1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * libata-core.c - helper library for ATA
4 *
5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
6 * Copyright 2003-2004 Jeff Garzik
7 *
8 * libata documentation is available via 'make {ps|pdf}docs',
9 * as Documentation/driver-api/libata.rst
10 *
11 * Hardware documentation available from http://www.t13.org/ and
12 * http://www.sata-io.org/
13 *
14 * Standards documents from:
15 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
16 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
17 * http://www.sata-io.org (SATA)
18 * http://www.compactflash.org (CF)
19 * http://www.qic.org (QIC157 - Tape and DSC)
20 * http://www.ce-ata.org (CE-ATA: not supported)
21 *
22 * libata is essentially a library of internal helper functions for
23 * low-level ATA host controller drivers. As such, the API/ABI is
24 * likely to change as new drivers are added and updated.
25 * Do not depend on ABI/API stability.
26 */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/spinlock.h>
35 #include <linux/blkdev.h>
36 #include <linux/delay.h>
37 #include <linux/timer.h>
38 #include <linux/time.h>
39 #include <linux/interrupt.h>
40 #include <linux/completion.h>
41 #include <linux/suspend.h>
42 #include <linux/workqueue.h>
43 #include <linux/scatterlist.h>
44 #include <linux/io.h>
45 #include <linux/log2.h>
46 #include <linux/slab.h>
47 #include <linux/glob.h>
48 #include <scsi/scsi.h>
49 #include <scsi/scsi_cmnd.h>
50 #include <scsi/scsi_host.h>
51 #include <linux/libata.h>
52 #include <asm/byteorder.h>
53 #include <linux/unaligned.h>
54 #include <linux/cdrom.h>
55 #include <linux/ratelimit.h>
56 #include <linux/leds.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/platform_device.h>
59 #include <asm/setup.h>
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/libata.h>
63
64 #include "libata.h"
65 #include "libata-transport.h"
66
67 const struct ata_port_operations ata_base_port_ops = {
68 .prereset = ata_std_prereset,
69 .postreset = ata_std_postreset,
70 .error_handler = ata_std_error_handler,
71 .sched_eh = ata_std_sched_eh,
72 .end_eh = ata_std_end_eh,
73 };
74
75 static unsigned int ata_dev_init_params(struct ata_device *dev,
76 u16 heads, u16 sectors);
77 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
78 static void ata_dev_xfermask(struct ata_device *dev);
79 static unsigned int ata_dev_quirks(const struct ata_device *dev);
80
81 static DEFINE_IDA(ata_ida);
82
83 #ifdef CONFIG_ATA_FORCE
84 struct ata_force_param {
85 const char *name;
86 u8 cbl;
87 u8 spd_limit;
88 unsigned int xfer_mask;
89 unsigned int quirk_on;
90 unsigned int quirk_off;
91 u16 lflags_on;
92 u16 lflags_off;
93 };
94
95 struct ata_force_ent {
96 int port;
97 int device;
98 struct ata_force_param param;
99 };
100
101 static struct ata_force_ent *ata_force_tbl;
102 static int ata_force_tbl_size;
103
104 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
105 /* param_buf is thrown away after initialization, disallow read */
106 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
107 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
108 #endif
109
110 static int atapi_enabled = 1;
111 module_param(atapi_enabled, int, 0444);
112 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
113
114 static int atapi_dmadir = 0;
115 module_param(atapi_dmadir, int, 0444);
116 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
117
118 int atapi_passthru16 = 1;
119 module_param(atapi_passthru16, int, 0444);
120 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
121
122 int libata_fua = 0;
123 module_param_named(fua, libata_fua, int, 0444);
124 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
125
126 static int ata_ignore_hpa;
127 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
128 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
129
130 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
131 module_param_named(dma, libata_dma_mask, int, 0444);
132 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
133
134 static int ata_probe_timeout;
135 module_param(ata_probe_timeout, int, 0444);
136 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
137
138 int libata_noacpi = 0;
139 module_param_named(noacpi, libata_noacpi, int, 0444);
140 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
141
142 int libata_allow_tpm = 0;
143 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
144 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
145
146 static int atapi_an;
147 module_param(atapi_an, int, 0444);
148 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
149
150 MODULE_AUTHOR("Jeff Garzik");
151 MODULE_DESCRIPTION("Library module for ATA devices");
152 MODULE_LICENSE("GPL");
153 MODULE_VERSION(DRV_VERSION);
154
ata_dev_print_info(const struct ata_device * dev)155 static inline bool ata_dev_print_info(const struct ata_device *dev)
156 {
157 struct ata_eh_context *ehc = &dev->link->eh_context;
158
159 return ehc->i.flags & ATA_EHI_PRINTINFO;
160 }
161
162 /**
163 * ata_link_next - link iteration helper
164 * @link: the previous link, NULL to start
165 * @ap: ATA port containing links to iterate
166 * @mode: iteration mode, one of ATA_LITER_*
167 *
168 * LOCKING:
169 * Host lock or EH context.
170 *
171 * RETURNS:
172 * Pointer to the next link.
173 */
ata_link_next(struct ata_link * link,struct ata_port * ap,enum ata_link_iter_mode mode)174 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
175 enum ata_link_iter_mode mode)
176 {
177 BUG_ON(mode != ATA_LITER_EDGE &&
178 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
179
180 /* NULL link indicates start of iteration */
181 if (!link)
182 switch (mode) {
183 case ATA_LITER_EDGE:
184 case ATA_LITER_PMP_FIRST:
185 if (sata_pmp_attached(ap))
186 return ap->pmp_link;
187 fallthrough;
188 case ATA_LITER_HOST_FIRST:
189 return &ap->link;
190 }
191
192 /* we just iterated over the host link, what's next? */
193 if (link == &ap->link)
194 switch (mode) {
195 case ATA_LITER_HOST_FIRST:
196 if (sata_pmp_attached(ap))
197 return ap->pmp_link;
198 fallthrough;
199 case ATA_LITER_PMP_FIRST:
200 if (unlikely(ap->slave_link))
201 return ap->slave_link;
202 fallthrough;
203 case ATA_LITER_EDGE:
204 return NULL;
205 }
206
207 /* slave_link excludes PMP */
208 if (unlikely(link == ap->slave_link))
209 return NULL;
210
211 /* we were over a PMP link */
212 if (++link < ap->pmp_link + ap->nr_pmp_links)
213 return link;
214
215 if (mode == ATA_LITER_PMP_FIRST)
216 return &ap->link;
217
218 return NULL;
219 }
220 EXPORT_SYMBOL_GPL(ata_link_next);
221
222 /**
223 * ata_dev_next - device iteration helper
224 * @dev: the previous device, NULL to start
225 * @link: ATA link containing devices to iterate
226 * @mode: iteration mode, one of ATA_DITER_*
227 *
228 * LOCKING:
229 * Host lock or EH context.
230 *
231 * RETURNS:
232 * Pointer to the next device.
233 */
ata_dev_next(struct ata_device * dev,struct ata_link * link,enum ata_dev_iter_mode mode)234 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
235 enum ata_dev_iter_mode mode)
236 {
237 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
238 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
239
240 /* NULL dev indicates start of iteration */
241 if (!dev)
242 switch (mode) {
243 case ATA_DITER_ENABLED:
244 case ATA_DITER_ALL:
245 dev = link->device;
246 goto check;
247 case ATA_DITER_ENABLED_REVERSE:
248 case ATA_DITER_ALL_REVERSE:
249 dev = link->device + ata_link_max_devices(link) - 1;
250 goto check;
251 }
252
253 next:
254 /* move to the next one */
255 switch (mode) {
256 case ATA_DITER_ENABLED:
257 case ATA_DITER_ALL:
258 if (++dev < link->device + ata_link_max_devices(link))
259 goto check;
260 return NULL;
261 case ATA_DITER_ENABLED_REVERSE:
262 case ATA_DITER_ALL_REVERSE:
263 if (--dev >= link->device)
264 goto check;
265 return NULL;
266 }
267
268 check:
269 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
270 !ata_dev_enabled(dev))
271 goto next;
272 return dev;
273 }
274 EXPORT_SYMBOL_GPL(ata_dev_next);
275
276 /**
277 * ata_dev_phys_link - find physical link for a device
278 * @dev: ATA device to look up physical link for
279 *
280 * Look up physical link which @dev is attached to. Note that
281 * this is different from @dev->link only when @dev is on slave
282 * link. For all other cases, it's the same as @dev->link.
283 *
284 * LOCKING:
285 * Don't care.
286 *
287 * RETURNS:
288 * Pointer to the found physical link.
289 */
ata_dev_phys_link(struct ata_device * dev)290 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
291 {
292 struct ata_port *ap = dev->link->ap;
293
294 if (!ap->slave_link)
295 return dev->link;
296 if (!dev->devno)
297 return &ap->link;
298 return ap->slave_link;
299 }
300
301 #ifdef CONFIG_ATA_FORCE
302 /**
303 * ata_force_cbl - force cable type according to libata.force
304 * @ap: ATA port of interest
305 *
306 * Force cable type according to libata.force and whine about it.
307 * The last entry which has matching port number is used, so it
308 * can be specified as part of device force parameters. For
309 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
310 * same effect.
311 *
312 * LOCKING:
313 * EH context.
314 */
ata_force_cbl(struct ata_port * ap)315 void ata_force_cbl(struct ata_port *ap)
316 {
317 int i;
318
319 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
320 const struct ata_force_ent *fe = &ata_force_tbl[i];
321
322 if (fe->port != -1 && fe->port != ap->print_id)
323 continue;
324
325 if (fe->param.cbl == ATA_CBL_NONE)
326 continue;
327
328 ap->cbl = fe->param.cbl;
329 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
330 return;
331 }
332 }
333
334 /**
335 * ata_force_link_limits - force link limits according to libata.force
336 * @link: ATA link of interest
337 *
338 * Force link flags and SATA spd limit according to libata.force
339 * and whine about it. When only the port part is specified
340 * (e.g. 1:), the limit applies to all links connected to both
341 * the host link and all fan-out ports connected via PMP. If the
342 * device part is specified as 0 (e.g. 1.00:), it specifies the
343 * first fan-out link not the host link. Device number 15 always
344 * points to the host link whether PMP is attached or not. If the
345 * controller has slave link, device number 16 points to it.
346 *
347 * LOCKING:
348 * EH context.
349 */
ata_force_link_limits(struct ata_link * link)350 static void ata_force_link_limits(struct ata_link *link)
351 {
352 bool did_spd = false;
353 int linkno = link->pmp;
354 int i;
355
356 if (ata_is_host_link(link))
357 linkno += 15;
358
359 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
360 const struct ata_force_ent *fe = &ata_force_tbl[i];
361
362 if (fe->port != -1 && fe->port != link->ap->print_id)
363 continue;
364
365 if (fe->device != -1 && fe->device != linkno)
366 continue;
367
368 /* only honor the first spd limit */
369 if (!did_spd && fe->param.spd_limit) {
370 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
371 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
372 fe->param.name);
373 did_spd = true;
374 }
375
376 /* let lflags stack */
377 if (fe->param.lflags_on) {
378 link->flags |= fe->param.lflags_on;
379 ata_link_notice(link,
380 "FORCE: link flag 0x%x forced -> 0x%x\n",
381 fe->param.lflags_on, link->flags);
382 }
383 if (fe->param.lflags_off) {
384 link->flags &= ~fe->param.lflags_off;
385 ata_link_notice(link,
386 "FORCE: link flag 0x%x cleared -> 0x%x\n",
387 fe->param.lflags_off, link->flags);
388 }
389 }
390 }
391
392 /**
393 * ata_force_xfermask - force xfermask according to libata.force
394 * @dev: ATA device of interest
395 *
396 * Force xfer_mask according to libata.force and whine about it.
397 * For consistency with link selection, device number 15 selects
398 * the first device connected to the host link.
399 *
400 * LOCKING:
401 * EH context.
402 */
ata_force_xfermask(struct ata_device * dev)403 static void ata_force_xfermask(struct ata_device *dev)
404 {
405 int devno = dev->link->pmp + dev->devno;
406 int alt_devno = devno;
407 int i;
408
409 /* allow n.15/16 for devices attached to host port */
410 if (ata_is_host_link(dev->link))
411 alt_devno += 15;
412
413 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
414 const struct ata_force_ent *fe = &ata_force_tbl[i];
415 unsigned int pio_mask, mwdma_mask, udma_mask;
416
417 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
418 continue;
419
420 if (fe->device != -1 && fe->device != devno &&
421 fe->device != alt_devno)
422 continue;
423
424 if (!fe->param.xfer_mask)
425 continue;
426
427 ata_unpack_xfermask(fe->param.xfer_mask,
428 &pio_mask, &mwdma_mask, &udma_mask);
429 if (udma_mask)
430 dev->udma_mask = udma_mask;
431 else if (mwdma_mask) {
432 dev->udma_mask = 0;
433 dev->mwdma_mask = mwdma_mask;
434 } else {
435 dev->udma_mask = 0;
436 dev->mwdma_mask = 0;
437 dev->pio_mask = pio_mask;
438 }
439
440 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
441 fe->param.name);
442 return;
443 }
444 }
445
446 /**
447 * ata_force_quirks - force quirks according to libata.force
448 * @dev: ATA device of interest
449 *
450 * Force quirks according to libata.force and whine about it.
451 * For consistency with link selection, device number 15 selects
452 * the first device connected to the host link.
453 *
454 * LOCKING:
455 * EH context.
456 */
ata_force_quirks(struct ata_device * dev)457 static void ata_force_quirks(struct ata_device *dev)
458 {
459 int devno = dev->link->pmp + dev->devno;
460 int alt_devno = devno;
461 int i;
462
463 /* allow n.15/16 for devices attached to host port */
464 if (ata_is_host_link(dev->link))
465 alt_devno += 15;
466
467 for (i = 0; i < ata_force_tbl_size; i++) {
468 const struct ata_force_ent *fe = &ata_force_tbl[i];
469
470 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
471 continue;
472
473 if (fe->device != -1 && fe->device != devno &&
474 fe->device != alt_devno)
475 continue;
476
477 if (!(~dev->quirks & fe->param.quirk_on) &&
478 !(dev->quirks & fe->param.quirk_off))
479 continue;
480
481 dev->quirks |= fe->param.quirk_on;
482 dev->quirks &= ~fe->param.quirk_off;
483
484 ata_dev_notice(dev, "FORCE: modified (%s)\n",
485 fe->param.name);
486 }
487 }
488 #else
ata_force_link_limits(struct ata_link * link)489 static inline void ata_force_link_limits(struct ata_link *link) { }
ata_force_xfermask(struct ata_device * dev)490 static inline void ata_force_xfermask(struct ata_device *dev) { }
ata_force_quirks(struct ata_device * dev)491 static inline void ata_force_quirks(struct ata_device *dev) { }
492 #endif
493
494 /**
495 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
496 * @opcode: SCSI opcode
497 *
498 * Determine ATAPI command type from @opcode.
499 *
500 * LOCKING:
501 * None.
502 *
503 * RETURNS:
504 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
505 */
atapi_cmd_type(u8 opcode)506 int atapi_cmd_type(u8 opcode)
507 {
508 switch (opcode) {
509 case GPCMD_READ_10:
510 case GPCMD_READ_12:
511 return ATAPI_READ;
512
513 case GPCMD_WRITE_10:
514 case GPCMD_WRITE_12:
515 case GPCMD_WRITE_AND_VERIFY_10:
516 return ATAPI_WRITE;
517
518 case GPCMD_READ_CD:
519 case GPCMD_READ_CD_MSF:
520 return ATAPI_READ_CD;
521
522 case ATA_16:
523 case ATA_12:
524 if (atapi_passthru16)
525 return ATAPI_PASS_THRU;
526 fallthrough;
527 default:
528 return ATAPI_MISC;
529 }
530 }
531 EXPORT_SYMBOL_GPL(atapi_cmd_type);
532
533 static const u8 ata_rw_cmds[] = {
534 /* pio multi */
535 ATA_CMD_READ_MULTI,
536 ATA_CMD_WRITE_MULTI,
537 ATA_CMD_READ_MULTI_EXT,
538 ATA_CMD_WRITE_MULTI_EXT,
539 0,
540 0,
541 0,
542 0,
543 /* pio */
544 ATA_CMD_PIO_READ,
545 ATA_CMD_PIO_WRITE,
546 ATA_CMD_PIO_READ_EXT,
547 ATA_CMD_PIO_WRITE_EXT,
548 0,
549 0,
550 0,
551 0,
552 /* dma */
553 ATA_CMD_READ,
554 ATA_CMD_WRITE,
555 ATA_CMD_READ_EXT,
556 ATA_CMD_WRITE_EXT,
557 0,
558 0,
559 0,
560 ATA_CMD_WRITE_FUA_EXT
561 };
562
563 /**
564 * ata_set_rwcmd_protocol - set taskfile r/w command and protocol
565 * @dev: target device for the taskfile
566 * @tf: taskfile to examine and configure
567 *
568 * Examine the device configuration and tf->flags to determine
569 * the proper read/write command and protocol to use for @tf.
570 *
571 * LOCKING:
572 * caller.
573 */
ata_set_rwcmd_protocol(struct ata_device * dev,struct ata_taskfile * tf)574 static bool ata_set_rwcmd_protocol(struct ata_device *dev,
575 struct ata_taskfile *tf)
576 {
577 u8 cmd;
578
579 int index, fua, lba48, write;
580
581 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
582 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
583 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
584
585 if (dev->flags & ATA_DFLAG_PIO) {
586 tf->protocol = ATA_PROT_PIO;
587 index = dev->multi_count ? 0 : 8;
588 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
589 /* Unable to use DMA due to host limitation */
590 tf->protocol = ATA_PROT_PIO;
591 index = dev->multi_count ? 0 : 8;
592 } else {
593 tf->protocol = ATA_PROT_DMA;
594 index = 16;
595 }
596
597 cmd = ata_rw_cmds[index + fua + lba48 + write];
598 if (!cmd)
599 return false;
600
601 tf->command = cmd;
602
603 return true;
604 }
605
606 /**
607 * ata_tf_read_block - Read block address from ATA taskfile
608 * @tf: ATA taskfile of interest
609 * @dev: ATA device @tf belongs to
610 *
611 * LOCKING:
612 * None.
613 *
614 * Read block address from @tf. This function can handle all
615 * three address formats - LBA, LBA48 and CHS. tf->protocol and
616 * flags select the address format to use.
617 *
618 * RETURNS:
619 * Block address read from @tf.
620 */
ata_tf_read_block(const struct ata_taskfile * tf,struct ata_device * dev)621 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
622 {
623 u64 block = 0;
624
625 if (tf->flags & ATA_TFLAG_LBA) {
626 if (tf->flags & ATA_TFLAG_LBA48) {
627 block |= (u64)tf->hob_lbah << 40;
628 block |= (u64)tf->hob_lbam << 32;
629 block |= (u64)tf->hob_lbal << 24;
630 } else
631 block |= (tf->device & 0xf) << 24;
632
633 block |= tf->lbah << 16;
634 block |= tf->lbam << 8;
635 block |= tf->lbal;
636 } else {
637 u32 cyl, head, sect;
638
639 cyl = tf->lbam | (tf->lbah << 8);
640 head = tf->device & 0xf;
641 sect = tf->lbal;
642
643 if (!sect) {
644 ata_dev_warn(dev,
645 "device reported invalid CHS sector 0\n");
646 return U64_MAX;
647 }
648
649 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
650 }
651
652 return block;
653 }
654
655 /*
656 * Set a taskfile command duration limit index.
657 */
ata_set_tf_cdl(struct ata_queued_cmd * qc,int cdl)658 static inline void ata_set_tf_cdl(struct ata_queued_cmd *qc, int cdl)
659 {
660 struct ata_taskfile *tf = &qc->tf;
661
662 if (tf->protocol == ATA_PROT_NCQ)
663 tf->auxiliary |= cdl;
664 else
665 tf->feature |= cdl;
666
667 /*
668 * Mark this command as having a CDL and request the result
669 * task file so that we can inspect the sense data available
670 * bit on completion.
671 */
672 qc->flags |= ATA_QCFLAG_HAS_CDL | ATA_QCFLAG_RESULT_TF;
673 }
674
675 /**
676 * ata_build_rw_tf - Build ATA taskfile for given read/write request
677 * @qc: Metadata associated with the taskfile to build
678 * @block: Block address
679 * @n_block: Number of blocks
680 * @tf_flags: RW/FUA etc...
681 * @cdl: Command duration limit index
682 * @class: IO priority class
683 *
684 * LOCKING:
685 * None.
686 *
687 * Build ATA taskfile for the command @qc for read/write request described
688 * by @block, @n_block, @tf_flags and @class.
689 *
690 * RETURNS:
691 *
692 * 0 on success, -ERANGE if the request is too large for @dev,
693 * -EINVAL if the request is invalid.
694 */
ata_build_rw_tf(struct ata_queued_cmd * qc,u64 block,u32 n_block,unsigned int tf_flags,int cdl,int class)695 int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block,
696 unsigned int tf_flags, int cdl, int class)
697 {
698 struct ata_taskfile *tf = &qc->tf;
699 struct ata_device *dev = qc->dev;
700
701 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
702 tf->flags |= tf_flags;
703
704 if (ata_ncq_enabled(dev)) {
705 /* yay, NCQ */
706 if (!lba_48_ok(block, n_block))
707 return -ERANGE;
708
709 tf->protocol = ATA_PROT_NCQ;
710 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
711
712 if (tf->flags & ATA_TFLAG_WRITE)
713 tf->command = ATA_CMD_FPDMA_WRITE;
714 else
715 tf->command = ATA_CMD_FPDMA_READ;
716
717 tf->nsect = qc->hw_tag << 3;
718 tf->hob_feature = (n_block >> 8) & 0xff;
719 tf->feature = n_block & 0xff;
720
721 tf->hob_lbah = (block >> 40) & 0xff;
722 tf->hob_lbam = (block >> 32) & 0xff;
723 tf->hob_lbal = (block >> 24) & 0xff;
724 tf->lbah = (block >> 16) & 0xff;
725 tf->lbam = (block >> 8) & 0xff;
726 tf->lbal = block & 0xff;
727
728 tf->device = ATA_LBA;
729 if (tf->flags & ATA_TFLAG_FUA)
730 tf->device |= 1 << 7;
731
732 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED &&
733 class == IOPRIO_CLASS_RT)
734 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
735
736 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
737 ata_set_tf_cdl(qc, cdl);
738
739 } else if (dev->flags & ATA_DFLAG_LBA) {
740 tf->flags |= ATA_TFLAG_LBA;
741
742 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
743 ata_set_tf_cdl(qc, cdl);
744
745 /* Both FUA writes and a CDL index require 48-bit commands */
746 if (!(tf->flags & ATA_TFLAG_FUA) &&
747 !(qc->flags & ATA_QCFLAG_HAS_CDL) &&
748 lba_28_ok(block, n_block)) {
749 /* use LBA28 */
750 tf->device |= (block >> 24) & 0xf;
751 } else if (lba_48_ok(block, n_block)) {
752 if (!(dev->flags & ATA_DFLAG_LBA48))
753 return -ERANGE;
754
755 /* use LBA48 */
756 tf->flags |= ATA_TFLAG_LBA48;
757
758 tf->hob_nsect = (n_block >> 8) & 0xff;
759
760 tf->hob_lbah = (block >> 40) & 0xff;
761 tf->hob_lbam = (block >> 32) & 0xff;
762 tf->hob_lbal = (block >> 24) & 0xff;
763 } else {
764 /* request too large even for LBA48 */
765 return -ERANGE;
766 }
767
768 if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
769 return -EINVAL;
770
771 tf->nsect = n_block & 0xff;
772
773 tf->lbah = (block >> 16) & 0xff;
774 tf->lbam = (block >> 8) & 0xff;
775 tf->lbal = block & 0xff;
776
777 tf->device |= ATA_LBA;
778 } else {
779 /* CHS */
780 u32 sect, head, cyl, track;
781
782 /* The request -may- be too large for CHS addressing. */
783 if (!lba_28_ok(block, n_block))
784 return -ERANGE;
785
786 if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
787 return -EINVAL;
788
789 /* Convert LBA to CHS */
790 track = (u32)block / dev->sectors;
791 cyl = track / dev->heads;
792 head = track % dev->heads;
793 sect = (u32)block % dev->sectors + 1;
794
795 /* Check whether the converted CHS can fit.
796 Cylinder: 0-65535
797 Head: 0-15
798 Sector: 1-255*/
799 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
800 return -ERANGE;
801
802 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
803 tf->lbal = sect;
804 tf->lbam = cyl;
805 tf->lbah = cyl >> 8;
806 tf->device |= head;
807 }
808
809 return 0;
810 }
811
812 /**
813 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
814 * @pio_mask: pio_mask
815 * @mwdma_mask: mwdma_mask
816 * @udma_mask: udma_mask
817 *
818 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
819 * unsigned int xfer_mask.
820 *
821 * LOCKING:
822 * None.
823 *
824 * RETURNS:
825 * Packed xfer_mask.
826 */
ata_pack_xfermask(unsigned int pio_mask,unsigned int mwdma_mask,unsigned int udma_mask)827 unsigned int ata_pack_xfermask(unsigned int pio_mask,
828 unsigned int mwdma_mask,
829 unsigned int udma_mask)
830 {
831 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
832 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
833 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
834 }
835 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
836
837 /**
838 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
839 * @xfer_mask: xfer_mask to unpack
840 * @pio_mask: resulting pio_mask
841 * @mwdma_mask: resulting mwdma_mask
842 * @udma_mask: resulting udma_mask
843 *
844 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
845 * Any NULL destination masks will be ignored.
846 */
ata_unpack_xfermask(unsigned int xfer_mask,unsigned int * pio_mask,unsigned int * mwdma_mask,unsigned int * udma_mask)847 void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask,
848 unsigned int *mwdma_mask, unsigned int *udma_mask)
849 {
850 if (pio_mask)
851 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
852 if (mwdma_mask)
853 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
854 if (udma_mask)
855 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
856 }
857
858 static const struct ata_xfer_ent {
859 int shift, bits;
860 u8 base;
861 } ata_xfer_tbl[] = {
862 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
863 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
864 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
865 { -1, },
866 };
867
868 /**
869 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
870 * @xfer_mask: xfer_mask of interest
871 *
872 * Return matching XFER_* value for @xfer_mask. Only the highest
873 * bit of @xfer_mask is considered.
874 *
875 * LOCKING:
876 * None.
877 *
878 * RETURNS:
879 * Matching XFER_* value, 0xff if no match found.
880 */
ata_xfer_mask2mode(unsigned int xfer_mask)881 u8 ata_xfer_mask2mode(unsigned int xfer_mask)
882 {
883 int highbit = fls(xfer_mask) - 1;
884 const struct ata_xfer_ent *ent;
885
886 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
887 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
888 return ent->base + highbit - ent->shift;
889 return 0xff;
890 }
891 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
892
893 /**
894 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
895 * @xfer_mode: XFER_* of interest
896 *
897 * Return matching xfer_mask for @xfer_mode.
898 *
899 * LOCKING:
900 * None.
901 *
902 * RETURNS:
903 * Matching xfer_mask, 0 if no match found.
904 */
ata_xfer_mode2mask(u8 xfer_mode)905 unsigned int ata_xfer_mode2mask(u8 xfer_mode)
906 {
907 const struct ata_xfer_ent *ent;
908
909 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
910 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
911 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
912 & ~((1 << ent->shift) - 1);
913 return 0;
914 }
915 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
916
917 /**
918 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
919 * @xfer_mode: XFER_* of interest
920 *
921 * Return matching xfer_shift for @xfer_mode.
922 *
923 * LOCKING:
924 * None.
925 *
926 * RETURNS:
927 * Matching xfer_shift, -1 if no match found.
928 */
ata_xfer_mode2shift(u8 xfer_mode)929 int ata_xfer_mode2shift(u8 xfer_mode)
930 {
931 const struct ata_xfer_ent *ent;
932
933 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
934 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
935 return ent->shift;
936 return -1;
937 }
938 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
939
940 /**
941 * ata_mode_string - convert xfer_mask to string
942 * @xfer_mask: mask of bits supported; only highest bit counts.
943 *
944 * Determine string which represents the highest speed
945 * (highest bit in @modemask).
