741 /** 3742 * ata_wait_after_reset - wait for link to become ready after reset 3743 * @link: link to be waited on 3744 * @deadline: deadline jiffies for the operation 3745 * @check_ready: callback to check link readiness 3746 * 3747 * Wait for @link to become ready after reset. 3748 * 3749 * LOCKING: 3750 * EH context. 3751 * 3752 * RETURNS: 3753 * 0 if @link is ready before @deadline; otherwise, -errno. 3754 */ 3755 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3756 int (*check_ready)(struct ata_link *link)) 3757 { 3758 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3759 3760 return ata_wait_ready(link, deadline, check_ready); 3761 } 3762 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 3763 3764 /** 3765 * ata_std_prereset - prepare for reset 3766 * @link: ATA link to be reset 3767 * @deadline: deadline jiffies for the operation 3768 * 3769 * @link is about to be reset. Initialize it. Failure from 3770 * prereset makes libata abort whole reset sequence and give up 3771 * that port, so prereset should be best-effort. It does its 3772 * best to prepare for reset sequence but if things go wrong, it 3773 * should just whine, not fail. 3774 * 3775 * LOCKING: 3776 * Kernel thread context (may sleep) 3777 * 3778 * RETURNS: 3779 * Always 0. 3780 */ 3781 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3782 { 3783 struct ata_port *ap = link->ap; 3784 struct ata_eh_context *ehc = &link->eh_context; 3785 const unsigned int *timing = sata_ehc_deb_timing(ehc); 3786 int rc; 3787 3788 /* if we're about to do hardreset, nothing more to do */ 3789 if (ehc->i.action & ATA_EH_HARDRESET) 3790 return 0; 3791 3792 /* if SATA, resume link */ 3793 if (ap->flags & ATA_FLAG_SATA) { 3794 rc = sata_link_resume(link, timing, deadline); 3795 /* whine about phy resume failure but proceed */ 3796 if (rc && rc != -EOPNOTSUPP) 3797 ata_link_warn(link, 3798 "failed to resume link for reset (errno=%d)\n", 3799 rc); 3800 } 3801 3802 /* no point in trying softreset on offline link */ 3803 if (ata_phys_link_offline(link)) 3804 ehc->i.action &= ~ATA_EH_SOFTRESET; 3805 3806 return 0; 3807 } 3808 EXPORT_SYMBOL_GPL(ata_std_prereset); 3809 3810 /** 3811 * ata_std_postreset - standard postreset callback 3812 * @link: the target ata_link 3813 * @classes: classes of attached devices 3814 * 3815 * This function is invoked after a successful reset. Note that 3816 * the device might have been reset more than once using 3817 * different reset methods before postreset is invoked. 3818 * 3819 * LOCKING: 3820 * Kernel thread context (may sleep) 3821 */ 3822 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3823 { 3824 u32 serror; 3825 3826 /* reset complete, clear SError */ 3827 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3828 sata_scr_write(link, SCR_ERROR, serror); 3829 3830 /* print link status */ 3831 sata_print_link_status(link); 3832 } 3833 EXPORT_SYMBOL_GPL(ata_std_postreset); 3834 3835 /** 3836 * ata_dev_same_device - Determine whether new ID matches configured device 3837 * @dev: device to compare against 3838 * @new_class: class of the new device 3839 * @new_id: IDENTIFY page of the new device 3840 * 3841 * Compare @new_class and @new_id against @dev and determine 3842 * whether @dev is the device indicated by @new_class and 3843 * @new_id. 3844 * 3845 * LOCKING: 3846 * None. 3847 * 3848 * RETURNS: 3849 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3850 */ 3851 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3852 const u16 *new_id) 3853 { 3854 const u16 *old_id = dev->id; 3855 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3856 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3857 3858 if (dev->class != new_class) { 3859 ata_dev_info(dev, "class mismatch %d != %d\n", 3860 dev->class, new_class); 3861 return 0; 3862 } 3863 3864 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3865 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3866 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3867 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3868 3869 if (strcmp(model[0], model[1])) { 3870 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3871 model[0], model[1]); 3872 return 0; 3873 } 3874 3875 if (strcmp(serial[0], serial[1])) { 3876 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3877 serial[0], serial[1]); 3878 return 0; 3879 } 3880 3881 return 1; 3882 } 3883 3884 /** 3885 * ata_dev_reread_id - Re-read IDENTIFY data 3886 * @dev: target ATA device 3887 * @readid_flags: read ID flags 3888 * 3889 * Re-read IDENTIFY page and make sure @dev is still attached to 3890 * the port. 3891 * 3892 * LOCKING: 3893 * Kernel thread context (may sleep) 3894 * 3895 * RETURNS: 3896 * 0 on success, negative errno otherwise 3897 */ 3898 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3899 { 3900 unsigned int class = dev->class; 3901 u16 *id = (void *)dev->sector_buf; 3902 int rc; 3903 3904 /* read ID data */ 3905 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3906 if (rc) 3907 return rc; 3908 3909 /* is the device still there? */ 3910 if (!ata_dev_same_device(dev, class, id)) 3911 return -ENODEV; 3912 3913 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3914 return 0; 3915 } 3916 3917 /** 3918 * ata_dev_revalidate - Revalidate ATA device 3919 * @dev: device to revalidate 3920 * @new_class: new class code 3921 * @readid_flags: read ID flags 3922 * 3923 * Re-read IDENTIFY page, make sure @dev is still attached to the 3924 * port and reconfigure it according to the new IDENTIFY page. 3925 * 3926 * LOCKING: 3927 * Kernel thread context (may sleep) 3928 * 3929 * RETURNS: 3930 * 0 on success, negative errno otherwise 3931 */ 3932 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3933 unsigned int readid_flags) 3934 { 3935 u64 n_sectors = dev->n_sectors; 3936 u64 n_native_sectors = dev->n_native_sectors; 3937 int rc; 3938 3939 if (!ata_dev_enabled(dev)) 3940 return -ENODEV; 3941 3942 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3943 if (ata_class_enabled(new_class) && new_class == ATA_DEV_PMP) { 3944 ata_dev_info(dev, "class mismatch %u != %u\n", 3945 dev->class, new_class); 3946 rc = -ENODEV; 3947 goto fail; 3948 } 3949 3950 /* re-read ID */ 3951 rc = ata_dev_reread_id(dev, readid_flags); 3952 if (rc) 3953 goto fail; 3954 3955 /* configure device according to the new ID */ 3956 rc = ata_dev_configure(dev); 3957 if (rc) 3958 goto fail; 3959 3960 /* verify n_sectors hasn't changed */ 3961 if (dev->class != ATA_DEV_ATA || !n_sectors || 3962 dev->n_sectors == n_sectors) 3963 return 0; 3964 3965 /* n_sectors has changed */ 3966 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 3967 (unsigned long long)n_sectors, 3968 (unsigned long long)dev->n_sectors); 3969 3970 /* 3971 * Something could have caused HPA to be unlocked 3972 * involuntarily. If n_native_sectors hasn't changed and the 3973 * new size matches it, keep the device. 3974 */ 3975 if (dev->n_native_sectors == n_native_sectors && 3976 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 3977 ata_dev_warn(dev, 3978 "new n_sectors matches native, probably " 3979 "late HPA unlock, n_sectors updated\n"); 3980 /* use the larger n_sectors */ 3981 return 0; 3982 } 3983 3984 /* 3985 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 3986 * unlocking HPA in those cases. 3987 * 3988 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 3989 */ 3990 if (dev->n_native_sectors == n_native_sectors && 3991 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 3992 !(dev->quirks & ATA_QUIRK_BROKEN_HPA)) { 3993 ata_dev_warn(dev, 3994 "old n_sectors matches native, probably " 3995 "late HPA lock, will try to unlock HPA\n"); 3996 /* try unlocking HPA */ 3997 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 3998 rc = -EIO; 3999 } else 4000 rc = -ENODEV; 4001 4002 /* restore original n_[native_]sectors and fail */ 4003 dev->n_native_sectors = n_native_sectors; 4004 dev->n_sectors = n_sectors; 4005 fail: 4006 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 4007 return rc; 4008 } 4009 4010 static const char * const ata_quirk_names[] = { 4011 [__ATA_QUIRK_DIAGNOSTIC] = "diagnostic", 4012 [__ATA_QUIRK_NODMA] = "nodma", 4013 [__ATA_QUIRK_NONCQ] = "noncq", 4014 [__ATA_QUIRK_BROKEN_HPA] = "brokenhpa", 4015 [__ATA_QUIRK_DISABLE] = "disable", 4016 [__ATA_QUIRK_HPA_SIZE] = "hpasize", 4017 [__ATA_QUIRK_IVB] = "ivb", 4018 [__ATA_QUIRK_STUCK_ERR] = "stuckerr", 4019 [__ATA_QUIRK_BRIDGE_OK] = "bridgeok", 4020 [__ATA_QUIRK_ATAPI_MOD16_DMA] = "atapimod16dma", 4021 [__ATA_QUIRK_FIRMWARE_WARN] = "firmwarewarn", 4022 [__ATA_QUIRK_1_5_GBPS] = "1.5gbps", 4023 [__ATA_QUIRK_NOSETXFER] = "nosetxfer", 4024 [__ATA_QUIRK_BROKEN_FPDMA_AA] = "brokenfpdmaaa", 4025 [__ATA_QUIRK_DUMP_ID] = "dumpid", 4026 [__ATA_QUIRK_MAX_SEC_LBA48] = "maxseclba48", 4027 [__ATA_QUIRK_ATAPI_DMADIR] = "atapidmadir", 4028 [__ATA_QUIRK_NO_NCQ_TRIM] = "noncqtrim", 4029 [__ATA_QUIRK_NOLPM] = "nolpm", 4030 [__ATA_QUIRK_WD_BROKEN_LPM] = "wdbrokenlpm", 4031 [__ATA_QUIRK_ZERO_AFTER_TRIM] = "zeroaftertrim", 4032 [__ATA_QUIRK_NO_DMA_LOG] = "nodmalog", 4033 [__ATA_QUIRK_NOTRIM] = "notrim", 4034 [__ATA_QUIRK_MAX_SEC] = "maxsec", 4035 [__ATA_QUIRK_MAX_TRIM_128M] = "maxtrim128m", 4036 [__ATA_QUIRK_NO_NCQ_ON_ATI] = "noncqonati", 4037 [__ATA_QUIRK_NO_LPM_ON_ATI] = "nolpmonati", 4038 [__ATA_QUIRK_NO_ID_DEV_LOG] = "noiddevlog", 4039 [__ATA_QUIRK_NO_LOG_DIR] = "nologdir", 4040 [__ATA_QUIRK_NO_FUA] = "nofua", 4041 }; 4042 4043 static void ata_dev_print_quirks(const struct ata_device *dev, 4044 const char *model, const char *rev, 4045 unsigned int quirks) 4046 { 4047 struct ata_eh_context *ehc = &dev->link->eh_context; 4048 int n = 0, i; 4049 size_t sz; 4050 char *str; 4051 4052 if (!ata_dev_print_info(dev) || ehc->i.flags & ATA_EHI_DID_PRINT_QUIRKS) 4053 return; 4054 4055 ehc->i.flags |= ATA_EHI_DID_PRINT_QUIRKS; 4056 4057 if (!quirks) 4058 return; 4059 4060 sz = 64 + ARRAY_SIZE(ata_quirk_names) * 16; 4061 str = kmalloc(sz, GFP_KERNEL); 4062 if (!str) 4063 return; 4064 4065 n = snprintf(str, sz, "Model '%s', rev '%s', applying quirks:", 4066 model, rev); 4067 4068 for (i = 0; i < ARRAY_SIZE(ata_quirk_names); i++) { 4069 if (quirks & (1U << i)) 4070 n += snprintf(str + n, sz - n, 4071 " %s", ata_quirk_names[i]); 4072 } 4073 4074 ata_dev_warn(dev, "%s\n", str); 4075 4076 kfree(str); 4077 } 4078 4079 struct ata_dev_quirk_value { 4080 const char *model_num; 4081 const char *model_rev; 4082 u64 val; 4083 }; 4084 4085 static const struct ata_dev_quirk_value __ata_dev_max_sec_quirks[] = { 4086 { "TORiSAN DVD-ROM DRD-N216", NULL, 128 }, 4087 { "ST380013AS", "3.20", 1024 }, 4088 { "LITEON CX1-JB*-HP", NULL, 1024 }, 4089 { "LITEON EP1-*", NULL, 1024 }, 4090 { "DELLBOSS VD", "MV.R00-0", 8191 }, 4091 { "INTEL SSDSC2KG480G8", "XCV10120", 8191 }, 4092 { }, 4093 }; 4094 4095 struct ata_dev_quirks_entry { 4096 const char *model_num; 4097 const char *model_rev; 4098 u64 quirks; 4099 }; 4100 4101 static const struct ata_dev_quirks_entry __ata_dev_quirks[] = { 4102 /* Devices with DMA related problems under Linux */ 4103 { "WDC AC11000H", NULL, ATA_QUIRK_NODMA }, 4104 { "WDC AC22100H", NULL, ATA_QUIRK_NODMA }, 4105 { "WDC AC32500H", NULL, ATA_QUIRK_NODMA }, 4106 { "WDC AC33100H", NULL, ATA_QUIRK_NODMA }, 4107 { "WDC AC31600H", NULL, ATA_QUIRK_NODMA }, 4108 { "WDC AC32100H", "24.09P07", ATA_QUIRK_NODMA }, 4109 { "WDC AC23200L", "21.10N21", ATA_QUIRK_NODMA }, 4110 { "Compaq CRD-8241B", NULL, ATA_QUIRK_NODMA }, 4111 { "CRD-8400B", NULL, ATA_QUIRK_NODMA }, 4112 { "CRD-848[02]B", NULL, ATA_QUIRK_NODMA }, 4113 { "CRD-84", NULL, ATA_QUIRK_NODMA }, 4114 { "SanDisk SDP3B", NULL, ATA_QUIRK_NODMA }, 4115 { "SanDisk SDP3B-64", NULL, ATA_QUIRK_NODMA }, 4116 { "SANYO CD-ROM CRD", NULL, ATA_QUIRK_NODMA }, 4117 { "HITACHI CDR-8", NULL, ATA_QUIRK_NODMA }, 4118 { "HITACHI CDR-8[34]35", NULL, ATA_QUIRK_NODMA }, 4119 { "Toshiba CD-ROM XM-6202B", NULL, ATA_QUIRK_NODMA }, 4120 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_QUIRK_NODMA }, 4121 { "CD-532E-A", NULL, ATA_QUIRK_NODMA }, 4122 { "E-IDE CD-ROM CR-840", NULL, ATA_QUIRK_NODMA }, 4123 { "CD-ROM Drive/F5A", NULL, ATA_QUIRK_NODMA }, 4124 { "WPI CDD-820", NULL, ATA_QUIRK_NODMA }, 4125 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_QUIRK_NODMA }, 4126 { "SAMSUNG CD-ROM SC", NULL, ATA_QUIRK_NODMA }, 4127 { "ATAPI CD-ROM DRIVE 40X MAXIMUM", NULL, ATA_QUIRK_NODMA }, 4128 { "_NEC DV5800A", NULL, ATA_QUIRK_NODMA }, 4129 { "SAMSUNG CD-ROM SN-124", "N001", ATA_QUIRK_NODMA }, 4130 { "Seagate STT20000A", NULL, ATA_QUIRK_NODMA }, 4131 { " 2GB ATA Flash Disk", "ADMA428M", ATA_QUIRK_NODMA }, 4132 { "VRFDFC22048UCHC-TE*", NULL, ATA_QUIRK_NODMA }, 4133 /* Odd clown on sil3726/4726 PMPs */ 4134 { "Config Disk", NULL, ATA_QUIRK_DISABLE }, 4135 /* Similar story with ASMedia 1092 */ 4136 { "ASMT109x- Config", NULL, ATA_QUIRK_DISABLE }, 4137 4138 /* Weird ATAPI devices */ 4139 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_QUIRK_MAX_SEC }, 4140 { "QUANTUM DAT DAT72-000", NULL, ATA_QUIRK_ATAPI_MOD16_DMA }, 4141 { "Slimtype DVD A DS8A8SH", NULL, ATA_QUIRK_MAX_SEC_LBA48 }, 4142 { "Slimtype DVD A DS8A9SH", NULL, ATA_QUIRK_MAX_SEC_LBA48 }, 4143 4144 /* 4145 * Causes silent data corruption with higher max sects. 