1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * libata-core.c - helper library for ATA 4 * 5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved. 6 * Copyright 2003-2004 Jeff Garzik 7 * 8 * libata documentation is available via 'make {ps|pdf}docs', 9 * as Documentation/driver-api/libata.rst 10 * 11 * Hardware documentation available from http://www.t13.org/ and 12 * http://www.sata-io.org/ 13 * 14 * Standards documents from: 15 * http://www.t13.org (ATA standards, PCI DMA IDE spec) 16 * http://www.t10.org (SCSI MMC - for ATAPI MMC) 17 * http://www.sata-io.org (SATA) 18 * http://www.compactflash.org (CF) 19 * http://www.qic.org (QIC157 - Tape and DSC) 20 * http://www.ce-ata.org (CE-ATA: not supported) 21 * 22 * libata is essentially a library of internal helper functions for 23 * low-level ATA host controller drivers. As such, the API/ABI is 24 * likely to change as new drivers are added and updated. 25 * Do not depend on ABI/API stability. 26 */ 27 28 #include <linux/kernel.h> 29 #include <linux/module.h> 30 #include <linux/pci.h> 31 #include <linux/init.h> 32 #include <linux/list.h> 33 #include <linux/mm.h> 34 #include <linux/spinlock.h> 35 #include <linux/blkdev.h> 36 #include <linux/delay.h> 37 #include <linux/timer.h> 38 #include <linux/time.h> 39 #include <linux/interrupt.h> 40 #include <linux/completion.h> 41 #include <linux/suspend.h> 42 #include <linux/workqueue.h> 43 #include <linux/scatterlist.h> 44 #include <linux/io.h> 45 #include <linux/log2.h> 46 #include <linux/slab.h> 47 #include <linux/glob.h> 48 #include <scsi/scsi.h> 49 #include <scsi/scsi_cmnd.h> 50 #include <scsi/scsi_host.h> 51 #include <linux/libata.h> 52 #include <asm/byteorder.h> 53 #include <linux/unaligned.h> 54 #include <linux/cdrom.h> 55 #include <linux/ratelimit.h> 56 #include <linux/leds.h> 57 #include <linux/pm_runtime.h> 58 #include <linux/platform_device.h> 59 #include <asm/setup.h> 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/libata.h> 63 64 #include "libata.h" 65 #include "libata-transport.h" 66 67 const struct ata_port_operations ata_base_port_ops = { 68 .prereset = ata_std_prereset, 69 .postreset = ata_std_postreset, 70 .error_handler = ata_std_error_handler, 71 .sched_eh = ata_std_sched_eh, 72 .end_eh = ata_std_end_eh, 73 }; 74 75 static unsigned int ata_dev_init_params(struct ata_device *dev, 76 u16 heads, u16 sectors); 77 static unsigned int ata_dev_set_xfermode(struct ata_device *dev); 78 static void ata_dev_xfermask(struct ata_device *dev); 79 static unsigned int ata_dev_quirks(const struct ata_device *dev); 80 81 static DEFINE_IDA(ata_ida); 82 83 #ifdef CONFIG_ATA_FORCE 84 struct ata_force_param { 85 const char *name; 86 u8 cbl; 87 u8 spd_limit; 88 unsigned int xfer_mask; 89 unsigned int quirk_on; 90 unsigned int quirk_off; 91 unsigned int pflags_on; 92 u16 lflags_on; 93 u16 lflags_off; 94 }; 95 96 struct ata_force_ent { 97 int port; 98 int device; 99 struct ata_force_param param; 100 }; 101 102 static struct ata_force_ent *ata_force_tbl; 103 static int ata_force_tbl_size; 104 105 static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata; 106 /* param_buf is thrown away after initialization, disallow read */ 107 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0); 108 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)"); 109 #endif 110 111 static int atapi_enabled = 1; 112 module_param(atapi_enabled, int, 0444); 113 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])"); 114 115 static int atapi_dmadir = 0; 116 module_param(atapi_dmadir, int, 0444); 117 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)"); 118 119 int atapi_passthru16 = 1; 120 module_param(atapi_passthru16, int, 0444); 121 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])"); 122 123 int libata_fua = 0; 124 module_param_named(fua, libata_fua, int, 0444); 125 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)"); 126 127 static int ata_ignore_hpa; 128 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644); 129 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)"); 130 131 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA; 132 module_param_named(dma, libata_dma_mask, int, 0444); 133 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)"); 134 135 static int ata_probe_timeout; 136 module_param(ata_probe_timeout, int, 0444); 137 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)"); 138 139 int libata_noacpi = 0; 140 module_param_named(noacpi, libata_noacpi, int, 0444); 141 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)"); 142 143 int libata_allow_tpm = 0; 144 module_param_named(allow_tpm, libata_allow_tpm, int, 0444); 145 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)"); 146 147 static int atapi_an; 148 module_param(atapi_an, int, 0444); 149 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)"); 150 151 MODULE_AUTHOR("Jeff Garzik"); 152 MODULE_DESCRIPTION("Library module for ATA devices"); 153 MODULE_LICENSE("GPL"); 154 MODULE_VERSION(DRV_VERSION); 155 ata_dev_print_info(const struct ata_device * dev)156 static inline bool ata_dev_print_info(const struct ata_device *dev) 157 { 158 struct ata_eh_context *ehc = &dev->link->eh_context; 159 160 return ehc->i.flags & ATA_EHI_PRINTINFO; 161 } 162 163 /** 164 * ata_link_next - link iteration helper 165 * @link: the previous link, NULL to start 166 * @ap: ATA port containing links to iterate 167 * @mode: iteration mode, one of ATA_LITER_* 168 * 169 * LOCKING: 170 * Host lock or EH context. 171 * 172 * RETURNS: 173 * Pointer to the next link. 174 */ ata_link_next(struct ata_link * link,struct ata_port * ap,enum ata_link_iter_mode mode)175 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap, 176 enum ata_link_iter_mode mode) 177 { 178 BUG_ON(mode != ATA_LITER_EDGE && 179 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST); 180 181 /* NULL link indicates start of iteration */ 182 if (!link) 183 switch (mode) { 184 case ATA_LITER_EDGE: 185 case ATA_LITER_PMP_FIRST: 186 if (sata_pmp_attached(ap)) 187 return ap->pmp_link; 188 fallthrough; 189 case ATA_LITER_HOST_FIRST: 190 return &ap->link; 191 } 192 193 /* we just iterated over the host link, what's next? */ 194 if (link == &ap->link) 195 switch (mode) { 196 case ATA_LITER_HOST_FIRST: 197 if (sata_pmp_attached(ap)) 198 return ap->pmp_link; 199 fallthrough; 200 case ATA_LITER_PMP_FIRST: 201 if (unlikely(ap->slave_link)) 202 return ap->slave_link; 203 fallthrough; 204 case ATA_LITER_EDGE: 205 return NULL; 206 } 207 208 /* slave_link excludes PMP */ 209 if (unlikely(link == ap->slave_link)) 210 return NULL; 211 212 /* we were over a PMP link */ 213 if (++link < ap->pmp_link + ap->nr_pmp_links) 214 return link; 215 216 if (mode == ATA_LITER_PMP_FIRST) 217 return &ap->link; 218 219 return NULL; 220 } 221 EXPORT_SYMBOL_GPL(ata_link_next); 222 223 /** 224 * ata_dev_next - device iteration helper 225 * @dev: the previous device, NULL to start 226 * @link: ATA link containing devices to iterate 227 * @mode: iteration mode, one of ATA_DITER_* 228 * 229 * LOCKING: 230 * Host lock or EH context. 231 * 232 * RETURNS: 233 * Pointer to the next device. 234 */ ata_dev_next(struct ata_device * dev,struct ata_link * link,enum ata_dev_iter_mode mode)235 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link, 236 enum ata_dev_iter_mode mode) 237 { 238 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE && 239 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE); 240 241 /* NULL dev indicates start of iteration */ 242 if (!dev) 243 switch (mode) { 244 case ATA_DITER_ENABLED: 245 case ATA_DITER_ALL: 246 dev = link->device; 247 goto check; 248 case ATA_DITER_ENABLED_REVERSE: 249 case ATA_DITER_ALL_REVERSE: 250 dev = link->device + ata_link_max_devices(link) - 1; 251 goto check; 252 } 253 254 next: 255 /* move to the next one */ 256 switch (mode) { 257 case ATA_DITER_ENABLED: 258 case ATA_DITER_ALL: 259 if (++dev < link->device + ata_link_max_devices(link)) 260 goto check; 261 return NULL; 262 case ATA_DITER_ENABLED_REVERSE: 263 case ATA_DITER_ALL_REVERSE: 264 if (--dev >= link->device) 265 goto check; 266 return NULL; 267 } 268 269 check: 270 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) && 271 !ata_dev_enabled(dev)) 272 goto next; 273 return dev; 274 } 275 EXPORT_SYMBOL_GPL(ata_dev_next); 276 277 /** 278 * ata_dev_phys_link - find physical link for a device 279 * @dev: ATA device to look up physical link for 280 * 281 * Look up physical link which @dev is attached to. Note that 282 * this is different from @dev->link only when @dev is on slave 283 * link. For all other cases, it's the same as @dev->link. 284 * 285 * LOCKING: 286 * Don't care. 287 * 288 * RETURNS: 289 * Pointer to the found physical link. 290 */ ata_dev_phys_link(struct ata_device * dev)291 struct ata_link *ata_dev_phys_link(struct ata_device *dev) 292 { 293 struct ata_port *ap = dev->link->ap; 294 295 if (!ap->slave_link) 296 return dev->link; 297 if (!dev->devno) 298 return &ap->link; 299 return ap->slave_link; 300 } 301 302 #ifdef CONFIG_ATA_FORCE 303 /** 304 * ata_force_cbl - force cable type according to libata.force 305 * @ap: ATA port of interest 306 * 307 * Force cable type according to libata.force and whine about it. 308 * The last entry which has matching port number is used, so it 309 * can be specified as part of device force parameters. For 310 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the 311 * same effect. 312 * 313 * LOCKING: 314 * EH context. 315 */ ata_force_cbl(struct ata_port * ap)316 void ata_force_cbl(struct ata_port *ap) 317 { 318 int i; 319 320 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 321 const struct ata_force_ent *fe = &ata_force_tbl[i]; 322 323 if (fe->port != -1 && fe->port != ap->print_id) 324 continue; 325 326 if (fe->param.cbl == ATA_CBL_NONE) 327 continue; 328 329 ap->cbl = fe->param.cbl; 330 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name); 331 return; 332 } 333 } 334 335 /** 336 * ata_force_pflags - force port flags according to libata.force 337 * @ap: ATA port of interest 338 * 339 * Force port flags according to libata.force and whine about it. 340 * 341 * LOCKING: 342 * EH context. 343 */ ata_force_pflags(struct ata_port * ap)344 static void ata_force_pflags(struct ata_port *ap) 345 { 346 int i; 347 348 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 349 const struct ata_force_ent *fe = &ata_force_tbl[i]; 350 351 if (fe->port != -1 && fe->port != ap->print_id) 352 continue; 353 354 /* let pflags stack */ 355 if (fe->param.pflags_on) { 356 ap->pflags |= fe->param.pflags_on; 357 ata_port_notice(ap, 358 "FORCE: port flag 0x%x forced -> 0x%x\n", 359 fe->param.pflags_on, ap->pflags); 360 } 361 } 362 } 363 364 /** 365 * ata_force_link_limits - force link limits according to libata.force 366 * @link: ATA link of interest 367 * 368 * Force link flags and SATA spd limit according to libata.force 369 * and whine about it. When only the port part is specified 370 * (e.g. 1:), the limit applies to all links connected to both 371 * the host link and all fan-out ports connected via PMP. If the 372 * device part is specified as 0 (e.g. 1.00:), it specifies the 373 * first fan-out link not the host link. Device number 15 always 374 * points to the host link whether PMP is attached or not. If the 375 * controller has slave link, device number 16 points to it. 376 * 377 * LOCKING: 378 * EH context. 379 */ ata_force_link_limits(struct ata_link * link)380 static void ata_force_link_limits(struct ata_link *link) 381 { 382 bool did_spd = false; 383 int linkno = link->pmp; 384 int i; 385 386 if (ata_is_host_link(link)) 387 linkno += 15; 388 389 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 390 const struct ata_force_ent *fe = &ata_force_tbl[i]; 391 392 if (fe->port != -1 && fe->port != link->ap->print_id) 393 continue; 394 395 if (fe->device != -1 && fe->device != linkno) 396 continue; 397 398 /* only honor the first spd limit */ 399 if (!did_spd && fe->param.spd_limit) { 400 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1; 401 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n", 402 fe->param.name); 403 did_spd = true; 404 } 405 406 /* let lflags stack */ 407 if (fe->param.lflags_on) { 408 link->flags |= fe->param.lflags_on; 409 ata_link_notice(link, 410 "FORCE: link flag 0x%x forced -> 0x%x\n", 411 fe->param.lflags_on, link->flags); 412 } 413 if (fe->param.lflags_off) { 414 link->flags &= ~fe->param.lflags_off; 415 ata_link_notice(link, 416 "FORCE: link flag 0x%x cleared -> 0x%x\n", 417 fe->param.lflags_off, link->flags); 418 } 419 } 420 } 421 422 /** 423 * ata_force_xfermask - force xfermask according to libata.force 424 * @dev: ATA device of interest 425 * 426 * Force xfer_mask according to libata.force and whine about it. 427 * For consistency with link selection, device number 15 selects 428 * the first device connected to the host link. 429 * 430 * LOCKING: 431 * EH context. 432 */ ata_force_xfermask(struct ata_device * dev)433 static void ata_force_xfermask(struct ata_device *dev) 434 { 435 int devno = dev->link->pmp + dev->devno; 436 int alt_devno = devno; 437 int i; 438 439 /* allow n.15/16 for devices attached to host port */ 440 if (ata_is_host_link(dev->link)) 441 alt_devno += 15; 442 443 for (i = ata_force_tbl_size - 1; i >= 0; i--) { 444 const struct ata_force_ent *fe = &ata_force_tbl[i]; 445 unsigned int pio_mask, mwdma_mask, udma_mask; 446 447 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 448 continue; 449 450 if (fe->device != -1 && fe->device != devno && 451 fe->device != alt_devno) 452 continue; 453 454 if (!fe->param.xfer_mask) 455 continue; 456 457 ata_unpack_xfermask(fe->param.xfer_mask, 458 &pio_mask, &mwdma_mask, &udma_mask); 459 if (udma_mask) 460 dev->udma_mask = udma_mask; 461 else if (mwdma_mask) { 462 dev->udma_mask = 0; 463 dev->mwdma_mask = mwdma_mask; 464 } else { 465 dev->udma_mask = 0; 466 dev->mwdma_mask = 0; 467 dev->pio_mask = pio_mask; 468 } 469 470 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n", 471 fe->param.name); 472 return; 473 } 474 } 475 476 /** 477 * ata_force_quirks - force quirks according to libata.force 478 * @dev: ATA device of interest 479 * 480 * Force quirks according to libata.force and whine about it. 481 * For consistency with link selection, device number 15 selects 482 * the first device connected to the host link. 483 * 484 * LOCKING: 485 * EH context. 