946 *
947 * LOCKING:
948 * None.
949 *
950 * RETURNS:
951 * Constant C string representing highest speed listed in
952 * @mode_mask, or the constant C string "<n/a>".
953 */
ata_mode_string(unsigned int xfer_mask)954 const char *ata_mode_string(unsigned int xfer_mask)
955 {
956 static const char * const xfer_mode_str[] = {
957 "PIO0",
958 "PIO1",
959 "PIO2",
960 "PIO3",
961 "PIO4",
962 "PIO5",
963 "PIO6",
964 "MWDMA0",
965 "MWDMA1",
966 "MWDMA2",
967 "MWDMA3",
968 "MWDMA4",
969 "UDMA/16",
970 "UDMA/25",
971 "UDMA/33",
972 "UDMA/44",
973 "UDMA/66",
974 "UDMA/100",
975 "UDMA/133",
976 "UDMA7",
977 };
978 int highbit;
979
980 highbit = fls(xfer_mask) - 1;
981 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
982 return xfer_mode_str[highbit];
983 return "<n/a>";
984 }
985 EXPORT_SYMBOL_GPL(ata_mode_string);
986
sata_spd_string(unsigned int spd)987 const char *sata_spd_string(unsigned int spd)
988 {
989 static const char * const spd_str[] = {
990 "1.5 Gbps",
991 "3.0 Gbps",
992 "6.0 Gbps",
993 };
994
995 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
996 return "<unknown>";
997 return spd_str[spd - 1];
998 }
999
1000 /**
1001 * ata_dev_classify - determine device type based on ATA-spec signature
1002 * @tf: ATA taskfile register set for device to be identified
1003 *
1004 * Determine from taskfile register contents whether a device is
1005 * ATA or ATAPI, as per "Signature and persistence" section
1006 * of ATA/PI spec (volume 1, sect 5.14).
1007 *
1008 * LOCKING:
1009 * None.
1010 *
1011 * RETURNS:
1012 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1013 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1014 */
ata_dev_classify(const struct ata_taskfile * tf)1015 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1016 {
1017 /* Apple's open source Darwin code hints that some devices only
1018 * put a proper signature into the LBA mid/high registers,
1019 * So, we only check those. It's sufficient for uniqueness.
1020 *
1021 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1022 * signatures for ATA and ATAPI devices attached on SerialATA,
1023 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1024 * spec has never mentioned about using different signatures
1025 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1026 * Multiplier specification began to use 0x69/0x96 to identify
1027 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1028 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1029 * 0x69/0x96 shortly and described them as reserved for
1030 * SerialATA.
1031 *
1032 * We follow the current spec and consider that 0x69/0x96
1033 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1034 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1035 * SEMB signature. This is worked around in
1036 * ata_dev_read_id().
1037 */
1038 if (tf->lbam == 0 && tf->lbah == 0)
1039 return ATA_DEV_ATA;
1040
1041 if (tf->lbam == 0x14 && tf->lbah == 0xeb)
1042 return ATA_DEV_ATAPI;
1043
1044 if (tf->lbam == 0x69 && tf->lbah == 0x96)
1045 return ATA_DEV_PMP;
1046
1047 if (tf->lbam == 0x3c && tf->lbah == 0xc3)
1048 return ATA_DEV_SEMB;
1049
1050 if (tf->lbam == 0xcd && tf->lbah == 0xab)
1051 return ATA_DEV_ZAC;
1052
1053 return ATA_DEV_UNKNOWN;
1054 }
1055 EXPORT_SYMBOL_GPL(ata_dev_classify);
1056
1057 /**
1058 * ata_id_string - Convert IDENTIFY DEVICE page into string
1059 * @id: IDENTIFY DEVICE results we will examine
1060 * @s: string into which data is output
1061 * @ofs: offset into identify device page
1062 * @len: length of string to return. must be an even number.
1063 *
1064 * The strings in the IDENTIFY DEVICE page are broken up into
1065 * 16-bit chunks. Run through the string, and output each
1066 * 8-bit chunk linearly, regardless of platform.
1067 *
1068 * LOCKING:
1069 * caller.
1070 */
1071
ata_id_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1072 void ata_id_string(const u16 *id, unsigned char *s,
1073 unsigned int ofs, unsigned int len)
1074 {
1075 unsigned int c;
1076
1077 BUG_ON(len & 1);
1078
1079 while (len > 0) {
1080 c = id[ofs] >> 8;
1081 *s = c;
1082 s++;
1083
1084 c = id[ofs] & 0xff;
1085 *s = c;
1086 s++;
1087
1088 ofs++;
1089 len -= 2;
1090 }
1091 }
1092 EXPORT_SYMBOL_GPL(ata_id_string);
1093
1094 /**
1095 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1096 * @id: IDENTIFY DEVICE results we will examine
1097 * @s: string into which data is output
1098 * @ofs: offset into identify device page
1099 * @len: length of string to return. must be an odd number.
1100 *
1101 * This function is identical to ata_id_string except that it
1102 * trims trailing spaces and terminates the resulting string with
1103 * null. @len must be actual maximum length (even number) + 1.
1104 *
1105 * LOCKING:
1106 * caller.
1107 */
ata_id_c_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1108 void ata_id_c_string(const u16 *id, unsigned char *s,
1109 unsigned int ofs, unsigned int len)
1110 {
1111 unsigned char *p;
1112
1113 ata_id_string(id, s, ofs, len - 1);
1114
1115 p = s + strnlen(s, len - 1);
1116 while (p > s && p[-1] == ' ')
1117 p--;
1118 *p = '\0';
1119 }
1120 EXPORT_SYMBOL_GPL(ata_id_c_string);
1121
ata_id_n_sectors(const u16 * id)1122 static u64 ata_id_n_sectors(const u16 *id)
1123 {
1124 if (ata_id_has_lba(id)) {
1125 if (ata_id_has_lba48(id))
1126 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1127
1128 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1129 }
1130
1131 if (ata_id_current_chs_valid(id))
1132 return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] *
1133 (u32)id[ATA_ID_CUR_SECTORS];
1134
1135 return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] *
1136 (u32)id[ATA_ID_SECTORS];
1137 }
1138
ata_tf_to_lba48(const struct ata_taskfile * tf)1139 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1140 {
1141 u64 sectors = 0;
1142
1143 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1144 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1145 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1146 sectors |= (tf->lbah & 0xff) << 16;
1147 sectors |= (tf->lbam & 0xff) << 8;
1148 sectors |= (tf->lbal & 0xff);
1149
1150 return sectors;
1151 }
1152
ata_tf_to_lba(const struct ata_taskfile * tf)1153 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1154 {
1155 u64 sectors = 0;
1156
1157 sectors |= (tf->device & 0x0f) << 24;
1158 sectors |= (tf->lbah & 0xff) << 16;
1159 sectors |= (tf->lbam & 0xff) << 8;
1160 sectors |= (tf->lbal & 0xff);
1161
1162 return sectors;
1163 }
1164
1165 /**
1166 * ata_read_native_max_address - Read native max address
1167 * @dev: target device
1168 * @max_sectors: out parameter for the result native max address
1169 *
1170 * Perform an LBA48 or LBA28 native size query upon the device in
1171 * question.
1172 *
1173 * RETURNS:
1174 * 0 on success, -EACCES if command is aborted by the drive.
1175 * -EIO on other errors.
1176 */
ata_read_native_max_address(struct ata_device * dev,u64 * max_sectors)1177 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1178 {
1179 unsigned int err_mask;
1180 struct ata_taskfile tf;
1181 int lba48 = ata_id_has_lba48(dev->id);
1182
1183 ata_tf_init(dev, &tf);
1184
1185 /* always clear all address registers */
1186 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1187
1188 if (lba48) {
1189 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1190 tf.flags |= ATA_TFLAG_LBA48;
1191 } else
1192 tf.command = ATA_CMD_READ_NATIVE_MAX;
1193
1194 tf.protocol = ATA_PROT_NODATA;
1195 tf.device |= ATA_LBA;
1196
1197 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1198 if (err_mask) {
1199 ata_dev_warn(dev,
1200 "failed to read native max address (err_mask=0x%x)\n",
1201 err_mask);
1202 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
1203 return -EACCES;
1204 return -EIO;
1205 }
1206
1207 if (lba48)
1208 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1209 else
1210 *max_sectors = ata_tf_to_lba(&tf) + 1;
1211 if (dev->quirks & ATA_QUIRK_HPA_SIZE)
1212 (*max_sectors)--;
1213 return 0;
1214 }
1215
1216 /**
1217 * ata_set_max_sectors - Set max sectors
1218 * @dev: target device
1219 * @new_sectors: new max sectors value to set for the device
1220 *
1221 * Set max sectors of @dev to @new_sectors.
1222 *
1223 * RETURNS:
1224 * 0 on success, -EACCES if command is aborted or denied (due to
1225 * previous non-volatile SET_MAX) by the drive. -EIO on other
1226 * errors.
1227 */
ata_set_max_sectors(struct ata_device * dev,u64 new_sectors)1228 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1229 {
1230 unsigned int err_mask;
1231 struct ata_taskfile tf;
1232 int lba48 = ata_id_has_lba48(dev->id);
1233
1234 new_sectors--;
1235
1236 ata_tf_init(dev, &tf);
1237
1238 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1239
1240 if (lba48) {
1241 tf.command = ATA_CMD_SET_MAX_EXT;
1242 tf.flags |= ATA_TFLAG_LBA48;
1243
1244 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1245 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1246 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1247 } else {
1248 tf.command = ATA_CMD_SET_MAX;
1249
1250 tf.device |= (new_sectors >> 24) & 0xf;
1251 }
1252
1253 tf.protocol = ATA_PROT_NODATA;
1254 tf.device |= ATA_LBA;
1255
1256 tf.lbal = (new_sectors >> 0) & 0xff;
1257 tf.lbam = (new_sectors >> 8) & 0xff;
1258 tf.lbah = (new_sectors >> 16) & 0xff;
1259
1260 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1261 if (err_mask) {
1262 ata_dev_warn(dev,
1263 "failed to set max address (err_mask=0x%x)\n",
1264 err_mask);
1265 if (err_mask == AC_ERR_DEV &&
1266 (tf.error & (ATA_ABORTED | ATA_IDNF)))
1267 return -EACCES;
1268 return -EIO;
1269 }
1270
1271 return 0;
1272 }
1273
1274 /**
1275 * ata_hpa_resize - Resize a device with an HPA set
1276 * @dev: Device to resize
1277 *
1278 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1279 * it if required to the full size of the media. The caller must check
1280 * the drive has the HPA feature set enabled.
1281 *
1282 * RETURNS:
1283 * 0 on success, -errno on failure.
1284 */
ata_hpa_resize(struct ata_device * dev)1285 static int ata_hpa_resize(struct ata_device *dev)
1286 {
1287 bool print_info = ata_dev_print_info(dev);
1288 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1289 u64 sectors = ata_id_n_sectors(dev->id);
1290 u64 native_sectors;
1291 int rc;
1292
1293 /* do we need to do it? */
1294 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1295 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1296 (dev->quirks & ATA_QUIRK_BROKEN_HPA))
1297 return 0;
1298
1299 /* read native max address */
1300 rc = ata_read_native_max_address(dev, &native_sectors);
1301 if (rc) {
1302 /* If device aborted the command or HPA isn't going to
1303 * be unlocked, skip HPA resizing.
1304 */
1305 if (rc == -EACCES || !unlock_hpa) {
1306 ata_dev_warn(dev,
1307 "HPA support seems broken, skipping HPA handling\n");
1308 dev->quirks |= ATA_QUIRK_BROKEN_HPA;
1309
1310 /* we can continue if device aborted the command */
1311 if (rc == -EACCES)
1312 rc = 0;
1313 }
1314
1315 return rc;
1316 }
1317 dev->n_native_sectors = native_sectors;
1318
1319 /* nothing to do? */
1320 if (native_sectors <= sectors || !unlock_hpa) {
1321 if (!print_info || native_sectors == sectors)
1322 return 0;
1323
1324 if (native_sectors > sectors)
1325 ata_dev_info(dev,
1326 "HPA detected: current %llu, native %llu\n",
1327 (unsigned long long)sectors,
1328 (unsigned long long)native_sectors);
1329 else if (native_sectors < sectors)
1330 ata_dev_warn(dev,
1331 "native sectors (%llu) is smaller than sectors (%llu)\n",
1332 (unsigned long long)native_sectors,
1333 (unsigned long long)sectors);
1334 return 0;
1335 }
1336
1337 /* let's unlock HPA */
1338 rc = ata_set_max_sectors(dev, native_sectors);
1339 if (rc == -EACCES) {
1340 /* if device aborted the command, skip HPA resizing */
1341 ata_dev_warn(dev,
1342 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1343 (unsigned long long)sectors,
1344 (unsigned long long)native_sectors);
1345 dev->quirks |= ATA_QUIRK_BROKEN_HPA;
1346 return 0;
1347 } else if (rc)
1348 return rc;
1349
1350 /* re-read IDENTIFY data */
1351 rc = ata_dev_reread_id(dev, 0);
1352 if (rc) {
1353 ata_dev_err(dev,
1354 "failed to re-read IDENTIFY data after HPA resizing\n");
1355 return rc;
1356 }
1357
1358 if (print_info) {
1359 u64 new_sectors = ata_id_n_sectors(dev->id);
1360 ata_dev_info(dev,
1361 "HPA unlocked: %llu -> %llu, native %llu\n",
1362 (unsigned long long)sectors,
1363 (unsigned long long)new_sectors,
1364 (unsigned long long)native_sectors);
1365 }
1366
1367 return 0;
1368 }
1369
1370 /**
1371 * ata_dump_id - IDENTIFY DEVICE info debugging output
1372 * @dev: device from which the information is fetched
1373 * @id: IDENTIFY DEVICE page to dump
1374 *
1375 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1376 * page.
1377 *
1378 * LOCKING:
1379 * caller.
1380 */
1381
ata_dump_id(struct ata_device * dev,const u16 * id)1382 static inline void ata_dump_id(struct ata_device *dev, const u16 *id)
1383 {
1384 ata_dev_dbg(dev,
1385 "49==0x%04x 53==0x%04x 63==0x%04x 64==0x%04x 75==0x%04x\n"
1386 "80==0x%04x 81==0x%04x 82==0x%04x 83==0x%04x 84==0x%04x\n"
1387 "88==0x%04x 93==0x%04x\n",
1388 id[49], id[53], id[63], id[64], id[75], id[80],
1389 id[81], id[82], id[83], id[84], id[88], id[93]);
1390 }
1391
1392 /**
1393 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1394 * @id: IDENTIFY data to compute xfer mask from
1395 *
1396 * Compute the xfermask for this device. This is not as trivial
1397 * as it seems if we must consider early devices correctly.
1398 *
1399 * FIXME: pre IDE drive timing (do we care ?).
1400 *
1401 * LOCKING:
1402 * None.
1403 *
1404 * RETURNS:
1405 * Computed xfermask
1406 */
ata_id_xfermask(const u16 * id)1407 unsigned int ata_id_xfermask(const u16 *id)
1408 {
1409 unsigned int pio_mask, mwdma_mask, udma_mask;
1410
1411 /* Usual case. Word 53 indicates word 64 is valid */
1412 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1413 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1414 pio_mask <<= 3;
1415 pio_mask |= 0x7;
1416 } else {
1417 /* If word 64 isn't valid then Word 51 high byte holds
1418 * the PIO timing number for the maximum. Turn it into
1419 * a mask.
1420 */
1421 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1422 if (mode < 5) /* Valid PIO range */
1423 pio_mask = (2 << mode) - 1;
1424 else
1425 pio_mask = 1;
1426
1427 /* But wait.. there's more. Design your standards by
1428 * committee and you too can get a free iordy field to
1429 * process. However it is the speeds not the modes that
1430 * are supported... Note drivers using the timing API
1431 * will get this right anyway
1432 */
1433 }
1434
1435 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1436
1437 if (ata_id_is_cfa(id)) {
1438 /*
1439 * Process compact flash extended modes
1440 */
1441 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1442 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1443
1444 if (pio)
1445 pio_mask |= (1 << 5);
1446 if (pio > 1)
1447 pio_mask |= (1 << 6);
1448 if (dma)
1449 mwdma_mask |= (1 << 3);
1450 if (dma > 1)
1451 mwdma_mask |= (1 << 4);
1452 }
1453
1454 udma_mask = 0;
1455 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1456 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1457
1458 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1459 }
1460 EXPORT_SYMBOL_GPL(ata_id_xfermask);
1461
ata_qc_complete_internal(struct ata_queued_cmd * qc)1462 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1463 {
1464 struct completion *waiting = qc->private_data;
1465
1466 complete(waiting);
1467 }
1468
1469 /**
1470 * ata_exec_internal - execute libata internal command
1471 * @dev: Device to which the command is sent
1472 * @tf: Taskfile registers for the command and the result
1473 * @cdb: CDB for packet command
1474 * @dma_dir: Data transfer direction of the command
1475 * @buf: Data buffer of the command
1476 * @buflen: Length of data buffer
1477 * @timeout: Timeout in msecs (0 for default)
1478 *
1479 * Executes libata internal command with timeout. @tf contains
1480 * the command on entry and the result on return. Timeout and error
1481 * conditions are reported via the return value. No recovery action
1482 * is taken after a command times out. It is the caller's duty to
1483 * clean up after timeout.
1484 *
1485 * LOCKING:
1486 * None. Should be called with kernel context, might sleep.
1487 *
1488 * RETURNS:
1489 * Zero on success, AC_ERR_* mask on failure
1490 */
ata_exec_internal(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,enum dma_data_direction dma_dir,void * buf,unsigned int buflen,unsigned int timeout)1491 unsigned int ata_exec_internal(struct ata_device *dev, struct ata_taskfile *tf,
1492 const u8 *cdb, enum dma_data_direction dma_dir,
1493 void *buf, unsigned int buflen,
1494 unsigned int timeout)
1495 {
1496 struct ata_link *link = dev->link;
1497 struct ata_port *ap = link->ap;
1498 u8 command = tf->command;
1499 struct ata_queued_cmd *qc;
1500 struct scatterlist sgl;
1501 unsigned int preempted_tag;
1502 u32 preempted_sactive;
1503 u64 preempted_qc_active;
1504 int preempted_nr_active_links;
1505 bool auto_timeout = false;
1506 DECLARE_COMPLETION_ONSTACK(wait);
1507 unsigned long flags;
1508 unsigned int err_mask;
1509 int rc;
1510
1511 if (WARN_ON(dma_dir != DMA_NONE && !buf))
1512 return AC_ERR_INVALID;
1513
1514 spin_lock_irqsave(ap->lock, flags);
1515
1516 /* No internal command while frozen */
1517 if (ata_port_is_frozen(ap)) {
1518 spin_unlock_irqrestore(ap->lock, flags);
1519 return AC_ERR_SYSTEM;
1520 }
1521
1522 /* Initialize internal qc */
1523 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1524
1525 qc->tag = ATA_TAG_INTERNAL;
1526 qc->hw_tag = 0;
1527 qc->scsicmd = NULL;
1528 qc->ap = ap;
1529 qc->dev = dev;
1530 ata_qc_reinit(qc);
1531
1532 preempted_tag = link->active_tag;
1533 preempted_sactive = link->sactive;
1534 preempted_qc_active = ap->qc_active;
1535 preempted_nr_active_links = ap->nr_active_links;
1536 link->active_tag = ATA_TAG_POISON;
1537 link->sactive = 0;
1538 ap->qc_active = 0;
1539 ap->nr_active_links = 0;
1540
1541 /* Prepare and issue qc */
1542 qc->tf = *tf;
1543 if (cdb)
1544 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1545
1546 /* Some SATA bridges need us to indicate data xfer direction */
1547 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1548 dma_dir == DMA_FROM_DEVICE)
1549 qc->tf.feature |= ATAPI_DMADIR;
1550
1551 qc->flags |= ATA_QCFLAG_RESULT_TF;
1552 qc->dma_dir = dma_dir;
1553 if (dma_dir != DMA_NONE) {
1554 sg_init_one(&sgl, buf, buflen);
1555 ata_sg_init(qc, &sgl, 1);
1556 qc->nbytes = buflen;
1557 }
1558
1559 qc->private_data = &wait;
1560 qc->complete_fn = ata_qc_complete_internal;
1561
1562 ata_qc_issue(qc);
1563
1564 spin_unlock_irqrestore(ap->lock, flags);
1565
1566 if (!timeout) {
1567 if (ata_probe_timeout) {
1568 timeout = ata_probe_timeout * 1000;
1569 } else {
1570 timeout = ata_internal_cmd_timeout(dev, command);
1571 auto_timeout = true;
1572 }
1573 }
1574
1575 ata_eh_release(ap);
1576
1577 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1578
1579 ata_eh_acquire(ap);
1580
1581 ata_sff_flush_pio_task(ap);
1582
1583 if (!rc) {
1584 /*
1585 * We are racing with irq here. If we lose, the following test
1586 * prevents us from completing the qc twice. If we win, the port
1587 * is frozen and will be cleaned up by ->post_internal_cmd().
1588 */
1589 spin_lock_irqsave(ap->lock, flags);
1590 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1591 qc->err_mask |= AC_ERR_TIMEOUT;
1592 ata_port_freeze(ap);
1593 ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n",
1594 timeout, command);
1595 }
1596 spin_unlock_irqrestore(ap->lock, flags);
1597 }
1598
1599 if (ap->ops->post_internal_cmd)
1600 ap->ops->post_internal_cmd(qc);
1601
1602 /* Perform minimal error analysis */
1603 if (qc->flags & ATA_QCFLAG_EH) {
1604 if (qc->result_tf.status & (ATA_ERR | ATA_DF))
1605 qc->err_mask |= AC_ERR_DEV;
1606
1607 if (!qc->err_mask)
1608 qc->err_mask |= AC_ERR_OTHER;
1609
1610 if (qc->err_mask & ~AC_ERR_OTHER)
1611 qc->err_mask &= ~AC_ERR_OTHER;
1612 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1613 qc->result_tf.status |= ATA_SENSE;
1614 }
1615
1616 /* Finish up */
1617 spin_lock_irqsave(ap->lock, flags);
1618
1619 *tf = qc->result_tf;
1620 err_mask = qc->err_mask;
1621
1622 ata_qc_free(qc);
1623 link->active_tag = preempted_tag;
1624 link->sactive = preempted_sactive;
1625 ap->qc_active = preempted_qc_active;
1626 ap->nr_active_links = preempted_nr_active_links;
1627
1628 spin_unlock_irqrestore(ap->lock, flags);
1629
1630 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1631 ata_internal_cmd_timed_out(dev, command);
1632
1633 return err_mask;
1634 }
1635
1636 /**
1637 * ata_pio_need_iordy - check if iordy needed
1638 * @adev: ATA device
1639 *
1640 * Check if the current speed of the device requires IORDY. Used
1641 * by various controllers for chip configuration.
1642 */
ata_pio_need_iordy(const struct ata_device * adev)1643 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1644 {
1645 /* Don't set IORDY if we're preparing for reset. IORDY may
1646 * lead to controller lock up on certain controllers if the
1647 * port is not occupied. See bko#11703 for details.
1648 */
1649 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1650 return 0;
1651 /* Controller doesn't support IORDY. Probably a pointless
1652 * check as the caller should know this.
1653 */
1654 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1655 return 0;
1656 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1657 if (ata_id_is_cfa(adev->id)
1658 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1659 return 0;
1660 /* PIO3 and higher it is mandatory */
1661 if (adev->pio_mode > XFER_PIO_2)
1662 return 1;
1663 /* We turn it on when possible */
1664 if (ata_id_has_iordy(adev->id))
1665 return 1;
1666 return 0;
1667 }
1668 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1669
1670 /**
1671 * ata_pio_mask_no_iordy - Return the non IORDY mask
1672 * @adev: ATA device
1673 *
1674 * Compute the highest mode possible if we are not using iordy. Return
1675 * -1 if no iordy mode is available.
1676 */
ata_pio_mask_no_iordy(const struct ata_device * adev)1677 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1678 {
1679 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1680 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1681 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1682 /* Is the speed faster than the drive allows non IORDY ? */
1683 if (pio) {
1684 /* This is cycle times not frequency - watch the logic! */
1685 if (pio > 240) /* PIO2 is 240nS per cycle */
1686 return 3 << ATA_SHIFT_PIO;
1687 return 7 << ATA_SHIFT_PIO;
1688 }
1689 }
1690 return 3 << ATA_SHIFT_PIO;
1691 }
1692
1693 /**
1694 * ata_do_dev_read_id - default ID read method
1695 * @dev: device
1696 * @tf: proposed taskfile
1697 * @id: data buffer
1698 *
1699 * Issue the identify taskfile and hand back the buffer containing
1700 * identify data. For some RAID controllers and for pre ATA devices
1701 * this function is wrapped or replaced by the driver
1702 */
ata_do_dev_read_id(struct ata_device * dev,struct ata_taskfile * tf,__le16 * id)1703 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1704 struct ata_taskfile *tf, __le16 *id)
1705 {
1706 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1707 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1708 }
1709 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1710
1711 /**
1712 * ata_dev_read_id - Read ID data from the specified device
1713 * @dev: target device
1714 * @p_class: pointer to class of the target device (may be changed)
1715 * @flags: ATA_READID_* flags
1716 * @id: buffer to read IDENTIFY data into
1717 *
1718 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1719 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1720 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1721 * for pre-ATA4 drives.
1722 *
1723 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1724 * now we abort if we hit that case.
1725 *
1726 * LOCKING:
1727 * Kernel thread context (may sleep)
1728 *
1729 * RETURNS:
1730 * 0 on success, -errno otherwise.
1731 */
ata_dev_read_id(struct ata_device * dev,unsigned int * p_class,unsigned int flags,u16 * id)1732 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1733 unsigned int flags, u16 *id)
1734 {
1735 struct ata_port *ap = dev->link->ap;
1736 unsigned int class = *p_class;
1737 struct ata_taskfile tf;
1738 unsigned int err_mask = 0;
1739 const char *reason;
1740 bool is_semb = class == ATA_DEV_SEMB;
1741 int may_fallback = 1, tried_spinup = 0;
1742 int rc;
1743
1744 retry:
1745 ata_tf_init(dev, &tf);
1746
1747 switch (class) {
1748 case ATA_DEV_SEMB:
1749 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1750 fallthrough;
1751 case ATA_DEV_ATA:
1752 case ATA_DEV_ZAC:
1753 tf.command = ATA_CMD_ID_ATA;
1754 break;
1755 case ATA_DEV_ATAPI:
1756 tf.command = ATA_CMD_ID_ATAPI;
1757 break;
1758 default:
1759 rc = -ENODEV;
1760 reason = "unsupported class";
1761 goto err_out;
1762 }
1763
1764 tf.protocol = ATA_PROT_PIO;
1765
1766 /* Some devices choke if TF registers contain garbage. Make
1767 * sure those are properly initialized.
1768 */
1769 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1770
1771 /* Device presence detection is unreliable on some
1772 * controllers. Always poll IDENTIFY if available.
1773 */
1774 tf.flags |= ATA_TFLAG_POLLING;
1775
1776 if (ap->ops->read_id)
1777 err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id);
1778 else
1779 err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id);
1780
1781 if (err_mask) {
1782 if (err_mask & AC_ERR_NODEV_HINT) {
1783 ata_dev_dbg(dev, "NODEV after polling detection\n");
1784 return -ENOENT;
1785 }
1786
1787 if (is_semb) {
1788 ata_dev_info(dev,
1789 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1790 /* SEMB is not supported yet */
1791 *p_class = ATA_DEV_SEMB_UNSUP;
1792 return 0;
1793 }
1794
1795 if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) {
1796 /* Device or controller might have reported
1797 * the wrong device class. Give a shot at the
1798 * other IDENTIFY if the current one is
1799 * aborted by the device.
1800 */
1801 if (may_fallback) {
1802 may_fallback = 0;
1803
1804 if (class == ATA_DEV_ATA)
1805 class = ATA_DEV_ATAPI;
1806 else
1807 class = ATA_DEV_ATA;
1808 goto retry;
1809 }
1810
1811 /* Control reaches here iff the device aborted
1812 * both flavors of IDENTIFYs which happens
1813 * sometimes with phantom devices.
