1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * libata-core.c - helper library for ATA
4 *
5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
6 * Copyright 2003-2004 Jeff Garzik
7 *
8 * libata documentation is available via 'make {ps|pdf}docs',
9 * as Documentation/driver-api/libata.rst
10 *
11 * Hardware documentation available from http://www.t13.org/ and
12 * http://www.sata-io.org/
13 *
14 * Standards documents from:
15 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
16 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
17 * http://www.sata-io.org (SATA)
18 * http://www.compactflash.org (CF)
19 * http://www.qic.org (QIC157 - Tape and DSC)
20 * http://www.ce-ata.org (CE-ATA: not supported)
21 *
22 * libata is essentially a library of internal helper functions for
23 * low-level ATA host controller drivers. As such, the API/ABI is
24 * likely to change as new drivers are added and updated.
25 * Do not depend on ABI/API stability.
26 */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/spinlock.h>
35 #include <linux/blkdev.h>
36 #include <linux/delay.h>
37 #include <linux/timer.h>
38 #include <linux/time.h>
39 #include <linux/interrupt.h>
40 #include <linux/completion.h>
41 #include <linux/suspend.h>
42 #include <linux/workqueue.h>
43 #include <linux/scatterlist.h>
44 #include <linux/io.h>
45 #include <linux/log2.h>
46 #include <linux/slab.h>
47 #include <linux/glob.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_cmnd.h>
50 #include <scsi/scsi_host.h>
51 #include <linux/libata.h>
52 #include <asm/byteorder.h>
53 #include <linux/unaligned.h>
54 #include <linux/cdrom.h>
55 #include <linux/ratelimit.h>
56 #include <linux/leds.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/platform_device.h>
59 #include <asm/setup.h>
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/libata.h>
63
64 #include "libata.h"
65 #include "libata-transport.h"
66
67 const struct ata_port_operations ata_base_port_ops = {
68 .reset.prereset = ata_std_prereset,
69 .reset.postreset = ata_std_postreset,
70 .error_handler = ata_std_error_handler,
71 .sched_eh = ata_std_sched_eh,
72 .end_eh = ata_std_end_eh,
73 };
74
75 static unsigned int ata_dev_init_params(struct ata_device *dev,
76 u16 heads, u16 sectors);
77 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
78 static void ata_dev_xfermask(struct ata_device *dev);
79 static u64 ata_dev_quirks(const struct ata_device *dev);
80 static u64 ata_dev_get_quirk_value(struct ata_device *dev, u64 quirk);
81
82 static DEFINE_IDA(ata_ida);
83
84 #ifdef CONFIG_ATA_FORCE
85 struct ata_force_param {
86 const char *name;
87 u64 value;
88 u8 cbl;
89 u8 spd_limit;
90 unsigned int xfer_mask;
91 u64 quirk_on;
92 u64 quirk_off;
93 unsigned int pflags_on;
94 u16 lflags_on;
95 u16 lflags_off;
96 };
97
98 struct ata_force_ent {
99 int port;
100 int device;
101 struct ata_force_param param;
102 };
103
104 static struct ata_force_ent *ata_force_tbl;
105 static int ata_force_tbl_size;
106
107 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
108 /* param_buf is thrown away after initialization, disallow read */
109 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
110 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
111 #endif
112
113 static int atapi_enabled = 1;
114 module_param(atapi_enabled, int, 0444);
115 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
116
117 static int atapi_dmadir = 0;
118 module_param(atapi_dmadir, int, 0444);
119 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
120
121 int atapi_passthru16 = 1;
122 module_param(atapi_passthru16, int, 0444);
123 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
124
125 int libata_fua = 0;
126 module_param_named(fua, libata_fua, int, 0444);
127 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
128
129 static int ata_ignore_hpa;
130 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
131 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
132
133 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
134 module_param_named(dma, libata_dma_mask, int, 0444);
135 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
136
137 static int ata_probe_timeout;
138 module_param(ata_probe_timeout, int, 0444);
139 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
140
141 int libata_noacpi = 0;
142 module_param_named(noacpi, libata_noacpi, int, 0444);
143 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
144
145 int libata_allow_tpm = 0;
146 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
147 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
148
149 static int atapi_an;
150 module_param(atapi_an, int, 0444);
151 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
152
153 MODULE_AUTHOR("Jeff Garzik");
154 MODULE_DESCRIPTION("Library module for ATA devices");
155 MODULE_LICENSE("GPL");
156 MODULE_VERSION(DRV_VERSION);
157
ata_dev_print_info(const struct ata_device * dev)158 static inline bool ata_dev_print_info(const struct ata_device *dev)
159 {
160 struct ata_eh_context *ehc = &dev->link->eh_context;
161
162 return ehc->i.flags & ATA_EHI_PRINTINFO;
163 }
164
165 /**
166 * ata_link_next - link iteration helper
167 * @link: the previous link, NULL to start
168 * @ap: ATA port containing links to iterate
169 * @mode: iteration mode, one of ATA_LITER_*
170 *
171 * LOCKING:
172 * Host lock or EH context.
173 *
174 * RETURNS:
175 * Pointer to the next link.
176 */
ata_link_next(struct ata_link * link,struct ata_port * ap,enum ata_link_iter_mode mode)177 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
178 enum ata_link_iter_mode mode)
179 {
180 BUG_ON(mode != ATA_LITER_EDGE &&
181 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
182
183 /* NULL link indicates start of iteration */
184 if (!link)
185 switch (mode) {
186 case ATA_LITER_EDGE:
187 case ATA_LITER_PMP_FIRST:
188 if (sata_pmp_attached(ap))
189 return ap->pmp_link;
190 fallthrough;
191 case ATA_LITER_HOST_FIRST:
192 return &ap->link;
193 }
194
195 /* we just iterated over the host link, what's next? */
196 if (link == &ap->link)
197 switch (mode) {
198 case ATA_LITER_HOST_FIRST:
199 if (sata_pmp_attached(ap))
200 return ap->pmp_link;
201 fallthrough;
202 case ATA_LITER_PMP_FIRST:
203 if (unlikely(ap->slave_link))
204 return ap->slave_link;
205 fallthrough;
206 case ATA_LITER_EDGE:
207 return NULL;
208 }
209
210 /* slave_link excludes PMP */
211 if (unlikely(link == ap->slave_link))
212 return NULL;
213
214 /* we were over a PMP link */
215 if (++link < ap->pmp_link + ap->nr_pmp_links)
216 return link;
217
218 if (mode == ATA_LITER_PMP_FIRST)
219 return &ap->link;
220
221 return NULL;
222 }
223 EXPORT_SYMBOL_GPL(ata_link_next);
224
225 /**
226 * ata_dev_next - device iteration helper
227 * @dev: the previous device, NULL to start
228 * @link: ATA link containing devices to iterate
229 * @mode: iteration mode, one of ATA_DITER_*
230 *
231 * LOCKING:
232 * Host lock or EH context.
233 *
234 * RETURNS:
235 * Pointer to the next device.
236 */
ata_dev_next(struct ata_device * dev,struct ata_link * link,enum ata_dev_iter_mode mode)237 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
238 enum ata_dev_iter_mode mode)
239 {
240 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
241 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
242
243 /* NULL dev indicates start of iteration */
244 if (!dev)
245 switch (mode) {
246 case ATA_DITER_ENABLED:
247 case ATA_DITER_ALL:
248 dev = link->device;
249 goto check;
250 case ATA_DITER_ENABLED_REVERSE:
251 case ATA_DITER_ALL_REVERSE:
252 dev = link->device + ata_link_max_devices(link) - 1;
253 goto check;
254 }
255
256 next:
257 /* move to the next one */
258 switch (mode) {
259 case ATA_DITER_ENABLED:
260 case ATA_DITER_ALL:
261 if (++dev < link->device + ata_link_max_devices(link))
262 goto check;
263 return NULL;
264 case ATA_DITER_ENABLED_REVERSE:
265 case ATA_DITER_ALL_REVERSE:
266 if (--dev >= link->device)
267 goto check;
268 return NULL;
269 }
270
271 check:
272 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
273 !ata_dev_enabled(dev))
274 goto next;
275 return dev;
276 }
277 EXPORT_SYMBOL_GPL(ata_dev_next);
278
279 /**
280 * ata_dev_phys_link - find physical link for a device
281 * @dev: ATA device to look up physical link for
282 *
283 * Look up physical link which @dev is attached to. Note that
284 * this is different from @dev->link only when @dev is on slave
285 * link. For all other cases, it's the same as @dev->link.
286 *
287 * LOCKING:
288 * Don't care.
289 *
290 * RETURNS:
291 * Pointer to the found physical link.
292 */
ata_dev_phys_link(struct ata_device * dev)293 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
294 {
295 struct ata_port *ap = dev->link->ap;
296
297 if (!ap->slave_link)
298 return dev->link;
299 if (!dev->devno)
300 return &ap->link;
301 return ap->slave_link;
302 }
303
304 #ifdef CONFIG_ATA_FORCE
305 /**
306 * ata_force_cbl - force cable type according to libata.force
307 * @ap: ATA port of interest
308 *
309 * Force cable type according to libata.force and whine about it.
310 * The last entry which has matching port number is used, so it
311 * can be specified as part of device force parameters. For
312 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
313 * same effect.
314 *
315 * LOCKING:
316 * EH context.
317 */
ata_force_cbl(struct ata_port * ap)318 void ata_force_cbl(struct ata_port *ap)
319 {
320 int i;
321
322 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
323 const struct ata_force_ent *fe = &ata_force_tbl[i];
324
325 if (fe->port != -1 && fe->port != ap->print_id)
326 continue;
327
328 if (fe->param.cbl == ATA_CBL_NONE)
329 continue;
330
331 ap->cbl = fe->param.cbl;
332 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
333 return;
334 }
335 }
336
337 /**
338 * ata_force_pflags - force port flags according to libata.force
339 * @ap: ATA port of interest
340 *
341 * Force port flags according to libata.force and whine about it.
342 *
343 * LOCKING:
344 * EH context.
345 */
ata_force_pflags(struct ata_port * ap)346 static void ata_force_pflags(struct ata_port *ap)
347 {
348 int i;
349
350 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
351 const struct ata_force_ent *fe = &ata_force_tbl[i];
352
353 if (fe->port != -1 && fe->port != ap->print_id)
354 continue;
355
356 /* let pflags stack */
357 if (fe->param.pflags_on) {
358 ap->pflags |= fe->param.pflags_on;
359 ata_port_notice(ap,
360 "FORCE: port flag 0x%x forced -> 0x%x\n",
361 fe->param.pflags_on, ap->pflags);
362 }
363 }
364 }
365
366 /**
367 * ata_force_link_limits - force link limits according to libata.force
368 * @link: ATA link of interest
369 *
370 * Force link flags and SATA spd limit according to libata.force
371 * and whine about it. When only the port part is specified
372 * (e.g. 1:), the limit applies to all links connected to both
373 * the host link and all fan-out ports connected via PMP. If the
374 * device part is specified as 0 (e.g. 1.00:), it specifies the
375 * first fan-out link not the host link. Device number 15 always
376 * points to the host link whether PMP is attached or not. If the
377 * controller has slave link, device number 16 points to it.
378 *
379 * LOCKING:
380 * EH context.
381 */
ata_force_link_limits(struct ata_link * link)382 static void ata_force_link_limits(struct ata_link *link)
383 {
384 bool did_spd = false;
385 int linkno = link->pmp;
386 int i;
387
388 if (ata_is_host_link(link))
389 linkno += 15;
390
391 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
392 const struct ata_force_ent *fe = &ata_force_tbl[i];
393
394 if (fe->port != -1 && fe->port != link->ap->print_id)
395 continue;
396
397 if (fe->device != -1 && fe->device != linkno)
398 continue;
399
400 /* only honor the first spd limit */
401 if (!did_spd && fe->param.spd_limit) {
402 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
403 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
404 fe->param.name);
405 did_spd = true;
406 }
407
408 /* let lflags stack */
409 if (fe->param.lflags_on) {
410 link->flags |= fe->param.lflags_on;
411 ata_link_notice(link,
412 "FORCE: link flag 0x%x forced -> 0x%x\n",
413 fe->param.lflags_on, link->flags);
414 }
415 if (fe->param.lflags_off) {
416 link->flags &= ~fe->param.lflags_off;
417 ata_link_notice(link,
418 "FORCE: link flag 0x%x cleared -> 0x%x\n",
419 fe->param.lflags_off, link->flags);
420 }
421 }
422 }
423
424 /**
425 * ata_force_xfermask - force xfermask according to libata.force
426 * @dev: ATA device of interest
427 *
428 * Force xfer_mask according to libata.force and whine about it.
429 * For consistency with link selection, device number 15 selects
430 * the first device connected to the host link.
431 *
432 * LOCKING:
433 * EH context.
434 */
ata_force_xfermask(struct ata_device * dev)435 static void ata_force_xfermask(struct ata_device *dev)
436 {
437 int devno = dev->link->pmp + dev->devno;
438 int alt_devno = devno;
439 int i;
440
441 /* allow n.15/16 for devices attached to host port */
442 if (ata_is_host_link(dev->link))
443 alt_devno += 15;
444
445 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
446 const struct ata_force_ent *fe = &ata_force_tbl[i];
447 unsigned int pio_mask, mwdma_mask, udma_mask;
448
449 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
450 continue;
451
452 if (fe->device != -1 && fe->device != devno &&
453 fe->device != alt_devno)
454 continue;
455
456 if (!fe->param.xfer_mask)
457 continue;
458
459 ata_unpack_xfermask(fe->param.xfer_mask,
460 &pio_mask, &mwdma_mask, &udma_mask);
461 if (udma_mask)
462 dev->udma_mask = udma_mask;
463 else if (mwdma_mask) {
464 dev->udma_mask = 0;
465 dev->mwdma_mask = mwdma_mask;
466 } else {
467 dev->udma_mask = 0;
468 dev->mwdma_mask = 0;
469 dev->pio_mask = pio_mask;
470 }
471
472 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
473 fe->param.name);
474 return;
475 }
476 }
477
478 static const struct ata_force_ent *
ata_force_get_fe_for_dev(struct ata_device * dev)479 ata_force_get_fe_for_dev(struct ata_device *dev)
480 {
481 const struct ata_force_ent *fe;
482 int devno = dev->link->pmp + dev->devno;
483 int alt_devno = devno;
484 int i;
485
486 /* allow n.15/16 for devices attached to host port */
487 if (ata_is_host_link(dev->link))
488 alt_devno += 15;
489
490 for (i = 0; i < ata_force_tbl_size; i++) {
491 fe = &ata_force_tbl[i];
492 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
493 continue;
494
495 if (fe->device != -1 && fe->device != devno &&
496 fe->device != alt_devno)
497 continue;
498
499 return fe;
500 }
501
502 return NULL;
503 }
504
505 /**
506 * ata_force_quirks - force quirks according to libata.force
507 * @dev: ATA device of interest
508 *
509 * Force quirks according to libata.force and whine about it.
510 * For consistency with link selection, device number 15 selects
511 * the first device connected to the host link.
512 *
513 * LOCKING:
514 * EH context.
515 */
ata_force_quirks(struct ata_device * dev)516 static void ata_force_quirks(struct ata_device *dev)
517 {
518 const struct ata_force_ent *fe = ata_force_get_fe_for_dev(dev);
519
520 if (!fe)
521 return;
522
523 if (!(~dev->quirks & fe->param.quirk_on) &&
524 !(dev->quirks & fe->param.quirk_off))
525 return;
526
527 dev->quirks |= fe->param.quirk_on;
528 dev->quirks &= ~fe->param.quirk_off;
529
530 ata_dev_notice(dev, "FORCE: modified (%s)\n", fe->param.name);
531 }
532 #else
ata_force_pflags(struct ata_port * ap)533 static inline void ata_force_pflags(struct ata_port *ap) { }
ata_force_link_limits(struct ata_link * link)534 static inline void ata_force_link_limits(struct ata_link *link) { }
ata_force_xfermask(struct ata_device * dev)535 static inline void ata_force_xfermask(struct ata_device *dev) { }
ata_force_quirks(struct ata_device * dev)536 static inline void ata_force_quirks(struct ata_device *dev) { }
537 #endif
538
539 /**
540 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
541 * @opcode: SCSI opcode
542 *
543 * Determine ATAPI command type from @opcode.
544 *
545 * LOCKING:
546 * None.
547 *
548 * RETURNS:
549 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
550 */
atapi_cmd_type(u8 opcode)551 int atapi_cmd_type(u8 opcode)
552 {
553 switch (opcode) {
554 case GPCMD_READ_10:
555 case GPCMD_READ_12:
556 return ATAPI_READ;
557
558 case GPCMD_WRITE_10:
559 case GPCMD_WRITE_12:
560 case GPCMD_WRITE_AND_VERIFY_10:
561 return ATAPI_WRITE;
562
563 case GPCMD_READ_CD:
564 case GPCMD_READ_CD_MSF:
565 return ATAPI_READ_CD;
566
567 case ATA_16:
568 case ATA_12:
569 if (atapi_passthru16)
570 return ATAPI_PASS_THRU;
571 fallthrough;
572 default:
573 return ATAPI_MISC;
574 }
575 }
576 EXPORT_SYMBOL_GPL(atapi_cmd_type);
577
578 static const u8 ata_rw_cmds[] = {
579 /* pio multi */
580 ATA_CMD_READ_MULTI,
581 ATA_CMD_WRITE_MULTI,
582 ATA_CMD_READ_MULTI_EXT,
583 ATA_CMD_WRITE_MULTI_EXT,
584 0,
585 0,
586 0,
587 0,
588 /* pio */
589 ATA_CMD_PIO_READ,
590 ATA_CMD_PIO_WRITE,
591 ATA_CMD_PIO_READ_EXT,
592 ATA_CMD_PIO_WRITE_EXT,
593 0,
594 0,
595 0,
596 0,
597 /* dma */
598 ATA_CMD_READ,
599 ATA_CMD_WRITE,
600 ATA_CMD_READ_EXT,
601 ATA_CMD_WRITE_EXT,
602 0,
603 0,
604 0,
605 ATA_CMD_WRITE_FUA_EXT
606 };
607
608 /**
609 * ata_set_rwcmd_protocol - set taskfile r/w command and protocol
610 * @dev: target device for the taskfile
611 * @tf: taskfile to examine and configure
612 *
613 * Examine the device configuration and tf->flags to determine
614 * the proper read/write command and protocol to use for @tf.
615 *
616 * LOCKING:
617 * caller.
618 */
ata_set_rwcmd_protocol(struct ata_device * dev,struct ata_taskfile * tf)619 static bool ata_set_rwcmd_protocol(struct ata_device *dev,
620 struct ata_taskfile *tf)
621 {
622 u8 cmd;
623
624 int index, fua, lba48, write;
625
626 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
627 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
628 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
629
630 if (dev->flags & ATA_DFLAG_PIO) {
631 tf->protocol = ATA_PROT_PIO;
632 index = dev->multi_count ? 0 : 8;
633 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
634 /* Unable to use DMA due to host limitation */
635 tf->protocol = ATA_PROT_PIO;
636 index = dev->multi_count ? 0 : 8;
637 } else {
638 tf->protocol = ATA_PROT_DMA;
639 index = 16;
640 }
641
642 cmd = ata_rw_cmds[index + fua + lba48 + write];
643 if (!cmd)
644 return false;
645
646 tf->command = cmd;
647
648 return true;
649 }
650
651 /**
652 * ata_tf_read_block - Read block address from ATA taskfile
653 * @tf: ATA taskfile of interest
654 * @dev: ATA device @tf belongs to
655 *
656 * LOCKING:
657 * None.
658 *
659 * Read block address from @tf. This function can handle all
660 * three address formats - LBA, LBA48 and CHS. tf->protocol and
661 * flags select the address format to use.
662 *
663 * RETURNS:
664 * Block address read from @tf.
665 */
ata_tf_read_block(const struct ata_taskfile * tf,struct ata_device * dev)666 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
667 {
668 u64 block = 0;
669
670 if (tf->flags & ATA_TFLAG_LBA) {
671 if (tf->flags & ATA_TFLAG_LBA48) {
672 block |= (u64)tf->hob_lbah << 40;
673 block |= (u64)tf->hob_lbam << 32;
674 block |= (u64)tf->hob_lbal << 24;
675 } else
676 block |= (tf->device & 0xf) << 24;
677
678 block |= tf->lbah << 16;
679 block |= tf->lbam << 8;
680 block |= tf->lbal;
681 } else {
682 u32 cyl, head, sect;
683
684 cyl = tf->lbam | (tf->lbah << 8);
685 head = tf->device & 0xf;
686 sect = tf->lbal;
687
688 if (!sect) {
689 ata_dev_warn(dev,
690 "device reported invalid CHS sector 0\n");
691 return U64_MAX;
692 }
693
694 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
695 }
696
697 return block;
698 }
699
700 /*
701 * Set a taskfile command duration limit index.
702 */
ata_set_tf_cdl(struct ata_queued_cmd * qc,int cdl)703 static inline void ata_set_tf_cdl(struct ata_queued_cmd *qc, int cdl)
704 {
705 struct ata_taskfile *tf = &qc->tf;
706
707 if (tf->protocol == ATA_PROT_NCQ)
708 tf->auxiliary |= cdl;
709 else
710 tf->feature |= cdl;
711
712 /*
713 * Mark this command as having a CDL and request the result
714 * task file so that we can inspect the sense data available
715 * bit on completion.
716 */
717 qc->flags |= ATA_QCFLAG_HAS_CDL | ATA_QCFLAG_RESULT_TF;
718 }
719
720 /**
721 * ata_build_rw_tf - Build ATA taskfile for given read/write request
722 * @qc: Metadata associated with the taskfile to build
723 * @block: Block address
724 * @n_block: Number of blocks
725 * @tf_flags: RW/FUA etc...
726 * @cdl: Command duration limit index
727 * @class: IO priority class
728 *
729 * LOCKING:
730 * None.
731 *
732 * Build ATA taskfile for the command @qc for read/write request described
733 * by @block, @n_block, @tf_flags and @class.
734 *
735 * RETURNS:
736 *
737 * 0 on success, -ERANGE if the request is too large for @dev,
738 * -EINVAL if the request is invalid.
739 */
ata_build_rw_tf(struct ata_queued_cmd * qc,u64 block,u32 n_block,unsigned int tf_flags,int cdl,int class)740 int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block,
741 unsigned int tf_flags, int cdl, int class)
742 {
743 struct ata_taskfile *tf = &qc->tf;
744 struct ata_device *dev = qc->dev;
745
746 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
747 tf->flags |= tf_flags;
748
749 if (ata_ncq_enabled(dev)) {
750 /* yay, NCQ */
751 if (!lba_48_ok(block, n_block))
752 return -ERANGE;
753
754 tf->protocol = ATA_PROT_NCQ;
755 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
756
757 if (tf->flags & ATA_TFLAG_WRITE)
758 tf->command = ATA_CMD_FPDMA_WRITE;
759 else
760 tf->command = ATA_CMD_FPDMA_READ;
761
762 tf->nsect = qc->hw_tag << 3;
763 tf->hob_feature = (n_block >> 8) & 0xff;
764 tf->feature = n_block & 0xff;
765
766 tf->hob_lbah = (block >> 40) & 0xff;
767 tf->hob_lbam = (block >> 32) & 0xff;
768 tf->hob_lbal = (block >> 24) & 0xff;
769 tf->lbah = (block >> 16) & 0xff;
770 tf->lbam = (block >> 8) & 0xff;
771 tf->lbal = block & 0xff;
772
773 tf->device = ATA_LBA;
774 if (tf->flags & ATA_TFLAG_FUA)
775 tf->device |= 1 << 7;
776
777 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED &&
778 class == IOPRIO_CLASS_RT)
779 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
780
781 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
782 ata_set_tf_cdl(qc, cdl);
783
784 } else if (dev->flags & ATA_DFLAG_LBA) {
785 tf->flags |= ATA_TFLAG_LBA;
786
787 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
788 ata_set_tf_cdl(qc, cdl);
789
790 /* Both FUA writes and a CDL index require 48-bit commands */
791 if (!(tf->flags & ATA_TFLAG_FUA) &&
792 !(qc->flags & ATA_QCFLAG_HAS_CDL) &&
793 lba_28_ok(block, n_block)) {
794 /* use LBA28 */
795 tf->device |= (block >> 24) & 0xf;
796 } else if (lba_48_ok(block, n_block)) {
797 if (!(dev->flags & ATA_DFLAG_LBA48))
798 return -ERANGE;
799
800 /* use LBA48 */
801 tf->flags |= ATA_TFLAG_LBA48;
802
803 tf->hob_nsect = (n_block >> 8) & 0xff;
804
805 tf->hob_lbah = (block >> 40) & 0xff;
806 tf->hob_lbam = (block >> 32) & 0xff;
807 tf->hob_lbal = (block >> 24) & 0xff;
808 } else {
809 /* request too large even for LBA48 */
810 return -ERANGE;
811 }
812
813 if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
814 return -EINVAL;
815
816 tf->nsect = n_block & 0xff;
817
818 tf->lbah = (block >> 16) & 0xff;
819 tf->lbam = (block >> 8) & 0xff;
820 tf->lbal = block & 0xff;
821
822 tf->device |= ATA_LBA;
823 } else {
824 /* CHS */
825 u32 sect, head, cyl, track;
826
827 /* The request -may- be too large for CHS addressing. */
828 if (!lba_28_ok(block, n_block))
829 return -ERANGE;
830
831 if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
832 return -EINVAL;
833
834 /* Convert LBA to CHS */
835 track = (u32)block / dev->sectors;
836 cyl = track / dev->heads;
837 head = track % dev->heads;
838 sect = (u32)block % dev->sectors + 1;
839
840 /* Check whether the converted CHS can fit.
841 Cylinder: 0-65535
842 Head: 0-15
843 Sector: 1-255*/
844 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
845 return -ERANGE;
846
847 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
848 tf->lbal = sect;
849 tf->lbam = cyl;
850 tf->lbah = cyl >> 8;
851 tf->device |= head;
852 }
853
854 return 0;
855 }
856
857 /**
858 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
859 * @pio_mask: pio_mask
860 * @mwdma_mask: mwdma_mask
861 * @udma_mask: udma_mask
862 *
863 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
864 * unsigned int xfer_mask.
865 *
866 * LOCKING:
867 * None.
868 *
869 * RETURNS:
870 * Packed xfer_mask.
871 */
ata_pack_xfermask(unsigned int pio_mask,unsigned int mwdma_mask,unsigned int udma_mask)872 unsigned int ata_pack_xfermask(unsigned int pio_mask,
873 unsigned int mwdma_mask,
874 unsigned int udma_mask)
875 {
876 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
877 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
878 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
879 }
880 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
881
882 /**
883 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
884 * @xfer_mask: xfer_mask to unpack
885 * @pio_mask: resulting pio_mask
886 * @mwdma_mask: resulting mwdma_mask
887 * @udma_mask: resulting udma_mask
888 *
889 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
890 * Any NULL destination masks will be ignored.
891 */
ata_unpack_xfermask(unsigned int xfer_mask,unsigned int * pio_mask,unsigned int * mwdma_mask,unsigned int * udma_mask)892 void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask,
893 unsigned int *mwdma_mask, unsigned int *udma_mask)
894 {
895 if (pio_mask)
896 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
897 if (mwdma_mask)
898 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
899 if (udma_mask)
900 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
901 }
902
903 static const struct ata_xfer_ent {
904 int shift, bits;
905 u8 base;
906 } ata_xfer_tbl[] = {
907 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
908 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
909 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
910 { -1, },
911 };
912
913 /**
914 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
915 * @xfer_mask: xfer_mask of interest
916 *
917 * Return matching XFER_* value for @xfer_mask. Only the highest
918 * bit of @xfer_mask is considered.
919 *
920 * LOCKING:
921 * None.
922 *
923 * RETURNS:
924 * Matching XFER_* value, 0xff if no match found.
925 */
ata_xfer_mask2mode(unsigned int xfer_mask)926 u8 ata_xfer_mask2mode(unsigned int xfer_mask)
927 {
928 int highbit = fls(xfer_mask) - 1;
929 const struct ata_xfer_ent *ent;
930
931 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
932 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
933 return ent->base + highbit - ent->shift;
934 return 0xff;
935 }
936 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
937
938 /**
939 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
940 * @xfer_mode: XFER_* of interest
941 *
942 * Return matching xfer_mask for @xfer_mode.
943 *
944 * LOCKING:
945 * None.
946 *
947 * RETURNS:
948 * Matching xfer_mask, 0 if no match found.
949 */
ata_xfer_mode2mask(u8 xfer_mode)950 unsigned int ata_xfer_mode2mask(u8 xfer_mode)
951 {
952 const struct ata_xfer_ent *ent;
953
954 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
955 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
956 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
957 & ~((1 << ent->shift) - 1);
958 return 0;
959 }
960 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
961
962 /**
963 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
964 * @xfer_mode: XFER_* of interest
965 *
966 * Return matching xfer_shift for @xfer_mode.
967 *
968 * LOCKING:
969 * None.
970 *
971 * RETURNS:
972 * Matching xfer_shift, -1 if no match found.
973 */
ata_xfer_mode2shift(u8 xfer_mode)974 int ata_xfer_mode2shift(u8 xfer_mode)
975 {
976 const struct ata_xfer_ent *ent;
977
978 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
979 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
980 return ent->shift;
981 return -1;
982 }
983 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
984
985 /**
986 * ata_mode_string - convert xfer_mask to string
987 * @xfer_mask: mask of bits supported; only highest bit counts.