4146 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com 4147 */ 4148 { "ST380013AS", "3.20", ATA_QUIRK_MAX_SEC }, 4149 4150 /* 4151 * These devices time out with higher max sects. 4152 * https://bugzilla.kernel.org/show_bug.cgi?id=121671 4153 */ 4154 { "LITEON CX1-JB*-HP", NULL, ATA_QUIRK_MAX_SEC }, 4155 { "LITEON EP1-*", NULL, ATA_QUIRK_MAX_SEC }, 4156 4157 /* 4158 * These devices time out with higher max sects. 4159 * https://bugzilla.kernel.org/show_bug.cgi?id=220693 4160 */ 4161 { "DELLBOSS VD", "MV.R00-0", ATA_QUIRK_MAX_SEC }, 4162 4163 /* Devices we expect to fail diagnostics */ 4164 4165 /* Devices where NCQ should be avoided */ 4166 /* NCQ is slow */ 4167 { "WDC WD740ADFD-00", NULL, ATA_QUIRK_NONCQ }, 4168 { "WDC WD740ADFD-00NLR1", NULL, ATA_QUIRK_NONCQ }, 4169 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4170 { "FUJITSU MHT2060BH", NULL, ATA_QUIRK_NONCQ }, 4171 /* NCQ is broken */ 4172 { "Maxtor *", "BANC*", ATA_QUIRK_NONCQ }, 4173 { "Maxtor 7V300F0", "VA111630", ATA_QUIRK_NONCQ }, 4174 { "ST380817AS", "3.42", ATA_QUIRK_NONCQ }, 4175 { "ST3160023AS", "3.42", ATA_QUIRK_NONCQ }, 4176 { "OCZ CORE_SSD", "02.10104", ATA_QUIRK_NONCQ }, 4177 4178 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4179 { "ST31500341AS", "SD1[5-9]", ATA_QUIRK_NONCQ | 4180 ATA_QUIRK_FIRMWARE_WARN }, 4181 4182 { "ST31000333AS", "SD1[5-9]", ATA_QUIRK_NONCQ | 4183 ATA_QUIRK_FIRMWARE_WARN }, 4184 4185 { "ST3640[36]23AS", "SD1[5-9]", ATA_QUIRK_NONCQ | 4186 ATA_QUIRK_FIRMWARE_WARN }, 4187 4188 { "ST3320[68]13AS", "SD1[5-9]", ATA_QUIRK_NONCQ | 4189 ATA_QUIRK_FIRMWARE_WARN }, 4190 4191 /* Seagate disks with LPM issues */ 4192 { "ST2000DM008-2FR102", NULL, ATA_QUIRK_NOLPM }, 4193 4194 /* drives which fail FPDMA_AA activation (some may freeze afterwards) 4195 the ST disks also have LPM issues */ 4196 { "ST1000LM024 HN-M101MBB", NULL, ATA_QUIRK_BROKEN_FPDMA_AA | 4197 ATA_QUIRK_NOLPM }, 4198 { "VB0250EAVER", "HPG7", ATA_QUIRK_BROKEN_FPDMA_AA }, 4199 4200 /* Blacklist entries taken from Silicon Image 3124/3132 4201 Windows driver .inf file - also several Linux problem reports */ 4202 { "HTS541060G9SA00", "MB3OC60D", ATA_QUIRK_NONCQ }, 4203 { "HTS541080G9SA00", "MB4OC60D", ATA_QUIRK_NONCQ }, 4204 { "HTS541010G9SA00", "MBZOC60D", ATA_QUIRK_NONCQ }, 4205 4206 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 4207 { "C300-CTFDDAC128MAG", "0001", ATA_QUIRK_NONCQ }, 4208 4209 /* Sandisk SD7/8/9s lock up hard on large trims */ 4210 { "SanDisk SD[789]*", NULL, ATA_QUIRK_MAX_TRIM_128M }, 4211 4212 /* devices which puke on READ_NATIVE_MAX */ 4213 { "HDS724040KLSA80", "KFAOA20N", ATA_QUIRK_BROKEN_HPA }, 4214 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_QUIRK_BROKEN_HPA }, 4215 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_QUIRK_BROKEN_HPA }, 4216 { "MAXTOR 6L080L4", "A93.0500", ATA_QUIRK_BROKEN_HPA }, 4217 4218 /* this one allows HPA unlocking but fails IOs on the area */ 4219 { "OCZ-VERTEX", "1.30", ATA_QUIRK_BROKEN_HPA }, 4220 4221 /* Devices which report 1 sector over size HPA */ 4222 { "ST340823A", NULL, ATA_QUIRK_HPA_SIZE }, 4223 { "ST320413A", NULL, ATA_QUIRK_HPA_SIZE }, 4224 { "ST310211A", NULL, ATA_QUIRK_HPA_SIZE }, 4225 4226 /* Devices which get the IVB wrong */ 4227 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_QUIRK_IVB }, 4228 /* Maybe we should just add all TSSTcorp devices... */ 4229 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_QUIRK_IVB }, 4230 4231 /* Devices that do not need bridging limits applied */ 4232 { "MTRON MSP-SATA*", NULL, ATA_QUIRK_BRIDGE_OK }, 4233 { "BUFFALO HD-QSU2/R5", NULL, ATA_QUIRK_BRIDGE_OK }, 4234 4235 /* Devices which aren't very happy with higher link speeds */ 4236 { "WD My Book", NULL, ATA_QUIRK_1_5_GBPS }, 4237 { "Seagate FreeAgent GoFlex", NULL, ATA_QUIRK_1_5_GBPS }, 4238 4239 /* 4240 * Devices which choke on SETXFER. Applies only if both the 4241 * device and controller are SATA. 4242 */ 4243 { "PIONEER DVD-RW DVRTD08", NULL, ATA_QUIRK_NOSETXFER }, 4244 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_QUIRK_NOSETXFER }, 4245 { "PIONEER DVD-RW DVR-215", NULL, ATA_QUIRK_NOSETXFER }, 4246 { "PIONEER DVD-RW DVR-212D", NULL, ATA_QUIRK_NOSETXFER }, 4247 { "PIONEER DVD-RW DVR-216D", NULL, ATA_QUIRK_NOSETXFER }, 4248 4249 /* These specific Pioneer models have LPM issues */ 4250 { "PIONEER BD-RW BDR-207M", NULL, ATA_QUIRK_NOLPM }, 4251 { "PIONEER BD-RW BDR-205", NULL, ATA_QUIRK_NOLPM }, 4252 4253 /* Crucial devices with broken LPM support */ 4254 { "CT*0BX*00SSD1", NULL, ATA_QUIRK_NOLPM }, 4255 4256 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */ 4257 { "Crucial_CT512MX100*", "MU01", ATA_QUIRK_NO_NCQ_TRIM | 4258 ATA_QUIRK_ZERO_AFTER_TRIM | 4259 ATA_QUIRK_NOLPM }, 4260 /* 512GB MX100 with newer firmware has only LPM issues */ 4261 { "Crucial_CT512MX100*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM | 4262 ATA_QUIRK_NOLPM }, 4263 4264 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */ 4265 { "Crucial_CT480M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4266 ATA_QUIRK_ZERO_AFTER_TRIM | 4267 ATA_QUIRK_NOLPM }, 4268 { "Crucial_CT960M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4269 ATA_QUIRK_ZERO_AFTER_TRIM | 4270 ATA_QUIRK_NOLPM }, 4271 4272 /* AMD Radeon devices with broken LPM support */ 4273 { "R3SL240G", NULL, ATA_QUIRK_NOLPM }, 4274 4275 /* Apacer models with LPM issues */ 4276 { "Apacer AS340*", NULL, ATA_QUIRK_NOLPM }, 4277 4278 /* Silicon Motion models with LPM issues */ 4279 { "MD619HXCLDE3TC", "TCVAID", ATA_QUIRK_NOLPM }, 4280 { "MD619GXCLDE3TC", "TCV35D", ATA_QUIRK_NOLPM }, 4281 4282 /* These specific Samsung models/firmware-revs do not handle LPM well */ 4283 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_QUIRK_NOLPM }, 4284 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_QUIRK_NOLPM }, 4285 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_QUIRK_NOLPM }, 4286 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_QUIRK_NOLPM }, 4287 4288 /* devices that don't properly handle queued TRIM commands */ 4289 { "Micron_M500IT_*", "MU01", ATA_QUIRK_NO_NCQ_TRIM | 4290 ATA_QUIRK_ZERO_AFTER_TRIM }, 4291 { "Micron_M500_*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4292 ATA_QUIRK_ZERO_AFTER_TRIM }, 4293 { "Micron_M5[15]0_*", "MU01", ATA_QUIRK_NO_NCQ_TRIM | 4294 ATA_QUIRK_ZERO_AFTER_TRIM }, 4295 { "Micron_1100_*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4296 ATA_QUIRK_ZERO_AFTER_TRIM, }, 4297 { "Crucial_CT*M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4298 ATA_QUIRK_ZERO_AFTER_TRIM }, 4299 { "Crucial_CT*M550*", "MU01", ATA_QUIRK_NO_NCQ_TRIM | 4300 ATA_QUIRK_ZERO_AFTER_TRIM }, 4301 { "Crucial_CT*MX100*", "MU01", ATA_QUIRK_NO_NCQ_TRIM | 4302 ATA_QUIRK_ZERO_AFTER_TRIM }, 4303 { "Samsung SSD 840 EVO*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4304 ATA_QUIRK_NO_DMA_LOG | 4305 ATA_QUIRK_ZERO_AFTER_TRIM }, 4306 { "Samsung SSD 840*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4307 ATA_QUIRK_ZERO_AFTER_TRIM }, 4308 { "Samsung SSD 850*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4309 ATA_QUIRK_ZERO_AFTER_TRIM }, 4310 { "Samsung SSD 860*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4311 ATA_QUIRK_ZERO_AFTER_TRIM | 4312 ATA_QUIRK_NO_NCQ_ON_ATI | 4313 ATA_QUIRK_NO_LPM_ON_ATI }, 4314 { "Samsung SSD 870*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4315 ATA_QUIRK_ZERO_AFTER_TRIM | 4316 ATA_QUIRK_NO_NCQ_ON_ATI | 4317 ATA_QUIRK_NO_LPM_ON_ATI }, 4318 { "SAMSUNG*MZ7LH*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4319 ATA_QUIRK_ZERO_AFTER_TRIM | 4320 ATA_QUIRK_NO_NCQ_ON_ATI | 4321 ATA_QUIRK_NO_LPM_ON_ATI }, 4322 { "FCCT*M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4323 ATA_QUIRK_ZERO_AFTER_TRIM }, 4324 4325 /* devices that don't properly handle TRIM commands */ 4326 { "SuperSSpeed S238*", NULL, ATA_QUIRK_NOTRIM }, 4327 { "M88V29*", NULL, ATA_QUIRK_NOTRIM }, 4328 4329 /* 4330 * As defined, the DRAT (Deterministic Read After Trim) and RZAT 4331 * (Return Zero After Trim) flags in the ATA Command Set are 4332 * unreliable in the sense that they only define what happens if 4333 * the device successfully executed the DSM TRIM command. TRIM 4334 * is only advisory, however, and the device is free to silently 4335 * ignore all or parts of the request. 4336 * 4337 * Whitelist drives that are known to reliably return zeroes 4338 * after TRIM. 4339 */ 4340 4341 /* 4342 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude 4343 * that model before whitelisting all other intel SSDs. 4344 */ 4345 { "INTEL*SSDSC2MH*", NULL, 0 }, 4346 4347 { "Micron*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4348 { "Crucial*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4349 { "INTEL SSDSC2KG480G8", "XCV10120", ATA_QUIRK_ZERO_AFTER_TRIM | 4350 ATA_QUIRK_MAX_SEC }, 4351 { "INTEL*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4352 { "SSD*INTEL*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4353 { "Samsung*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4354 { "SAMSUNG*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4355 { "SAMSUNG*MZ7KM*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4356 { "ST[1248][0248]0[FH]*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4357 4358 /* 4359 * Some WD SATA-I drives spin up and down erratically when the link 4360 * is put into the slumber mode. We don't have full list of the 4361 * affected devices. Disable LPM if the device matches one of the 4362 * known prefixes and is SATA-1. As a side effect LPM partial is 4363 * lost too. 4364 * 4365 * https://bugzilla.kernel.org/show_bug.cgi?id=57211 4366 */ 4367 { "WDC WD800JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM }, 4368 { "WDC WD1200JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM }, 4369 { "WDC WD1600JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM }, 4370 { "WDC WD2000JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM }, 4371 { "WDC WD2500JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM }, 4372 { "WDC WD3000JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM }, 4373 { "WDC WD3200JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM }, 4374 4375 /* 4376 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY 4377 * log page is accessed. Ensure we never ask for this log page with 4378 * these devices. 