1814 */
1815 ata_dev_dbg(dev,
1816 "both IDENTIFYs aborted, assuming NODEV\n");
1817 return -ENOENT;
1818 }
1819
1820 rc = -EIO;
1821 reason = "I/O error";
1822 goto err_out;
1823 }
1824
1825 if (dev->quirks & ATA_QUIRK_DUMP_ID) {
1826 ata_dev_info(dev, "dumping IDENTIFY data, "
1827 "class=%d may_fallback=%d tried_spinup=%d\n",
1828 class, may_fallback, tried_spinup);
1829 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET,
1830 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1831 }
1832
1833 /* Falling back doesn't make sense if ID data was read
1834 * successfully at least once.
1835 */
1836 may_fallback = 0;
1837
1838 swap_buf_le16(id, ATA_ID_WORDS);
1839
1840 /* sanity check */
1841 rc = -EINVAL;
1842 reason = "device reports invalid type";
1843
1844 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1845 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1846 goto err_out;
1847 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1848 ata_id_is_ata(id)) {
1849 ata_dev_dbg(dev,
1850 "host indicates ignore ATA devices, ignored\n");
1851 return -ENOENT;
1852 }
1853 } else {
1854 if (ata_id_is_ata(id))
1855 goto err_out;
1856 }
1857
1858 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1859 tried_spinup = 1;
1860 /*
1861 * Drive powered-up in standby mode, and requires a specific
1862 * SET_FEATURES spin-up subcommand before it will accept
1863 * anything other than the original IDENTIFY command.
1864 */
1865 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1866 if (err_mask && id[2] != 0x738c) {
1867 rc = -EIO;
1868 reason = "SPINUP failed";
1869 goto err_out;
1870 }
1871 /*
1872 * If the drive initially returned incomplete IDENTIFY info,
1873 * we now must reissue the IDENTIFY command.
1874 */
1875 if (id[2] == 0x37c8)
1876 goto retry;
1877 }
1878
1879 if ((flags & ATA_READID_POSTRESET) &&
1880 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1881 /*
1882 * The exact sequence expected by certain pre-ATA4 drives is:
1883 * SRST RESET
1884 * IDENTIFY (optional in early ATA)
1885 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1886 * anything else..
1887 * Some drives were very specific about that exact sequence.
1888 *
1889 * Note that ATA4 says lba is mandatory so the second check
1890 * should never trigger.
1891 */
1892 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1893 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1894 if (err_mask) {
1895 rc = -EIO;
1896 reason = "INIT_DEV_PARAMS failed";
1897 goto err_out;
1898 }
1899
1900 /* current CHS translation info (id[53-58]) might be
1901 * changed. reread the identify device info.
1902 */
1903 flags &= ~ATA_READID_POSTRESET;
1904 goto retry;
1905 }
1906 }
1907
1908 *p_class = class;
1909
1910 return 0;
1911
1912 err_out:
1913 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1914 reason, err_mask);
1915 return rc;
1916 }
1917
ata_dev_power_init_tf(struct ata_device * dev,struct ata_taskfile * tf,bool set_active)1918 bool ata_dev_power_init_tf(struct ata_device *dev, struct ata_taskfile *tf,
1919 bool set_active)
1920 {
1921 /* Only applies to ATA and ZAC devices */
1922 if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC)
1923 return false;
1924
1925 ata_tf_init(dev, tf);
1926 tf->flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1927 tf->protocol = ATA_PROT_NODATA;
1928
1929 if (set_active) {
1930 /* VERIFY for 1 sector at lba=0 */
1931 tf->command = ATA_CMD_VERIFY;
1932 tf->nsect = 1;
1933 if (dev->flags & ATA_DFLAG_LBA) {
1934 tf->flags |= ATA_TFLAG_LBA;
1935 tf->device |= ATA_LBA;
1936 } else {
1937 /* CHS */
1938 tf->lbal = 0x1; /* sect */
1939 }
1940 } else {
1941 tf->command = ATA_CMD_STANDBYNOW1;
1942 }
1943
1944 return true;
1945 }
1946
ata_dev_power_is_active(struct ata_device * dev)1947 static bool ata_dev_power_is_active(struct ata_device *dev)
1948 {
1949 struct ata_taskfile tf;
1950 unsigned int err_mask;
1951
1952 ata_tf_init(dev, &tf);
1953 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1954 tf.protocol = ATA_PROT_NODATA;
1955 tf.command = ATA_CMD_CHK_POWER;
1956
1957 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1958 if (err_mask) {
1959 ata_dev_err(dev, "Check power mode failed (err_mask=0x%x)\n",
1960 err_mask);
1961 /*
1962 * Assume we are in standby mode so that we always force a
1963 * spinup in ata_dev_power_set_active().
1964 */
1965 return false;
1966 }
1967
1968 ata_dev_dbg(dev, "Power mode: 0x%02x\n", tf.nsect);
1969
1970 /* Active or idle */
1971 return tf.nsect == 0xff;
1972 }
1973
1974 /**
1975 * ata_dev_power_set_standby - Set a device power mode to standby
1976 * @dev: target device
1977 *
1978 * Issue a STANDBY IMMEDIATE command to set a device power mode to standby.
1979 * For an HDD device, this spins down the disks.
1980 *
1981 * LOCKING:
1982 * Kernel thread context (may sleep).
1983 */
ata_dev_power_set_standby(struct ata_device * dev)1984 void ata_dev_power_set_standby(struct ata_device *dev)
1985 {
1986 unsigned long ap_flags = dev->link->ap->flags;
1987 struct ata_taskfile tf;
1988 unsigned int err_mask;
1989
1990 /* If the device is already sleeping or in standby, do nothing. */
1991 if ((dev->flags & ATA_DFLAG_SLEEPING) ||
1992 !ata_dev_power_is_active(dev))
1993 return;
1994
1995 /*
1996 * Some odd clown BIOSes issue spindown on power off (ACPI S4 or S5)
1997 * causing some drives to spin up and down again. For these, do nothing
1998 * if we are being called on shutdown.
1999 */
2000 if ((ap_flags & ATA_FLAG_NO_POWEROFF_SPINDOWN) &&
2001 system_state == SYSTEM_POWER_OFF)
2002 return;
2003
2004 if ((ap_flags & ATA_FLAG_NO_HIBERNATE_SPINDOWN) &&
2005 system_entering_hibernation())
2006 return;
2007
2008 /* Issue STANDBY IMMEDIATE command only if supported by the device */
2009 if (!ata_dev_power_init_tf(dev, &tf, false))
2010 return;
2011
2012 ata_dev_notice(dev, "Entering standby power mode\n");
2013
2014 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2015 if (err_mask)
2016 ata_dev_err(dev, "STANDBY IMMEDIATE failed (err_mask=0x%x)\n",
2017 err_mask);
2018 }
2019
2020 /**
2021 * ata_dev_power_set_active - Set a device power mode to active
2022 * @dev: target device
2023 *
2024 * Issue a VERIFY command to enter to ensure that the device is in the
2025 * active power mode. For a spun-down HDD (standby or idle power mode),
2026 * the VERIFY command will complete after the disk spins up.
2027 *
2028 * LOCKING:
2029 * Kernel thread context (may sleep).
2030 */
ata_dev_power_set_active(struct ata_device * dev)2031 void ata_dev_power_set_active(struct ata_device *dev)
2032 {
2033 struct ata_taskfile tf;
2034 unsigned int err_mask;
2035
2036 /*
2037 * Issue READ VERIFY SECTORS command for 1 sector at lba=0 only
2038 * if supported by the device.
2039 */
2040 if (!ata_dev_power_init_tf(dev, &tf, true))
2041 return;
2042
2043 /*
2044 * Check the device power state & condition and force a spinup with
2045 * VERIFY command only if the drive is not already ACTIVE or IDLE.
2046 */
2047 if (ata_dev_power_is_active(dev))
2048 return;
2049
2050 ata_dev_notice(dev, "Entering active power mode\n");
2051
2052 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2053 if (err_mask)
2054 ata_dev_err(dev, "VERIFY failed (err_mask=0x%x)\n",
2055 err_mask);
2056 }
2057
2058 /**
2059 * ata_read_log_page - read a specific log page
2060 * @dev: target device
2061 * @log: log to read
2062 * @page: page to read
2063 * @buf: buffer to store read page
2064 * @sectors: number of sectors to read
2065 *
2066 * Read log page using READ_LOG_EXT command.
2067 *
2068 * LOCKING:
2069 * Kernel thread context (may sleep).
2070 *
2071 * RETURNS:
2072 * 0 on success, AC_ERR_* mask otherwise.
2073 */
ata_read_log_page(struct ata_device * dev,u8 log,u8 page,void * buf,unsigned int sectors)2074 unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2075 u8 page, void *buf, unsigned int sectors)
2076 {
2077 unsigned long ap_flags = dev->link->ap->flags;
2078 struct ata_taskfile tf;
2079 unsigned int err_mask;
2080 bool dma = false;
2081
2082 ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page);
2083
2084 /*
2085 * Return error without actually issuing the command on controllers
2086 * which e.g. lockup on a read log page.
2087 */
2088 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2089 return AC_ERR_DEV;
2090
2091 retry:
2092 ata_tf_init(dev, &tf);
2093 if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
2094 !(dev->quirks & ATA_QUIRK_NO_DMA_LOG)) {
2095 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2096 tf.protocol = ATA_PROT_DMA;
2097 dma = true;
2098 } else {
2099 tf.command = ATA_CMD_READ_LOG_EXT;
2100 tf.protocol = ATA_PROT_PIO;
2101 dma = false;
2102 }
2103 tf.lbal = log;
2104 tf.lbam = page;
2105 tf.nsect = sectors;
2106 tf.hob_nsect = sectors >> 8;
2107 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2108
2109 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2110 buf, sectors * ATA_SECT_SIZE, 0);
2111
2112 if (err_mask) {
2113 if (dma) {
2114 dev->quirks |= ATA_QUIRK_NO_DMA_LOG;
2115 if (!ata_port_is_frozen(dev->link->ap))
2116 goto retry;
2117 }
2118 ata_dev_err(dev,
2119 "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n",
2120 (unsigned int)log, (unsigned int)page, err_mask);
2121 }
2122
2123 return err_mask;
2124 }
2125
ata_log_supported(struct ata_device * dev,u8 log)2126 static int ata_log_supported(struct ata_device *dev, u8 log)
2127 {
2128 if (dev->quirks & ATA_QUIRK_NO_LOG_DIR)
2129 return 0;
2130
2131 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, dev->sector_buf, 1))
2132 return 0;
2133 return get_unaligned_le16(&dev->sector_buf[log * 2]);
2134 }
2135
ata_identify_page_supported(struct ata_device * dev,u8 page)2136 static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2137 {
2138 unsigned int err, i;
2139
2140 if (dev->quirks & ATA_QUIRK_NO_ID_DEV_LOG)
2141 return false;
2142
2143 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2144 /*
2145 * IDENTIFY DEVICE data log is defined as mandatory starting
2146 * with ACS-3 (ATA version 10). Warn about the missing log
2147 * for drives which implement this ATA level or above.
2148 */
2149 if (ata_id_major_version(dev->id) >= 10)
2150 ata_dev_warn(dev,
2151 "ATA Identify Device Log not supported\n");
2152 dev->quirks |= ATA_QUIRK_NO_ID_DEV_LOG;
2153 return false;
2154 }
2155
2156 /*
2157 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2158 * supported.
2159 */
2160 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0,
2161 dev->sector_buf, 1);
2162 if (err)
2163 return false;
2164
2165 for (i = 0; i < dev->sector_buf[8]; i++) {
2166 if (dev->sector_buf[9 + i] == page)
2167 return true;
2168 }
2169
2170 return false;
2171 }
2172
ata_do_link_spd_quirk(struct ata_device * dev)2173 static int ata_do_link_spd_quirk(struct ata_device *dev)
2174 {
2175 struct ata_link *plink = ata_dev_phys_link(dev);
2176 u32 target, target_limit;
2177
2178 if (!sata_scr_valid(plink))
2179 return 0;
2180
2181 if (dev->quirks & ATA_QUIRK_1_5_GBPS)
2182 target = 1;
2183 else
2184 return 0;
2185
2186 target_limit = (1 << target) - 1;
2187
2188 /* if already on stricter limit, no need to push further */
2189 if (plink->sata_spd_limit <= target_limit)
2190 return 0;
2191
2192 plink->sata_spd_limit = target_limit;
2193
2194 /* Request another EH round by returning -EAGAIN if link is
2195 * going faster than the target speed. Forward progress is
2196 * guaranteed by setting sata_spd_limit to target_limit above.
2197 */
2198 if (plink->sata_spd > target) {
2199 ata_dev_info(dev, "applying link speed limit quirk to %s\n",
2200 sata_spd_string(target));
2201 return -EAGAIN;
2202 }
2203 return 0;
2204 }
2205
ata_dev_knobble(struct ata_device * dev)2206 static inline bool ata_dev_knobble(struct ata_device *dev)
2207 {
2208 struct ata_port *ap = dev->link->ap;
2209
2210 if (ata_dev_quirks(dev) & ATA_QUIRK_BRIDGE_OK)
2211 return false;
2212
2213 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2214 }
2215
ata_dev_config_ncq_send_recv(struct ata_device * dev)2216 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2217 {
2218 unsigned int err_mask;
2219
2220 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2221 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2222 return;
2223 }
2224 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2225 0, dev->sector_buf, 1);
2226 if (!err_mask) {
2227 u8 *cmds = dev->ncq_send_recv_cmds;
2228
2229 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2230 memcpy(cmds, dev->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2231
2232 if (dev->quirks & ATA_QUIRK_NO_NCQ_TRIM) {
2233 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2234 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2235 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2236 }
2237 }
2238 }
2239
ata_dev_config_ncq_non_data(struct ata_device * dev)2240 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2241 {
2242 unsigned int err_mask;
2243
2244 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2245 ata_dev_warn(dev,
2246 "NCQ Send/Recv Log not supported\n");
2247 return;
2248 }
2249 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2250 0, dev->sector_buf, 1);
2251 if (!err_mask)
2252 memcpy(dev->ncq_non_data_cmds, dev->sector_buf,
2253 ATA_LOG_NCQ_NON_DATA_SIZE);
2254 }
2255
ata_dev_config_ncq_prio(struct ata_device * dev)2256 static void ata_dev_config_ncq_prio(struct ata_device *dev)
2257 {
2258 unsigned int err_mask;
2259
2260 if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2261 return;
2262
2263 err_mask = ata_read_log_page(dev,
2264 ATA_LOG_IDENTIFY_DEVICE,
2265 ATA_LOG_SATA_SETTINGS,
2266 dev->sector_buf, 1);
2267 if (err_mask)
2268 goto not_supported;
2269
2270 if (!(dev->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2271 goto not_supported;
2272
2273 dev->flags |= ATA_DFLAG_NCQ_PRIO;
2274
2275 return;
2276
2277 not_supported:
2278 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED;
2279 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2280 }
2281
ata_dev_check_adapter(struct ata_device * dev,unsigned short vendor_id)2282 static bool ata_dev_check_adapter(struct ata_device *dev,
2283 unsigned short vendor_id)
2284 {
2285 struct pci_dev *pcidev = NULL;
2286 struct device *parent_dev = NULL;
2287
2288 for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2289 parent_dev = parent_dev->parent) {
2290 if (dev_is_pci(parent_dev)) {
2291 pcidev = to_pci_dev(parent_dev);
2292 if (pcidev->vendor == vendor_id)
2293 return true;
2294 break;
2295 }
2296 }
2297
2298 return false;
2299 }
2300
ata_dev_config_ncq(struct ata_device * dev,char * desc,size_t desc_sz)2301 static int ata_dev_config_ncq(struct ata_device *dev,
2302 char *desc, size_t desc_sz)
2303 {
2304 struct ata_port *ap = dev->link->ap;
2305 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2306 unsigned int err_mask;
2307 char *aa_desc = "";
2308
2309 if (!ata_id_has_ncq(dev->id)) {
2310 desc[0] = '\0';
2311 return 0;
2312 }
2313 if (!IS_ENABLED(CONFIG_SATA_HOST))
2314 return 0;
2315 if (dev->quirks & ATA_QUIRK_NONCQ) {
2316 snprintf(desc, desc_sz, "NCQ (not used)");
2317 return 0;
2318 }
2319
2320 if (dev->quirks & ATA_QUIRK_NO_NCQ_ON_ATI &&
2321 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2322 snprintf(desc, desc_sz, "NCQ (not used)");
2323 return 0;
2324 }
2325
2326 if (ap->flags & ATA_FLAG_NCQ) {
2327 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2328 dev->flags |= ATA_DFLAG_NCQ;
2329 }
2330
2331 if (!(dev->quirks & ATA_QUIRK_BROKEN_FPDMA_AA) &&
2332 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2333 ata_id_has_fpdma_aa(dev->id)) {
2334 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2335 SATA_FPDMA_AA);
2336 if (err_mask) {
2337 ata_dev_err(dev,
2338 "failed to enable AA (error_mask=0x%x)\n",
2339 err_mask);
2340 if (err_mask != AC_ERR_DEV) {
2341 dev->quirks |= ATA_QUIRK_BROKEN_FPDMA_AA;
2342 return -EIO;
2343 }
2344 } else
2345 aa_desc = ", AA";
2346 }
2347
2348 if (hdepth >= ddepth)
2349 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2350 else
2351 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2352 ddepth, aa_desc);
2353
2354 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2355 if (ata_id_has_ncq_send_and_recv(dev->id))
2356 ata_dev_config_ncq_send_recv(dev);
2357 if (ata_id_has_ncq_non_data(dev->id))
2358 ata_dev_config_ncq_non_data(dev);
2359 if (ata_id_has_ncq_prio(dev->id))
2360 ata_dev_config_ncq_prio(dev);
2361 }
2362
2363 return 0;
2364 }
2365
ata_dev_config_sense_reporting(struct ata_device * dev)2366 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2367 {
2368 unsigned int err_mask;
2369
2370 if (!ata_id_has_sense_reporting(dev->id))
2371 return;
2372
2373 if (ata_id_sense_reporting_enabled(dev->id))
2374 return;
2375
2376 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2377 if (err_mask) {
2378 ata_dev_dbg(dev,
2379 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2380 err_mask);
2381 }
2382 }
2383
ata_dev_config_zac(struct ata_device * dev)2384 static void ata_dev_config_zac(struct ata_device *dev)
2385 {
2386 unsigned int err_mask;
2387 u8 *identify_buf = dev->sector_buf;
2388
2389 dev->zac_zones_optimal_open = U32_MAX;
2390 dev->zac_zones_optimal_nonseq = U32_MAX;
2391 dev->zac_zones_max_open = U32_MAX;
2392
2393 /*
2394 * Always set the 'ZAC' flag for Host-managed devices.
2395 */
2396 if (dev->class == ATA_DEV_ZAC)
2397 dev->flags |= ATA_DFLAG_ZAC;
2398 else if (ata_id_zoned_cap(dev->id) == 0x01)
2399 /*
2400 * Check for host-aware devices.
2401 */
2402 dev->flags |= ATA_DFLAG_ZAC;
2403
2404 if (!(dev->flags & ATA_DFLAG_ZAC))
2405 return;
2406
2407 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2408 ata_dev_warn(dev,
2409 "ATA Zoned Information Log not supported\n");
2410 return;
2411 }
2412
2413 /*
2414 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2415 */
2416 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2417 ATA_LOG_ZONED_INFORMATION,
2418 identify_buf, 1);
2419 if (!err_mask) {
2420 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2421
2422 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2423 if ((zoned_cap >> 63))
2424 dev->zac_zoned_cap = (zoned_cap & 1);
2425 opt_open = get_unaligned_le64(&identify_buf[24]);
2426 if ((opt_open >> 63))
2427 dev->zac_zones_optimal_open = (u32)opt_open;
2428 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2429 if ((opt_nonseq >> 63))
2430 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2431 max_open = get_unaligned_le64(&identify_buf[40]);
2432 if ((max_open >> 63))
2433 dev->zac_zones_max_open = (u32)max_open;
2434 }
2435 }
2436
ata_dev_config_trusted(struct ata_device * dev)2437 static void ata_dev_config_trusted(struct ata_device *dev)
2438 {
2439 u64 trusted_cap;
2440 unsigned int err;
2441
2442 if (!ata_id_has_trusted(dev->id))
2443 return;
2444
2445 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2446 ata_dev_warn(dev,
2447 "Security Log not supported\n");
2448 return;
2449 }
2450
2451 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2452 dev->sector_buf, 1);
2453 if (err)
2454 return;
2455
2456 trusted_cap = get_unaligned_le64(&dev->sector_buf[40]);
2457 if (!(trusted_cap & (1ULL << 63))) {
2458 ata_dev_dbg(dev,
2459 "Trusted Computing capability qword not valid!\n");
2460 return;
2461 }
2462
2463 if (trusted_cap & (1 << 0))
2464 dev->flags |= ATA_DFLAG_TRUSTED;
2465 }
2466
ata_dev_cleanup_cdl_resources(struct ata_device * dev)2467 void ata_dev_cleanup_cdl_resources(struct ata_device *dev)
2468 {
2469 kfree(dev->cdl);
2470 dev->cdl = NULL;
2471 }
2472
ata_dev_init_cdl_resources(struct ata_device * dev)2473 static int ata_dev_init_cdl_resources(struct ata_device *dev)
2474 {
2475 struct ata_cdl *cdl = dev->cdl;
2476 unsigned int err_mask;
2477
2478 if (!cdl) {
2479 cdl = kzalloc(sizeof(*cdl), GFP_KERNEL);
2480 if (!cdl)
2481 return -ENOMEM;
2482 dev->cdl = cdl;
2483 }
2484
2485 err_mask = ata_read_log_page(dev, ATA_LOG_CDL, 0, cdl->desc_log_buf,
2486 ATA_LOG_CDL_SIZE / ATA_SECT_SIZE);
2487 if (err_mask) {
2488 ata_dev_warn(dev, "Read Command Duration Limits log failed\n");
2489 ata_dev_cleanup_cdl_resources(dev);
2490 return -EIO;
2491 }
2492
2493 return 0;
2494 }
2495
ata_dev_config_cdl(struct ata_device * dev)2496 static void ata_dev_config_cdl(struct ata_device *dev)
2497 {
2498 unsigned int err_mask;
2499 bool cdl_enabled;
2500 u64 val;
2501 int ret;
2502
2503 if (ata_id_major_version(dev->id) < 11)
2504 goto not_supported;
2505
2506 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE) ||
2507 !ata_identify_page_supported(dev, ATA_LOG_SUPPORTED_CAPABILITIES) ||
2508 !ata_identify_page_supported(dev, ATA_LOG_CURRENT_SETTINGS))
2509 goto not_supported;
2510
2511 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2512 ATA_LOG_SUPPORTED_CAPABILITIES,
2513 dev->sector_buf, 1);
2514 if (err_mask)
2515 goto not_supported;
2516
2517 /* Check Command Duration Limit Supported bits */
2518 val = get_unaligned_le64(&dev->sector_buf[168]);
2519 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(0)))
2520 goto not_supported;
2521
2522 /* Warn the user if command duration guideline is not supported */
2523 if (!(val & BIT_ULL(1)))
2524 ata_dev_warn(dev,
2525 "Command duration guideline is not supported\n");
2526
2527 /*
2528 * We must have support for the sense data for successful NCQ commands
2529 * log indicated by the successful NCQ command sense data supported bit.
2530 */
2531 val = get_unaligned_le64(&dev->sector_buf[8]);
2532 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(47))) {
2533 ata_dev_warn(dev,
2534 "CDL supported but Successful NCQ Command Sense Data is not supported\n");
2535 goto not_supported;
2536 }
2537
2538 /* Without NCQ autosense, the successful NCQ commands log is useless. */
2539 if (!ata_id_has_ncq_autosense(dev->id)) {
2540 ata_dev_warn(dev,
2541 "CDL supported but NCQ autosense is not supported\n");
2542 goto not_supported;
2543 }
2544
2545 /*
2546 * If CDL is marked as enabled, make sure the feature is enabled too.
2547 * Conversely, if CDL is disabled, make sure the feature is turned off.
2548 */
2549 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2550 ATA_LOG_CURRENT_SETTINGS,
2551 dev->sector_buf, 1);
2552 if (err_mask)
2553 goto not_supported;
2554
2555 val = get_unaligned_le64(&dev->sector_buf[8]);
2556 cdl_enabled = val & BIT_ULL(63) && val & BIT_ULL(21);
2557 if (dev->flags & ATA_DFLAG_CDL_ENABLED) {
2558 if (!cdl_enabled) {
2559 /* Enable CDL on the device */
2560 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 1);
2561 if (err_mask) {
2562 ata_dev_err(dev,
2563 "Enable CDL feature failed\n");
2564 goto not_supported;
2565 }
2566 }
2567 } else {
2568 if (cdl_enabled) {
2569 /* Disable CDL on the device */
2570 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 0);
2571 if (err_mask) {
2572 ata_dev_err(dev,
2573 "Disable CDL feature failed\n");
2574 goto not_supported;
2575 }
2576 }
2577 }
2578
2579 /*
2580 * While CDL itself has to be enabled using sysfs, CDL requires that
2581 * sense data for successful NCQ commands is enabled to work properly.
2582 * Just like ata_dev_config_sense_reporting(), enable it unconditionally
2583 * if supported.
2584 */
2585 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(18))) {
2586 err_mask = ata_dev_set_feature(dev,
2587 SETFEATURE_SENSE_DATA_SUCC_NCQ, 0x1);
2588 if (err_mask) {
2589 ata_dev_warn(dev,
2590 "failed to enable Sense Data for successful NCQ commands, Emask 0x%x\n",
2591 err_mask);
2592 goto not_supported;
2593 }
2594 }
2595
2596 /* CDL is supported: allocate and initialize needed resources. */
2597 ret = ata_dev_init_cdl_resources(dev);
2598 if (ret) {
2599 ata_dev_warn(dev, "Initialize CDL resources failed\n");
2600 goto not_supported;
2601 }
2602
2603 dev->flags |= ATA_DFLAG_CDL;
2604
2605 return;
2606
2607 not_supported:
2608 dev->flags &= ~(ATA_DFLAG_CDL | ATA_DFLAG_CDL_ENABLED);
2609 ata_dev_cleanup_cdl_resources(dev);
2610 }
2611
ata_dev_config_lba(struct ata_device * dev)2612 static int ata_dev_config_lba(struct ata_device *dev)
2613 {
2614 const u16 *id = dev->id;
2615 const char *lba_desc;
2616 char ncq_desc[32];
2617 int ret;
2618
2619 dev->flags |= ATA_DFLAG_LBA;
2620
2621 if (ata_id_has_lba48(id)) {
2622 lba_desc = "LBA48";
2623 dev->flags |= ATA_DFLAG_LBA48;
2624 if (dev->n_sectors >= (1UL << 28) &&
2625 ata_id_has_flush_ext(id))
2626 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2627 } else {
2628 lba_desc = "LBA";
2629 }
2630
2631 /* config NCQ */
2632 ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2633
2634 /* print device info to dmesg */
2635 if (ata_dev_print_info(dev))
2636 ata_dev_info(dev,
2637 "%llu sectors, multi %u: %s %s\n",
2638 (unsigned long long)dev->n_sectors,
2639 dev->multi_count, lba_desc, ncq_desc);
2640
2641 return ret;
2642 }
2643
ata_dev_config_chs(struct ata_device * dev)2644 static void ata_dev_config_chs(struct ata_device *dev)
2645 {
2646 const u16 *id = dev->id;
2647
2648 if (ata_id_current_chs_valid(id)) {
2649 /* Current CHS translation is valid. */
2650 dev->cylinders = id[54];
2651 dev->heads = id[55];
2652 dev->sectors = id[56];
2653 } else {
2654 /* Default translation */
2655 dev->cylinders = id[1];
2656 dev->heads = id[3];
2657 dev->sectors = id[6];
2658 }
2659
2660 /* print device info to dmesg */
2661 if (ata_dev_print_info(dev))
2662 ata_dev_info(dev,
2663 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2664 (unsigned long long)dev->n_sectors,
2665 dev->multi_count, dev->cylinders,
2666 dev->heads, dev->sectors);
2667 }
2668
ata_dev_config_fua(struct ata_device * dev)2669 static void ata_dev_config_fua(struct ata_device *dev)
2670 {
2671 /* Ignore FUA support if its use is disabled globally */
2672 if (!libata_fua)
2673 goto nofua;
2674
2675 /* Ignore devices without support for WRITE DMA FUA EXT */
2676 if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id))
2677 goto nofua;
2678
2679 /* Ignore known bad devices and devices that lack NCQ support */
2680 if (!ata_ncq_supported(dev) || (dev->quirks & ATA_QUIRK_NO_FUA))
2681 goto nofua;
2682
2683 dev->flags |= ATA_DFLAG_FUA;
2684
2685 return;
2686
2687 nofua:
2688 dev->flags &= ~ATA_DFLAG_FUA;
2689 }
2690
ata_dev_config_devslp(struct ata_device * dev)2691 static void ata_dev_config_devslp(struct ata_device *dev)
2692 {
2693 u8 *sata_setting = dev->sector_buf;
2694 unsigned int err_mask;
2695 int i, j;
2696
2697 /*
2698 * Check device sleep capability. Get DevSlp timing variables
2699 * from SATA Settings page of Identify Device Data Log.