486 */ ata_force_quirks(struct ata_device * dev)487 static void ata_force_quirks(struct ata_device *dev) 488 { 489 int devno = dev->link->pmp + dev->devno; 490 int alt_devno = devno; 491 int i; 492 493 /* allow n.15/16 for devices attached to host port */ 494 if (ata_is_host_link(dev->link)) 495 alt_devno += 15; 496 497 for (i = 0; i < ata_force_tbl_size; i++) { 498 const struct ata_force_ent *fe = &ata_force_tbl[i]; 499 500 if (fe->port != -1 && fe->port != dev->link->ap->print_id) 501 continue; 502 503 if (fe->device != -1 && fe->device != devno && 504 fe->device != alt_devno) 505 continue; 506 507 if (!(~dev->quirks & fe->param.quirk_on) && 508 !(dev->quirks & fe->param.quirk_off)) 509 continue; 510 511 dev->quirks |= fe->param.quirk_on; 512 dev->quirks &= ~fe->param.quirk_off; 513 514 ata_dev_notice(dev, "FORCE: modified (%s)\n", 515 fe->param.name); 516 } 517 } 518 #else ata_force_pflags(struct ata_port * ap)519 static inline void ata_force_pflags(struct ata_port *ap) { } ata_force_link_limits(struct ata_link * link)520 static inline void ata_force_link_limits(struct ata_link *link) { } ata_force_xfermask(struct ata_device * dev)521 static inline void ata_force_xfermask(struct ata_device *dev) { } ata_force_quirks(struct ata_device * dev)522 static inline void ata_force_quirks(struct ata_device *dev) { } 523 #endif 524 525 /** 526 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode 527 * @opcode: SCSI opcode 528 * 529 * Determine ATAPI command type from @opcode. 530 * 531 * LOCKING: 532 * None. 533 * 534 * RETURNS: 535 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC} 536 */ atapi_cmd_type(u8 opcode)537 int atapi_cmd_type(u8 opcode) 538 { 539 switch (opcode) { 540 case GPCMD_READ_10: 541 case GPCMD_READ_12: 542 return ATAPI_READ; 543 544 case GPCMD_WRITE_10: 545 case GPCMD_WRITE_12: 546 case GPCMD_WRITE_AND_VERIFY_10: 547 return ATAPI_WRITE; 548 549 case GPCMD_READ_CD: 550 case GPCMD_READ_CD_MSF: 551 return ATAPI_READ_CD; 552 553 case ATA_16: 554 case ATA_12: 555 if (atapi_passthru16) 556 return ATAPI_PASS_THRU; 557 fallthrough; 558 default: 559 return ATAPI_MISC; 560 } 561 } 562 EXPORT_SYMBOL_GPL(atapi_cmd_type); 563 564 static const u8 ata_rw_cmds[] = { 565 /* pio multi */ 566 ATA_CMD_READ_MULTI, 567 ATA_CMD_WRITE_MULTI, 568 ATA_CMD_READ_MULTI_EXT, 569 ATA_CMD_WRITE_MULTI_EXT, 570 0, 571 0, 572 0, 573 0, 574 /* pio */ 575 ATA_CMD_PIO_READ, 576 ATA_CMD_PIO_WRITE, 577 ATA_CMD_PIO_READ_EXT, 578 ATA_CMD_PIO_WRITE_EXT, 579 0, 580 0, 581 0, 582 0, 583 /* dma */ 584 ATA_CMD_READ, 585 ATA_CMD_WRITE, 586 ATA_CMD_READ_EXT, 587 ATA_CMD_WRITE_EXT, 588 0, 589 0, 590 0, 591 ATA_CMD_WRITE_FUA_EXT 592 }; 593 594 /** 595 * ata_set_rwcmd_protocol - set taskfile r/w command and protocol 596 * @dev: target device for the taskfile 597 * @tf: taskfile to examine and configure 598 * 599 * Examine the device configuration and tf->flags to determine 600 * the proper read/write command and protocol to use for @tf. 601 * 602 * LOCKING: 603 * caller. 604 */ ata_set_rwcmd_protocol(struct ata_device * dev,struct ata_taskfile * tf)605 static bool ata_set_rwcmd_protocol(struct ata_device *dev, 606 struct ata_taskfile *tf) 607 { 608 u8 cmd; 609 610 int index, fua, lba48, write; 611 612 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0; 613 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; 614 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; 615 616 if (dev->flags & ATA_DFLAG_PIO) { 617 tf->protocol = ATA_PROT_PIO; 618 index = dev->multi_count ? 0 : 8; 619 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) { 620 /* Unable to use DMA due to host limitation */ 621 tf->protocol = ATA_PROT_PIO; 622 index = dev->multi_count ? 0 : 8; 623 } else { 624 tf->protocol = ATA_PROT_DMA; 625 index = 16; 626 } 627 628 cmd = ata_rw_cmds[index + fua + lba48 + write]; 629 if (!cmd) 630 return false; 631 632 tf->command = cmd; 633 634 return true; 635 } 636 637 /** 638 * ata_tf_read_block - Read block address from ATA taskfile 639 * @tf: ATA taskfile of interest 640 * @dev: ATA device @tf belongs to 641 * 642 * LOCKING: 643 * None. 644 * 645 * Read block address from @tf. This function can handle all 646 * three address formats - LBA, LBA48 and CHS. tf->protocol and 647 * flags select the address format to use. 648 * 649 * RETURNS: 650 * Block address read from @tf. 651 */ ata_tf_read_block(const struct ata_taskfile * tf,struct ata_device * dev)652 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev) 653 { 654 u64 block = 0; 655 656 if (tf->flags & ATA_TFLAG_LBA) { 657 if (tf->flags & ATA_TFLAG_LBA48) { 658 block |= (u64)tf->hob_lbah << 40; 659 block |= (u64)tf->hob_lbam << 32; 660 block |= (u64)tf->hob_lbal << 24; 661 } else 662 block |= (tf->device & 0xf) << 24; 663 664 block |= tf->lbah << 16; 665 block |= tf->lbam << 8; 666 block |= tf->lbal; 667 } else { 668 u32 cyl, head, sect; 669 670 cyl = tf->lbam | (tf->lbah << 8); 671 head = tf->device & 0xf; 672 sect = tf->lbal; 673 674 if (!sect) { 675 ata_dev_warn(dev, 676 "device reported invalid CHS sector 0\n"); 677 return U64_MAX; 678 } 679 680 block = (cyl * dev->heads + head) * dev->sectors + sect - 1; 681 } 682 683 return block; 684 } 685 686 /* 687 * Set a taskfile command duration limit index. 688 */ ata_set_tf_cdl(struct ata_queued_cmd * qc,int cdl)689 static inline void ata_set_tf_cdl(struct ata_queued_cmd *qc, int cdl) 690 { 691 struct ata_taskfile *tf = &qc->tf; 692 693 if (tf->protocol == ATA_PROT_NCQ) 694 tf->auxiliary |= cdl; 695 else 696 tf->feature |= cdl; 697 698 /* 699 * Mark this command as having a CDL and request the result 700 * task file so that we can inspect the sense data available 701 * bit on completion. 702 */ 703 qc->flags |= ATA_QCFLAG_HAS_CDL | ATA_QCFLAG_RESULT_TF; 704 } 705 706 /** 707 * ata_build_rw_tf - Build ATA taskfile for given read/write request 708 * @qc: Metadata associated with the taskfile to build 709 * @block: Block address 710 * @n_block: Number of blocks 711 * @tf_flags: RW/FUA etc... 712 * @cdl: Command duration limit index 713 * @class: IO priority class 714 * 715 * LOCKING: 716 * None. 717 * 718 * Build ATA taskfile for the command @qc for read/write request described 719 * by @block, @n_block, @tf_flags and @class. 720 * 721 * RETURNS: 722 * 723 * 0 on success, -ERANGE if the request is too large for @dev, 724 * -EINVAL if the request is invalid. 725 */ ata_build_rw_tf(struct ata_queued_cmd * qc,u64 block,u32 n_block,unsigned int tf_flags,int cdl,int class)726 int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block, 727 unsigned int tf_flags, int cdl, int class) 728 { 729 struct ata_taskfile *tf = &qc->tf; 730 struct ata_device *dev = qc->dev; 731 732 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 733 tf->flags |= tf_flags; 734 735 if (ata_ncq_enabled(dev)) { 736 /* yay, NCQ */ 737 if (!lba_48_ok(block, n_block)) 738 return -ERANGE; 739 740 tf->protocol = ATA_PROT_NCQ; 741 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48; 742 743 if (tf->flags & ATA_TFLAG_WRITE) 744 tf->command = ATA_CMD_FPDMA_WRITE; 745 else 746 tf->command = ATA_CMD_FPDMA_READ; 747 748 tf->nsect = qc->hw_tag << 3; 749 tf->hob_feature = (n_block >> 8) & 0xff; 750 tf->feature = n_block & 0xff; 751 752 tf->hob_lbah = (block >> 40) & 0xff; 753 tf->hob_lbam = (block >> 32) & 0xff; 754 tf->hob_lbal = (block >> 24) & 0xff; 755 tf->lbah = (block >> 16) & 0xff; 756 tf->lbam = (block >> 8) & 0xff; 757 tf->lbal = block & 0xff; 758 759 tf->device = ATA_LBA; 760 if (tf->flags & ATA_TFLAG_FUA) 761 tf->device |= 1 << 7; 762 763 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED && 764 class == IOPRIO_CLASS_RT) 765 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO; 766 767 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl) 768 ata_set_tf_cdl(qc, cdl); 769 770 } else if (dev->flags & ATA_DFLAG_LBA) { 771 tf->flags |= ATA_TFLAG_LBA; 772 773 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl) 774 ata_set_tf_cdl(qc, cdl); 775 776 /* Both FUA writes and a CDL index require 48-bit commands */ 777 if (!(tf->flags & ATA_TFLAG_FUA) && 778 !(qc->flags & ATA_QCFLAG_HAS_CDL) && 779 lba_28_ok(block, n_block)) { 780 /* use LBA28 */ 781 tf->device |= (block >> 24) & 0xf; 782 } else if (lba_48_ok(block, n_block)) { 783 if (!(dev->flags & ATA_DFLAG_LBA48)) 784 return -ERANGE; 785 786 /* use LBA48 */ 787 tf->flags |= ATA_TFLAG_LBA48; 788 789 tf->hob_nsect = (n_block >> 8) & 0xff; 790 791 tf->hob_lbah = (block >> 40) & 0xff; 792 tf->hob_lbam = (block >> 32) & 0xff; 793 tf->hob_lbal = (block >> 24) & 0xff; 794 } else { 795 /* request too large even for LBA48 */ 796 return -ERANGE; 797 } 798 799 if (unlikely(!ata_set_rwcmd_protocol(dev, tf))) 800 return -EINVAL; 801 802 tf->nsect = n_block & 0xff; 803 804 tf->lbah = (block >> 16) & 0xff; 805 tf->lbam = (block >> 8) & 0xff; 806 tf->lbal = block & 0xff; 807 808 tf->device |= ATA_LBA; 809 } else { 810 /* CHS */ 811 u32 sect, head, cyl, track; 812 813 /* The request -may- be too large for CHS addressing. */ 814 if (!lba_28_ok(block, n_block)) 815 return -ERANGE; 816 817 if (unlikely(!ata_set_rwcmd_protocol(dev, tf))) 818 return -EINVAL; 819 820 /* Convert LBA to CHS */ 821 track = (u32)block / dev->sectors; 822 cyl = track / dev->heads; 823 head = track % dev->heads; 824 sect = (u32)block % dev->sectors + 1; 825 826 /* Check whether the converted CHS can fit. 827 Cylinder: 0-65535 828 Head: 0-15 829 Sector: 1-255*/ 830 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect)) 831 return -ERANGE; 832 833 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */ 834 tf->lbal = sect; 835 tf->lbam = cyl; 836 tf->lbah = cyl >> 8; 837 tf->device |= head; 838 } 839 840 return 0; 841 } 842 843 /** 844 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask 845 * @pio_mask: pio_mask 846 * @mwdma_mask: mwdma_mask 847 * @udma_mask: udma_mask 848 * 849 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single 850 * unsigned int xfer_mask. 851 * 852 * LOCKING: 853 * None. 854 * 855 * RETURNS: 856 * Packed xfer_mask. 857 */ ata_pack_xfermask(unsigned int pio_mask,unsigned int mwdma_mask,unsigned int udma_mask)858 unsigned int ata_pack_xfermask(unsigned int pio_mask, 859 unsigned int mwdma_mask, 860 unsigned int udma_mask) 861 { 862 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) | 863 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) | 864 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA); 865 } 866 EXPORT_SYMBOL_GPL(ata_pack_xfermask); 867 868 /** 869 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks 870 * @xfer_mask: xfer_mask to unpack 871 * @pio_mask: resulting pio_mask 872 * @mwdma_mask: resulting mwdma_mask 873 * @udma_mask: resulting udma_mask 874 * 875 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask. 876 * Any NULL destination masks will be ignored. 877 */ ata_unpack_xfermask(unsigned int xfer_mask,unsigned int * pio_mask,unsigned int * mwdma_mask,unsigned int * udma_mask)878 void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask, 879 unsigned int *mwdma_mask, unsigned int *udma_mask) 880 { 881 if (pio_mask) 882 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO; 883 if (mwdma_mask) 884 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA; 885 if (udma_mask) 886 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA; 887 } 888 889 static const struct ata_xfer_ent { 890 int shift, bits; 891 u8 base; 892 } ata_xfer_tbl[] = { 893 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 }, 894 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 }, 895 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 }, 896 { -1, }, 897 }; 898 899 /** 900 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask 901 * @xfer_mask: xfer_mask of interest 902 * 903 * Return matching XFER_* value for @xfer_mask. Only the highest 904 * bit of @xfer_mask is considered. 905 * 906 * LOCKING: 907 * None. 908 * 909 * RETURNS: 910 * Matching XFER_* value, 0xff if no match found. 911 */ ata_xfer_mask2mode(unsigned int xfer_mask)912 u8 ata_xfer_mask2mode(unsigned int xfer_mask) 913 { 914 int highbit = fls(xfer_mask) - 1; 915 const struct ata_xfer_ent *ent; 916 917 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 918 if (highbit >= ent->shift && highbit < ent->shift + ent->bits) 919 return ent->base + highbit - ent->shift; 920 return 0xff; 921 } 922 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode); 923 924 /** 925 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_* 926 * @xfer_mode: XFER_* of interest 927 * 928 * Return matching xfer_mask for @xfer_mode. 929 * 930 * LOCKING: 931 * None. 932 * 933 * RETURNS: 934 * Matching xfer_mask, 0 if no match found. 935 */ ata_xfer_mode2mask(u8 xfer_mode)936 unsigned int ata_xfer_mode2mask(u8 xfer_mode) 937 { 938 const struct ata_xfer_ent *ent; 939 940 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 941 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 942 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1) 943 & ~((1 << ent->shift) - 1); 944 return 0; 945 } 946 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask); 947 948 /** 949 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_* 950 * @xfer_mode: XFER_* of interest 951 * 952 * Return matching xfer_shift for @xfer_mode. 953 * 954 * LOCKING: 955 * None. 956 * 957 * RETURNS: 958 * Matching xfer_shift, -1 if no match found. 