988 *
989 * Determine string which represents the highest speed
990 * (highest bit in @modemask).
991 *
992 * LOCKING:
993 * None.
994 *
995 * RETURNS:
996 * Constant C string representing highest speed listed in
997 * @mode_mask, or the constant C string "<n/a>".
998 */
ata_mode_string(unsigned int xfer_mask)999 const char *ata_mode_string(unsigned int xfer_mask)
1000 {
1001 static const char * const xfer_mode_str[] = {
1002 "PIO0",
1003 "PIO1",
1004 "PIO2",
1005 "PIO3",
1006 "PIO4",
1007 "PIO5",
1008 "PIO6",
1009 "MWDMA0",
1010 "MWDMA1",
1011 "MWDMA2",
1012 "MWDMA3",
1013 "MWDMA4",
1014 "UDMA/16",
1015 "UDMA/25",
1016 "UDMA/33",
1017 "UDMA/44",
1018 "UDMA/66",
1019 "UDMA/100",
1020 "UDMA/133",
1021 "UDMA7",
1022 };
1023 int highbit;
1024
1025 highbit = fls(xfer_mask) - 1;
1026 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1027 return xfer_mode_str[highbit];
1028 return "<n/a>";
1029 }
1030 EXPORT_SYMBOL_GPL(ata_mode_string);
1031
sata_spd_string(unsigned int spd)1032 const char *sata_spd_string(unsigned int spd)
1033 {
1034 static const char * const spd_str[] = {
1035 "1.5 Gbps",
1036 "3.0 Gbps",
1037 "6.0 Gbps",
1038 };
1039
1040 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1041 return "<unknown>";
1042 return spd_str[spd - 1];
1043 }
1044
1045 /**
1046 * ata_dev_classify - determine device type based on ATA-spec signature
1047 * @tf: ATA taskfile register set for device to be identified
1048 *
1049 * Determine from taskfile register contents whether a device is
1050 * ATA or ATAPI, as per "Signature and persistence" section
1051 * of ATA/PI spec (volume 1, sect 5.14).
1052 *
1053 * LOCKING:
1054 * None.
1055 *
1056 * RETURNS:
1057 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1058 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1059 */
ata_dev_classify(const struct ata_taskfile * tf)1060 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1061 {
1062 /* Apple's open source Darwin code hints that some devices only
1063 * put a proper signature into the LBA mid/high registers,
1064 * So, we only check those. It's sufficient for uniqueness.
1065 *
1066 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1067 * signatures for ATA and ATAPI devices attached on SerialATA,
1068 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1069 * spec has never mentioned about using different signatures
1070 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1071 * Multiplier specification began to use 0x69/0x96 to identify
1072 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1073 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1074 * 0x69/0x96 shortly and described them as reserved for
1075 * SerialATA.
1076 *
1077 * We follow the current spec and consider that 0x69/0x96
1078 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1079 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1080 * SEMB signature. This is worked around in
1081 * ata_dev_read_id().
1082 */
1083 if (tf->lbam == 0 && tf->lbah == 0)
1084 return ATA_DEV_ATA;
1085
1086 if (tf->lbam == 0x14 && tf->lbah == 0xeb)
1087 return ATA_DEV_ATAPI;
1088
1089 if (tf->lbam == 0x69 && tf->lbah == 0x96)
1090 return ATA_DEV_PMP;
1091
1092 if (tf->lbam == 0x3c && tf->lbah == 0xc3)
1093 return ATA_DEV_SEMB;
1094
1095 if (tf->lbam == 0xcd && tf->lbah == 0xab)
1096 return ATA_DEV_ZAC;
1097
1098 return ATA_DEV_UNKNOWN;
1099 }
1100 EXPORT_SYMBOL_GPL(ata_dev_classify);
1101
1102 /**
1103 * ata_id_string - Convert IDENTIFY DEVICE page into string
1104 * @id: IDENTIFY DEVICE results we will examine
1105 * @s: string into which data is output
1106 * @ofs: offset into identify device page
1107 * @len: length of string to return. must be an even number.
1108 *
1109 * The strings in the IDENTIFY DEVICE page are broken up into
1110 * 16-bit chunks. Run through the string, and output each
1111 * 8-bit chunk linearly, regardless of platform.
1112 *
1113 * LOCKING:
1114 * caller.
1115 */
1116
ata_id_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1117 void ata_id_string(const u16 *id, unsigned char *s,
1118 unsigned int ofs, unsigned int len)
1119 {
1120 unsigned int c;
1121
1122 BUG_ON(len & 1);
1123
1124 while (len > 0) {
1125 c = id[ofs] >> 8;
1126 *s = c;
1127 s++;
1128
1129 c = id[ofs] & 0xff;
1130 *s = c;
1131 s++;
1132
1133 ofs++;
1134 len -= 2;
1135 }
1136 }
1137 EXPORT_SYMBOL_GPL(ata_id_string);
1138
1139 /**
1140 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1141 * @id: IDENTIFY DEVICE results we will examine
1142 * @s: string into which data is output
1143 * @ofs: offset into identify device page
1144 * @len: length of string to return. must be an odd number.
1145 *
1146 * This function is identical to ata_id_string except that it
1147 * trims trailing spaces and terminates the resulting string with
1148 * null. @len must be actual maximum length (even number) + 1.
1149 *
1150 * LOCKING:
1151 * caller.
1152 */
ata_id_c_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1153 void ata_id_c_string(const u16 *id, unsigned char *s,
1154 unsigned int ofs, unsigned int len)
1155 {
1156 unsigned char *p;
1157
1158 ata_id_string(id, s, ofs, len - 1);
1159
1160 p = s + strnlen(s, len - 1);
1161 while (p > s && p[-1] == ' ')
1162 p--;
1163 *p = '\0';
1164 }
1165 EXPORT_SYMBOL_GPL(ata_id_c_string);
1166
ata_id_n_sectors(const u16 * id)1167 static u64 ata_id_n_sectors(const u16 *id)
1168 {
1169 if (ata_id_has_lba(id)) {
1170 if (ata_id_has_lba48(id))
1171 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1172
1173 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1174 }
1175
1176 if (ata_id_current_chs_valid(id))
1177 return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] *
1178 (u32)id[ATA_ID_CUR_SECTORS];
1179
1180 return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] *
1181 (u32)id[ATA_ID_SECTORS];
1182 }
1183
ata_tf_to_lba48(const struct ata_taskfile * tf)1184 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1185 {
1186 u64 sectors = 0;
1187
1188 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1189 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1190 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1191 sectors |= (tf->lbah & 0xff) << 16;
1192 sectors |= (tf->lbam & 0xff) << 8;
1193 sectors |= (tf->lbal & 0xff);
1194
1195 return sectors;
1196 }
1197
ata_tf_to_lba(const struct ata_taskfile * tf)1198 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1199 {
1200 u64 sectors = 0;
1201
1202 sectors |= (tf->device & 0x0f) << 24;
1203 sectors |= (tf->lbah & 0xff) << 16;
1204 sectors |= (tf->lbam & 0xff) << 8;
1205 sectors |= (tf->lbal & 0xff);
1206
1207 return sectors;
1208 }
1209
1210 /**
1211 * ata_read_native_max_address - Read native max address
1212 * @dev: target device
1213 * @max_sectors: out parameter for the result native max address
1214 *
1215 * Perform an LBA48 or LBA28 native size query upon the device in
1216 * question.
1217 *
1218 * RETURNS:
1219 * 0 on success, -EACCES if command is aborted by the drive.
1220 * -EIO on other errors.
1221 */
ata_read_native_max_address(struct ata_device * dev,u64 * max_sectors)1222 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1223 {
1224 unsigned int err_mask;
1225 struct ata_taskfile tf;
1226 int lba48 = ata_id_has_lba48(dev->id);
1227
1228 ata_tf_init(dev, &tf);
1229
1230 /* always clear all address registers */
1231 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1232
1233 if (lba48) {
1234 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1235 tf.flags |= ATA_TFLAG_LBA48;
1236 } else
1237 tf.command = ATA_CMD_READ_NATIVE_MAX;
1238
1239 tf.protocol = ATA_PROT_NODATA;
1240 tf.device |= ATA_LBA;
1241
1242 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1243 if (err_mask) {
1244 ata_dev_warn(dev,
1245 "failed to read native max address (err_mask=0x%x)\n",
1246 err_mask);
1247 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
1248 return -EACCES;
1249 return -EIO;
1250 }
1251
1252 if (lba48)
1253 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1254 else
1255 *max_sectors = ata_tf_to_lba(&tf) + 1;
1256 if (dev->quirks & ATA_QUIRK_HPA_SIZE)
1257 (*max_sectors)--;
1258 return 0;
1259 }
1260
1261 /**
1262 * ata_set_max_sectors - Set max sectors
1263 * @dev: target device
1264 * @new_sectors: new max sectors value to set for the device
1265 *
1266 * Set max sectors of @dev to @new_sectors.
1267 *
1268 * RETURNS:
1269 * 0 on success, -EACCES if command is aborted or denied (due to
1270 * previous non-volatile SET_MAX) by the drive. -EIO on other
1271 * errors.
1272 */
ata_set_max_sectors(struct ata_device * dev,u64 new_sectors)1273 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1274 {
1275 unsigned int err_mask;
1276 struct ata_taskfile tf;
1277 int lba48 = ata_id_has_lba48(dev->id);
1278
1279 new_sectors--;
1280
1281 ata_tf_init(dev, &tf);
1282
1283 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1284
1285 if (lba48) {
1286 tf.command = ATA_CMD_SET_MAX_EXT;
1287 tf.flags |= ATA_TFLAG_LBA48;
1288
1289 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1290 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1291 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1292 } else {
1293 tf.command = ATA_CMD_SET_MAX;
1294
1295 tf.device |= (new_sectors >> 24) & 0xf;
1296 }
1297
1298 tf.protocol = ATA_PROT_NODATA;
1299 tf.device |= ATA_LBA;
1300
1301 tf.lbal = (new_sectors >> 0) & 0xff;
1302 tf.lbam = (new_sectors >> 8) & 0xff;
1303 tf.lbah = (new_sectors >> 16) & 0xff;
1304
1305 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1306 if (err_mask) {
1307 ata_dev_warn(dev,
1308 "failed to set max address (err_mask=0x%x)\n",
1309 err_mask);
1310 if (err_mask == AC_ERR_DEV &&
1311 (tf.error & (ATA_ABORTED | ATA_IDNF)))
1312 return -EACCES;
1313 return -EIO;
1314 }
1315
1316 return 0;
1317 }
1318
1319 /**
1320 * ata_hpa_resize - Resize a device with an HPA set
1321 * @dev: Device to resize
1322 *
1323 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1324 * it if required to the full size of the media. The caller must check
1325 * the drive has the HPA feature set enabled.
1326 *
1327 * RETURNS:
1328 * 0 on success, -errno on failure.
1329 */
ata_hpa_resize(struct ata_device * dev)1330 static int ata_hpa_resize(struct ata_device *dev)
1331 {
1332 bool print_info = ata_dev_print_info(dev);
1333 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1334 u64 sectors = ata_id_n_sectors(dev->id);
1335 u64 native_sectors;
1336 int rc;
1337
1338 /* do we need to do it? */
1339 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1340 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1341 (dev->quirks & ATA_QUIRK_BROKEN_HPA))
1342 return 0;
1343
1344 /* read native max address */
1345 rc = ata_read_native_max_address(dev, &native_sectors);
1346 if (rc) {
1347 /* If device aborted the command or HPA isn't going to
1348 * be unlocked, skip HPA resizing.
1349 */
1350 if (rc == -EACCES || !unlock_hpa) {
1351 ata_dev_warn(dev,
1352 "HPA support seems broken, skipping HPA handling\n");
1353 dev->quirks |= ATA_QUIRK_BROKEN_HPA;
1354
1355 /* we can continue if device aborted the command */
1356 if (rc == -EACCES)
1357 rc = 0;
1358 }
1359
1360 return rc;
1361 }
1362 dev->n_native_sectors = native_sectors;
1363
1364 /* nothing to do? */
1365 if (native_sectors <= sectors || !unlock_hpa) {
1366 if (!print_info || native_sectors == sectors)
1367 return 0;
1368
1369 if (native_sectors > sectors)
1370 ata_dev_info(dev,
1371 "HPA detected: current %llu, native %llu\n",
1372 (unsigned long long)sectors,
1373 (unsigned long long)native_sectors);
1374 else if (native_sectors < sectors)
1375 ata_dev_warn(dev,
1376 "native sectors (%llu) is smaller than sectors (%llu)\n",
1377 (unsigned long long)native_sectors,
1378 (unsigned long long)sectors);
1379 return 0;
1380 }
1381
1382 /* let's unlock HPA */
1383 rc = ata_set_max_sectors(dev, native_sectors);
1384 if (rc == -EACCES) {
1385 /* if device aborted the command, skip HPA resizing */
1386 ata_dev_warn(dev,
1387 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1388 (unsigned long long)sectors,
1389 (unsigned long long)native_sectors);
1390 dev->quirks |= ATA_QUIRK_BROKEN_HPA;
1391 return 0;
1392 } else if (rc)
1393 return rc;
1394
1395 /* re-read IDENTIFY data */
1396 rc = ata_dev_reread_id(dev, 0);
1397 if (rc) {
1398 ata_dev_err(dev,
1399 "failed to re-read IDENTIFY data after HPA resizing\n");
1400 return rc;
1401 }
1402
1403 if (print_info) {
1404 u64 new_sectors = ata_id_n_sectors(dev->id);
1405 ata_dev_info(dev,
1406 "HPA unlocked: %llu -> %llu, native %llu\n",
1407 (unsigned long long)sectors,
1408 (unsigned long long)new_sectors,
1409 (unsigned long long)native_sectors);
1410 }
1411
1412 return 0;
1413 }
1414
1415 /**
1416 * ata_dump_id - IDENTIFY DEVICE info debugging output
1417 * @dev: device from which the information is fetched
1418 * @id: IDENTIFY DEVICE page to dump
1419 *
1420 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1421 * page.
1422 *
1423 * LOCKING:
1424 * caller.
1425 */
1426
ata_dump_id(struct ata_device * dev,const u16 * id)1427 static inline void ata_dump_id(struct ata_device *dev, const u16 *id)
1428 {
1429 ata_dev_dbg(dev,
1430 "49==0x%04x 53==0x%04x 63==0x%04x 64==0x%04x 75==0x%04x\n"
1431 "80==0x%04x 81==0x%04x 82==0x%04x 83==0x%04x 84==0x%04x\n"
1432 "88==0x%04x 93==0x%04x\n",
1433 id[49], id[53], id[63], id[64], id[75], id[80],
1434 id[81], id[82], id[83], id[84], id[88], id[93]);
1435 }
1436
1437 /**
1438 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1439 * @id: IDENTIFY data to compute xfer mask from
1440 *
1441 * Compute the xfermask for this device. This is not as trivial
1442 * as it seems if we must consider early devices correctly.
1443 *
1444 * FIXME: pre IDE drive timing (do we care ?).
1445 *
1446 * LOCKING:
1447 * None.
1448 *
1449 * RETURNS:
1450 * Computed xfermask
1451 */
ata_id_xfermask(const u16 * id)1452 unsigned int ata_id_xfermask(const u16 *id)
1453 {
1454 unsigned int pio_mask, mwdma_mask, udma_mask;
1455
1456 /* Usual case. Word 53 indicates word 64 is valid */
1457 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1458 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1459 pio_mask <<= 3;
1460 pio_mask |= 0x7;
1461 } else {
1462 /* If word 64 isn't valid then Word 51 high byte holds
1463 * the PIO timing number for the maximum. Turn it into
1464 * a mask.
1465 */
1466 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1467 if (mode < 5) /* Valid PIO range */
1468 pio_mask = (2 << mode) - 1;
1469 else
1470 pio_mask = 1;
1471
1472 /* But wait.. there's more. Design your standards by
1473 * committee and you too can get a free iordy field to
1474 * process. However it is the speeds not the modes that
1475 * are supported... Note drivers using the timing API
1476 * will get this right anyway
1477 */
1478 }
1479
1480 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1481
1482 if (ata_id_is_cfa(id)) {
1483 /*
1484 * Process compact flash extended modes
1485 */
1486 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1487 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1488
1489 if (pio)
1490 pio_mask |= (1 << 5);
1491 if (pio > 1)
1492 pio_mask |= (1 << 6);
1493 if (dma)
1494 mwdma_mask |= (1 << 3);
1495 if (dma > 1)
1496 mwdma_mask |= (1 << 4);
1497 }
1498
1499 udma_mask = 0;
1500 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1501 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1502
1503 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1504 }
1505 EXPORT_SYMBOL_GPL(ata_id_xfermask);
1506
ata_qc_complete_internal(struct ata_queued_cmd * qc)1507 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1508 {
1509 struct completion *waiting = qc->private_data;
1510
1511 complete(waiting);
1512 }
1513
1514 /**
1515 * ata_exec_internal - execute libata internal command
1516 * @dev: Device to which the command is sent
1517 * @tf: Taskfile registers for the command and the result
1518 * @cdb: CDB for packet command
1519 * @dma_dir: Data transfer direction of the command
1520 * @buf: Data buffer of the command
1521 * @buflen: Length of data buffer
1522 * @timeout: Timeout in msecs (0 for default)
1523 *
1524 * Executes libata internal command with timeout. @tf contains
1525 * the command on entry and the result on return. Timeout and error
1526 * conditions are reported via the return value. No recovery action
1527 * is taken after a command times out. It is the caller's duty to
1528 * clean up after timeout.
1529 *
1530 * LOCKING:
1531 * None. Should be called with kernel context, might sleep.
1532 *
1533 * RETURNS:
1534 * Zero on success, AC_ERR_* mask on failure
1535 */
ata_exec_internal(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,enum dma_data_direction dma_dir,void * buf,unsigned int buflen,unsigned int timeout)1536 unsigned int ata_exec_internal(struct ata_device *dev, struct ata_taskfile *tf,
1537 const u8 *cdb, enum dma_data_direction dma_dir,
1538 void *buf, unsigned int buflen,
1539 unsigned int timeout)
1540 {
1541 struct ata_link *link = dev->link;
1542 struct ata_port *ap = link->ap;
1543 u8 command = tf->command;
1544 struct ata_queued_cmd *qc;
1545 struct scatterlist sgl;
1546 unsigned int preempted_tag;
1547 u32 preempted_sactive;
1548 u64 preempted_qc_active;
1549 int preempted_nr_active_links;
1550 bool auto_timeout = false;
1551 DECLARE_COMPLETION_ONSTACK(wait);
1552 unsigned long flags;
1553 unsigned int err_mask;
1554 int rc;
1555
1556 if (WARN_ON(dma_dir != DMA_NONE && !buf))
1557 return AC_ERR_INVALID;
1558
1559 spin_lock_irqsave(ap->lock, flags);
1560
1561 /* No internal command while frozen */
1562 if (ata_port_is_frozen(ap)) {
1563 spin_unlock_irqrestore(ap->lock, flags);
1564 return AC_ERR_SYSTEM;
1565 }
1566
1567 /* Initialize internal qc */
1568 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1569
1570 qc->tag = ATA_TAG_INTERNAL;
1571 qc->hw_tag = 0;
1572 qc->scsicmd = NULL;
1573 qc->ap = ap;
1574 qc->dev = dev;
1575 ata_qc_reinit(qc);
1576
1577 preempted_tag = link->active_tag;
1578 preempted_sactive = link->sactive;
1579 preempted_qc_active = ap->qc_active;
1580 preempted_nr_active_links = ap->nr_active_links;
1581 link->active_tag = ATA_TAG_POISON;
1582 link->sactive = 0;
1583 ap->qc_active = 0;
1584 ap->nr_active_links = 0;
1585
1586 /* Prepare and issue qc */
1587 qc->tf = *tf;
1588 if (cdb)
1589 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1590
1591 /* Some SATA bridges need us to indicate data xfer direction */
1592 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1593 dma_dir == DMA_FROM_DEVICE)
1594 qc->tf.feature |= ATAPI_DMADIR;
1595
1596 qc->flags |= ATA_QCFLAG_RESULT_TF;
1597 qc->dma_dir = dma_dir;
1598 if (dma_dir != DMA_NONE) {
1599 sg_init_one(&sgl, buf, buflen);
1600 ata_sg_init(qc, &sgl, 1);
1601 qc->nbytes = buflen;
1602 }
1603
1604 qc->private_data = &wait;
1605 qc->complete_fn = ata_qc_complete_internal;
1606
1607 ata_qc_issue(qc);
1608
1609 spin_unlock_irqrestore(ap->lock, flags);
1610
1611 if (!timeout) {
1612 if (ata_probe_timeout) {
1613 timeout = ata_probe_timeout * 1000;
1614 } else {
1615 timeout = ata_internal_cmd_timeout(dev, command);
1616 auto_timeout = true;
1617 }
1618 }
1619
1620 ata_eh_release(ap);
1621
1622 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1623
1624 ata_eh_acquire(ap);
1625
1626 ata_sff_flush_pio_task(ap);
1627
1628 if (!rc) {
1629 /*
1630 * We are racing with irq here. If we lose, the following test
1631 * prevents us from completing the qc twice. If we win, the port
1632 * is frozen and will be cleaned up by ->post_internal_cmd().
1633 */
1634 spin_lock_irqsave(ap->lock, flags);
1635 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1636 qc->err_mask |= AC_ERR_TIMEOUT;
1637 ata_port_freeze(ap);
1638 ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n",
1639 timeout, command);
1640 }
1641 spin_unlock_irqrestore(ap->lock, flags);
1642 }
1643
1644 if (ap->ops->post_internal_cmd)
1645 ap->ops->post_internal_cmd(qc);
1646
1647 /* Perform minimal error analysis */
1648 if (qc->flags & ATA_QCFLAG_EH) {
1649 if (qc->result_tf.status & (ATA_ERR | ATA_DF))
1650 qc->err_mask |= AC_ERR_DEV;
1651
1652 if (!qc->err_mask)
1653 qc->err_mask |= AC_ERR_OTHER;
1654
1655 if (qc->err_mask & ~AC_ERR_OTHER)
1656 qc->err_mask &= ~AC_ERR_OTHER;
1657 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1658 qc->result_tf.status |= ATA_SENSE;
1659 }
1660
1661 /* Finish up */
1662 spin_lock_irqsave(ap->lock, flags);
1663
1664 *tf = qc->result_tf;
1665 err_mask = qc->err_mask;
1666
1667 ata_qc_free(qc);
1668 link->active_tag = preempted_tag;
1669 link->sactive = preempted_sactive;
1670 ap->qc_active = preempted_qc_active;
1671 ap->nr_active_links = preempted_nr_active_links;
1672
1673 spin_unlock_irqrestore(ap->lock, flags);
1674
1675 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1676 ata_internal_cmd_timed_out(dev, command);
1677
1678 return err_mask;
1679 }
1680
1681 /**
1682 * ata_pio_need_iordy - check if iordy needed
1683 * @adev: ATA device
1684 *
1685 * Check if the current speed of the device requires IORDY. Used
1686 * by various controllers for chip configuration.
1687 */
ata_pio_need_iordy(const struct ata_device * adev)1688 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1689 {
1690 /* Don't set IORDY if we're preparing for reset. IORDY may
1691 * lead to controller lock up on certain controllers if the
1692 * port is not occupied. See bko#11703 for details.
1693 */
1694 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1695 return 0;
1696 /* Controller doesn't support IORDY. Probably a pointless
1697 * check as the caller should know this.
1698 */
1699 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1700 return 0;
1701 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1702 if (ata_id_is_cfa(adev->id)
1703 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1704 return 0;
1705 /* PIO3 and higher it is mandatory */
1706 if (adev->pio_mode > XFER_PIO_2)
1707 return 1;
1708 /* We turn it on when possible */
1709 if (ata_id_has_iordy(adev->id))
1710 return 1;
1711 return 0;
1712 }
1713 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1714
1715 /**
1716 * ata_pio_mask_no_iordy - Return the non IORDY mask
1717 * @adev: ATA device
1718 *
1719 * Compute the highest mode possible if we are not using iordy. Return
1720 * -1 if no iordy mode is available.
1721 */
ata_pio_mask_no_iordy(const struct ata_device * adev)1722 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1723 {
1724 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1725 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1726 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1727 /* Is the speed faster than the drive allows non IORDY ? */
1728 if (pio) {
1729 /* This is cycle times not frequency - watch the logic! */
1730 if (pio > 240) /* PIO2 is 240nS per cycle */
1731 return 3 << ATA_SHIFT_PIO;
1732 return 7 << ATA_SHIFT_PIO;
1733 }
1734 }
1735 return 3 << ATA_SHIFT_PIO;
1736 }
1737
1738 /**
1739 * ata_do_dev_read_id - default ID read method
1740 * @dev: device
1741 * @tf: proposed taskfile
1742 * @id: data buffer
1743 *
1744 * Issue the identify taskfile and hand back the buffer containing
1745 * identify data. For some RAID controllers and for pre ATA devices
1746 * this function is wrapped or replaced by the driver
1747 */
ata_do_dev_read_id(struct ata_device * dev,struct ata_taskfile * tf,__le16 * id)1748 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1749 struct ata_taskfile *tf, __le16 *id)
1750 {
1751 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1752 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1753 }
1754 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1755
1756 /**
1757 * ata_dev_read_id - Read ID data from the specified device
1758 * @dev: target device
1759 * @p_class: pointer to class of the target device (may be changed)
1760 * @flags: ATA_READID_* flags
1761 * @id: buffer to read IDENTIFY data into
1762 *
1763 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1764 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1765 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1766 * for pre-ATA4 drives.
1767 *
1768 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1769 * now we abort if we hit that case.
1770 *
1771 * LOCKING:
1772 * Kernel thread context (may sleep)
1773 *
1774 * RETURNS:
1775 * 0 on success, -errno otherwise.
1776 */
ata_dev_read_id(struct ata_device * dev,unsigned int * p_class,unsigned int flags,u16 * id)1777 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1778 unsigned int flags, u16 *id)
1779 {
1780 struct ata_port *ap = dev->link->ap;
1781 unsigned int class = *p_class;
1782 struct ata_taskfile tf;
1783 unsigned int err_mask = 0;
1784 const char *reason;
1785 bool is_semb = class == ATA_DEV_SEMB;
1786 int may_fallback = 1, tried_spinup = 0;
1787 int rc;
1788
1789 retry:
1790 ata_tf_init(dev, &tf);
1791
1792 switch (class) {
1793 case ATA_DEV_SEMB:
1794 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1795 fallthrough;
1796 case ATA_DEV_ATA:
1797 case ATA_DEV_ZAC:
1798 tf.command = ATA_CMD_ID_ATA;
1799 break;
1800 case ATA_DEV_ATAPI:
1801 tf.command = ATA_CMD_ID_ATAPI;
1802 break;
1803 default:
1804 rc = -ENODEV;
1805 reason = "unsupported class";
1806 goto err_out;
1807 }
1808
1809 tf.protocol = ATA_PROT_PIO;
1810
1811 /* Some devices choke if TF registers contain garbage. Make
1812 * sure those are properly initialized.
1813 */
1814 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1815
1816 /* Device presence detection is unreliable on some
1817 * controllers. Always poll IDENTIFY if available.
1818 */
1819 tf.flags |= ATA_TFLAG_POLLING;
1820
1821 if (ap->ops->read_id)
1822 err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id);
1823 else
1824 err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id);
1825
1826 if (err_mask) {
1827 if (err_mask & AC_ERR_NODEV_HINT) {
1828 ata_dev_dbg(dev, "NODEV after polling detection\n");
1829 return -ENOENT;
1830 }
1831
1832 if (is_semb) {
1833 ata_dev_info(dev,
1834 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1835 /* SEMB is not supported yet */
1836 *p_class = ATA_DEV_SEMB_UNSUP;
1837 return 0;
1838 }
1839
1840 if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) {
1841 /* Device or controller might have reported
1842 * the wrong device class. Give a shot at the
1843 * other IDENTIFY if the current one is
1844 * aborted by the device.
1845 */
1846 if (may_fallback) {
1847 may_fallback = 0;
1848
1849 if (class == ATA_DEV_ATA)
1850 class = ATA_DEV_ATAPI;
1851 else
1852 class = ATA_DEV_ATA;
1853 goto retry;
1854 }
1855
1856 /* Control reaches here iff the device aborted
1857 * both flavors of IDENTIFYs which happens
1858 * sometimes with phantom devices.
1859 */
1860 ata_dev_dbg(dev,
1861 "both IDENTIFYs aborted, assuming NODEV\n");
1862 return -ENOENT;
1863 }
1864
1865 rc = -EIO;
1866 reason = "I/O error";
1867 goto err_out;
1868 }
1869
1870 if (dev->quirks & ATA_QUIRK_DUMP_ID) {
1871 ata_dev_info(dev, "dumping IDENTIFY data, "
1872 "class=%d may_fallback=%d tried_spinup=%d\n",
1873 class, may_fallback, tried_spinup);
1874 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET,
1875 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1876 }
1877
1878 /* Falling back doesn't make sense if ID data was read
1879 * successfully at least once.
1880 */
1881 may_fallback = 0;
1882
1883 swap_buf_le16(id, ATA_ID_WORDS);
1884
1885 /* sanity check */
1886 rc = -EINVAL;
1887 reason = "device reports invalid type";
1888
1889 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1890 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1891 goto err_out;
1892 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1893 ata_id_is_ata(id)) {
1894 ata_dev_dbg(dev,
1895 "host indicates ignore ATA devices, ignored\n");
1896 return -ENOENT;
1897 }
1898 } else {
1899 if (ata_id_is_ata(id))
1900 goto err_out;
1901 }
1902
1903 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1904 tried_spinup = 1;
1905 /*
1906 * Drive powered-up in standby mode, and requires a specific
1907 * SET_FEATURES spin-up subcommand before it will accept
1908 * anything other than the original IDENTIFY command.