4379 */ 4380 { "SATADOM-ML 3ME", NULL, ATA_QUIRK_NO_LOG_DIR }, 4381 4382 /* Buggy FUA */ 4383 { "Maxtor", "BANC1G10", ATA_QUIRK_NO_FUA }, 4384 { "WDC*WD2500J*", NULL, ATA_QUIRK_NO_FUA }, 4385 { "OCZ-VERTEX*", NULL, ATA_QUIRK_NO_FUA }, 4386 { "INTEL*SSDSC2CT*", NULL, ATA_QUIRK_NO_FUA }, 4387 4388 /* End Marker */ 4389 { } 4390 }; 4391 4392 static u64 ata_dev_quirks(const struct ata_device *dev) 4393 { 4394 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4395 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4396 const struct ata_dev_quirks_entry *ad = __ata_dev_quirks; 4397 4398 /* dev->quirks is an u64. */ 4399 BUILD_BUG_ON(__ATA_QUIRK_MAX > 64); 4400 4401 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4402 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4403 4404 while (ad->model_num) { 4405 if (glob_match(ad->model_num, model_num) && 4406 (!ad->model_rev || glob_match(ad->model_rev, model_rev))) { 4407 ata_dev_print_quirks(dev, model_num, model_rev, 4408 ad->quirks); 4409 return ad->quirks; 4410 } 4411 ad++; 4412 } 4413 return 0; 4414 } 4415 4416 static u64 ata_dev_get_max_sec_quirk_value(struct ata_device *dev) 4417 { 4418 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4419 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4420 const struct ata_dev_quirk_value *ad = __ata_dev_max_sec_quirks; 4421 u64 val = 0; 4422 4423 #ifdef CONFIG_ATA_FORCE 4424 const struct ata_force_ent *fe = ata_force_get_fe_for_dev(dev); 4425 if (fe && (fe->param.quirk_on & ATA_QUIRK_MAX_SEC) && fe->param.value) 4426 val = fe->param.value; 4427 #endif 4428 if (val) 4429 goto out; 4430 4431 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4432 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4433 4434 while (ad->model_num) { 4435 if (glob_match(ad->model_num, model_num) && 4436 (!ad->model_rev || glob_match(ad->model_rev, model_rev))) { 4437 val = ad->val; 4438 break; 4439 } 4440 ad++; 4441 } 4442 4443 out: 4444 ata_dev_warn(dev, "%s quirk is using value: %llu\n", 4445 ata_quirk_names[__ATA_QUIRK_MAX_SEC], val); 4446 4447 return val; 4448 } 4449 4450 static u64 ata_dev_get_quirk_value(struct ata_device *dev, u64 quirk) 4451 { 4452 if (quirk == ATA_QUIRK_MAX_SEC) 4453 return ata_dev_get_max_sec_quirk_value(dev); 4454 4455 return 0; 4456 } 4457 4458 static bool ata_dev_nodma(const struct ata_device *dev) 4459 { 4460 /* 4461 * We do not support polling DMA. Deny DMA for those ATAPI devices 4462 * with CDB-intr (and use PIO) if the LLDD handles only interrupts in 4463 * the HSM_ST_LAST state. 4464 */ 4465 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4466 (dev->flags & ATA_DFLAG_CDB_INTR)) 4467 return true; 4468 return dev->quirks & ATA_QUIRK_NODMA; 4469 } 4470 4471 /** 4472 * ata_is_40wire - check drive side detection 4473 * @dev: device 4474 * 4475 * Perform drive side detection decoding, allowing for device vendors 4476 * who can't follow the documentation. 4477 */ 4478 4479 static int ata_is_40wire(struct ata_device *dev) 4480 { 4481 if (dev->quirks & ATA_QUIRK_IVB) 4482 return ata_drive_40wire_relaxed(dev->id); 4483 return ata_drive_40wire(dev->id); 4484 } 4485 4486 /** 4487 * cable_is_40wire - 40/80/SATA decider 4488 * @ap: port to consider 4489 * 4490 * This function encapsulates the policy for speed management 4491 * in one place. At the moment we don't cache the result but 4492 * there is a good case for setting ap->cbl to the result when 4493 * we are called with unknown cables (and figuring out if it 4494 * impacts hotplug at all). 4495 * 4496 * Return 1 if the cable appears to be 40 wire. 4497 */ 4498 4499 static int cable_is_40wire(struct ata_port *ap) 4500 { 4501 struct ata_link *link; 4502 struct ata_device *dev; 4503 4504 /* If the controller thinks we are 40 wire, we are. */ 4505 if (ap->cbl == ATA_CBL_PATA40) 4506 return 1; 4507 4508 /* If the controller thinks we are 80 wire, we are. */ 4509 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4510 return 0; 4511 4512 /* If the system is known to be 40 wire short cable (eg 4513 * laptop), then we allow 80 wire modes even if the drive 4514 * isn't sure. 4515 */ 4516 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4517 return 0; 4518 4519 /* If the controller doesn't know, we scan. 4520 * 4521 * Note: We look for all 40 wire detects at this point. Any 4522 * 80 wire detect is taken to be 80 wire cable because 4523 * - in many setups only the one drive (slave if present) will 4524 * give a valid detect 4525 * - if you have a non detect capable drive you don't want it 4526 * to colour the choice 4527 */ 4528 ata_for_each_link(link, ap, EDGE) { 4529 ata_for_each_dev(dev, link, ENABLED) { 4530 if (!ata_is_40wire(dev)) 4531 return 0; 4532 } 4533 } 4534 return 1; 4535 } 4536 4537 /** 4538 * ata_dev_xfermask - Compute supported xfermask of the given device 4539 * @dev: Device to compute xfermask for 4540 * 4541 * Compute supported xfermask of @dev and store it in 4542 * dev->*_mask. This function is responsible for applying all 4543 * known limits including host controller limits, device quirks, etc... 4544 * 4545 * LOCKING: 4546 * None. 4547 */ 4548 static void ata_dev_xfermask(struct ata_device *dev) 4549 { 4550 struct ata_link *link = dev->link; 4551 struct ata_port *ap = link->ap; 4552 struct ata_host *host = ap->host; 4553 unsigned int xfer_mask; 4554 4555 /* controller modes available */ 4556 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4557 ap->mwdma_mask, ap->udma_mask); 4558 4559 /* drive modes available */ 4560 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4561 dev->mwdma_mask, dev->udma_mask); 4562 xfer_mask &= ata_id_xfermask(dev->id); 4563 4564 /* 4565 * CFA Advanced TrueIDE timings are not allowed on a shared 4566 * cable 4567 */ 4568 if (ata_dev_pair(dev)) { 4569 /* No PIO5 or PIO6 */ 4570 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4571 /* No MWDMA3 or MWDMA 4 */ 4572 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4573 } 4574 4575 if (ata_dev_nodma(dev)) { 4576 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4577 ata_dev_warn(dev, 4578 "device does not support DMA, disabling DMA\n"); 4579 } 4580 4581 if ((host->flags & ATA_HOST_SIMPLEX) && 4582 host->simplex_claimed && host->simplex_claimed != ap) { 4583 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4584 ata_dev_warn(dev, 4585 "simplex DMA is claimed by other device, disabling DMA\n"); 4586 } 4587 4588 if (ap->flags & ATA_FLAG_NO_IORDY) 4589 xfer_mask &= ata_pio_mask_no_iordy(dev); 4590 4591 if (ap->ops->mode_filter) 4592 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4593 4594 /* Apply cable rule here. Don't apply it early because when 4595 * we handle hot plug the cable type can itself change. 4596 * Check this last so that we know if the transfer rate was 4597 * solely limited by the cable. 4598 * Unknown or 80 wire cables reported host side are checked 4599 * drive side as well. Cases where we know a 40wire cable 4600 * is used safely for 80 are not checked here. 4601 */ 4602 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4603 /* UDMA/44 or higher would be available */ 4604 if (cable_is_40wire(ap)) { 4605 ata_dev_warn(dev, 4606 "limited to UDMA/33 due to 40-wire cable\n"); 4607 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4608 } 4609 4610 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4611 &dev->mwdma_mask, &dev->udma_mask); 4612 } 4613 4614 /** 4615 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4616 * @dev: Device to which command will be sent 4617 * 4618 * Issue SET FEATURES - XFER MODE command to device @dev 4619 * on port @ap. 4620 * 4621 * LOCKING: 4622 * PCI/etc. bus probe sem. 4623 * 4624 * RETURNS: 4625 * 0 on success, AC_ERR_* mask otherwise. 4626 */ 4627 4628 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4629 { 4630 struct ata_taskfile tf; 4631 4632 /* set up set-features taskfile */ 4633 ata_dev_dbg(dev, "set features - xfer mode\n"); 4634 4635 /* Some controllers and ATAPI devices show flaky interrupt 4636 * behavior after setting xfer mode. Use polling instead. 4637 */ 4638 ata_tf_init(dev, &tf); 4639 tf.command = ATA_CMD_SET_FEATURES; 4640 tf.feature = SETFEATURES_XFER; 4641 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4642 tf.protocol = ATA_PROT_NODATA; 4643 /* If we are using IORDY we must send the mode setting command */ 4644 if (ata_pio_need_iordy(dev)) 4645 tf.nsect = dev->xfer_mode; 4646 /* If the device has IORDY and the controller does not - turn it off */ 4647 else if (ata_id_has_iordy(dev->id)) 4648 tf.nsect = 0x01; 4649 else /* In the ancient relic department - skip all of this */ 4650 return 0; 4651 4652 /* 4653 * On some disks, this command causes spin-up, so we need longer 4654 * timeout. 4655 */ 4656 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000); 4657 } 4658 4659 /** 4660 * ata_dev_set_feature - Issue SET FEATURES 4661 * @dev: Device to which command will be sent 4662 * @subcmd: The SET FEATURES subcommand to be sent 4663 * @action: The sector count represents a subcommand specific action 4664 * 4665 * Issue SET FEATURES command to device @dev on port @ap with sector count 4666 * 4667 * LOCKING: 4668 * PCI/etc. bus probe sem. 4669 * 4670 * RETURNS: 4671 * 0 on success, AC_ERR_* mask otherwise. 4672 */ 4673 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action) 4674 { 4675 struct ata_taskfile tf; 4676 unsigned int timeout = 0; 4677 4678 /* set up set-features taskfile */ 4679 ata_dev_dbg(dev, "set features\n"); 4680 4681 ata_tf_init(dev, &tf); 4682 tf.command = ATA_CMD_SET_FEATURES; 4683 tf.feature = subcmd; 4684 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4685 tf.protocol = ATA_PROT_NODATA; 4686 tf.nsect = action; 4687 4688 if (subcmd == SETFEATURES_SPINUP) 4689 timeout = ata_probe_timeout ? 4690 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT; 4691 4692 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout); 4693 } 4694 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4695 4696 /** 4697 * ata_dev_init_params - Issue INIT DEV PARAMS command 4698 * @dev: Device to which command will be sent 4699 * @heads: Number of heads (taskfile parameter) 4700 * @sectors: Number of sectors (taskfile parameter) 4701 * 4702 * LOCKING: 4703 * Kernel thread context (may sleep) 4704 * 4705 * RETURNS: 4706 * 0 on success, AC_ERR_* mask otherwise. 4707 */ 4708 static unsigned int ata_dev_init_params(struct ata_device *dev, 4709 u16 heads, u16 sectors) 4710 { 4711 struct ata_taskfile tf; 4712 unsigned int err_mask; 4713 4714 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4715 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4716 return AC_ERR_INVALID; 4717 4718 /* set up init dev params taskfile */ 4719 ata_dev_dbg(dev, "init dev params\n"); 4720 4721 ata_tf_init(dev, &tf); 4722 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4723 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4724 tf.protocol = ATA_PROT_NODATA; 4725 tf.nsect = sectors; 4726 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4727 4728 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4729 /* A clean abort indicates an original or just out of spec drive 4730 and we should continue as we issue the setup based on the 4731 drive reported working geometry */ 4732 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED)) 4733 err_mask = 0; 4734 4735 return err_mask; 4736 } 4737 4738 /** 4739 * atapi_check_dma - Check whether ATAPI DMA can be supported 4740 * @qc: Metadata associated with taskfile to check 4741 * 4742 * Allow low-level driver to filter ATA PACKET commands, returning 4743 * a status indicating whether or not it is OK to use DMA for the 4744 * supplied PACKET command. 4745 * 4746 * LOCKING: 4747 * spin_lock_irqsave(host lock) 4748 * 4749 * RETURNS: 0 when ATAPI DMA can be used 4750 * nonzero otherwise 4751 */ 4752 int atapi_check_dma(struct ata_queued_cmd *qc) 4753 { 4754 struct ata_port *ap = qc->ap; 4755 4756 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4757 * few ATAPI devices choke on such DMA requests. 4758 */ 4759 if (!(qc->dev->quirks & ATA_QUIRK_ATAPI_MOD16_DMA) && 4760 unlikely(qc->nbytes & 15)) 4761 return -EOPNOTSUPP; 4762 4763 if (ap->ops->check_atapi_dma) 4764 return ap->ops->check_atapi_dma(qc); 4765 4766 return 0; 4767 } 4768 4769 /** 4770 * ata_std_qc_defer - Check whether a qc needs to be deferred 4771 * @qc: ATA command in question 4772 * 4773 * Non-NCQ commands cannot run with any other command, NCQ or 4774 * not. As upper layer only knows the queue depth, we are 4775 * responsible for maintaining exclusion. This function checks 4776 * whether a new command @qc can be issued. 