959 */ ata_xfer_mode2shift(u8 xfer_mode)960 int ata_xfer_mode2shift(u8 xfer_mode) 961 { 962 const struct ata_xfer_ent *ent; 963 964 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 965 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits) 966 return ent->shift; 967 return -1; 968 } 969 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift); 970 971 /** 972 * ata_mode_string - convert xfer_mask to string 973 * @xfer_mask: mask of bits supported; only highest bit counts. 974 * 975 * Determine string which represents the highest speed 976 * (highest bit in @modemask). 977 * 978 * LOCKING: 979 * None. 980 * 981 * RETURNS: 982 * Constant C string representing highest speed listed in 983 * @mode_mask, or the constant C string "<n/a>". 984 */ ata_mode_string(unsigned int xfer_mask)985 const char *ata_mode_string(unsigned int xfer_mask) 986 { 987 static const char * const xfer_mode_str[] = { 988 "PIO0", 989 "PIO1", 990 "PIO2", 991 "PIO3", 992 "PIO4", 993 "PIO5", 994 "PIO6", 995 "MWDMA0", 996 "MWDMA1", 997 "MWDMA2", 998 "MWDMA3", 999 "MWDMA4", 1000 "UDMA/16", 1001 "UDMA/25", 1002 "UDMA/33", 1003 "UDMA/44", 1004 "UDMA/66", 1005 "UDMA/100", 1006 "UDMA/133", 1007 "UDMA7", 1008 }; 1009 int highbit; 1010 1011 highbit = fls(xfer_mask) - 1; 1012 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str)) 1013 return xfer_mode_str[highbit]; 1014 return "<n/a>"; 1015 } 1016 EXPORT_SYMBOL_GPL(ata_mode_string); 1017 sata_spd_string(unsigned int spd)1018 const char *sata_spd_string(unsigned int spd) 1019 { 1020 static const char * const spd_str[] = { 1021 "1.5 Gbps", 1022 "3.0 Gbps", 1023 "6.0 Gbps", 1024 }; 1025 1026 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str)) 1027 return "<unknown>"; 1028 return spd_str[spd - 1]; 1029 } 1030 1031 /** 1032 * ata_dev_classify - determine device type based on ATA-spec signature 1033 * @tf: ATA taskfile register set for device to be identified 1034 * 1035 * Determine from taskfile register contents whether a device is 1036 * ATA or ATAPI, as per "Signature and persistence" section 1037 * of ATA/PI spec (volume 1, sect 5.14). 1038 * 1039 * LOCKING: 1040 * None. 1041 * 1042 * RETURNS: 1043 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP, 1044 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure. 1045 */ ata_dev_classify(const struct ata_taskfile * tf)1046 unsigned int ata_dev_classify(const struct ata_taskfile *tf) 1047 { 1048 /* Apple's open source Darwin code hints that some devices only 1049 * put a proper signature into the LBA mid/high registers, 1050 * So, we only check those. It's sufficient for uniqueness. 1051 * 1052 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate 1053 * signatures for ATA and ATAPI devices attached on SerialATA, 1054 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA 1055 * spec has never mentioned about using different signatures 1056 * for ATA/ATAPI devices. Then, Serial ATA II: Port 1057 * Multiplier specification began to use 0x69/0x96 to identify 1058 * port multpliers and 0x3c/0xc3 to identify SEMB device. 1059 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and 1060 * 0x69/0x96 shortly and described them as reserved for 1061 * SerialATA. 1062 * 1063 * We follow the current spec and consider that 0x69/0x96 1064 * identifies a port multiplier and 0x3c/0xc3 a SEMB device. 1065 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports 1066 * SEMB signature. This is worked around in 1067 * ata_dev_read_id(). 1068 */ 1069 if (tf->lbam == 0 && tf->lbah == 0) 1070 return ATA_DEV_ATA; 1071 1072 if (tf->lbam == 0x14 && tf->lbah == 0xeb) 1073 return ATA_DEV_ATAPI; 1074 1075 if (tf->lbam == 0x69 && tf->lbah == 0x96) 1076 return ATA_DEV_PMP; 1077 1078 if (tf->lbam == 0x3c && tf->lbah == 0xc3) 1079 return ATA_DEV_SEMB; 1080 1081 if (tf->lbam == 0xcd && tf->lbah == 0xab) 1082 return ATA_DEV_ZAC; 1083 1084 return ATA_DEV_UNKNOWN; 1085 } 1086 EXPORT_SYMBOL_GPL(ata_dev_classify); 1087 1088 /** 1089 * ata_id_string - Convert IDENTIFY DEVICE page into string 1090 * @id: IDENTIFY DEVICE results we will examine 1091 * @s: string into which data is output 1092 * @ofs: offset into identify device page 1093 * @len: length of string to return. must be an even number. 1094 * 1095 * The strings in the IDENTIFY DEVICE page are broken up into 1096 * 16-bit chunks. Run through the string, and output each 1097 * 8-bit chunk linearly, regardless of platform. 1098 * 1099 * LOCKING: 1100 * caller. 1101 */ 1102 ata_id_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1103 void ata_id_string(const u16 *id, unsigned char *s, 1104 unsigned int ofs, unsigned int len) 1105 { 1106 unsigned int c; 1107 1108 BUG_ON(len & 1); 1109 1110 while (len > 0) { 1111 c = id[ofs] >> 8; 1112 *s = c; 1113 s++; 1114 1115 c = id[ofs] & 0xff; 1116 *s = c; 1117 s++; 1118 1119 ofs++; 1120 len -= 2; 1121 } 1122 } 1123 EXPORT_SYMBOL_GPL(ata_id_string); 1124 1125 /** 1126 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string 1127 * @id: IDENTIFY DEVICE results we will examine 1128 * @s: string into which data is output 1129 * @ofs: offset into identify device page 1130 * @len: length of string to return. must be an odd number. 1131 * 1132 * This function is identical to ata_id_string except that it 1133 * trims trailing spaces and terminates the resulting string with 1134 * null. @len must be actual maximum length (even number) + 1. 1135 * 1136 * LOCKING: 1137 * caller. 1138 */ ata_id_c_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1139 void ata_id_c_string(const u16 *id, unsigned char *s, 1140 unsigned int ofs, unsigned int len) 1141 { 1142 unsigned char *p; 1143 1144 ata_id_string(id, s, ofs, len - 1); 1145 1146 p = s + strnlen(s, len - 1); 1147 while (p > s && p[-1] == ' ') 1148 p--; 1149 *p = '\0'; 1150 } 1151 EXPORT_SYMBOL_GPL(ata_id_c_string); 1152 ata_id_n_sectors(const u16 * id)1153 static u64 ata_id_n_sectors(const u16 *id) 1154 { 1155 if (ata_id_has_lba(id)) { 1156 if (ata_id_has_lba48(id)) 1157 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2); 1158 1159 return ata_id_u32(id, ATA_ID_LBA_CAPACITY); 1160 } 1161 1162 if (ata_id_current_chs_valid(id)) 1163 return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] * 1164 (u32)id[ATA_ID_CUR_SECTORS]; 1165 1166 return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] * 1167 (u32)id[ATA_ID_SECTORS]; 1168 } 1169 ata_tf_to_lba48(const struct ata_taskfile * tf)1170 u64 ata_tf_to_lba48(const struct ata_taskfile *tf) 1171 { 1172 u64 sectors = 0; 1173 1174 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40; 1175 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32; 1176 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24; 1177 sectors |= (tf->lbah & 0xff) << 16; 1178 sectors |= (tf->lbam & 0xff) << 8; 1179 sectors |= (tf->lbal & 0xff); 1180 1181 return sectors; 1182 } 1183 ata_tf_to_lba(const struct ata_taskfile * tf)1184 u64 ata_tf_to_lba(const struct ata_taskfile *tf) 1185 { 1186 u64 sectors = 0; 1187 1188 sectors |= (tf->device & 0x0f) << 24; 1189 sectors |= (tf->lbah & 0xff) << 16; 1190 sectors |= (tf->lbam & 0xff) << 8; 1191 sectors |= (tf->lbal & 0xff); 1192 1193 return sectors; 1194 } 1195 1196 /** 1197 * ata_read_native_max_address - Read native max address 1198 * @dev: target device 1199 * @max_sectors: out parameter for the result native max address 1200 * 1201 * Perform an LBA48 or LBA28 native size query upon the device in 1202 * question. 1203 * 1204 * RETURNS: 1205 * 0 on success, -EACCES if command is aborted by the drive. 1206 * -EIO on other errors. 1207 */ ata_read_native_max_address(struct ata_device * dev,u64 * max_sectors)1208 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors) 1209 { 1210 unsigned int err_mask; 1211 struct ata_taskfile tf; 1212 int lba48 = ata_id_has_lba48(dev->id); 1213 1214 ata_tf_init(dev, &tf); 1215 1216 /* always clear all address registers */ 1217 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1218 1219 if (lba48) { 1220 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT; 1221 tf.flags |= ATA_TFLAG_LBA48; 1222 } else 1223 tf.command = ATA_CMD_READ_NATIVE_MAX; 1224 1225 tf.protocol = ATA_PROT_NODATA; 1226 tf.device |= ATA_LBA; 1227 1228 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1229 if (err_mask) { 1230 ata_dev_warn(dev, 1231 "failed to read native max address (err_mask=0x%x)\n", 1232 err_mask); 1233 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED)) 1234 return -EACCES; 1235 return -EIO; 1236 } 1237 1238 if (lba48) 1239 *max_sectors = ata_tf_to_lba48(&tf) + 1; 1240 else 1241 *max_sectors = ata_tf_to_lba(&tf) + 1; 1242 if (dev->quirks & ATA_QUIRK_HPA_SIZE) 1243 (*max_sectors)--; 1244 return 0; 1245 } 1246 1247 /** 1248 * ata_set_max_sectors - Set max sectors 1249 * @dev: target device 1250 * @new_sectors: new max sectors value to set for the device 1251 * 1252 * Set max sectors of @dev to @new_sectors. 1253 * 1254 * RETURNS: 1255 * 0 on success, -EACCES if command is aborted or denied (due to 1256 * previous non-volatile SET_MAX) by the drive. -EIO on other 1257 * errors. 1258 */ ata_set_max_sectors(struct ata_device * dev,u64 new_sectors)1259 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors) 1260 { 1261 unsigned int err_mask; 1262 struct ata_taskfile tf; 1263 int lba48 = ata_id_has_lba48(dev->id); 1264 1265 new_sectors--; 1266 1267 ata_tf_init(dev, &tf); 1268 1269 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1270 1271 if (lba48) { 1272 tf.command = ATA_CMD_SET_MAX_EXT; 1273 tf.flags |= ATA_TFLAG_LBA48; 1274 1275 tf.hob_lbal = (new_sectors >> 24) & 0xff; 1276 tf.hob_lbam = (new_sectors >> 32) & 0xff; 1277 tf.hob_lbah = (new_sectors >> 40) & 0xff; 1278 } else { 1279 tf.command = ATA_CMD_SET_MAX; 1280 1281 tf.device |= (new_sectors >> 24) & 0xf; 1282 } 1283 1284 tf.protocol = ATA_PROT_NODATA; 1285 tf.device |= ATA_LBA; 1286 1287 tf.lbal = (new_sectors >> 0) & 0xff; 1288 tf.lbam = (new_sectors >> 8) & 0xff; 1289 tf.lbah = (new_sectors >> 16) & 0xff; 1290 1291 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1292 if (err_mask) { 1293 ata_dev_warn(dev, 1294 "failed to set max address (err_mask=0x%x)\n", 1295 err_mask); 1296 if (err_mask == AC_ERR_DEV && 1297 (tf.error & (ATA_ABORTED | ATA_IDNF))) 1298 return -EACCES; 1299 return -EIO; 1300 } 1301 1302 return 0; 1303 } 1304 1305 /** 1306 * ata_hpa_resize - Resize a device with an HPA set 1307 * @dev: Device to resize 1308 * 1309 * Read the size of an LBA28 or LBA48 disk with HPA features and resize 1310 * it if required to the full size of the media. The caller must check 1311 * the drive has the HPA feature set enabled. 1312 * 1313 * RETURNS: 1314 * 0 on success, -errno on failure. 1315 */ ata_hpa_resize(struct ata_device * dev)1316 static int ata_hpa_resize(struct ata_device *dev) 1317 { 1318 bool print_info = ata_dev_print_info(dev); 1319 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA; 1320 u64 sectors = ata_id_n_sectors(dev->id); 1321 u64 native_sectors; 1322 int rc; 1323 1324 /* do we need to do it? */ 1325 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) || 1326 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) || 1327 (dev->quirks & ATA_QUIRK_BROKEN_HPA)) 1328 return 0; 1329 1330 /* read native max address */ 1331 rc = ata_read_native_max_address(dev, &native_sectors); 1332 if (rc) { 1333 /* If device aborted the command or HPA isn't going to 1334 * be unlocked, skip HPA resizing. 1335 */ 1336 if (rc == -EACCES || !unlock_hpa) { 1337 ata_dev_warn(dev, 1338 "HPA support seems broken, skipping HPA handling\n"); 1339 dev->quirks |= ATA_QUIRK_BROKEN_HPA; 1340 1341 /* we can continue if device aborted the command */ 1342 if (rc == -EACCES) 1343 rc = 0; 1344 } 1345 1346 return rc; 1347 } 1348 dev->n_native_sectors = native_sectors; 1349 1350 /* nothing to do? */ 1351 if (native_sectors <= sectors || !unlock_hpa) { 1352 if (!print_info || native_sectors == sectors) 1353 return 0; 1354 1355 if (native_sectors > sectors) 1356 ata_dev_info(dev, 1357 "HPA detected: current %llu, native %llu\n", 1358 (unsigned long long)sectors, 1359 (unsigned long long)native_sectors); 1360 else if (native_sectors < sectors) 1361 ata_dev_warn(dev, 1362 "native sectors (%llu) is smaller than sectors (%llu)\n", 1363 (unsigned long long)native_sectors, 1364 (unsigned long long)sectors); 1365 return 0; 1366 } 1367 1368 /* let's unlock HPA */ 1369 rc = ata_set_max_sectors(dev, native_sectors); 1370 if (rc == -EACCES) { 1371 /* if device aborted the command, skip HPA resizing */ 1372 ata_dev_warn(dev, 1373 "device aborted resize (%llu -> %llu), skipping HPA handling\n", 1374 (unsigned long long)sectors, 1375 (unsigned long long)native_sectors); 1376 dev->quirks |= ATA_QUIRK_BROKEN_HPA; 1377 return 0; 1378 } else if (rc) 1379 return rc; 1380 1381 /* re-read IDENTIFY data */ 1382 rc = ata_dev_reread_id(dev, 0); 1383 if (rc) { 1384 ata_dev_err(dev, 1385 "failed to re-read IDENTIFY data after HPA resizing\n"); 1386 return rc; 1387 } 1388 1389 if (print_info) { 1390 u64 new_sectors = ata_id_n_sectors(dev->id); 1391 ata_dev_info(dev, 1392 "HPA unlocked: %llu -> %llu, native %llu\n", 1393 (unsigned long long)sectors, 1394 (unsigned long long)new_sectors, 1395 (unsigned long long)native_sectors); 1396 } 1397 1398 return 0; 1399 } 1400 1401 /** 1402 * ata_dump_id - IDENTIFY DEVICE info debugging output 1403 * @dev: device from which the information is fetched 1404 * @id: IDENTIFY DEVICE page to dump 1405 * 1406 * Dump selected 16-bit words from the given IDENTIFY DEVICE 1407 * page. 1408 * 1409 * LOCKING: 1410 * caller. 