1909 */
1910 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1911 if (err_mask && id[2] != 0x738c) {
1912 rc = -EIO;
1913 reason = "SPINUP failed";
1914 goto err_out;
1915 }
1916 /*
1917 * If the drive initially returned incomplete IDENTIFY info,
1918 * we now must reissue the IDENTIFY command.
1919 */
1920 if (id[2] == 0x37c8)
1921 goto retry;
1922 }
1923
1924 if ((flags & ATA_READID_POSTRESET) &&
1925 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1926 /*
1927 * The exact sequence expected by certain pre-ATA4 drives is:
1928 * SRST RESET
1929 * IDENTIFY (optional in early ATA)
1930 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1931 * anything else..
1932 * Some drives were very specific about that exact sequence.
1933 *
1934 * Note that ATA4 says lba is mandatory so the second check
1935 * should never trigger.
1936 */
1937 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1938 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1939 if (err_mask) {
1940 rc = -EIO;
1941 reason = "INIT_DEV_PARAMS failed";
1942 goto err_out;
1943 }
1944
1945 /* current CHS translation info (id[53-58]) might be
1946 * changed. reread the identify device info.
1947 */
1948 flags &= ~ATA_READID_POSTRESET;
1949 goto retry;
1950 }
1951 }
1952
1953 *p_class = class;
1954
1955 return 0;
1956
1957 err_out:
1958 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1959 reason, err_mask);
1960 return rc;
1961 }
1962
ata_dev_power_init_tf(struct ata_device * dev,struct ata_taskfile * tf,bool set_active)1963 bool ata_dev_power_init_tf(struct ata_device *dev, struct ata_taskfile *tf,
1964 bool set_active)
1965 {
1966 /* Only applies to ATA and ZAC devices */
1967 if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC)
1968 return false;
1969
1970 ata_tf_init(dev, tf);
1971 tf->flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1972 tf->protocol = ATA_PROT_NODATA;
1973
1974 if (set_active) {
1975 /* VERIFY for 1 sector at lba=0 */
1976 tf->command = ATA_CMD_VERIFY;
1977 tf->nsect = 1;
1978 if (dev->flags & ATA_DFLAG_LBA) {
1979 tf->flags |= ATA_TFLAG_LBA;
1980 tf->device |= ATA_LBA;
1981 } else {
1982 /* CHS */
1983 tf->lbal = 0x1; /* sect */
1984 }
1985 } else {
1986 tf->command = ATA_CMD_STANDBYNOW1;
1987 }
1988
1989 return true;
1990 }
1991
ata_dev_power_is_active(struct ata_device * dev)1992 static bool ata_dev_power_is_active(struct ata_device *dev)
1993 {
1994 struct ata_taskfile tf;
1995 unsigned int err_mask;
1996
1997 ata_tf_init(dev, &tf);
1998 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1999 tf.protocol = ATA_PROT_NODATA;
2000 tf.command = ATA_CMD_CHK_POWER;
2001
2002 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2003 if (err_mask) {
2004 ata_dev_err(dev, "Check power mode failed (err_mask=0x%x)\n",
2005 err_mask);
2006 /*
2007 * Assume we are in standby mode so that we always force a
2008 * spinup in ata_dev_power_set_active().
2009 */
2010 return false;
2011 }
2012
2013 ata_dev_dbg(dev, "Power mode: 0x%02x\n", tf.nsect);
2014
2015 /* Active or idle */
2016 return tf.nsect == 0xff;
2017 }
2018
2019 /**
2020 * ata_dev_power_set_standby - Set a device power mode to standby
2021 * @dev: target device
2022 *
2023 * Issue a STANDBY IMMEDIATE command to set a device power mode to standby.
2024 * For an HDD device, this spins down the disks.
2025 *
2026 * LOCKING:
2027 * Kernel thread context (may sleep).
2028 */
ata_dev_power_set_standby(struct ata_device * dev)2029 void ata_dev_power_set_standby(struct ata_device *dev)
2030 {
2031 unsigned long ap_flags = dev->link->ap->flags;
2032 struct ata_taskfile tf;
2033 unsigned int err_mask;
2034
2035 /* If the device is already sleeping or in standby, do nothing. */
2036 if ((dev->flags & ATA_DFLAG_SLEEPING) ||
2037 !ata_dev_power_is_active(dev))
2038 return;
2039
2040 /*
2041 * Some odd clown BIOSes issue spindown on power off (ACPI S4 or S5)
2042 * causing some drives to spin up and down again. For these, do nothing
2043 * if we are being called on shutdown.
2044 */
2045 if ((ap_flags & ATA_FLAG_NO_POWEROFF_SPINDOWN) &&
2046 system_state == SYSTEM_POWER_OFF)
2047 return;
2048
2049 if ((ap_flags & ATA_FLAG_NO_HIBERNATE_SPINDOWN) &&
2050 system_entering_hibernation())
2051 return;
2052
2053 /* Issue STANDBY IMMEDIATE command only if supported by the device */
2054 if (!ata_dev_power_init_tf(dev, &tf, false))
2055 return;
2056
2057 ata_dev_notice(dev, "Entering standby power mode\n");
2058
2059 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2060 if (err_mask)
2061 ata_dev_err(dev, "STANDBY IMMEDIATE failed (err_mask=0x%x)\n",
2062 err_mask);
2063 }
2064
2065 /**
2066 * ata_dev_power_set_active - Set a device power mode to active
2067 * @dev: target device
2068 *
2069 * Issue a VERIFY command to enter to ensure that the device is in the
2070 * active power mode. For a spun-down HDD (standby or idle power mode),
2071 * the VERIFY command will complete after the disk spins up.
2072 *
2073 * LOCKING:
2074 * Kernel thread context (may sleep).
2075 */
ata_dev_power_set_active(struct ata_device * dev)2076 void ata_dev_power_set_active(struct ata_device *dev)
2077 {
2078 struct ata_taskfile tf;
2079 unsigned int err_mask;
2080
2081 /*
2082 * Issue READ VERIFY SECTORS command for 1 sector at lba=0 only
2083 * if supported by the device.
2084 */
2085 if (!ata_dev_power_init_tf(dev, &tf, true))
2086 return;
2087
2088 /*
2089 * Check the device power state & condition and force a spinup with
2090 * VERIFY command only if the drive is not already ACTIVE or IDLE.
2091 */
2092 if (ata_dev_power_is_active(dev))
2093 return;
2094
2095 ata_dev_notice(dev, "Entering active power mode\n");
2096
2097 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2098 if (err_mask)
2099 ata_dev_err(dev, "VERIFY failed (err_mask=0x%x)\n",
2100 err_mask);
2101 }
2102
2103 /**
2104 * ata_read_log_page - read a specific log page
2105 * @dev: target device
2106 * @log: log to read
2107 * @page: page to read
2108 * @buf: buffer to store read page
2109 * @sectors: number of sectors to read
2110 *
2111 * Read log page using READ_LOG_EXT command.
2112 *
2113 * LOCKING:
2114 * Kernel thread context (may sleep).
2115 *
2116 * RETURNS:
2117 * 0 on success, AC_ERR_* mask otherwise.
2118 */
ata_read_log_page(struct ata_device * dev,u8 log,u8 page,void * buf,unsigned int sectors)2119 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2120 u8 page, void *buf, unsigned int sectors)
2121 {
2122 unsigned long ap_flags = dev->link->ap->flags;
2123 struct ata_taskfile tf;
2124 unsigned int err_mask;
2125 bool dma = false;
2126
2127 ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page);
2128
2129 /*
2130 * Return error without actually issuing the command on controllers
2131 * which e.g. lockup on a read log page.
2132 */
2133 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2134 return AC_ERR_DEV;
2135
2136 retry:
2137 ata_tf_init(dev, &tf);
2138 if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
2139 !(dev->quirks & ATA_QUIRK_NO_DMA_LOG)) {
2140 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2141 tf.protocol = ATA_PROT_DMA;
2142 dma = true;
2143 } else {
2144 tf.command = ATA_CMD_READ_LOG_EXT;
2145 tf.protocol = ATA_PROT_PIO;
2146 dma = false;
2147 }
2148 tf.lbal = log;
2149 tf.lbam = page;
2150 tf.nsect = sectors;
2151 tf.hob_nsect = sectors >> 8;
2152 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2153
2154 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2155 buf, sectors * ATA_SECT_SIZE, 0);
2156
2157 if (err_mask) {
2158 if (dma) {
2159 dev->quirks |= ATA_QUIRK_NO_DMA_LOG;
2160 if (!ata_port_is_frozen(dev->link->ap))
2161 goto retry;
2162 }
2163 ata_dev_err(dev,
2164 "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n",
2165 (unsigned int)log, (unsigned int)page, err_mask);
2166 }
2167
2168 return err_mask;
2169 }
2170
ata_clear_log_directory(struct ata_device * dev)2171 static inline void ata_clear_log_directory(struct ata_device *dev)
2172 {
2173 memset(dev->gp_log_dir, 0, ATA_SECT_SIZE);
2174 }
2175
ata_read_log_directory(struct ata_device * dev)2176 static int ata_read_log_directory(struct ata_device *dev)
2177 {
2178 u16 version;
2179
2180 /* If the log page is already cached, do nothing. */
2181 version = get_unaligned_le16(&dev->gp_log_dir[0]);
2182 if (version == 0x0001)
2183 return 0;
2184
2185 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, dev->gp_log_dir, 1)) {
2186 ata_clear_log_directory(dev);
2187 return -EIO;
2188 }
2189
2190 version = get_unaligned_le16(&dev->gp_log_dir[0]);
2191 if (version != 0x0001)
2192 ata_dev_warn_once(dev,
2193 "Invalid log directory version 0x%04x\n",
2194 version);
2195
2196 return 0;
2197 }
2198
ata_log_supported(struct ata_device * dev,u8 log)2199 static int ata_log_supported(struct ata_device *dev, u8 log)
2200 {
2201 if (dev->quirks & ATA_QUIRK_NO_LOG_DIR)
2202 return 0;
2203
2204 if (ata_read_log_directory(dev))
2205 return 0;
2206
2207 return get_unaligned_le16(&dev->gp_log_dir[log * 2]);
2208 }
2209
ata_identify_page_supported(struct ata_device * dev,u8 page)2210 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2211 {
2212 unsigned int err, i;
2213
2214 if (dev->quirks & ATA_QUIRK_NO_ID_DEV_LOG)
2215 return false;
2216
2217 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2218 /*
2219 * IDENTIFY DEVICE data log is defined as mandatory starting
2220 * with ACS-3 (ATA version 10). Warn about the missing log
2221 * for drives which implement this ATA level or above.
2222 */
2223 if (ata_id_major_version(dev->id) >= 10)
2224 ata_dev_warn(dev,
2225 "ATA Identify Device Log not supported\n");
2226 dev->quirks |= ATA_QUIRK_NO_ID_DEV_LOG;
2227 return false;
2228 }
2229
2230 /*
2231 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2232 * supported.
2233 */
2234 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0,
2235 dev->sector_buf, 1);
2236 if (err)
2237 return false;
2238
2239 for (i = 0; i < dev->sector_buf[8]; i++) {
2240 if (dev->sector_buf[9 + i] == page)
2241 return true;
2242 }
2243
2244 return false;
2245 }
2246
ata_do_link_spd_quirk(struct ata_device * dev)2247 static int ata_do_link_spd_quirk(struct ata_device *dev)
2248 {
2249 struct ata_link *plink = ata_dev_phys_link(dev);
2250 u32 target, target_limit;
2251
2252 if (!sata_scr_valid(plink))
2253 return 0;
2254
2255 if (dev->quirks & ATA_QUIRK_1_5_GBPS)
2256 target = 1;
2257 else
2258 return 0;
2259
2260 target_limit = (1 << target) - 1;
2261
2262 /* if already on stricter limit, no need to push further */
2263 if (plink->sata_spd_limit <= target_limit)
2264 return 0;
2265
2266 plink->sata_spd_limit = target_limit;
2267
2268 /* Request another EH round by returning -EAGAIN if link is
2269 * going faster than the target speed. Forward progress is
2270 * guaranteed by setting sata_spd_limit to target_limit above.
2271 */
2272 if (plink->sata_spd > target) {
2273 ata_dev_info(dev, "applying link speed limit quirk to %s\n",
2274 sata_spd_string(target));
2275 return -EAGAIN;
2276 }
2277 return 0;
2278 }
2279
ata_dev_knobble(struct ata_device * dev)2280 static inline bool ata_dev_knobble(struct ata_device *dev)
2281 {
2282 struct ata_port *ap = dev->link->ap;
2283
2284 if (ata_dev_quirks(dev) & ATA_QUIRK_BRIDGE_OK)
2285 return false;
2286
2287 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2288 }
2289
ata_dev_config_ncq_send_recv(struct ata_device * dev)2290 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2291 {
2292 unsigned int err_mask;
2293
2294 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2295 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2296 return;
2297 }
2298 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2299 0, dev->sector_buf, 1);
2300 if (!err_mask) {
2301 u8 *cmds = dev->ncq_send_recv_cmds;
2302
2303 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2304 memcpy(cmds, dev->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2305
2306 if (dev->quirks & ATA_QUIRK_NO_NCQ_TRIM) {
2307 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2308 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2309 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2310 }
2311 }
2312 }
2313
ata_dev_config_ncq_non_data(struct ata_device * dev)2314 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2315 {
2316 unsigned int err_mask;
2317
2318 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2319 ata_dev_warn(dev,
2320 "NCQ Non-Data Log not supported\n");
2321 return;
2322 }
2323 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2324 0, dev->sector_buf, 1);
2325 if (!err_mask)
2326 memcpy(dev->ncq_non_data_cmds, dev->sector_buf,
2327 ATA_LOG_NCQ_NON_DATA_SIZE);
2328 }
2329
ata_dev_config_ncq_prio(struct ata_device * dev)2330 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2331 {
2332 unsigned int err_mask;
2333
2334 if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2335 return;
2336
2337 err_mask = ata_read_log_page(dev,
2338 ATA_LOG_IDENTIFY_DEVICE,
2339 ATA_LOG_SATA_SETTINGS,
2340 dev->sector_buf, 1);
2341 if (err_mask)
2342 goto not_supported;
2343
2344 if (!(dev->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2345 goto not_supported;
2346
2347 dev->flags |= ATA_DFLAG_NCQ_PRIO;
2348
2349 return;
2350
2351 not_supported:
2352 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED;
2353 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2354 }
2355
ata_dev_check_adapter(struct ata_device * dev,unsigned short vendor_id)2356 static bool ata_dev_check_adapter(struct ata_device *dev,
2357 unsigned short vendor_id)
2358 {
2359 struct pci_dev *pcidev = NULL;
2360 struct device *parent_dev = NULL;
2361
2362 for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2363 parent_dev = parent_dev->parent) {
2364 if (dev_is_pci(parent_dev)) {
2365 pcidev = to_pci_dev(parent_dev);
2366 if (pcidev->vendor == vendor_id)
2367 return true;
2368 break;
2369 }
2370 }
2371
2372 return false;
2373 }
2374
ata_adapter_is_online(struct ata_port * ap)2375 bool ata_adapter_is_online(struct ata_port *ap)
2376 {
2377 struct device *dev;
2378
2379 if (!ap || !ap->host)
2380 return false;
2381
2382 dev = ap->host->dev;
2383 if (!dev)
2384 return false;
2385
2386 if (dev_is_pci(dev) &&
2387 pci_channel_offline(to_pci_dev(dev)))
2388 return false;
2389
2390 return true;
2391 }
2392
ata_dev_config_ncq(struct ata_device * dev,char * desc,size_t desc_sz)2393 static int ata_dev_config_ncq(struct ata_device *dev,
2394 char *desc, size_t desc_sz)
2395 {
2396 struct ata_port *ap = dev->link->ap;
2397 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2398 unsigned int err_mask;
2399 char *aa_desc = "";
2400
2401 if (!ata_id_has_ncq(dev->id)) {
2402 desc[0] = '\0';
2403 return 0;
2404 }
2405 if (!IS_ENABLED(CONFIG_SATA_HOST))
2406 return 0;
2407 if (dev->quirks & ATA_QUIRK_NONCQ) {
2408 snprintf(desc, desc_sz, "NCQ (not used)");
2409 return 0;
2410 }
2411
2412 if (dev->quirks & ATA_QUIRK_NO_NCQ_ON_ATI &&
2413 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2414 snprintf(desc, desc_sz, "NCQ (not used)");
2415 return 0;
2416 }
2417
2418 if (ap->flags & ATA_FLAG_NCQ) {
2419 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2420 dev->flags |= ATA_DFLAG_NCQ;
2421 }
2422
2423 if (!(dev->quirks & ATA_QUIRK_BROKEN_FPDMA_AA) &&
2424 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2425 ata_id_has_fpdma_aa(dev->id)) {
2426 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2427 SATA_FPDMA_AA);
2428 if (err_mask) {
2429 ata_dev_err(dev,
2430 "failed to enable AA (error_mask=0x%x)\n",
2431 err_mask);
2432 if (err_mask != AC_ERR_DEV) {
2433 dev->quirks |= ATA_QUIRK_BROKEN_FPDMA_AA;
2434 return -EIO;
2435 }
2436 } else
2437 aa_desc = ", AA";
2438 }
2439
2440 if (hdepth >= ddepth)
2441 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2442 else
2443 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2444 ddepth, aa_desc);
2445
2446 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2447 if (ata_id_has_ncq_send_and_recv(dev->id))
2448 ata_dev_config_ncq_send_recv(dev);
2449 if (ata_id_has_ncq_non_data(dev->id))
2450 ata_dev_config_ncq_non_data(dev);
2451 if (ata_id_has_ncq_prio(dev->id))
2452 ata_dev_config_ncq_prio(dev);
2453 }
2454
2455 return 0;
2456 }
2457
ata_dev_config_sense_reporting(struct ata_device * dev)2458 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2459 {
2460 unsigned int err_mask;
2461
2462 if (!ata_id_has_sense_reporting(dev->id))
2463 return;
2464
2465 if (ata_id_sense_reporting_enabled(dev->id))
2466 return;
2467
2468 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2469 if (err_mask) {
2470 ata_dev_dbg(dev,
2471 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2472 err_mask);
2473 }
2474 }
2475
ata_dev_config_zac(struct ata_device * dev)2476 static void ata_dev_config_zac(struct ata_device *dev)
2477 {
2478 unsigned int err_mask;
2479 u8 *identify_buf = dev->sector_buf;
2480
2481 dev->zac_zones_optimal_open = U32_MAX;
2482 dev->zac_zones_optimal_nonseq = U32_MAX;
2483 dev->zac_zones_max_open = U32_MAX;
2484
2485 if (!ata_dev_is_zac(dev))
2486 return;
2487
2488 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2489 ata_dev_warn(dev,
2490 "ATA Zoned Information Log not supported\n");
2491 return;
2492 }
2493
2494 /*
2495 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2496 */
2497 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2498 ATA_LOG_ZONED_INFORMATION,
2499 identify_buf, 1);
2500 if (!err_mask) {
2501 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2502
2503 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2504 if ((zoned_cap >> 63))
2505 dev->zac_zoned_cap = (zoned_cap & 1);
2506 opt_open = get_unaligned_le64(&identify_buf[24]);
2507 if ((opt_open >> 63))
2508 dev->zac_zones_optimal_open = (u32)opt_open;
2509 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2510 if ((opt_nonseq >> 63))
2511 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2512 max_open = get_unaligned_le64(&identify_buf[40]);
2513 if ((max_open >> 63))
2514 dev->zac_zones_max_open = (u32)max_open;
2515 }
2516 }
2517
ata_dev_config_trusted(struct ata_device * dev)2518 static void ata_dev_config_trusted(struct ata_device *dev)
2519 {
2520 u64 trusted_cap;
2521 unsigned int err;
2522
2523 if (!ata_id_has_trusted(dev->id))
2524 return;
2525
2526 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2527 ata_dev_warn(dev,
2528 "Security Log not supported\n");
2529 return;
2530 }
2531
2532 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2533 dev->sector_buf, 1);
2534 if (err)
2535 return;
2536
2537 trusted_cap = get_unaligned_le64(&dev->sector_buf[40]);
2538 if (!(trusted_cap & (1ULL << 63))) {
2539 ata_dev_dbg(dev,
2540 "Trusted Computing capability qword not valid!\n");
2541 return;
2542 }
2543
2544 if (trusted_cap & (1 << 0))
2545 dev->flags |= ATA_DFLAG_TRUSTED;
2546 }
2547
ata_dev_cleanup_cdl_resources(struct ata_device * dev)2548 static void ata_dev_cleanup_cdl_resources(struct ata_device *dev)
2549 {
2550 kfree(dev->cdl);
2551 dev->cdl = NULL;
2552 }
2553
ata_dev_init_cdl_resources(struct ata_device * dev)2554 static int ata_dev_init_cdl_resources(struct ata_device *dev)
2555 {
2556 struct ata_cdl *cdl = dev->cdl;
2557 unsigned int err_mask;
2558
2559 if (!cdl) {
2560 cdl = kzalloc_obj(*cdl, GFP_KERNEL);
2561 if (!cdl)
2562 return -ENOMEM;
2563 dev->cdl = cdl;
2564 }
2565
2566 err_mask = ata_read_log_page(dev, ATA_LOG_CDL, 0, cdl->desc_log_buf,
2567 ATA_LOG_CDL_SIZE / ATA_SECT_SIZE);
2568 if (err_mask) {
2569 ata_dev_warn(dev, "Read Command Duration Limits log failed\n");
2570 ata_dev_cleanup_cdl_resources(dev);
2571 return -EIO;
2572 }
2573
2574 return 0;
2575 }
2576
ata_dev_config_cdl(struct ata_device * dev)2577 static void ata_dev_config_cdl(struct ata_device *dev)
2578 {
2579 unsigned int err_mask;
2580 bool cdl_enabled;
2581 u64 val;
2582 int ret;
2583
2584 if (ata_id_major_version(dev->id) < 11)
2585 goto not_supported;
2586
2587 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE) ||
2588 !ata_identify_page_supported(dev, ATA_LOG_SUPPORTED_CAPABILITIES) ||
2589 !ata_identify_page_supported(dev, ATA_LOG_CURRENT_SETTINGS))
2590 goto not_supported;
2591
2592 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2593 ATA_LOG_SUPPORTED_CAPABILITIES,
2594 dev->sector_buf, 1);
2595 if (err_mask)
2596 goto not_supported;
2597
2598 /* Check Command Duration Limit Supported bits */
2599 val = get_unaligned_le64(&dev->sector_buf[168]);
2600 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(0)))
2601 goto not_supported;
2602
2603 /* Warn the user if command duration guideline is not supported */
2604 if (!(val & BIT_ULL(1)))
2605 ata_dev_warn(dev,
2606 "Command duration guideline is not supported\n");
2607
2608 /*
2609 * We must have support for the sense data for successful NCQ commands
2610 * log indicated by the successful NCQ command sense data supported bit.
2611 */
2612 val = get_unaligned_le64(&dev->sector_buf[8]);
2613 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(47))) {
2614 ata_dev_warn(dev,
2615 "CDL supported but Successful NCQ Command Sense Data is not supported\n");
2616 goto not_supported;
2617 }
2618
2619 /* Without NCQ autosense, the successful NCQ commands log is useless. */
2620 if (!ata_id_has_ncq_autosense(dev->id)) {
2621 ata_dev_warn(dev,
2622 "CDL supported but NCQ autosense is not supported\n");
2623 goto not_supported;
2624 }
2625
2626 /*
2627 * If CDL is marked as enabled, make sure the feature is enabled too.
2628 * Conversely, if CDL is disabled, make sure the feature is turned off.
2629 */
2630 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2631 ATA_LOG_CURRENT_SETTINGS,
2632 dev->sector_buf, 1);
2633 if (err_mask)
2634 goto not_supported;
2635
2636 val = get_unaligned_le64(&dev->sector_buf[8]);
2637 cdl_enabled = val & BIT_ULL(63) && val & BIT_ULL(21);
2638 if (dev->flags & ATA_DFLAG_CDL_ENABLED) {
2639 if (!cdl_enabled) {
2640 /* Enable CDL on the device */
2641 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 1);
2642 if (err_mask) {
2643 ata_dev_err(dev,
2644 "Enable CDL feature failed\n");
2645 goto not_supported;
2646 }
2647 }
2648 } else {
2649 if (cdl_enabled) {
2650 /* Disable CDL on the device */
2651 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 0);
2652 if (err_mask) {
2653 ata_dev_err(dev,
2654 "Disable CDL feature failed\n");
2655 goto not_supported;
2656 }
2657 }
2658 }
2659
2660 /*
2661 * While CDL itself has to be enabled using sysfs, CDL requires that
2662 * sense data for successful NCQ commands is enabled to work properly.
2663 * Just like ata_dev_config_sense_reporting(), enable it unconditionally
2664 * if supported.
2665 */
2666 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(18))) {
2667 err_mask = ata_dev_set_feature(dev,
2668 SETFEATURE_SENSE_DATA_SUCC_NCQ, 0x1);
2669 if (err_mask) {
2670 ata_dev_warn(dev,
2671 "failed to enable Sense Data for successful NCQ commands, Emask 0x%x\n",
2672 err_mask);
2673 goto not_supported;
2674 }
2675 }
2676
2677 /* CDL is supported: allocate and initialize needed resources. */
2678 ret = ata_dev_init_cdl_resources(dev);
2679 if (ret) {
2680 ata_dev_warn(dev, "Initialize CDL resources failed\n");
2681 goto not_supported;
2682 }
2683
2684 dev->flags |= ATA_DFLAG_CDL;
2685
2686 return;
2687
2688 not_supported:
2689 dev->flags &= ~(ATA_DFLAG_CDL | ATA_DFLAG_CDL_ENABLED);
2690 ata_dev_cleanup_cdl_resources(dev);
2691 }
2692
ata_dev_config_lba(struct ata_device * dev)2693 static int ata_dev_config_lba(struct ata_device *dev)
2694 {
2695 const u16 *id = dev->id;
2696 const char *lba_desc;
2697 char ncq_desc[32];
2698 int ret;
2699
2700 dev->flags |= ATA_DFLAG_LBA;
2701
2702 if (ata_id_has_lba48(id)) {
2703 lba_desc = "LBA48";
2704 dev->flags |= ATA_DFLAG_LBA48;
2705 if (dev->n_sectors >= (1UL << 28) &&
2706 ata_id_has_flush_ext(id))
2707 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2708 } else {
2709 lba_desc = "LBA";
2710 }
2711
2712 /* config NCQ */
2713 ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2714
2715 /* print device info to dmesg */
2716 if (ata_dev_print_info(dev))
2717 ata_dev_info(dev,
2718 "%llu sectors, multi %u: %s %s\n",
2719 (unsigned long long)dev->n_sectors,
2720 dev->multi_count, lba_desc, ncq_desc);
2721
2722 return ret;
2723 }
2724
ata_dev_config_chs(struct ata_device * dev)2725 static void ata_dev_config_chs(struct ata_device *dev)
2726 {
2727 const u16 *id = dev->id;
2728
2729 if (ata_id_current_chs_valid(id)) {
2730 /* Current CHS translation is valid. */
2731 dev->cylinders = id[54];
2732 dev->heads = id[55];
2733 dev->sectors = id[56];
2734 } else {
2735 /* Default translation */
2736 dev->cylinders = id[1];
2737 dev->heads = id[3];
2738 dev->sectors = id[6];
2739 }
2740
2741 /* print device info to dmesg */
2742 if (ata_dev_print_info(dev))
2743 ata_dev_info(dev,
2744 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2745 (unsigned long long)dev->n_sectors,
2746 dev->multi_count, dev->cylinders,
2747 dev->heads, dev->sectors);
2748 }
2749
ata_dev_config_fua(struct ata_device * dev)2750 static void ata_dev_config_fua(struct ata_device *dev)
2751 {
2752 /* Ignore FUA support if its use is disabled globally */
2753 if (!libata_fua)
2754 goto nofua;
2755
2756 /* Ignore devices without support for WRITE DMA FUA EXT */
2757 if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id))
2758 goto nofua;
2759
2760 /* Ignore known bad devices and devices that lack NCQ support */
2761 if (!ata_ncq_supported(dev) || (dev->quirks & ATA_QUIRK_NO_FUA))
2762 goto nofua;
2763
2764 dev->flags |= ATA_DFLAG_FUA;
2765
2766 return;
2767
2768 nofua:
2769 dev->flags &= ~ATA_DFLAG_FUA;
2770 }
2771
ata_dev_config_devslp(struct ata_device * dev)2772 static void ata_dev_config_devslp(struct ata_device *dev)
2773 {
2774 u8 *sata_setting = dev->sector_buf;
2775 unsigned int err_mask;
2776 int i, j;
2777
2778 /*
2779 * Check device sleep capability. Get DevSlp timing variables
2780 * from SATA Settings page of Identify Device Data Log.