2700 */
2701 if (!ata_id_has_devslp(dev->id) ||
2702 !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2703 return;
2704
2705 err_mask = ata_read_log_page(dev,
2706 ATA_LOG_IDENTIFY_DEVICE,
2707 ATA_LOG_SATA_SETTINGS,
2708 sata_setting, 1);
2709 if (err_mask)
2710 return;
2711
2712 dev->flags |= ATA_DFLAG_DEVSLP;
2713 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2714 j = ATA_LOG_DEVSLP_OFFSET + i;
2715 dev->devslp_timing[i] = sata_setting[j];
2716 }
2717 }
2718
ata_dev_config_cpr(struct ata_device * dev)2719 static void ata_dev_config_cpr(struct ata_device *dev)
2720 {
2721 unsigned int err_mask;
2722 size_t buf_len;
2723 int i, nr_cpr = 0;
2724 struct ata_cpr_log *cpr_log = NULL;
2725 u8 *desc, *buf = NULL;
2726
2727 if (ata_id_major_version(dev->id) < 11)
2728 goto out;
2729
2730 buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES);
2731 if (buf_len == 0)
2732 goto out;
2733
2734 /*
2735 * Read the concurrent positioning ranges log (0x47). We can have at
2736 * most 255 32B range descriptors plus a 64B header. This log varies in
2737 * size, so use the size reported in the GPL directory. Reading beyond
2738 * the supported length will result in an error.
2739 */
2740 buf_len <<= 9;
2741 buf = kzalloc(buf_len, GFP_KERNEL);
2742 if (!buf)
2743 goto out;
2744
2745 err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2746 0, buf, buf_len >> 9);
2747 if (err_mask)
2748 goto out;
2749
2750 nr_cpr = buf[0];
2751 if (!nr_cpr)
2752 goto out;
2753
2754 cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL);
2755 if (!cpr_log)
2756 goto out;
2757
2758 cpr_log->nr_cpr = nr_cpr;
2759 desc = &buf[64];
2760 for (i = 0; i < nr_cpr; i++, desc += 32) {
2761 cpr_log->cpr[i].num = desc[0];
2762 cpr_log->cpr[i].num_storage_elements = desc[1];
2763 cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]);
2764 cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]);
2765 }
2766
2767 out:
2768 swap(dev->cpr_log, cpr_log);
2769 kfree(cpr_log);
2770 kfree(buf);
2771 }
2772
ata_dev_print_features(struct ata_device * dev)2773 static void ata_dev_print_features(struct ata_device *dev)
2774 {
2775 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2776 return;
2777
2778 ata_dev_info(dev,
2779 "Features:%s%s%s%s%s%s%s%s\n",
2780 dev->flags & ATA_DFLAG_FUA ? " FUA" : "",
2781 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2782 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2783 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2784 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2785 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2786 dev->flags & ATA_DFLAG_CDL ? " CDL" : "",
2787 dev->cpr_log ? " CPR" : "");
2788 }
2789
2790 /**
2791 * ata_dev_configure - Configure the specified ATA/ATAPI device
2792 * @dev: Target device to configure
2793 *
2794 * Configure @dev according to @dev->id. Generic and low-level
2795 * driver specific fixups are also applied.
2796 *
2797 * LOCKING:
2798 * Kernel thread context (may sleep)
2799 *
2800 * RETURNS:
2801 * 0 on success, -errno otherwise
2802 */
ata_dev_configure(struct ata_device * dev)2803 int ata_dev_configure(struct ata_device *dev)
2804 {
2805 struct ata_port *ap = dev->link->ap;
2806 bool print_info = ata_dev_print_info(dev);
2807 const u16 *id = dev->id;
2808 unsigned int xfer_mask;
2809 unsigned int err_mask;
2810 char revbuf[7]; /* XYZ-99\0 */
2811 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2812 char modelbuf[ATA_ID_PROD_LEN+1];
2813 int rc;
2814
2815 if (!ata_dev_enabled(dev)) {
2816 ata_dev_dbg(dev, "no device\n");
2817 return 0;
2818 }
2819
2820 /* Set quirks */
2821 dev->quirks |= ata_dev_quirks(dev);
2822 ata_force_quirks(dev);
2823
2824 if (dev->quirks & ATA_QUIRK_DISABLE) {
2825 ata_dev_info(dev, "unsupported device, disabling\n");
2826 ata_dev_disable(dev);
2827 return 0;
2828 }
2829
2830 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2831 dev->class == ATA_DEV_ATAPI) {
2832 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2833 atapi_enabled ? "not supported with this driver"
2834 : "disabled");
2835 ata_dev_disable(dev);
2836 return 0;
2837 }
2838
2839 rc = ata_do_link_spd_quirk(dev);
2840 if (rc)
2841 return rc;
2842
2843 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2844 if ((dev->quirks & ATA_QUIRK_WD_BROKEN_LPM) &&
2845 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2846 dev->quirks |= ATA_QUIRK_NOLPM;
2847
2848 if (dev->quirks & ATA_QUIRK_NO_LPM_ON_ATI &&
2849 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI))
2850 dev->quirks |= ATA_QUIRK_NOLPM;
2851
2852 if (ap->flags & ATA_FLAG_NO_LPM)
2853 dev->quirks |= ATA_QUIRK_NOLPM;
2854
2855 if (dev->quirks & ATA_QUIRK_NOLPM) {
2856 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2857 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2858 }
2859
2860 /* let ACPI work its magic */
2861 rc = ata_acpi_on_devcfg(dev);
2862 if (rc)
2863 return rc;
2864
2865 /* massage HPA, do it early as it might change IDENTIFY data */
2866 rc = ata_hpa_resize(dev);
2867 if (rc)
2868 return rc;
2869
2870 /* print device capabilities */
2871 ata_dev_dbg(dev,
2872 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2873 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2874 __func__,
2875 id[49], id[82], id[83], id[84],
2876 id[85], id[86], id[87], id[88]);
2877
2878 /* initialize to-be-configured parameters */
2879 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2880 dev->max_sectors = 0;
2881 dev->cdb_len = 0;
2882 dev->n_sectors = 0;
2883 dev->cylinders = 0;
2884 dev->heads = 0;
2885 dev->sectors = 0;
2886 dev->multi_count = 0;
2887
2888 /*
2889 * common ATA, ATAPI feature tests
2890 */
2891
2892 /* find max transfer mode; for printk only */
2893 xfer_mask = ata_id_xfermask(id);
2894
2895 ata_dump_id(dev, id);
2896
2897 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2898 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2899 sizeof(fwrevbuf));
2900
2901 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2902 sizeof(modelbuf));
2903
2904 /* ATA-specific feature tests */
2905 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2906 if (ata_id_is_cfa(id)) {
2907 /* CPRM may make this media unusable */
2908 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2909 ata_dev_warn(dev,
2910 "supports DRM functions and may not be fully accessible\n");
2911 snprintf(revbuf, 7, "CFA");
2912 } else {
2913 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2914 /* Warn the user if the device has TPM extensions */
2915 if (ata_id_has_tpm(id))
2916 ata_dev_warn(dev,
2917 "supports DRM functions and may not be fully accessible\n");
2918 }
2919
2920 dev->n_sectors = ata_id_n_sectors(id);
2921
2922 /* get current R/W Multiple count setting */
2923 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2924 unsigned int max = dev->id[47] & 0xff;
2925 unsigned int cnt = dev->id[59] & 0xff;
2926 /* only recognize/allow powers of two here */
2927 if (is_power_of_2(max) && is_power_of_2(cnt))
2928 if (cnt <= max)
2929 dev->multi_count = cnt;
2930 }
2931
2932 /* print device info to dmesg */
2933 if (print_info)
2934 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2935 revbuf, modelbuf, fwrevbuf,
2936 ata_mode_string(xfer_mask));
2937
2938 if (ata_id_has_lba(id)) {
2939 rc = ata_dev_config_lba(dev);
2940 if (rc)
2941 return rc;
2942 } else {
2943 ata_dev_config_chs(dev);
2944 }
2945
2946 ata_dev_config_fua(dev);
2947 ata_dev_config_devslp(dev);
2948 ata_dev_config_sense_reporting(dev);
2949 ata_dev_config_zac(dev);
2950 ata_dev_config_trusted(dev);
2951 ata_dev_config_cpr(dev);
2952 ata_dev_config_cdl(dev);
2953 dev->cdb_len = 32;
2954
2955 if (print_info)
2956 ata_dev_print_features(dev);
2957 }
2958
2959 /* ATAPI-specific feature tests */
2960 else if (dev->class == ATA_DEV_ATAPI) {
2961 const char *cdb_intr_string = "";
2962 const char *atapi_an_string = "";
2963 const char *dma_dir_string = "";
2964 u32 sntf;
2965
2966 rc = atapi_cdb_len(id);
2967 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2968 ata_dev_warn(dev, "unsupported CDB len %d\n", rc);
2969 rc = -EINVAL;
2970 goto err_out_nosup;
2971 }
2972 dev->cdb_len = (unsigned int) rc;
2973
2974 /* Enable ATAPI AN if both the host and device have
2975 * the support. If PMP is attached, SNTF is required
2976 * to enable ATAPI AN to discern between PHY status
2977 * changed notifications and ATAPI ANs.
2978 */
2979 if (atapi_an &&
2980 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2981 (!sata_pmp_attached(ap) ||
2982 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2983 /* issue SET feature command to turn this on */
2984 err_mask = ata_dev_set_feature(dev,
2985 SETFEATURES_SATA_ENABLE, SATA_AN);
2986 if (err_mask)
2987 ata_dev_err(dev,
2988 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2989 err_mask);
2990 else {
2991 dev->flags |= ATA_DFLAG_AN;
2992 atapi_an_string = ", ATAPI AN";
2993 }
2994 }
2995
2996 if (ata_id_cdb_intr(dev->id)) {
2997 dev->flags |= ATA_DFLAG_CDB_INTR;
2998 cdb_intr_string = ", CDB intr";
2999 }
3000
3001 if (atapi_dmadir || (dev->quirks & ATA_QUIRK_ATAPI_DMADIR) ||
3002 atapi_id_dmadir(dev->id)) {
3003 dev->flags |= ATA_DFLAG_DMADIR;
3004 dma_dir_string = ", DMADIR";
3005 }
3006
3007 if (ata_id_has_da(dev->id)) {
3008 dev->flags |= ATA_DFLAG_DA;
3009 zpodd_init(dev);
3010 }
3011
3012 /* print device info to dmesg */
3013 if (print_info)
3014 ata_dev_info(dev,
3015 "ATAPI: %s, %s, max %s%s%s%s\n",
3016 modelbuf, fwrevbuf,
3017 ata_mode_string(xfer_mask),
3018 cdb_intr_string, atapi_an_string,
3019 dma_dir_string);
3020 }
3021
3022 /* determine max_sectors */
3023 dev->max_sectors = ATA_MAX_SECTORS;
3024 if (dev->flags & ATA_DFLAG_LBA48)
3025 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3026
3027 /* Limit PATA drive on SATA cable bridge transfers to udma5,
3028 200 sectors */
3029 if (ata_dev_knobble(dev)) {
3030 if (print_info)
3031 ata_dev_info(dev, "applying bridge limits\n");
3032 dev->udma_mask &= ATA_UDMA5;
3033 dev->max_sectors = ATA_MAX_SECTORS;
3034 }
3035
3036 if ((dev->class == ATA_DEV_ATAPI) &&
3037 (atapi_command_packet_set(id) == TYPE_TAPE)) {
3038 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
3039 dev->quirks |= ATA_QUIRK_STUCK_ERR;
3040 }
3041
3042 if (dev->quirks & ATA_QUIRK_MAX_SEC_128)
3043 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
3044 dev->max_sectors);
3045
3046 if (dev->quirks & ATA_QUIRK_MAX_SEC_1024)
3047 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
3048 dev->max_sectors);
3049
3050 if (dev->quirks & ATA_QUIRK_MAX_SEC_LBA48)
3051 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3052
3053 if (ap->ops->dev_config)
3054 ap->ops->dev_config(dev);
3055
3056 if (dev->quirks & ATA_QUIRK_DIAGNOSTIC) {
3057 /* Let the user know. We don't want to disallow opens for
3058 rescue purposes, or in case the vendor is just a blithering
3059 idiot. Do this after the dev_config call as some controllers
3060 with buggy firmware may want to avoid reporting false device
3061 bugs */
3062
3063 if (print_info) {
3064 ata_dev_warn(dev,
3065 "Drive reports diagnostics failure. This may indicate a drive\n");
3066 ata_dev_warn(dev,
3067 "fault or invalid emulation. Contact drive vendor for information.\n");
3068 }
3069 }
3070
3071 if ((dev->quirks & ATA_QUIRK_FIRMWARE_WARN) && print_info) {
3072 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
3073 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
3074 }
3075
3076 return 0;
3077
3078 err_out_nosup:
3079 return rc;
3080 }
3081
3082 /**
3083 * ata_cable_40wire - return 40 wire cable type
3084 * @ap: port
3085 *
3086 * Helper method for drivers which want to hardwire 40 wire cable
3087 * detection.
3088 */
3089
ata_cable_40wire(struct ata_port * ap)3090 int ata_cable_40wire(struct ata_port *ap)
3091 {
3092 return ATA_CBL_PATA40;
3093 }
3094 EXPORT_SYMBOL_GPL(ata_cable_40wire);
3095
3096 /**
3097 * ata_cable_80wire - return 80 wire cable type
3098 * @ap: port
3099 *
3100 * Helper method for drivers which want to hardwire 80 wire cable
3101 * detection.
3102 */
3103
ata_cable_80wire(struct ata_port * ap)3104 int ata_cable_80wire(struct ata_port *ap)
3105 {
3106 return ATA_CBL_PATA80;
3107 }
3108 EXPORT_SYMBOL_GPL(ata_cable_80wire);
3109
3110 /**
3111 * ata_cable_unknown - return unknown PATA cable.
3112 * @ap: port
3113 *
3114 * Helper method for drivers which have no PATA cable detection.
3115 */
3116
ata_cable_unknown(struct ata_port * ap)3117 int ata_cable_unknown(struct ata_port *ap)
3118 {
3119 return ATA_CBL_PATA_UNK;
3120 }
3121 EXPORT_SYMBOL_GPL(ata_cable_unknown);
3122
3123 /**
3124 * ata_cable_ignore - return ignored PATA cable.
3125 * @ap: port
3126 *
3127 * Helper method for drivers which don't use cable type to limit
3128 * transfer mode.
3129 */
ata_cable_ignore(struct ata_port * ap)3130 int ata_cable_ignore(struct ata_port *ap)
3131 {
3132 return ATA_CBL_PATA_IGN;
3133 }
3134 EXPORT_SYMBOL_GPL(ata_cable_ignore);
3135
3136 /**
3137 * ata_cable_sata - return SATA cable type
3138 * @ap: port
3139 *
3140 * Helper method for drivers which have SATA cables
3141 */
3142
ata_cable_sata(struct ata_port * ap)3143 int ata_cable_sata(struct ata_port *ap)
3144 {
3145 return ATA_CBL_SATA;
3146 }
3147 EXPORT_SYMBOL_GPL(ata_cable_sata);
3148
3149 /**
3150 * sata_print_link_status - Print SATA link status
3151 * @link: SATA link to printk link status about
3152 *
3153 * This function prints link speed and status of a SATA link.
3154 *
3155 * LOCKING:
3156 * None.
3157 */
sata_print_link_status(struct ata_link * link)3158 static void sata_print_link_status(struct ata_link *link)
3159 {
3160 u32 sstatus, scontrol, tmp;
3161
3162 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3163 return;
3164 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3165 return;
3166
3167 if (ata_phys_link_online(link)) {
3168 tmp = (sstatus >> 4) & 0xf;
3169 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3170 sata_spd_string(tmp), sstatus, scontrol);
3171 } else {
3172 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3173 sstatus, scontrol);
3174 }
3175 }
3176
3177 /**
3178 * ata_dev_pair - return other device on cable
3179 * @adev: device
3180 *
3181 * Obtain the other device on the same cable, or if none is
3182 * present NULL is returned
3183 */
3184
ata_dev_pair(struct ata_device * adev)3185 struct ata_device *ata_dev_pair(struct ata_device *adev)
3186 {
3187 struct ata_link *link = adev->link;
3188 struct ata_device *pair = &link->device[1 - adev->devno];
3189 if (!ata_dev_enabled(pair))
3190 return NULL;
3191 return pair;
3192 }
3193 EXPORT_SYMBOL_GPL(ata_dev_pair);
3194
3195 #ifdef CONFIG_ATA_ACPI
3196 /**
3197 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3198 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3199 * @cycle: cycle duration in ns
3200 *
3201 * Return matching xfer mode for @cycle. The returned mode is of
3202 * the transfer type specified by @xfer_shift. If @cycle is too
3203 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3204 * than the fastest known mode, the fasted mode is returned.
3205 *
3206 * LOCKING:
3207 * None.
3208 *
3209 * RETURNS:
3210 * Matching xfer_mode, 0xff if no match found.
3211 */
ata_timing_cycle2mode(unsigned int xfer_shift,int cycle)3212 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3213 {
3214 u8 base_mode = 0xff, last_mode = 0xff;
3215 const struct ata_xfer_ent *ent;
3216 const struct ata_timing *t;
3217
3218 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3219 if (ent->shift == xfer_shift)
3220 base_mode = ent->base;
3221
3222 for (t = ata_timing_find_mode(base_mode);
3223 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3224 unsigned short this_cycle;
3225
3226 switch (xfer_shift) {
3227 case ATA_SHIFT_PIO:
3228 case ATA_SHIFT_MWDMA:
3229 this_cycle = t->cycle;
3230 break;
3231 case ATA_SHIFT_UDMA:
3232 this_cycle = t->udma;
3233 break;
3234 default:
3235 return 0xff;
3236 }
3237
3238 if (cycle > this_cycle)
3239 break;
3240
3241 last_mode = t->mode;
3242 }
3243
3244 return last_mode;
3245 }
3246 #endif
3247
3248 /**
3249 * ata_down_xfermask_limit - adjust dev xfer masks downward
3250 * @dev: Device to adjust xfer masks
3251 * @sel: ATA_DNXFER_* selector
3252 *
3253 * Adjust xfer masks of @dev downward. Note that this function
3254 * does not apply the change. Invoking ata_set_mode() afterwards
3255 * will apply the limit.
3256 *
3257 * LOCKING:
3258 * Inherited from caller.
3259 *
3260 * RETURNS:
3261 * 0 on success, negative errno on failure
3262 */
ata_down_xfermask_limit(struct ata_device * dev,unsigned int sel)3263 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3264 {
3265 char buf[32];
3266 unsigned int orig_mask, xfer_mask;
3267 unsigned int pio_mask, mwdma_mask, udma_mask;
3268 int quiet, highbit;
3269
3270 quiet = !!(sel & ATA_DNXFER_QUIET);
3271 sel &= ~ATA_DNXFER_QUIET;
3272
3273 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3274 dev->mwdma_mask,
3275 dev->udma_mask);
3276 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3277
3278 switch (sel) {
3279 case ATA_DNXFER_PIO:
3280 highbit = fls(pio_mask) - 1;
3281 pio_mask &= ~(1 << highbit);
3282 break;
3283
3284 case ATA_DNXFER_DMA:
3285 if (udma_mask) {
3286 highbit = fls(udma_mask) - 1;
3287 udma_mask &= ~(1 << highbit);
3288 if (!udma_mask)
3289 return -ENOENT;
3290 } else if (mwdma_mask) {
3291 highbit = fls(mwdma_mask) - 1;
3292 mwdma_mask &= ~(1 << highbit);
3293 if (!mwdma_mask)
3294 return -ENOENT;
3295 }
3296 break;
3297
3298 case ATA_DNXFER_40C:
3299 udma_mask &= ATA_UDMA_MASK_40C;
3300 break;
3301
3302 case ATA_DNXFER_FORCE_PIO0:
3303 pio_mask &= 1;
3304 fallthrough;
3305 case ATA_DNXFER_FORCE_PIO:
3306 mwdma_mask = 0;
3307 udma_mask = 0;
3308 break;
3309
3310 default:
3311 BUG();
3312 }
3313
3314 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3315
3316 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3317 return -ENOENT;
3318
3319 if (!quiet) {
3320 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3321 snprintf(buf, sizeof(buf), "%s:%s",
3322 ata_mode_string(xfer_mask),
3323 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3324 else
3325 snprintf(buf, sizeof(buf), "%s",
3326 ata_mode_string(xfer_mask));
3327
3328 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3329 }
3330
3331 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3332 &dev->udma_mask);
3333
3334 return 0;
3335 }
3336
ata_dev_set_mode(struct ata_device * dev)3337 static int ata_dev_set_mode(struct ata_device *dev)
3338 {
3339 struct ata_port *ap = dev->link->ap;
3340 struct ata_eh_context *ehc = &dev->link->eh_context;
3341 const bool nosetxfer = dev->quirks & ATA_QUIRK_NOSETXFER;
3342 const char *dev_err_whine = "";
3343 int ign_dev_err = 0;
3344 unsigned int err_mask = 0;
3345 int rc;
3346
3347 dev->flags &= ~ATA_DFLAG_PIO;
3348 if (dev->xfer_shift == ATA_SHIFT_PIO)
3349 dev->flags |= ATA_DFLAG_PIO;
3350
3351 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3352 dev_err_whine = " (SET_XFERMODE skipped)";
3353 else {
3354 if (nosetxfer)
3355 ata_dev_warn(dev,
3356 "NOSETXFER but PATA detected - can't "
3357 "skip SETXFER, might malfunction\n");
3358 err_mask = ata_dev_set_xfermode(dev);
3359 }
3360
3361 if (err_mask & ~AC_ERR_DEV)
3362 goto fail;
3363
3364 /* revalidate */
3365 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3366 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3367 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3368 if (rc)
3369 return rc;
3370
3371 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3372 /* Old CFA may refuse this command, which is just fine */
3373 if (ata_id_is_cfa(dev->id))
3374 ign_dev_err = 1;
3375 /* Catch several broken garbage emulations plus some pre
3376 ATA devices */
3377 if (ata_id_major_version(dev->id) == 0 &&
3378 dev->pio_mode <= XFER_PIO_2)
3379 ign_dev_err = 1;
3380 /* Some very old devices and some bad newer ones fail
3381 any kind of SET_XFERMODE request but support PIO0-2
3382 timings and no IORDY */
3383 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3384 ign_dev_err = 1;
3385 }
3386 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3387 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3388 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3389 dev->dma_mode == XFER_MW_DMA_0 &&
3390 (dev->id[63] >> 8) & 1)
3391 ign_dev_err = 1;
3392
3393 /* if the device is actually configured correctly, ignore dev err */
3394 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3395 ign_dev_err = 1;
3396
3397 if (err_mask & AC_ERR_DEV) {
3398 if (!ign_dev_err)
3399 goto fail;
3400 else
3401 dev_err_whine = " (device error ignored)";
3402 }
3403
3404 ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n",
3405 dev->xfer_shift, (int)dev->xfer_mode);
3406
3407 if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3408 ehc->i.flags & ATA_EHI_DID_HARDRESET)
3409 ata_dev_info(dev, "configured for %s%s\n",
3410 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3411 dev_err_whine);
3412
3413 return 0;
3414
3415 fail:
3416 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3417 return -EIO;
3418 }
3419
3420 /**
3421 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3422 * @link: link on which timings will be programmed
3423 * @r_failed_dev: out parameter for failed device
3424 *
3425 * Standard implementation of the function used to tune and set
3426 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3427 * ata_dev_set_mode() fails, pointer to the failing device is
3428 * returned in @r_failed_dev.
3429 *
3430 * LOCKING:
3431 * PCI/etc. bus probe sem.
3432 *
3433 * RETURNS:
3434 * 0 on success, negative errno otherwise
3435 */
3436
ata_do_set_mode(struct ata_link * link,struct ata_device ** r_failed_dev)3437 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3438 {
3439 struct ata_port *ap = link->ap;
3440 struct ata_device *dev;
3441 int rc = 0, used_dma = 0, found = 0;
3442
3443 /* step 1: calculate xfer_mask */
3444 ata_for_each_dev(dev, link, ENABLED) {
3445 unsigned int pio_mask, dma_mask;
3446 unsigned int mode_mask;
3447
3448 mode_mask = ATA_DMA_MASK_ATA;
3449 if (dev->class == ATA_DEV_ATAPI)
3450 mode_mask = ATA_DMA_MASK_ATAPI;
3451 else if (ata_id_is_cfa(dev->id))
3452 mode_mask = ATA_DMA_MASK_CFA;
3453
3454 ata_dev_xfermask(dev);
3455 ata_force_xfermask(dev);
3456
3457 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3458
3459 if (libata_dma_mask & mode_mask)
3460 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3461 dev->udma_mask);
3462 else
3463 dma_mask = 0;
3464
3465 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3466 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3467
3468 found = 1;
3469 if (ata_dma_enabled(dev))
3470 used_dma = 1;
3471 }
3472 if (!found)
3473 goto out;
3474
3475 /* step 2: always set host PIO timings */
3476 ata_for_each_dev(dev, link, ENABLED) {
3477 if (dev->pio_mode == 0xff) {
3478 ata_dev_warn(dev, "no PIO support\n");
3479 rc = -EINVAL;
3480 goto out;
3481 }
3482
3483 dev->xfer_mode = dev->pio_mode;
3484 dev->xfer_shift = ATA_SHIFT_PIO;
3485 if (ap->ops->set_piomode)
3486 ap->ops->set_piomode(ap, dev);
3487 }
3488
3489 /* step 3: set host DMA timings */
3490 ata_for_each_dev(dev, link, ENABLED) {
3491 if (!ata_dma_enabled(dev))
3492 continue;
3493
3494 dev->xfer_mode = dev->dma_mode;
3495 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3496 if (ap->ops->set_dmamode)
3497 ap->ops->set_dmamode(ap, dev);
3498 }
3499
3500 /* step 4: update devices' xfer mode */
3501 ata_for_each_dev(dev, link, ENABLED) {
3502 rc = ata_dev_set_mode(dev);
3503 if (rc)
3504 goto out;
3505 }
3506
3507 /* Record simplex status. If we selected DMA then the other
3508 * host channels are not permitted to do so.
3509 */
3510 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3511 ap->host->simplex_claimed = ap;
3512
3513 out:
3514 if (rc)
3515 *r_failed_dev = dev;
3516 return rc;
3517 }
3518 EXPORT_SYMBOL_GPL(ata_do_set_mode);
3519
3520 /**
3521 * ata_wait_ready - wait for link to become ready
3522 * @link: link to be waited on
3523 * @deadline: deadline jiffies for the operation
3524 * @check_ready: callback to check link readiness
3525 *
3526 * Wait for @link to become ready. @check_ready should return
3527 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3528 * link doesn't seem to be occupied, other errno for other error
3529 * conditions.
3530 *
3531 * Transient -ENODEV conditions are allowed for
3532 * ATA_TMOUT_FF_WAIT.
3533 *
3534 * LOCKING:
3535 * EH context.
3536 *
3537 * RETURNS:
3538 * 0 if @link is ready before @deadline; otherwise, -errno.