1411 */ 1412 ata_dump_id(struct ata_device * dev,const u16 * id)1413 static inline void ata_dump_id(struct ata_device *dev, const u16 *id) 1414 { 1415 ata_dev_dbg(dev, 1416 "49==0x%04x 53==0x%04x 63==0x%04x 64==0x%04x 75==0x%04x\n" 1417 "80==0x%04x 81==0x%04x 82==0x%04x 83==0x%04x 84==0x%04x\n" 1418 "88==0x%04x 93==0x%04x\n", 1419 id[49], id[53], id[63], id[64], id[75], id[80], 1420 id[81], id[82], id[83], id[84], id[88], id[93]); 1421 } 1422 1423 /** 1424 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data 1425 * @id: IDENTIFY data to compute xfer mask from 1426 * 1427 * Compute the xfermask for this device. This is not as trivial 1428 * as it seems if we must consider early devices correctly. 1429 * 1430 * FIXME: pre IDE drive timing (do we care ?). 1431 * 1432 * LOCKING: 1433 * None. 1434 * 1435 * RETURNS: 1436 * Computed xfermask 1437 */ ata_id_xfermask(const u16 * id)1438 unsigned int ata_id_xfermask(const u16 *id) 1439 { 1440 unsigned int pio_mask, mwdma_mask, udma_mask; 1441 1442 /* Usual case. Word 53 indicates word 64 is valid */ 1443 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) { 1444 pio_mask = id[ATA_ID_PIO_MODES] & 0x03; 1445 pio_mask <<= 3; 1446 pio_mask |= 0x7; 1447 } else { 1448 /* If word 64 isn't valid then Word 51 high byte holds 1449 * the PIO timing number for the maximum. Turn it into 1450 * a mask. 1451 */ 1452 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF; 1453 if (mode < 5) /* Valid PIO range */ 1454 pio_mask = (2 << mode) - 1; 1455 else 1456 pio_mask = 1; 1457 1458 /* But wait.. there's more. Design your standards by 1459 * committee and you too can get a free iordy field to 1460 * process. However it is the speeds not the modes that 1461 * are supported... Note drivers using the timing API 1462 * will get this right anyway 1463 */ 1464 } 1465 1466 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07; 1467 1468 if (ata_id_is_cfa(id)) { 1469 /* 1470 * Process compact flash extended modes 1471 */ 1472 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7; 1473 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7; 1474 1475 if (pio) 1476 pio_mask |= (1 << 5); 1477 if (pio > 1) 1478 pio_mask |= (1 << 6); 1479 if (dma) 1480 mwdma_mask |= (1 << 3); 1481 if (dma > 1) 1482 mwdma_mask |= (1 << 4); 1483 } 1484 1485 udma_mask = 0; 1486 if (id[ATA_ID_FIELD_VALID] & (1 << 2)) 1487 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff; 1488 1489 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 1490 } 1491 EXPORT_SYMBOL_GPL(ata_id_xfermask); 1492 ata_qc_complete_internal(struct ata_queued_cmd * qc)1493 static void ata_qc_complete_internal(struct ata_queued_cmd *qc) 1494 { 1495 struct completion *waiting = qc->private_data; 1496 1497 complete(waiting); 1498 } 1499 1500 /** 1501 * ata_exec_internal - execute libata internal command 1502 * @dev: Device to which the command is sent 1503 * @tf: Taskfile registers for the command and the result 1504 * @cdb: CDB for packet command 1505 * @dma_dir: Data transfer direction of the command 1506 * @buf: Data buffer of the command 1507 * @buflen: Length of data buffer 1508 * @timeout: Timeout in msecs (0 for default) 1509 * 1510 * Executes libata internal command with timeout. @tf contains 1511 * the command on entry and the result on return. Timeout and error 1512 * conditions are reported via the return value. No recovery action 1513 * is taken after a command times out. It is the caller's duty to 1514 * clean up after timeout. 1515 * 1516 * LOCKING: 1517 * None. Should be called with kernel context, might sleep. 1518 * 1519 * RETURNS: 1520 * Zero on success, AC_ERR_* mask on failure 1521 */ ata_exec_internal(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,enum dma_data_direction dma_dir,void * buf,unsigned int buflen,unsigned int timeout)1522 unsigned int ata_exec_internal(struct ata_device *dev, struct ata_taskfile *tf, 1523 const u8 *cdb, enum dma_data_direction dma_dir, 1524 void *buf, unsigned int buflen, 1525 unsigned int timeout) 1526 { 1527 struct ata_link *link = dev->link; 1528 struct ata_port *ap = link->ap; 1529 u8 command = tf->command; 1530 struct ata_queued_cmd *qc; 1531 struct scatterlist sgl; 1532 unsigned int preempted_tag; 1533 u32 preempted_sactive; 1534 u64 preempted_qc_active; 1535 int preempted_nr_active_links; 1536 bool auto_timeout = false; 1537 DECLARE_COMPLETION_ONSTACK(wait); 1538 unsigned long flags; 1539 unsigned int err_mask; 1540 int rc; 1541 1542 if (WARN_ON(dma_dir != DMA_NONE && !buf)) 1543 return AC_ERR_INVALID; 1544 1545 spin_lock_irqsave(ap->lock, flags); 1546 1547 /* No internal command while frozen */ 1548 if (ata_port_is_frozen(ap)) { 1549 spin_unlock_irqrestore(ap->lock, flags); 1550 return AC_ERR_SYSTEM; 1551 } 1552 1553 /* Initialize internal qc */ 1554 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL); 1555 1556 qc->tag = ATA_TAG_INTERNAL; 1557 qc->hw_tag = 0; 1558 qc->scsicmd = NULL; 1559 qc->ap = ap; 1560 qc->dev = dev; 1561 ata_qc_reinit(qc); 1562 1563 preempted_tag = link->active_tag; 1564 preempted_sactive = link->sactive; 1565 preempted_qc_active = ap->qc_active; 1566 preempted_nr_active_links = ap->nr_active_links; 1567 link->active_tag = ATA_TAG_POISON; 1568 link->sactive = 0; 1569 ap->qc_active = 0; 1570 ap->nr_active_links = 0; 1571 1572 /* Prepare and issue qc */ 1573 qc->tf = *tf; 1574 if (cdb) 1575 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN); 1576 1577 /* Some SATA bridges need us to indicate data xfer direction */ 1578 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) && 1579 dma_dir == DMA_FROM_DEVICE) 1580 qc->tf.feature |= ATAPI_DMADIR; 1581 1582 qc->flags |= ATA_QCFLAG_RESULT_TF; 1583 qc->dma_dir = dma_dir; 1584 if (dma_dir != DMA_NONE) { 1585 sg_init_one(&sgl, buf, buflen); 1586 ata_sg_init(qc, &sgl, 1); 1587 qc->nbytes = buflen; 1588 } 1589 1590 qc->private_data = &wait; 1591 qc->complete_fn = ata_qc_complete_internal; 1592 1593 ata_qc_issue(qc); 1594 1595 spin_unlock_irqrestore(ap->lock, flags); 1596 1597 if (!timeout) { 1598 if (ata_probe_timeout) { 1599 timeout = ata_probe_timeout * 1000; 1600 } else { 1601 timeout = ata_internal_cmd_timeout(dev, command); 1602 auto_timeout = true; 1603 } 1604 } 1605 1606 ata_eh_release(ap); 1607 1608 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout)); 1609 1610 ata_eh_acquire(ap); 1611 1612 ata_sff_flush_pio_task(ap); 1613 1614 if (!rc) { 1615 /* 1616 * We are racing with irq here. If we lose, the following test 1617 * prevents us from completing the qc twice. If we win, the port 1618 * is frozen and will be cleaned up by ->post_internal_cmd(). 1619 */ 1620 spin_lock_irqsave(ap->lock, flags); 1621 if (qc->flags & ATA_QCFLAG_ACTIVE) { 1622 qc->err_mask |= AC_ERR_TIMEOUT; 1623 ata_port_freeze(ap); 1624 ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n", 1625 timeout, command); 1626 } 1627 spin_unlock_irqrestore(ap->lock, flags); 1628 } 1629 1630 if (ap->ops->post_internal_cmd) 1631 ap->ops->post_internal_cmd(qc); 1632 1633 /* Perform minimal error analysis */ 1634 if (qc->flags & ATA_QCFLAG_EH) { 1635 if (qc->result_tf.status & (ATA_ERR | ATA_DF)) 1636 qc->err_mask |= AC_ERR_DEV; 1637 1638 if (!qc->err_mask) 1639 qc->err_mask |= AC_ERR_OTHER; 1640 1641 if (qc->err_mask & ~AC_ERR_OTHER) 1642 qc->err_mask &= ~AC_ERR_OTHER; 1643 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) { 1644 qc->result_tf.status |= ATA_SENSE; 1645 } 1646 1647 /* Finish up */ 1648 spin_lock_irqsave(ap->lock, flags); 1649 1650 *tf = qc->result_tf; 1651 err_mask = qc->err_mask; 1652 1653 ata_qc_free(qc); 1654 link->active_tag = preempted_tag; 1655 link->sactive = preempted_sactive; 1656 ap->qc_active = preempted_qc_active; 1657 ap->nr_active_links = preempted_nr_active_links; 1658 1659 spin_unlock_irqrestore(ap->lock, flags); 1660 1661 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout) 1662 ata_internal_cmd_timed_out(dev, command); 1663 1664 return err_mask; 1665 } 1666 1667 /** 1668 * ata_pio_need_iordy - check if iordy needed 1669 * @adev: ATA device 1670 * 1671 * Check if the current speed of the device requires IORDY. Used 1672 * by various controllers for chip configuration. 1673 */ ata_pio_need_iordy(const struct ata_device * adev)1674 unsigned int ata_pio_need_iordy(const struct ata_device *adev) 1675 { 1676 /* Don't set IORDY if we're preparing for reset. IORDY may 1677 * lead to controller lock up on certain controllers if the 1678 * port is not occupied. See bko#11703 for details. 1679 */ 1680 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING) 1681 return 0; 1682 /* Controller doesn't support IORDY. Probably a pointless 1683 * check as the caller should know this. 1684 */ 1685 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY) 1686 return 0; 1687 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */ 1688 if (ata_id_is_cfa(adev->id) 1689 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6)) 1690 return 0; 1691 /* PIO3 and higher it is mandatory */ 1692 if (adev->pio_mode > XFER_PIO_2) 1693 return 1; 1694 /* We turn it on when possible */ 1695 if (ata_id_has_iordy(adev->id)) 1696 return 1; 1697 return 0; 1698 } 1699 EXPORT_SYMBOL_GPL(ata_pio_need_iordy); 1700 1701 /** 1702 * ata_pio_mask_no_iordy - Return the non IORDY mask 1703 * @adev: ATA device 1704 * 1705 * Compute the highest mode possible if we are not using iordy. Return 1706 * -1 if no iordy mode is available. 1707 */ ata_pio_mask_no_iordy(const struct ata_device * adev)1708 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev) 1709 { 1710 /* If we have no drive specific rule, then PIO 2 is non IORDY */ 1711 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */ 1712 u16 pio = adev->id[ATA_ID_EIDE_PIO]; 1713 /* Is the speed faster than the drive allows non IORDY ? */ 1714 if (pio) { 1715 /* This is cycle times not frequency - watch the logic! */ 1716 if (pio > 240) /* PIO2 is 240nS per cycle */ 1717 return 3 << ATA_SHIFT_PIO; 1718 return 7 << ATA_SHIFT_PIO; 1719 } 1720 } 1721 return 3 << ATA_SHIFT_PIO; 1722 } 1723 1724 /** 1725 * ata_do_dev_read_id - default ID read method 1726 * @dev: device 1727 * @tf: proposed taskfile 1728 * @id: data buffer 1729 * 1730 * Issue the identify taskfile and hand back the buffer containing 1731 * identify data. For some RAID controllers and for pre ATA devices 1732 * this function is wrapped or replaced by the driver 1733 */ ata_do_dev_read_id(struct ata_device * dev,struct ata_taskfile * tf,__le16 * id)1734 unsigned int ata_do_dev_read_id(struct ata_device *dev, 1735 struct ata_taskfile *tf, __le16 *id) 1736 { 1737 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE, 1738 id, sizeof(id[0]) * ATA_ID_WORDS, 0); 1739 } 1740 EXPORT_SYMBOL_GPL(ata_do_dev_read_id); 1741 1742 /** 1743 * ata_dev_read_id - Read ID data from the specified device 1744 * @dev: target device 1745 * @p_class: pointer to class of the target device (may be changed) 1746 * @flags: ATA_READID_* flags 1747 * @id: buffer to read IDENTIFY data into 1748 * 1749 * Read ID data from the specified device. ATA_CMD_ID_ATA is 1750 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI 1751 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS 1752 * for pre-ATA4 drives. 1753 * 1754 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right 1755 * now we abort if we hit that case. 1756 * 1757 * LOCKING: 1758 * Kernel thread context (may sleep) 1759 * 1760 * RETURNS: 1761 * 0 on success, -errno otherwise. 1762 */ ata_dev_read_id(struct ata_device * dev,unsigned int * p_class,unsigned int flags,u16 * id)1763 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class, 1764 unsigned int flags, u16 *id) 1765 { 1766 struct ata_port *ap = dev->link->ap; 1767 unsigned int class = *p_class; 1768 struct ata_taskfile tf; 1769 unsigned int err_mask = 0; 1770 const char *reason; 1771 bool is_semb = class == ATA_DEV_SEMB; 1772 int may_fallback = 1, tried_spinup = 0; 1773 int rc; 1774 1775 retry: 1776 ata_tf_init(dev, &tf); 1777 1778 switch (class) { 1779 case ATA_DEV_SEMB: 1780 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */ 1781 fallthrough; 1782 case ATA_DEV_ATA: 1783 case ATA_DEV_ZAC: 1784 tf.command = ATA_CMD_ID_ATA; 1785 break; 1786 case ATA_DEV_ATAPI: 1787 tf.command = ATA_CMD_ID_ATAPI; 1788 break; 1789 default: 1790 rc = -ENODEV; 1791 reason = "unsupported class"; 1792 goto err_out; 1793 } 1794 1795 tf.protocol = ATA_PROT_PIO; 1796 1797 /* Some devices choke if TF registers contain garbage. Make 1798 * sure those are properly initialized. 1799 */ 1800 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 1801 1802 /* Device presence detection is unreliable on some 1803 * controllers. Always poll IDENTIFY if available. 1804 */ 1805 tf.flags |= ATA_TFLAG_POLLING; 1806 1807 if (ap->ops->read_id) 1808 err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id); 1809 else 1810 err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id); 1811 1812 if (err_mask) { 1813 if (err_mask & AC_ERR_NODEV_HINT) { 1814 ata_dev_dbg(dev, "NODEV after polling detection\n"); 1815 return -ENOENT; 1816 } 1817 1818 if (is_semb) { 1819 ata_dev_info(dev, 1820 "IDENTIFY failed on device w/ SEMB sig, disabled\n"); 1821 /* SEMB is not supported yet */ 1822 *p_class = ATA_DEV_SEMB_UNSUP; 1823 return 0; 1824 } 1825 1826 if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) { 1827 /* Device or controller might have reported 1828 * the wrong device class. Give a shot at the 1829 * other IDENTIFY if the current one is 1830 * aborted by the device. 1831 */ 1832 if (may_fallback) { 1833 may_fallback = 0; 1834 1835 if (class == ATA_DEV_ATA) 1836 class = ATA_DEV_ATAPI; 1837 else 1838 class = ATA_DEV_ATA; 1839 goto retry; 1840 } 1841 1842 /* Control reaches here iff the device aborted 1843 * both flavors of IDENTIFYs which happens 1844 * sometimes with phantom devices. 