2781 */
2782 if (!ata_id_has_devslp(dev->id) ||
2783 !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2784 return;
2785
2786 err_mask = ata_read_log_page(dev,
2787 ATA_LOG_IDENTIFY_DEVICE,
2788 ATA_LOG_SATA_SETTINGS,
2789 sata_setting, 1);
2790 if (err_mask)
2791 return;
2792
2793 dev->flags |= ATA_DFLAG_DEVSLP;
2794 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2795 j = ATA_LOG_DEVSLP_OFFSET + i;
2796 dev->devslp_timing[i] = sata_setting[j];
2797 }
2798 }
2799
ata_dev_config_cpr(struct ata_device * dev)2800 static void ata_dev_config_cpr(struct ata_device *dev)
2801 {
2802 unsigned int err_mask;
2803 size_t buf_len;
2804 int i, nr_cpr = 0;
2805 struct ata_cpr_log *cpr_log = NULL;
2806 u8 *desc, *buf = NULL;
2807
2808 if (ata_id_major_version(dev->id) < 11)
2809 goto out;
2810
2811 buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES);
2812 if (buf_len == 0)
2813 goto out;
2814
2815 /*
2816 * Read the concurrent positioning ranges log (0x47). We can have at
2817 * most 255 32B range descriptors plus a 64B header. This log varies in
2818 * size, so use the size reported in the GPL directory. Reading beyond
2819 * the supported length will result in an error.
2820 */
2821 buf_len <<= 9;
2822 buf = kzalloc(buf_len, GFP_KERNEL);
2823 if (!buf)
2824 goto out;
2825
2826 err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2827 0, buf, buf_len >> 9);
2828 if (err_mask)
2829 goto out;
2830
2831 nr_cpr = buf[0];
2832 if (!nr_cpr)
2833 goto out;
2834
2835 cpr_log = kzalloc_flex(*cpr_log, cpr, nr_cpr, GFP_KERNEL);
2836 if (!cpr_log)
2837 goto out;
2838
2839 cpr_log->nr_cpr = nr_cpr;
2840 desc = &buf[64];
2841 for (i = 0; i < nr_cpr; i++, desc += 32) {
2842 cpr_log->cpr[i].num = desc[0];
2843 cpr_log->cpr[i].num_storage_elements = desc[1];
2844 cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]);
2845 cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]);
2846 }
2847
2848 out:
2849 swap(dev->cpr_log, cpr_log);
2850 kfree(cpr_log);
2851 kfree(buf);
2852 }
2853
2854 /*
2855 * Configure features related to link power management.
2856 */
ata_dev_config_lpm(struct ata_device * dev)2857 static void ata_dev_config_lpm(struct ata_device *dev)
2858 {
2859 struct ata_port *ap = dev->link->ap;
2860 unsigned int err_mask;
2861
2862 if (ap->flags & ATA_FLAG_NO_LPM) {
2863 /*
2864 * When the port does not support LPM, we cannot support it on
2865 * the device either.
2866 */
2867 dev->quirks |= ATA_QUIRK_NOLPM;
2868 } else {
2869 /*
2870 * Some WD SATA-1 drives have issues with LPM, turn on NOLPM for
2871 * them.
2872 */
2873 if ((dev->quirks & ATA_QUIRK_WD_BROKEN_LPM) &&
2874 (dev->id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2875 dev->quirks |= ATA_QUIRK_NOLPM;
2876
2877 /* ATI specific quirk */
2878 if ((dev->quirks & ATA_QUIRK_NO_LPM_ON_ATI) &&
2879 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI))
2880 dev->quirks |= ATA_QUIRK_NOLPM;
2881 }
2882
2883 if (dev->quirks & ATA_QUIRK_NOLPM &&
2884 ap->target_lpm_policy != ATA_LPM_MAX_POWER) {
2885 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2886 ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2887 }
2888
2889 /*
2890 * Device Initiated Power Management (DIPM) is normally disabled by
2891 * default on a device. However, DIPM may have been enabled and that
2892 * setting kept even after COMRESET because of the Software Settings
2893 * Preservation feature. So if the port does not support DIPM and the
2894 * device does, disable DIPM on the device.
2895 */
2896 if (ap->flags & ATA_FLAG_NO_DIPM && ata_id_has_dipm(dev->id)) {
2897 err_mask = ata_dev_set_feature(dev,
2898 SETFEATURES_SATA_DISABLE, SATA_DIPM);
2899 if (err_mask && err_mask != AC_ERR_DEV)
2900 ata_dev_err(dev, "Disable DIPM failed, Emask 0x%x\n",
2901 err_mask);
2902 }
2903 }
2904
ata_dev_print_features(struct ata_device * dev)2905 static void ata_dev_print_features(struct ata_device *dev)
2906 {
2907 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK) && !dev->cpr_log &&
2908 !ata_id_has_hipm(dev->id) && !ata_id_has_dipm(dev->id))
2909 return;
2910
2911 ata_dev_info(dev,
2912 "Features:%s%s%s%s%s%s%s%s%s%s\n",
2913 dev->flags & ATA_DFLAG_FUA ? " FUA" : "",
2914 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2915 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2916 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2917 ata_id_has_hipm(dev->id) ? " HIPM" : "",
2918 ata_id_has_dipm(dev->id) ? " DIPM" : "",
2919 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2920 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2921 dev->flags & ATA_DFLAG_CDL ? " CDL" : "",
2922 dev->cpr_log ? " CPR" : "");
2923 }
2924
2925 /**
2926 * ata_dev_configure - Configure the specified ATA/ATAPI device
2927 * @dev: Target device to configure
2928 *
2929 * Configure @dev according to @dev->id. Generic and low-level
2930 * driver specific fixups are also applied.
2931 *
2932 * LOCKING:
2933 * Kernel thread context (may sleep)
2934 *
2935 * RETURNS:
2936 * 0 on success, -errno otherwise
2937 */
ata_dev_configure(struct ata_device * dev)2938 int ata_dev_configure(struct ata_device *dev)
2939 {
2940 struct ata_port *ap = dev->link->ap;
2941 bool print_info = ata_dev_print_info(dev);
2942 const u16 *id = dev->id;
2943 unsigned int xfer_mask;
2944 unsigned int err_mask;
2945 char revbuf[7]; /* XYZ-99\0 */
2946 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2947 char modelbuf[ATA_ID_PROD_LEN+1];
2948 int rc;
2949
2950 if (!ata_dev_enabled(dev)) {
2951 ata_dev_dbg(dev, "no device\n");
2952 return 0;
2953 }
2954
2955 /* Clear the general purpose log directory cache. */
2956 ata_clear_log_directory(dev);
2957
2958 /* Set quirks */
2959 dev->quirks |= ata_dev_quirks(dev);
2960 ata_force_quirks(dev);
2961
2962 if (dev->quirks & ATA_QUIRK_DISABLE) {
2963 ata_dev_info(dev, "unsupported device, disabling\n");
2964 ata_dev_disable(dev);
2965 return 0;
2966 }
2967
2968 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2969 dev->class == ATA_DEV_ATAPI) {
2970 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2971 atapi_enabled ? "not supported with this driver"
2972 : "disabled");
2973 ata_dev_disable(dev);
2974 return 0;
2975 }
2976
2977 rc = ata_do_link_spd_quirk(dev);
2978 if (rc)
2979 return rc;
2980
2981 /* let ACPI work its magic */
2982 rc = ata_acpi_on_devcfg(dev);
2983 if (rc)
2984 return rc;
2985
2986 /* massage HPA, do it early as it might change IDENTIFY data */
2987 rc = ata_hpa_resize(dev);
2988 if (rc)
2989 return rc;
2990
2991 /* print device capabilities */
2992 ata_dev_dbg(dev,
2993 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2994 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2995 __func__,
2996 id[49], id[82], id[83], id[84],
2997 id[85], id[86], id[87], id[88]);
2998
2999 /* initialize to-be-configured parameters */
3000 dev->flags &= ~ATA_DFLAG_CFG_MASK;
3001 dev->max_sectors = 0;
3002 dev->cdb_len = 0;
3003 dev->n_sectors = 0;
3004 dev->cylinders = 0;
3005 dev->heads = 0;
3006 dev->sectors = 0;
3007 dev->multi_count = 0;
3008
3009 /*
3010 * common ATA, ATAPI feature tests
3011 */
3012
3013 /* find max transfer mode; for printk only */
3014 xfer_mask = ata_id_xfermask(id);
3015
3016 ata_dump_id(dev, id);
3017
3018 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
3019 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
3020 sizeof(fwrevbuf));
3021
3022 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
3023 sizeof(modelbuf));
3024
3025 /* ATA-specific feature tests */
3026 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
3027 if (ata_id_is_cfa(id)) {
3028 /* CPRM may make this media unusable */
3029 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
3030 ata_dev_warn(dev,
3031 "supports DRM functions and may not be fully accessible\n");
3032 snprintf(revbuf, 7, "CFA");
3033 } else {
3034 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
3035 /* Warn the user if the device has TPM extensions */
3036 if (ata_id_has_tpm(id))
3037 ata_dev_warn(dev,
3038 "supports DRM functions and may not be fully accessible\n");
3039 }
3040
3041 dev->n_sectors = ata_id_n_sectors(id);
3042 if (ata_id_is_locked(id)) {
3043 /*
3044 * If Security locked, set capacity to zero to prevent
3045 * any I/O, e.g. partition scanning, as any I/O to a
3046 * locked drive will result in user visible errors.
3047 */
3048 ata_dev_info(dev,
3049 "Security locked, setting capacity to zero\n");
3050 dev->n_sectors = 0;
3051 }
3052
3053 /* get current R/W Multiple count setting */
3054 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
3055 unsigned int max = dev->id[47] & 0xff;
3056 unsigned int cnt = dev->id[59] & 0xff;
3057 /* only recognize/allow powers of two here */
3058 if (is_power_of_2(max) && is_power_of_2(cnt))
3059 if (cnt <= max)
3060 dev->multi_count = cnt;
3061 }
3062
3063 /* print device info to dmesg */
3064 if (print_info)
3065 ata_dev_info(dev, "%s: %s, %s, max %s\n",
3066 revbuf, modelbuf, fwrevbuf,
3067 ata_mode_string(xfer_mask));
3068
3069 if (ata_id_has_lba(id)) {
3070 rc = ata_dev_config_lba(dev);
3071 if (rc)
3072 return rc;
3073 } else {
3074 ata_dev_config_chs(dev);
3075 }
3076
3077 ata_dev_config_lpm(dev);
3078 ata_dev_config_fua(dev);
3079 ata_dev_config_devslp(dev);
3080 ata_dev_config_sense_reporting(dev);
3081 ata_dev_config_zac(dev);
3082 ata_dev_config_trusted(dev);
3083 ata_dev_config_cpr(dev);
3084 ata_dev_config_cdl(dev);
3085 dev->cdb_len = 32;
3086
3087 if (print_info)
3088 ata_dev_print_features(dev);
3089 }
3090
3091 /* ATAPI-specific feature tests */
3092 else if (dev->class == ATA_DEV_ATAPI) {
3093 const char *cdb_intr_string = "";
3094 const char *atapi_an_string = "";
3095 const char *dma_dir_string = "";
3096 u32 sntf;
3097
3098 rc = atapi_cdb_len(id);
3099 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
3100 ata_dev_warn(dev, "unsupported CDB len %d\n", rc);
3101 rc = -EINVAL;
3102 goto err_out_nosup;
3103 }
3104 dev->cdb_len = (unsigned int) rc;
3105
3106 /* Enable ATAPI AN if both the host and device have
3107 * the support. If PMP is attached, SNTF is required
3108 * to enable ATAPI AN to discern between PHY status
3109 * changed notifications and ATAPI ANs.
3110 */
3111 if (atapi_an &&
3112 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
3113 (!sata_pmp_attached(ap) ||
3114 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
3115 /* issue SET feature command to turn this on */
3116 err_mask = ata_dev_set_feature(dev,
3117 SETFEATURES_SATA_ENABLE, SATA_AN);
3118 if (err_mask)
3119 ata_dev_err(dev,
3120 "failed to enable ATAPI AN (err_mask=0x%x)\n",
3121 err_mask);
3122 else {
3123 dev->flags |= ATA_DFLAG_AN;
3124 atapi_an_string = ", ATAPI AN";
3125 }
3126 }
3127
3128 if (ata_id_cdb_intr(dev->id)) {
3129 dev->flags |= ATA_DFLAG_CDB_INTR;
3130 cdb_intr_string = ", CDB intr";
3131 }
3132
3133 if (atapi_dmadir || (dev->quirks & ATA_QUIRK_ATAPI_DMADIR) ||
3134 atapi_id_dmadir(dev->id)) {
3135 dev->flags |= ATA_DFLAG_DMADIR;
3136 dma_dir_string = ", DMADIR";
3137 }
3138
3139 if (ata_id_has_da(dev->id)) {
3140 dev->flags |= ATA_DFLAG_DA;
3141 zpodd_init(dev);
3142 }
3143
3144 /* print device info to dmesg */
3145 if (print_info)
3146 ata_dev_info(dev,
3147 "ATAPI: %s, %s, max %s%s%s%s\n",
3148 modelbuf, fwrevbuf,
3149 ata_mode_string(xfer_mask),
3150 cdb_intr_string, atapi_an_string,
3151 dma_dir_string);
3152
3153 ata_dev_config_lpm(dev);
3154
3155 if (print_info)
3156 ata_dev_print_features(dev);
3157 }
3158
3159 /* determine max_sectors */
3160 dev->max_sectors = ATA_MAX_SECTORS;
3161 if (dev->flags & ATA_DFLAG_LBA48)
3162 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3163
3164 /* Limit PATA drive on SATA cable bridge transfers to udma5,
3165 200 sectors */
3166 if (ata_dev_knobble(dev)) {
3167 if (print_info)
3168 ata_dev_info(dev, "applying bridge limits\n");
3169 dev->udma_mask &= ATA_UDMA5;
3170 dev->max_sectors = ATA_MAX_SECTORS;
3171 }
3172
3173 if ((dev->class == ATA_DEV_ATAPI) &&
3174 (atapi_command_packet_set(id) == TYPE_TAPE)) {
3175 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
3176 dev->quirks |= ATA_QUIRK_STUCK_ERR;
3177 }
3178
3179 if (dev->quirks & ATA_QUIRK_MAX_SEC)
3180 dev->max_sectors = min_t(unsigned int, dev->max_sectors,
3181 ata_dev_get_quirk_value(dev,
3182 ATA_QUIRK_MAX_SEC));
3183
3184 if (dev->quirks & ATA_QUIRK_MAX_SEC_LBA48)
3185 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3186
3187 if (ap->ops->dev_config)
3188 ap->ops->dev_config(dev);
3189
3190 if (dev->quirks & ATA_QUIRK_DIAGNOSTIC) {
3191 /* Let the user know. We don't want to disallow opens for
3192 rescue purposes, or in case the vendor is just a blithering
3193 idiot. Do this after the dev_config call as some controllers
3194 with buggy firmware may want to avoid reporting false device
3195 bugs */
3196
3197 if (print_info) {
3198 ata_dev_warn(dev,
3199 "Drive reports diagnostics failure. This may indicate a drive\n");
3200 ata_dev_warn(dev,
3201 "fault or invalid emulation. Contact drive vendor for information.\n");
3202 }
3203 }
3204
3205 if ((dev->quirks & ATA_QUIRK_FIRMWARE_WARN) && print_info) {
3206 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
3207 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
3208 }
3209
3210 return 0;
3211
3212 err_out_nosup:
3213 return rc;
3214 }
3215
3216 /**
3217 * ata_cable_40wire - return 40 wire cable type
3218 * @ap: port
3219 *
3220 * Helper method for drivers which want to hardwire 40 wire cable
3221 * detection.
3222 */
3223
ata_cable_40wire(struct ata_port * ap)3224 int ata_cable_40wire(struct ata_port *ap)
3225 {
3226 return ATA_CBL_PATA40;
3227 }
3228 EXPORT_SYMBOL_GPL(ata_cable_40wire);
3229
3230 /**
3231 * ata_cable_80wire - return 80 wire cable type
3232 * @ap: port
3233 *
3234 * Helper method for drivers which want to hardwire 80 wire cable
3235 * detection.
3236 */
3237
ata_cable_80wire(struct ata_port * ap)3238 int ata_cable_80wire(struct ata_port *ap)
3239 {
3240 return ATA_CBL_PATA80;
3241 }
3242 EXPORT_SYMBOL_GPL(ata_cable_80wire);
3243
3244 /**
3245 * ata_cable_unknown - return unknown PATA cable.
3246 * @ap: port
3247 *
3248 * Helper method for drivers which have no PATA cable detection.
3249 */
3250
ata_cable_unknown(struct ata_port * ap)3251 int ata_cable_unknown(struct ata_port *ap)
3252 {
3253 return ATA_CBL_PATA_UNK;
3254 }
3255 EXPORT_SYMBOL_GPL(ata_cable_unknown);
3256
3257 /**
3258 * ata_cable_ignore - return ignored PATA cable.
3259 * @ap: port
3260 *
3261 * Helper method for drivers which don't use cable type to limit
3262 * transfer mode.
3263 */
ata_cable_ignore(struct ata_port * ap)3264 int ata_cable_ignore(struct ata_port *ap)
3265 {
3266 return ATA_CBL_PATA_IGN;
3267 }
3268 EXPORT_SYMBOL_GPL(ata_cable_ignore);
3269
3270 /**
3271 * ata_cable_sata - return SATA cable type
3272 * @ap: port
3273 *
3274 * Helper method for drivers which have SATA cables
3275 */
3276
ata_cable_sata(struct ata_port * ap)3277 int ata_cable_sata(struct ata_port *ap)
3278 {
3279 return ATA_CBL_SATA;
3280 }
3281 EXPORT_SYMBOL_GPL(ata_cable_sata);
3282
3283 /**
3284 * sata_print_link_status - Print SATA link status
3285 * @link: SATA link to printk link status about
3286 *
3287 * This function prints link speed and status of a SATA link.
3288 *
3289 * LOCKING:
3290 * None.
3291 */
sata_print_link_status(struct ata_link * link)3292 static void sata_print_link_status(struct ata_link *link)
3293 {
3294 u32 sstatus, scontrol, tmp;
3295
3296 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3297 return;
3298 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3299 return;
3300
3301 if (ata_phys_link_online(link)) {
3302 tmp = (sstatus >> 4) & 0xf;
3303 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3304 sata_spd_string(tmp), sstatus, scontrol);
3305 } else {
3306 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3307 sstatus, scontrol);
3308 }
3309 }
3310
3311 /**
3312 * ata_dev_pair - return other device on cable
3313 * @adev: device
3314 *
3315 * Obtain the other device on the same cable, or if none is
3316 * present NULL is returned
3317 */
3318
ata_dev_pair(struct ata_device * adev)3319 struct ata_device *ata_dev_pair(struct ata_device *adev)
3320 {
3321 struct ata_link *link = adev->link;
3322 struct ata_device *pair = &link->device[1 - adev->devno];
3323 if (!ata_dev_enabled(pair))
3324 return NULL;
3325 return pair;
3326 }
3327 EXPORT_SYMBOL_GPL(ata_dev_pair);
3328
3329 #ifdef CONFIG_ATA_ACPI
3330 /**
3331 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3332 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3333 * @cycle: cycle duration in ns
3334 *
3335 * Return matching xfer mode for @cycle. The returned mode is of
3336 * the transfer type specified by @xfer_shift. If @cycle is too
3337 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3338 * than the fastest known mode, the fasted mode is returned.
3339 *
3340 * LOCKING:
3341 * None.
3342 *
3343 * RETURNS:
3344 * Matching xfer_mode, 0xff if no match found.
3345 */
ata_timing_cycle2mode(unsigned int xfer_shift,int cycle)3346 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3347 {
3348 u8 base_mode = 0xff, last_mode = 0xff;
3349 const struct ata_xfer_ent *ent;
3350 const struct ata_timing *t;
3351
3352 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3353 if (ent->shift == xfer_shift)
3354 base_mode = ent->base;
3355
3356 for (t = ata_timing_find_mode(base_mode);
3357 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3358 unsigned short this_cycle;
3359
3360 switch (xfer_shift) {
3361 case ATA_SHIFT_PIO:
3362 case ATA_SHIFT_MWDMA:
3363 this_cycle = t->cycle;
3364 break;
3365 case ATA_SHIFT_UDMA:
3366 this_cycle = t->udma;
3367 break;
3368 default:
3369 return 0xff;
3370 }
3371
3372 if (cycle > this_cycle)
3373 break;
3374
3375 last_mode = t->mode;
3376 }
3377
3378 return last_mode;
3379 }
3380 #endif
3381
3382 /**
3383 * ata_down_xfermask_limit - adjust dev xfer masks downward
3384 * @dev: Device to adjust xfer masks
3385 * @sel: ATA_DNXFER_* selector
3386 *
3387 * Adjust xfer masks of @dev downward. Note that this function
3388 * does not apply the change. Invoking ata_set_mode() afterwards
3389 * will apply the limit.
3390 *
3391 * LOCKING:
3392 * Inherited from caller.
3393 *
3394 * RETURNS:
3395 * 0 on success, negative errno on failure
3396 */
ata_down_xfermask_limit(struct ata_device * dev,unsigned int sel)3397 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3398 {
3399 char buf[32];
3400 unsigned int orig_mask, xfer_mask;
3401 unsigned int pio_mask, mwdma_mask, udma_mask;
3402 int quiet, highbit;
3403
3404 quiet = !!(sel & ATA_DNXFER_QUIET);
3405 sel &= ~ATA_DNXFER_QUIET;
3406
3407 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3408 dev->mwdma_mask,
3409 dev->udma_mask);
3410 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3411
3412 switch (sel) {
3413 case ATA_DNXFER_PIO:
3414 highbit = fls(pio_mask) - 1;
3415 pio_mask &= ~(1 << highbit);
3416 break;
3417
3418 case ATA_DNXFER_DMA:
3419 if (udma_mask) {
3420 highbit = fls(udma_mask) - 1;
3421 udma_mask &= ~(1 << highbit);
3422 if (!udma_mask)
3423 return -ENOENT;
3424 } else if (mwdma_mask) {
3425 highbit = fls(mwdma_mask) - 1;
3426 mwdma_mask &= ~(1 << highbit);
3427 if (!mwdma_mask)
3428 return -ENOENT;
3429 }
3430 break;
3431
3432 case ATA_DNXFER_40C:
3433 udma_mask &= ATA_UDMA_MASK_40C;
3434 break;
3435
3436 case ATA_DNXFER_FORCE_PIO0:
3437 pio_mask &= 1;
3438 fallthrough;
3439 case ATA_DNXFER_FORCE_PIO:
3440 mwdma_mask = 0;
3441 udma_mask = 0;
3442 break;
3443
3444 default:
3445 BUG();
3446 }
3447
3448 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3449
3450 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3451 return -ENOENT;
3452
3453 if (!quiet) {
3454 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3455 snprintf(buf, sizeof(buf), "%s:%s",
3456 ata_mode_string(xfer_mask),
3457 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3458 else
3459 snprintf(buf, sizeof(buf), "%s",
3460 ata_mode_string(xfer_mask));
3461
3462 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3463 }
3464
3465 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3466 &dev->udma_mask);
3467
3468 return 0;
3469 }
3470
ata_dev_set_mode(struct ata_device * dev)3471 static int ata_dev_set_mode(struct ata_device *dev)
3472 {
3473 struct ata_port *ap = dev->link->ap;
3474 struct ata_eh_context *ehc = &dev->link->eh_context;
3475 const bool nosetxfer = dev->quirks & ATA_QUIRK_NOSETXFER;
3476 const char *dev_err_whine = "";
3477 int ign_dev_err = 0;
3478 unsigned int err_mask = 0;
3479 int rc;
3480
3481 dev->flags &= ~ATA_DFLAG_PIO;
3482 if (dev->xfer_shift == ATA_SHIFT_PIO)
3483 dev->flags |= ATA_DFLAG_PIO;
3484
3485 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3486 dev_err_whine = " (SET_XFERMODE skipped)";
3487 else {
3488 if (nosetxfer)
3489 ata_dev_warn(dev,
3490 "NOSETXFER but PATA detected - can't "
3491 "skip SETXFER, might malfunction\n");
3492 err_mask = ata_dev_set_xfermode(dev);
3493 }
3494
3495 if (err_mask & ~AC_ERR_DEV)
3496 goto fail;
3497
3498 /* revalidate */
3499 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3500 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3501 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3502 if (rc)
3503 return rc;
3504
3505 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3506 /* Old CFA may refuse this command, which is just fine */
3507 if (ata_id_is_cfa(dev->id))
3508 ign_dev_err = 1;
3509 /* Catch several broken garbage emulations plus some pre
3510 ATA devices */
3511 if (ata_id_major_version(dev->id) == 0 &&
3512 dev->pio_mode <= XFER_PIO_2)
3513 ign_dev_err = 1;
3514 /* Some very old devices and some bad newer ones fail
3515 any kind of SET_XFERMODE request but support PIO0-2
3516 timings and no IORDY */
3517 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3518 ign_dev_err = 1;
3519 }
3520 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3521 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3522 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3523 dev->dma_mode == XFER_MW_DMA_0 &&
3524 (dev->id[63] >> 8) & 1)
3525 ign_dev_err = 1;
3526
3527 /* if the device is actually configured correctly, ignore dev err */
3528 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3529 ign_dev_err = 1;
3530
3531 if (err_mask & AC_ERR_DEV) {
3532 if (!ign_dev_err)
3533 goto fail;
3534 else
3535 dev_err_whine = " (device error ignored)";
3536 }
3537
3538 ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n",
3539 dev->xfer_shift, (int)dev->xfer_mode);
3540
3541 if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3542 ehc->i.flags & ATA_EHI_DID_HARDRESET)
3543 ata_dev_info(dev, "configured for %s%s\n",
3544 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3545 dev_err_whine);
3546
3547 return 0;
3548
3549 fail:
3550 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3551 return -EIO;
3552 }
3553
3554 /**
3555 * ata_set_mode - Program timings and issue SET FEATURES - XFER
3556 * @link: link on which timings will be programmed
3557 * @r_failed_dev: out parameter for failed device
3558 *
3559 * Standard implementation of the function used to tune and set
3560 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3561 * ata_dev_set_mode() fails, pointer to the failing device is
3562 * returned in @r_failed_dev.
3563 *
3564 * LOCKING:
3565 * PCI/etc. bus probe sem.
3566 *
3567 * RETURNS:
3568 * 0 on success, negative errno otherwise
3569 */
3570
ata_set_mode(struct ata_link * link,struct ata_device ** r_failed_dev)3571 int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3572 {
3573 struct ata_port *ap = link->ap;
3574 struct ata_device *dev;
3575 int rc = 0, used_dma = 0, found = 0;
3576
3577 /* step 1: calculate xfer_mask */
3578 ata_for_each_dev(dev, link, ENABLED) {
3579 unsigned int pio_mask, dma_mask;
3580 unsigned int mode_mask;
3581
3582 mode_mask = ATA_DMA_MASK_ATA;
3583 if (dev->class == ATA_DEV_ATAPI)
3584 mode_mask = ATA_DMA_MASK_ATAPI;
3585 else if (ata_id_is_cfa(dev->id))
3586 mode_mask = ATA_DMA_MASK_CFA;
3587
3588 ata_dev_xfermask(dev);
3589 ata_force_xfermask(dev);
3590
3591 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3592
3593 if (libata_dma_mask & mode_mask)
3594 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3595 dev->udma_mask);
3596 else
3597 dma_mask = 0;
3598
3599 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3600 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3601
3602 found = 1;
3603 if (ata_dma_enabled(dev))
3604 used_dma = 1;
3605 }
3606 if (!found)
3607 goto out;
3608
3609 /* step 2: always set host PIO timings */
3610 ata_for_each_dev(dev, link, ENABLED) {
3611 if (dev->pio_mode == 0xff) {
3612 ata_dev_warn(dev, "no PIO support\n");
3613 rc = -EINVAL;
3614 goto out;
3615 }
3616
3617 dev->xfer_mode = dev->pio_mode;
3618 dev->xfer_shift = ATA_SHIFT_PIO;
3619 if (ap->ops->set_piomode)
3620 ap->ops->set_piomode(ap, dev);
3621 }
3622
3623 /* step 3: set host DMA timings */
3624 ata_for_each_dev(dev, link, ENABLED) {
3625 if (!ata_dma_enabled(dev))
3626 continue;
3627
3628 dev->xfer_mode = dev->dma_mode;
3629 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3630 if (ap->ops->set_dmamode)
3631 ap->ops->set_dmamode(ap, dev);
3632 }
3633
3634 /* step 4: update devices' xfer mode */
3635 ata_for_each_dev(dev, link, ENABLED) {
3636 rc = ata_dev_set_mode(dev);
3637 if (rc)
3638 goto out;
3639 }
3640
3641 /* Record simplex status. If we selected DMA then the other
3642 * host channels are not permitted to do so.
3643 */
3644 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3645 ap->host->simplex_claimed = ap;
3646
3647 out:
3648 if (rc)
3649 *r_failed_dev = dev;
3650 return rc;
3651 }
3652 EXPORT_SYMBOL_GPL(ata_set_mode);
3653
3654 /**
3655 * ata_wait_ready - wait for link to become ready
3656 * @link: link to be waited on
3657 * @deadline: deadline jiffies for the operation
3658 * @check_ready: callback to check link readiness
3659 *
3660 * Wait for @link to become ready. @check_ready should return
3661 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3662 * link doesn't seem to be occupied, other errno for other error
3663 * conditions.
3664 *
3665 * Transient -ENODEV conditions are allowed for
3666 * ATA_TMOUT_FF_WAIT.
3667 *
3668 * LOCKING:
3669 * EH context.
3670 *
3671 * RETURNS:
3672 * 0 if @link is ready before @deadline; otherwise, -errno.