3539 */
ata_wait_ready(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3540 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3541 int (*check_ready)(struct ata_link *link))
3542 {
3543 unsigned long start = jiffies;
3544 unsigned long nodev_deadline;
3545 int warned = 0;
3546
3547 /* choose which 0xff timeout to use, read comment in libata.h */
3548 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3549 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3550 else
3551 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3552
3553 /* Slave readiness can't be tested separately from master. On
3554 * M/S emulation configuration, this function should be called
3555 * only on the master and it will handle both master and slave.
3556 */
3557 WARN_ON(link == link->ap->slave_link);
3558
3559 if (time_after(nodev_deadline, deadline))
3560 nodev_deadline = deadline;
3561
3562 while (1) {
3563 unsigned long now = jiffies;
3564 int ready, tmp;
3565
3566 ready = tmp = check_ready(link);
3567 if (ready > 0)
3568 return 0;
3569
3570 /*
3571 * -ENODEV could be transient. Ignore -ENODEV if link
3572 * is online. Also, some SATA devices take a long
3573 * time to clear 0xff after reset. Wait for
3574 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3575 * offline.
3576 *
3577 * Note that some PATA controllers (pata_ali) explode
3578 * if status register is read more than once when
3579 * there's no device attached.
3580 */
3581 if (ready == -ENODEV) {
3582 if (ata_link_online(link))
3583 ready = 0;
3584 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3585 !ata_link_offline(link) &&
3586 time_before(now, nodev_deadline))
3587 ready = 0;
3588 }
3589
3590 if (ready)
3591 return ready;
3592 if (time_after(now, deadline))
3593 return -EBUSY;
3594
3595 if (!warned && time_after(now, start + 5 * HZ) &&
3596 (deadline - now > 3 * HZ)) {
3597 ata_link_warn(link,
3598 "link is slow to respond, please be patient "
3599 "(ready=%d)\n", tmp);
3600 warned = 1;
3601 }
3602
3603 ata_msleep(link->ap, 50);
3604 }
3605 }
3606
3607 /**
3608 * ata_wait_after_reset - wait for link to become ready after reset
3609 * @link: link to be waited on
3610 * @deadline: deadline jiffies for the operation
3611 * @check_ready: callback to check link readiness
3612 *
3613 * Wait for @link to become ready after reset.
3614 *
3615 * LOCKING:
3616 * EH context.
3617 *
3618 * RETURNS:
3619 * 0 if @link is ready before @deadline; otherwise, -errno.
3620 */
ata_wait_after_reset(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3621 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3622 int (*check_ready)(struct ata_link *link))
3623 {
3624 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3625
3626 return ata_wait_ready(link, deadline, check_ready);
3627 }
3628 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3629
3630 /**
3631 * ata_std_prereset - prepare for reset
3632 * @link: ATA link to be reset
3633 * @deadline: deadline jiffies for the operation
3634 *
3635 * @link is about to be reset. Initialize it. Failure from
3636 * prereset makes libata abort whole reset sequence and give up
3637 * that port, so prereset should be best-effort. It does its
3638 * best to prepare for reset sequence but if things go wrong, it
3639 * should just whine, not fail.
3640 *
3641 * LOCKING:
3642 * Kernel thread context (may sleep)
3643 *
3644 * RETURNS:
3645 * Always 0.
3646 */
ata_std_prereset(struct ata_link * link,unsigned long deadline)3647 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3648 {
3649 struct ata_port *ap = link->ap;
3650 struct ata_eh_context *ehc = &link->eh_context;
3651 const unsigned int *timing = sata_ehc_deb_timing(ehc);
3652 int rc;
3653
3654 /* if we're about to do hardreset, nothing more to do */
3655 if (ehc->i.action & ATA_EH_HARDRESET)
3656 return 0;
3657
3658 /* if SATA, resume link */
3659 if (ap->flags & ATA_FLAG_SATA) {
3660 rc = sata_link_resume(link, timing, deadline);
3661 /* whine about phy resume failure but proceed */
3662 if (rc && rc != -EOPNOTSUPP)
3663 ata_link_warn(link,
3664 "failed to resume link for reset (errno=%d)\n",
3665 rc);
3666 }
3667
3668 /* no point in trying softreset on offline link */
3669 if (ata_phys_link_offline(link))
3670 ehc->i.action &= ~ATA_EH_SOFTRESET;
3671
3672 return 0;
3673 }
3674 EXPORT_SYMBOL_GPL(ata_std_prereset);
3675
3676 /**
3677 * ata_std_postreset - standard postreset callback
3678 * @link: the target ata_link
3679 * @classes: classes of attached devices
3680 *
3681 * This function is invoked after a successful reset. Note that
3682 * the device might have been reset more than once using
3683 * different reset methods before postreset is invoked.
3684 *
3685 * LOCKING:
3686 * Kernel thread context (may sleep)
3687 */
ata_std_postreset(struct ata_link * link,unsigned int * classes)3688 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3689 {
3690 u32 serror;
3691
3692 /* reset complete, clear SError */
3693 if (!sata_scr_read(link, SCR_ERROR, &serror))
3694 sata_scr_write(link, SCR_ERROR, serror);
3695
3696 /* print link status */
3697 sata_print_link_status(link);
3698 }
3699 EXPORT_SYMBOL_GPL(ata_std_postreset);
3700
3701 /**
3702 * ata_dev_same_device - Determine whether new ID matches configured device
3703 * @dev: device to compare against
3704 * @new_class: class of the new device
3705 * @new_id: IDENTIFY page of the new device
3706 *
3707 * Compare @new_class and @new_id against @dev and determine
3708 * whether @dev is the device indicated by @new_class and
3709 * @new_id.
3710 *
3711 * LOCKING:
3712 * None.
3713 *
3714 * RETURNS:
3715 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3716 */
ata_dev_same_device(struct ata_device * dev,unsigned int new_class,const u16 * new_id)3717 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3718 const u16 *new_id)
3719 {
3720 const u16 *old_id = dev->id;
3721 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3722 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3723
3724 if (dev->class != new_class) {
3725 ata_dev_info(dev, "class mismatch %d != %d\n",
3726 dev->class, new_class);
3727 return 0;
3728 }
3729
3730 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3731 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3732 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3733 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3734
3735 if (strcmp(model[0], model[1])) {
3736 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3737 model[0], model[1]);
3738 return 0;
3739 }
3740
3741 if (strcmp(serial[0], serial[1])) {
3742 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3743 serial[0], serial[1]);
3744 return 0;
3745 }
3746
3747 return 1;
3748 }
3749
3750 /**
3751 * ata_dev_reread_id - Re-read IDENTIFY data
3752 * @dev: target ATA device
3753 * @readid_flags: read ID flags
3754 *
3755 * Re-read IDENTIFY page and make sure @dev is still attached to
3756 * the port.
3757 *
3758 * LOCKING:
3759 * Kernel thread context (may sleep)
3760 *
3761 * RETURNS:
3762 * 0 on success, negative errno otherwise
3763 */
ata_dev_reread_id(struct ata_device * dev,unsigned int readid_flags)3764 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3765 {
3766 unsigned int class = dev->class;
3767 u16 *id = (void *)dev->sector_buf;
3768 int rc;
3769
3770 /* read ID data */
3771 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3772 if (rc)
3773 return rc;
3774
3775 /* is the device still there? */
3776 if (!ata_dev_same_device(dev, class, id))
3777 return -ENODEV;
3778
3779 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3780 return 0;
3781 }
3782
3783 /**
3784 * ata_dev_revalidate - Revalidate ATA device
3785 * @dev: device to revalidate
3786 * @new_class: new class code
3787 * @readid_flags: read ID flags
3788 *
3789 * Re-read IDENTIFY page, make sure @dev is still attached to the
3790 * port and reconfigure it according to the new IDENTIFY page.
3791 *
3792 * LOCKING:
3793 * Kernel thread context (may sleep)
3794 *
3795 * RETURNS:
3796 * 0 on success, negative errno otherwise
3797 */
ata_dev_revalidate(struct ata_device * dev,unsigned int new_class,unsigned int readid_flags)3798 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3799 unsigned int readid_flags)
3800 {
3801 u64 n_sectors = dev->n_sectors;
3802 u64 n_native_sectors = dev->n_native_sectors;
3803 int rc;
3804
3805 if (!ata_dev_enabled(dev))
3806 return -ENODEV;
3807
3808 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3809 if (ata_class_enabled(new_class) && new_class == ATA_DEV_PMP) {
3810 ata_dev_info(dev, "class mismatch %u != %u\n",
3811 dev->class, new_class);
3812 rc = -ENODEV;
3813 goto fail;
3814 }
3815
3816 /* re-read ID */
3817 rc = ata_dev_reread_id(dev, readid_flags);
3818 if (rc)
3819 goto fail;
3820
3821 /* configure device according to the new ID */
3822 rc = ata_dev_configure(dev);
3823 if (rc)
3824 goto fail;
3825
3826 /* verify n_sectors hasn't changed */
3827 if (dev->class != ATA_DEV_ATA || !n_sectors ||
3828 dev->n_sectors == n_sectors)
3829 return 0;
3830
3831 /* n_sectors has changed */
3832 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3833 (unsigned long long)n_sectors,
3834 (unsigned long long)dev->n_sectors);
3835
3836 /*
3837 * Something could have caused HPA to be unlocked
3838 * involuntarily. If n_native_sectors hasn't changed and the
3839 * new size matches it, keep the device.
3840 */
3841 if (dev->n_native_sectors == n_native_sectors &&
3842 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3843 ata_dev_warn(dev,
3844 "new n_sectors matches native, probably "
3845 "late HPA unlock, n_sectors updated\n");
3846 /* use the larger n_sectors */
3847 return 0;
3848 }
3849
3850 /*
3851 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
3852 * unlocking HPA in those cases.
3853 *
3854 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3855 */
3856 if (dev->n_native_sectors == n_native_sectors &&
3857 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3858 !(dev->quirks & ATA_QUIRK_BROKEN_HPA)) {
3859 ata_dev_warn(dev,
3860 "old n_sectors matches native, probably "
3861 "late HPA lock, will try to unlock HPA\n");
3862 /* try unlocking HPA */
3863 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3864 rc = -EIO;
3865 } else
3866 rc = -ENODEV;
3867
3868 /* restore original n_[native_]sectors and fail */
3869 dev->n_native_sectors = n_native_sectors;
3870 dev->n_sectors = n_sectors;
3871 fail:
3872 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3873 return rc;
3874 }
3875
3876 static const char * const ata_quirk_names[] = {
3877 [__ATA_QUIRK_DIAGNOSTIC] = "diagnostic",
3878 [__ATA_QUIRK_NODMA] = "nodma",
3879 [__ATA_QUIRK_NONCQ] = "noncq",
3880 [__ATA_QUIRK_MAX_SEC_128] = "maxsec128",
3881 [__ATA_QUIRK_BROKEN_HPA] = "brokenhpa",
3882 [__ATA_QUIRK_DISABLE] = "disable",
3883 [__ATA_QUIRK_HPA_SIZE] = "hpasize",
3884 [__ATA_QUIRK_IVB] = "ivb",
3885 [__ATA_QUIRK_STUCK_ERR] = "stuckerr",
3886 [__ATA_QUIRK_BRIDGE_OK] = "bridgeok",
3887 [__ATA_QUIRK_ATAPI_MOD16_DMA] = "atapimod16dma",
3888 [__ATA_QUIRK_FIRMWARE_WARN] = "firmwarewarn",
3889 [__ATA_QUIRK_1_5_GBPS] = "1.5gbps",
3890 [__ATA_QUIRK_NOSETXFER] = "nosetxfer",
3891 [__ATA_QUIRK_BROKEN_FPDMA_AA] = "brokenfpdmaaa",
3892 [__ATA_QUIRK_DUMP_ID] = "dumpid",
3893 [__ATA_QUIRK_MAX_SEC_LBA48] = "maxseclba48",
3894 [__ATA_QUIRK_ATAPI_DMADIR] = "atapidmadir",
3895 [__ATA_QUIRK_NO_NCQ_TRIM] = "noncqtrim",
3896 [__ATA_QUIRK_NOLPM] = "nolpm",
3897 [__ATA_QUIRK_WD_BROKEN_LPM] = "wdbrokenlpm",
3898 [__ATA_QUIRK_ZERO_AFTER_TRIM] = "zeroaftertrim",
3899 [__ATA_QUIRK_NO_DMA_LOG] = "nodmalog",
3900 [__ATA_QUIRK_NOTRIM] = "notrim",
3901 [__ATA_QUIRK_MAX_SEC_1024] = "maxsec1024",
3902 [__ATA_QUIRK_MAX_TRIM_128M] = "maxtrim128m",
3903 [__ATA_QUIRK_NO_NCQ_ON_ATI] = "noncqonati",
3904 [__ATA_QUIRK_NO_LPM_ON_ATI] = "nolpmonati",
3905 [__ATA_QUIRK_NO_ID_DEV_LOG] = "noiddevlog",
3906 [__ATA_QUIRK_NO_LOG_DIR] = "nologdir",
3907 [__ATA_QUIRK_NO_FUA] = "nofua",
3908 };
3909
ata_dev_print_quirks(const struct ata_device * dev,const char * model,const char * rev,unsigned int quirks)3910 static void ata_dev_print_quirks(const struct ata_device *dev,
3911 const char *model, const char *rev,
3912 unsigned int quirks)
3913 {
3914 struct ata_eh_context *ehc = &dev->link->eh_context;
3915 int n = 0, i;
3916 size_t sz;
3917 char *str;
3918
3919 if (!ata_dev_print_info(dev) || ehc->i.flags & ATA_EHI_DID_PRINT_QUIRKS)
3920 return;
3921
3922 ehc->i.flags |= ATA_EHI_DID_PRINT_QUIRKS;
3923
3924 if (!quirks)
3925 return;
3926
3927 sz = 64 + ARRAY_SIZE(ata_quirk_names) * 16;
3928 str = kmalloc(sz, GFP_KERNEL);
3929 if (!str)
3930 return;
3931
3932 n = snprintf(str, sz, "Model '%s', rev '%s', applying quirks:",
3933 model, rev);
3934
3935 for (i = 0; i < ARRAY_SIZE(ata_quirk_names); i++) {
3936 if (quirks & (1U << i))
3937 n += snprintf(str + n, sz - n,
3938 " %s", ata_quirk_names[i]);
3939 }
3940
3941 ata_dev_warn(dev, "%s\n", str);
3942
3943 kfree(str);
3944 }
3945
3946 struct ata_dev_quirks_entry {
3947 const char *model_num;
3948 const char *model_rev;
3949 unsigned int quirks;
3950 };
3951
3952 static const struct ata_dev_quirks_entry __ata_dev_quirks[] = {
3953 /* Devices with DMA related problems under Linux */
3954 { "WDC AC11000H", NULL, ATA_QUIRK_NODMA },
3955 { "WDC AC22100H", NULL, ATA_QUIRK_NODMA },
3956 { "WDC AC32500H", NULL, ATA_QUIRK_NODMA },
3957 { "WDC AC33100H", NULL, ATA_QUIRK_NODMA },
3958 { "WDC AC31600H", NULL, ATA_QUIRK_NODMA },
3959 { "WDC AC32100H", "24.09P07", ATA_QUIRK_NODMA },
3960 { "WDC AC23200L", "21.10N21", ATA_QUIRK_NODMA },
3961 { "Compaq CRD-8241B", NULL, ATA_QUIRK_NODMA },
3962 { "CRD-8400B", NULL, ATA_QUIRK_NODMA },
3963 { "CRD-848[02]B", NULL, ATA_QUIRK_NODMA },
3964 { "CRD-84", NULL, ATA_QUIRK_NODMA },
3965 { "SanDisk SDP3B", NULL, ATA_QUIRK_NODMA },
3966 { "SanDisk SDP3B-64", NULL, ATA_QUIRK_NODMA },
3967 { "SANYO CD-ROM CRD", NULL, ATA_QUIRK_NODMA },
3968 { "HITACHI CDR-8", NULL, ATA_QUIRK_NODMA },
3969 { "HITACHI CDR-8[34]35", NULL, ATA_QUIRK_NODMA },
3970 { "Toshiba CD-ROM XM-6202B", NULL, ATA_QUIRK_NODMA },
3971 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_QUIRK_NODMA },
3972 { "CD-532E-A", NULL, ATA_QUIRK_NODMA },
3973 { "E-IDE CD-ROM CR-840", NULL, ATA_QUIRK_NODMA },
3974 { "CD-ROM Drive/F5A", NULL, ATA_QUIRK_NODMA },
3975 { "WPI CDD-820", NULL, ATA_QUIRK_NODMA },
3976 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_QUIRK_NODMA },
3977 { "SAMSUNG CD-ROM SC", NULL, ATA_QUIRK_NODMA },
3978 { "ATAPI CD-ROM DRIVE 40X MAXIMUM", NULL, ATA_QUIRK_NODMA },
3979 { "_NEC DV5800A", NULL, ATA_QUIRK_NODMA },
3980 { "SAMSUNG CD-ROM SN-124", "N001", ATA_QUIRK_NODMA },
3981 { "Seagate STT20000A", NULL, ATA_QUIRK_NODMA },
3982 { " 2GB ATA Flash Disk", "ADMA428M", ATA_QUIRK_NODMA },
3983 { "VRFDFC22048UCHC-TE*", NULL, ATA_QUIRK_NODMA },
3984 /* Odd clown on sil3726/4726 PMPs */
3985 { "Config Disk", NULL, ATA_QUIRK_DISABLE },
3986 /* Similar story with ASMedia 1092 */
3987 { "ASMT109x- Config", NULL, ATA_QUIRK_DISABLE },
3988
3989 /* Weird ATAPI devices */
3990 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_QUIRK_MAX_SEC_128 },
3991 { "QUANTUM DAT DAT72-000", NULL, ATA_QUIRK_ATAPI_MOD16_DMA },
3992 { "Slimtype DVD A DS8A8SH", NULL, ATA_QUIRK_MAX_SEC_LBA48 },
3993 { "Slimtype DVD A DS8A9SH", NULL, ATA_QUIRK_MAX_SEC_LBA48 },
3994
3995 /*
3996 * Causes silent data corruption with higher max sects.
3997 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
3998 */
3999 { "ST380013AS", "3.20", ATA_QUIRK_MAX_SEC_1024 },
4000
4001 /*
4002 * These devices time out with higher max sects.
4003 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4004 */
4005 { "LITEON CX1-JB*-HP", NULL, ATA_QUIRK_MAX_SEC_1024 },
4006 { "LITEON EP1-*", NULL, ATA_QUIRK_MAX_SEC_1024 },
4007
4008 /* Devices we expect to fail diagnostics */
4009
4010 /* Devices where NCQ should be avoided */
4011 /* NCQ is slow */
4012 { "WDC WD740ADFD-00", NULL, ATA_QUIRK_NONCQ },
4013 { "WDC WD740ADFD-00NLR1", NULL, ATA_QUIRK_NONCQ },
4014 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4015 { "FUJITSU MHT2060BH", NULL, ATA_QUIRK_NONCQ },
4016 /* NCQ is broken */
4017 { "Maxtor *", "BANC*", ATA_QUIRK_NONCQ },
4018 { "Maxtor 7V300F0", "VA111630", ATA_QUIRK_NONCQ },
4019 { "ST380817AS", "3.42", ATA_QUIRK_NONCQ },
4020 { "ST3160023AS", "3.42", ATA_QUIRK_NONCQ },
4021 { "OCZ CORE_SSD", "02.10104", ATA_QUIRK_NONCQ },
4022
4023 /* Seagate NCQ + FLUSH CACHE firmware bug */
4024 { "ST31500341AS", "SD1[5-9]", ATA_QUIRK_NONCQ |
4025 ATA_QUIRK_FIRMWARE_WARN },
4026
4027 { "ST31000333AS", "SD1[5-9]", ATA_QUIRK_NONCQ |
4028 ATA_QUIRK_FIRMWARE_WARN },
4029
4030 { "ST3640[36]23AS", "SD1[5-9]", ATA_QUIRK_NONCQ |
4031 ATA_QUIRK_FIRMWARE_WARN },
4032
4033 { "ST3320[68]13AS", "SD1[5-9]", ATA_QUIRK_NONCQ |
4034 ATA_QUIRK_FIRMWARE_WARN },
4035
4036 /* drives which fail FPDMA_AA activation (some may freeze afterwards)
4037 the ST disks also have LPM issues */
4038 { "ST1000LM024 HN-M101MBB", NULL, ATA_QUIRK_BROKEN_FPDMA_AA |
4039 ATA_QUIRK_NOLPM },
4040 { "VB0250EAVER", "HPG7", ATA_QUIRK_BROKEN_FPDMA_AA },
4041
4042 /* Blacklist entries taken from Silicon Image 3124/3132
4043 Windows driver .inf file - also several Linux problem reports */
4044 { "HTS541060G9SA00", "MB3OC60D", ATA_QUIRK_NONCQ },
4045 { "HTS541080G9SA00", "MB4OC60D", ATA_QUIRK_NONCQ },
4046 { "HTS541010G9SA00", "MBZOC60D", ATA_QUIRK_NONCQ },
4047
4048 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4049 { "C300-CTFDDAC128MAG", "0001", ATA_QUIRK_NONCQ },
4050
4051 /* Sandisk SD7/8/9s lock up hard on large trims */
4052 { "SanDisk SD[789]*", NULL, ATA_QUIRK_MAX_TRIM_128M },
4053
4054 /* devices which puke on READ_NATIVE_MAX */
4055 { "HDS724040KLSA80", "KFAOA20N", ATA_QUIRK_BROKEN_HPA },
4056 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_QUIRK_BROKEN_HPA },
4057 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_QUIRK_BROKEN_HPA },
4058 { "MAXTOR 6L080L4", "A93.0500", ATA_QUIRK_BROKEN_HPA },
4059
4060 /* this one allows HPA unlocking but fails IOs on the area */
4061 { "OCZ-VERTEX", "1.30", ATA_QUIRK_BROKEN_HPA },
4062
4063 /* Devices which report 1 sector over size HPA */
4064 { "ST340823A", NULL, ATA_QUIRK_HPA_SIZE },
4065 { "ST320413A", NULL, ATA_QUIRK_HPA_SIZE },
4066 { "ST310211A", NULL, ATA_QUIRK_HPA_SIZE },
4067
4068 /* Devices which get the IVB wrong */
4069 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_QUIRK_IVB },
4070 /* Maybe we should just add all TSSTcorp devices... */
4071 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_QUIRK_IVB },
4072
4073 /* Devices that do not need bridging limits applied */
4074 { "MTRON MSP-SATA*", NULL, ATA_QUIRK_BRIDGE_OK },
4075 { "BUFFALO HD-QSU2/R5", NULL, ATA_QUIRK_BRIDGE_OK },
4076
4077 /* Devices which aren't very happy with higher link speeds */
4078 { "WD My Book", NULL, ATA_QUIRK_1_5_GBPS },
4079 { "Seagate FreeAgent GoFlex", NULL, ATA_QUIRK_1_5_GBPS },
4080
4081 /*
4082 * Devices which choke on SETXFER. Applies only if both the
4083 * device and controller are SATA.
4084 */
4085 { "PIONEER DVD-RW DVRTD08", NULL, ATA_QUIRK_NOSETXFER },
4086 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_QUIRK_NOSETXFER },
4087 { "PIONEER DVD-RW DVR-215", NULL, ATA_QUIRK_NOSETXFER },
4088 { "PIONEER DVD-RW DVR-212D", NULL, ATA_QUIRK_NOSETXFER },
4089 { "PIONEER DVD-RW DVR-216D", NULL, ATA_QUIRK_NOSETXFER },
4090
4091 /* These specific Pioneer models have LPM issues */
4092 { "PIONEER BD-RW BDR-207M", NULL, ATA_QUIRK_NOLPM },
4093 { "PIONEER BD-RW BDR-205", NULL, ATA_QUIRK_NOLPM },
4094
4095 /* Crucial devices with broken LPM support */
4096 { "CT*0BX*00SSD1", NULL, ATA_QUIRK_NOLPM },
4097
4098 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4099 { "Crucial_CT512MX100*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4100 ATA_QUIRK_ZERO_AFTER_TRIM |
4101 ATA_QUIRK_NOLPM },
4102 /* 512GB MX100 with newer firmware has only LPM issues */
4103 { "Crucial_CT512MX100*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM |
4104 ATA_QUIRK_NOLPM },
4105
4106 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4107 { "Crucial_CT480M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4108 ATA_QUIRK_ZERO_AFTER_TRIM |
4109 ATA_QUIRK_NOLPM },
4110 { "Crucial_CT960M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4111 ATA_QUIRK_ZERO_AFTER_TRIM |
4112 ATA_QUIRK_NOLPM },
4113
4114 /* AMD Radeon devices with broken LPM support */
4115 { "R3SL240G", NULL, ATA_QUIRK_NOLPM },
4116
4117 /* Apacer models with LPM issues */
4118 { "Apacer AS340*", NULL, ATA_QUIRK_NOLPM },
4119
4120 /* These specific Samsung models/firmware-revs do not handle LPM well */
4121 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_QUIRK_NOLPM },
4122 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_QUIRK_NOLPM },
4123 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_QUIRK_NOLPM },
4124 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_QUIRK_NOLPM },
4125
4126 /* devices that don't properly handle queued TRIM commands */
4127 { "Micron_M500IT_*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4128 ATA_QUIRK_ZERO_AFTER_TRIM },
4129 { "Micron_M500_*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4130 ATA_QUIRK_ZERO_AFTER_TRIM },
4131 { "Micron_M5[15]0_*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4132 ATA_QUIRK_ZERO_AFTER_TRIM },
4133 { "Micron_1100_*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4134 ATA_QUIRK_ZERO_AFTER_TRIM, },
4135 { "Crucial_CT*M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4136 ATA_QUIRK_ZERO_AFTER_TRIM },
4137 { "Crucial_CT*M550*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4138 ATA_QUIRK_ZERO_AFTER_TRIM },
4139 { "Crucial_CT*MX100*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4140 ATA_QUIRK_ZERO_AFTER_TRIM },
4141 { "Samsung SSD 840 EVO*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4142 ATA_QUIRK_NO_DMA_LOG |
4143 ATA_QUIRK_ZERO_AFTER_TRIM },
4144 { "Samsung SSD 840*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4145 ATA_QUIRK_ZERO_AFTER_TRIM },
4146 { "Samsung SSD 850*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4147 ATA_QUIRK_ZERO_AFTER_TRIM },
4148 { "Samsung SSD 860*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4149 ATA_QUIRK_ZERO_AFTER_TRIM |
4150 ATA_QUIRK_NO_NCQ_ON_ATI |
4151 ATA_QUIRK_NO_LPM_ON_ATI },
4152 { "Samsung SSD 870*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4153 ATA_QUIRK_ZERO_AFTER_TRIM |
4154 ATA_QUIRK_NO_NCQ_ON_ATI |
4155 ATA_QUIRK_NO_LPM_ON_ATI },
4156 { "SAMSUNG*MZ7LH*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4157 ATA_QUIRK_ZERO_AFTER_TRIM |
4158 ATA_QUIRK_NO_NCQ_ON_ATI |
4159 ATA_QUIRK_NO_LPM_ON_ATI },
4160 { "FCCT*M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4161 ATA_QUIRK_ZERO_AFTER_TRIM },
4162
4163 /* devices that don't properly handle TRIM commands */
4164 { "SuperSSpeed S238*", NULL, ATA_QUIRK_NOTRIM },
4165 { "M88V29*", NULL, ATA_QUIRK_NOTRIM },
4166
4167 /*
4168 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4169 * (Return Zero After Trim) flags in the ATA Command Set are
4170 * unreliable in the sense that they only define what happens if
4171 * the device successfully executed the DSM TRIM command. TRIM
4172 * is only advisory, however, and the device is free to silently
4173 * ignore all or parts of the request.
4174 *
4175 * Whitelist drives that are known to reliably return zeroes
4176 * after TRIM.
4177 */
4178
4179 /*
4180 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4181 * that model before whitelisting all other intel SSDs.