1845 */ 1846 ata_dev_dbg(dev, 1847 "both IDENTIFYs aborted, assuming NODEV\n"); 1848 return -ENOENT; 1849 } 1850 1851 rc = -EIO; 1852 reason = "I/O error"; 1853 goto err_out; 1854 } 1855 1856 if (dev->quirks & ATA_QUIRK_DUMP_ID) { 1857 ata_dev_info(dev, "dumping IDENTIFY data, " 1858 "class=%d may_fallback=%d tried_spinup=%d\n", 1859 class, may_fallback, tried_spinup); 1860 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 1861 16, 2, id, ATA_ID_WORDS * sizeof(*id), true); 1862 } 1863 1864 /* Falling back doesn't make sense if ID data was read 1865 * successfully at least once. 1866 */ 1867 may_fallback = 0; 1868 1869 swap_buf_le16(id, ATA_ID_WORDS); 1870 1871 /* sanity check */ 1872 rc = -EINVAL; 1873 reason = "device reports invalid type"; 1874 1875 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) { 1876 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id)) 1877 goto err_out; 1878 if (ap->host->flags & ATA_HOST_IGNORE_ATA && 1879 ata_id_is_ata(id)) { 1880 ata_dev_dbg(dev, 1881 "host indicates ignore ATA devices, ignored\n"); 1882 return -ENOENT; 1883 } 1884 } else { 1885 if (ata_id_is_ata(id)) 1886 goto err_out; 1887 } 1888 1889 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) { 1890 tried_spinup = 1; 1891 /* 1892 * Drive powered-up in standby mode, and requires a specific 1893 * SET_FEATURES spin-up subcommand before it will accept 1894 * anything other than the original IDENTIFY command. 1895 */ 1896 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0); 1897 if (err_mask && id[2] != 0x738c) { 1898 rc = -EIO; 1899 reason = "SPINUP failed"; 1900 goto err_out; 1901 } 1902 /* 1903 * If the drive initially returned incomplete IDENTIFY info, 1904 * we now must reissue the IDENTIFY command. 1905 */ 1906 if (id[2] == 0x37c8) 1907 goto retry; 1908 } 1909 1910 if ((flags & ATA_READID_POSTRESET) && 1911 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) { 1912 /* 1913 * The exact sequence expected by certain pre-ATA4 drives is: 1914 * SRST RESET 1915 * IDENTIFY (optional in early ATA) 1916 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA) 1917 * anything else.. 1918 * Some drives were very specific about that exact sequence. 1919 * 1920 * Note that ATA4 says lba is mandatory so the second check 1921 * should never trigger. 1922 */ 1923 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) { 1924 err_mask = ata_dev_init_params(dev, id[3], id[6]); 1925 if (err_mask) { 1926 rc = -EIO; 1927 reason = "INIT_DEV_PARAMS failed"; 1928 goto err_out; 1929 } 1930 1931 /* current CHS translation info (id[53-58]) might be 1932 * changed. reread the identify device info. 1933 */ 1934 flags &= ~ATA_READID_POSTRESET; 1935 goto retry; 1936 } 1937 } 1938 1939 *p_class = class; 1940 1941 return 0; 1942 1943 err_out: 1944 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n", 1945 reason, err_mask); 1946 return rc; 1947 } 1948 ata_dev_power_init_tf(struct ata_device * dev,struct ata_taskfile * tf,bool set_active)1949 bool ata_dev_power_init_tf(struct ata_device *dev, struct ata_taskfile *tf, 1950 bool set_active) 1951 { 1952 /* Only applies to ATA and ZAC devices */ 1953 if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) 1954 return false; 1955 1956 ata_tf_init(dev, tf); 1957 tf->flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1958 tf->protocol = ATA_PROT_NODATA; 1959 1960 if (set_active) { 1961 /* VERIFY for 1 sector at lba=0 */ 1962 tf->command = ATA_CMD_VERIFY; 1963 tf->nsect = 1; 1964 if (dev->flags & ATA_DFLAG_LBA) { 1965 tf->flags |= ATA_TFLAG_LBA; 1966 tf->device |= ATA_LBA; 1967 } else { 1968 /* CHS */ 1969 tf->lbal = 0x1; /* sect */ 1970 } 1971 } else { 1972 tf->command = ATA_CMD_STANDBYNOW1; 1973 } 1974 1975 return true; 1976 } 1977 ata_dev_power_is_active(struct ata_device * dev)1978 static bool ata_dev_power_is_active(struct ata_device *dev) 1979 { 1980 struct ata_taskfile tf; 1981 unsigned int err_mask; 1982 1983 ata_tf_init(dev, &tf); 1984 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR; 1985 tf.protocol = ATA_PROT_NODATA; 1986 tf.command = ATA_CMD_CHK_POWER; 1987 1988 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 1989 if (err_mask) { 1990 ata_dev_err(dev, "Check power mode failed (err_mask=0x%x)\n", 1991 err_mask); 1992 /* 1993 * Assume we are in standby mode so that we always force a 1994 * spinup in ata_dev_power_set_active(). 1995 */ 1996 return false; 1997 } 1998 1999 ata_dev_dbg(dev, "Power mode: 0x%02x\n", tf.nsect); 2000 2001 /* Active or idle */ 2002 return tf.nsect == 0xff; 2003 } 2004 2005 /** 2006 * ata_dev_power_set_standby - Set a device power mode to standby 2007 * @dev: target device 2008 * 2009 * Issue a STANDBY IMMEDIATE command to set a device power mode to standby. 2010 * For an HDD device, this spins down the disks. 2011 * 2012 * LOCKING: 2013 * Kernel thread context (may sleep). 2014 */ ata_dev_power_set_standby(struct ata_device * dev)2015 void ata_dev_power_set_standby(struct ata_device *dev) 2016 { 2017 unsigned long ap_flags = dev->link->ap->flags; 2018 struct ata_taskfile tf; 2019 unsigned int err_mask; 2020 2021 /* If the device is already sleeping or in standby, do nothing. */ 2022 if ((dev->flags & ATA_DFLAG_SLEEPING) || 2023 !ata_dev_power_is_active(dev)) 2024 return; 2025 2026 /* 2027 * Some odd clown BIOSes issue spindown on power off (ACPI S4 or S5) 2028 * causing some drives to spin up and down again. For these, do nothing 2029 * if we are being called on shutdown. 2030 */ 2031 if ((ap_flags & ATA_FLAG_NO_POWEROFF_SPINDOWN) && 2032 system_state == SYSTEM_POWER_OFF) 2033 return; 2034 2035 if ((ap_flags & ATA_FLAG_NO_HIBERNATE_SPINDOWN) && 2036 system_entering_hibernation()) 2037 return; 2038 2039 /* Issue STANDBY IMMEDIATE command only if supported by the device */ 2040 if (!ata_dev_power_init_tf(dev, &tf, false)) 2041 return; 2042 2043 ata_dev_notice(dev, "Entering standby power mode\n"); 2044 2045 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 2046 if (err_mask) 2047 ata_dev_err(dev, "STANDBY IMMEDIATE failed (err_mask=0x%x)\n", 2048 err_mask); 2049 } 2050 2051 /** 2052 * ata_dev_power_set_active - Set a device power mode to active 2053 * @dev: target device 2054 * 2055 * Issue a VERIFY command to enter to ensure that the device is in the 2056 * active power mode. For a spun-down HDD (standby or idle power mode), 2057 * the VERIFY command will complete after the disk spins up. 2058 * 2059 * LOCKING: 2060 * Kernel thread context (may sleep). 2061 */ ata_dev_power_set_active(struct ata_device * dev)2062 void ata_dev_power_set_active(struct ata_device *dev) 2063 { 2064 struct ata_taskfile tf; 2065 unsigned int err_mask; 2066 2067 /* 2068 * Issue READ VERIFY SECTORS command for 1 sector at lba=0 only 2069 * if supported by the device. 2070 */ 2071 if (!ata_dev_power_init_tf(dev, &tf, true)) 2072 return; 2073 2074 /* 2075 * Check the device power state & condition and force a spinup with 2076 * VERIFY command only if the drive is not already ACTIVE or IDLE. 2077 */ 2078 if (ata_dev_power_is_active(dev)) 2079 return; 2080 2081 ata_dev_notice(dev, "Entering active power mode\n"); 2082 2083 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 2084 if (err_mask) 2085 ata_dev_err(dev, "VERIFY failed (err_mask=0x%x)\n", 2086 err_mask); 2087 } 2088 2089 /** 2090 * ata_read_log_page - read a specific log page 2091 * @dev: target device 2092 * @log: log to read 2093 * @page: page to read 2094 * @buf: buffer to store read page 2095 * @sectors: number of sectors to read 2096 * 2097 * Read log page using READ_LOG_EXT command. 2098 * 2099 * LOCKING: 2100 * Kernel thread context (may sleep). 2101 * 2102 * RETURNS: 2103 * 0 on success, AC_ERR_* mask otherwise. 2104 */ ata_read_log_page(struct ata_device * dev,u8 log,u8 page,void * buf,unsigned int sectors)2105 unsigned int ata_read_log_page(struct ata_device *dev, u8 log, 2106 u8 page, void *buf, unsigned int sectors) 2107 { 2108 unsigned long ap_flags = dev->link->ap->flags; 2109 struct ata_taskfile tf; 2110 unsigned int err_mask; 2111 bool dma = false; 2112 2113 ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page); 2114 2115 /* 2116 * Return error without actually issuing the command on controllers 2117 * which e.g. lockup on a read log page. 2118 */ 2119 if (ap_flags & ATA_FLAG_NO_LOG_PAGE) 2120 return AC_ERR_DEV; 2121 2122 retry: 2123 ata_tf_init(dev, &tf); 2124 if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) && 2125 !(dev->quirks & ATA_QUIRK_NO_DMA_LOG)) { 2126 tf.command = ATA_CMD_READ_LOG_DMA_EXT; 2127 tf.protocol = ATA_PROT_DMA; 2128 dma = true; 2129 } else { 2130 tf.command = ATA_CMD_READ_LOG_EXT; 2131 tf.protocol = ATA_PROT_PIO; 2132 dma = false; 2133 } 2134 tf.lbal = log; 2135 tf.lbam = page; 2136 tf.nsect = sectors; 2137 tf.hob_nsect = sectors >> 8; 2138 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE; 2139 2140 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE, 2141 buf, sectors * ATA_SECT_SIZE, 0); 2142 2143 if (err_mask) { 2144 if (dma) { 2145 dev->quirks |= ATA_QUIRK_NO_DMA_LOG; 2146 if (!ata_port_is_frozen(dev->link->ap)) 2147 goto retry; 2148 } 2149 ata_dev_err(dev, 2150 "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n", 2151 (unsigned int)log, (unsigned int)page, err_mask); 2152 } 2153 2154 return err_mask; 2155 } 2156 ata_log_supported(struct ata_device * dev,u8 log)2157 static int ata_log_supported(struct ata_device *dev, u8 log) 2158 { 2159 if (dev->quirks & ATA_QUIRK_NO_LOG_DIR) 2160 return 0; 2161 2162 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, dev->sector_buf, 1)) 2163 return 0; 2164 return get_unaligned_le16(&dev->sector_buf[log * 2]); 2165 } 2166 ata_identify_page_supported(struct ata_device * dev,u8 page)2167 static bool ata_identify_page_supported(struct ata_device *dev, u8 page) 2168 { 2169 unsigned int err, i; 2170 2171 if (dev->quirks & ATA_QUIRK_NO_ID_DEV_LOG) 2172 return false; 2173 2174 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) { 2175 /* 2176 * IDENTIFY DEVICE data log is defined as mandatory starting 2177 * with ACS-3 (ATA version 10). Warn about the missing log 2178 * for drives which implement this ATA level or above. 2179 */ 2180 if (ata_id_major_version(dev->id) >= 10) 2181 ata_dev_warn(dev, 2182 "ATA Identify Device Log not supported\n"); 2183 dev->quirks |= ATA_QUIRK_NO_ID_DEV_LOG; 2184 return false; 2185 } 2186 2187 /* 2188 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is 2189 * supported. 2190 */ 2191 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, 2192 dev->sector_buf, 1); 2193 if (err) 2194 return false; 2195 2196 for (i = 0; i < dev->sector_buf[8]; i++) { 2197 if (dev->sector_buf[9 + i] == page) 2198 return true; 2199 } 2200 2201 return false; 2202 } 2203 ata_do_link_spd_quirk(struct ata_device * dev)2204 static int ata_do_link_spd_quirk(struct ata_device *dev) 2205 { 2206 struct ata_link *plink = ata_dev_phys_link(dev); 2207 u32 target, target_limit; 2208 2209 if (!sata_scr_valid(plink)) 2210 return 0; 2211 2212 if (dev->quirks & ATA_QUIRK_1_5_GBPS) 2213 target = 1; 2214 else 2215 return 0; 2216 2217 target_limit = (1 << target) - 1; 2218 2219 /* if already on stricter limit, no need to push further */ 2220 if (plink->sata_spd_limit <= target_limit) 2221 return 0; 2222 2223 plink->sata_spd_limit = target_limit; 2224 2225 /* Request another EH round by returning -EAGAIN if link is 2226 * going faster than the target speed. Forward progress is 2227 * guaranteed by setting sata_spd_limit to target_limit above. 2228 */ 2229 if (plink->sata_spd > target) { 2230 ata_dev_info(dev, "applying link speed limit quirk to %s\n", 2231 sata_spd_string(target)); 2232 return -EAGAIN; 2233 } 2234 return 0; 2235 } 2236 ata_dev_knobble(struct ata_device * dev)2237 static inline bool ata_dev_knobble(struct ata_device *dev) 2238 { 2239 struct ata_port *ap = dev->link->ap; 2240 2241 if (ata_dev_quirks(dev) & ATA_QUIRK_BRIDGE_OK) 2242 return false; 2243 2244 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id))); 2245 } 2246 ata_dev_config_ncq_send_recv(struct ata_device * dev)2247 static void ata_dev_config_ncq_send_recv(struct ata_device *dev) 2248 { 2249 unsigned int err_mask; 2250 2251 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) { 2252 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n"); 2253 return; 2254 } 2255 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV, 2256 0, dev->sector_buf, 1); 2257 if (!err_mask) { 2258 u8 *cmds = dev->ncq_send_recv_cmds; 2259 2260 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV; 2261 memcpy(cmds, dev->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE); 2262 2263 if (dev->quirks & ATA_QUIRK_NO_NCQ_TRIM) { 2264 ata_dev_dbg(dev, "disabling queued TRIM support\n"); 2265 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &= 2266 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM; 2267 } 2268 } 2269 } 2270 ata_dev_config_ncq_non_data(struct ata_device * dev)2271 static void ata_dev_config_ncq_non_data(struct ata_device *dev) 2272 { 2273 unsigned int err_mask; 2274 2275 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) { 2276 ata_dev_warn(dev, 2277 "NCQ Non-Data Log not supported\n"); 2278 return; 2279 } 2280 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA, 2281 0, dev->sector_buf, 1); 2282 if (!err_mask) 2283 memcpy(dev->ncq_non_data_cmds, dev->sector_buf, 2284 ATA_LOG_NCQ_NON_DATA_SIZE); 2285 } 2286 ata_dev_config_ncq_prio(struct ata_device * dev)2287 static void ata_dev_config_ncq_prio(struct ata_device *dev) 2288 { 2289 unsigned int err_mask; 2290 2291 if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS)) 2292 return; 2293 2294 err_mask = ata_read_log_page(dev, 2295 ATA_LOG_IDENTIFY_DEVICE, 2296 ATA_LOG_SATA_SETTINGS, 2297 dev->sector_buf, 1); 2298 if (err_mask) 2299 goto not_supported; 2300 2301 if (!