4777 * 4778 * LOCKING: 4779 * spin_lock_irqsave(host lock) 4780 * 4781 * RETURNS: 4782 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4783 */ 4784 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4785 { 4786 struct ata_link *link = qc->dev->link; 4787 4788 if (ata_is_ncq(qc->tf.protocol)) { 4789 if (!ata_tag_valid(link->active_tag)) 4790 return 0; 4791 } else { 4792 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4793 return 0; 4794 } 4795 4796 return ATA_DEFER_LINK; 4797 } 4798 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 4799 4800 /** 4801 * ata_sg_init - Associate command with scatter-gather table. 4802 * @qc: Command to be associated 4803 * @sg: Scatter-gather table. 4804 * @n_elem: Number of elements in s/g table. 4805 * 4806 * Initialize the data-related elements of queued_cmd @qc 4807 * to point to a scatter-gather table @sg, containing @n_elem 4808 * elements. 4809 * 4810 * LOCKING: 4811 * spin_lock_irqsave(host lock) 4812 */ 4813 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4814 unsigned int n_elem) 4815 { 4816 qc->sg = sg; 4817 qc->n_elem = n_elem; 4818 qc->cursg = qc->sg; 4819 } 4820 4821 #ifdef CONFIG_HAS_DMA 4822 4823 /** 4824 * ata_sg_clean - Unmap DMA memory associated with command 4825 * @qc: Command containing DMA memory to be released 4826 * 4827 * Unmap all mapped DMA memory associated with this command. 4828 * 4829 * LOCKING: 4830 * spin_lock_irqsave(host lock) 4831 */ 4832 static void ata_sg_clean(struct ata_queued_cmd *qc) 4833 { 4834 struct ata_port *ap = qc->ap; 4835 struct scatterlist *sg = qc->sg; 4836 int dir = qc->dma_dir; 4837 4838 WARN_ON_ONCE(sg == NULL); 4839 4840 if (qc->n_elem) 4841 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4842 4843 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4844 qc->sg = NULL; 4845 } 4846 4847 /** 4848 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4849 * @qc: Command with scatter-gather table to be mapped. 4850 * 4851 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4852 * 4853 * LOCKING: 4854 * spin_lock_irqsave(host lock) 4855 * 4856 * RETURNS: 4857 * Zero on success, negative on error. 4858 * 4859 */ 4860 static int ata_sg_setup(struct ata_queued_cmd *qc) 4861 { 4862 struct ata_port *ap = qc->ap; 4863 unsigned int n_elem; 4864 4865 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4866 if (n_elem < 1) 4867 return -1; 4868 4869 qc->orig_n_elem = qc->n_elem; 4870 qc->n_elem = n_elem; 4871 qc->flags |= ATA_QCFLAG_DMAMAP; 4872 4873 return 0; 4874 } 4875 4876 #else /* !CONFIG_HAS_DMA */ 4877 4878 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {} 4879 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; } 4880 4881 #endif /* !CONFIG_HAS_DMA */ 4882 4883 /** 4884 * swap_buf_le16 - swap halves of 16-bit words in place 4885 * @buf: Buffer to swap 4886 * @buf_words: Number of 16-bit words in buffer. 4887 * 4888 * Swap halves of 16-bit words if needed to convert from 4889 * little-endian byte order to native cpu byte order, or 4890 * vice-versa. 4891 * 4892 * LOCKING: 4893 * Inherited from caller. 4894 */ 4895 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4896 { 4897 #ifdef __BIG_ENDIAN 4898 unsigned int i; 4899 4900 for (i = 0; i < buf_words; i++) 4901 buf[i] = le16_to_cpu(buf[i]); 4902 #endif /* __BIG_ENDIAN */ 4903 } 4904 4905 /** 4906 * ata_qc_free - free unused ata_queued_cmd 4907 * @qc: Command to complete 4908 * 4909 * Designed to free unused ata_queued_cmd object 4910 * in case something prevents using it. 4911 * 4912 * LOCKING: 4913 * spin_lock_irqsave(host lock) 4914 */ 4915 void ata_qc_free(struct ata_queued_cmd *qc) 4916 { 4917 qc->flags = 0; 4918 if (ata_tag_valid(qc->tag)) 4919 qc->tag = ATA_TAG_POISON; 4920 } 4921 4922 void __ata_qc_complete(struct ata_queued_cmd *qc) 4923 { 4924 struct ata_port *ap; 4925 struct ata_link *link; 4926 4927 if (WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE))) 4928 return; 4929 4930 ap = qc->ap; 4931 link = qc->dev->link; 4932 4933 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4934 ata_sg_clean(qc); 4935 4936 /* command should be marked inactive atomically with qc completion */ 4937 if (ata_is_ncq(qc->tf.protocol)) { 4938 link->sactive &= ~(1 << qc->hw_tag); 4939 if (!link->sactive) 4940 ap->nr_active_links--; 4941 } else { 4942 link->active_tag = ATA_TAG_POISON; 4943 ap->nr_active_links--; 4944 } 4945 4946 /* clear exclusive status */ 4947 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4948 ap->excl_link == link)) 4949 ap->excl_link = NULL; 4950 4951 /* 4952 * Mark qc as inactive to prevent the port interrupt handler from 4953 * completing the command twice later, before the error handler is 4954 * called. 4955 */ 4956 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4957 ap->qc_active &= ~(1ULL << qc->tag); 4958 4959 /* call completion callback */ 4960 qc->complete_fn(qc); 4961 } 4962 4963 static void fill_result_tf(struct ata_queued_cmd *qc) 4964 { 4965 struct ata_port *ap = qc->ap; 4966 4967 /* 4968 * rtf may already be filled (e.g. for successful NCQ commands). 4969 * If that is the case, we have nothing to do. 4970 */ 4971 if (qc->flags & ATA_QCFLAG_RTF_FILLED) 4972 return; 4973 4974 qc->result_tf.flags = qc->tf.flags; 4975 ap->ops->qc_fill_rtf(qc); 4976 qc->flags |= ATA_QCFLAG_RTF_FILLED; 4977 } 4978 4979 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4980 { 4981 struct ata_device *dev = qc->dev; 4982 4983 if (!ata_is_data(qc->tf.protocol)) 4984 return; 4985 4986 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4987 return; 4988 4989 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4990 } 4991 4992 /** 4993 * ata_qc_complete - Complete an active ATA command 4994 * @qc: Command to complete 4995 * 4996 * Indicate to the mid and upper layers that an ATA command has 4997 * completed, with either an ok or not-ok status. 4998 * 4999 * Refrain from calling this function multiple times when 5000 * successfully completing multiple NCQ commands. 5001 * ata_qc_complete_multiple() should be used instead, which will 5002 * properly update IRQ expect state. 5003 * 5004 * LOCKING: 5005 * spin_lock_irqsave(host lock) 5006 */ 5007 void ata_qc_complete(struct ata_queued_cmd *qc) 5008 { 5009 struct ata_port *ap = qc->ap; 5010 struct ata_device *dev = qc->dev; 5011 struct ata_eh_info *ehi = &dev->link->eh_info; 5012 5013 /* Trigger the LED (if available) */ 5014 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE)); 5015 5016 /* 5017 * In order to synchronize EH with the regular execution path, a qc that 5018 * is owned by EH is marked with ATA_QCFLAG_EH. 5019 * 5020 * The normal execution path is responsible for not accessing a qc owned 5021 * by EH. libata core enforces the rule by returning NULL from 5022 * ata_qc_from_tag() for qcs owned by EH. 5023 */ 5024 if (unlikely(qc->err_mask)) 5025 qc->flags |= ATA_QCFLAG_EH; 5026 5027 /* 5028 * Finish internal commands without any further processing and always 5029 * with the result TF filled. 5030 */ 5031 if (unlikely(ata_tag_internal(qc->tag))) { 5032 fill_result_tf(qc); 5033 trace_ata_qc_complete_internal(qc); 5034 __ata_qc_complete(qc); 5035 return; 5036 } 5037 5038 /* Non-internal qc has failed. Fill the result TF and summon EH. */ 5039 if (unlikely(qc->flags & ATA_QCFLAG_EH)) { 5040 fill_result_tf(qc); 5041 trace_ata_qc_complete_failed(qc); 5042 ata_qc_schedule_eh(qc); 5043 return; 5044 } 5045 5046 WARN_ON_ONCE(ata_port_is_frozen(ap)); 5047 5048 /* read result TF if requested */ 5049 if (qc->flags & ATA_QCFLAG_RESULT_TF) 5050 fill_result_tf(qc); 5051 5052 trace_ata_qc_complete_done(qc); 5053 5054 /* 5055 * For CDL commands that completed without an error, check if we have 5056 * sense data (ATA_SENSE is set). If we do, then the command may have 5057 * been aborted by the device due to a limit timeout using the policy 5058 * 0xD. For these commands, invoke EH to get the command sense data. 5059 */ 5060 if (qc->flags & ATA_QCFLAG_HAS_CDL && 5061 qc->result_tf.status & ATA_SENSE) { 5062 /* 5063 * Tell SCSI EH to not overwrite scmd->result even if this 5064 * command is finished with result SAM_STAT_GOOD. 5065 */ 5066 qc->scsicmd->flags |= SCMD_FORCE_EH_SUCCESS; 5067 qc->flags |= ATA_QCFLAG_EH_SUCCESS_CMD; 5068 ehi->dev_action[dev->devno] |= ATA_EH_GET_SUCCESS_SENSE; 5069 5070 /* 5071 * set pending so that ata_qc_schedule_eh() does not trigger 5072 * fast drain, and freeze the port. 5073 */ 5074 ap->pflags |= ATA_PFLAG_EH_PENDING; 5075 ata_qc_schedule_eh(qc); 5076 return; 5077 } 5078 5079 /* Some commands need post-processing after successful completion. */ 5080 switch (qc->tf.command) { 5081 case ATA_CMD_SET_FEATURES: 5082 if (qc->tf.feature != SETFEATURES_WC_ON && 5083 qc->tf.feature != SETFEATURES_WC_OFF && 5084 qc->tf.feature != SETFEATURES_RA_ON && 5085 qc->tf.feature != SETFEATURES_RA_OFF) 5086 break; 5087 fallthrough; 5088 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 5089 case ATA_CMD_SET_MULTI: /* multi_count changed */ 5090 /* revalidate device */ 5091 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 5092 ata_port_schedule_eh(ap); 5093 break; 5094 5095 case ATA_CMD_SLEEP: 5096 dev->flags |= ATA_DFLAG_SLEEPING; 5097 break; 5098 } 5099 5100 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 5101 ata_verify_xfer(qc); 5102 5103 __ata_qc_complete(qc); 5104 } 5105 EXPORT_SYMBOL_GPL(ata_qc_complete); 5106 5107 /** 5108 * ata_qc_get_active - get bitmask of active qcs 5109 * @ap: port in question 5110 * 5111 * LOCKING: 5112 * spin_lock_irqsave(host lock) 5113 * 5114 * RETURNS: 5115 * Bitmask of active qcs 5116 */ 5117 u64 ata_qc_get_active(struct ata_port *ap) 5118 { 5119 u64 qc_active = ap->qc_active; 5120 5121 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */ 5122 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) { 5123 qc_active |= (1 << 0); 5124 qc_active &= ~(1ULL << ATA_TAG_INTERNAL); 5125 } 5126 5127 return qc_active; 5128 } 5129 EXPORT_SYMBOL_GPL(ata_qc_get_active); 5130 5131 /** 5132 * ata_qc_issue - issue taskfile to device 5133 * @qc: command to issue to device 5134 * 5135 * Prepare an ATA command to submission to device. 5136 * This includes mapping the data into a DMA-able 5137 * area, filling in the S/G table, and finally 5138 * writing the taskfile to hardware, starting the command. 5139 * 5140 * LOCKING: 5141 * spin_lock_irqsave(host lock) 5142 */ 5143 void ata_qc_issue(struct ata_queued_cmd *qc) 5144 { 5145 struct ata_port *ap = qc->ap; 5146 struct ata_link *link = qc->dev->link; 5147 u8 prot = qc->tf.protocol; 5148 5149 /* Make sure only one non-NCQ command is outstanding. */ 5150 WARN_ON_ONCE(ata_tag_valid(link->active_tag)); 5151 5152 if (ata_is_ncq(prot)) { 5153 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag)); 5154 5155 if (!link->sactive) 5156 ap->nr_active_links++; 5157 link->sactive |= 1 << qc->hw_tag; 5158 } else { 5159 WARN_ON_ONCE(link->sactive); 5160 5161 ap->nr_active_links++; 5162 link->active_tag = qc->tag; 5163 } 5164 5165 qc->flags |= ATA_QCFLAG_ACTIVE; 5166 ap->qc_active |= 1ULL << qc->tag; 5167 5168 /* Make sure the device is still accessible. */ 5169 if (!ata_adapter_is_online(ap)) { 5170 qc->err_mask |= AC_ERR_HOST_BUS; 5171 goto sys_err; 5172 } 5173 5174 /* 5175 * We guarantee to LLDs that they will have at least one 5176 * non-zero sg if the command is a data command. 5177 */ 5178 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)) 5179 goto sys_err; 5180 5181 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5182 (ap->flags & ATA_FLAG_PIO_DMA))) 5183 if (ata_sg_setup(qc)) 5184 goto sys_err; 5185 5186 /* if device is sleeping, schedule reset and abort the link */ 5187 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5188 link->eh_info.action |= ATA_EH_RESET; 5189 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5190 ata_link_abort(link); 5191 return; 5192 } 5193 5194 if (ap->ops->qc_prep) { 5195 trace_ata_qc_prep(qc); 5196 qc->err_mask |= ap->ops->qc_prep(qc); 5197 if (unlikely(qc->err_mask)) 5198 goto err; 5199 } 5200 5201 trace_ata_qc_issue(qc); 5202 qc->err_mask |= ap->ops->qc_issue(qc); 5203 if (unlikely(qc->err_mask)) 5204 goto err; 5205 return; 5206 5207 sys_err: 5208 qc->err_mask |= AC_ERR_SYSTEM; 5209 err: 5210 ata_qc_complete(qc); 5211 } 5212 5213 /** 5214 * ata_phys_link_online - test whether the given link is online 5215 * @link: ATA link to test 5216 * 5217 * Test whether @link is online. Note that this function returns 5218 * 0 if online status of @link cannot be obtained, so 5219 * ata_link_online(link) != !ata_link_offline(link). 