3673 */
ata_wait_ready(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3674 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3675 int (*check_ready)(struct ata_link *link))
3676 {
3677 unsigned long start = jiffies;
3678 unsigned long nodev_deadline;
3679 int warned = 0;
3680
3681 /* choose which 0xff timeout to use, read comment in libata.h */
3682 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3683 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3684 else
3685 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3686
3687 /* Slave readiness can't be tested separately from master. On
3688 * M/S emulation configuration, this function should be called
3689 * only on the master and it will handle both master and slave.
3690 */
3691 WARN_ON(link == link->ap->slave_link);
3692
3693 if (time_after(nodev_deadline, deadline))
3694 nodev_deadline = deadline;
3695
3696 while (1) {
3697 unsigned long now = jiffies;
3698 int ready, tmp;
3699
3700 ready = tmp = check_ready(link);
3701 if (ready > 0)
3702 return 0;
3703
3704 /*
3705 * -ENODEV could be transient. Ignore -ENODEV if link
3706 * is online. Also, some SATA devices take a long
3707 * time to clear 0xff after reset. Wait for
3708 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3709 * offline.
3710 *
3711 * Note that some PATA controllers (pata_ali) explode
3712 * if status register is read more than once when
3713 * there's no device attached.
3714 */
3715 if (ready == -ENODEV) {
3716 if (ata_link_online(link))
3717 ready = 0;
3718 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3719 !ata_link_offline(link) &&
3720 time_before(now, nodev_deadline))
3721 ready = 0;
3722 }
3723
3724 if (ready)
3725 return ready;
3726 if (time_after(now, deadline))
3727 return -EBUSY;
3728
3729 if (!warned && time_after(now, start + 5 * HZ) &&
3730 (deadline - now > 3 * HZ)) {
3731 ata_link_warn(link,
3732 "link is slow to respond, please be patient "
3733 "(ready=%d)\n", tmp);
3734 warned = 1;
3735 }
3736
3737 ata_msleep(link->ap, 50);
3738 }
3739 }
3740
3741 /**
3742 * ata_wait_after_reset - wait for link to become ready after reset
3743 * @link: link to be waited on
3744 * @deadline: deadline jiffies for the operation
3745 * @check_ready: callback to check link readiness
3746 *
3747 * Wait for @link to become ready after reset.
3748 *
3749 * LOCKING:
3750 * EH context.
3751 *
3752 * RETURNS:
3753 * 0 if @link is ready before @deadline; otherwise, -errno.
3754 */
ata_wait_after_reset(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3755 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3756 int (*check_ready)(struct ata_link *link))
3757 {
3758 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3759
3760 return ata_wait_ready(link, deadline, check_ready);
3761 }
3762 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3763
3764 /**
3765 * ata_std_prereset - prepare for reset
3766 * @link: ATA link to be reset
3767 * @deadline: deadline jiffies for the operation
3768 *
3769 * @link is about to be reset. Initialize it. Failure from
3770 * prereset makes libata abort whole reset sequence and give up
3771 * that port, so prereset should be best-effort. It does its
3772 * best to prepare for reset sequence but if things go wrong, it
3773 * should just whine, not fail.
3774 *
3775 * LOCKING:
3776 * Kernel thread context (may sleep)
3777 *
3778 * RETURNS:
3779 * Always 0.
3780 */
ata_std_prereset(struct ata_link * link,unsigned long deadline)3781 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3782 {
3783 struct ata_port *ap = link->ap;
3784 struct ata_eh_context *ehc = &link->eh_context;
3785 const unsigned int *timing = sata_ehc_deb_timing(ehc);
3786 int rc;
3787
3788 /* if we're about to do hardreset, nothing more to do */
3789 if (ehc->i.action & ATA_EH_HARDRESET)
3790 return 0;
3791
3792 /* if SATA, resume link */
3793 if (ap->flags & ATA_FLAG_SATA) {
3794 rc = sata_link_resume(link, timing, deadline);
3795 /* whine about phy resume failure but proceed */
3796 if (rc && rc != -EOPNOTSUPP)
3797 ata_link_warn(link,
3798 "failed to resume link for reset (errno=%d)\n",
3799 rc);
3800 }
3801
3802 /* no point in trying softreset on offline link */
3803 if (ata_phys_link_offline(link))
3804 ehc->i.action &= ~ATA_EH_SOFTRESET;
3805
3806 return 0;
3807 }
3808 EXPORT_SYMBOL_GPL(ata_std_prereset);
3809
3810 /**
3811 * ata_std_postreset - standard postreset callback
3812 * @link: the target ata_link
3813 * @classes: classes of attached devices
3814 *
3815 * This function is invoked after a successful reset. Note that
3816 * the device might have been reset more than once using
3817 * different reset methods before postreset is invoked.
3818 *
3819 * LOCKING:
3820 * Kernel thread context (may sleep)
3821 */
ata_std_postreset(struct ata_link * link,unsigned int * classes)3822 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3823 {
3824 u32 serror;
3825
3826 /* reset complete, clear SError */
3827 if (!sata_scr_read(link, SCR_ERROR, &serror))
3828 sata_scr_write(link, SCR_ERROR, serror);
3829
3830 /* print link status */
3831 sata_print_link_status(link);
3832 }
3833 EXPORT_SYMBOL_GPL(ata_std_postreset);
3834
3835 /**
3836 * ata_dev_same_device - Determine whether new ID matches configured device
3837 * @dev: device to compare against
3838 * @new_class: class of the new device
3839 * @new_id: IDENTIFY page of the new device
3840 *
3841 * Compare @new_class and @new_id against @dev and determine
3842 * whether @dev is the device indicated by @new_class and
3843 * @new_id.
3844 *
3845 * LOCKING:
3846 * None.
3847 *
3848 * RETURNS:
3849 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3850 */
ata_dev_same_device(struct ata_device * dev,unsigned int new_class,const u16 * new_id)3851 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3852 const u16 *new_id)
3853 {
3854 const u16 *old_id = dev->id;
3855 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3856 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3857
3858 if (dev->class != new_class) {
3859 ata_dev_info(dev, "class mismatch %d != %d\n",
3860 dev->class, new_class);
3861 return 0;
3862 }
3863
3864 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3865 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3866 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3867 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3868
3869 if (strcmp(model[0], model[1])) {
3870 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3871 model[0], model[1]);
3872 return 0;
3873 }
3874
3875 if (strcmp(serial[0], serial[1])) {
3876 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3877 serial[0], serial[1]);
3878 return 0;
3879 }
3880
3881 return 1;
3882 }
3883
3884 /**
3885 * ata_dev_reread_id - Re-read IDENTIFY data
3886 * @dev: target ATA device
3887 * @readid_flags: read ID flags
3888 *
3889 * Re-read IDENTIFY page and make sure @dev is still attached to
3890 * the port.
3891 *
3892 * LOCKING:
3893 * Kernel thread context (may sleep)
3894 *
3895 * RETURNS:
3896 * 0 on success, negative errno otherwise
3897 */
ata_dev_reread_id(struct ata_device * dev,unsigned int readid_flags)3898 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3899 {
3900 unsigned int class = dev->class;
3901 u16 *id = (void *)dev->sector_buf;
3902 int rc;
3903
3904 /* read ID data */
3905 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3906 if (rc)
3907 return rc;
3908
3909 /* is the device still there? */
3910 if (!ata_dev_same_device(dev, class, id))
3911 return -ENODEV;
3912
3913 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3914 return 0;
3915 }
3916
3917 /**
3918 * ata_dev_revalidate - Revalidate ATA device
3919 * @dev: device to revalidate
3920 * @new_class: new class code
3921 * @readid_flags: read ID flags
3922 *
3923 * Re-read IDENTIFY page, make sure @dev is still attached to the
3924 * port and reconfigure it according to the new IDENTIFY page.
3925 *
3926 * LOCKING:
3927 * Kernel thread context (may sleep)
3928 *
3929 * RETURNS:
3930 * 0 on success, negative errno otherwise
3931 */
ata_dev_revalidate(struct ata_device * dev,unsigned int new_class,unsigned int readid_flags)3932 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3933 unsigned int readid_flags)
3934 {
3935 u64 n_sectors = dev->n_sectors;
3936 u64 n_native_sectors = dev->n_native_sectors;
3937 int rc;
3938
3939 if (!ata_dev_enabled(dev))
3940 return -ENODEV;
3941
3942 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3943 if (ata_class_enabled(new_class) && new_class == ATA_DEV_PMP) {
3944 ata_dev_info(dev, "class mismatch %u != %u\n",
3945 dev->class, new_class);
3946 rc = -ENODEV;
3947 goto fail;
3948 }
3949
3950 /* re-read ID */
3951 rc = ata_dev_reread_id(dev, readid_flags);
3952 if (rc)
3953 goto fail;
3954
3955 /* configure device according to the new ID */
3956 rc = ata_dev_configure(dev);
3957 if (rc)
3958 goto fail;
3959
3960 /* verify n_sectors hasn't changed */
3961 if (dev->class != ATA_DEV_ATA || !n_sectors ||
3962 dev->n_sectors == n_sectors)
3963 return 0;
3964
3965 /* n_sectors has changed */
3966 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3967 (unsigned long long)n_sectors,
3968 (unsigned long long)dev->n_sectors);
3969
3970 /*
3971 * Something could have caused HPA to be unlocked
3972 * involuntarily. If n_native_sectors hasn't changed and the
3973 * new size matches it, keep the device.
3974 */
3975 if (dev->n_native_sectors == n_native_sectors &&
3976 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3977 ata_dev_warn(dev,
3978 "new n_sectors matches native, probably "
3979 "late HPA unlock, n_sectors updated\n");
3980 /* use the larger n_sectors */
3981 return 0;
3982 }
3983
3984 /*
3985 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
3986 * unlocking HPA in those cases.
3987 *
3988 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3989 */
3990 if (dev->n_native_sectors == n_native_sectors &&
3991 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3992 !(dev->quirks & ATA_QUIRK_BROKEN_HPA)) {
3993 ata_dev_warn(dev,
3994 "old n_sectors matches native, probably "
3995 "late HPA lock, will try to unlock HPA\n");
3996 /* try unlocking HPA */
3997 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3998 rc = -EIO;
3999 } else
4000 rc = -ENODEV;
4001
4002 /* restore original n_[native_]sectors and fail */
4003 dev->n_native_sectors = n_native_sectors;
4004 dev->n_sectors = n_sectors;
4005 fail:
4006 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4007 return rc;
4008 }
4009
4010 static const char * const ata_quirk_names[] = {
4011 [__ATA_QUIRK_DIAGNOSTIC] = "diagnostic",
4012 [__ATA_QUIRK_NODMA] = "nodma",
4013 [__ATA_QUIRK_NONCQ] = "noncq",
4014 [__ATA_QUIRK_BROKEN_HPA] = "brokenhpa",
4015 [__ATA_QUIRK_DISABLE] = "disable",
4016 [__ATA_QUIRK_HPA_SIZE] = "hpasize",
4017 [__ATA_QUIRK_IVB] = "ivb",
4018 [__ATA_QUIRK_STUCK_ERR] = "stuckerr",
4019 [__ATA_QUIRK_BRIDGE_OK] = "bridgeok",
4020 [__ATA_QUIRK_ATAPI_MOD16_DMA] = "atapimod16dma",
4021 [__ATA_QUIRK_FIRMWARE_WARN] = "firmwarewarn",
4022 [__ATA_QUIRK_1_5_GBPS] = "1.5gbps",
4023 [__ATA_QUIRK_NOSETXFER] = "nosetxfer",
4024 [__ATA_QUIRK_BROKEN_FPDMA_AA] = "brokenfpdmaaa",
4025 [__ATA_QUIRK_DUMP_ID] = "dumpid",
4026 [__ATA_QUIRK_MAX_SEC_LBA48] = "maxseclba48",
4027 [__ATA_QUIRK_ATAPI_DMADIR] = "atapidmadir",
4028 [__ATA_QUIRK_NO_NCQ_TRIM] = "noncqtrim",
4029 [__ATA_QUIRK_NOLPM] = "nolpm",
4030 [__ATA_QUIRK_WD_BROKEN_LPM] = "wdbrokenlpm",
4031 [__ATA_QUIRK_ZERO_AFTER_TRIM] = "zeroaftertrim",
4032 [__ATA_QUIRK_NO_DMA_LOG] = "nodmalog",
4033 [__ATA_QUIRK_NOTRIM] = "notrim",
4034 [__ATA_QUIRK_MAX_SEC] = "maxsec",
4035 [__ATA_QUIRK_MAX_TRIM_128M] = "maxtrim128m",
4036 [__ATA_QUIRK_NO_NCQ_ON_ATI] = "noncqonati",
4037 [__ATA_QUIRK_NO_LPM_ON_ATI] = "nolpmonati",
4038 [__ATA_QUIRK_NO_ID_DEV_LOG] = "noiddevlog",
4039 [__ATA_QUIRK_NO_LOG_DIR] = "nologdir",
4040 [__ATA_QUIRK_NO_FUA] = "nofua",
4041 };
4042
ata_dev_print_quirks(const struct ata_device * dev,const char * model,const char * rev,unsigned int quirks)4043 static void ata_dev_print_quirks(const struct ata_device *dev,
4044 const char *model, const char *rev,
4045 unsigned int quirks)
4046 {
4047 struct ata_eh_context *ehc = &dev->link->eh_context;
4048 int n = 0, i;
4049 size_t sz;
4050 char *str;
4051
4052 if (!ata_dev_print_info(dev) || ehc->i.flags & ATA_EHI_DID_PRINT_QUIRKS)
4053 return;
4054
4055 ehc->i.flags |= ATA_EHI_DID_PRINT_QUIRKS;
4056
4057 if (!quirks)
4058 return;
4059
4060 sz = 64 + ARRAY_SIZE(ata_quirk_names) * 16;
4061 str = kmalloc(sz, GFP_KERNEL);
4062 if (!str)
4063 return;
4064
4065 n = snprintf(str, sz, "Model '%s', rev '%s', applying quirks:",
4066 model, rev);
4067
4068 for (i = 0; i < ARRAY_SIZE(ata_quirk_names); i++) {
4069 if (quirks & (1U << i))
4070 n += snprintf(str + n, sz - n,
4071 " %s", ata_quirk_names[i]);
4072 }
4073
4074 ata_dev_warn(dev, "%s\n", str);
4075
4076 kfree(str);
4077 }
4078
4079 struct ata_dev_quirk_value {
4080 const char *model_num;
4081 const char *model_rev;
4082 u64 val;
4083 };
4084
4085 static const struct ata_dev_quirk_value __ata_dev_max_sec_quirks[] = {
4086 { "TORiSAN DVD-ROM DRD-N216", NULL, 128 },
4087 { "ST380013AS", "3.20", 1024 },
4088 { "LITEON CX1-JB*-HP", NULL, 1024 },
4089 { "LITEON EP1-*", NULL, 1024 },
4090 { "DELLBOSS VD", "MV.R00-0", 8191 },
4091 { "INTEL SSDSC2KG480G8", "XCV10120", 8191 },
4092 { },
4093 };
4094
4095 struct ata_dev_quirks_entry {
4096 const char *model_num;
4097 const char *model_rev;
4098 u64 quirks;
4099 };
4100
4101 static const struct ata_dev_quirks_entry __ata_dev_quirks[] = {
4102 /* Devices with DMA related problems under Linux */
4103 { "WDC AC11000H", NULL, ATA_QUIRK_NODMA },
4104 { "WDC AC22100H", NULL, ATA_QUIRK_NODMA },
4105 { "WDC AC32500H", NULL, ATA_QUIRK_NODMA },
4106 { "WDC AC33100H", NULL, ATA_QUIRK_NODMA },
4107 { "WDC AC31600H", NULL, ATA_QUIRK_NODMA },
4108 { "WDC AC32100H", "24.09P07", ATA_QUIRK_NODMA },
4109 { "WDC AC23200L", "21.10N21", ATA_QUIRK_NODMA },
4110 { "Compaq CRD-8241B", NULL, ATA_QUIRK_NODMA },
4111 { "CRD-8400B", NULL, ATA_QUIRK_NODMA },
4112 { "CRD-848[02]B", NULL, ATA_QUIRK_NODMA },
4113 { "CRD-84", NULL, ATA_QUIRK_NODMA },
4114 { "SanDisk SDP3B", NULL, ATA_QUIRK_NODMA },
4115 { "SanDisk SDP3B-64", NULL, ATA_QUIRK_NODMA },
4116 { "SANYO CD-ROM CRD", NULL, ATA_QUIRK_NODMA },
4117 { "HITACHI CDR-8", NULL, ATA_QUIRK_NODMA },
4118 { "HITACHI CDR-8[34]35", NULL, ATA_QUIRK_NODMA },
4119 { "Toshiba CD-ROM XM-6202B", NULL, ATA_QUIRK_NODMA },
4120 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_QUIRK_NODMA },
4121 { "CD-532E-A", NULL, ATA_QUIRK_NODMA },
4122 { "E-IDE CD-ROM CR-840", NULL, ATA_QUIRK_NODMA },
4123 { "CD-ROM Drive/F5A", NULL, ATA_QUIRK_NODMA },
4124 { "WPI CDD-820", NULL, ATA_QUIRK_NODMA },
4125 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_QUIRK_NODMA },
4126 { "SAMSUNG CD-ROM SC", NULL, ATA_QUIRK_NODMA },
4127 { "ATAPI CD-ROM DRIVE 40X MAXIMUM", NULL, ATA_QUIRK_NODMA },
4128 { "_NEC DV5800A", NULL, ATA_QUIRK_NODMA },
4129 { "SAMSUNG CD-ROM SN-124", "N001", ATA_QUIRK_NODMA },
4130 { "Seagate STT20000A", NULL, ATA_QUIRK_NODMA },
4131 { " 2GB ATA Flash Disk", "ADMA428M", ATA_QUIRK_NODMA },
4132 { "VRFDFC22048UCHC-TE*", NULL, ATA_QUIRK_NODMA },
4133 /* Odd clown on sil3726/4726 PMPs */
4134 { "Config Disk", NULL, ATA_QUIRK_DISABLE },
4135 /* Similar story with ASMedia 1092 */
4136 { "ASMT109x- Config", NULL, ATA_QUIRK_DISABLE },
4137
4138 /* Weird ATAPI devices */
4139 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_QUIRK_MAX_SEC },
4140 { "QUANTUM DAT DAT72-000", NULL, ATA_QUIRK_ATAPI_MOD16_DMA },
4141 { "Slimtype DVD A DS8A8SH", NULL, ATA_QUIRK_MAX_SEC_LBA48 },
4142 { "Slimtype DVD A DS8A9SH", NULL, ATA_QUIRK_MAX_SEC_LBA48 },
4143
4144 /*
4145 * Causes silent data corruption with higher max sects.
4146 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4147 */
4148 { "ST380013AS", "3.20", ATA_QUIRK_MAX_SEC },
4149
4150 /*
4151 * These devices time out with higher max sects.
4152 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4153 */
4154 { "LITEON CX1-JB*-HP", NULL, ATA_QUIRK_MAX_SEC },
4155 { "LITEON EP1-*", NULL, ATA_QUIRK_MAX_SEC },
4156
4157 /*
4158 * These devices time out with higher max sects.
4159 * https://bugzilla.kernel.org/show_bug.cgi?id=220693
4160 */
4161 { "DELLBOSS VD", "MV.R00-0", ATA_QUIRK_MAX_SEC },
4162
4163 /* Devices we expect to fail diagnostics */
4164
4165 /* Devices where NCQ should be avoided */
4166 /* NCQ is slow */
4167 { "WDC WD740ADFD-00", NULL, ATA_QUIRK_NONCQ },
4168 { "WDC WD740ADFD-00NLR1", NULL, ATA_QUIRK_NONCQ },
4169 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4170 { "FUJITSU MHT2060BH", NULL, ATA_QUIRK_NONCQ },
4171 /* NCQ is broken */
4172 { "Maxtor *", "BANC*", ATA_QUIRK_NONCQ },
4173 { "Maxtor 7V300F0", "VA111630", ATA_QUIRK_NONCQ },
4174 { "ST380817AS", "3.42", ATA_QUIRK_NONCQ },
4175 { "ST3160023AS", "3.42", ATA_QUIRK_NONCQ },
4176 { "OCZ CORE_SSD", "02.10104", ATA_QUIRK_NONCQ },
4177
4178 /* Seagate NCQ + FLUSH CACHE firmware bug */
4179 { "ST31500341AS", "SD1[5-9]", ATA_QUIRK_NONCQ |
4180 ATA_QUIRK_FIRMWARE_WARN },
4181
4182 { "ST31000333AS", "SD1[5-9]", ATA_QUIRK_NONCQ |
4183 ATA_QUIRK_FIRMWARE_WARN },
4184
4185 { "ST3640[36]23AS", "SD1[5-9]", ATA_QUIRK_NONCQ |
4186 ATA_QUIRK_FIRMWARE_WARN },
4187
4188 { "ST3320[68]13AS", "SD1[5-9]", ATA_QUIRK_NONCQ |
4189 ATA_QUIRK_FIRMWARE_WARN },
4190
4191 /* Seagate disks with LPM issues */
4192 { "ST2000DM008-2FR102", NULL, ATA_QUIRK_NOLPM },
4193
4194 /* drives which fail FPDMA_AA activation (some may freeze afterwards)
4195 the ST disks also have LPM issues */
4196 { "ST1000LM024 HN-M101MBB", NULL, ATA_QUIRK_BROKEN_FPDMA_AA |
4197 ATA_QUIRK_NOLPM },
4198 { "VB0250EAVER", "HPG7", ATA_QUIRK_BROKEN_FPDMA_AA },
4199
4200 /* Blacklist entries taken from Silicon Image 3124/3132
4201 Windows driver .inf file - also several Linux problem reports */
4202 { "HTS541060G9SA00", "MB3OC60D", ATA_QUIRK_NONCQ },
4203 { "HTS541080G9SA00", "MB4OC60D", ATA_QUIRK_NONCQ },
4204 { "HTS541010G9SA00", "MBZOC60D", ATA_QUIRK_NONCQ },
4205
4206 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4207 { "C300-CTFDDAC128MAG", "0001", ATA_QUIRK_NONCQ },
4208
4209 /* Sandisk SD7/8/9s lock up hard on large trims */
4210 { "SanDisk SD[789]*", NULL, ATA_QUIRK_MAX_TRIM_128M },
4211
4212 /* devices which puke on READ_NATIVE_MAX */
4213 { "HDS724040KLSA80", "KFAOA20N", ATA_QUIRK_BROKEN_HPA },
4214 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_QUIRK_BROKEN_HPA },
4215 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_QUIRK_BROKEN_HPA },
4216 { "MAXTOR 6L080L4", "A93.0500", ATA_QUIRK_BROKEN_HPA },
4217
4218 /* this one allows HPA unlocking but fails IOs on the area */
4219 { "OCZ-VERTEX", "1.30", ATA_QUIRK_BROKEN_HPA },
4220
4221 /* Devices which report 1 sector over size HPA */
4222 { "ST340823A", NULL, ATA_QUIRK_HPA_SIZE },
4223 { "ST320413A", NULL, ATA_QUIRK_HPA_SIZE },
4224 { "ST310211A", NULL, ATA_QUIRK_HPA_SIZE },
4225
4226 /* Devices which get the IVB wrong */
4227 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_QUIRK_IVB },
4228 /* Maybe we should just add all TSSTcorp devices... */
4229 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_QUIRK_IVB },
4230
4231 /* Devices that do not need bridging limits applied */
4232 { "MTRON MSP-SATA*", NULL, ATA_QUIRK_BRIDGE_OK },
4233 { "BUFFALO HD-QSU2/R5", NULL, ATA_QUIRK_BRIDGE_OK },
4234
4235 /* Devices which aren't very happy with higher link speeds */
4236 { "WD My Book", NULL, ATA_QUIRK_1_5_GBPS },
4237 { "Seagate FreeAgent GoFlex", NULL, ATA_QUIRK_1_5_GBPS },
4238
4239 /*
4240 * Devices which choke on SETXFER. Applies only if both the
4241 * device and controller are SATA.
4242 */
4243 { "PIONEER DVD-RW DVRTD08", NULL, ATA_QUIRK_NOSETXFER },
4244 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_QUIRK_NOSETXFER },
4245 { "PIONEER DVD-RW DVR-215", NULL, ATA_QUIRK_NOSETXFER },
4246 { "PIONEER DVD-RW DVR-212D", NULL, ATA_QUIRK_NOSETXFER },
4247 { "PIONEER DVD-RW DVR-216D", NULL, ATA_QUIRK_NOSETXFER },
4248
4249 /* These specific Pioneer models have LPM issues */
4250 { "PIONEER BD-RW BDR-207M", NULL, ATA_QUIRK_NOLPM },
4251 { "PIONEER BD-RW BDR-205", NULL, ATA_QUIRK_NOLPM },
4252
4253 /* Crucial devices with broken LPM support */
4254 { "CT*0BX*00SSD1", NULL, ATA_QUIRK_NOLPM },
4255
4256 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4257 { "Crucial_CT512MX100*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4258 ATA_QUIRK_ZERO_AFTER_TRIM |
4259 ATA_QUIRK_NOLPM },
4260 /* 512GB MX100 with newer firmware has only LPM issues */
4261 { "Crucial_CT512MX100*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM |
4262 ATA_QUIRK_NOLPM },
4263
4264 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4265 { "Crucial_CT480M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4266 ATA_QUIRK_ZERO_AFTER_TRIM |
4267 ATA_QUIRK_NOLPM },
4268 { "Crucial_CT960M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4269 ATA_QUIRK_ZERO_AFTER_TRIM |
4270 ATA_QUIRK_NOLPM },
4271
4272 /* AMD Radeon devices with broken LPM support */
4273 { "R3SL240G", NULL, ATA_QUIRK_NOLPM },
4274
4275 /* Apacer models with LPM issues */
4276 { "Apacer AS340*", NULL, ATA_QUIRK_NOLPM },
4277
4278 /* Silicon Motion models with LPM issues */
4279 { "MD619HXCLDE3TC", "TCVAID", ATA_QUIRK_NOLPM },
4280 { "MD619GXCLDE3TC", "TCV35D", ATA_QUIRK_NOLPM },
4281
4282 /* These specific Samsung models/firmware-revs do not handle LPM well */
4283 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_QUIRK_NOLPM },
4284 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_QUIRK_NOLPM },
4285 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_QUIRK_NOLPM },
4286 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_QUIRK_NOLPM },
4287
4288 /* devices that don't properly handle queued TRIM commands */
4289 { "Micron_M500IT_*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4290 ATA_QUIRK_ZERO_AFTER_TRIM },
4291 { "Micron_M500_*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4292 ATA_QUIRK_ZERO_AFTER_TRIM },
4293 { "Micron_M5[15]0_*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4294 ATA_QUIRK_ZERO_AFTER_TRIM },
4295 { "Micron_1100_*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4296 ATA_QUIRK_ZERO_AFTER_TRIM, },
4297 { "Crucial_CT*M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4298 ATA_QUIRK_ZERO_AFTER_TRIM },
4299 { "Crucial_CT*M550*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4300 ATA_QUIRK_ZERO_AFTER_TRIM },
4301 { "Crucial_CT*MX100*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4302 ATA_QUIRK_ZERO_AFTER_TRIM },
4303 { "Samsung SSD 840 EVO*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4304 ATA_QUIRK_NO_DMA_LOG |
4305 ATA_QUIRK_ZERO_AFTER_TRIM },
4306 { "Samsung SSD 840*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4307 ATA_QUIRK_ZERO_AFTER_TRIM },
4308 { "Samsung SSD 850*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4309 ATA_QUIRK_ZERO_AFTER_TRIM },
4310 { "Samsung SSD 860*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4311 ATA_QUIRK_ZERO_AFTER_TRIM |
4312 ATA_QUIRK_NO_NCQ_ON_ATI |
4313 ATA_QUIRK_NO_LPM_ON_ATI },
4314 { "Samsung SSD 870*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4315 ATA_QUIRK_ZERO_AFTER_TRIM |
4316 ATA_QUIRK_NO_NCQ_ON_ATI |
4317 ATA_QUIRK_NO_LPM_ON_ATI },
4318 { "SAMSUNG*MZ7LH*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4319 ATA_QUIRK_ZERO_AFTER_TRIM |
4320 ATA_QUIRK_NO_NCQ_ON_ATI |
4321 ATA_QUIRK_NO_LPM_ON_ATI },
4322 { "FCCT*M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4323 ATA_QUIRK_ZERO_AFTER_TRIM },
4324
4325 /* devices that don't properly handle TRIM commands */
4326 { "SuperSSpeed S238*", NULL, ATA_QUIRK_NOTRIM },
4327 { "M88V29*", NULL, ATA_QUIRK_NOTRIM },
4328
4329 /*
4330 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4331 * (Return Zero After Trim) flags in the ATA Command Set are
4332 * unreliable in the sense that they only define what happens if
4333 * the device successfully executed the DSM TRIM command. TRIM
4334 * is only advisory, however, and the device is free to silently
4335 * ignore all or parts of the request.
4336 *
4337 * Whitelist drives that are known to reliably return zeroes
4338 * after TRIM.
4339 */
4340
4341 /*
4342 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4343 * that model before whitelisting all other intel SSDs.