4182 */
4183 { "INTEL*SSDSC2MH*", NULL, 0 },
4184
4185 { "Micron*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4186 { "Crucial*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4187 { "INTEL*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4188 { "SSD*INTEL*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4189 { "Samsung*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4190 { "SAMSUNG*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4191 { "SAMSUNG*MZ7KM*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4192 { "ST[1248][0248]0[FH]*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4193
4194 /*
4195 * Some WD SATA-I drives spin up and down erratically when the link
4196 * is put into the slumber mode. We don't have full list of the
4197 * affected devices. Disable LPM if the device matches one of the
4198 * known prefixes and is SATA-1. As a side effect LPM partial is
4199 * lost too.
4200 *
4201 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4202 */
4203 { "WDC WD800JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4204 { "WDC WD1200JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4205 { "WDC WD1600JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4206 { "WDC WD2000JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4207 { "WDC WD2500JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4208 { "WDC WD3000JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4209 { "WDC WD3200JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4210
4211 /*
4212 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY
4213 * log page is accessed. Ensure we never ask for this log page with
4214 * these devices.
4215 */
4216 { "SATADOM-ML 3ME", NULL, ATA_QUIRK_NO_LOG_DIR },
4217
4218 /* Buggy FUA */
4219 { "Maxtor", "BANC1G10", ATA_QUIRK_NO_FUA },
4220 { "WDC*WD2500J*", NULL, ATA_QUIRK_NO_FUA },
4221 { "OCZ-VERTEX*", NULL, ATA_QUIRK_NO_FUA },
4222 { "INTEL*SSDSC2CT*", NULL, ATA_QUIRK_NO_FUA },
4223
4224 /* End Marker */
4225 { }
4226 };
4227
ata_dev_quirks(const struct ata_device * dev)4228 static unsigned int ata_dev_quirks(const struct ata_device *dev)
4229 {
4230 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4231 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4232 const struct ata_dev_quirks_entry *ad = __ata_dev_quirks;
4233
4234 /* dev->quirks is an unsigned int. */
4235 BUILD_BUG_ON(__ATA_QUIRK_MAX > 32);
4236
4237 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4238 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4239
4240 while (ad->model_num) {
4241 if (glob_match(ad->model_num, model_num) &&
4242 (!ad->model_rev || glob_match(ad->model_rev, model_rev))) {
4243 ata_dev_print_quirks(dev, model_num, model_rev,
4244 ad->quirks);
4245 return ad->quirks;
4246 }
4247 ad++;
4248 }
4249 return 0;
4250 }
4251
ata_dev_nodma(const struct ata_device * dev)4252 static bool ata_dev_nodma(const struct ata_device *dev)
4253 {
4254 /*
4255 * We do not support polling DMA. Deny DMA for those ATAPI devices
4256 * with CDB-intr (and use PIO) if the LLDD handles only interrupts in
4257 * the HSM_ST_LAST state.
4258 */
4259 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4260 (dev->flags & ATA_DFLAG_CDB_INTR))
4261 return true;
4262 return dev->quirks & ATA_QUIRK_NODMA;
4263 }
4264
4265 /**
4266 * ata_is_40wire - check drive side detection
4267 * @dev: device
4268 *
4269 * Perform drive side detection decoding, allowing for device vendors
4270 * who can't follow the documentation.
4271 */
4272
ata_is_40wire(struct ata_device * dev)4273 static int ata_is_40wire(struct ata_device *dev)
4274 {
4275 if (dev->quirks & ATA_QUIRK_IVB)
4276 return ata_drive_40wire_relaxed(dev->id);
4277 return ata_drive_40wire(dev->id);
4278 }
4279
4280 /**
4281 * cable_is_40wire - 40/80/SATA decider
4282 * @ap: port to consider
4283 *
4284 * This function encapsulates the policy for speed management
4285 * in one place. At the moment we don't cache the result but
4286 * there is a good case for setting ap->cbl to the result when
4287 * we are called with unknown cables (and figuring out if it
4288 * impacts hotplug at all).
4289 *
4290 * Return 1 if the cable appears to be 40 wire.
4291 */
4292
cable_is_40wire(struct ata_port * ap)4293 static int cable_is_40wire(struct ata_port *ap)
4294 {
4295 struct ata_link *link;
4296 struct ata_device *dev;
4297
4298 /* If the controller thinks we are 40 wire, we are. */
4299 if (ap->cbl == ATA_CBL_PATA40)
4300 return 1;
4301
4302 /* If the controller thinks we are 80 wire, we are. */
4303 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4304 return 0;
4305
4306 /* If the system is known to be 40 wire short cable (eg
4307 * laptop), then we allow 80 wire modes even if the drive
4308 * isn't sure.
4309 */
4310 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4311 return 0;
4312
4313 /* If the controller doesn't know, we scan.
4314 *
4315 * Note: We look for all 40 wire detects at this point. Any
4316 * 80 wire detect is taken to be 80 wire cable because
4317 * - in many setups only the one drive (slave if present) will
4318 * give a valid detect
4319 * - if you have a non detect capable drive you don't want it
4320 * to colour the choice
4321 */
4322 ata_for_each_link(link, ap, EDGE) {
4323 ata_for_each_dev(dev, link, ENABLED) {
4324 if (!ata_is_40wire(dev))
4325 return 0;
4326 }
4327 }
4328 return 1;
4329 }
4330
4331 /**
4332 * ata_dev_xfermask - Compute supported xfermask of the given device
4333 * @dev: Device to compute xfermask for
4334 *
4335 * Compute supported xfermask of @dev and store it in
4336 * dev->*_mask. This function is responsible for applying all
4337 * known limits including host controller limits, device quirks, etc...
4338 *
4339 * LOCKING:
4340 * None.
4341 */
ata_dev_xfermask(struct ata_device * dev)4342 static void ata_dev_xfermask(struct ata_device *dev)
4343 {
4344 struct ata_link *link = dev->link;
4345 struct ata_port *ap = link->ap;
4346 struct ata_host *host = ap->host;
4347 unsigned int xfer_mask;
4348
4349 /* controller modes available */
4350 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4351 ap->mwdma_mask, ap->udma_mask);
4352
4353 /* drive modes available */
4354 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4355 dev->mwdma_mask, dev->udma_mask);
4356 xfer_mask &= ata_id_xfermask(dev->id);
4357
4358 /*
4359 * CFA Advanced TrueIDE timings are not allowed on a shared
4360 * cable
4361 */
4362 if (ata_dev_pair(dev)) {
4363 /* No PIO5 or PIO6 */
4364 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4365 /* No MWDMA3 or MWDMA 4 */
4366 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4367 }
4368
4369 if (ata_dev_nodma(dev)) {
4370 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4371 ata_dev_warn(dev,
4372 "device does not support DMA, disabling DMA\n");
4373 }
4374
4375 if ((host->flags & ATA_HOST_SIMPLEX) &&
4376 host->simplex_claimed && host->simplex_claimed != ap) {
4377 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4378 ata_dev_warn(dev,
4379 "simplex DMA is claimed by other device, disabling DMA\n");
4380 }
4381
4382 if (ap->flags & ATA_FLAG_NO_IORDY)
4383 xfer_mask &= ata_pio_mask_no_iordy(dev);
4384
4385 if (ap->ops->mode_filter)
4386 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4387
4388 /* Apply cable rule here. Don't apply it early because when
4389 * we handle hot plug the cable type can itself change.
4390 * Check this last so that we know if the transfer rate was
4391 * solely limited by the cable.
4392 * Unknown or 80 wire cables reported host side are checked
4393 * drive side as well. Cases where we know a 40wire cable
4394 * is used safely for 80 are not checked here.
4395 */
4396 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4397 /* UDMA/44 or higher would be available */
4398 if (cable_is_40wire(ap)) {
4399 ata_dev_warn(dev,
4400 "limited to UDMA/33 due to 40-wire cable\n");
4401 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4402 }
4403
4404 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4405 &dev->mwdma_mask, &dev->udma_mask);
4406 }
4407
4408 /**
4409 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4410 * @dev: Device to which command will be sent
4411 *
4412 * Issue SET FEATURES - XFER MODE command to device @dev
4413 * on port @ap.
4414 *
4415 * LOCKING:
4416 * PCI/etc. bus probe sem.
4417 *
4418 * RETURNS:
4419 * 0 on success, AC_ERR_* mask otherwise.
4420 */
4421
ata_dev_set_xfermode(struct ata_device * dev)4422 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4423 {
4424 struct ata_taskfile tf;
4425
4426 /* set up set-features taskfile */
4427 ata_dev_dbg(dev, "set features - xfer mode\n");
4428
4429 /* Some controllers and ATAPI devices show flaky interrupt
4430 * behavior after setting xfer mode. Use polling instead.
4431 */
4432 ata_tf_init(dev, &tf);
4433 tf.command = ATA_CMD_SET_FEATURES;
4434 tf.feature = SETFEATURES_XFER;
4435 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4436 tf.protocol = ATA_PROT_NODATA;
4437 /* If we are using IORDY we must send the mode setting command */
4438 if (ata_pio_need_iordy(dev))
4439 tf.nsect = dev->xfer_mode;
4440 /* If the device has IORDY and the controller does not - turn it off */
4441 else if (ata_id_has_iordy(dev->id))
4442 tf.nsect = 0x01;
4443 else /* In the ancient relic department - skip all of this */
4444 return 0;
4445
4446 /*
4447 * On some disks, this command causes spin-up, so we need longer
4448 * timeout.
4449 */
4450 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4451 }
4452
4453 /**
4454 * ata_dev_set_feature - Issue SET FEATURES
4455 * @dev: Device to which command will be sent
4456 * @subcmd: The SET FEATURES subcommand to be sent
4457 * @action: The sector count represents a subcommand specific action
4458 *
4459 * Issue SET FEATURES command to device @dev on port @ap with sector count
4460 *
4461 * LOCKING:
4462 * PCI/etc. bus probe sem.
4463 *
4464 * RETURNS:
4465 * 0 on success, AC_ERR_* mask otherwise.
4466 */
ata_dev_set_feature(struct ata_device * dev,u8 subcmd,u8 action)4467 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action)
4468 {
4469 struct ata_taskfile tf;
4470 unsigned int timeout = 0;
4471
4472 /* set up set-features taskfile */
4473 ata_dev_dbg(dev, "set features\n");
4474
4475 ata_tf_init(dev, &tf);
4476 tf.command = ATA_CMD_SET_FEATURES;
4477 tf.feature = subcmd;
4478 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4479 tf.protocol = ATA_PROT_NODATA;
4480 tf.nsect = action;
4481
4482 if (subcmd == SETFEATURES_SPINUP)
4483 timeout = ata_probe_timeout ?
4484 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4485
4486 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4487 }
4488 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4489
4490 /**
4491 * ata_dev_init_params - Issue INIT DEV PARAMS command
4492 * @dev: Device to which command will be sent
4493 * @heads: Number of heads (taskfile parameter)
4494 * @sectors: Number of sectors (taskfile parameter)
4495 *
4496 * LOCKING:
4497 * Kernel thread context (may sleep)
4498 *
4499 * RETURNS:
4500 * 0 on success, AC_ERR_* mask otherwise.
4501 */
ata_dev_init_params(struct ata_device * dev,u16 heads,u16 sectors)4502 static unsigned int ata_dev_init_params(struct ata_device *dev,
4503 u16 heads, u16 sectors)
4504 {
4505 struct ata_taskfile tf;
4506 unsigned int err_mask;
4507
4508 /* Number of sectors per track 1-255. Number of heads 1-16 */
4509 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4510 return AC_ERR_INVALID;
4511
4512 /* set up init dev params taskfile */
4513 ata_dev_dbg(dev, "init dev params \n");
4514
4515 ata_tf_init(dev, &tf);
4516 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4517 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4518 tf.protocol = ATA_PROT_NODATA;
4519 tf.nsect = sectors;
4520 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4521
4522 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4523 /* A clean abort indicates an original or just out of spec drive
4524 and we should continue as we issue the setup based on the
4525 drive reported working geometry */
4526 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
4527 err_mask = 0;
4528
4529 return err_mask;
4530 }
4531
4532 /**
4533 * atapi_check_dma - Check whether ATAPI DMA can be supported
4534 * @qc: Metadata associated with taskfile to check
4535 *
4536 * Allow low-level driver to filter ATA PACKET commands, returning
4537 * a status indicating whether or not it is OK to use DMA for the
4538 * supplied PACKET command.
4539 *
4540 * LOCKING:
4541 * spin_lock_irqsave(host lock)
4542 *
4543 * RETURNS: 0 when ATAPI DMA can be used
4544 * nonzero otherwise
4545 */
atapi_check_dma(struct ata_queued_cmd * qc)4546 int atapi_check_dma(struct ata_queued_cmd *qc)
4547 {
4548 struct ata_port *ap = qc->ap;
4549
4550 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4551 * few ATAPI devices choke on such DMA requests.
4552 */
4553 if (!(qc->dev->quirks & ATA_QUIRK_ATAPI_MOD16_DMA) &&
4554 unlikely(qc->nbytes & 15))
4555 return 1;
4556
4557 if (ap->ops->check_atapi_dma)
4558 return ap->ops->check_atapi_dma(qc);
4559
4560 return 0;
4561 }
4562
4563 /**
4564 * ata_std_qc_defer - Check whether a qc needs to be deferred
4565 * @qc: ATA command in question
4566 *
4567 * Non-NCQ commands cannot run with any other command, NCQ or
4568 * not. As upper layer only knows the queue depth, we are
4569 * responsible for maintaining exclusion. This function checks
4570 * whether a new command @qc can be issued.
4571 *
4572 * LOCKING:
4573 * spin_lock_irqsave(host lock)
4574 *
4575 * RETURNS:
4576 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4577 */
ata_std_qc_defer(struct ata_queued_cmd * qc)4578 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4579 {
4580 struct ata_link *link = qc->dev->link;
4581
4582 if (ata_is_ncq(qc->tf.protocol)) {
4583 if (!ata_tag_valid(link->active_tag))
4584 return 0;
4585 } else {
4586 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4587 return 0;
4588 }
4589
4590 return ATA_DEFER_LINK;
4591 }
4592 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4593
4594 /**
4595 * ata_sg_init - Associate command with scatter-gather table.
4596 * @qc: Command to be associated
4597 * @sg: Scatter-gather table.
4598 * @n_elem: Number of elements in s/g table.
4599 *
4600 * Initialize the data-related elements of queued_cmd @qc
4601 * to point to a scatter-gather table @sg, containing @n_elem
4602 * elements.
4603 *
4604 * LOCKING:
4605 * spin_lock_irqsave(host lock)
4606 */
ata_sg_init(struct ata_queued_cmd * qc,struct scatterlist * sg,unsigned int n_elem)4607 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4608 unsigned int n_elem)
4609 {
4610 qc->sg = sg;
4611 qc->n_elem = n_elem;
4612 qc->cursg = qc->sg;
4613 }
4614
4615 #ifdef CONFIG_HAS_DMA
4616
4617 /**
4618 * ata_sg_clean - Unmap DMA memory associated with command
4619 * @qc: Command containing DMA memory to be released
4620 *
4621 * Unmap all mapped DMA memory associated with this command.
4622 *
4623 * LOCKING:
4624 * spin_lock_irqsave(host lock)
4625 */
ata_sg_clean(struct ata_queued_cmd * qc)4626 static void ata_sg_clean(struct ata_queued_cmd *qc)
4627 {
4628 struct ata_port *ap = qc->ap;
4629 struct scatterlist *sg = qc->sg;
4630 int dir = qc->dma_dir;
4631
4632 WARN_ON_ONCE(sg == NULL);
4633
4634 if (qc->n_elem)
4635 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4636
4637 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4638 qc->sg = NULL;
4639 }
4640
4641 /**
4642 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4643 * @qc: Command with scatter-gather table to be mapped.
4644 *
4645 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4646 *
4647 * LOCKING:
4648 * spin_lock_irqsave(host lock)
4649 *
4650 * RETURNS:
4651 * Zero on success, negative on error.
4652 *
4653 */
ata_sg_setup(struct ata_queued_cmd * qc)4654 static int ata_sg_setup(struct ata_queued_cmd *qc)
4655 {
4656 struct ata_port *ap = qc->ap;
4657 unsigned int n_elem;
4658
4659 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4660 if (n_elem < 1)
4661 return -1;
4662
4663 qc->orig_n_elem = qc->n_elem;
4664 qc->n_elem = n_elem;
4665 qc->flags |= ATA_QCFLAG_DMAMAP;
4666
4667 return 0;
4668 }
4669
4670 #else /* !CONFIG_HAS_DMA */
4671
ata_sg_clean(struct ata_queued_cmd * qc)4672 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
ata_sg_setup(struct ata_queued_cmd * qc)4673 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4674
4675 #endif /* !CONFIG_HAS_DMA */
4676
4677 /**
4678 * swap_buf_le16 - swap halves of 16-bit words in place
4679 * @buf: Buffer to swap
4680 * @buf_words: Number of 16-bit words in buffer.
4681 *
4682 * Swap halves of 16-bit words if needed to convert from
4683 * little-endian byte order to native cpu byte order, or
4684 * vice-versa.
4685 *
4686 * LOCKING:
4687 * Inherited from caller.
4688 */
swap_buf_le16(u16 * buf,unsigned int buf_words)4689 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4690 {
4691 #ifdef __BIG_ENDIAN
4692 unsigned int i;
4693
4694 for (i = 0; i < buf_words; i++)
4695 buf[i] = le16_to_cpu(buf[i]);
4696 #endif /* __BIG_ENDIAN */
4697 }
4698
4699 /**
4700 * ata_qc_free - free unused ata_queued_cmd
4701 * @qc: Command to complete
4702 *
4703 * Designed to free unused ata_queued_cmd object
4704 * in case something prevents using it.
4705 *
4706 * LOCKING:
4707 * spin_lock_irqsave(host lock)
4708 */
ata_qc_free(struct ata_queued_cmd * qc)4709 void ata_qc_free(struct ata_queued_cmd *qc)
4710 {
4711 qc->flags = 0;
4712 if (ata_tag_valid(qc->tag))
4713 qc->tag = ATA_TAG_POISON;
4714 }
4715
__ata_qc_complete(struct ata_queued_cmd * qc)4716 void __ata_qc_complete(struct ata_queued_cmd *qc)
4717 {
4718 struct ata_port *ap;
4719 struct ata_link *link;
4720
4721 if (WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)))
4722 return;
4723
4724 ap = qc->ap;
4725 link = qc->dev->link;
4726
4727 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4728 ata_sg_clean(qc);
4729
4730 /* command should be marked inactive atomically with qc completion */
4731 if (ata_is_ncq(qc->tf.protocol)) {
4732 link->sactive &= ~(1 << qc->hw_tag);
4733 if (!link->sactive)
4734 ap->nr_active_links--;
4735 } else {
4736 link->active_tag = ATA_TAG_POISON;
4737 ap->nr_active_links--;
4738 }
4739
4740 /* clear exclusive status */
4741 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4742 ap->excl_link == link))
4743 ap->excl_link = NULL;
4744
4745 /*
4746 * Mark qc as inactive to prevent the port interrupt handler from
4747 * completing the command twice later, before the error handler is
4748 * called.
4749 */
4750 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4751 ap->qc_active &= ~(1ULL << qc->tag);
4752
4753 /* call completion callback */
4754 qc->complete_fn(qc);
4755 }
4756
fill_result_tf(struct ata_queued_cmd * qc)4757 static void fill_result_tf(struct ata_queued_cmd *qc)
4758 {
4759 struct ata_port *ap = qc->ap;
4760
4761 /*
4762 * rtf may already be filled (e.g. for successful NCQ commands).
4763 * If that is the case, we have nothing to do.
4764 */
4765 if (qc->flags & ATA_QCFLAG_RTF_FILLED)
4766 return;
4767
4768 qc->result_tf.flags = qc->tf.flags;
4769 ap->ops->qc_fill_rtf(qc);
4770 qc->flags |= ATA_QCFLAG_RTF_FILLED;
4771 }
4772
ata_verify_xfer(struct ata_queued_cmd * qc)4773 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4774 {
4775 struct ata_device *dev = qc->dev;
4776
4777 if (!ata_is_data(qc->tf.protocol))
4778 return;
4779
4780 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4781 return;
4782
4783 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4784 }
4785
4786 /**
4787 * ata_qc_complete - Complete an active ATA command
4788 * @qc: Command to complete
4789 *
4790 * Indicate to the mid and upper layers that an ATA command has
4791 * completed, with either an ok or not-ok status.
4792 *
4793 * Refrain from calling this function multiple times when
4794 * successfully completing multiple NCQ commands.
4795 * ata_qc_complete_multiple() should be used instead, which will
4796 * properly update IRQ expect state.
4797 *
4798 * LOCKING:
4799 * spin_lock_irqsave(host lock)
4800 */
ata_qc_complete(struct ata_queued_cmd * qc)4801 void ata_qc_complete(struct ata_queued_cmd *qc)
4802 {
4803 struct ata_port *ap = qc->ap;
4804 struct ata_device *dev = qc->dev;
4805 struct ata_eh_info *ehi = &dev->link->eh_info;
4806
4807 /* Trigger the LED (if available) */
4808 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4809
4810 /*
4811 * In order to synchronize EH with the regular execution path, a qc that
4812 * is owned by EH is marked with ATA_QCFLAG_EH.
4813 *
4814 * The normal execution path is responsible for not accessing a qc owned
4815 * by EH. libata core enforces the rule by returning NULL from
4816 * ata_qc_from_tag() for qcs owned by EH.
4817 */
4818 if (unlikely(qc->err_mask))
4819 qc->flags |= ATA_QCFLAG_EH;
4820
4821 /*
4822 * Finish internal commands without any further processing and always
4823 * with the result TF filled.
4824 */
4825 if (unlikely(ata_tag_internal(qc->tag))) {
4826 fill_result_tf(qc);
4827 trace_ata_qc_complete_internal(qc);
4828 __ata_qc_complete(qc);
4829 return;
4830 }
4831
4832 /* Non-internal qc has failed. Fill the result TF and summon EH. */
4833 if (unlikely(qc->flags & ATA_QCFLAG_EH)) {
4834 fill_result_tf(qc);
4835 trace_ata_qc_complete_failed(qc);
4836 ata_qc_schedule_eh(qc);
4837 return;
4838 }
4839
4840 WARN_ON_ONCE(ata_port_is_frozen(ap));
4841
4842 /* read result TF if requested */
4843 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4844 fill_result_tf(qc);
4845
4846 trace_ata_qc_complete_done(qc);
4847
4848 /*
4849 * For CDL commands that completed without an error, check if we have
4850 * sense data (ATA_SENSE is set). If we do, then the command may have
4851 * been aborted by the device due to a limit timeout using the policy
4852 * 0xD. For these commands, invoke EH to get the command sense data.
4853 */
4854 if (qc->flags & ATA_QCFLAG_HAS_CDL &&
4855 qc->result_tf.status & ATA_SENSE) {
4856 /*
4857 * Tell SCSI EH to not overwrite scmd->result even if this
4858 * command is finished with result SAM_STAT_GOOD.
4859 */
4860 qc->scsicmd->flags |= SCMD_FORCE_EH_SUCCESS;
4861 qc->flags |= ATA_QCFLAG_EH_SUCCESS_CMD;
4862 ehi->dev_action[dev->devno] |= ATA_EH_GET_SUCCESS_SENSE;
4863
4864 /*
4865 * set pending so that ata_qc_schedule_eh() does not trigger
4866 * fast drain, and freeze the port.
4867 */
4868 ap->pflags |= ATA_PFLAG_EH_PENDING;
4869 ata_qc_schedule_eh(qc);
4870 return;
4871 }
4872
4873 /* Some commands need post-processing after successful completion. */
4874 switch (qc->tf.command) {
4875 case ATA_CMD_SET_FEATURES:
4876 if (qc->tf.feature != SETFEATURES_WC_ON &&
4877 qc->tf.feature != SETFEATURES_WC_OFF &&
4878 qc->tf.feature != SETFEATURES_RA_ON &&
4879 qc->tf.feature != SETFEATURES_RA_OFF)
4880 break;
4881 fallthrough;
4882 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4883 case ATA_CMD_SET_MULTI: /* multi_count changed */
4884 /* revalidate device */
4885 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4886 ata_port_schedule_eh(ap);
4887 break;
4888
4889 case ATA_CMD_SLEEP:
4890 dev->flags |= ATA_DFLAG_SLEEPING;
4891 break;
4892 }
4893
4894 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4895 ata_verify_xfer(qc);
4896
4897 __ata_qc_complete(qc);
4898 }
4899 EXPORT_SYMBOL_GPL(ata_qc_complete);
4900
4901 /**
4902 * ata_qc_get_active - get bitmask of active qcs
4903 * @ap: port in question
4904 *
4905 * LOCKING:
4906 * spin_lock_irqsave(host lock)
4907 *
4908 * RETURNS:
4909 * Bitmask of active qcs
4910 */
ata_qc_get_active(struct ata_port * ap)4911 u64 ata_qc_get_active(struct ata_port *ap)
4912 {
4913 u64 qc_active = ap->qc_active;
4914
4915 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4916 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4917 qc_active |= (1 << 0);
4918 qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4919 }
4920
4921 return qc_active;
4922 }
4923 EXPORT_SYMBOL_GPL(ata_qc_get_active);
4924
4925 /**
4926 * ata_qc_issue - issue taskfile to device
4927 * @qc: command to issue to device
4928 *
4929 * Prepare an ATA command to submission to device.
4930 * This includes mapping the data into a DMA-able
4931 * area, filling in the S/G table, and finally
4932 * writing the taskfile to hardware, starting the command.
4933 *
4934 * LOCKING:
4935 * spin_lock_irqsave(host lock)
4936 */
ata_qc_issue(struct ata_queued_cmd * qc)4937 void ata_qc_issue(struct ata_queued_cmd *qc)
4938 {
4939 struct ata_port *ap = qc->ap;
4940 struct ata_link *link = qc->dev->link;
4941 u8 prot = qc->tf.protocol;
4942
4943 /* Make sure only one non-NCQ command is outstanding. */
4944 WARN_ON_ONCE(ata_tag_valid(link->active_tag));
4945
4946 if (ata_is_ncq(prot)) {
4947 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4948
4949 if (!link->sactive)
4950 ap->nr_active_links++;
4951 link->sactive |= 1 << qc->hw_tag;
4952 } else {
4953 WARN_ON_ONCE(link->sactive);
4954
4955 ap->nr_active_links++;
4956 link->active_tag = qc->tag;
4957 }
4958
4959 qc->flags |= ATA_QCFLAG_ACTIVE;
4960 ap->qc_active |= 1ULL << qc->tag;
4961
4962 /*
4963 * We guarantee to LLDs that they will have at least one
4964 * non-zero sg if the command is a data command.
4965 */
4966 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
4967 goto sys_err;
4968
4969 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4970 (ap->flags & ATA_FLAG_PIO_DMA)))
4971 if (ata_sg_setup(qc))
4972 goto sys_err;
4973
4974 /* if device is sleeping, schedule reset and abort the link */
4975 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4976 link->eh_info.action |= ATA_EH_RESET;
4977 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4978 ata_link_abort(link);
4979 return;
4980 }
4981
4982 if (ap->ops->qc_prep) {
4983 trace_ata_qc_prep(qc);
4984 qc->err_mask |= ap->ops->qc_prep(qc);
4985 if (unlikely(qc->err_mask))
4986 goto err;
4987 }
4988
4989 trace_ata_qc_issue(qc);
4990 qc->err_mask |= ap->ops->qc_issue(qc);
4991 if (unlikely(qc->err_mask))
4992 goto err;
4993 return;
4994
4995 sys_err:
4996 qc->err_mask |= AC_ERR_SYSTEM;
4997 err:
4998 ata_qc_complete(qc);
4999 }
5000
5001 /**
5002 * ata_phys_link_online - test whether the given link is online
5003 * @link: ATA link to test
5004 *
5005 * Test whether @link is online. Note that this function returns
5006 * 0 if online status of @link cannot be obtained, so
5007 * ata_link_online(link) != !ata_link_offline(link).
5008 *
5009 * LOCKING:
5010 * None.
5011 *
5012 * RETURNS:
5013 * True if the port online status is available and online.