5220 * 5221 * LOCKING: 5222 * None. 5223 * 5224 * RETURNS: 5225 * True if the port online status is available and online. 5226 */ 5227 bool ata_phys_link_online(struct ata_link *link) 5228 { 5229 u32 sstatus; 5230 5231 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5232 ata_sstatus_online(sstatus)) 5233 return true; 5234 return false; 5235 } 5236 5237 /** 5238 * ata_phys_link_offline - test whether the given link is offline 5239 * @link: ATA link to test 5240 * 5241 * Test whether @link is offline. Note that this function 5242 * returns 0 if offline status of @link cannot be obtained, so 5243 * ata_link_online(link) != !ata_link_offline(link). 5244 * 5245 * LOCKING: 5246 * None. 5247 * 5248 * RETURNS: 5249 * True if the port offline status is available and offline. 5250 */ 5251 bool ata_phys_link_offline(struct ata_link *link) 5252 { 5253 u32 sstatus; 5254 5255 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5256 !ata_sstatus_online(sstatus)) 5257 return true; 5258 return false; 5259 } 5260 5261 /** 5262 * ata_link_online - test whether the given link is online 5263 * @link: ATA link to test 5264 * 5265 * Test whether @link is online. This is identical to 5266 * ata_phys_link_online() when there's no slave link. When 5267 * there's a slave link, this function should only be called on 5268 * the master link and will return true if any of M/S links is 5269 * online. 5270 * 5271 * LOCKING: 5272 * None. 5273 * 5274 * RETURNS: 5275 * True if the port online status is available and online. 5276 */ 5277 bool ata_link_online(struct ata_link *link) 5278 { 5279 struct ata_link *slave = link->ap->slave_link; 5280 5281 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5282 5283 return ata_phys_link_online(link) || 5284 (slave && ata_phys_link_online(slave)); 5285 } 5286 EXPORT_SYMBOL_GPL(ata_link_online); 5287 5288 /** 5289 * ata_link_offline - test whether the given link is offline 5290 * @link: ATA link to test 5291 * 5292 * Test whether @link is offline. This is identical to 5293 * ata_phys_link_offline() when there's no slave link. When 5294 * there's a slave link, this function should only be called on 5295 * the master link and will return true if both M/S links are 5296 * offline. 5297 * 5298 * LOCKING: 5299 * None. 5300 * 5301 * RETURNS: 5302 * True if the port offline status is available and offline. 5303 */ 5304 bool ata_link_offline(struct ata_link *link) 5305 { 5306 struct ata_link *slave = link->ap->slave_link; 5307 5308 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5309 5310 return ata_phys_link_offline(link) && 5311 (!slave || ata_phys_link_offline(slave)); 5312 } 5313 EXPORT_SYMBOL_GPL(ata_link_offline); 5314 5315 #ifdef CONFIG_PM 5316 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5317 unsigned int action, unsigned int ehi_flags, 5318 bool async) 5319 { 5320 struct ata_link *link; 5321 unsigned long flags; 5322 5323 spin_lock_irqsave(ap->lock, flags); 5324 5325 /* 5326 * A previous PM operation might still be in progress. Wait for 5327 * ATA_PFLAG_PM_PENDING to clear. 5328 */ 5329 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5330 spin_unlock_irqrestore(ap->lock, flags); 5331 ata_port_wait_eh(ap); 5332 spin_lock_irqsave(ap->lock, flags); 5333 } 5334 5335 /* Request PM operation to EH */ 5336 ap->pm_mesg = mesg; 5337 ap->pflags |= ATA_PFLAG_PM_PENDING; 5338 ata_for_each_link(link, ap, HOST_FIRST) { 5339 link->eh_info.action |= action; 5340 link->eh_info.flags |= ehi_flags; 5341 } 5342 5343 ata_port_schedule_eh(ap); 5344 5345 spin_unlock_irqrestore(ap->lock, flags); 5346 5347 if (!async) 5348 ata_port_wait_eh(ap); 5349 } 5350 5351 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg, 5352 bool async) 5353 { 5354 /* 5355 * We are about to suspend the port, so we do not care about 5356 * scsi_rescan_device() calls scheduled by previous resume operations. 5357 * The next resume will schedule the rescan again. So cancel any rescan 5358 * that is not done yet. 5359 */ 5360 cancel_delayed_work_sync(&ap->scsi_rescan_task); 5361 5362 /* 5363 * On some hardware, device fails to respond after spun down for 5364 * suspend. As the device will not be used until being resumed, we 5365 * do not need to touch the device. Ask EH to skip the usual stuff 5366 * and proceed directly to suspend. 5367 * 5368 * http://thread.gmane.org/gmane.linux.ide/46764 5369 */ 5370 ata_port_request_pm(ap, mesg, 0, 5371 ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY | 5372 ATA_EHI_NO_RECOVERY, 5373 async); 5374 } 5375 5376 static int ata_port_pm_suspend(struct device *dev) 5377 { 5378 struct ata_port *ap = to_ata_port(dev); 5379 5380 if (pm_runtime_suspended(dev)) 5381 return 0; 5382 5383 ata_port_suspend(ap, PMSG_SUSPEND, false); 5384 return 0; 5385 } 5386 5387 static int ata_port_pm_freeze(struct device *dev) 5388 { 5389 struct ata_port *ap = to_ata_port(dev); 5390 5391 if (pm_runtime_suspended(dev)) 5392 return 0; 5393 5394 ata_port_suspend(ap, PMSG_FREEZE, false); 5395 return 0; 5396 } 5397 5398 static int ata_port_pm_poweroff(struct device *dev) 5399 { 5400 if (!pm_runtime_suspended(dev)) 5401 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE, false); 5402 return 0; 5403 } 5404 5405 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg, 5406 bool async) 5407 { 5408 ata_port_request_pm(ap, mesg, ATA_EH_RESET, 5409 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 5410 async); 5411 } 5412 5413 static int ata_port_pm_resume(struct device *dev) 5414 { 5415 if (!pm_runtime_suspended(dev)) 5416 ata_port_resume(to_ata_port(dev), PMSG_RESUME, true); 5417 return 0; 5418 } 5419 5420 /* 5421 * For ODDs, the upper layer will poll for media change every few seconds, 5422 * which will make it enter and leave suspend state every few seconds. And 5423 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5424 * is very little and the ODD may malfunction after constantly being reset. 5425 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5426 * ODD is attached to the port. 5427 */ 5428 static int ata_port_runtime_idle(struct device *dev) 5429 { 5430 struct ata_port *ap = to_ata_port(dev); 5431 struct ata_link *link; 5432 struct ata_device *adev; 5433 5434 ata_for_each_link(link, ap, HOST_FIRST) { 5435 ata_for_each_dev(adev, link, ENABLED) 5436 if (adev->class == ATA_DEV_ATAPI && 5437 !zpodd_dev_enabled(adev)) 5438 return -EBUSY; 5439 } 5440 5441 return 0; 5442 } 5443 5444 static int ata_port_runtime_suspend(struct device *dev) 5445 { 5446 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND, false); 5447 return 0; 5448 } 5449 5450 static int ata_port_runtime_resume(struct device *dev) 5451 { 5452 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME, false); 5453 return 0; 5454 } 5455 5456 static const struct dev_pm_ops ata_port_pm_ops = { 5457 .suspend = ata_port_pm_suspend, 5458 .resume = ata_port_pm_resume, 5459 .freeze = ata_port_pm_freeze, 5460 .thaw = ata_port_pm_resume, 5461 .poweroff = ata_port_pm_poweroff, 5462 .restore = ata_port_pm_resume, 5463 5464 .runtime_suspend = ata_port_runtime_suspend, 5465 .runtime_resume = ata_port_runtime_resume, 5466 .runtime_idle = ata_port_runtime_idle, 5467 }; 5468 5469 /* sas ports don't participate in pm runtime management of ata_ports, 5470 * and need to resume ata devices at the domain level, not the per-port 5471 * level. sas suspend/resume is async to allow parallel port recovery 5472 * since sas has multiple ata_port instances per Scsi_Host. 5473 */ 5474 void ata_sas_port_suspend(struct ata_port *ap) 5475 { 5476 ata_port_suspend(ap, PMSG_SUSPEND, true); 5477 } 5478 EXPORT_SYMBOL_GPL(ata_sas_port_suspend); 5479 5480 void ata_sas_port_resume(struct ata_port *ap) 5481 { 5482 ata_port_resume(ap, PMSG_RESUME, true); 5483 } 5484 EXPORT_SYMBOL_GPL(ata_sas_port_resume); 5485 5486 /** 5487 * ata_host_suspend - suspend host 5488 * @host: host to suspend 5489 * @mesg: PM message 5490 * 5491 * Suspend @host. Actual operation is performed by port suspend. 5492 */ 5493 void ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5494 { 5495 host->dev->power.power_state = mesg; 5496 } 5497 EXPORT_SYMBOL_GPL(ata_host_suspend); 5498 5499 /** 5500 * ata_host_resume - resume host 5501 * @host: host to resume 5502 * 5503 * Resume @host. Actual operation is performed by port resume. 5504 */ 5505 void ata_host_resume(struct ata_host *host) 5506 { 5507 host->dev->power.power_state = PMSG_ON; 5508 } 5509 EXPORT_SYMBOL_GPL(ata_host_resume); 5510 #endif 5511 5512 const struct device_type ata_port_type = { 5513 .name = ATA_PORT_TYPE_NAME, 5514 #ifdef CONFIG_PM 5515 .pm = &ata_port_pm_ops, 5516 #endif 5517 }; 5518 5519 /** 5520 * ata_dev_init - Initialize an ata_device structure 5521 * @dev: Device structure to initialize 5522 * 5523 * Initialize @dev in preparation for probing. 5524 * 5525 * LOCKING: 5526 * Inherited from caller. 5527 */ 5528 void ata_dev_init(struct ata_device *dev) 5529 { 5530 struct ata_link *link = ata_dev_phys_link(dev); 5531 struct ata_port *ap = link->ap; 5532 unsigned long flags; 5533 5534 /* SATA spd limit is bound to the attached device, reset together */ 5535 link->sata_spd_limit = link->hw_sata_spd_limit; 5536 link->sata_spd = 0; 5537 5538 /* High bits of dev->flags are used to record warm plug 5539 * requests which occur asynchronously. Synchronize using 5540 * host lock. 5541 */ 5542 spin_lock_irqsave(ap->lock, flags); 5543 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5544 dev->quirks = 0; 5545 spin_unlock_irqrestore(ap->lock, flags); 5546 5547 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5548 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5549 dev->pio_mask = UINT_MAX; 5550 dev->mwdma_mask = UINT_MAX; 5551 dev->udma_mask = UINT_MAX; 5552 } 5553 5554 /** 5555 * ata_link_init - Initialize an ata_link structure 5556 * @ap: ATA port link is attached to 5557 * @link: Link structure to initialize 5558 * @pmp: Port multiplier port number 5559 * 5560 * Initialize @link. 5561 * 5562 * LOCKING: 5563 * Kernel thread context (may sleep) 5564 */ 5565 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5566 { 5567 int i; 5568 5569 /* clear everything except for devices */ 5570 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5571 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5572 5573 link->ap = ap; 5574 link->pmp = pmp; 5575 link->active_tag = ATA_TAG_POISON; 5576 link->hw_sata_spd_limit = UINT_MAX; 5577 5578 /* can't use iterator, ap isn't initialized yet */ 5579 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5580 struct ata_device *dev = &link->device[i]; 5581 5582 dev->link = link; 5583 dev->devno = dev - link->device; 5584 #ifdef CONFIG_ATA_ACPI 5585 dev->gtf_filter = ata_acpi_gtf_filter; 5586 #endif 5587 ata_dev_init(dev); 5588 } 5589 } 5590 5591 /** 5592 * sata_link_init_spd - Initialize link->sata_spd_limit 5593 * @link: Link to configure sata_spd_limit for 5594 * 5595 * Initialize ``link->[hw_]sata_spd_limit`` to the currently 5596 * configured value. 5597 * 5598 * LOCKING: 5599 * Kernel thread context (may sleep). 5600 * 5601 * RETURNS: 5602 * 0 on success, -errno on failure. 5603 */ 5604 int sata_link_init_spd(struct ata_link *link) 5605 { 5606 u8 spd; 5607 int rc; 5608 5609 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5610 if (rc) 5611 return rc; 5612 5613 spd = (link->saved_scontrol >> 4) & 0xf; 5614 if (spd) 5615 link->hw_sata_spd_limit &= (1 << spd) - 1; 5616 5617 ata_force_link_limits(link); 5618 5619 link->sata_spd_limit = link->hw_sata_spd_limit; 5620 5621 return 0; 5622 } 5623 5624 /** 5625 * ata_port_alloc - allocate and initialize basic ATA port resources 5626 * @host: ATA host this allocated port belongs to 5627 * 5628 * Allocate and initialize basic ATA port resources. 