(dev->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3))) 2302 goto not_supported; 2303 2304 dev->flags |= ATA_DFLAG_NCQ_PRIO; 2305 2306 return; 2307 2308 not_supported: 2309 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED; 2310 dev->flags &= ~ATA_DFLAG_NCQ_PRIO; 2311 } 2312 ata_dev_check_adapter(struct ata_device * dev,unsigned short vendor_id)2313 static bool ata_dev_check_adapter(struct ata_device *dev, 2314 unsigned short vendor_id) 2315 { 2316 struct pci_dev *pcidev = NULL; 2317 struct device *parent_dev = NULL; 2318 2319 for (parent_dev = dev->tdev.parent; parent_dev != NULL; 2320 parent_dev = parent_dev->parent) { 2321 if (dev_is_pci(parent_dev)) { 2322 pcidev = to_pci_dev(parent_dev); 2323 if (pcidev->vendor == vendor_id) 2324 return true; 2325 break; 2326 } 2327 } 2328 2329 return false; 2330 } 2331 ata_dev_config_ncq(struct ata_device * dev,char * desc,size_t desc_sz)2332 static int ata_dev_config_ncq(struct ata_device *dev, 2333 char *desc, size_t desc_sz) 2334 { 2335 struct ata_port *ap = dev->link->ap; 2336 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id); 2337 unsigned int err_mask; 2338 char *aa_desc = ""; 2339 2340 if (!ata_id_has_ncq(dev->id)) { 2341 desc[0] = '\0'; 2342 return 0; 2343 } 2344 if (!IS_ENABLED(CONFIG_SATA_HOST)) 2345 return 0; 2346 if (dev->quirks & ATA_QUIRK_NONCQ) { 2347 snprintf(desc, desc_sz, "NCQ (not used)"); 2348 return 0; 2349 } 2350 2351 if (dev->quirks & ATA_QUIRK_NO_NCQ_ON_ATI && 2352 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) { 2353 snprintf(desc, desc_sz, "NCQ (not used)"); 2354 return 0; 2355 } 2356 2357 if (ap->flags & ATA_FLAG_NCQ) { 2358 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE); 2359 dev->flags |= ATA_DFLAG_NCQ; 2360 } 2361 2362 if (!(dev->quirks & ATA_QUIRK_BROKEN_FPDMA_AA) && 2363 (ap->flags & ATA_FLAG_FPDMA_AA) && 2364 ata_id_has_fpdma_aa(dev->id)) { 2365 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE, 2366 SATA_FPDMA_AA); 2367 if (err_mask) { 2368 ata_dev_err(dev, 2369 "failed to enable AA (error_mask=0x%x)\n", 2370 err_mask); 2371 if (err_mask != AC_ERR_DEV) { 2372 dev->quirks |= ATA_QUIRK_BROKEN_FPDMA_AA; 2373 return -EIO; 2374 } 2375 } else 2376 aa_desc = ", AA"; 2377 } 2378 2379 if (hdepth >= ddepth) 2380 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc); 2381 else 2382 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth, 2383 ddepth, aa_desc); 2384 2385 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) { 2386 if (ata_id_has_ncq_send_and_recv(dev->id)) 2387 ata_dev_config_ncq_send_recv(dev); 2388 if (ata_id_has_ncq_non_data(dev->id)) 2389 ata_dev_config_ncq_non_data(dev); 2390 if (ata_id_has_ncq_prio(dev->id)) 2391 ata_dev_config_ncq_prio(dev); 2392 } 2393 2394 return 0; 2395 } 2396 ata_dev_config_sense_reporting(struct ata_device * dev)2397 static void ata_dev_config_sense_reporting(struct ata_device *dev) 2398 { 2399 unsigned int err_mask; 2400 2401 if (!ata_id_has_sense_reporting(dev->id)) 2402 return; 2403 2404 if (ata_id_sense_reporting_enabled(dev->id)) 2405 return; 2406 2407 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1); 2408 if (err_mask) { 2409 ata_dev_dbg(dev, 2410 "failed to enable Sense Data Reporting, Emask 0x%x\n", 2411 err_mask); 2412 } 2413 } 2414 ata_dev_config_zac(struct ata_device * dev)2415 static void ata_dev_config_zac(struct ata_device *dev) 2416 { 2417 unsigned int err_mask; 2418 u8 *identify_buf = dev->sector_buf; 2419 2420 dev->zac_zones_optimal_open = U32_MAX; 2421 dev->zac_zones_optimal_nonseq = U32_MAX; 2422 dev->zac_zones_max_open = U32_MAX; 2423 2424 /* 2425 * Always set the 'ZAC' flag for Host-managed devices. 2426 */ 2427 if (dev->class == ATA_DEV_ZAC) 2428 dev->flags |= ATA_DFLAG_ZAC; 2429 else if (ata_id_zoned_cap(dev->id) == 0x01) 2430 /* 2431 * Check for host-aware devices. 2432 */ 2433 dev->flags |= ATA_DFLAG_ZAC; 2434 2435 if (!(dev->flags & ATA_DFLAG_ZAC)) 2436 return; 2437 2438 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) { 2439 ata_dev_warn(dev, 2440 "ATA Zoned Information Log not supported\n"); 2441 return; 2442 } 2443 2444 /* 2445 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information) 2446 */ 2447 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2448 ATA_LOG_ZONED_INFORMATION, 2449 identify_buf, 1); 2450 if (!err_mask) { 2451 u64 zoned_cap, opt_open, opt_nonseq, max_open; 2452 2453 zoned_cap = get_unaligned_le64(&identify_buf[8]); 2454 if ((zoned_cap >> 63)) 2455 dev->zac_zoned_cap = (zoned_cap & 1); 2456 opt_open = get_unaligned_le64(&identify_buf[24]); 2457 if ((opt_open >> 63)) 2458 dev->zac_zones_optimal_open = (u32)opt_open; 2459 opt_nonseq = get_unaligned_le64(&identify_buf[32]); 2460 if ((opt_nonseq >> 63)) 2461 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq; 2462 max_open = get_unaligned_le64(&identify_buf[40]); 2463 if ((max_open >> 63)) 2464 dev->zac_zones_max_open = (u32)max_open; 2465 } 2466 } 2467 ata_dev_config_trusted(struct ata_device * dev)2468 static void ata_dev_config_trusted(struct ata_device *dev) 2469 { 2470 u64 trusted_cap; 2471 unsigned int err; 2472 2473 if (!ata_id_has_trusted(dev->id)) 2474 return; 2475 2476 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) { 2477 ata_dev_warn(dev, 2478 "Security Log not supported\n"); 2479 return; 2480 } 2481 2482 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY, 2483 dev->sector_buf, 1); 2484 if (err) 2485 return; 2486 2487 trusted_cap = get_unaligned_le64(&dev->sector_buf[40]); 2488 if (!(trusted_cap & (1ULL << 63))) { 2489 ata_dev_dbg(dev, 2490 "Trusted Computing capability qword not valid!\n"); 2491 return; 2492 } 2493 2494 if (trusted_cap & (1 << 0)) 2495 dev->flags |= ATA_DFLAG_TRUSTED; 2496 } 2497 ata_dev_cleanup_cdl_resources(struct ata_device * dev)2498 void ata_dev_cleanup_cdl_resources(struct ata_device *dev) 2499 { 2500 kfree(dev->cdl); 2501 dev->cdl = NULL; 2502 } 2503 ata_dev_init_cdl_resources(struct ata_device * dev)2504 static int ata_dev_init_cdl_resources(struct ata_device *dev) 2505 { 2506 struct ata_cdl *cdl = dev->cdl; 2507 unsigned int err_mask; 2508 2509 if (!cdl) { 2510 cdl = kzalloc(sizeof(*cdl), GFP_KERNEL); 2511 if (!cdl) 2512 return -ENOMEM; 2513 dev->cdl = cdl; 2514 } 2515 2516 err_mask = ata_read_log_page(dev, ATA_LOG_CDL, 0, cdl->desc_log_buf, 2517 ATA_LOG_CDL_SIZE / ATA_SECT_SIZE); 2518 if (err_mask) { 2519 ata_dev_warn(dev, "Read Command Duration Limits log failed\n"); 2520 ata_dev_cleanup_cdl_resources(dev); 2521 return -EIO; 2522 } 2523 2524 return 0; 2525 } 2526 ata_dev_config_cdl(struct ata_device * dev)2527 static void ata_dev_config_cdl(struct ata_device *dev) 2528 { 2529 unsigned int err_mask; 2530 bool cdl_enabled; 2531 u64 val; 2532 int ret; 2533 2534 if (ata_id_major_version(dev->id) < 11) 2535 goto not_supported; 2536 2537 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE) || 2538 !ata_identify_page_supported(dev, ATA_LOG_SUPPORTED_CAPABILITIES) || 2539 !ata_identify_page_supported(dev, ATA_LOG_CURRENT_SETTINGS)) 2540 goto not_supported; 2541 2542 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2543 ATA_LOG_SUPPORTED_CAPABILITIES, 2544 dev->sector_buf, 1); 2545 if (err_mask) 2546 goto not_supported; 2547 2548 /* Check Command Duration Limit Supported bits */ 2549 val = get_unaligned_le64(&dev->sector_buf[168]); 2550 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(0))) 2551 goto not_supported; 2552 2553 /* Warn the user if command duration guideline is not supported */ 2554 if (!(val & BIT_ULL(1))) 2555 ata_dev_warn(dev, 2556 "Command duration guideline is not supported\n"); 2557 2558 /* 2559 * We must have support for the sense data for successful NCQ commands 2560 * log indicated by the successful NCQ command sense data supported bit. 2561 */ 2562 val = get_unaligned_le64(&dev->sector_buf[8]); 2563 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(47))) { 2564 ata_dev_warn(dev, 2565 "CDL supported but Successful NCQ Command Sense Data is not supported\n"); 2566 goto not_supported; 2567 } 2568 2569 /* Without NCQ autosense, the successful NCQ commands log is useless. */ 2570 if (!ata_id_has_ncq_autosense(dev->id)) { 2571 ata_dev_warn(dev, 2572 "CDL supported but NCQ autosense is not supported\n"); 2573 goto not_supported; 2574 } 2575 2576 /* 2577 * If CDL is marked as enabled, make sure the feature is enabled too. 2578 * Conversely, if CDL is disabled, make sure the feature is turned off. 2579 */ 2580 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 2581 ATA_LOG_CURRENT_SETTINGS, 2582 dev->sector_buf, 1); 2583 if (err_mask) 2584 goto not_supported; 2585 2586 val = get_unaligned_le64(&dev->sector_buf[8]); 2587 cdl_enabled = val & BIT_ULL(63) && val & BIT_ULL(21); 2588 if (dev->flags & ATA_DFLAG_CDL_ENABLED) { 2589 if (!cdl_enabled) { 2590 /* Enable CDL on the device */ 2591 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 1); 2592 if (err_mask) { 2593 ata_dev_err(dev, 2594 "Enable CDL feature failed\n"); 2595 goto not_supported; 2596 } 2597 } 2598 } else { 2599 if (cdl_enabled) { 2600 /* Disable CDL on the device */ 2601 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 0); 2602 if (err_mask) { 2603 ata_dev_err(dev, 2604 "Disable CDL feature failed\n"); 2605 goto not_supported; 2606 } 2607 } 2608 } 2609 2610 /* 2611 * While CDL itself has to be enabled using sysfs, CDL requires that 2612 * sense data for successful NCQ commands is enabled to work properly. 2613 * Just like ata_dev_config_sense_reporting(), enable it unconditionally 2614 * if supported. 2615 */ 2616 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(18))) { 2617 err_mask = ata_dev_set_feature(dev, 2618 SETFEATURE_SENSE_DATA_SUCC_NCQ, 0x1); 2619 if (err_mask) { 2620 ata_dev_warn(dev, 2621 "failed to enable Sense Data for successful NCQ commands, Emask 0x%x\n", 2622 err_mask); 2623 goto not_supported; 2624 } 2625 } 2626 2627 /* CDL is supported: allocate and initialize needed resources. */ 2628 ret = ata_dev_init_cdl_resources(dev); 2629 if (ret) { 2630 ata_dev_warn(dev, "Initialize CDL resources failed\n"); 2631 goto not_supported; 2632 } 2633 2634 dev->flags |= ATA_DFLAG_CDL; 2635 2636 return; 2637 2638 not_supported: 2639 dev->flags &= ~(ATA_DFLAG_CDL | ATA_DFLAG_CDL_ENABLED); 2640 ata_dev_cleanup_cdl_resources(dev); 2641 } 2642 ata_dev_config_lba(struct ata_device * dev)2643 static int ata_dev_config_lba(struct ata_device *dev) 2644 { 2645 const u16 *id = dev->id; 2646 const char *lba_desc; 2647 char ncq_desc[32]; 2648 int ret; 2649 2650 dev->flags |= ATA_DFLAG_LBA; 2651 2652 if (ata_id_has_lba48(id)) { 2653 lba_desc = "LBA48"; 2654 dev->flags |= ATA_DFLAG_LBA48; 2655 if (dev->n_sectors >= (1UL << 28) && 2656 ata_id_has_flush_ext(id)) 2657 dev->flags |= ATA_DFLAG_FLUSH_EXT; 2658 } else { 2659 lba_desc = "LBA"; 2660 } 2661 2662 /* config NCQ */ 2663 ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc)); 2664 2665 /* print device info to dmesg */ 2666 if (ata_dev_print_info(dev)) 2667 ata_dev_info(dev, 2668 "%llu sectors, multi %u: %s %s\n", 2669 (unsigned long long)dev->n_sectors, 2670 dev->multi_count, lba_desc, ncq_desc); 2671 2672 return ret; 2673 } 2674 ata_dev_config_chs(struct ata_device * dev)2675 static void ata_dev_config_chs(struct ata_device *dev) 2676 { 2677 const u16 *id = dev->id; 2678 2679 if (ata_id_current_chs_valid(id)) { 2680 /* Current CHS translation is valid. */ 2681 dev->cylinders = id[54]; 2682 dev->heads = id[55]; 2683 dev->sectors = id[56]; 2684 } else { 2685 /* Default translation */ 2686 dev->cylinders = id[1]; 2687 dev->heads = id[3]; 2688 dev->sectors = id[6]; 2689 } 2690 2691 /* print device info to dmesg */ 2692 if (ata_dev_print_info(dev)) 2693 ata_dev_info(dev, 2694 "%llu sectors, multi %u, CHS %u/%u/%u\n", 2695 (unsigned long long)dev->n_sectors, 2696 dev->multi_count, dev->cylinders, 2697 dev->heads, dev->sectors); 2698 } 2699 ata_dev_config_fua(struct ata_device * dev)2700 static void ata_dev_config_fua(struct ata_device *dev) 2701 { 2702 /* Ignore FUA support if its use is disabled globally */ 2703 if (!libata_fua) 2704 goto nofua; 2705 2706 /* Ignore devices without support for WRITE DMA FUA EXT */ 2707 if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id)) 2708 goto nofua; 2709 2710 /* Ignore known bad devices and devices that lack NCQ support */ 2711 if (!ata_ncq_supported(dev) || (dev->quirks & ATA_QUIRK_NO_FUA)) 2712 goto nofua; 2713 2714 dev->flags |= ATA_DFLAG_FUA; 2715 2716 return; 2717 2718 nofua: 2719 dev->flags &= ~ATA_DFLAG_FUA; 2720 } 2721 ata_dev_config_devslp(struct ata_device * dev)2722 static void ata_dev_config_devslp(struct ata_device *dev) 2723 { 2724 u8 *sata_setting = dev->sector_buf; 2725 unsigned int err_mask; 2726 int i, j; 2727 2728 /* 2729 * Check device sleep capability. Get DevSlp timing variables 2730 * from SATA Settings page of Identify Device Data Log. 2731 */ 2732 if (!ata_id_has_devslp(dev->id) || 2733 !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS)) 2734 return; 2735 2736 err_mask = ata_read_log_page(dev, 2737 ATA_LOG_IDENTIFY_DEVICE, 2738 ATA_LOG_SATA_SETTINGS, 2739 sata_setting, 1); 2740 if (err_mask) 2741 return; 2742 2743 dev->flags |= ATA_DFLAG_DEVSLP; 2744 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) { 2745 j = ATA_LOG_DEVSLP_OFFSET + i; 2746 dev->devslp_timing[i] = sata_setting[j]; 2747 } 2748 } 2749 ata_dev_config_cpr(struct ata_device * dev)2750 static void ata_dev_config_cpr(struct ata_device *dev) 2751 { 2752 unsigned int err_mask; 2753 size_t buf_len; 2754 int i, nr_cpr = 0; 2755 struct ata_cpr_log *cpr_log = NULL; 2756 u8 *desc, *buf = NULL; 2757 2758 if (ata_id_major_version(dev->id) < 11) 2759 goto out; 2760 2761 buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES); 2762 if (buf_len == 0) 2763 goto out; 2764 2765 /* 2766 * Read the concurrent positioning ranges log (0x47). We can have at 2767 * most 255 32B range descriptors plus a 64B header. This log varies in 2768 * size, so use the size reported in the GPL directory. Reading beyond 2769 * the supported length will result in an error. 