5014 */
ata_phys_link_online(struct ata_link * link)5015 bool ata_phys_link_online(struct ata_link *link)
5016 {
5017 u32 sstatus;
5018
5019 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5020 ata_sstatus_online(sstatus))
5021 return true;
5022 return false;
5023 }
5024
5025 /**
5026 * ata_phys_link_offline - test whether the given link is offline
5027 * @link: ATA link to test
5028 *
5029 * Test whether @link is offline. Note that this function
5030 * returns 0 if offline status of @link cannot be obtained, so
5031 * ata_link_online(link) != !ata_link_offline(link).
5032 *
5033 * LOCKING:
5034 * None.
5035 *
5036 * RETURNS:
5037 * True if the port offline status is available and offline.
5038 */
ata_phys_link_offline(struct ata_link * link)5039 bool ata_phys_link_offline(struct ata_link *link)
5040 {
5041 u32 sstatus;
5042
5043 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5044 !ata_sstatus_online(sstatus))
5045 return true;
5046 return false;
5047 }
5048
5049 /**
5050 * ata_link_online - test whether the given link is online
5051 * @link: ATA link to test
5052 *
5053 * Test whether @link is online. This is identical to
5054 * ata_phys_link_online() when there's no slave link. When
5055 * there's a slave link, this function should only be called on
5056 * the master link and will return true if any of M/S links is
5057 * online.
5058 *
5059 * LOCKING:
5060 * None.
5061 *
5062 * RETURNS:
5063 * True if the port online status is available and online.
5064 */
ata_link_online(struct ata_link * link)5065 bool ata_link_online(struct ata_link *link)
5066 {
5067 struct ata_link *slave = link->ap->slave_link;
5068
5069 WARN_ON(link == slave); /* shouldn't be called on slave link */
5070
5071 return ata_phys_link_online(link) ||
5072 (slave && ata_phys_link_online(slave));
5073 }
5074 EXPORT_SYMBOL_GPL(ata_link_online);
5075
5076 /**
5077 * ata_link_offline - test whether the given link is offline
5078 * @link: ATA link to test
5079 *
5080 * Test whether @link is offline. This is identical to
5081 * ata_phys_link_offline() when there's no slave link. When
5082 * there's a slave link, this function should only be called on
5083 * the master link and will return true if both M/S links are
5084 * offline.
5085 *
5086 * LOCKING:
5087 * None.
5088 *
5089 * RETURNS:
5090 * True if the port offline status is available and offline.
5091 */
ata_link_offline(struct ata_link * link)5092 bool ata_link_offline(struct ata_link *link)
5093 {
5094 struct ata_link *slave = link->ap->slave_link;
5095
5096 WARN_ON(link == slave); /* shouldn't be called on slave link */
5097
5098 return ata_phys_link_offline(link) &&
5099 (!slave || ata_phys_link_offline(slave));
5100 }
5101 EXPORT_SYMBOL_GPL(ata_link_offline);
5102
5103 #ifdef CONFIG_PM
ata_port_request_pm(struct ata_port * ap,pm_message_t mesg,unsigned int action,unsigned int ehi_flags,bool async)5104 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5105 unsigned int action, unsigned int ehi_flags,
5106 bool async)
5107 {
5108 struct ata_link *link;
5109 unsigned long flags;
5110
5111 spin_lock_irqsave(ap->lock, flags);
5112
5113 /*
5114 * A previous PM operation might still be in progress. Wait for
5115 * ATA_PFLAG_PM_PENDING to clear.
5116 */
5117 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5118 spin_unlock_irqrestore(ap->lock, flags);
5119 ata_port_wait_eh(ap);
5120 spin_lock_irqsave(ap->lock, flags);
5121 }
5122
5123 /* Request PM operation to EH */
5124 ap->pm_mesg = mesg;
5125 ap->pflags |= ATA_PFLAG_PM_PENDING;
5126 ata_for_each_link(link, ap, HOST_FIRST) {
5127 link->eh_info.action |= action;
5128 link->eh_info.flags |= ehi_flags;
5129 }
5130
5131 ata_port_schedule_eh(ap);
5132
5133 spin_unlock_irqrestore(ap->lock, flags);
5134
5135 if (!async)
5136 ata_port_wait_eh(ap);
5137 }
5138
ata_port_suspend(struct ata_port * ap,pm_message_t mesg,bool async)5139 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg,
5140 bool async)
5141 {
5142 /*
5143 * We are about to suspend the port, so we do not care about
5144 * scsi_rescan_device() calls scheduled by previous resume operations.
5145 * The next resume will schedule the rescan again. So cancel any rescan
5146 * that is not done yet.
5147 */
5148 cancel_delayed_work_sync(&ap->scsi_rescan_task);
5149
5150 /*
5151 * On some hardware, device fails to respond after spun down for
5152 * suspend. As the device will not be used until being resumed, we
5153 * do not need to touch the device. Ask EH to skip the usual stuff
5154 * and proceed directly to suspend.
5155 *
5156 * http://thread.gmane.org/gmane.linux.ide/46764
5157 */
5158 ata_port_request_pm(ap, mesg, 0,
5159 ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY |
5160 ATA_EHI_NO_RECOVERY,
5161 async);
5162 }
5163
ata_port_pm_suspend(struct device * dev)5164 static int ata_port_pm_suspend(struct device *dev)
5165 {
5166 struct ata_port *ap = to_ata_port(dev);
5167
5168 if (pm_runtime_suspended(dev))
5169 return 0;
5170
5171 ata_port_suspend(ap, PMSG_SUSPEND, false);
5172 return 0;
5173 }
5174
ata_port_pm_freeze(struct device * dev)5175 static int ata_port_pm_freeze(struct device *dev)
5176 {
5177 struct ata_port *ap = to_ata_port(dev);
5178
5179 if (pm_runtime_suspended(dev))
5180 return 0;
5181
5182 ata_port_suspend(ap, PMSG_FREEZE, false);
5183 return 0;
5184 }
5185
ata_port_pm_poweroff(struct device * dev)5186 static int ata_port_pm_poweroff(struct device *dev)
5187 {
5188 if (!pm_runtime_suspended(dev))
5189 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE, false);
5190 return 0;
5191 }
5192
ata_port_resume(struct ata_port * ap,pm_message_t mesg,bool async)5193 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg,
5194 bool async)
5195 {
5196 ata_port_request_pm(ap, mesg, ATA_EH_RESET,
5197 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET,
5198 async);
5199 }
5200
ata_port_pm_resume(struct device * dev)5201 static int ata_port_pm_resume(struct device *dev)
5202 {
5203 if (!pm_runtime_suspended(dev))
5204 ata_port_resume(to_ata_port(dev), PMSG_RESUME, true);
5205 return 0;
5206 }
5207
5208 /*
5209 * For ODDs, the upper layer will poll for media change every few seconds,
5210 * which will make it enter and leave suspend state every few seconds. And
5211 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5212 * is very little and the ODD may malfunction after constantly being reset.
5213 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5214 * ODD is attached to the port.
5215 */
ata_port_runtime_idle(struct device * dev)5216 static int ata_port_runtime_idle(struct device *dev)
5217 {
5218 struct ata_port *ap = to_ata_port(dev);
5219 struct ata_link *link;
5220 struct ata_device *adev;
5221
5222 ata_for_each_link(link, ap, HOST_FIRST) {
5223 ata_for_each_dev(adev, link, ENABLED)
5224 if (adev->class == ATA_DEV_ATAPI &&
5225 !zpodd_dev_enabled(adev))
5226 return -EBUSY;
5227 }
5228
5229 return 0;
5230 }
5231
ata_port_runtime_suspend(struct device * dev)5232 static int ata_port_runtime_suspend(struct device *dev)
5233 {
5234 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND, false);
5235 return 0;
5236 }
5237
ata_port_runtime_resume(struct device * dev)5238 static int ata_port_runtime_resume(struct device *dev)
5239 {
5240 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME, false);
5241 return 0;
5242 }
5243
5244 static const struct dev_pm_ops ata_port_pm_ops = {
5245 .suspend = ata_port_pm_suspend,
5246 .resume = ata_port_pm_resume,
5247 .freeze = ata_port_pm_freeze,
5248 .thaw = ata_port_pm_resume,
5249 .poweroff = ata_port_pm_poweroff,
5250 .restore = ata_port_pm_resume,
5251
5252 .runtime_suspend = ata_port_runtime_suspend,
5253 .runtime_resume = ata_port_runtime_resume,
5254 .runtime_idle = ata_port_runtime_idle,
5255 };
5256
5257 /* sas ports don't participate in pm runtime management of ata_ports,
5258 * and need to resume ata devices at the domain level, not the per-port
5259 * level. sas suspend/resume is async to allow parallel port recovery
5260 * since sas has multiple ata_port instances per Scsi_Host.
5261 */
ata_sas_port_suspend(struct ata_port * ap)5262 void ata_sas_port_suspend(struct ata_port *ap)
5263 {
5264 ata_port_suspend(ap, PMSG_SUSPEND, true);
5265 }
5266 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5267
ata_sas_port_resume(struct ata_port * ap)5268 void ata_sas_port_resume(struct ata_port *ap)
5269 {
5270 ata_port_resume(ap, PMSG_RESUME, true);
5271 }
5272 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5273
5274 /**
5275 * ata_host_suspend - suspend host
5276 * @host: host to suspend
5277 * @mesg: PM message
5278 *
5279 * Suspend @host. Actual operation is performed by port suspend.
5280 */
ata_host_suspend(struct ata_host * host,pm_message_t mesg)5281 void ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5282 {
5283 host->dev->power.power_state = mesg;
5284 }
5285 EXPORT_SYMBOL_GPL(ata_host_suspend);
5286
5287 /**
5288 * ata_host_resume - resume host
5289 * @host: host to resume
5290 *
5291 * Resume @host. Actual operation is performed by port resume.
5292 */
ata_host_resume(struct ata_host * host)5293 void ata_host_resume(struct ata_host *host)
5294 {
5295 host->dev->power.power_state = PMSG_ON;
5296 }
5297 EXPORT_SYMBOL_GPL(ata_host_resume);
5298 #endif
5299
5300 const struct device_type ata_port_type = {
5301 .name = ATA_PORT_TYPE_NAME,
5302 #ifdef CONFIG_PM
5303 .pm = &ata_port_pm_ops,
5304 #endif
5305 };
5306
5307 /**
5308 * ata_dev_init - Initialize an ata_device structure
5309 * @dev: Device structure to initialize
5310 *
5311 * Initialize @dev in preparation for probing.
5312 *
5313 * LOCKING:
5314 * Inherited from caller.
5315 */
ata_dev_init(struct ata_device * dev)5316 void ata_dev_init(struct ata_device *dev)
5317 {
5318 struct ata_link *link = ata_dev_phys_link(dev);
5319 struct ata_port *ap = link->ap;
5320 unsigned long flags;
5321
5322 /* SATA spd limit is bound to the attached device, reset together */
5323 link->sata_spd_limit = link->hw_sata_spd_limit;
5324 link->sata_spd = 0;
5325
5326 /* High bits of dev->flags are used to record warm plug
5327 * requests which occur asynchronously. Synchronize using
5328 * host lock.
5329 */
5330 spin_lock_irqsave(ap->lock, flags);
5331 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5332 dev->quirks = 0;
5333 spin_unlock_irqrestore(ap->lock, flags);
5334
5335 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5336 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5337 dev->pio_mask = UINT_MAX;
5338 dev->mwdma_mask = UINT_MAX;
5339 dev->udma_mask = UINT_MAX;
5340 }
5341
5342 /**
5343 * ata_link_init - Initialize an ata_link structure
5344 * @ap: ATA port link is attached to
5345 * @link: Link structure to initialize
5346 * @pmp: Port multiplier port number
5347 *
5348 * Initialize @link.
5349 *
5350 * LOCKING:
5351 * Kernel thread context (may sleep)
5352 */
ata_link_init(struct ata_port * ap,struct ata_link * link,int pmp)5353 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5354 {
5355 int i;
5356
5357 /* clear everything except for devices */
5358 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5359 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5360
5361 link->ap = ap;
5362 link->pmp = pmp;
5363 link->active_tag = ATA_TAG_POISON;
5364 link->hw_sata_spd_limit = UINT_MAX;
5365
5366 /* can't use iterator, ap isn't initialized yet */
5367 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5368 struct ata_device *dev = &link->device[i];
5369
5370 dev->link = link;
5371 dev->devno = dev - link->device;
5372 #ifdef CONFIG_ATA_ACPI
5373 dev->gtf_filter = ata_acpi_gtf_filter;
5374 #endif
5375 ata_dev_init(dev);
5376 }
5377 }
5378
5379 /**
5380 * sata_link_init_spd - Initialize link->sata_spd_limit
5381 * @link: Link to configure sata_spd_limit for
5382 *
5383 * Initialize ``link->[hw_]sata_spd_limit`` to the currently
5384 * configured value.
5385 *
5386 * LOCKING:
5387 * Kernel thread context (may sleep).
5388 *
5389 * RETURNS:
5390 * 0 on success, -errno on failure.
5391 */
sata_link_init_spd(struct ata_link * link)5392 int sata_link_init_spd(struct ata_link *link)
5393 {
5394 u8 spd;
5395 int rc;
5396
5397 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5398 if (rc)
5399 return rc;
5400
5401 spd = (link->saved_scontrol >> 4) & 0xf;
5402 if (spd)
5403 link->hw_sata_spd_limit &= (1 << spd) - 1;
5404
5405 ata_force_link_limits(link);
5406
5407 link->sata_spd_limit = link->hw_sata_spd_limit;
5408
5409 return 0;
5410 }
5411
5412 /**
5413 * ata_port_alloc - allocate and initialize basic ATA port resources
5414 * @host: ATA host this allocated port belongs to
5415 *
5416 * Allocate and initialize basic ATA port resources.
5417 *
5418 * RETURNS:
5419 * Allocate ATA port on success, NULL on failure.
5420 *
5421 * LOCKING:
5422 * Inherited from calling layer (may sleep).
5423 */
ata_port_alloc(struct ata_host * host)5424 struct ata_port *ata_port_alloc(struct ata_host *host)
5425 {
5426 struct ata_port *ap;
5427 int id;
5428
5429 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5430 if (!ap)
5431 return NULL;
5432
5433 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5434 ap->lock = &host->lock;
5435 id = ida_alloc_min(&ata_ida, 1, GFP_KERNEL);
5436 if (id < 0) {
5437 kfree(ap);
5438 return NULL;
5439 }
5440 ap->print_id = id;
5441 ap->host = host;
5442 ap->dev = host->dev;
5443
5444 mutex_init(&ap->scsi_scan_mutex);
5445 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5446 INIT_DELAYED_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5447 INIT_LIST_HEAD(&ap->eh_done_q);
5448 init_waitqueue_head(&ap->eh_wait_q);
5449 init_completion(&ap->park_req_pending);
5450 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5451 TIMER_DEFERRABLE);
5452
5453 ap->cbl = ATA_CBL_NONE;
5454
5455 ata_link_init(ap, &ap->link, 0);
5456
5457 #ifdef ATA_IRQ_TRAP
5458 ap->stats.unhandled_irq = 1;
5459 ap->stats.idle_irq = 1;
5460 #endif
5461 ata_sff_port_init(ap);
5462
5463 return ap;
5464 }
5465 EXPORT_SYMBOL_GPL(ata_port_alloc);
5466
ata_port_free(struct ata_port * ap)5467 void ata_port_free(struct ata_port *ap)
5468 {
5469 if (!ap)
5470 return;
5471
5472 kfree(ap->pmp_link);
5473 kfree(ap->slave_link);
5474 ida_free(&ata_ida, ap->print_id);
5475 kfree(ap);
5476 }
5477 EXPORT_SYMBOL_GPL(ata_port_free);
5478
ata_devres_release(struct device * gendev,void * res)5479 static void ata_devres_release(struct device *gendev, void *res)
5480 {
5481 struct ata_host *host = dev_get_drvdata(gendev);
5482 int i;
5483
5484 for (i = 0; i < host->n_ports; i++) {
5485 struct ata_port *ap = host->ports[i];
5486
5487 if (!ap)
5488 continue;
5489
5490 if (ap->scsi_host)
5491 scsi_host_put(ap->scsi_host);
5492
5493 }
5494
5495 dev_set_drvdata(gendev, NULL);
5496 ata_host_put(host);
5497 }
5498
ata_host_release(struct kref * kref)5499 static void ata_host_release(struct kref *kref)
5500 {
5501 struct ata_host *host = container_of(kref, struct ata_host, kref);
5502 int i;
5503
5504 for (i = 0; i < host->n_ports; i++) {
5505 ata_port_free(host->ports[i]);
5506 host->ports[i] = NULL;
5507 }
5508 kfree(host);
5509 }
5510
ata_host_get(struct ata_host * host)5511 void ata_host_get(struct ata_host *host)
5512 {
5513 kref_get(&host->kref);
5514 }
5515
ata_host_put(struct ata_host * host)5516 void ata_host_put(struct ata_host *host)
5517 {
5518 kref_put(&host->kref, ata_host_release);
5519 }
5520 EXPORT_SYMBOL_GPL(ata_host_put);
5521
5522 /**
5523 * ata_host_alloc - allocate and init basic ATA host resources
5524 * @dev: generic device this host is associated with
5525 * @n_ports: the number of ATA ports associated with this host
5526 *
5527 * Allocate and initialize basic ATA host resources. LLD calls
5528 * this function to allocate a host, initializes it fully and
5529 * attaches it using ata_host_register().
5530 *
5531 * RETURNS:
5532 * Allocate ATA host on success, NULL on failure.
5533 *
5534 * LOCKING:
5535 * Inherited from calling layer (may sleep).
5536 */
ata_host_alloc(struct device * dev,int n_ports)5537 struct ata_host *ata_host_alloc(struct device *dev, int n_ports)
5538 {
5539 struct ata_host *host;
5540 size_t sz;
5541 int i;
5542 void *dr;
5543
5544 /* alloc a container for our list of ATA ports (buses) */
5545 sz = sizeof(struct ata_host) + n_ports * sizeof(void *);
5546 host = kzalloc(sz, GFP_KERNEL);
5547 if (!host)
5548 return NULL;
5549
5550 if (!devres_open_group(dev, NULL, GFP_KERNEL)) {
5551 kfree(host);
5552 return NULL;
5553 }
5554
5555 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5556 if (!dr) {
5557 kfree(host);
5558 goto err_out;
5559 }
5560
5561 devres_add(dev, dr);
5562 dev_set_drvdata(dev, host);
5563
5564 spin_lock_init(&host->lock);
5565 mutex_init(&host->eh_mutex);
5566 host->dev = dev;
5567 host->n_ports = n_ports;
5568 kref_init(&host->kref);
5569
5570 /* allocate ports bound to this host */
5571 for (i = 0; i < n_ports; i++) {
5572 struct ata_port *ap;
5573
5574 ap = ata_port_alloc(host);
5575 if (!ap)
5576 goto err_out;
5577
5578 ap->port_no = i;
5579 host->ports[i] = ap;
5580 }
5581
5582 devres_remove_group(dev, NULL);
5583 return host;
5584
5585 err_out:
5586 devres_release_group(dev, NULL);
5587 return NULL;
5588 }
5589 EXPORT_SYMBOL_GPL(ata_host_alloc);
5590
5591 /**
5592 * ata_host_alloc_pinfo - alloc host and init with port_info array
5593 * @dev: generic device this host is associated with
5594 * @ppi: array of ATA port_info to initialize host with
5595 * @n_ports: number of ATA ports attached to this host
5596 *
5597 * Allocate ATA host and initialize with info from @ppi. If NULL
5598 * terminated, @ppi may contain fewer entries than @n_ports. The
5599 * last entry will be used for the remaining ports.
5600 *
5601 * RETURNS:
5602 * Allocate ATA host on success, NULL on failure.
5603 *
5604 * LOCKING:
5605 * Inherited from calling layer (may sleep).
5606 */
ata_host_alloc_pinfo(struct device * dev,const struct ata_port_info * const * ppi,int n_ports)5607 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5608 const struct ata_port_info * const * ppi,
5609 int n_ports)
5610 {
5611 const struct ata_port_info *pi = &ata_dummy_port_info;
5612 struct ata_host *host;
5613 int i, j;
5614
5615 host = ata_host_alloc(dev, n_ports);
5616 if (!host)
5617 return NULL;
5618
5619 for (i = 0, j = 0; i < host->n_ports; i++) {
5620 struct ata_port *ap = host->ports[i];
5621
5622 if (ppi[j])
5623 pi = ppi[j++];
5624
5625 ap->pio_mask = pi->pio_mask;
5626 ap->mwdma_mask = pi->mwdma_mask;
5627 ap->udma_mask = pi->udma_mask;
5628 ap->flags |= pi->flags;
5629 ap->link.flags |= pi->link_flags;
5630 ap->ops = pi->port_ops;
5631
5632 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5633 host->ops = pi->port_ops;
5634 }
5635
5636 return host;
5637 }
5638 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5639
ata_host_stop(struct device * gendev,void * res)5640 static void ata_host_stop(struct device *gendev, void *res)
5641 {
5642 struct ata_host *host = dev_get_drvdata(gendev);
5643 int i;
5644
5645 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5646
5647 for (i = 0; i < host->n_ports; i++) {
5648 struct ata_port *ap = host->ports[i];
5649
5650 if (ap->ops->port_stop)
5651 ap->ops->port_stop(ap);
5652 }
5653
5654 if (host->ops->host_stop)
5655 host->ops->host_stop(host);
5656 }
5657
5658 /**
5659 * ata_finalize_port_ops - finalize ata_port_operations
5660 * @ops: ata_port_operations to finalize
5661 *
5662 * An ata_port_operations can inherit from another ops and that
5663 * ops can again inherit from another. This can go on as many
5664 * times as necessary as long as there is no loop in the
5665 * inheritance chain.
5666 *
5667 * Ops tables are finalized when the host is started. NULL or
5668 * unspecified entries are inherited from the closet ancestor
5669 * which has the method and the entry is populated with it.
5670 * After finalization, the ops table directly points to all the
5671 * methods and ->inherits is no longer necessary and cleared.
5672 *
5673 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5674 *
5675 * LOCKING:
5676 * None.
5677 */
ata_finalize_port_ops(struct ata_port_operations * ops)5678 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5679 {
5680 static DEFINE_SPINLOCK(lock);
5681 const struct ata_port_operations *cur;
5682 void **begin = (void **)ops;
5683 void **end = (void **)&ops->inherits;
5684 void **pp;
5685
5686 if (!ops || !ops->inherits)
5687 return;
5688
5689 spin_lock(&lock);
5690
5691 for (cur = ops->inherits; cur; cur = cur->inherits) {
5692 void **inherit = (void **)cur;
5693
5694 for (pp = begin; pp < end; pp++, inherit++)
5695 if (!*pp)
5696 *pp = *inherit;
5697 }
5698
5699 for (pp = begin; pp < end; pp++)
5700 if (IS_ERR(*pp))
5701 *pp = NULL;
5702
5703 ops->inherits = NULL;
5704
5705 spin_unlock(&lock);
5706 }
5707
5708 /**
5709 * ata_host_start - start and freeze ports of an ATA host
5710 * @host: ATA host to start ports for
5711 *
5712 * Start and then freeze ports of @host. Started status is
5713 * recorded in host->flags, so this function can be called
5714 * multiple times. Ports are guaranteed to get started only
5715 * once. If host->ops is not initialized yet, it is set to the
5716 * first non-dummy port ops.
5717 *
5718 * LOCKING:
5719 * Inherited from calling layer (may sleep).
5720 *
5721 * RETURNS:
5722 * 0 if all ports are started successfully, -errno otherwise.
5723 */
ata_host_start(struct ata_host * host)5724 int ata_host_start(struct ata_host *host)
5725 {
5726 int have_stop = 0;
5727 void *start_dr = NULL;
5728 int i, rc;
5729
5730 if (host->flags & ATA_HOST_STARTED)
5731 return 0;
5732
5733 ata_finalize_port_ops(host->ops);
5734
5735 for (i = 0; i < host->n_ports; i++) {
5736 struct ata_port *ap = host->ports[i];
5737
5738 ata_finalize_port_ops(ap->ops);
5739
5740 if (!host->ops && !ata_port_is_dummy(ap))
5741 host->ops = ap->ops;
5742
5743 if (ap->ops->port_stop)
5744 have_stop = 1;
5745 }
5746
5747 if (host->ops && host->ops->host_stop)
5748 have_stop = 1;
5749
5750 if (have_stop) {
5751 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5752 if (!start_dr)
5753 return -ENOMEM;
5754 }
5755
5756 for (i = 0; i < host->n_ports; i++) {
5757 struct ata_port *ap = host->ports[i];
5758
5759 if (ap->ops->port_start) {
5760 rc = ap->ops->port_start(ap);
5761 if (rc) {
5762 if (rc != -ENODEV)
5763 dev_err(host->dev,
5764 "failed to start port %d (errno=%d)\n",
5765 i, rc);
5766 goto err_out;
5767 }
5768 }
5769 ata_eh_freeze_port(ap);
5770 }
5771
5772 if (start_dr)
5773 devres_add(host->dev, start_dr);
5774 host->flags |= ATA_HOST_STARTED;
5775 return 0;
5776
5777 err_out:
5778 while (--i >= 0) {
5779 struct ata_port *ap = host->ports[i];
5780
5781 if (ap->ops->port_stop)
5782 ap->ops->port_stop(ap);
5783 }
5784 devres_free(start_dr);
5785 return rc;
5786 }
5787 EXPORT_SYMBOL_GPL(ata_host_start);
5788
5789 /**
5790 * ata_host_init - Initialize a host struct for sas (ipr, libsas)
5791 * @host: host to initialize
5792 * @dev: device host is attached to
5793 * @ops: port_ops
5794 *
5795 */
ata_host_init(struct ata_host * host,struct device * dev,struct ata_port_operations * ops)5796 void ata_host_init(struct ata_host *host, struct device *dev,
5797 struct ata_port_operations *ops)
5798 {
5799 spin_lock_init(&host->lock);
5800 mutex_init(&host->eh_mutex);
5801 host->n_tags = ATA_MAX_QUEUE;
5802 host->dev = dev;
5803 host->ops = ops;
5804 kref_init(&host->kref);
5805 }
5806 EXPORT_SYMBOL_GPL(ata_host_init);
5807
ata_port_probe(struct ata_port * ap)5808 void ata_port_probe(struct ata_port *ap)
5809 {
5810 struct ata_eh_info *ehi = &ap->link.eh_info;
5811 unsigned long flags;
5812
5813 /* kick EH for boot probing */
5814 spin_lock_irqsave(ap->lock, flags);
5815
5816 ehi->probe_mask |= ATA_ALL_DEVICES;
5817 ehi->action |= ATA_EH_RESET;
5818 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5819
5820 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5821 ap->pflags |= ATA_PFLAG_LOADING;
5822 ata_port_schedule_eh(ap);
5823
5824 spin_unlock_irqrestore(ap->lock, flags);
5825 }
5826 EXPORT_SYMBOL_GPL(ata_port_probe);
5827
async_port_probe(void * data,async_cookie_t cookie)5828 static void async_port_probe(void *data, async_cookie_t cookie)
5829 {
5830 struct ata_port *ap = data;
5831
5832 /*
5833 * If we're not allowed to scan this host in parallel,
5834 * we need to wait until all previous scans have completed
5835 * before going further.
5836 * Jeff Garzik says this is only within a controller, so we
5837 * don't need to wait for port 0, only for later ports.
5838 */
5839 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5840 async_synchronize_cookie(cookie);
5841
5842 ata_port_probe(ap);
5843 ata_port_wait_eh(ap);
5844
5845 /* in order to keep device order, we need to synchronize at this point */
5846 async_synchronize_cookie(cookie);
5847
5848 ata_scsi_scan_host(ap, 1);
5849 }
5850
5851 /**
5852 * ata_host_register - register initialized ATA host
5853 * @host: ATA host to register
5854 * @sht: template for SCSI host
5855 *
5856 * Register initialized ATA host. @host is allocated using
5857 * ata_host_alloc() and fully initialized by LLD. This function
5858 * starts ports, registers @host with ATA and SCSI layers and
5859 * probe registered devices.
5860 *
5861 * LOCKING:
5862 * Inherited from calling layer (may sleep).
5863 *
5864 * RETURNS:
5865 * 0 on success, -errno otherwise.