5629 * 5630 * RETURNS: 5631 * Allocate ATA port on success, NULL on failure. 5632 * 5633 * LOCKING: 5634 * Inherited from calling layer (may sleep). 5635 */ 5636 struct ata_port *ata_port_alloc(struct ata_host *host) 5637 { 5638 struct ata_port *ap; 5639 int id; 5640 5641 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5642 if (!ap) 5643 return NULL; 5644 5645 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5646 ap->lock = &host->lock; 5647 id = ida_alloc_min(&ata_ida, 1, GFP_KERNEL); 5648 if (id < 0) { 5649 kfree(ap); 5650 return NULL; 5651 } 5652 ap->print_id = id; 5653 ap->host = host; 5654 ap->dev = host->dev; 5655 5656 mutex_init(&ap->scsi_scan_mutex); 5657 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5658 INIT_DELAYED_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5659 INIT_WORK(&ap->deferred_qc_work, ata_scsi_deferred_qc_work); 5660 INIT_LIST_HEAD(&ap->eh_done_q); 5661 init_waitqueue_head(&ap->eh_wait_q); 5662 init_completion(&ap->park_req_pending); 5663 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn, 5664 TIMER_DEFERRABLE); 5665 5666 ap->cbl = ATA_CBL_NONE; 5667 5668 ata_link_init(ap, &ap->link, 0); 5669 5670 #ifdef ATA_IRQ_TRAP 5671 ap->stats.unhandled_irq = 1; 5672 ap->stats.idle_irq = 1; 5673 #endif 5674 ata_sff_port_init(ap); 5675 5676 ata_force_pflags(ap); 5677 5678 return ap; 5679 } 5680 EXPORT_SYMBOL_GPL(ata_port_alloc); 5681 5682 void ata_port_free(struct ata_port *ap) 5683 { 5684 if (!ap) 5685 return; 5686 5687 kfree(ap->pmp_link); 5688 kfree(ap->slave_link); 5689 ida_free(&ata_ida, ap->print_id); 5690 kfree(ap); 5691 } 5692 EXPORT_SYMBOL_GPL(ata_port_free); 5693 5694 static void ata_devres_release(struct device *gendev, void *res) 5695 { 5696 struct ata_host *host = dev_get_drvdata(gendev); 5697 int i; 5698 5699 for (i = 0; i < host->n_ports; i++) { 5700 struct ata_port *ap = host->ports[i]; 5701 5702 if (!ap) 5703 continue; 5704 5705 if (ap->scsi_host) 5706 scsi_host_put(ap->scsi_host); 5707 5708 } 5709 5710 dev_set_drvdata(gendev, NULL); 5711 ata_host_put(host); 5712 } 5713 5714 static void ata_host_release(struct kref *kref) 5715 { 5716 struct ata_host *host = container_of(kref, struct ata_host, kref); 5717 int i; 5718 5719 for (i = 0; i < host->n_ports; i++) { 5720 ata_port_free(host->ports[i]); 5721 host->ports[i] = NULL; 5722 } 5723 kfree(host); 5724 } 5725 5726 void ata_host_get(struct ata_host *host) 5727 { 5728 kref_get(&host->kref); 5729 } 5730 5731 void ata_host_put(struct ata_host *host) 5732 { 5733 kref_put(&host->kref, ata_host_release); 5734 } 5735 EXPORT_SYMBOL_GPL(ata_host_put); 5736 5737 /** 5738 * ata_host_alloc - allocate and init basic ATA host resources 5739 * @dev: generic device this host is associated with 5740 * @n_ports: the number of ATA ports associated with this host 5741 * 5742 * Allocate and initialize basic ATA host resources. LLD calls 5743 * this function to allocate a host, initializes it fully and 5744 * attaches it using ata_host_register(). 5745 * 5746 * RETURNS: 5747 * Allocate ATA host on success, NULL on failure. 5748 * 5749 * LOCKING: 5750 * Inherited from calling layer (may sleep). 5751 */ 5752 struct ata_host *ata_host_alloc(struct device *dev, int n_ports) 5753 { 5754 struct ata_host *host; 5755 size_t sz; 5756 int i; 5757 void *dr; 5758 5759 /* alloc a container for our list of ATA ports (buses) */ 5760 sz = sizeof(struct ata_host) + n_ports * sizeof(void *); 5761 host = kzalloc(sz, GFP_KERNEL); 5762 if (!host) 5763 return NULL; 5764 5765 if (!devres_open_group(dev, NULL, GFP_KERNEL)) { 5766 kfree(host); 5767 return NULL; 5768 } 5769 5770 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL); 5771 if (!dr) { 5772 kfree(host); 5773 goto err_out; 5774 } 5775 5776 devres_add(dev, dr); 5777 dev_set_drvdata(dev, host); 5778 5779 spin_lock_init(&host->lock); 5780 mutex_init(&host->eh_mutex); 5781 host->dev = dev; 5782 host->n_ports = n_ports; 5783 kref_init(&host->kref); 5784 5785 /* allocate ports bound to this host */ 5786 for (i = 0; i < n_ports; i++) { 5787 struct ata_port *ap; 5788 5789 ap = ata_port_alloc(host); 5790 if (!ap) 5791 goto err_out; 5792 5793 ap->port_no = i; 5794 host->ports[i] = ap; 5795 } 5796 5797 devres_remove_group(dev, NULL); 5798 return host; 5799 5800 err_out: 5801 devres_release_group(dev, NULL); 5802 return NULL; 5803 } 5804 EXPORT_SYMBOL_GPL(ata_host_alloc); 5805 5806 /** 5807 * ata_host_alloc_pinfo - alloc host and init with port_info array 5808 * @dev: generic device this host is associated with 5809 * @ppi: array of ATA port_info to initialize host with 5810 * @n_ports: number of ATA ports attached to this host 5811 * 5812 * Allocate ATA host and initialize with info from @ppi. If NULL 5813 * terminated, @ppi may contain fewer entries than @n_ports. The 5814 * last entry will be used for the remaining ports. 5815 * 5816 * RETURNS: 5817 * Allocate ATA host on success, NULL on failure. 5818 * 5819 * LOCKING: 5820 * Inherited from calling layer (may sleep). 5821 */ 5822 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5823 const struct ata_port_info * const * ppi, 5824 int n_ports) 5825 { 5826 const struct ata_port_info *pi = &ata_dummy_port_info; 5827 struct ata_host *host; 5828 int i, j; 5829 5830 host = ata_host_alloc(dev, n_ports); 5831 if (!host) 5832 return NULL; 5833 5834 for (i = 0, j = 0; i < host->n_ports; i++) { 5835 struct ata_port *ap = host->ports[i]; 5836 5837 if (ppi[j]) 5838 pi = ppi[j++]; 5839 5840 ap->pio_mask = pi->pio_mask; 5841 ap->mwdma_mask = pi->mwdma_mask; 5842 ap->udma_mask = pi->udma_mask; 5843 ap->flags |= pi->flags; 5844 ap->link.flags |= pi->link_flags; 5845 ap->ops = pi->port_ops; 5846 5847 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5848 host->ops = pi->port_ops; 5849 } 5850 5851 return host; 5852 } 5853 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 5854 5855 static void ata_host_stop(struct device *gendev, void *res) 5856 { 5857 struct ata_host *host = dev_get_drvdata(gendev); 5858 int i; 5859 5860 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5861 5862 for (i = 0; i < host->n_ports; i++) { 5863 struct ata_port *ap = host->ports[i]; 5864 5865 if (ap->ops->port_stop) 5866 ap->ops->port_stop(ap); 5867 } 5868 5869 if (host->ops->host_stop) 5870 host->ops->host_stop(host); 5871 } 5872 5873 /** 5874 * ata_finalize_port_ops - finalize ata_port_operations 5875 * @ops: ata_port_operations to finalize 5876 * 5877 * An ata_port_operations can inherit from another ops and that 5878 * ops can again inherit from another. This can go on as many 5879 * times as necessary as long as there is no loop in the 5880 * inheritance chain. 5881 * 5882 * Ops tables are finalized when the host is started. NULL or 5883 * unspecified entries are inherited from the closet ancestor 5884 * which has the method and the entry is populated with it. 5885 * After finalization, the ops table directly points to all the 5886 * methods and ->inherits is no longer necessary and cleared. 5887 * 5888 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5889 * 5890 * LOCKING: 5891 * None. 5892 */ 5893 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5894 { 5895 static DEFINE_SPINLOCK(lock); 5896 const struct ata_port_operations *cur; 5897 void **begin = (void **)ops; 5898 void **end = (void **)&ops->inherits; 5899 void **pp; 5900 5901 if (!ops || !ops->inherits) 5902 return; 5903 5904 spin_lock(&lock); 5905 5906 for (cur = ops->inherits; cur; cur = cur->inherits) { 5907 void **inherit = (void **)cur; 5908 5909 for (pp = begin; pp < end; pp++, inherit++) 5910 if (!*pp) 5911 *pp = *inherit; 5912 } 5913 5914 for (pp = begin; pp < end; pp++) 5915 if (IS_ERR(*pp)) 5916 *pp = NULL; 5917 5918 ops->inherits = NULL; 5919 5920 spin_unlock(&lock); 5921 } 5922 5923 /** 5924 * ata_host_start - start and freeze ports of an ATA host 5925 * @host: ATA host to start ports for 5926 * 5927 * Start and then freeze ports of @host. Started status is 5928 * recorded in host->flags, so this function can be called 5929 * multiple times. Ports are guaranteed to get started only 5930 * once. If host->ops is not initialized yet, it is set to the 5931 * first non-dummy port ops. 5932 * 5933 * LOCKING: 5934 * Inherited from calling layer (may sleep). 5935 * 5936 * RETURNS: 5937 * 0 if all ports are started successfully, -errno otherwise. 5938 */ 5939 int ata_host_start(struct ata_host *host) 5940 { 5941 int have_stop = 0; 5942 void *start_dr = NULL; 5943 int i, rc; 5944 5945 if (host->flags & ATA_HOST_STARTED) 5946 return 0; 5947 5948 ata_finalize_port_ops(host->ops); 5949 5950 for (i = 0; i < host->n_ports; i++) { 5951 struct ata_port *ap = host->ports[i]; 5952 5953 ata_finalize_port_ops(ap->ops); 5954 5955 if (!host->ops && !ata_port_is_dummy(ap)) 5956 host->ops = ap->ops; 5957 5958 if (ap->ops->port_stop) 5959 have_stop = 1; 5960 } 5961 5962 if (host->ops && host->ops->host_stop) 5963 have_stop = 1; 5964 5965 if (have_stop) { 5966 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5967 if (!start_dr) 5968 return -ENOMEM; 5969 } 5970 5971 for (i = 0; i < host->n_ports; i++) { 5972 struct ata_port *ap = host->ports[i]; 5973 5974 if (ap->ops->port_start) { 5975 rc = ap->ops->port_start(ap); 5976 if (rc) { 5977 if (rc != -ENODEV) 5978 dev_err(host->dev, 5979 "failed to start port %d (errno=%d)\n", 5980 i, rc); 5981 goto err_out; 5982 } 5983 } 5984 ata_eh_freeze_port(ap); 5985 } 5986 5987 if (start_dr) 5988 devres_add(host->dev, start_dr); 5989 host->flags |= ATA_HOST_STARTED; 5990 return 0; 5991 5992 err_out: 5993 while (--i >= 0) { 5994 struct ata_port *ap = host->ports[i]; 5995 5996 if (ap->ops->port_stop) 5997 ap->ops->port_stop(ap); 5998 } 5999 devres_free(start_dr); 6000 return rc; 6001 } 6002 EXPORT_SYMBOL_GPL(ata_host_start); 6003 6004 /** 6005 * ata_host_init - Initialize a host struct for sas (ipr, libsas) 6006 * @host: host to initialize 6007 * @dev: device host is attached to 6008 * @ops: port_ops 6009 * 6010 */ 6011 void ata_host_init(struct ata_host *host, struct device *dev, 6012 struct ata_port_operations *ops) 6013 { 6014 spin_lock_init(&host->lock); 6015 mutex_init(&host->eh_mutex); 6016 host->n_tags = ATA_MAX_QUEUE; 6017 host->dev = dev; 6018 host->ops = ops; 6019 kref_init(&host->kref); 6020 } 6021 EXPORT_SYMBOL_GPL(ata_host_init); 6022 6023 void ata_port_probe(struct ata_port *ap) 6024 { 6025 struct ata_eh_info *ehi = &ap->link.eh_info; 6026 unsigned long flags; 6027 6028 ata_acpi_port_power_on(ap); 6029 6030 /* kick EH for boot probing */ 6031 spin_lock_irqsave(ap->lock, flags); 6032 6033 ehi->probe_mask |= ATA_ALL_DEVICES; 6034 ehi->action |= ATA_EH_RESET; 6035 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 6036 6037 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 6038 ap->pflags |= ATA_PFLAG_LOADING; 6039 ata_port_schedule_eh(ap); 6040 6041 spin_unlock_irqrestore(ap->lock, flags); 6042 } 6043 EXPORT_SYMBOL_GPL(ata_port_probe); 6044 6045 static void async_port_probe(void *data, async_cookie_t cookie) 6046 { 6047 struct ata_port *ap = data; 6048 6049 /* 6050 * If we're not allowed to scan this host in parallel, 6051 * we need to wait until all previous scans have completed 6052 * before going further. 6053 * Jeff Garzik says this is only within a controller, so we 6054 * don't need to wait for port 0, only for later ports. 6055 */ 6056 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 6057 async_synchronize_cookie(cookie); 6058 6059 ata_port_probe(ap); 6060 ata_port_wait_eh(ap); 6061 6062 /* in order to keep device order, we need to synchronize at this point */ 6063 async_synchronize_cookie(cookie); 6064 6065 ata_scsi_scan_host(ap, 1); 6066 } 6067 6068 /** 6069 * ata_host_register - register initialized ATA host 6070 * @host: ATA host to register 6071 * @sht: template for SCSI host 6072 * 6073 * Register initialized ATA host. @host is allocated using 6074 * ata_host_alloc() and fully initialized by LLD. This function 6075 * starts ports, registers @host with ATA and SCSI layers and 6076 * probe registered devices. 