2770 */ 2771 buf_len <<= 9; 2772 buf = kzalloc(buf_len, GFP_KERNEL); 2773 if (!buf) 2774 goto out; 2775 2776 err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES, 2777 0, buf, buf_len >> 9); 2778 if (err_mask) 2779 goto out; 2780 2781 nr_cpr = buf[0]; 2782 if (!nr_cpr) 2783 goto out; 2784 2785 cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL); 2786 if (!cpr_log) 2787 goto out; 2788 2789 cpr_log->nr_cpr = nr_cpr; 2790 desc = &buf[64]; 2791 for (i = 0; i < nr_cpr; i++, desc += 32) { 2792 cpr_log->cpr[i].num = desc[0]; 2793 cpr_log->cpr[i].num_storage_elements = desc[1]; 2794 cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]); 2795 cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]); 2796 } 2797 2798 out: 2799 swap(dev->cpr_log, cpr_log); 2800 kfree(cpr_log); 2801 kfree(buf); 2802 } 2803 ata_dev_print_features(struct ata_device * dev)2804 static void ata_dev_print_features(struct ata_device *dev) 2805 { 2806 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK)) 2807 return; 2808 2809 ata_dev_info(dev, 2810 "Features:%s%s%s%s%s%s%s%s\n", 2811 dev->flags & ATA_DFLAG_FUA ? " FUA" : "", 2812 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "", 2813 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "", 2814 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "", 2815 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "", 2816 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "", 2817 dev->flags & ATA_DFLAG_CDL ? " CDL" : "", 2818 dev->cpr_log ? " CPR" : ""); 2819 } 2820 2821 /** 2822 * ata_dev_configure - Configure the specified ATA/ATAPI device 2823 * @dev: Target device to configure 2824 * 2825 * Configure @dev according to @dev->id. Generic and low-level 2826 * driver specific fixups are also applied. 2827 * 2828 * LOCKING: 2829 * Kernel thread context (may sleep) 2830 * 2831 * RETURNS: 2832 * 0 on success, -errno otherwise 2833 */ ata_dev_configure(struct ata_device * dev)2834 int ata_dev_configure(struct ata_device *dev) 2835 { 2836 struct ata_port *ap = dev->link->ap; 2837 bool print_info = ata_dev_print_info(dev); 2838 const u16 *id = dev->id; 2839 unsigned int xfer_mask; 2840 unsigned int err_mask; 2841 char revbuf[7]; /* XYZ-99\0 */ 2842 char fwrevbuf[ATA_ID_FW_REV_LEN+1]; 2843 char modelbuf[ATA_ID_PROD_LEN+1]; 2844 int rc; 2845 2846 if (!ata_dev_enabled(dev)) { 2847 ata_dev_dbg(dev, "no device\n"); 2848 return 0; 2849 } 2850 2851 /* Set quirks */ 2852 dev->quirks |= ata_dev_quirks(dev); 2853 ata_force_quirks(dev); 2854 2855 if (dev->quirks & ATA_QUIRK_DISABLE) { 2856 ata_dev_info(dev, "unsupported device, disabling\n"); 2857 ata_dev_disable(dev); 2858 return 0; 2859 } 2860 2861 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) && 2862 dev->class == ATA_DEV_ATAPI) { 2863 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n", 2864 atapi_enabled ? "not supported with this driver" 2865 : "disabled"); 2866 ata_dev_disable(dev); 2867 return 0; 2868 } 2869 2870 rc = ata_do_link_spd_quirk(dev); 2871 if (rc) 2872 return rc; 2873 2874 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */ 2875 if ((dev->quirks & ATA_QUIRK_WD_BROKEN_LPM) && 2876 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2) 2877 dev->quirks |= ATA_QUIRK_NOLPM; 2878 2879 if (dev->quirks & ATA_QUIRK_NO_LPM_ON_ATI && 2880 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) 2881 dev->quirks |= ATA_QUIRK_NOLPM; 2882 2883 if (ap->flags & ATA_FLAG_NO_LPM) 2884 dev->quirks |= ATA_QUIRK_NOLPM; 2885 2886 if (dev->quirks & ATA_QUIRK_NOLPM) { 2887 ata_dev_warn(dev, "LPM support broken, forcing max_power\n"); 2888 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER; 2889 } 2890 2891 /* let ACPI work its magic */ 2892 rc = ata_acpi_on_devcfg(dev); 2893 if (rc) 2894 return rc; 2895 2896 /* massage HPA, do it early as it might change IDENTIFY data */ 2897 rc = ata_hpa_resize(dev); 2898 if (rc) 2899 return rc; 2900 2901 /* print device capabilities */ 2902 ata_dev_dbg(dev, 2903 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x " 2904 "85:%04x 86:%04x 87:%04x 88:%04x\n", 2905 __func__, 2906 id[49], id[82], id[83], id[84], 2907 id[85], id[86], id[87], id[88]); 2908 2909 /* initialize to-be-configured parameters */ 2910 dev->flags &= ~ATA_DFLAG_CFG_MASK; 2911 dev->max_sectors = 0; 2912 dev->cdb_len = 0; 2913 dev->n_sectors = 0; 2914 dev->cylinders = 0; 2915 dev->heads = 0; 2916 dev->sectors = 0; 2917 dev->multi_count = 0; 2918 2919 /* 2920 * common ATA, ATAPI feature tests 2921 */ 2922 2923 /* find max transfer mode; for printk only */ 2924 xfer_mask = ata_id_xfermask(id); 2925 2926 ata_dump_id(dev, id); 2927 2928 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */ 2929 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV, 2930 sizeof(fwrevbuf)); 2931 2932 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD, 2933 sizeof(modelbuf)); 2934 2935 /* ATA-specific feature tests */ 2936 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) { 2937 if (ata_id_is_cfa(id)) { 2938 /* CPRM may make this media unusable */ 2939 if (id[ATA_ID_CFA_KEY_MGMT] & 1) 2940 ata_dev_warn(dev, 2941 "supports DRM functions and may not be fully accessible\n"); 2942 snprintf(revbuf, 7, "CFA"); 2943 } else { 2944 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id)); 2945 /* Warn the user if the device has TPM extensions */ 2946 if (ata_id_has_tpm(id)) 2947 ata_dev_warn(dev, 2948 "supports DRM functions and may not be fully accessible\n"); 2949 } 2950 2951 dev->n_sectors = ata_id_n_sectors(id); 2952 2953 /* get current R/W Multiple count setting */ 2954 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) { 2955 unsigned int max = dev->id[47] & 0xff; 2956 unsigned int cnt = dev->id[59] & 0xff; 2957 /* only recognize/allow powers of two here */ 2958 if (is_power_of_2(max) && is_power_of_2(cnt)) 2959 if (cnt <= max) 2960 dev->multi_count = cnt; 2961 } 2962 2963 /* print device info to dmesg */ 2964 if (print_info) 2965 ata_dev_info(dev, "%s: %s, %s, max %s\n", 2966 revbuf, modelbuf, fwrevbuf, 2967 ata_mode_string(xfer_mask)); 2968 2969 if (ata_id_has_lba(id)) { 2970 rc = ata_dev_config_lba(dev); 2971 if (rc) 2972 return rc; 2973 } else { 2974 ata_dev_config_chs(dev); 2975 } 2976 2977 ata_dev_config_fua(dev); 2978 ata_dev_config_devslp(dev); 2979 ata_dev_config_sense_reporting(dev); 2980 ata_dev_config_zac(dev); 2981 ata_dev_config_trusted(dev); 2982 ata_dev_config_cpr(dev); 2983 ata_dev_config_cdl(dev); 2984 dev->cdb_len = 32; 2985 2986 if (print_info) 2987 ata_dev_print_features(dev); 2988 } 2989 2990 /* ATAPI-specific feature tests */ 2991 else if (dev->class == ATA_DEV_ATAPI) { 2992 const char *cdb_intr_string = ""; 2993 const char *atapi_an_string = ""; 2994 const char *dma_dir_string = ""; 2995 u32 sntf; 2996 2997 rc = atapi_cdb_len(id); 2998 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { 2999 ata_dev_warn(dev, "unsupported CDB len %d\n", rc); 3000 rc = -EINVAL; 3001 goto err_out_nosup; 3002 } 3003 dev->cdb_len = (unsigned int) rc; 3004 3005 /* Enable ATAPI AN if both the host and device have 3006 * the support. If PMP is attached, SNTF is required 3007 * to enable ATAPI AN to discern between PHY status 3008 * changed notifications and ATAPI ANs. 3009 */ 3010 if (atapi_an && 3011 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) && 3012 (!sata_pmp_attached(ap) || 3013 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) { 3014 /* issue SET feature command to turn this on */ 3015 err_mask = ata_dev_set_feature(dev, 3016 SETFEATURES_SATA_ENABLE, SATA_AN); 3017 if (err_mask) 3018 ata_dev_err(dev, 3019 "failed to enable ATAPI AN (err_mask=0x%x)\n", 3020 err_mask); 3021 else { 3022 dev->flags |= ATA_DFLAG_AN; 3023 atapi_an_string = ", ATAPI AN"; 3024 } 3025 } 3026 3027 if (ata_id_cdb_intr(dev->id)) { 3028 dev->flags |= ATA_DFLAG_CDB_INTR; 3029 cdb_intr_string = ", CDB intr"; 3030 } 3031 3032 if (atapi_dmadir || (dev->quirks & ATA_QUIRK_ATAPI_DMADIR) || 3033 atapi_id_dmadir(dev->id)) { 3034 dev->flags |= ATA_DFLAG_DMADIR; 3035 dma_dir_string = ", DMADIR"; 3036 } 3037 3038 if (ata_id_has_da(dev->id)) { 3039 dev->flags |= ATA_DFLAG_DA; 3040 zpodd_init(dev); 3041 } 3042 3043 /* print device info to dmesg */ 3044 if (print_info) 3045 ata_dev_info(dev, 3046 "ATAPI: %s, %s, max %s%s%s%s\n", 3047 modelbuf, fwrevbuf, 3048 ata_mode_string(xfer_mask), 3049 cdb_intr_string, atapi_an_string, 3050 dma_dir_string); 3051 } 3052 3053 /* determine max_sectors */ 3054 dev->max_sectors = ATA_MAX_SECTORS; 3055 if (dev->flags & ATA_DFLAG_LBA48) 3056 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 3057 3058 /* Limit PATA drive on SATA cable bridge transfers to udma5, 3059 200 sectors */ 3060 if (ata_dev_knobble(dev)) { 3061 if (print_info) 3062 ata_dev_info(dev, "applying bridge limits\n"); 3063 dev->udma_mask &= ATA_UDMA5; 3064 dev->max_sectors = ATA_MAX_SECTORS; 3065 } 3066 3067 if ((dev->class == ATA_DEV_ATAPI) && 3068 (atapi_command_packet_set(id) == TYPE_TAPE)) { 3069 dev->max_sectors = ATA_MAX_SECTORS_TAPE; 3070 dev->quirks |= ATA_QUIRK_STUCK_ERR; 3071 } 3072 3073 if (dev->quirks & ATA_QUIRK_MAX_SEC_128) 3074 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128, 3075 dev->max_sectors); 3076 3077 if (dev->quirks & ATA_QUIRK_MAX_SEC_1024) 3078 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024, 3079 dev->max_sectors); 3080 3081 if (dev->quirks & ATA_QUIRK_MAX_SEC_LBA48) 3082 dev->max_sectors = ATA_MAX_SECTORS_LBA48; 3083 3084 if (ap->ops->dev_config) 3085 ap->ops->dev_config(dev); 3086 3087 if (dev->quirks & ATA_QUIRK_DIAGNOSTIC) { 3088 /* Let the user know. We don't want to disallow opens for 3089 rescue purposes, or in case the vendor is just a blithering 3090 idiot. Do this after the dev_config call as some controllers 3091 with buggy firmware may want to avoid reporting false device 3092 bugs */ 3093 3094 if (print_info) { 3095 ata_dev_warn(dev, 3096 "Drive reports diagnostics failure. This may indicate a drive\n"); 3097 ata_dev_warn(dev, 3098 "fault or invalid emulation. Contact drive vendor for information.\n"); 3099 } 3100 } 3101 3102 if ((dev->quirks & ATA_QUIRK_FIRMWARE_WARN) && print_info) { 3103 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n"); 3104 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n"); 3105 } 3106 3107 return 0; 3108 3109 err_out_nosup: 3110 return rc; 3111 } 3112 3113 /** 3114 * ata_cable_40wire - return 40 wire cable type 3115 * @ap: port 3116 * 3117 * Helper method for drivers which want to hardwire 40 wire cable 3118 * detection. 3119 */ 3120 ata_cable_40wire(struct ata_port * ap)3121 int ata_cable_40wire(struct ata_port *ap) 3122 { 3123 return ATA_CBL_PATA40; 3124 } 3125 EXPORT_SYMBOL_GPL(ata_cable_40wire); 3126 3127 /** 3128 * ata_cable_80wire - return 80 wire cable type 3129 * @ap: port 3130 * 3131 * Helper method for drivers which want to hardwire 80 wire cable 3132 * detection. 3133 */ 3134 ata_cable_80wire(struct ata_port * ap)3135 int ata_cable_80wire(struct ata_port *ap) 3136 { 3137 return ATA_CBL_PATA80; 3138 } 3139 EXPORT_SYMBOL_GPL(ata_cable_80wire); 3140 3141 /** 3142 * ata_cable_unknown - return unknown PATA cable. 3143 * @ap: port 3144 * 3145 * Helper method for drivers which have no PATA cable detection. 3146 */ 3147 ata_cable_unknown(struct ata_port * ap)3148 int ata_cable_unknown(struct ata_port *ap) 3149 { 3150 return ATA_CBL_PATA_UNK; 3151 } 3152 EXPORT_SYMBOL_GPL(ata_cable_unknown); 3153 3154 /** 3155 * ata_cable_ignore - return ignored PATA cable. 3156 * @ap: port 3157 * 3158 * Helper method for drivers which don't use cable type to limit 3159 * transfer mode. 3160 */ ata_cable_ignore(struct ata_port * ap)3161 int ata_cable_ignore(struct ata_port *ap) 3162 { 3163 return ATA_CBL_PATA_IGN; 3164 } 3165 EXPORT_SYMBOL_GPL(ata_cable_ignore); 3166 3167 /** 3168 * ata_cable_sata - return SATA cable type 3169 * @ap: port 3170 * 3171 * Helper method for drivers which have SATA cables 3172 */ 3173 ata_cable_sata(struct ata_port * ap)3174 int ata_cable_sata(struct ata_port *ap) 3175 { 3176 return ATA_CBL_SATA; 3177 } 3178 EXPORT_SYMBOL_GPL(ata_cable_sata); 3179 3180 /** 3181 * sata_print_link_status - Print SATA link status 3182 * @link: SATA link to printk link status about 3183 * 3184 * This function prints link speed and status of a SATA link. 3185 * 3186 * LOCKING: 3187 * None. 3188 */ sata_print_link_status(struct ata_link * link)3189 static void sata_print_link_status(struct ata_link *link) 3190 { 3191 u32 sstatus, scontrol, tmp; 3192 3193 if (sata_scr_read(link, SCR_STATUS, &sstatus)) 3194 return; 3195 if (sata_scr_read(link, SCR_CONTROL, &scontrol)) 3196 return; 3197 3198 if (ata_phys_link_online(link)) { 3199 tmp = (sstatus >> 4) & 0xf; 3200 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n", 3201 sata_spd_string(tmp), sstatus, scontrol); 3202 } else { 3203 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n", 3204 sstatus, scontrol); 3205 } 3206 } 3207 3208 /** 3209 * ata_dev_pair - return other device on cable 3210 * @adev: device 3211 * 3212 * Obtain the other device on the same cable, or if none is 3213 * present NULL is returned 3214 */ 3215 ata_dev_pair(struct ata_device * adev)3216 struct ata_device *ata_dev_pair(struct ata_device *adev) 3217 { 3218 struct ata_link *link = adev->link; 3219 struct ata_device *pair = &link->device[1 - adev->devno]; 3220 if (!ata_dev_enabled(pair)) 3221 return NULL; 3222 return pair; 3223 } 3224 EXPORT_SYMBOL_GPL(ata_dev_pair); 3225 3226 #ifdef CONFIG_ATA_ACPI 3227 /** 3228 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration 3229 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine. 3230 * @cycle: cycle duration in ns 3231 * 3232 * Return matching xfer mode for @cycle. The returned mode is of 3233 * the transfer type specified by @xfer_shift. If @cycle is too 3234 * slow for @xfer_shift, 0xff is returned. If @cycle is faster 3235 * than the fastest known mode, the fasted mode is returned. 