4344 */
4345 { "INTEL*SSDSC2MH*", NULL, 0 },
4346
4347 { "Micron*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4348 { "Crucial*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4349 { "INTEL SSDSC2KG480G8", "XCV10120", ATA_QUIRK_ZERO_AFTER_TRIM |
4350 ATA_QUIRK_MAX_SEC },
4351 { "INTEL*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4352 { "SSD*INTEL*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4353 { "Samsung*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4354 { "SAMSUNG*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4355 { "SAMSUNG*MZ7KM*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4356 { "ST[1248][0248]0[FH]*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4357
4358 /*
4359 * Some WD SATA-I drives spin up and down erratically when the link
4360 * is put into the slumber mode. We don't have full list of the
4361 * affected devices. Disable LPM if the device matches one of the
4362 * known prefixes and is SATA-1. As a side effect LPM partial is
4363 * lost too.
4364 *
4365 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4366 */
4367 { "WDC WD800JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4368 { "WDC WD1200JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4369 { "WDC WD1600JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4370 { "WDC WD2000JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4371 { "WDC WD2500JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4372 { "WDC WD3000JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4373 { "WDC WD3200JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4374
4375 /*
4376 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY
4377 * log page is accessed. Ensure we never ask for this log page with
4378 * these devices.
4379 */
4380 { "SATADOM-ML 3ME", NULL, ATA_QUIRK_NO_LOG_DIR },
4381
4382 /* Buggy FUA */
4383 { "Maxtor", "BANC1G10", ATA_QUIRK_NO_FUA },
4384 { "WDC*WD2500J*", NULL, ATA_QUIRK_NO_FUA },
4385 { "OCZ-VERTEX*", NULL, ATA_QUIRK_NO_FUA },
4386 { "INTEL*SSDSC2CT*", NULL, ATA_QUIRK_NO_FUA },
4387
4388 /* End Marker */
4389 { }
4390 };
4391
ata_dev_quirks(const struct ata_device * dev)4392 static u64 ata_dev_quirks(const struct ata_device *dev)
4393 {
4394 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4395 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4396 const struct ata_dev_quirks_entry *ad = __ata_dev_quirks;
4397
4398 /* dev->quirks is an u64. */
4399 BUILD_BUG_ON(__ATA_QUIRK_MAX > 64);
4400
4401 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4402 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4403
4404 while (ad->model_num) {
4405 if (glob_match(ad->model_num, model_num) &&
4406 (!ad->model_rev || glob_match(ad->model_rev, model_rev))) {
4407 ata_dev_print_quirks(dev, model_num, model_rev,
4408 ad->quirks);
4409 return ad->quirks;
4410 }
4411 ad++;
4412 }
4413 return 0;
4414 }
4415
ata_dev_get_max_sec_quirk_value(struct ata_device * dev)4416 static u64 ata_dev_get_max_sec_quirk_value(struct ata_device *dev)
4417 {
4418 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4419 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4420 const struct ata_dev_quirk_value *ad = __ata_dev_max_sec_quirks;
4421 u64 val = 0;
4422
4423 #ifdef CONFIG_ATA_FORCE
4424 const struct ata_force_ent *fe = ata_force_get_fe_for_dev(dev);
4425 if (fe && (fe->param.quirk_on & ATA_QUIRK_MAX_SEC) && fe->param.value)
4426 val = fe->param.value;
4427 #endif
4428 if (val)
4429 goto out;
4430
4431 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4432 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4433
4434 while (ad->model_num) {
4435 if (glob_match(ad->model_num, model_num) &&
4436 (!ad->model_rev || glob_match(ad->model_rev, model_rev))) {
4437 val = ad->val;
4438 break;
4439 }
4440 ad++;
4441 }
4442
4443 out:
4444 ata_dev_warn(dev, "%s quirk is using value: %llu\n",
4445 ata_quirk_names[__ATA_QUIRK_MAX_SEC], val);
4446
4447 return val;
4448 }
4449
ata_dev_get_quirk_value(struct ata_device * dev,u64 quirk)4450 static u64 ata_dev_get_quirk_value(struct ata_device *dev, u64 quirk)
4451 {
4452 if (quirk == ATA_QUIRK_MAX_SEC)
4453 return ata_dev_get_max_sec_quirk_value(dev);
4454
4455 return 0;
4456 }
4457
ata_dev_nodma(const struct ata_device * dev)4458 static bool ata_dev_nodma(const struct ata_device *dev)
4459 {
4460 /*
4461 * We do not support polling DMA. Deny DMA for those ATAPI devices
4462 * with CDB-intr (and use PIO) if the LLDD handles only interrupts in
4463 * the HSM_ST_LAST state.
4464 */
4465 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4466 (dev->flags & ATA_DFLAG_CDB_INTR))
4467 return true;
4468 return dev->quirks & ATA_QUIRK_NODMA;
4469 }
4470
4471 /**
4472 * ata_is_40wire - check drive side detection
4473 * @dev: device
4474 *
4475 * Perform drive side detection decoding, allowing for device vendors
4476 * who can't follow the documentation.
4477 */
4478
ata_is_40wire(struct ata_device * dev)4479 static int ata_is_40wire(struct ata_device *dev)
4480 {
4481 if (dev->quirks & ATA_QUIRK_IVB)
4482 return ata_drive_40wire_relaxed(dev->id);
4483 return ata_drive_40wire(dev->id);
4484 }
4485
4486 /**
4487 * cable_is_40wire - 40/80/SATA decider
4488 * @ap: port to consider
4489 *
4490 * This function encapsulates the policy for speed management
4491 * in one place. At the moment we don't cache the result but
4492 * there is a good case for setting ap->cbl to the result when
4493 * we are called with unknown cables (and figuring out if it
4494 * impacts hotplug at all).
4495 *
4496 * Return 1 if the cable appears to be 40 wire.
4497 */
4498
cable_is_40wire(struct ata_port * ap)4499 static int cable_is_40wire(struct ata_port *ap)
4500 {
4501 struct ata_link *link;
4502 struct ata_device *dev;
4503
4504 /* If the controller thinks we are 40 wire, we are. */
4505 if (ap->cbl == ATA_CBL_PATA40)
4506 return 1;
4507
4508 /* If the controller thinks we are 80 wire, we are. */
4509 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4510 return 0;
4511
4512 /* If the system is known to be 40 wire short cable (eg
4513 * laptop), then we allow 80 wire modes even if the drive
4514 * isn't sure.
4515 */
4516 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4517 return 0;
4518
4519 /* If the controller doesn't know, we scan.
4520 *
4521 * Note: We look for all 40 wire detects at this point. Any
4522 * 80 wire detect is taken to be 80 wire cable because
4523 * - in many setups only the one drive (slave if present) will
4524 * give a valid detect
4525 * - if you have a non detect capable drive you don't want it
4526 * to colour the choice
4527 */
4528 ata_for_each_link(link, ap, EDGE) {
4529 ata_for_each_dev(dev, link, ENABLED) {
4530 if (!ata_is_40wire(dev))
4531 return 0;
4532 }
4533 }
4534 return 1;
4535 }
4536
4537 /**
4538 * ata_dev_xfermask - Compute supported xfermask of the given device
4539 * @dev: Device to compute xfermask for
4540 *
4541 * Compute supported xfermask of @dev and store it in
4542 * dev->*_mask. This function is responsible for applying all
4543 * known limits including host controller limits, device quirks, etc...
4544 *
4545 * LOCKING:
4546 * None.
4547 */
ata_dev_xfermask(struct ata_device * dev)4548 static void ata_dev_xfermask(struct ata_device *dev)
4549 {
4550 struct ata_link *link = dev->link;
4551 struct ata_port *ap = link->ap;
4552 struct ata_host *host = ap->host;
4553 unsigned int xfer_mask;
4554
4555 /* controller modes available */
4556 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4557 ap->mwdma_mask, ap->udma_mask);
4558
4559 /* drive modes available */
4560 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4561 dev->mwdma_mask, dev->udma_mask);
4562 xfer_mask &= ata_id_xfermask(dev->id);
4563
4564 /*
4565 * CFA Advanced TrueIDE timings are not allowed on a shared
4566 * cable
4567 */
4568 if (ata_dev_pair(dev)) {
4569 /* No PIO5 or PIO6 */
4570 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4571 /* No MWDMA3 or MWDMA 4 */
4572 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4573 }
4574
4575 if (ata_dev_nodma(dev)) {
4576 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4577 ata_dev_warn(dev,
4578 "device does not support DMA, disabling DMA\n");
4579 }
4580
4581 if ((host->flags & ATA_HOST_SIMPLEX) &&
4582 host->simplex_claimed && host->simplex_claimed != ap) {
4583 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4584 ata_dev_warn(dev,
4585 "simplex DMA is claimed by other device, disabling DMA\n");
4586 }
4587
4588 if (ap->flags & ATA_FLAG_NO_IORDY)
4589 xfer_mask &= ata_pio_mask_no_iordy(dev);
4590
4591 if (ap->ops->mode_filter)
4592 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4593
4594 /* Apply cable rule here. Don't apply it early because when
4595 * we handle hot plug the cable type can itself change.
4596 * Check this last so that we know if the transfer rate was
4597 * solely limited by the cable.
4598 * Unknown or 80 wire cables reported host side are checked
4599 * drive side as well. Cases where we know a 40wire cable
4600 * is used safely for 80 are not checked here.
4601 */
4602 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4603 /* UDMA/44 or higher would be available */
4604 if (cable_is_40wire(ap)) {
4605 ata_dev_warn(dev,
4606 "limited to UDMA/33 due to 40-wire cable\n");
4607 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4608 }
4609
4610 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4611 &dev->mwdma_mask, &dev->udma_mask);
4612 }
4613
4614 /**
4615 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4616 * @dev: Device to which command will be sent
4617 *
4618 * Issue SET FEATURES - XFER MODE command to device @dev
4619 * on port @ap.
4620 *
4621 * LOCKING:
4622 * PCI/etc. bus probe sem.
4623 *
4624 * RETURNS:
4625 * 0 on success, AC_ERR_* mask otherwise.
4626 */
4627
ata_dev_set_xfermode(struct ata_device * dev)4628 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4629 {
4630 struct ata_taskfile tf;
4631
4632 /* set up set-features taskfile */
4633 ata_dev_dbg(dev, "set features - xfer mode\n");
4634
4635 /* Some controllers and ATAPI devices show flaky interrupt
4636 * behavior after setting xfer mode. Use polling instead.
4637 */
4638 ata_tf_init(dev, &tf);
4639 tf.command = ATA_CMD_SET_FEATURES;
4640 tf.feature = SETFEATURES_XFER;
4641 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4642 tf.protocol = ATA_PROT_NODATA;
4643 /* If we are using IORDY we must send the mode setting command */
4644 if (ata_pio_need_iordy(dev))
4645 tf.nsect = dev->xfer_mode;
4646 /* If the device has IORDY and the controller does not - turn it off */
4647 else if (ata_id_has_iordy(dev->id))
4648 tf.nsect = 0x01;
4649 else /* In the ancient relic department - skip all of this */
4650 return 0;
4651
4652 /*
4653 * On some disks, this command causes spin-up, so we need longer
4654 * timeout.
4655 */
4656 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4657 }
4658
4659 /**
4660 * ata_dev_set_feature - Issue SET FEATURES
4661 * @dev: Device to which command will be sent
4662 * @subcmd: The SET FEATURES subcommand to be sent
4663 * @action: The sector count represents a subcommand specific action
4664 *
4665 * Issue SET FEATURES command to device @dev on port @ap with sector count
4666 *
4667 * LOCKING:
4668 * PCI/etc. bus probe sem.
4669 *
4670 * RETURNS:
4671 * 0 on success, AC_ERR_* mask otherwise.
4672 */
ata_dev_set_feature(struct ata_device * dev,u8 subcmd,u8 action)4673 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action)
4674 {
4675 struct ata_taskfile tf;
4676 unsigned int timeout = 0;
4677
4678 /* set up set-features taskfile */
4679 ata_dev_dbg(dev, "set features\n");
4680
4681 ata_tf_init(dev, &tf);
4682 tf.command = ATA_CMD_SET_FEATURES;
4683 tf.feature = subcmd;
4684 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4685 tf.protocol = ATA_PROT_NODATA;
4686 tf.nsect = action;
4687
4688 if (subcmd == SETFEATURES_SPINUP)
4689 timeout = ata_probe_timeout ?
4690 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4691
4692 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4693 }
4694 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4695
4696 /**
4697 * ata_dev_init_params - Issue INIT DEV PARAMS command
4698 * @dev: Device to which command will be sent
4699 * @heads: Number of heads (taskfile parameter)
4700 * @sectors: Number of sectors (taskfile parameter)
4701 *
4702 * LOCKING:
4703 * Kernel thread context (may sleep)
4704 *
4705 * RETURNS:
4706 * 0 on success, AC_ERR_* mask otherwise.
4707 */
ata_dev_init_params(struct ata_device * dev,u16 heads,u16 sectors)4708 static unsigned int ata_dev_init_params(struct ata_device *dev,
4709 u16 heads, u16 sectors)
4710 {
4711 struct ata_taskfile tf;
4712 unsigned int err_mask;
4713
4714 /* Number of sectors per track 1-255. Number of heads 1-16 */
4715 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4716 return AC_ERR_INVALID;
4717
4718 /* set up init dev params taskfile */
4719 ata_dev_dbg(dev, "init dev params\n");
4720
4721 ata_tf_init(dev, &tf);
4722 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4723 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4724 tf.protocol = ATA_PROT_NODATA;
4725 tf.nsect = sectors;
4726 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4727
4728 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4729 /* A clean abort indicates an original or just out of spec drive
4730 and we should continue as we issue the setup based on the
4731 drive reported working geometry */
4732 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
4733 err_mask = 0;
4734
4735 return err_mask;
4736 }
4737
4738 /**
4739 * atapi_check_dma - Check whether ATAPI DMA can be supported
4740 * @qc: Metadata associated with taskfile to check
4741 *
4742 * Allow low-level driver to filter ATA PACKET commands, returning
4743 * a status indicating whether or not it is OK to use DMA for the
4744 * supplied PACKET command.
4745 *
4746 * LOCKING:
4747 * spin_lock_irqsave(host lock)
4748 *
4749 * RETURNS: 0 when ATAPI DMA can be used
4750 * nonzero otherwise
4751 */
atapi_check_dma(struct ata_queued_cmd * qc)4752 int atapi_check_dma(struct ata_queued_cmd *qc)
4753 {
4754 struct ata_port *ap = qc->ap;
4755
4756 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4757 * few ATAPI devices choke on such DMA requests.
4758 */
4759 if (!(qc->dev->quirks & ATA_QUIRK_ATAPI_MOD16_DMA) &&
4760 unlikely(qc->nbytes & 15))
4761 return -EOPNOTSUPP;
4762
4763 if (ap->ops->check_atapi_dma)
4764 return ap->ops->check_atapi_dma(qc);
4765
4766 return 0;
4767 }
4768
4769 /**
4770 * ata_std_qc_defer - Check whether a qc needs to be deferred
4771 * @qc: ATA command in question
4772 *
4773 * Non-NCQ commands cannot run with any other command, NCQ or
4774 * not. As upper layer only knows the queue depth, we are
4775 * responsible for maintaining exclusion. This function checks
4776 * whether a new command @qc can be issued.
4777 *
4778 * LOCKING:
4779 * spin_lock_irqsave(host lock)
4780 *
4781 * RETURNS:
4782 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4783 */
ata_std_qc_defer(struct ata_queued_cmd * qc)4784 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4785 {
4786 struct ata_link *link = qc->dev->link;
4787
4788 if (ata_is_ncq(qc->tf.protocol)) {
4789 if (!ata_tag_valid(link->active_tag))
4790 return 0;
4791 } else {
4792 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4793 return 0;
4794 }
4795
4796 return ATA_DEFER_LINK;
4797 }
4798 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4799
4800 /**
4801 * ata_sg_init - Associate command with scatter-gather table.
4802 * @qc: Command to be associated
4803 * @sg: Scatter-gather table.
4804 * @n_elem: Number of elements in s/g table.
4805 *
4806 * Initialize the data-related elements of queued_cmd @qc
4807 * to point to a scatter-gather table @sg, containing @n_elem
4808 * elements.
4809 *
4810 * LOCKING:
4811 * spin_lock_irqsave(host lock)
4812 */
ata_sg_init(struct ata_queued_cmd * qc,struct scatterlist * sg,unsigned int n_elem)4813 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4814 unsigned int n_elem)
4815 {
4816 qc->sg = sg;
4817 qc->n_elem = n_elem;
4818 qc->cursg = qc->sg;
4819 }
4820
4821 #ifdef CONFIG_HAS_DMA
4822
4823 /**
4824 * ata_sg_clean - Unmap DMA memory associated with command
4825 * @qc: Command containing DMA memory to be released
4826 *
4827 * Unmap all mapped DMA memory associated with this command.
4828 *
4829 * LOCKING:
4830 * spin_lock_irqsave(host lock)
4831 */
ata_sg_clean(struct ata_queued_cmd * qc)4832 static void ata_sg_clean(struct ata_queued_cmd *qc)
4833 {
4834 struct ata_port *ap = qc->ap;
4835 struct scatterlist *sg = qc->sg;
4836 int dir = qc->dma_dir;
4837
4838 WARN_ON_ONCE(sg == NULL);
4839
4840 if (qc->n_elem)
4841 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4842
4843 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4844 qc->sg = NULL;
4845 }
4846
4847 /**
4848 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4849 * @qc: Command with scatter-gather table to be mapped.
4850 *
4851 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4852 *
4853 * LOCKING:
4854 * spin_lock_irqsave(host lock)
4855 *
4856 * RETURNS:
4857 * Zero on success, negative on error.
4858 *
4859 */
ata_sg_setup(struct ata_queued_cmd * qc)4860 static int ata_sg_setup(struct ata_queued_cmd *qc)
4861 {
4862 struct ata_port *ap = qc->ap;
4863 unsigned int n_elem;
4864
4865 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4866 if (n_elem < 1)
4867 return -1;
4868
4869 qc->orig_n_elem = qc->n_elem;
4870 qc->n_elem = n_elem;
4871 qc->flags |= ATA_QCFLAG_DMAMAP;
4872
4873 return 0;
4874 }
4875
4876 #else /* !CONFIG_HAS_DMA */
4877
ata_sg_clean(struct ata_queued_cmd * qc)4878 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
ata_sg_setup(struct ata_queued_cmd * qc)4879 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4880
4881 #endif /* !CONFIG_HAS_DMA */
4882
4883 /**
4884 * swap_buf_le16 - swap halves of 16-bit words in place
4885 * @buf: Buffer to swap
4886 * @buf_words: Number of 16-bit words in buffer.
4887 *
4888 * Swap halves of 16-bit words if needed to convert from
4889 * little-endian byte order to native cpu byte order, or
4890 * vice-versa.
4891 *
4892 * LOCKING:
4893 * Inherited from caller.
4894 */
swap_buf_le16(u16 * buf,unsigned int buf_words)4895 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4896 {
4897 #ifdef __BIG_ENDIAN
4898 unsigned int i;
4899
4900 for (i = 0; i < buf_words; i++)
4901 buf[i] = le16_to_cpu(buf[i]);
4902 #endif /* __BIG_ENDIAN */
4903 }
4904
4905 /**
4906 * ata_qc_free - free unused ata_queued_cmd
4907 * @qc: Command to complete
4908 *
4909 * Designed to free unused ata_queued_cmd object
4910 * in case something prevents using it.
4911 *
4912 * LOCKING:
4913 * spin_lock_irqsave(host lock)
4914 */
ata_qc_free(struct ata_queued_cmd * qc)4915 void ata_qc_free(struct ata_queued_cmd *qc)
4916 {
4917 qc->flags = 0;
4918 if (ata_tag_valid(qc->tag))
4919 qc->tag = ATA_TAG_POISON;
4920 }
4921
__ata_qc_complete(struct ata_queued_cmd * qc)4922 void __ata_qc_complete(struct ata_queued_cmd *qc)
4923 {
4924 struct ata_port *ap;
4925 struct ata_link *link;
4926
4927 if (WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)))
4928 return;
4929
4930 ap = qc->ap;
4931 link = qc->dev->link;
4932
4933 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4934 ata_sg_clean(qc);
4935
4936 /* command should be marked inactive atomically with qc completion */
4937 if (ata_is_ncq(qc->tf.protocol)) {
4938 link->sactive &= ~(1 << qc->hw_tag);
4939 if (!link->sactive)
4940 ap->nr_active_links--;
4941 } else {
4942 link->active_tag = ATA_TAG_POISON;
4943 ap->nr_active_links--;
4944 }
4945
4946 /* clear exclusive status */
4947 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4948 ap->excl_link == link))
4949 ap->excl_link = NULL;
4950
4951 /*
4952 * Mark qc as inactive to prevent the port interrupt handler from
4953 * completing the command twice later, before the error handler is
4954 * called.
4955 */
4956 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4957 ap->qc_active &= ~(1ULL << qc->tag);
4958
4959 /* call completion callback */
4960 qc->complete_fn(qc);
4961 }
4962
fill_result_tf(struct ata_queued_cmd * qc)4963 static void fill_result_tf(struct ata_queued_cmd *qc)
4964 {
4965 struct ata_port *ap = qc->ap;
4966
4967 /*
4968 * rtf may already be filled (e.g. for successful NCQ commands).
4969 * If that is the case, we have nothing to do.
4970 */
4971 if (qc->flags & ATA_QCFLAG_RTF_FILLED)
4972 return;
4973
4974 qc->result_tf.flags = qc->tf.flags;
4975 ap->ops->qc_fill_rtf(qc);
4976 qc->flags |= ATA_QCFLAG_RTF_FILLED;
4977 }
4978
ata_verify_xfer(struct ata_queued_cmd * qc)4979 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4980 {
4981 struct ata_device *dev = qc->dev;
4982
4983 if (!ata_is_data(qc->tf.protocol))
4984 return;
4985
4986 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4987 return;
4988
4989 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4990 }
4991
4992 /**
4993 * ata_qc_complete - Complete an active ATA command
4994 * @qc: Command to complete
4995 *
4996 * Indicate to the mid and upper layers that an ATA command has
4997 * completed, with either an ok or not-ok status.
4998 *
4999 * Refrain from calling this function multiple times when
5000 * successfully completing multiple NCQ commands.
5001 * ata_qc_complete_multiple() should be used instead, which will
5002 * properly update IRQ expect state.
5003 *
5004 * LOCKING:
5005 * spin_lock_irqsave(host lock)
5006 */
ata_qc_complete(struct ata_queued_cmd * qc)5007 void ata_qc_complete(struct ata_queued_cmd *qc)
5008 {
5009 struct ata_port *ap = qc->ap;
5010 struct ata_device *dev = qc->dev;
5011 struct ata_eh_info *ehi = &dev->link->eh_info;
5012
5013 /* Trigger the LED (if available) */
5014 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
5015
5016 /*
5017 * In order to synchronize EH with the regular execution path, a qc that
5018 * is owned by EH is marked with ATA_QCFLAG_EH.
5019 *
5020 * The normal execution path is responsible for not accessing a qc owned
5021 * by EH. libata core enforces the rule by returning NULL from
5022 * ata_qc_from_tag() for qcs owned by EH.
5023 */
5024 if (unlikely(qc->err_mask))
5025 qc->flags |= ATA_QCFLAG_EH;
5026
5027 /*
5028 * Finish internal commands without any further processing and always
5029 * with the result TF filled.
5030 */
5031 if (unlikely(ata_tag_internal(qc->tag))) {
5032 fill_result_tf(qc);
5033 trace_ata_qc_complete_internal(qc);
5034 __ata_qc_complete(qc);
5035 return;
5036 }
5037
5038 /* Non-internal qc has failed. Fill the result TF and summon EH. */
5039 if (unlikely(qc->flags & ATA_QCFLAG_EH)) {
5040 fill_result_tf(qc);
5041 trace_ata_qc_complete_failed(qc);
5042 ata_qc_schedule_eh(qc);
5043 return;
5044 }
5045
5046 WARN_ON_ONCE(ata_port_is_frozen(ap));
5047
5048 /* read result TF if requested */
5049 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5050 fill_result_tf(qc);
5051
5052 trace_ata_qc_complete_done(qc);
5053
5054 /*
5055 * For CDL commands that completed without an error, check if we have
5056 * sense data (ATA_SENSE is set). If we do, then the command may have
5057 * been aborted by the device due to a limit timeout using the policy
5058 * 0xD. For these commands, invoke EH to get the command sense data.
5059 */
5060 if (qc->flags & ATA_QCFLAG_HAS_CDL &&
5061 qc->result_tf.status & ATA_SENSE) {
5062 /*
5063 * Tell SCSI EH to not overwrite scmd->result even if this
5064 * command is finished with result SAM_STAT_GOOD.
5065 */
5066 qc->scsicmd->flags |= SCMD_FORCE_EH_SUCCESS;
5067 qc->flags |= ATA_QCFLAG_EH_SUCCESS_CMD;
5068 ehi->dev_action[dev->devno] |= ATA_EH_GET_SUCCESS_SENSE;
5069
5070 /*
5071 * set pending so that ata_qc_schedule_eh() does not trigger
5072 * fast drain, and freeze the port.
5073 */
5074 ap->pflags |= ATA_PFLAG_EH_PENDING;
5075 ata_qc_schedule_eh(qc);
5076 return;
5077 }
5078
5079 /* Some commands need post-processing after successful completion. */
5080 switch (qc->tf.command) {
5081 case ATA_CMD_SET_FEATURES:
5082 if (qc->tf.feature != SETFEATURES_WC_ON &&
5083 qc->tf.feature != SETFEATURES_WC_OFF &&
5084 qc->tf.feature != SETFEATURES_RA_ON &&
5085 qc->tf.feature != SETFEATURES_RA_OFF)
5086 break;
5087 fallthrough;
5088 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5089 case ATA_CMD_SET_MULTI: /* multi_count changed */
5090 /* revalidate device */
5091 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5092 ata_port_schedule_eh(ap);
5093 break;
5094
5095 case ATA_CMD_SLEEP:
5096 dev->flags |= ATA_DFLAG_SLEEPING;
5097 break;
5098 }
5099
5100 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5101 ata_verify_xfer(qc);
5102
5103 __ata_qc_complete(qc);
5104 }
5105 EXPORT_SYMBOL_GPL(ata_qc_complete);
5106
5107 /**
5108 * ata_qc_get_active - get bitmask of active qcs
5109 * @ap: port in question
5110 *
5111 * LOCKING:
5112 * spin_lock_irqsave(host lock)
5113 *
5114 * RETURNS:
5115 * Bitmask of active qcs
5116 */
ata_qc_get_active(struct ata_port * ap)5117 u64 ata_qc_get_active(struct ata_port *ap)
5118 {
5119 u64 qc_active = ap->qc_active;
5120
5121 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */
5122 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
5123 qc_active |= (1 << 0);
5124 qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
5125 }
5126
5127 return qc_active;
5128 }
5129 EXPORT_SYMBOL_GPL(ata_qc_get_active);
5130
5131 /**
5132 * ata_qc_issue - issue taskfile to device
5133 * @qc: command to issue to device
5134 *
5135 * Prepare an ATA command to submission to device.
5136 * This includes mapping the data into a DMA-able
5137 * area, filling in the S/G table, and finally
5138 * writing the taskfile to hardware, starting the command.
5139 *
5140 * LOCKING:
5141 * spin_lock_irqsave(host lock)
5142 */
ata_qc_issue(struct ata_queued_cmd * qc)5143 void ata_qc_issue(struct ata_queued_cmd *qc)
5144 {
5145 struct ata_port *ap = qc->ap;
5146 struct ata_link *link = qc->dev->link;
5147 u8 prot = qc->tf.protocol;
5148
5149 /* Make sure only one non-NCQ command is outstanding. */
5150 WARN_ON_ONCE(ata_tag_valid(link->active_tag));
5151
5152 if (ata_is_ncq(prot)) {
5153 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
5154
5155 if (!link->sactive)
5156 ap->nr_active_links++;
5157 link->sactive |= 1 << qc->hw_tag;
5158 } else {
5159 WARN_ON_ONCE(link->sactive);
5160
5161 ap->nr_active_links++;
5162 link->active_tag = qc->tag;
5163 }
5164
5165 qc->flags |= ATA_QCFLAG_ACTIVE;
5166 ap->qc_active |= 1ULL << qc->tag;
5167
5168 /* Make sure the device is still accessible. */
5169 if (!ata_adapter_is_online(ap)) {
5170 qc->err_mask |= AC_ERR_HOST_BUS;
5171 goto sys_err;
5172 }
5173
5174 /*
5175 * We guarantee to LLDs that they will have at least one
5176 * non-zero sg if the command is a data command.
5177 */
5178 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
5179 goto sys_err;
5180
5181 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5182 (ap->flags & ATA_FLAG_PIO_DMA)))
5183 if (ata_sg_setup(qc))
5184 goto sys_err;
5185
5186 /* if device is sleeping, schedule reset and abort the link */
5187 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5188 link->eh_info.action |= ATA_EH_RESET;
5189 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5190 ata_link_abort(link);
5191 return;
5192 }
5193
5194 if (ap->ops->qc_prep) {
5195 trace_ata_qc_prep(qc);
5196 qc->err_mask |= ap->ops->qc_prep(qc);
5197 if (unlikely(qc->err_mask))
5198 goto err;
5199 }
5200
5201 trace_ata_qc_issue(qc);
5202 qc->err_mask |= ap->ops->qc_issue(qc);
5203 if (unlikely(qc->err_mask))
5204 goto err;
5205 return;
5206
5207 sys_err:
5208 qc->err_mask |= AC_ERR_SYSTEM;
5209 err:
5210 ata_qc_complete(qc);
5211 }
5212
5213 /**
5214 * ata_phys_link_online - test whether the given link is online
5215 * @link: ATA link to test
5216 *
5217 * Test whether @link is online. Note that this function returns
5218 * 0 if online status of @link cannot be obtained, so
5219 * ata_link_online(link) != !ata_link_offline(link).