6077 * 6078 * LOCKING: 6079 * Inherited from calling layer (may sleep). 6080 * 6081 * RETURNS: 6082 * 0 on success, -errno otherwise. 6083 */ 6084 int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht) 6085 { 6086 int i, rc; 6087 6088 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE); 6089 6090 /* host must have been started */ 6091 if (!(host->flags & ATA_HOST_STARTED)) { 6092 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 6093 WARN_ON(1); 6094 return -EINVAL; 6095 } 6096 6097 /* Create associated sysfs transport objects */ 6098 for (i = 0; i < host->n_ports; i++) { 6099 rc = ata_tport_add(host->dev,host->ports[i]); 6100 if (rc) { 6101 goto err_tadd; 6102 } 6103 } 6104 6105 rc = ata_scsi_add_hosts(host, sht); 6106 if (rc) 6107 goto err_tadd; 6108 6109 /* set cable, sata_spd_limit and report */ 6110 for (i = 0; i < host->n_ports; i++) { 6111 struct ata_port *ap = host->ports[i]; 6112 unsigned int xfer_mask; 6113 6114 /* set SATA cable type if still unset */ 6115 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 6116 ap->cbl = ATA_CBL_SATA; 6117 6118 /* init sata_spd_limit to the current value */ 6119 sata_link_init_spd(&ap->link); 6120 if (ap->slave_link) 6121 sata_link_init_spd(ap->slave_link); 6122 6123 /* print per-port info to dmesg */ 6124 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 6125 ap->udma_mask); 6126 6127 if (!ata_port_is_dummy(ap)) { 6128 ata_port_info(ap, "%cATA max %s %s\n", 6129 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 6130 ata_mode_string(xfer_mask), 6131 ap->link.eh_info.desc); 6132 ata_ehi_clear_desc(&ap->link.eh_info); 6133 } else 6134 ata_port_info(ap, "DUMMY\n"); 6135 } 6136 6137 /* perform each probe asynchronously */ 6138 for (i = 0; i < host->n_ports; i++) { 6139 struct ata_port *ap = host->ports[i]; 6140 ap->cookie = async_schedule(async_port_probe, ap); 6141 } 6142 6143 return 0; 6144 6145 err_tadd: 6146 while (--i >= 0) { 6147 ata_tport_delete(host->ports[i]); 6148 } 6149 return rc; 6150 6151 } 6152 EXPORT_SYMBOL_GPL(ata_host_register); 6153 6154 /** 6155 * ata_host_activate - start host, request IRQ and register it 6156 * @host: target ATA host 6157 * @irq: IRQ to request 6158 * @irq_handler: irq_handler used when requesting IRQ 6159 * @irq_flags: irq_flags used when requesting IRQ 6160 * @sht: scsi_host_template to use when registering the host 6161 * 6162 * After allocating an ATA host and initializing it, most libata 6163 * LLDs perform three steps to activate the host - start host, 6164 * request IRQ and register it. This helper takes necessary 6165 * arguments and performs the three steps in one go. 6166 * 6167 * An invalid IRQ skips the IRQ registration and expects the host to 6168 * have set polling mode on the port. In this case, @irq_handler 6169 * should be NULL. 6170 * 6171 * LOCKING: 6172 * Inherited from calling layer (may sleep). 6173 * 6174 * RETURNS: 6175 * 0 on success, -errno otherwise. 6176 */ 6177 int ata_host_activate(struct ata_host *host, int irq, 6178 irq_handler_t irq_handler, unsigned long irq_flags, 6179 const struct scsi_host_template *sht) 6180 { 6181 int i, rc; 6182 char *irq_desc; 6183 6184 rc = ata_host_start(host); 6185 if (rc) 6186 return rc; 6187 6188 /* Special case for polling mode */ 6189 if (!irq) { 6190 WARN_ON(irq_handler); 6191 return ata_host_register(host, sht); 6192 } 6193 6194 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]", 6195 dev_driver_string(host->dev), 6196 dev_name(host->dev)); 6197 if (!irq_desc) 6198 return -ENOMEM; 6199 6200 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6201 irq_desc, host); 6202 if (rc) 6203 return rc; 6204 6205 for (i = 0; i < host->n_ports; i++) 6206 ata_port_desc_misc(host->ports[i], irq); 6207 6208 rc = ata_host_register(host, sht); 6209 /* if failed, just free the IRQ and leave ports alone */ 6210 if (rc) 6211 devm_free_irq(host->dev, irq, host); 6212 6213 return rc; 6214 } 6215 EXPORT_SYMBOL_GPL(ata_host_activate); 6216 6217 /** 6218 * ata_dev_free_resources - Free a device resources 6219 * @dev: Target ATA device 6220 * 6221 * Free resources allocated to support a device features. 6222 * 6223 * LOCKING: 6224 * Kernel thread context (may sleep). 6225 */ 6226 void ata_dev_free_resources(struct ata_device *dev) 6227 { 6228 if (zpodd_dev_enabled(dev)) 6229 zpodd_exit(dev); 6230 6231 ata_dev_cleanup_cdl_resources(dev); 6232 } 6233 6234 /** 6235 * ata_port_detach - Detach ATA port in preparation of device removal 6236 * @ap: ATA port to be detached 6237 * 6238 * Detach all ATA devices and the associated SCSI devices of @ap; 6239 * then, remove the associated SCSI host. @ap is guaranteed to 6240 * be quiescent on return from this function. 6241 * 6242 * LOCKING: 6243 * Kernel thread context (may sleep). 6244 */ 6245 static void ata_port_detach(struct ata_port *ap) 6246 { 6247 unsigned long flags; 6248 struct ata_link *link; 6249 struct ata_device *dev; 6250 6251 /* Ensure ata_port probe has completed */ 6252 async_synchronize_cookie(ap->cookie + 1); 6253 6254 /* Wait for any ongoing EH */ 6255 ata_port_wait_eh(ap); 6256 6257 mutex_lock(&ap->scsi_scan_mutex); 6258 spin_lock_irqsave(ap->lock, flags); 6259 6260 /* Remove scsi devices */ 6261 ata_for_each_link(link, ap, HOST_FIRST) { 6262 ata_for_each_dev(dev, link, ALL) { 6263 if (dev->sdev) { 6264 spin_unlock_irqrestore(ap->lock, flags); 6265 scsi_remove_device(dev->sdev); 6266 spin_lock_irqsave(ap->lock, flags); 6267 dev->sdev = NULL; 6268 } 6269 } 6270 } 6271 6272 /* Make sure the deferred qc work finished. */ 6273 cancel_work_sync(&ap->deferred_qc_work); 6274 WARN_ON(ap->deferred_qc); 6275 6276 /* Tell EH to disable all devices */ 6277 ap->pflags |= ATA_PFLAG_UNLOADING; 6278 ata_port_schedule_eh(ap); 6279 6280 spin_unlock_irqrestore(ap->lock, flags); 6281 mutex_unlock(&ap->scsi_scan_mutex); 6282 6283 /* wait till EH commits suicide */ 6284 ata_port_wait_eh(ap); 6285 6286 /* it better be dead now */ 6287 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6288 6289 cancel_delayed_work_sync(&ap->hotplug_task); 6290 cancel_delayed_work_sync(&ap->scsi_rescan_task); 6291 6292 /* Delete port multiplier link transport devices */ 6293 if (ap->pmp_link) { 6294 int i; 6295 6296 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 6297 ata_tlink_delete(&ap->pmp_link[i]); 6298 } 6299 6300 /* Remove the associated SCSI host */ 6301 scsi_remove_host(ap->scsi_host); 6302 ata_tport_delete(ap); 6303 } 6304 6305 /** 6306 * ata_host_detach - Detach all ports of an ATA host 6307 * @host: Host to detach 6308 * 6309 * Detach all ports of @host. 6310 * 6311 * LOCKING: 6312 * Kernel thread context (may sleep). 6313 */ 6314 void ata_host_detach(struct ata_host *host) 6315 { 6316 int i; 6317 6318 for (i = 0; i < host->n_ports; i++) 6319 ata_port_detach(host->ports[i]); 6320 6321 /* the host is dead now, dissociate ACPI */ 6322 ata_acpi_dissociate(host); 6323 } 6324 EXPORT_SYMBOL_GPL(ata_host_detach); 6325 6326 #ifdef CONFIG_PCI 6327 6328 /** 6329 * ata_pci_remove_one - PCI layer callback for device removal 6330 * @pdev: PCI device that was removed 6331 * 6332 * PCI layer indicates to libata via this hook that hot-unplug or 6333 * module unload event has occurred. Detach all ports. Resource 6334 * release is handled via devres. 6335 * 6336 * LOCKING: 6337 * Inherited from PCI layer (may sleep). 6338 */ 6339 void ata_pci_remove_one(struct pci_dev *pdev) 6340 { 6341 struct ata_host *host = pci_get_drvdata(pdev); 6342 6343 ata_host_detach(host); 6344 } 6345 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6346 6347 void ata_pci_shutdown_one(struct pci_dev *pdev) 6348 { 6349 struct ata_host *host = pci_get_drvdata(pdev); 6350 int i; 6351 6352 for (i = 0; i < host->n_ports; i++) { 6353 struct ata_port *ap = host->ports[i]; 6354 6355 ap->pflags |= ATA_PFLAG_FROZEN; 6356 6357 /* Disable port interrupts */ 6358 if (ap->ops->freeze) 6359 ap->ops->freeze(ap); 6360 6361 /* Stop the port DMA engines */ 6362 if (ap->ops->port_stop) 6363 ap->ops->port_stop(ap); 6364 } 6365 } 6366 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one); 6367 6368 /* move to PCI subsystem */ 6369 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6370 { 6371 unsigned long tmp = 0; 6372 6373 switch (bits->width) { 6374 case 1: { 6375 u8 tmp8 = 0; 6376 pci_read_config_byte(pdev, bits->reg, &tmp8); 6377 tmp = tmp8; 6378 break; 6379 } 6380 case 2: { 6381 u16 tmp16 = 0; 6382 pci_read_config_word(pdev, bits->reg, &tmp16); 6383 tmp = tmp16; 6384 break; 6385 } 6386 case 4: { 6387 u32 tmp32 = 0; 6388 pci_read_config_dword(pdev, bits->reg, &tmp32); 6389 tmp = tmp32; 6390 break; 6391 } 6392 6393 default: 6394 return -EINVAL; 6395 } 6396 6397 tmp &= bits->mask; 6398 6399 return (tmp == bits->val) ? 1 : 0; 6400 } 6401 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6402 6403 #ifdef CONFIG_PM 6404 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6405 { 6406 pci_save_state(pdev); 6407 pci_disable_device(pdev); 6408 6409 if (mesg.event & PM_EVENT_SLEEP) 6410 pci_set_power_state(pdev, PCI_D3hot); 6411 } 6412 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6413 6414 int ata_pci_device_do_resume(struct pci_dev *pdev) 6415 { 6416 int rc; 6417 6418 pci_set_power_state(pdev, PCI_D0); 6419 pci_restore_state(pdev); 6420 6421 rc = pcim_enable_device(pdev); 6422 if (rc) { 6423 dev_err(&pdev->dev, 6424 "failed to enable device after resume (%d)\n", rc); 6425 return rc; 6426 } 6427 6428 pci_set_master(pdev); 6429 return 0; 6430 } 6431 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6432 6433 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6434 { 6435 struct ata_host *host = pci_get_drvdata(pdev); 6436 6437 ata_host_suspend(host, mesg); 6438 6439 ata_pci_device_do_suspend(pdev, mesg); 6440 6441 return 0; 6442 } 6443 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6444 6445 int ata_pci_device_resume(struct pci_dev *pdev) 6446 { 6447 struct ata_host *host = pci_get_drvdata(pdev); 6448 int rc; 6449 6450 rc = ata_pci_device_do_resume(pdev); 6451 if (rc == 0) 6452 ata_host_resume(host); 6453 return rc; 6454 } 6455 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6456 #endif /* CONFIG_PM */ 6457 #endif /* CONFIG_PCI */ 6458 6459 /** 6460 * ata_platform_remove_one - Platform layer callback for device removal 6461 * @pdev: Platform device that was removed 6462 * 6463 * Platform layer indicates to libata via this hook that hot-unplug or 6464 * module unload event has occurred. Detach all ports. Resource 6465 * release is handled via devres. 6466 * 6467 * LOCKING: 6468 * Inherited from platform layer (may sleep). 6469 */ 6470 void ata_platform_remove_one(struct platform_device *pdev) 6471 { 6472 struct ata_host *host = platform_get_drvdata(pdev); 6473 6474 ata_host_detach(host); 6475 } 6476 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 6477 6478 #ifdef CONFIG_ATA_FORCE 6479 6480 #define force_cbl(name, flag) \ 6481 { #name, .cbl = (flag) } 6482 6483 #define force_spd_limit(spd, val) \ 6484 { #spd, .spd_limit = (val) } 6485 6486 #define force_xfer(mode, shift) \ 6487 { #mode, .xfer_mask = (1UL << (shift)) } 6488 6489 #define force_lflag_on(name, flags) \ 6490 { #name, .lflags_on = (flags) } 6491 6492 #define force_lflag_onoff(name, flags) \ 6493 { "no" #name, .lflags_on = (flags) }, \ 6494 { #name, .lflags_off = (flags) } 6495 6496 #define force_pflag_on(name, flags) \ 6497 { #name, .pflags_on = (flags) } 6498 6499 #define force_quirk_on(name, flag) \ 6500 { #name, .quirk_on = (flag) } 6501 6502 #define force_quirk_val(name, flag, val) \ 6503 { #name, .quirk_on = (flag), \ 6504 .value = (val) } 6505 6506 #define force_quirk_onoff(name, flag) \ 6507 { "no" #name, .quirk_on = (flag) }, \ 6508 { #name, .quirk_off = (flag) } 6509 6510 /* 6511 * If the ata_force_param struct member 'name' ends with '=', then the value 6512 * after the equal sign will be parsed as an u64, and will be saved in the 6513 * ata_force_param struct member 'value'. This works because each libata.force 6514 * entry (struct ata_force_ent) is separated by commas, so each entry represents 6515 * a single quirk, and can thus only have a single value. 