5866 */
ata_host_register(struct ata_host * host,const struct scsi_host_template * sht)5867 int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht)
5868 {
5869 int i, rc;
5870
5871 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5872
5873 /* host must have been started */
5874 if (!(host->flags & ATA_HOST_STARTED)) {
5875 dev_err(host->dev, "BUG: trying to register unstarted host\n");
5876 WARN_ON(1);
5877 return -EINVAL;
5878 }
5879
5880 /* Create associated sysfs transport objects */
5881 for (i = 0; i < host->n_ports; i++) {
5882 rc = ata_tport_add(host->dev,host->ports[i]);
5883 if (rc) {
5884 goto err_tadd;
5885 }
5886 }
5887
5888 rc = ata_scsi_add_hosts(host, sht);
5889 if (rc)
5890 goto err_tadd;
5891
5892 /* set cable, sata_spd_limit and report */
5893 for (i = 0; i < host->n_ports; i++) {
5894 struct ata_port *ap = host->ports[i];
5895 unsigned int xfer_mask;
5896
5897 /* set SATA cable type if still unset */
5898 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5899 ap->cbl = ATA_CBL_SATA;
5900
5901 /* init sata_spd_limit to the current value */
5902 sata_link_init_spd(&ap->link);
5903 if (ap->slave_link)
5904 sata_link_init_spd(ap->slave_link);
5905
5906 /* print per-port info to dmesg */
5907 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5908 ap->udma_mask);
5909
5910 if (!ata_port_is_dummy(ap)) {
5911 ata_port_info(ap, "%cATA max %s %s\n",
5912 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5913 ata_mode_string(xfer_mask),
5914 ap->link.eh_info.desc);
5915 ata_ehi_clear_desc(&ap->link.eh_info);
5916 } else
5917 ata_port_info(ap, "DUMMY\n");
5918 }
5919
5920 /* perform each probe asynchronously */
5921 for (i = 0; i < host->n_ports; i++) {
5922 struct ata_port *ap = host->ports[i];
5923 ap->cookie = async_schedule(async_port_probe, ap);
5924 }
5925
5926 return 0;
5927
5928 err_tadd:
5929 while (--i >= 0) {
5930 ata_tport_delete(host->ports[i]);
5931 }
5932 return rc;
5933
5934 }
5935 EXPORT_SYMBOL_GPL(ata_host_register);
5936
5937 /**
5938 * ata_host_activate - start host, request IRQ and register it
5939 * @host: target ATA host
5940 * @irq: IRQ to request
5941 * @irq_handler: irq_handler used when requesting IRQ
5942 * @irq_flags: irq_flags used when requesting IRQ
5943 * @sht: scsi_host_template to use when registering the host
5944 *
5945 * After allocating an ATA host and initializing it, most libata
5946 * LLDs perform three steps to activate the host - start host,
5947 * request IRQ and register it. This helper takes necessary
5948 * arguments and performs the three steps in one go.
5949 *
5950 * An invalid IRQ skips the IRQ registration and expects the host to
5951 * have set polling mode on the port. In this case, @irq_handler
5952 * should be NULL.
5953 *
5954 * LOCKING:
5955 * Inherited from calling layer (may sleep).
5956 *
5957 * RETURNS:
5958 * 0 on success, -errno otherwise.
5959 */
ata_host_activate(struct ata_host * host,int irq,irq_handler_t irq_handler,unsigned long irq_flags,const struct scsi_host_template * sht)5960 int ata_host_activate(struct ata_host *host, int irq,
5961 irq_handler_t irq_handler, unsigned long irq_flags,
5962 const struct scsi_host_template *sht)
5963 {
5964 int i, rc;
5965 char *irq_desc;
5966
5967 rc = ata_host_start(host);
5968 if (rc)
5969 return rc;
5970
5971 /* Special case for polling mode */
5972 if (!irq) {
5973 WARN_ON(irq_handler);
5974 return ata_host_register(host, sht);
5975 }
5976
5977 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
5978 dev_driver_string(host->dev),
5979 dev_name(host->dev));
5980 if (!irq_desc)
5981 return -ENOMEM;
5982
5983 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5984 irq_desc, host);
5985 if (rc)
5986 return rc;
5987
5988 for (i = 0; i < host->n_ports; i++)
5989 ata_port_desc_misc(host->ports[i], irq);
5990
5991 rc = ata_host_register(host, sht);
5992 /* if failed, just free the IRQ and leave ports alone */
5993 if (rc)
5994 devm_free_irq(host->dev, irq, host);
5995
5996 return rc;
5997 }
5998 EXPORT_SYMBOL_GPL(ata_host_activate);
5999
6000 /**
6001 * ata_dev_free_resources - Free a device resources
6002 * @dev: Target ATA device
6003 *
6004 * Free resources allocated to support a device features.
6005 *
6006 * LOCKING:
6007 * Kernel thread context (may sleep).
6008 */
ata_dev_free_resources(struct ata_device * dev)6009 void ata_dev_free_resources(struct ata_device *dev)
6010 {
6011 if (zpodd_dev_enabled(dev))
6012 zpodd_exit(dev);
6013
6014 ata_dev_cleanup_cdl_resources(dev);
6015 }
6016
6017 /**
6018 * ata_port_detach - Detach ATA port in preparation of device removal
6019 * @ap: ATA port to be detached
6020 *
6021 * Detach all ATA devices and the associated SCSI devices of @ap;
6022 * then, remove the associated SCSI host. @ap is guaranteed to
6023 * be quiescent on return from this function.
6024 *
6025 * LOCKING:
6026 * Kernel thread context (may sleep).
6027 */
ata_port_detach(struct ata_port * ap)6028 static void ata_port_detach(struct ata_port *ap)
6029 {
6030 unsigned long flags;
6031 struct ata_link *link;
6032 struct ata_device *dev;
6033
6034 /* Ensure ata_port probe has completed */
6035 async_synchronize_cookie(ap->cookie + 1);
6036
6037 /* Wait for any ongoing EH */
6038 ata_port_wait_eh(ap);
6039
6040 mutex_lock(&ap->scsi_scan_mutex);
6041 spin_lock_irqsave(ap->lock, flags);
6042
6043 /* Remove scsi devices */
6044 ata_for_each_link(link, ap, HOST_FIRST) {
6045 ata_for_each_dev(dev, link, ALL) {
6046 if (dev->sdev) {
6047 spin_unlock_irqrestore(ap->lock, flags);
6048 scsi_remove_device(dev->sdev);
6049 spin_lock_irqsave(ap->lock, flags);
6050 dev->sdev = NULL;
6051 }
6052 }
6053 }
6054
6055 /* Tell EH to disable all devices */
6056 ap->pflags |= ATA_PFLAG_UNLOADING;
6057 ata_port_schedule_eh(ap);
6058
6059 spin_unlock_irqrestore(ap->lock, flags);
6060 mutex_unlock(&ap->scsi_scan_mutex);
6061
6062 /* wait till EH commits suicide */
6063 ata_port_wait_eh(ap);
6064
6065 /* it better be dead now */
6066 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6067
6068 cancel_delayed_work_sync(&ap->hotplug_task);
6069 cancel_delayed_work_sync(&ap->scsi_rescan_task);
6070
6071 /* Delete port multiplier link transport devices */
6072 if (ap->pmp_link) {
6073 int i;
6074
6075 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6076 ata_tlink_delete(&ap->pmp_link[i]);
6077 }
6078
6079 /* Remove the associated SCSI host */
6080 scsi_remove_host(ap->scsi_host);
6081 ata_tport_delete(ap);
6082 }
6083
6084 /**
6085 * ata_host_detach - Detach all ports of an ATA host
6086 * @host: Host to detach
6087 *
6088 * Detach all ports of @host.
6089 *
6090 * LOCKING:
6091 * Kernel thread context (may sleep).
6092 */
ata_host_detach(struct ata_host * host)6093 void ata_host_detach(struct ata_host *host)
6094 {
6095 int i;
6096
6097 for (i = 0; i < host->n_ports; i++)
6098 ata_port_detach(host->ports[i]);
6099
6100 /* the host is dead now, dissociate ACPI */
6101 ata_acpi_dissociate(host);
6102 }
6103 EXPORT_SYMBOL_GPL(ata_host_detach);
6104
6105 #ifdef CONFIG_PCI
6106
6107 /**
6108 * ata_pci_remove_one - PCI layer callback for device removal
6109 * @pdev: PCI device that was removed
6110 *
6111 * PCI layer indicates to libata via this hook that hot-unplug or
6112 * module unload event has occurred. Detach all ports. Resource
6113 * release is handled via devres.
6114 *
6115 * LOCKING:
6116 * Inherited from PCI layer (may sleep).
6117 */
ata_pci_remove_one(struct pci_dev * pdev)6118 void ata_pci_remove_one(struct pci_dev *pdev)
6119 {
6120 struct ata_host *host = pci_get_drvdata(pdev);
6121
6122 ata_host_detach(host);
6123 }
6124 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6125
ata_pci_shutdown_one(struct pci_dev * pdev)6126 void ata_pci_shutdown_one(struct pci_dev *pdev)
6127 {
6128 struct ata_host *host = pci_get_drvdata(pdev);
6129 int i;
6130
6131 for (i = 0; i < host->n_ports; i++) {
6132 struct ata_port *ap = host->ports[i];
6133
6134 ap->pflags |= ATA_PFLAG_FROZEN;
6135
6136 /* Disable port interrupts */
6137 if (ap->ops->freeze)
6138 ap->ops->freeze(ap);
6139
6140 /* Stop the port DMA engines */
6141 if (ap->ops->port_stop)
6142 ap->ops->port_stop(ap);
6143 }
6144 }
6145 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6146
6147 /* move to PCI subsystem */
pci_test_config_bits(struct pci_dev * pdev,const struct pci_bits * bits)6148 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6149 {
6150 unsigned long tmp = 0;
6151
6152 switch (bits->width) {
6153 case 1: {
6154 u8 tmp8 = 0;
6155 pci_read_config_byte(pdev, bits->reg, &tmp8);
6156 tmp = tmp8;
6157 break;
6158 }
6159 case 2: {
6160 u16 tmp16 = 0;
6161 pci_read_config_word(pdev, bits->reg, &tmp16);
6162 tmp = tmp16;
6163 break;
6164 }
6165 case 4: {
6166 u32 tmp32 = 0;
6167 pci_read_config_dword(pdev, bits->reg, &tmp32);
6168 tmp = tmp32;
6169 break;
6170 }
6171
6172 default:
6173 return -EINVAL;
6174 }
6175
6176 tmp &= bits->mask;
6177
6178 return (tmp == bits->val) ? 1 : 0;
6179 }
6180 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6181
6182 #ifdef CONFIG_PM
ata_pci_device_do_suspend(struct pci_dev * pdev,pm_message_t mesg)6183 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6184 {
6185 pci_save_state(pdev);
6186 pci_disable_device(pdev);
6187
6188 if (mesg.event & PM_EVENT_SLEEP)
6189 pci_set_power_state(pdev, PCI_D3hot);
6190 }
6191 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6192
ata_pci_device_do_resume(struct pci_dev * pdev)6193 int ata_pci_device_do_resume(struct pci_dev *pdev)
6194 {
6195 int rc;
6196
6197 pci_set_power_state(pdev, PCI_D0);
6198 pci_restore_state(pdev);
6199
6200 rc = pcim_enable_device(pdev);
6201 if (rc) {
6202 dev_err(&pdev->dev,
6203 "failed to enable device after resume (%d)\n", rc);
6204 return rc;
6205 }
6206
6207 pci_set_master(pdev);
6208 return 0;
6209 }
6210 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6211
ata_pci_device_suspend(struct pci_dev * pdev,pm_message_t mesg)6212 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6213 {
6214 struct ata_host *host = pci_get_drvdata(pdev);
6215
6216 ata_host_suspend(host, mesg);
6217
6218 ata_pci_device_do_suspend(pdev, mesg);
6219
6220 return 0;
6221 }
6222 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6223
ata_pci_device_resume(struct pci_dev * pdev)6224 int ata_pci_device_resume(struct pci_dev *pdev)
6225 {
6226 struct ata_host *host = pci_get_drvdata(pdev);
6227 int rc;
6228
6229 rc = ata_pci_device_do_resume(pdev);
6230 if (rc == 0)
6231 ata_host_resume(host);
6232 return rc;
6233 }
6234 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6235 #endif /* CONFIG_PM */
6236 #endif /* CONFIG_PCI */
6237
6238 /**
6239 * ata_platform_remove_one - Platform layer callback for device removal
6240 * @pdev: Platform device that was removed
6241 *
6242 * Platform layer indicates to libata via this hook that hot-unplug or
6243 * module unload event has occurred. Detach all ports. Resource
6244 * release is handled via devres.
6245 *
6246 * LOCKING:
6247 * Inherited from platform layer (may sleep).
6248 */
ata_platform_remove_one(struct platform_device * pdev)6249 void ata_platform_remove_one(struct platform_device *pdev)
6250 {
6251 struct ata_host *host = platform_get_drvdata(pdev);
6252
6253 ata_host_detach(host);
6254 }
6255 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6256
6257 #ifdef CONFIG_ATA_FORCE
6258
6259 #define force_cbl(name, flag) \
6260 { #name, .cbl = (flag) }
6261
6262 #define force_spd_limit(spd, val) \
6263 { #spd, .spd_limit = (val) }
6264
6265 #define force_xfer(mode, shift) \
6266 { #mode, .xfer_mask = (1UL << (shift)) }
6267
6268 #define force_lflag_on(name, flags) \
6269 { #name, .lflags_on = (flags) }
6270
6271 #define force_lflag_onoff(name, flags) \
6272 { "no" #name, .lflags_on = (flags) }, \
6273 { #name, .lflags_off = (flags) }
6274
6275 #define force_quirk_on(name, flag) \
6276 { #name, .quirk_on = (flag) }
6277
6278 #define force_quirk_onoff(name, flag) \
6279 { "no" #name, .quirk_on = (flag) }, \
6280 { #name, .quirk_off = (flag) }
6281
6282 static const struct ata_force_param force_tbl[] __initconst = {
6283 force_cbl(40c, ATA_CBL_PATA40),
6284 force_cbl(80c, ATA_CBL_PATA80),
6285 force_cbl(short40c, ATA_CBL_PATA40_SHORT),
6286 force_cbl(unk, ATA_CBL_PATA_UNK),
6287 force_cbl(ign, ATA_CBL_PATA_IGN),
6288 force_cbl(sata, ATA_CBL_SATA),
6289
6290 force_spd_limit(1.5Gbps, 1),
6291 force_spd_limit(3.0Gbps, 2),
6292
6293 force_xfer(pio0, ATA_SHIFT_PIO + 0),
6294 force_xfer(pio1, ATA_SHIFT_PIO + 1),
6295 force_xfer(pio2, ATA_SHIFT_PIO + 2),
6296 force_xfer(pio3, ATA_SHIFT_PIO + 3),
6297 force_xfer(pio4, ATA_SHIFT_PIO + 4),
6298 force_xfer(pio5, ATA_SHIFT_PIO + 5),
6299 force_xfer(pio6, ATA_SHIFT_PIO + 6),
6300 force_xfer(mwdma0, ATA_SHIFT_MWDMA + 0),
6301 force_xfer(mwdma1, ATA_SHIFT_MWDMA + 1),
6302 force_xfer(mwdma2, ATA_SHIFT_MWDMA + 2),
6303 force_xfer(mwdma3, ATA_SHIFT_MWDMA + 3),
6304 force_xfer(mwdma4, ATA_SHIFT_MWDMA + 4),
6305 force_xfer(udma0, ATA_SHIFT_UDMA + 0),
6306 force_xfer(udma16, ATA_SHIFT_UDMA + 0),
6307 force_xfer(udma/16, ATA_SHIFT_UDMA + 0),
6308 force_xfer(udma1, ATA_SHIFT_UDMA + 1),
6309 force_xfer(udma25, ATA_SHIFT_UDMA + 1),
6310 force_xfer(udma/25, ATA_SHIFT_UDMA + 1),
6311 force_xfer(udma2, ATA_SHIFT_UDMA + 2),
6312 force_xfer(udma33, ATA_SHIFT_UDMA + 2),
6313 force_xfer(udma/33, ATA_SHIFT_UDMA + 2),
6314 force_xfer(udma3, ATA_SHIFT_UDMA + 3),
6315 force_xfer(udma44, ATA_SHIFT_UDMA + 3),
6316 force_xfer(udma/44, ATA_SHIFT_UDMA + 3),
6317 force_xfer(udma4, ATA_SHIFT_UDMA + 4),
6318 force_xfer(udma66, ATA_SHIFT_UDMA + 4),
6319 force_xfer(udma/66, ATA_SHIFT_UDMA + 4),
6320 force_xfer(udma5, ATA_SHIFT_UDMA + 5),
6321 force_xfer(udma100, ATA_SHIFT_UDMA + 5),
6322 force_xfer(udma/100, ATA_SHIFT_UDMA + 5),
6323 force_xfer(udma6, ATA_SHIFT_UDMA + 6),
6324 force_xfer(udma133, ATA_SHIFT_UDMA + 6),
6325 force_xfer(udma/133, ATA_SHIFT_UDMA + 6),
6326 force_xfer(udma7, ATA_SHIFT_UDMA + 7),
6327
6328 force_lflag_on(nohrst, ATA_LFLAG_NO_HRST),
6329 force_lflag_on(nosrst, ATA_LFLAG_NO_SRST),
6330 force_lflag_on(norst, ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST),
6331 force_lflag_on(rstonce, ATA_LFLAG_RST_ONCE),
6332 force_lflag_onoff(dbdelay, ATA_LFLAG_NO_DEBOUNCE_DELAY),
6333
6334 force_quirk_onoff(ncq, ATA_QUIRK_NONCQ),
6335 force_quirk_onoff(ncqtrim, ATA_QUIRK_NO_NCQ_TRIM),
6336 force_quirk_onoff(ncqati, ATA_QUIRK_NO_NCQ_ON_ATI),
6337
6338 force_quirk_onoff(trim, ATA_QUIRK_NOTRIM),
6339 force_quirk_on(trim_zero, ATA_QUIRK_ZERO_AFTER_TRIM),
6340 force_quirk_on(max_trim_128m, ATA_QUIRK_MAX_TRIM_128M),
6341
6342 force_quirk_onoff(dma, ATA_QUIRK_NODMA),
6343 force_quirk_on(atapi_dmadir, ATA_QUIRK_ATAPI_DMADIR),
6344 force_quirk_on(atapi_mod16_dma, ATA_QUIRK_ATAPI_MOD16_DMA),
6345
6346 force_quirk_onoff(dmalog, ATA_QUIRK_NO_DMA_LOG),
6347 force_quirk_onoff(iddevlog, ATA_QUIRK_NO_ID_DEV_LOG),
6348 force_quirk_onoff(logdir, ATA_QUIRK_NO_LOG_DIR),
6349
6350 force_quirk_on(max_sec_128, ATA_QUIRK_MAX_SEC_128),
6351 force_quirk_on(max_sec_1024, ATA_QUIRK_MAX_SEC_1024),
6352 force_quirk_on(max_sec_lba48, ATA_QUIRK_MAX_SEC_LBA48),
6353
6354 force_quirk_onoff(lpm, ATA_QUIRK_NOLPM),
6355 force_quirk_onoff(setxfer, ATA_QUIRK_NOSETXFER),
6356 force_quirk_on(dump_id, ATA_QUIRK_DUMP_ID),
6357 force_quirk_onoff(fua, ATA_QUIRK_NO_FUA),
6358
6359 force_quirk_on(disable, ATA_QUIRK_DISABLE),
6360 };
6361
ata_parse_force_one(char ** cur,struct ata_force_ent * force_ent,const char ** reason)6362 static int __init ata_parse_force_one(char **cur,
6363 struct ata_force_ent *force_ent,
6364 const char **reason)
6365 {
6366 char *start = *cur, *p = *cur;
6367 char *id, *val, *endp;
6368 const struct ata_force_param *match_fp = NULL;
6369 int nr_matches = 0, i;
6370
6371 /* find where this param ends and update *cur */
6372 while (*p != '\0' && *p != ',')
6373 p++;
6374
6375 if (*p == '\0')
6376 *cur = p;
6377 else
6378 *cur = p + 1;
6379
6380 *p = '\0';
6381
6382 /* parse */
6383 p = strchr(start, ':');
6384 if (!p) {
6385 val = strstrip(start);
6386 goto parse_val;
6387 }
6388 *p = '\0';
6389
6390 id = strstrip(start);
6391 val = strstrip(p + 1);
6392
6393 /* parse id */
6394 p = strchr(id, '.');
6395 if (p) {
6396 *p++ = '\0';
6397 force_ent->device = simple_strtoul(p, &endp, 10);
6398 if (p == endp || *endp != '\0') {
6399 *reason = "invalid device";
6400 return -EINVAL;
6401 }
6402 }
6403
6404 force_ent->port = simple_strtoul(id, &endp, 10);
6405 if (id == endp || *endp != '\0') {
6406 *reason = "invalid port/link";
6407 return -EINVAL;
6408 }
6409
6410 parse_val:
6411 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6412 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6413 const struct ata_force_param *fp = &force_tbl[i];
6414
6415 if (strncasecmp(val, fp->name, strlen(val)))
6416 continue;
6417
6418 nr_matches++;
6419 match_fp = fp;
6420
6421 if (strcasecmp(val, fp->name) == 0) {
6422 nr_matches = 1;
6423 break;
6424 }
6425 }
6426
6427 if (!nr_matches) {
6428 *reason = "unknown value";
6429 return -EINVAL;
6430 }
6431 if (nr_matches > 1) {
6432 *reason = "ambiguous value";
6433 return -EINVAL;
6434 }
6435
6436 force_ent->param = *match_fp;
6437
6438 return 0;
6439 }
6440
ata_parse_force_param(void)6441 static void __init ata_parse_force_param(void)
6442 {
6443 int idx = 0, size = 1;
6444 int last_port = -1, last_device = -1;
6445 char *p, *cur, *next;
6446
6447 /* Calculate maximum number of params and allocate ata_force_tbl */
6448 for (p = ata_force_param_buf; *p; p++)
6449 if (*p == ',')
6450 size++;
6451
6452 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6453 if (!ata_force_tbl) {
6454 printk(KERN_WARNING "ata: failed to extend force table, "
6455 "libata.force ignored\n");
6456 return;
6457 }
6458
6459 /* parse and populate the table */
6460 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6461 const char *reason = "";
6462 struct ata_force_ent te = { .port = -1, .device = -1 };
6463
6464 next = cur;
6465 if (ata_parse_force_one(&next, &te, &reason)) {
6466 printk(KERN_WARNING "ata: failed to parse force "
6467 "parameter \"%s\" (%s)\n",
6468 cur, reason);
6469 continue;
6470 }
6471
6472 if (te.port == -1) {
6473 te.port = last_port;
6474 te.device = last_device;
6475 }
6476
6477 ata_force_tbl[idx++] = te;
6478
6479 last_port = te.port;
6480 last_device = te.device;
6481 }
6482
6483 ata_force_tbl_size = idx;
6484 }
6485
ata_free_force_param(void)6486 static void ata_free_force_param(void)
6487 {
6488 kfree(ata_force_tbl);
6489 }
6490 #else
ata_parse_force_param(void)6491 static inline void ata_parse_force_param(void) { }
ata_free_force_param(void)6492 static inline void ata_free_force_param(void) { }
6493 #endif
6494
ata_init(void)6495 static int __init ata_init(void)
6496 {
6497 int rc;
6498
6499 ata_parse_force_param();
6500
6501 rc = ata_sff_init();
6502 if (rc) {
6503 ata_free_force_param();
6504 return rc;
6505 }
6506
6507 libata_transport_init();
6508 ata_scsi_transport_template = ata_attach_transport();
6509 if (!ata_scsi_transport_template) {
6510 ata_sff_exit();
6511 rc = -ENOMEM;
6512 goto err_out;
6513 }
6514
6515 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6516 return 0;
6517
6518 err_out:
6519 return rc;
6520 }
6521
ata_exit(void)6522 static void __exit ata_exit(void)
6523 {
6524 ata_release_transport(ata_scsi_transport_template);
6525 libata_transport_exit();
6526 ata_sff_exit();
6527 ata_free_force_param();
6528 }
6529
6530 subsys_initcall(ata_init);
6531 module_exit(ata_exit);
6532
6533 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6534
ata_ratelimit(void)6535 int ata_ratelimit(void)
6536 {
6537 return __ratelimit(&ratelimit);
6538 }
6539 EXPORT_SYMBOL_GPL(ata_ratelimit);
6540
6541 /**
6542 * ata_msleep - ATA EH owner aware msleep
6543 * @ap: ATA port to attribute the sleep to
6544 * @msecs: duration to sleep in milliseconds
6545 *
6546 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6547 * ownership is released before going to sleep and reacquired
6548 * after the sleep is complete. IOW, other ports sharing the
6549 * @ap->host will be allowed to own the EH while this task is
6550 * sleeping.
6551 *
6552 * LOCKING:
6553 * Might sleep.
6554 */
ata_msleep(struct ata_port * ap,unsigned int msecs)6555 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6556 {
6557 bool owns_eh = ap && ap->host->eh_owner == current;
6558
6559 if (owns_eh)
6560 ata_eh_release(ap);
6561
6562 if (msecs < 20) {
6563 unsigned long usecs = msecs * USEC_PER_MSEC;
6564 usleep_range(usecs, usecs + 50);
6565 } else {
6566 msleep(msecs);
6567 }
6568
6569 if (owns_eh)
6570 ata_eh_acquire(ap);
6571 }
6572 EXPORT_SYMBOL_GPL(ata_msleep);
6573
6574 /**
6575 * ata_wait_register - wait until register value changes
6576 * @ap: ATA port to wait register for, can be NULL
6577 * @reg: IO-mapped register
6578 * @mask: Mask to apply to read register value
6579 * @val: Wait condition
6580 * @interval: polling interval in milliseconds
6581 * @timeout: timeout in milliseconds
6582 *
6583 * Waiting for some bits of register to change is a common
6584 * operation for ATA controllers. This function reads 32bit LE
6585 * IO-mapped register @reg and tests for the following condition.
6586 *
6587 * (*@reg & mask) != val
6588 *
6589 * If the condition is met, it returns; otherwise, the process is
6590 * repeated after @interval_msec until timeout.
6591 *
6592 * LOCKING:
6593 * Kernel thread context (may sleep)
6594 *
6595 * RETURNS:
6596 * The final register value.
6597 */
ata_wait_register(struct ata_port * ap,void __iomem * reg,u32 mask,u32 val,unsigned int interval,unsigned int timeout)6598 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6599 unsigned int interval, unsigned int timeout)
6600 {
6601 unsigned long deadline;
6602 u32 tmp;
6603
6604 tmp = ioread32(reg);
6605
6606 /* Calculate timeout _after_ the first read to make sure
6607 * preceding writes reach the controller before starting to
6608 * eat away the timeout.
6609 */
6610 deadline = ata_deadline(jiffies, timeout);
6611
6612 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6613 ata_msleep(ap, interval);
6614 tmp = ioread32(reg);
6615 }
6616
6617 return tmp;
6618 }
6619 EXPORT_SYMBOL_GPL(ata_wait_register);
6620
6621 /*
6622 * Dummy port_ops
6623 */
ata_dummy_qc_issue(struct ata_queued_cmd * qc)6624 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6625 {
6626 return AC_ERR_SYSTEM;
6627 }
6628
ata_dummy_error_handler(struct ata_port * ap)6629 static void ata_dummy_error_handler(struct ata_port *ap)
6630 {
6631 /* truly dummy */
6632 }
6633
6634 struct ata_port_operations ata_dummy_port_ops = {
6635 .qc_issue = ata_dummy_qc_issue,
6636 .error_handler = ata_dummy_error_handler,
6637 .sched_eh = ata_std_sched_eh,
6638 .end_eh = ata_std_end_eh,
6639 };
6640 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6641
6642 const struct ata_port_info ata_dummy_port_info = {
6643 .port_ops = &ata_dummy_port_ops,
6644 };
6645 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6646
ata_print_version(const struct device * dev,const char * version)6647 void ata_print_version(const struct device *dev, const char *version)
6648 {
6649 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6650 }
6651 EXPORT_SYMBOL(ata_print_version);
6652
6653 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load);
6654 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command);
6655 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup);
6656 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start);
6657 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status);
6658