5220 *
5221 * LOCKING:
5222 * None.
5223 *
5224 * RETURNS:
5225 * True if the port online status is available and online.
5226 */
ata_phys_link_online(struct ata_link * link)5227 bool ata_phys_link_online(struct ata_link *link)
5228 {
5229 u32 sstatus;
5230
5231 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5232 ata_sstatus_online(sstatus))
5233 return true;
5234 return false;
5235 }
5236
5237 /**
5238 * ata_phys_link_offline - test whether the given link is offline
5239 * @link: ATA link to test
5240 *
5241 * Test whether @link is offline. Note that this function
5242 * returns 0 if offline status of @link cannot be obtained, so
5243 * ata_link_online(link) != !ata_link_offline(link).
5244 *
5245 * LOCKING:
5246 * None.
5247 *
5248 * RETURNS:
5249 * True if the port offline status is available and offline.
5250 */
ata_phys_link_offline(struct ata_link * link)5251 bool ata_phys_link_offline(struct ata_link *link)
5252 {
5253 u32 sstatus;
5254
5255 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5256 !ata_sstatus_online(sstatus))
5257 return true;
5258 return false;
5259 }
5260
5261 /**
5262 * ata_link_online - test whether the given link is online
5263 * @link: ATA link to test
5264 *
5265 * Test whether @link is online. This is identical to
5266 * ata_phys_link_online() when there's no slave link. When
5267 * there's a slave link, this function should only be called on
5268 * the master link and will return true if any of M/S links is
5269 * online.
5270 *
5271 * LOCKING:
5272 * None.
5273 *
5274 * RETURNS:
5275 * True if the port online status is available and online.
5276 */
ata_link_online(struct ata_link * link)5277 bool ata_link_online(struct ata_link *link)
5278 {
5279 struct ata_link *slave = link->ap->slave_link;
5280
5281 WARN_ON(link == slave); /* shouldn't be called on slave link */
5282
5283 return ata_phys_link_online(link) ||
5284 (slave && ata_phys_link_online(slave));
5285 }
5286 EXPORT_SYMBOL_GPL(ata_link_online);
5287
5288 /**
5289 * ata_link_offline - test whether the given link is offline
5290 * @link: ATA link to test
5291 *
5292 * Test whether @link is offline. This is identical to
5293 * ata_phys_link_offline() when there's no slave link. When
5294 * there's a slave link, this function should only be called on
5295 * the master link and will return true if both M/S links are
5296 * offline.
5297 *
5298 * LOCKING:
5299 * None.
5300 *
5301 * RETURNS:
5302 * True if the port offline status is available and offline.
5303 */
ata_link_offline(struct ata_link * link)5304 bool ata_link_offline(struct ata_link *link)
5305 {
5306 struct ata_link *slave = link->ap->slave_link;
5307
5308 WARN_ON(link == slave); /* shouldn't be called on slave link */
5309
5310 return ata_phys_link_offline(link) &&
5311 (!slave || ata_phys_link_offline(slave));
5312 }
5313 EXPORT_SYMBOL_GPL(ata_link_offline);
5314
5315 #ifdef CONFIG_PM
ata_port_request_pm(struct ata_port * ap,pm_message_t mesg,unsigned int action,unsigned int ehi_flags,bool async)5316 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5317 unsigned int action, unsigned int ehi_flags,
5318 bool async)
5319 {
5320 struct ata_link *link;
5321 unsigned long flags;
5322
5323 spin_lock_irqsave(ap->lock, flags);
5324
5325 /*
5326 * A previous PM operation might still be in progress. Wait for
5327 * ATA_PFLAG_PM_PENDING to clear.
5328 */
5329 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5330 spin_unlock_irqrestore(ap->lock, flags);
5331 ata_port_wait_eh(ap);
5332 spin_lock_irqsave(ap->lock, flags);
5333 }
5334
5335 /* Request PM operation to EH */
5336 ap->pm_mesg = mesg;
5337 ap->pflags |= ATA_PFLAG_PM_PENDING;
5338 ata_for_each_link(link, ap, HOST_FIRST) {
5339 link->eh_info.action |= action;
5340 link->eh_info.flags |= ehi_flags;
5341 }
5342
5343 ata_port_schedule_eh(ap);
5344
5345 spin_unlock_irqrestore(ap->lock, flags);
5346
5347 if (!async)
5348 ata_port_wait_eh(ap);
5349 }
5350
ata_port_suspend(struct ata_port * ap,pm_message_t mesg,bool async)5351 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg,
5352 bool async)
5353 {
5354 /*
5355 * We are about to suspend the port, so we do not care about
5356 * scsi_rescan_device() calls scheduled by previous resume operations.
5357 * The next resume will schedule the rescan again. So cancel any rescan
5358 * that is not done yet.
5359 */
5360 cancel_delayed_work_sync(&ap->scsi_rescan_task);
5361
5362 /*
5363 * On some hardware, device fails to respond after spun down for
5364 * suspend. As the device will not be used until being resumed, we
5365 * do not need to touch the device. Ask EH to skip the usual stuff
5366 * and proceed directly to suspend.
5367 *
5368 * http://thread.gmane.org/gmane.linux.ide/46764
5369 */
5370 ata_port_request_pm(ap, mesg, 0,
5371 ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY |
5372 ATA_EHI_NO_RECOVERY,
5373 async);
5374 }
5375
ata_port_pm_suspend(struct device * dev)5376 static int ata_port_pm_suspend(struct device *dev)
5377 {
5378 struct ata_port *ap = to_ata_port(dev);
5379
5380 if (pm_runtime_suspended(dev))
5381 return 0;
5382
5383 ata_port_suspend(ap, PMSG_SUSPEND, false);
5384 return 0;
5385 }
5386
ata_port_pm_freeze(struct device * dev)5387 static int ata_port_pm_freeze(struct device *dev)
5388 {
5389 struct ata_port *ap = to_ata_port(dev);
5390
5391 if (pm_runtime_suspended(dev))
5392 return 0;
5393
5394 ata_port_suspend(ap, PMSG_FREEZE, false);
5395 return 0;
5396 }
5397
ata_port_pm_poweroff(struct device * dev)5398 static int ata_port_pm_poweroff(struct device *dev)
5399 {
5400 if (!pm_runtime_suspended(dev))
5401 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE, false);
5402 return 0;
5403 }
5404
ata_port_resume(struct ata_port * ap,pm_message_t mesg,bool async)5405 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg,
5406 bool async)
5407 {
5408 ata_port_request_pm(ap, mesg, ATA_EH_RESET,
5409 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET,
5410 async);
5411 }
5412
ata_port_pm_resume(struct device * dev)5413 static int ata_port_pm_resume(struct device *dev)
5414 {
5415 if (!pm_runtime_suspended(dev))
5416 ata_port_resume(to_ata_port(dev), PMSG_RESUME, true);
5417 return 0;
5418 }
5419
5420 /*
5421 * For ODDs, the upper layer will poll for media change every few seconds,
5422 * which will make it enter and leave suspend state every few seconds. And
5423 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5424 * is very little and the ODD may malfunction after constantly being reset.
5425 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5426 * ODD is attached to the port.
5427 */
ata_port_runtime_idle(struct device * dev)5428 static int ata_port_runtime_idle(struct device *dev)
5429 {
5430 struct ata_port *ap = to_ata_port(dev);
5431 struct ata_link *link;
5432 struct ata_device *adev;
5433
5434 ata_for_each_link(link, ap, HOST_FIRST) {
5435 ata_for_each_dev(adev, link, ENABLED)
5436 if (adev->class == ATA_DEV_ATAPI &&
5437 !zpodd_dev_enabled(adev))
5438 return -EBUSY;
5439 }
5440
5441 return 0;
5442 }
5443
ata_port_runtime_suspend(struct device * dev)5444 static int ata_port_runtime_suspend(struct device *dev)
5445 {
5446 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND, false);
5447 return 0;
5448 }
5449
ata_port_runtime_resume(struct device * dev)5450 static int ata_port_runtime_resume(struct device *dev)
5451 {
5452 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME, false);
5453 return 0;
5454 }
5455
5456 static const struct dev_pm_ops ata_port_pm_ops = {
5457 .suspend = ata_port_pm_suspend,
5458 .resume = ata_port_pm_resume,
5459 .freeze = ata_port_pm_freeze,
5460 .thaw = ata_port_pm_resume,
5461 .poweroff = ata_port_pm_poweroff,
5462 .restore = ata_port_pm_resume,
5463
5464 .runtime_suspend = ata_port_runtime_suspend,
5465 .runtime_resume = ata_port_runtime_resume,
5466 .runtime_idle = ata_port_runtime_idle,
5467 };
5468
5469 /* sas ports don't participate in pm runtime management of ata_ports,
5470 * and need to resume ata devices at the domain level, not the per-port
5471 * level. sas suspend/resume is async to allow parallel port recovery
5472 * since sas has multiple ata_port instances per Scsi_Host.
5473 */
ata_sas_port_suspend(struct ata_port * ap)5474 void ata_sas_port_suspend(struct ata_port *ap)
5475 {
5476 ata_port_suspend(ap, PMSG_SUSPEND, true);
5477 }
5478 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5479
ata_sas_port_resume(struct ata_port * ap)5480 void ata_sas_port_resume(struct ata_port *ap)
5481 {
5482 ata_port_resume(ap, PMSG_RESUME, true);
5483 }
5484 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5485
5486 /**
5487 * ata_host_suspend - suspend host
5488 * @host: host to suspend
5489 * @mesg: PM message
5490 *
5491 * Suspend @host. Actual operation is performed by port suspend.
5492 */
ata_host_suspend(struct ata_host * host,pm_message_t mesg)5493 void ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5494 {
5495 host->dev->power.power_state = mesg;
5496 }
5497 EXPORT_SYMBOL_GPL(ata_host_suspend);
5498
5499 /**
5500 * ata_host_resume - resume host
5501 * @host: host to resume
5502 *
5503 * Resume @host. Actual operation is performed by port resume.
5504 */
ata_host_resume(struct ata_host * host)5505 void ata_host_resume(struct ata_host *host)
5506 {
5507 host->dev->power.power_state = PMSG_ON;
5508 }
5509 EXPORT_SYMBOL_GPL(ata_host_resume);
5510 #endif
5511
5512 const struct device_type ata_port_type = {
5513 .name = ATA_PORT_TYPE_NAME,
5514 #ifdef CONFIG_PM
5515 .pm = &ata_port_pm_ops,
5516 #endif
5517 };
5518
5519 /**
5520 * ata_dev_init - Initialize an ata_device structure
5521 * @dev: Device structure to initialize
5522 *
5523 * Initialize @dev in preparation for probing.
5524 *
5525 * LOCKING:
5526 * Inherited from caller.
5527 */
ata_dev_init(struct ata_device * dev)5528 void ata_dev_init(struct ata_device *dev)
5529 {
5530 struct ata_link *link = ata_dev_phys_link(dev);
5531 struct ata_port *ap = link->ap;
5532 unsigned long flags;
5533
5534 /* SATA spd limit is bound to the attached device, reset together */
5535 link->sata_spd_limit = link->hw_sata_spd_limit;
5536 link->sata_spd = 0;
5537
5538 /* High bits of dev->flags are used to record warm plug
5539 * requests which occur asynchronously. Synchronize using
5540 * host lock.
5541 */
5542 spin_lock_irqsave(ap->lock, flags);
5543 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5544 dev->quirks = 0;
5545 spin_unlock_irqrestore(ap->lock, flags);
5546
5547 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5548 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5549 dev->pio_mask = UINT_MAX;
5550 dev->mwdma_mask = UINT_MAX;
5551 dev->udma_mask = UINT_MAX;
5552 }
5553
5554 /**
5555 * ata_link_init - Initialize an ata_link structure
5556 * @ap: ATA port link is attached to
5557 * @link: Link structure to initialize
5558 * @pmp: Port multiplier port number
5559 *
5560 * Initialize @link.
5561 *
5562 * LOCKING:
5563 * Kernel thread context (may sleep)
5564 */
ata_link_init(struct ata_port * ap,struct ata_link * link,int pmp)5565 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5566 {
5567 int i;
5568
5569 /* clear everything except for devices */
5570 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5571 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5572
5573 link->ap = ap;
5574 link->pmp = pmp;
5575 link->active_tag = ATA_TAG_POISON;
5576 link->hw_sata_spd_limit = UINT_MAX;
5577
5578 /* can't use iterator, ap isn't initialized yet */
5579 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5580 struct ata_device *dev = &link->device[i];
5581
5582 dev->link = link;
5583 dev->devno = dev - link->device;
5584 #ifdef CONFIG_ATA_ACPI
5585 dev->gtf_filter = ata_acpi_gtf_filter;
5586 #endif
5587 ata_dev_init(dev);
5588 }
5589 }
5590
5591 /**
5592 * sata_link_init_spd - Initialize link->sata_spd_limit
5593 * @link: Link to configure sata_spd_limit for
5594 *
5595 * Initialize ``link->[hw_]sata_spd_limit`` to the currently
5596 * configured value.
5597 *
5598 * LOCKING:
5599 * Kernel thread context (may sleep).
5600 *
5601 * RETURNS:
5602 * 0 on success, -errno on failure.
5603 */
sata_link_init_spd(struct ata_link * link)5604 int sata_link_init_spd(struct ata_link *link)
5605 {
5606 u8 spd;
5607 int rc;
5608
5609 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5610 if (rc)
5611 return rc;
5612
5613 spd = (link->saved_scontrol >> 4) & 0xf;
5614 if (spd)
5615 link->hw_sata_spd_limit &= (1 << spd) - 1;
5616
5617 ata_force_link_limits(link);
5618
5619 link->sata_spd_limit = link->hw_sata_spd_limit;
5620
5621 return 0;
5622 }
5623
5624 /**
5625 * ata_port_alloc - allocate and initialize basic ATA port resources
5626 * @host: ATA host this allocated port belongs to
5627 *
5628 * Allocate and initialize basic ATA port resources.
5629 *
5630 * RETURNS:
5631 * Allocate ATA port on success, NULL on failure.
5632 *
5633 * LOCKING:
5634 * Inherited from calling layer (may sleep).
5635 */
ata_port_alloc(struct ata_host * host)5636 struct ata_port *ata_port_alloc(struct ata_host *host)
5637 {
5638 struct ata_port *ap;
5639 int id;
5640
5641 ap = kzalloc_obj(*ap, GFP_KERNEL);
5642 if (!ap)
5643 return NULL;
5644
5645 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5646 ap->lock = &host->lock;
5647 id = ida_alloc_min(&ata_ida, 1, GFP_KERNEL);
5648 if (id < 0) {
5649 kfree(ap);
5650 return NULL;
5651 }
5652 ap->print_id = id;
5653 ap->host = host;
5654 ap->dev = host->dev;
5655
5656 mutex_init(&ap->scsi_scan_mutex);
5657 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5658 INIT_DELAYED_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5659 INIT_WORK(&ap->deferred_qc_work, ata_scsi_deferred_qc_work);
5660 INIT_LIST_HEAD(&ap->eh_done_q);
5661 init_waitqueue_head(&ap->eh_wait_q);
5662 init_completion(&ap->park_req_pending);
5663 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5664 TIMER_DEFERRABLE);
5665
5666 ap->cbl = ATA_CBL_NONE;
5667
5668 ata_link_init(ap, &ap->link, 0);
5669
5670 #ifdef ATA_IRQ_TRAP
5671 ap->stats.unhandled_irq = 1;
5672 ap->stats.idle_irq = 1;
5673 #endif
5674 ata_sff_port_init(ap);
5675
5676 ata_force_pflags(ap);
5677
5678 return ap;
5679 }
5680 EXPORT_SYMBOL_GPL(ata_port_alloc);
5681
ata_port_free(struct ata_port * ap)5682 void ata_port_free(struct ata_port *ap)
5683 {
5684 if (!ap)
5685 return;
5686
5687 kfree(ap->pmp_link);
5688 kfree(ap->slave_link);
5689 ida_free(&ata_ida, ap->print_id);
5690 kfree(ap);
5691 }
5692 EXPORT_SYMBOL_GPL(ata_port_free);
5693
ata_devres_release(struct device * gendev,void * res)5694 static void ata_devres_release(struct device *gendev, void *res)
5695 {
5696 struct ata_host *host = dev_get_drvdata(gendev);
5697 int i;
5698
5699 for (i = 0; i < host->n_ports; i++) {
5700 struct ata_port *ap = host->ports[i];
5701
5702 if (!ap)
5703 continue;
5704
5705 if (ap->scsi_host)
5706 scsi_host_put(ap->scsi_host);
5707
5708 }
5709
5710 dev_set_drvdata(gendev, NULL);
5711 ata_host_put(host);
5712 }
5713
ata_host_release(struct kref * kref)5714 static void ata_host_release(struct kref *kref)
5715 {
5716 struct ata_host *host = container_of(kref, struct ata_host, kref);
5717 int i;
5718
5719 for (i = 0; i < host->n_ports; i++) {
5720 ata_port_free(host->ports[i]);
5721 host->ports[i] = NULL;
5722 }
5723 kfree(host);
5724 }
5725
ata_host_get(struct ata_host * host)5726 void ata_host_get(struct ata_host *host)
5727 {
5728 kref_get(&host->kref);
5729 }
5730
ata_host_put(struct ata_host * host)5731 void ata_host_put(struct ata_host *host)
5732 {
5733 kref_put(&host->kref, ata_host_release);
5734 }
5735 EXPORT_SYMBOL_GPL(ata_host_put);
5736
5737 /**
5738 * ata_host_alloc - allocate and init basic ATA host resources
5739 * @dev: generic device this host is associated with
5740 * @n_ports: the number of ATA ports associated with this host
5741 *
5742 * Allocate and initialize basic ATA host resources. LLD calls
5743 * this function to allocate a host, initializes it fully and
5744 * attaches it using ata_host_register().
5745 *
5746 * RETURNS:
5747 * Allocate ATA host on success, NULL on failure.
5748 *
5749 * LOCKING:
5750 * Inherited from calling layer (may sleep).
5751 */
ata_host_alloc(struct device * dev,int n_ports)5752 struct ata_host *ata_host_alloc(struct device *dev, int n_ports)
5753 {
5754 struct ata_host *host;
5755 size_t sz;
5756 int i;
5757 void *dr;
5758
5759 /* alloc a container for our list of ATA ports (buses) */
5760 sz = sizeof(struct ata_host) + n_ports * sizeof(void *);
5761 host = kzalloc(sz, GFP_KERNEL);
5762 if (!host)
5763 return NULL;
5764
5765 if (!devres_open_group(dev, NULL, GFP_KERNEL)) {
5766 kfree(host);
5767 return NULL;
5768 }
5769
5770 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5771 if (!dr) {
5772 kfree(host);
5773 goto err_out;
5774 }
5775
5776 devres_add(dev, dr);
5777 dev_set_drvdata(dev, host);
5778
5779 spin_lock_init(&host->lock);
5780 mutex_init(&host->eh_mutex);
5781 host->dev = dev;
5782 host->n_ports = n_ports;
5783 kref_init(&host->kref);
5784
5785 /* allocate ports bound to this host */
5786 for (i = 0; i < n_ports; i++) {
5787 struct ata_port *ap;
5788
5789 ap = ata_port_alloc(host);
5790 if (!ap)
5791 goto err_out;
5792
5793 ap->port_no = i;
5794 host->ports[i] = ap;
5795 }
5796
5797 devres_remove_group(dev, NULL);
5798 return host;
5799
5800 err_out:
5801 devres_release_group(dev, NULL);
5802 return NULL;
5803 }
5804 EXPORT_SYMBOL_GPL(ata_host_alloc);
5805
5806 /**
5807 * ata_host_alloc_pinfo - alloc host and init with port_info array
5808 * @dev: generic device this host is associated with
5809 * @ppi: array of ATA port_info to initialize host with
5810 * @n_ports: number of ATA ports attached to this host
5811 *
5812 * Allocate ATA host and initialize with info from @ppi. If NULL
5813 * terminated, @ppi may contain fewer entries than @n_ports. The
5814 * last entry will be used for the remaining ports.
5815 *
5816 * RETURNS:
5817 * Allocate ATA host on success, NULL on failure.
5818 *
5819 * LOCKING:
5820 * Inherited from calling layer (may sleep).
5821 */
ata_host_alloc_pinfo(struct device * dev,const struct ata_port_info * const * ppi,int n_ports)5822 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5823 const struct ata_port_info * const * ppi,
5824 int n_ports)
5825 {
5826 const struct ata_port_info *pi = &ata_dummy_port_info;
5827 struct ata_host *host;
5828 int i, j;
5829
5830 host = ata_host_alloc(dev, n_ports);
5831 if (!host)
5832 return NULL;
5833
5834 for (i = 0, j = 0; i < host->n_ports; i++) {
5835 struct ata_port *ap = host->ports[i];
5836
5837 if (ppi[j])
5838 pi = ppi[j++];
5839
5840 ap->pio_mask = pi->pio_mask;
5841 ap->mwdma_mask = pi->mwdma_mask;
5842 ap->udma_mask = pi->udma_mask;
5843 ap->flags |= pi->flags;
5844 ap->link.flags |= pi->link_flags;
5845 ap->ops = pi->port_ops;
5846
5847 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5848 host->ops = pi->port_ops;
5849 }
5850
5851 return host;
5852 }
5853 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5854
ata_host_stop(struct device * gendev,void * res)5855 static void ata_host_stop(struct device *gendev, void *res)
5856 {
5857 struct ata_host *host = dev_get_drvdata(gendev);
5858 int i;
5859
5860 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5861
5862 for (i = 0; i < host->n_ports; i++) {
5863 struct ata_port *ap = host->ports[i];
5864
5865 if (ap->ops->port_stop)
5866 ap->ops->port_stop(ap);
5867 }
5868
5869 if (host->ops->host_stop)
5870 host->ops->host_stop(host);
5871 }
5872
5873 /**
5874 * ata_finalize_port_ops - finalize ata_port_operations
5875 * @ops: ata_port_operations to finalize
5876 *
5877 * An ata_port_operations can inherit from another ops and that
5878 * ops can again inherit from another. This can go on as many
5879 * times as necessary as long as there is no loop in the
5880 * inheritance chain.
5881 *
5882 * Ops tables are finalized when the host is started. NULL or
5883 * unspecified entries are inherited from the closet ancestor
5884 * which has the method and the entry is populated with it.
5885 * After finalization, the ops table directly points to all the
5886 * methods and ->inherits is no longer necessary and cleared.
5887 *
5888 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5889 *
5890 * LOCKING:
5891 * None.
5892 */
ata_finalize_port_ops(struct ata_port_operations * ops)5893 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5894 {
5895 static DEFINE_SPINLOCK(lock);
5896 const struct ata_port_operations *cur;
5897 void **begin = (void **)ops;
5898 void **end = (void **)&ops->inherits;
5899 void **pp;
5900
5901 if (!ops || !ops->inherits)
5902 return;
5903
5904 spin_lock(&lock);
5905
5906 for (cur = ops->inherits; cur; cur = cur->inherits) {
5907 void **inherit = (void **)cur;
5908
5909 for (pp = begin; pp < end; pp++, inherit++)
5910 if (!*pp)
5911 *pp = *inherit;
5912 }
5913
5914 for (pp = begin; pp < end; pp++)
5915 if (IS_ERR(*pp))
5916 *pp = NULL;
5917
5918 ops->inherits = NULL;
5919
5920 spin_unlock(&lock);
5921 }
5922
5923 /**
5924 * ata_host_start - start and freeze ports of an ATA host
5925 * @host: ATA host to start ports for
5926 *
5927 * Start and then freeze ports of @host. Started status is
5928 * recorded in host->flags, so this function can be called
5929 * multiple times. Ports are guaranteed to get started only
5930 * once. If host->ops is not initialized yet, it is set to the
5931 * first non-dummy port ops.
5932 *
5933 * LOCKING:
5934 * Inherited from calling layer (may sleep).
5935 *
5936 * RETURNS:
5937 * 0 if all ports are started successfully, -errno otherwise.
5938 */
ata_host_start(struct ata_host * host)5939 int ata_host_start(struct ata_host *host)
5940 {
5941 int have_stop = 0;
5942 void *start_dr = NULL;
5943 int i, rc;
5944
5945 if (host->flags & ATA_HOST_STARTED)
5946 return 0;
5947
5948 ata_finalize_port_ops(host->ops);
5949
5950 for (i = 0; i < host->n_ports; i++) {
5951 struct ata_port *ap = host->ports[i];
5952
5953 ata_finalize_port_ops(ap->ops);
5954
5955 if (!host->ops && !ata_port_is_dummy(ap))
5956 host->ops = ap->ops;
5957
5958 if (ap->ops->port_stop)
5959 have_stop = 1;
5960 }
5961
5962 if (host->ops && host->ops->host_stop)
5963 have_stop = 1;
5964
5965 if (have_stop) {
5966 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5967 if (!start_dr)
5968 return -ENOMEM;
5969 }
5970
5971 for (i = 0; i < host->n_ports; i++) {
5972 struct ata_port *ap = host->ports[i];
5973
5974 if (ap->ops->port_start) {
5975 rc = ap->ops->port_start(ap);
5976 if (rc) {
5977 if (rc != -ENODEV)
5978 dev_err(host->dev,
5979 "failed to start port %d (errno=%d)\n",
5980 i, rc);
5981 goto err_out;
5982 }
5983 }
5984 ata_eh_freeze_port(ap);
5985 }
5986
5987 if (start_dr)
5988 devres_add(host->dev, start_dr);
5989 host->flags |= ATA_HOST_STARTED;
5990 return 0;
5991
5992 err_out:
5993 while (--i >= 0) {
5994 struct ata_port *ap = host->ports[i];
5995
5996 if (ap->ops->port_stop)
5997 ap->ops->port_stop(ap);
5998 }
5999 devres_free(start_dr);
6000 return rc;
6001 }
6002 EXPORT_SYMBOL_GPL(ata_host_start);
6003
6004 /**
6005 * ata_host_init - Initialize a host struct for sas (ipr, libsas)
6006 * @host: host to initialize
6007 * @dev: device host is attached to
6008 * @ops: port_ops
6009 *
6010 */
ata_host_init(struct ata_host * host,struct device * dev,struct ata_port_operations * ops)6011 void ata_host_init(struct ata_host *host, struct device *dev,
6012 struct ata_port_operations *ops)
6013 {
6014 spin_lock_init(&host->lock);
6015 mutex_init(&host->eh_mutex);
6016 host->n_tags = ATA_MAX_QUEUE;
6017 host->dev = dev;
6018 host->ops = ops;
6019 kref_init(&host->kref);
6020 }
6021 EXPORT_SYMBOL_GPL(ata_host_init);
6022
ata_port_probe(struct ata_port * ap)6023 void ata_port_probe(struct ata_port *ap)
6024 {
6025 struct ata_eh_info *ehi = &ap->link.eh_info;
6026 unsigned long flags;
6027
6028 ata_acpi_port_power_on(ap);
6029
6030 /* kick EH for boot probing */
6031 spin_lock_irqsave(ap->lock, flags);
6032
6033 ehi->probe_mask |= ATA_ALL_DEVICES;
6034 ehi->action |= ATA_EH_RESET;
6035 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6036
6037 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6038 ap->pflags |= ATA_PFLAG_LOADING;
6039 ata_port_schedule_eh(ap);
6040
6041 spin_unlock_irqrestore(ap->lock, flags);
6042 }
6043 EXPORT_SYMBOL_GPL(ata_port_probe);
6044
async_port_probe(void * data,async_cookie_t cookie)6045 static void async_port_probe(void *data, async_cookie_t cookie)
6046 {
6047 struct ata_port *ap = data;
6048
6049 /*
6050 * If we're not allowed to scan this host in parallel,
6051 * we need to wait until all previous scans have completed
6052 * before going further.
6053 * Jeff Garzik says this is only within a controller, so we
6054 * don't need to wait for port 0, only for later ports.
6055 */
6056 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6057 async_synchronize_cookie(cookie);
6058
6059 ata_port_probe(ap);
6060 ata_port_wait_eh(ap);
6061
6062 /* in order to keep device order, we need to synchronize at this point */
6063 async_synchronize_cookie(cookie);
6064
6065 ata_scsi_scan_host(ap, 1);
6066 }
6067
6068 /**
6069 * ata_host_register - register initialized ATA host
6070 * @host: ATA host to register
6071 * @sht: template for SCSI host
6072 *
6073 * Register initialized ATA host. @host is allocated using
6074 * ata_host_alloc() and fully initialized by LLD. This function
6075 * starts ports, registers @host with ATA and SCSI layers and
6076 * probe registered devices.
6077 *
6078 * LOCKING:
6079 * Inherited from calling layer (may sleep).
6080 *
6081 * RETURNS:
6082 * 0 on success, -errno otherwise.