6516 */ 6517 static const struct ata_force_param force_tbl[] __initconst = { 6518 force_cbl(40c, ATA_CBL_PATA40), 6519 force_cbl(80c, ATA_CBL_PATA80), 6520 force_cbl(short40c, ATA_CBL_PATA40_SHORT), 6521 force_cbl(unk, ATA_CBL_PATA_UNK), 6522 force_cbl(ign, ATA_CBL_PATA_IGN), 6523 force_cbl(sata, ATA_CBL_SATA), 6524 6525 force_spd_limit(1.5Gbps, 1), 6526 force_spd_limit(3.0Gbps, 2), 6527 6528 force_xfer(pio0, ATA_SHIFT_PIO + 0), 6529 force_xfer(pio1, ATA_SHIFT_PIO + 1), 6530 force_xfer(pio2, ATA_SHIFT_PIO + 2), 6531 force_xfer(pio3, ATA_SHIFT_PIO + 3), 6532 force_xfer(pio4, ATA_SHIFT_PIO + 4), 6533 force_xfer(pio5, ATA_SHIFT_PIO + 5), 6534 force_xfer(pio6, ATA_SHIFT_PIO + 6), 6535 force_xfer(mwdma0, ATA_SHIFT_MWDMA + 0), 6536 force_xfer(mwdma1, ATA_SHIFT_MWDMA + 1), 6537 force_xfer(mwdma2, ATA_SHIFT_MWDMA + 2), 6538 force_xfer(mwdma3, ATA_SHIFT_MWDMA + 3), 6539 force_xfer(mwdma4, ATA_SHIFT_MWDMA + 4), 6540 force_xfer(udma0, ATA_SHIFT_UDMA + 0), 6541 force_xfer(udma16, ATA_SHIFT_UDMA + 0), 6542 force_xfer(udma/16, ATA_SHIFT_UDMA + 0), 6543 force_xfer(udma1, ATA_SHIFT_UDMA + 1), 6544 force_xfer(udma25, ATA_SHIFT_UDMA + 1), 6545 force_xfer(udma/25, ATA_SHIFT_UDMA + 1), 6546 force_xfer(udma2, ATA_SHIFT_UDMA + 2), 6547 force_xfer(udma33, ATA_SHIFT_UDMA + 2), 6548 force_xfer(udma/33, ATA_SHIFT_UDMA + 2), 6549 force_xfer(udma3, ATA_SHIFT_UDMA + 3), 6550 force_xfer(udma44, ATA_SHIFT_UDMA + 3), 6551 force_xfer(udma/44, ATA_SHIFT_UDMA + 3), 6552 force_xfer(udma4, ATA_SHIFT_UDMA + 4), 6553 force_xfer(udma66, ATA_SHIFT_UDMA + 4), 6554 force_xfer(udma/66, ATA_SHIFT_UDMA + 4), 6555 force_xfer(udma5, ATA_SHIFT_UDMA + 5), 6556 force_xfer(udma100, ATA_SHIFT_UDMA + 5), 6557 force_xfer(udma/100, ATA_SHIFT_UDMA + 5), 6558 force_xfer(udma6, ATA_SHIFT_UDMA + 6), 6559 force_xfer(udma133, ATA_SHIFT_UDMA + 6), 6560 force_xfer(udma/133, ATA_SHIFT_UDMA + 6), 6561 force_xfer(udma7, ATA_SHIFT_UDMA + 7), 6562 6563 force_lflag_on(nohrst, ATA_LFLAG_NO_HRST), 6564 force_lflag_on(nosrst, ATA_LFLAG_NO_SRST), 6565 force_lflag_on(norst, ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST), 6566 force_lflag_on(rstonce, ATA_LFLAG_RST_ONCE), 6567 force_lflag_onoff(dbdelay, ATA_LFLAG_NO_DEBOUNCE_DELAY), 6568 6569 force_pflag_on(external, ATA_PFLAG_EXTERNAL), 6570 6571 force_quirk_onoff(ncq, ATA_QUIRK_NONCQ), 6572 force_quirk_onoff(ncqtrim, ATA_QUIRK_NO_NCQ_TRIM), 6573 force_quirk_onoff(ncqati, ATA_QUIRK_NO_NCQ_ON_ATI), 6574 6575 force_quirk_onoff(trim, ATA_QUIRK_NOTRIM), 6576 force_quirk_on(trim_zero, ATA_QUIRK_ZERO_AFTER_TRIM), 6577 force_quirk_on(max_trim_128m, ATA_QUIRK_MAX_TRIM_128M), 6578 6579 force_quirk_onoff(dma, ATA_QUIRK_NODMA), 6580 force_quirk_on(atapi_dmadir, ATA_QUIRK_ATAPI_DMADIR), 6581 force_quirk_on(atapi_mod16_dma, ATA_QUIRK_ATAPI_MOD16_DMA), 6582 6583 force_quirk_onoff(dmalog, ATA_QUIRK_NO_DMA_LOG), 6584 force_quirk_onoff(iddevlog, ATA_QUIRK_NO_ID_DEV_LOG), 6585 force_quirk_onoff(logdir, ATA_QUIRK_NO_LOG_DIR), 6586 6587 force_quirk_val(max_sec_128, ATA_QUIRK_MAX_SEC, 128), 6588 force_quirk_val(max_sec_1024, ATA_QUIRK_MAX_SEC, 1024), 6589 force_quirk_on(max_sec=, ATA_QUIRK_MAX_SEC), 6590 force_quirk_on(max_sec_lba48, ATA_QUIRK_MAX_SEC_LBA48), 6591 6592 force_quirk_onoff(lpm, ATA_QUIRK_NOLPM), 6593 force_quirk_onoff(setxfer, ATA_QUIRK_NOSETXFER), 6594 force_quirk_on(dump_id, ATA_QUIRK_DUMP_ID), 6595 force_quirk_onoff(fua, ATA_QUIRK_NO_FUA), 6596 6597 force_quirk_on(disable, ATA_QUIRK_DISABLE), 6598 }; 6599 6600 static int __init ata_parse_force_one(char **cur, 6601 struct ata_force_ent *force_ent, 6602 const char **reason) 6603 { 6604 char *start = *cur, *p = *cur; 6605 char *id, *val, *endp, *equalsign, *char_after_equalsign; 6606 const struct ata_force_param *match_fp = NULL; 6607 u64 val_after_equalsign; 6608 int nr_matches = 0, i; 6609 6610 /* find where this param ends and update *cur */ 6611 while (*p != '\0' && *p != ',') 6612 p++; 6613 6614 if (*p == '\0') 6615 *cur = p; 6616 else 6617 *cur = p + 1; 6618 6619 *p = '\0'; 6620 6621 /* parse */ 6622 p = strchr(start, ':'); 6623 if (!p) { 6624 val = strstrip(start); 6625 goto parse_val; 6626 } 6627 *p = '\0'; 6628 6629 id = strstrip(start); 6630 val = strstrip(p + 1); 6631 6632 /* parse id */ 6633 p = strchr(id, '.'); 6634 if (p) { 6635 *p++ = '\0'; 6636 force_ent->device = simple_strtoul(p, &endp, 10); 6637 if (p == endp || *endp != '\0') { 6638 *reason = "invalid device"; 6639 return -EINVAL; 6640 } 6641 } 6642 6643 force_ent->port = simple_strtoul(id, &endp, 10); 6644 if (id == endp || *endp != '\0') { 6645 *reason = "invalid port/link"; 6646 return -EINVAL; 6647 } 6648 6649 parse_val: 6650 equalsign = strchr(val, '='); 6651 if (equalsign) { 6652 char_after_equalsign = equalsign + 1; 6653 if (!strlen(char_after_equalsign) || 6654 kstrtoull(char_after_equalsign, 10, &val_after_equalsign)) { 6655 *reason = "invalid value after equal sign"; 6656 return -EINVAL; 6657 } 6658 } 6659 6660 /* Parse the parameter value. */ 6661 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6662 const struct ata_force_param *fp = &force_tbl[i]; 6663 6664 /* 6665 * If val contains equal sign, match has to be exact, i.e. 6666 * shortcuts are not supported. 6667 */ 6668 if (equalsign && 6669 (strncasecmp(val, fp->name, 6670 char_after_equalsign - val) == 0)) { 6671 force_ent->param = *fp; 6672 force_ent->param.value = val_after_equalsign; 6673 return 0; 6674 } 6675 6676 /* 6677 * If val does not contain equal sign, allow shortcuts so that 6678 * both 1.5 and 1.5Gbps work. 6679 */ 6680 if (strncasecmp(val, fp->name, strlen(val))) 6681 continue; 6682 6683 nr_matches++; 6684 match_fp = fp; 6685 6686 if (strcasecmp(val, fp->name) == 0) { 6687 nr_matches = 1; 6688 break; 6689 } 6690 } 6691 6692 if (!nr_matches) { 6693 *reason = "unknown value"; 6694 return -EINVAL; 6695 } 6696 if (nr_matches > 1) { 6697 *reason = "ambiguous value"; 6698 return -EINVAL; 6699 } 6700 6701 force_ent->param = *match_fp; 6702 6703 return 0; 6704 } 6705 6706 static void __init ata_parse_force_param(void) 6707 { 6708 int idx = 0, size = 1; 6709 int last_port = -1, last_device = -1; 6710 char *p, *cur, *next; 6711 6712 /* Calculate maximum number of params and allocate ata_force_tbl */ 6713 for (p = ata_force_param_buf; *p; p++) 6714 if (*p == ',') 6715 size++; 6716 6717 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL); 6718 if (!ata_force_tbl) { 6719 printk(KERN_WARNING "ata: failed to extend force table, " 6720 "libata.force ignored\n"); 6721 return; 6722 } 6723 6724 /* parse and populate the table */ 6725 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6726 const char *reason = ""; 6727 struct ata_force_ent te = { .port = -1, .device = -1 }; 6728 6729 next = cur; 6730 if (ata_parse_force_one(&next, &te, &reason)) { 6731 printk(KERN_WARNING "ata: failed to parse force " 6732 "parameter \"%s\" (%s)\n", 6733 cur, reason); 6734 continue; 6735 } 6736 6737 if (te.port == -1) { 6738 te.port = last_port; 6739 te.device = last_device; 6740 } 6741 6742 ata_force_tbl[idx++] = te; 6743 6744 last_port = te.port; 6745 last_device = te.device; 6746 } 6747 6748 ata_force_tbl_size = idx; 6749 } 6750 6751 static void ata_free_force_param(void) 6752 { 6753 kfree(ata_force_tbl); 6754 } 6755 #else 6756 static inline void ata_parse_force_param(void) { } 6757 static inline void ata_free_force_param(void) { } 6758 #endif 6759 6760 static int __init ata_init(void) 6761 { 6762 int rc; 6763 6764 ata_parse_force_param(); 6765 6766 rc = ata_sff_init(); 6767 if (rc) { 6768 ata_free_force_param(); 6769 return rc; 6770 } 6771 6772 libata_transport_init(); 6773 ata_scsi_transport_template = ata_attach_transport(); 6774 if (!ata_scsi_transport_template) { 6775 ata_sff_exit(); 6776 rc = -ENOMEM; 6777 goto err_out; 6778 } 6779 6780 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6781 return 0; 6782 6783 err_out: 6784 return rc; 6785 } 6786 6787 static void __exit ata_exit(void) 6788 { 6789 ata_release_transport(ata_scsi_transport_template); 6790 libata_transport_exit(); 6791 ata_sff_exit(); 6792 ata_free_force_param(); 6793 } 6794 6795 subsys_initcall(ata_init); 6796 module_exit(ata_exit); 6797 6798 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6799 6800 int ata_ratelimit(void) 6801 { 6802 return __ratelimit(&ratelimit); 6803 } 6804 EXPORT_SYMBOL_GPL(ata_ratelimit); 6805 6806 /** 6807 * ata_msleep - ATA EH owner aware msleep 6808 * @ap: ATA port to attribute the sleep to 6809 * @msecs: duration to sleep in milliseconds 6810 * 6811 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6812 * ownership is released before going to sleep and reacquired 6813 * after the sleep is complete. IOW, other ports sharing the 6814 * @ap->host will be allowed to own the EH while this task is 6815 * sleeping. 6816 * 6817 * LOCKING: 6818 * Might sleep. 6819 */ 6820 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6821 { 6822 bool owns_eh = ap && ap->host->eh_owner == current; 6823 6824 if (owns_eh) 6825 ata_eh_release(ap); 6826 6827 if (msecs < 20) { 6828 unsigned long usecs = msecs * USEC_PER_MSEC; 6829 usleep_range(usecs, usecs + 50); 6830 } else { 6831 msleep(msecs); 6832 } 6833 6834 if (owns_eh) 6835 ata_eh_acquire(ap); 6836 } 6837 EXPORT_SYMBOL_GPL(ata_msleep); 6838 6839 /** 6840 * ata_wait_register - wait until register value changes 6841 * @ap: ATA port to wait register for, can be NULL 6842 * @reg: IO-mapped register 6843 * @mask: Mask to apply to read register value 6844 * @val: Wait condition 6845 * @interval: polling interval in milliseconds 6846 * @timeout: timeout in milliseconds 6847 * 6848 * Waiting for some bits of register to change is a common 6849 * operation for ATA controllers. This function reads 32bit LE 6850 * IO-mapped register @reg and tests for the following condition. 6851 * 6852 * (*@reg & mask) != val 6853 * 6854 * If the condition is met, it returns; otherwise, the process is 6855 * repeated after @interval_msec until timeout. 6856 * 6857 * LOCKING: 6858 * Kernel thread context (may sleep) 6859 * 6860 * RETURNS: 6861 * The final register value. 6862 */ 6863 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6864 unsigned int interval, unsigned int timeout) 6865 { 6866 unsigned long deadline; 6867 u32 tmp; 6868 6869 tmp = ioread32(reg); 6870 6871 /* Calculate timeout _after_ the first read to make sure 6872 * preceding writes reach the controller before starting to 6873 * eat away the timeout. 6874 */ 6875 deadline = ata_deadline(jiffies, timeout); 6876 6877 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6878 ata_msleep(ap, interval); 6879 tmp = ioread32(reg); 6880 } 6881 6882 return tmp; 6883 } 6884 EXPORT_SYMBOL_GPL(ata_wait_register); 6885 6886 /* 6887 * Dummy port_ops 6888 */ 6889 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6890 { 6891 return AC_ERR_SYSTEM; 6892 } 6893 6894 static void ata_dummy_error_handler(struct ata_port *ap) 6895 { 6896 /* truly dummy */ 6897 } 6898 6899 struct ata_port_operations ata_dummy_port_ops = { 6900 .qc_issue = ata_dummy_qc_issue, 6901 .error_handler = ata_dummy_error_handler, 6902 .sched_eh = ata_std_sched_eh, 6903 .end_eh = ata_std_end_eh, 6904 }; 6905 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6906 6907 const struct ata_port_info ata_dummy_port_info = { 6908 .port_ops = &ata_dummy_port_ops, 6909 }; 6910 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6911 6912 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load); 6913 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command); 6914 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup); 6915 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start); 6916 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status); 6917