6083 */
ata_host_register(struct ata_host * host,const struct scsi_host_template * sht)6084 int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht)
6085 {
6086 int i, rc;
6087
6088 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
6089
6090 /* host must have been started */
6091 if (!(host->flags & ATA_HOST_STARTED)) {
6092 dev_err(host->dev, "BUG: trying to register unstarted host\n");
6093 WARN_ON(1);
6094 return -EINVAL;
6095 }
6096
6097 /* Create associated sysfs transport objects */
6098 for (i = 0; i < host->n_ports; i++) {
6099 rc = ata_tport_add(host->dev,host->ports[i]);
6100 if (rc) {
6101 goto err_tadd;
6102 }
6103 }
6104
6105 rc = ata_scsi_add_hosts(host, sht);
6106 if (rc)
6107 goto err_tadd;
6108
6109 /* set cable, sata_spd_limit and report */
6110 for (i = 0; i < host->n_ports; i++) {
6111 struct ata_port *ap = host->ports[i];
6112 unsigned int xfer_mask;
6113
6114 /* set SATA cable type if still unset */
6115 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6116 ap->cbl = ATA_CBL_SATA;
6117
6118 /* init sata_spd_limit to the current value */
6119 sata_link_init_spd(&ap->link);
6120 if (ap->slave_link)
6121 sata_link_init_spd(ap->slave_link);
6122
6123 /* print per-port info to dmesg */
6124 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6125 ap->udma_mask);
6126
6127 if (!ata_port_is_dummy(ap)) {
6128 ata_port_info(ap, "%cATA max %s %s\n",
6129 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6130 ata_mode_string(xfer_mask),
6131 ap->link.eh_info.desc);
6132 ata_ehi_clear_desc(&ap->link.eh_info);
6133 } else
6134 ata_port_info(ap, "DUMMY\n");
6135 }
6136
6137 /* perform each probe asynchronously */
6138 for (i = 0; i < host->n_ports; i++) {
6139 struct ata_port *ap = host->ports[i];
6140 ap->cookie = async_schedule(async_port_probe, ap);
6141 }
6142
6143 return 0;
6144
6145 err_tadd:
6146 while (--i >= 0) {
6147 ata_tport_delete(host->ports[i]);
6148 }
6149 return rc;
6150
6151 }
6152 EXPORT_SYMBOL_GPL(ata_host_register);
6153
6154 /**
6155 * ata_host_activate - start host, request IRQ and register it
6156 * @host: target ATA host
6157 * @irq: IRQ to request
6158 * @irq_handler: irq_handler used when requesting IRQ
6159 * @irq_flags: irq_flags used when requesting IRQ
6160 * @sht: scsi_host_template to use when registering the host
6161 *
6162 * After allocating an ATA host and initializing it, most libata
6163 * LLDs perform three steps to activate the host - start host,
6164 * request IRQ and register it. This helper takes necessary
6165 * arguments and performs the three steps in one go.
6166 *
6167 * An invalid IRQ skips the IRQ registration and expects the host to
6168 * have set polling mode on the port. In this case, @irq_handler
6169 * should be NULL.
6170 *
6171 * LOCKING:
6172 * Inherited from calling layer (may sleep).
6173 *
6174 * RETURNS:
6175 * 0 on success, -errno otherwise.
6176 */
ata_host_activate(struct ata_host * host,int irq,irq_handler_t irq_handler,unsigned long irq_flags,const struct scsi_host_template * sht)6177 int ata_host_activate(struct ata_host *host, int irq,
6178 irq_handler_t irq_handler, unsigned long irq_flags,
6179 const struct scsi_host_template *sht)
6180 {
6181 int i, rc;
6182 char *irq_desc;
6183
6184 rc = ata_host_start(host);
6185 if (rc)
6186 return rc;
6187
6188 /* Special case for polling mode */
6189 if (!irq) {
6190 WARN_ON(irq_handler);
6191 return ata_host_register(host, sht);
6192 }
6193
6194 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6195 dev_driver_string(host->dev),
6196 dev_name(host->dev));
6197 if (!irq_desc)
6198 return -ENOMEM;
6199
6200 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6201 irq_desc, host);
6202 if (rc)
6203 return rc;
6204
6205 for (i = 0; i < host->n_ports; i++)
6206 ata_port_desc_misc(host->ports[i], irq);
6207
6208 rc = ata_host_register(host, sht);
6209 /* if failed, just free the IRQ and leave ports alone */
6210 if (rc)
6211 devm_free_irq(host->dev, irq, host);
6212
6213 return rc;
6214 }
6215 EXPORT_SYMBOL_GPL(ata_host_activate);
6216
6217 /**
6218 * ata_dev_free_resources - Free a device resources
6219 * @dev: Target ATA device
6220 *
6221 * Free resources allocated to support a device features.
6222 *
6223 * LOCKING:
6224 * Kernel thread context (may sleep).
6225 */
ata_dev_free_resources(struct ata_device * dev)6226 void ata_dev_free_resources(struct ata_device *dev)
6227 {
6228 if (zpodd_dev_enabled(dev))
6229 zpodd_exit(dev);
6230
6231 ata_dev_cleanup_cdl_resources(dev);
6232 }
6233
6234 /**
6235 * ata_port_detach - Detach ATA port in preparation of device removal
6236 * @ap: ATA port to be detached
6237 *
6238 * Detach all ATA devices and the associated SCSI devices of @ap;
6239 * then, remove the associated SCSI host. @ap is guaranteed to
6240 * be quiescent on return from this function.
6241 *
6242 * LOCKING:
6243 * Kernel thread context (may sleep).
6244 */
ata_port_detach(struct ata_port * ap)6245 static void ata_port_detach(struct ata_port *ap)
6246 {
6247 unsigned long flags;
6248 struct ata_link *link;
6249 struct ata_device *dev;
6250
6251 /* Ensure ata_port probe has completed */
6252 async_synchronize_cookie(ap->cookie + 1);
6253
6254 /* Wait for any ongoing EH */
6255 ata_port_wait_eh(ap);
6256
6257 mutex_lock(&ap->scsi_scan_mutex);
6258 spin_lock_irqsave(ap->lock, flags);
6259
6260 /* Remove scsi devices */
6261 ata_for_each_link(link, ap, HOST_FIRST) {
6262 ata_for_each_dev(dev, link, ALL) {
6263 if (dev->sdev) {
6264 spin_unlock_irqrestore(ap->lock, flags);
6265 scsi_remove_device(dev->sdev);
6266 spin_lock_irqsave(ap->lock, flags);
6267 dev->sdev = NULL;
6268 }
6269 }
6270 }
6271
6272 /* Make sure the deferred qc work finished. */
6273 cancel_work_sync(&ap->deferred_qc_work);
6274 WARN_ON(ap->deferred_qc);
6275
6276 /* Tell EH to disable all devices */
6277 ap->pflags |= ATA_PFLAG_UNLOADING;
6278 ata_port_schedule_eh(ap);
6279
6280 spin_unlock_irqrestore(ap->lock, flags);
6281 mutex_unlock(&ap->scsi_scan_mutex);
6282
6283 /* wait till EH commits suicide */
6284 ata_port_wait_eh(ap);
6285
6286 /* it better be dead now */
6287 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6288
6289 cancel_delayed_work_sync(&ap->hotplug_task);
6290 cancel_delayed_work_sync(&ap->scsi_rescan_task);
6291
6292 /* Delete port multiplier link transport devices */
6293 if (ap->pmp_link) {
6294 int i;
6295
6296 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6297 ata_tlink_delete(&ap->pmp_link[i]);
6298 }
6299
6300 /* Remove the associated SCSI host */
6301 scsi_remove_host(ap->scsi_host);
6302 ata_tport_delete(ap);
6303 }
6304
6305 /**
6306 * ata_host_detach - Detach all ports of an ATA host
6307 * @host: Host to detach
6308 *
6309 * Detach all ports of @host.
6310 *
6311 * LOCKING:
6312 * Kernel thread context (may sleep).
6313 */
ata_host_detach(struct ata_host * host)6314 void ata_host_detach(struct ata_host *host)
6315 {
6316 int i;
6317
6318 for (i = 0; i < host->n_ports; i++)
6319 ata_port_detach(host->ports[i]);
6320
6321 /* the host is dead now, dissociate ACPI */
6322 ata_acpi_dissociate(host);
6323 }
6324 EXPORT_SYMBOL_GPL(ata_host_detach);
6325
6326 #ifdef CONFIG_PCI
6327
6328 /**
6329 * ata_pci_remove_one - PCI layer callback for device removal
6330 * @pdev: PCI device that was removed
6331 *
6332 * PCI layer indicates to libata via this hook that hot-unplug or
6333 * module unload event has occurred. Detach all ports. Resource
6334 * release is handled via devres.
6335 *
6336 * LOCKING:
6337 * Inherited from PCI layer (may sleep).
6338 */
ata_pci_remove_one(struct pci_dev * pdev)6339 void ata_pci_remove_one(struct pci_dev *pdev)
6340 {
6341 struct ata_host *host = pci_get_drvdata(pdev);
6342
6343 ata_host_detach(host);
6344 }
6345 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6346
ata_pci_shutdown_one(struct pci_dev * pdev)6347 void ata_pci_shutdown_one(struct pci_dev *pdev)
6348 {
6349 struct ata_host *host = pci_get_drvdata(pdev);
6350 int i;
6351
6352 for (i = 0; i < host->n_ports; i++) {
6353 struct ata_port *ap = host->ports[i];
6354
6355 ap->pflags |= ATA_PFLAG_FROZEN;
6356
6357 /* Disable port interrupts */
6358 if (ap->ops->freeze)
6359 ap->ops->freeze(ap);
6360
6361 /* Stop the port DMA engines */
6362 if (ap->ops->port_stop)
6363 ap->ops->port_stop(ap);
6364 }
6365 }
6366 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6367
6368 /* move to PCI subsystem */
pci_test_config_bits(struct pci_dev * pdev,const struct pci_bits * bits)6369 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6370 {
6371 unsigned long tmp = 0;
6372
6373 switch (bits->width) {
6374 case 1: {
6375 u8 tmp8 = 0;
6376 pci_read_config_byte(pdev, bits->reg, &tmp8);
6377 tmp = tmp8;
6378 break;
6379 }
6380 case 2: {
6381 u16 tmp16 = 0;
6382 pci_read_config_word(pdev, bits->reg, &tmp16);
6383 tmp = tmp16;
6384 break;
6385 }
6386 case 4: {
6387 u32 tmp32 = 0;
6388 pci_read_config_dword(pdev, bits->reg, &tmp32);
6389 tmp = tmp32;
6390 break;
6391 }
6392
6393 default:
6394 return -EINVAL;
6395 }
6396
6397 tmp &= bits->mask;
6398
6399 return (tmp == bits->val) ? 1 : 0;
6400 }
6401 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6402
6403 #ifdef CONFIG_PM
ata_pci_device_do_suspend(struct pci_dev * pdev,pm_message_t mesg)6404 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6405 {
6406 pci_save_state(pdev);
6407 pci_disable_device(pdev);
6408
6409 if (mesg.event & PM_EVENT_SLEEP)
6410 pci_set_power_state(pdev, PCI_D3hot);
6411 }
6412 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6413
ata_pci_device_do_resume(struct pci_dev * pdev)6414 int ata_pci_device_do_resume(struct pci_dev *pdev)
6415 {
6416 int rc;
6417
6418 pci_set_power_state(pdev, PCI_D0);
6419 pci_restore_state(pdev);
6420
6421 rc = pcim_enable_device(pdev);
6422 if (rc) {
6423 dev_err(&pdev->dev,
6424 "failed to enable device after resume (%d)\n", rc);
6425 return rc;
6426 }
6427
6428 pci_set_master(pdev);
6429 return 0;
6430 }
6431 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6432
ata_pci_device_suspend(struct pci_dev * pdev,pm_message_t mesg)6433 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6434 {
6435 struct ata_host *host = pci_get_drvdata(pdev);
6436
6437 ata_host_suspend(host, mesg);
6438
6439 ata_pci_device_do_suspend(pdev, mesg);
6440
6441 return 0;
6442 }
6443 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6444
ata_pci_device_resume(struct pci_dev * pdev)6445 int ata_pci_device_resume(struct pci_dev *pdev)
6446 {
6447 struct ata_host *host = pci_get_drvdata(pdev);
6448 int rc;
6449
6450 rc = ata_pci_device_do_resume(pdev);
6451 if (rc == 0)
6452 ata_host_resume(host);
6453 return rc;
6454 }
6455 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6456 #endif /* CONFIG_PM */
6457 #endif /* CONFIG_PCI */
6458
6459 /**
6460 * ata_platform_remove_one - Platform layer callback for device removal
6461 * @pdev: Platform device that was removed
6462 *
6463 * Platform layer indicates to libata via this hook that hot-unplug or
6464 * module unload event has occurred. Detach all ports. Resource
6465 * release is handled via devres.
6466 *
6467 * LOCKING:
6468 * Inherited from platform layer (may sleep).
6469 */
ata_platform_remove_one(struct platform_device * pdev)6470 void ata_platform_remove_one(struct platform_device *pdev)
6471 {
6472 struct ata_host *host = platform_get_drvdata(pdev);
6473
6474 ata_host_detach(host);
6475 }
6476 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6477
6478 #ifdef CONFIG_ATA_FORCE
6479
6480 #define force_cbl(name, flag) \
6481 { #name, .cbl = (flag) }
6482
6483 #define force_spd_limit(spd, val) \
6484 { #spd, .spd_limit = (val) }
6485
6486 #define force_xfer(mode, shift) \
6487 { #mode, .xfer_mask = (1UL << (shift)) }
6488
6489 #define force_lflag_on(name, flags) \
6490 { #name, .lflags_on = (flags) }
6491
6492 #define force_lflag_onoff(name, flags) \
6493 { "no" #name, .lflags_on = (flags) }, \
6494 { #name, .lflags_off = (flags) }
6495
6496 #define force_pflag_on(name, flags) \
6497 { #name, .pflags_on = (flags) }
6498
6499 #define force_quirk_on(name, flag) \
6500 { #name, .quirk_on = (flag) }
6501
6502 #define force_quirk_val(name, flag, val) \
6503 { #name, .quirk_on = (flag), \
6504 .value = (val) }
6505
6506 #define force_quirk_onoff(name, flag) \
6507 { "no" #name, .quirk_on = (flag) }, \
6508 { #name, .quirk_off = (flag) }
6509
6510 /*
6511 * If the ata_force_param struct member 'name' ends with '=', then the value
6512 * after the equal sign will be parsed as an u64, and will be saved in the
6513 * ata_force_param struct member 'value'. This works because each libata.force
6514 * entry (struct ata_force_ent) is separated by commas, so each entry represents
6515 * a single quirk, and can thus only have a single value.
6516 */
6517 static const struct ata_force_param force_tbl[] __initconst = {
6518 force_cbl(40c, ATA_CBL_PATA40),
6519 force_cbl(80c, ATA_CBL_PATA80),
6520 force_cbl(short40c, ATA_CBL_PATA40_SHORT),
6521 force_cbl(unk, ATA_CBL_PATA_UNK),
6522 force_cbl(ign, ATA_CBL_PATA_IGN),
6523 force_cbl(sata, ATA_CBL_SATA),
6524
6525 force_spd_limit(1.5Gbps, 1),
6526 force_spd_limit(3.0Gbps, 2),
6527
6528 force_xfer(pio0, ATA_SHIFT_PIO + 0),
6529 force_xfer(pio1, ATA_SHIFT_PIO + 1),
6530 force_xfer(pio2, ATA_SHIFT_PIO + 2),
6531 force_xfer(pio3, ATA_SHIFT_PIO + 3),
6532 force_xfer(pio4, ATA_SHIFT_PIO + 4),
6533 force_xfer(pio5, ATA_SHIFT_PIO + 5),
6534 force_xfer(pio6, ATA_SHIFT_PIO + 6),
6535 force_xfer(mwdma0, ATA_SHIFT_MWDMA + 0),
6536 force_xfer(mwdma1, ATA_SHIFT_MWDMA + 1),
6537 force_xfer(mwdma2, ATA_SHIFT_MWDMA + 2),
6538 force_xfer(mwdma3, ATA_SHIFT_MWDMA + 3),
6539 force_xfer(mwdma4, ATA_SHIFT_MWDMA + 4),
6540 force_xfer(udma0, ATA_SHIFT_UDMA + 0),
6541 force_xfer(udma16, ATA_SHIFT_UDMA + 0),
6542 force_xfer(udma/16, ATA_SHIFT_UDMA + 0),
6543 force_xfer(udma1, ATA_SHIFT_UDMA + 1),
6544 force_xfer(udma25, ATA_SHIFT_UDMA + 1),
6545 force_xfer(udma/25, ATA_SHIFT_UDMA + 1),
6546 force_xfer(udma2, ATA_SHIFT_UDMA + 2),
6547 force_xfer(udma33, ATA_SHIFT_UDMA + 2),
6548 force_xfer(udma/33, ATA_SHIFT_UDMA + 2),
6549 force_xfer(udma3, ATA_SHIFT_UDMA + 3),
6550 force_xfer(udma44, ATA_SHIFT_UDMA + 3),
6551 force_xfer(udma/44, ATA_SHIFT_UDMA + 3),
6552 force_xfer(udma4, ATA_SHIFT_UDMA + 4),
6553 force_xfer(udma66, ATA_SHIFT_UDMA + 4),
6554 force_xfer(udma/66, ATA_SHIFT_UDMA + 4),
6555 force_xfer(udma5, ATA_SHIFT_UDMA + 5),
6556 force_xfer(udma100, ATA_SHIFT_UDMA + 5),
6557 force_xfer(udma/100, ATA_SHIFT_UDMA + 5),
6558 force_xfer(udma6, ATA_SHIFT_UDMA + 6),
6559 force_xfer(udma133, ATA_SHIFT_UDMA + 6),
6560 force_xfer(udma/133, ATA_SHIFT_UDMA + 6),
6561 force_xfer(udma7, ATA_SHIFT_UDMA + 7),
6562
6563 force_lflag_on(nohrst, ATA_LFLAG_NO_HRST),
6564 force_lflag_on(nosrst, ATA_LFLAG_NO_SRST),
6565 force_lflag_on(norst, ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST),
6566 force_lflag_on(rstonce, ATA_LFLAG_RST_ONCE),
6567 force_lflag_onoff(dbdelay, ATA_LFLAG_NO_DEBOUNCE_DELAY),
6568
6569 force_pflag_on(external, ATA_PFLAG_EXTERNAL),
6570
6571 force_quirk_onoff(ncq, ATA_QUIRK_NONCQ),
6572 force_quirk_onoff(ncqtrim, ATA_QUIRK_NO_NCQ_TRIM),
6573 force_quirk_onoff(ncqati, ATA_QUIRK_NO_NCQ_ON_ATI),
6574
6575 force_quirk_onoff(trim, ATA_QUIRK_NOTRIM),
6576 force_quirk_on(trim_zero, ATA_QUIRK_ZERO_AFTER_TRIM),
6577 force_quirk_on(max_trim_128m, ATA_QUIRK_MAX_TRIM_128M),
6578
6579 force_quirk_onoff(dma, ATA_QUIRK_NODMA),
6580 force_quirk_on(atapi_dmadir, ATA_QUIRK_ATAPI_DMADIR),
6581 force_quirk_on(atapi_mod16_dma, ATA_QUIRK_ATAPI_MOD16_DMA),
6582
6583 force_quirk_onoff(dmalog, ATA_QUIRK_NO_DMA_LOG),
6584 force_quirk_onoff(iddevlog, ATA_QUIRK_NO_ID_DEV_LOG),
6585 force_quirk_onoff(logdir, ATA_QUIRK_NO_LOG_DIR),
6586
6587 force_quirk_val(max_sec_128, ATA_QUIRK_MAX_SEC, 128),
6588 force_quirk_val(max_sec_1024, ATA_QUIRK_MAX_SEC, 1024),
6589 force_quirk_on(max_sec=, ATA_QUIRK_MAX_SEC),
6590 force_quirk_on(max_sec_lba48, ATA_QUIRK_MAX_SEC_LBA48),
6591
6592 force_quirk_onoff(lpm, ATA_QUIRK_NOLPM),
6593 force_quirk_onoff(setxfer, ATA_QUIRK_NOSETXFER),
6594 force_quirk_on(dump_id, ATA_QUIRK_DUMP_ID),
6595 force_quirk_onoff(fua, ATA_QUIRK_NO_FUA),
6596
6597 force_quirk_on(disable, ATA_QUIRK_DISABLE),
6598 };
6599
ata_parse_force_one(char ** cur,struct ata_force_ent * force_ent,const char ** reason)6600 static int __init ata_parse_force_one(char **cur,
6601 struct ata_force_ent *force_ent,
6602 const char **reason)
6603 {
6604 char *start = *cur, *p = *cur;
6605 char *id, *val, *endp, *equalsign, *char_after_equalsign;
6606 const struct ata_force_param *match_fp = NULL;
6607 u64 val_after_equalsign;
6608 int nr_matches = 0, i;
6609
6610 /* find where this param ends and update *cur */
6611 while (*p != '\0' && *p != ',')
6612 p++;
6613
6614 if (*p == '\0')
6615 *cur = p;
6616 else
6617 *cur = p + 1;
6618
6619 *p = '\0';
6620
6621 /* parse */
6622 p = strchr(start, ':');
6623 if (!p) {
6624 val = strstrip(start);
6625 goto parse_val;
6626 }
6627 *p = '\0';
6628
6629 id = strstrip(start);
6630 val = strstrip(p + 1);
6631
6632 /* parse id */
6633 p = strchr(id, '.');
6634 if (p) {
6635 *p++ = '\0';
6636 force_ent->device = simple_strtoul(p, &endp, 10);
6637 if (p == endp || *endp != '\0') {
6638 *reason = "invalid device";
6639 return -EINVAL;
6640 }
6641 }
6642
6643 force_ent->port = simple_strtoul(id, &endp, 10);
6644 if (id == endp || *endp != '\0') {
6645 *reason = "invalid port/link";
6646 return -EINVAL;
6647 }
6648
6649 parse_val:
6650 equalsign = strchr(val, '=');
6651 if (equalsign) {
6652 char_after_equalsign = equalsign + 1;
6653 if (!strlen(char_after_equalsign) ||
6654 kstrtoull(char_after_equalsign, 10, &val_after_equalsign)) {
6655 *reason = "invalid value after equal sign";
6656 return -EINVAL;
6657 }
6658 }
6659
6660 /* Parse the parameter value. */
6661 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6662 const struct ata_force_param *fp = &force_tbl[i];
6663
6664 /*
6665 * If val contains equal sign, match has to be exact, i.e.
6666 * shortcuts are not supported.
6667 */
6668 if (equalsign &&
6669 (strncasecmp(val, fp->name,
6670 char_after_equalsign - val) == 0)) {
6671 force_ent->param = *fp;
6672 force_ent->param.value = val_after_equalsign;
6673 return 0;
6674 }
6675
6676 /*
6677 * If val does not contain equal sign, allow shortcuts so that
6678 * both 1.5 and 1.5Gbps work.
6679 */
6680 if (strncasecmp(val, fp->name, strlen(val)))
6681 continue;
6682
6683 nr_matches++;
6684 match_fp = fp;
6685
6686 if (strcasecmp(val, fp->name) == 0) {
6687 nr_matches = 1;
6688 break;
6689 }
6690 }
6691
6692 if (!nr_matches) {
6693 *reason = "unknown value";
6694 return -EINVAL;
6695 }
6696 if (nr_matches > 1) {
6697 *reason = "ambiguous value";
6698 return -EINVAL;
6699 }
6700
6701 force_ent->param = *match_fp;
6702
6703 return 0;
6704 }
6705
ata_parse_force_param(void)6706 static void __init ata_parse_force_param(void)
6707 {
6708 int idx = 0, size = 1;
6709 int last_port = -1, last_device = -1;
6710 char *p, *cur, *next;
6711
6712 /* Calculate maximum number of params and allocate ata_force_tbl */
6713 for (p = ata_force_param_buf; *p; p++)
6714 if (*p == ',')
6715 size++;
6716
6717 ata_force_tbl = kzalloc_objs(ata_force_tbl[0], size, GFP_KERNEL);
6718 if (!ata_force_tbl) {
6719 printk(KERN_WARNING "ata: failed to extend force table, "
6720 "libata.force ignored\n");
6721 return;
6722 }
6723
6724 /* parse and populate the table */
6725 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6726 const char *reason = "";
6727 struct ata_force_ent te = { .port = -1, .device = -1 };
6728
6729 next = cur;
6730 if (ata_parse_force_one(&next, &te, &reason)) {
6731 printk(KERN_WARNING "ata: failed to parse force "
6732 "parameter \"%s\" (%s)\n",
6733 cur, reason);
6734 continue;
6735 }
6736
6737 if (te.port == -1) {
6738 te.port = last_port;
6739 te.device = last_device;
6740 }
6741
6742 ata_force_tbl[idx++] = te;
6743
6744 last_port = te.port;
6745 last_device = te.device;
6746 }
6747
6748 ata_force_tbl_size = idx;
6749 }
6750
ata_free_force_param(void)6751 static void ata_free_force_param(void)
6752 {
6753 kfree(ata_force_tbl);
6754 }
6755 #else
ata_parse_force_param(void)6756 static inline void ata_parse_force_param(void) { }
ata_free_force_param(void)6757 static inline void ata_free_force_param(void) { }
6758 #endif
6759
ata_init(void)6760 static int __init ata_init(void)
6761 {
6762 int rc;
6763
6764 ata_parse_force_param();
6765
6766 rc = ata_sff_init();
6767 if (rc) {
6768 ata_free_force_param();
6769 return rc;
6770 }
6771
6772 libata_transport_init();
6773 ata_scsi_transport_template = ata_attach_transport();
6774 if (!ata_scsi_transport_template) {
6775 ata_sff_exit();
6776 rc = -ENOMEM;
6777 goto err_out;
6778 }
6779
6780 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6781 return 0;
6782
6783 err_out:
6784 return rc;
6785 }
6786
ata_exit(void)6787 static void __exit ata_exit(void)
6788 {
6789 ata_release_transport(ata_scsi_transport_template);
6790 libata_transport_exit();
6791 ata_sff_exit();
6792 ata_free_force_param();
6793 }
6794
6795 subsys_initcall(ata_init);
6796 module_exit(ata_exit);
6797
6798 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6799
ata_ratelimit(void)6800 int ata_ratelimit(void)
6801 {
6802 return __ratelimit(&ratelimit);
6803 }
6804 EXPORT_SYMBOL_GPL(ata_ratelimit);
6805
6806 /**
6807 * ata_msleep - ATA EH owner aware msleep
6808 * @ap: ATA port to attribute the sleep to
6809 * @msecs: duration to sleep in milliseconds
6810 *
6811 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6812 * ownership is released before going to sleep and reacquired
6813 * after the sleep is complete. IOW, other ports sharing the
6814 * @ap->host will be allowed to own the EH while this task is
6815 * sleeping.
6816 *
6817 * LOCKING:
6818 * Might sleep.
6819 */
ata_msleep(struct ata_port * ap,unsigned int msecs)6820 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6821 {
6822 bool owns_eh = ap && ap->host->eh_owner == current;
6823
6824 if (owns_eh)
6825 ata_eh_release(ap);
6826
6827 if (msecs < 20) {
6828 unsigned long usecs = msecs * USEC_PER_MSEC;
6829 usleep_range(usecs, usecs + 50);
6830 } else {
6831 msleep(msecs);
6832 }
6833
6834 if (owns_eh)
6835 ata_eh_acquire(ap);
6836 }
6837 EXPORT_SYMBOL_GPL(ata_msleep);
6838
6839 /**
6840 * ata_wait_register - wait until register value changes
6841 * @ap: ATA port to wait register for, can be NULL
6842 * @reg: IO-mapped register
6843 * @mask: Mask to apply to read register value
6844 * @val: Wait condition
6845 * @interval: polling interval in milliseconds
6846 * @timeout: timeout in milliseconds
6847 *
6848 * Waiting for some bits of register to change is a common
6849 * operation for ATA controllers. This function reads 32bit LE
6850 * IO-mapped register @reg and tests for the following condition.
6851 *
6852 * (*@reg & mask) != val
6853 *
6854 * If the condition is met, it returns; otherwise, the process is
6855 * repeated after @interval_msec until timeout.
6856 *
6857 * LOCKING:
6858 * Kernel thread context (may sleep)
6859 *
6860 * RETURNS:
6861 * The final register value.
6862 */
ata_wait_register(struct ata_port * ap,void __iomem * reg,u32 mask,u32 val,unsigned int interval,unsigned int timeout)6863 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6864 unsigned int interval, unsigned int timeout)
6865 {
6866 unsigned long deadline;
6867 u32 tmp;
6868
6869 tmp = ioread32(reg);
6870
6871 /* Calculate timeout _after_ the first read to make sure
6872 * preceding writes reach the controller before starting to
6873 * eat away the timeout.
6874 */
6875 deadline = ata_deadline(jiffies, timeout);
6876
6877 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6878 ata_msleep(ap, interval);
6879 tmp = ioread32(reg);
6880 }
6881
6882 return tmp;
6883 }
6884 EXPORT_SYMBOL_GPL(ata_wait_register);
6885
6886 /*
6887 * Dummy port_ops
6888 */
ata_dummy_qc_issue(struct ata_queued_cmd * qc)6889 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6890 {
6891 return AC_ERR_SYSTEM;
6892 }
6893
ata_dummy_error_handler(struct ata_port * ap)6894 static void ata_dummy_error_handler(struct ata_port *ap)
6895 {
6896 /* truly dummy */
6897 }
6898
6899 struct ata_port_operations ata_dummy_port_ops = {
6900 .qc_issue = ata_dummy_qc_issue,
6901 .error_handler = ata_dummy_error_handler,
6902 .sched_eh = ata_std_sched_eh,
6903 .end_eh = ata_std_end_eh,
6904 };
6905 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6906
6907 const struct ata_port_info ata_dummy_port_info = {
6908 .port_ops = &ata_dummy_port_ops,
6909 };
6910 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6911
6912 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load);
6913 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command);
6914 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup);
6915 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start);
6916 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status);
6917