3236 * 3237 * LOCKING: 3238 * None. 3239 * 3240 * RETURNS: 3241 * Matching xfer_mode, 0xff if no match found. 3242 */ ata_timing_cycle2mode(unsigned int xfer_shift,int cycle)3243 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle) 3244 { 3245 u8 base_mode = 0xff, last_mode = 0xff; 3246 const struct ata_xfer_ent *ent; 3247 const struct ata_timing *t; 3248 3249 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++) 3250 if (ent->shift == xfer_shift) 3251 base_mode = ent->base; 3252 3253 for (t = ata_timing_find_mode(base_mode); 3254 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) { 3255 unsigned short this_cycle; 3256 3257 switch (xfer_shift) { 3258 case ATA_SHIFT_PIO: 3259 case ATA_SHIFT_MWDMA: 3260 this_cycle = t->cycle; 3261 break; 3262 case ATA_SHIFT_UDMA: 3263 this_cycle = t->udma; 3264 break; 3265 default: 3266 return 0xff; 3267 } 3268 3269 if (cycle > this_cycle) 3270 break; 3271 3272 last_mode = t->mode; 3273 } 3274 3275 return last_mode; 3276 } 3277 #endif 3278 3279 /** 3280 * ata_down_xfermask_limit - adjust dev xfer masks downward 3281 * @dev: Device to adjust xfer masks 3282 * @sel: ATA_DNXFER_* selector 3283 * 3284 * Adjust xfer masks of @dev downward. Note that this function 3285 * does not apply the change. Invoking ata_set_mode() afterwards 3286 * will apply the limit. 3287 * 3288 * LOCKING: 3289 * Inherited from caller. 3290 * 3291 * RETURNS: 3292 * 0 on success, negative errno on failure 3293 */ ata_down_xfermask_limit(struct ata_device * dev,unsigned int sel)3294 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel) 3295 { 3296 char buf[32]; 3297 unsigned int orig_mask, xfer_mask; 3298 unsigned int pio_mask, mwdma_mask, udma_mask; 3299 int quiet, highbit; 3300 3301 quiet = !!(sel & ATA_DNXFER_QUIET); 3302 sel &= ~ATA_DNXFER_QUIET; 3303 3304 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask, 3305 dev->mwdma_mask, 3306 dev->udma_mask); 3307 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask); 3308 3309 switch (sel) { 3310 case ATA_DNXFER_PIO: 3311 highbit = fls(pio_mask) - 1; 3312 pio_mask &= ~(1 << highbit); 3313 break; 3314 3315 case ATA_DNXFER_DMA: 3316 if (udma_mask) { 3317 highbit = fls(udma_mask) - 1; 3318 udma_mask &= ~(1 << highbit); 3319 if (!udma_mask) 3320 return -ENOENT; 3321 } else if (mwdma_mask) { 3322 highbit = fls(mwdma_mask) - 1; 3323 mwdma_mask &= ~(1 << highbit); 3324 if (!mwdma_mask) 3325 return -ENOENT; 3326 } 3327 break; 3328 3329 case ATA_DNXFER_40C: 3330 udma_mask &= ATA_UDMA_MASK_40C; 3331 break; 3332 3333 case ATA_DNXFER_FORCE_PIO0: 3334 pio_mask &= 1; 3335 fallthrough; 3336 case ATA_DNXFER_FORCE_PIO: 3337 mwdma_mask = 0; 3338 udma_mask = 0; 3339 break; 3340 3341 default: 3342 BUG(); 3343 } 3344 3345 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask); 3346 3347 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask) 3348 return -ENOENT; 3349 3350 if (!quiet) { 3351 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA)) 3352 snprintf(buf, sizeof(buf), "%s:%s", 3353 ata_mode_string(xfer_mask), 3354 ata_mode_string(xfer_mask & ATA_MASK_PIO)); 3355 else 3356 snprintf(buf, sizeof(buf), "%s", 3357 ata_mode_string(xfer_mask)); 3358 3359 ata_dev_warn(dev, "limiting speed to %s\n", buf); 3360 } 3361 3362 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask, 3363 &dev->udma_mask); 3364 3365 return 0; 3366 } 3367 ata_dev_set_mode(struct ata_device * dev)3368 static int ata_dev_set_mode(struct ata_device *dev) 3369 { 3370 struct ata_port *ap = dev->link->ap; 3371 struct ata_eh_context *ehc = &dev->link->eh_context; 3372 const bool nosetxfer = dev->quirks & ATA_QUIRK_NOSETXFER; 3373 const char *dev_err_whine = ""; 3374 int ign_dev_err = 0; 3375 unsigned int err_mask = 0; 3376 int rc; 3377 3378 dev->flags &= ~ATA_DFLAG_PIO; 3379 if (dev->xfer_shift == ATA_SHIFT_PIO) 3380 dev->flags |= ATA_DFLAG_PIO; 3381 3382 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id)) 3383 dev_err_whine = " (SET_XFERMODE skipped)"; 3384 else { 3385 if (nosetxfer) 3386 ata_dev_warn(dev, 3387 "NOSETXFER but PATA detected - can't " 3388 "skip SETXFER, might malfunction\n"); 3389 err_mask = ata_dev_set_xfermode(dev); 3390 } 3391 3392 if (err_mask & ~AC_ERR_DEV) 3393 goto fail; 3394 3395 /* revalidate */ 3396 ehc->i.flags |= ATA_EHI_POST_SETMODE; 3397 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0); 3398 ehc->i.flags &= ~ATA_EHI_POST_SETMODE; 3399 if (rc) 3400 return rc; 3401 3402 if (dev->xfer_shift == ATA_SHIFT_PIO) { 3403 /* Old CFA may refuse this command, which is just fine */ 3404 if (ata_id_is_cfa(dev->id)) 3405 ign_dev_err = 1; 3406 /* Catch several broken garbage emulations plus some pre 3407 ATA devices */ 3408 if (ata_id_major_version(dev->id) == 0 && 3409 dev->pio_mode <= XFER_PIO_2) 3410 ign_dev_err = 1; 3411 /* Some very old devices and some bad newer ones fail 3412 any kind of SET_XFERMODE request but support PIO0-2 3413 timings and no IORDY */ 3414 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2) 3415 ign_dev_err = 1; 3416 } 3417 /* Early MWDMA devices do DMA but don't allow DMA mode setting. 3418 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */ 3419 if (dev->xfer_shift == ATA_SHIFT_MWDMA && 3420 dev->dma_mode == XFER_MW_DMA_0 && 3421 (dev->id[63] >> 8) & 1) 3422 ign_dev_err = 1; 3423 3424 /* if the device is actually configured correctly, ignore dev err */ 3425 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id))) 3426 ign_dev_err = 1; 3427 3428 if (err_mask & AC_ERR_DEV) { 3429 if (!ign_dev_err) 3430 goto fail; 3431 else 3432 dev_err_whine = " (device error ignored)"; 3433 } 3434 3435 ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n", 3436 dev->xfer_shift, (int)dev->xfer_mode); 3437 3438 if (!(ehc->i.flags & ATA_EHI_QUIET) || 3439 ehc->i.flags & ATA_EHI_DID_HARDRESET) 3440 ata_dev_info(dev, "configured for %s%s\n", 3441 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)), 3442 dev_err_whine); 3443 3444 return 0; 3445 3446 fail: 3447 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask); 3448 return -EIO; 3449 } 3450 3451 /** 3452 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER 3453 * @link: link on which timings will be programmed 3454 * @r_failed_dev: out parameter for failed device 3455 * 3456 * Standard implementation of the function used to tune and set 3457 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If 3458 * ata_dev_set_mode() fails, pointer to the failing device is 3459 * returned in @r_failed_dev. 3460 * 3461 * LOCKING: 3462 * PCI/etc. bus probe sem. 3463 * 3464 * RETURNS: 3465 * 0 on success, negative errno otherwise 3466 */ 3467 ata_do_set_mode(struct ata_link * link,struct ata_device ** r_failed_dev)3468 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev) 3469 { 3470 struct ata_port *ap = link->ap; 3471 struct ata_device *dev; 3472 int rc = 0, used_dma = 0, found = 0; 3473 3474 /* step 1: calculate xfer_mask */ 3475 ata_for_each_dev(dev, link, ENABLED) { 3476 unsigned int pio_mask, dma_mask; 3477 unsigned int mode_mask; 3478 3479 mode_mask = ATA_DMA_MASK_ATA; 3480 if (dev->class == ATA_DEV_ATAPI) 3481 mode_mask = ATA_DMA_MASK_ATAPI; 3482 else if (ata_id_is_cfa(dev->id)) 3483 mode_mask = ATA_DMA_MASK_CFA; 3484 3485 ata_dev_xfermask(dev); 3486 ata_force_xfermask(dev); 3487 3488 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0); 3489 3490 if (libata_dma_mask & mode_mask) 3491 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, 3492 dev->udma_mask); 3493 else 3494 dma_mask = 0; 3495 3496 dev->pio_mode = ata_xfer_mask2mode(pio_mask); 3497 dev->dma_mode = ata_xfer_mask2mode(dma_mask); 3498 3499 found = 1; 3500 if (ata_dma_enabled(dev)) 3501 used_dma = 1; 3502 } 3503 if (!found) 3504 goto out; 3505 3506 /* step 2: always set host PIO timings */ 3507 ata_for_each_dev(dev, link, ENABLED) { 3508 if (dev->pio_mode == 0xff) { 3509 ata_dev_warn(dev, "no PIO support\n"); 3510 rc = -EINVAL; 3511 goto out; 3512 } 3513 3514 dev->xfer_mode = dev->pio_mode; 3515 dev->xfer_shift = ATA_SHIFT_PIO; 3516 if (ap->ops->set_piomode) 3517 ap->ops->set_piomode(ap, dev); 3518 } 3519 3520 /* step 3: set host DMA timings */ 3521 ata_for_each_dev(dev, link, ENABLED) { 3522 if (!ata_dma_enabled(dev)) 3523 continue; 3524 3525 dev->xfer_mode = dev->dma_mode; 3526 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode); 3527 if (ap->ops->set_dmamode) 3528 ap->ops->set_dmamode(ap, dev); 3529 } 3530 3531 /* step 4: update devices' xfer mode */ 3532 ata_for_each_dev(dev, link, ENABLED) { 3533 rc = ata_dev_set_mode(dev); 3534 if (rc) 3535 goto out; 3536 } 3537 3538 /* Record simplex status. If we selected DMA then the other 3539 * host channels are not permitted to do so. 3540 */ 3541 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX)) 3542 ap->host->simplex_claimed = ap; 3543 3544 out: 3545 if (rc) 3546 *r_failed_dev = dev; 3547 return rc; 3548 } 3549 EXPORT_SYMBOL_GPL(ata_do_set_mode); 3550 3551 /** 3552 * ata_wait_ready - wait for link to become ready 3553 * @link: link to be waited on 3554 * @deadline: deadline jiffies for the operation 3555 * @check_ready: callback to check link readiness 3556 * 3557 * Wait for @link to become ready. @check_ready should return 3558 * positive number if @link is ready, 0 if it isn't, -ENODEV if 3559 * link doesn't seem to be occupied, other errno for other error 3560 * conditions. 3561 * 3562 * Transient -ENODEV conditions are allowed for 3563 * ATA_TMOUT_FF_WAIT. 3564 * 3565 * LOCKING: 3566 * EH context. 3567 * 3568 * RETURNS: 3569 * 0 if @link is ready before @deadline; otherwise, -errno. 3570 */ ata_wait_ready(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3571 int ata_wait_ready(struct ata_link *link, unsigned long deadline, 3572 int (*check_ready)(struct ata_link *link)) 3573 { 3574 unsigned long start = jiffies; 3575 unsigned long nodev_deadline; 3576 int warned = 0; 3577 3578 /* choose which 0xff timeout to use, read comment in libata.h */ 3579 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN) 3580 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG); 3581 else 3582 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT); 3583 3584 /* Slave readiness can't be tested separately from master. On 3585 * M/S emulation configuration, this function should be called 3586 * only on the master and it will handle both master and slave. 3587 */ 3588 WARN_ON(link == link->ap->slave_link); 3589 3590 if (time_after(nodev_deadline, deadline)) 3591 nodev_deadline = deadline; 3592 3593 while (1) { 3594 unsigned long now = jiffies; 3595 int ready, tmp; 3596 3597 ready = tmp = check_ready(link); 3598 if (ready > 0) 3599 return 0; 3600 3601 /* 3602 * -ENODEV could be transient. Ignore -ENODEV if link 3603 * is online. Also, some SATA devices take a long 3604 * time to clear 0xff after reset. Wait for 3605 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't 3606 * offline. 3607 * 3608 * Note that some PATA controllers (pata_ali) explode 3609 * if status register is read more than once when 3610 * there's no device attached. 3611 */ 3612 if (ready == -ENODEV) { 3613 if (ata_link_online(link)) 3614 ready = 0; 3615 else if ((link->ap->flags & ATA_FLAG_SATA) && 3616 !ata_link_offline(link) && 3617 time_before(now, nodev_deadline)) 3618 ready = 0; 3619 } 3620 3621 if (ready) 3622 return ready; 3623 if (time_after(now, deadline)) 3624 return -EBUSY; 3625 3626 if (!warned && time_after(now, start + 5 * HZ) && 3627 (deadline - now > 3 * HZ)) { 3628 ata_link_warn(link, 3629 "link is slow to respond, please be patient " 3630 "(ready=%d)\n", tmp); 3631 warned = 1; 3632 } 3633 3634 ata_msleep(link->ap, 50); 3635 } 3636 } 3637 3638 /** 3639 * ata_wait_after_reset - wait for link to become ready after reset 3640 * @link: link to be waited on 3641 * @deadline: deadline jiffies for the operation 3642 * @check_ready: callback to check link readiness 3643 * 3644 * Wait for @link to become ready after reset. 3645 * 3646 * LOCKING: 3647 * EH context. 3648 * 3649 * RETURNS: 3650 * 0 if @link is ready before @deadline; otherwise, -errno. 3651 */ ata_wait_after_reset(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3652 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline, 3653 int (*check_ready)(struct ata_link *link)) 3654 { 3655 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET); 3656 3657 return ata_wait_ready(link, deadline, check_ready); 3658 } 3659 EXPORT_SYMBOL_GPL(ata_wait_after_reset); 3660 3661 /** 3662 * ata_std_prereset - prepare for reset 3663 * @link: ATA link to be reset 3664 * @deadline: deadline jiffies for the operation 3665 * 3666 * @link is about to be reset. Initialize it. Failure from 3667 * prereset makes libata abort whole reset sequence and give up 3668 * that port, so prereset should be best-effort. It does its 3669 * best to prepare for reset sequence but if things go wrong, it 3670 * should just whine, not fail. 3671 * 3672 * LOCKING: 3673 * Kernel thread context (may sleep) 3674 * 3675 * RETURNS: 3676 * Always 0. 3677 */ ata_std_prereset(struct ata_link * link,unsigned long deadline)3678 int ata_std_prereset(struct ata_link *link, unsigned long deadline) 3679 { 3680 struct ata_port *ap = link->ap; 3681 struct ata_eh_context *ehc = &link->eh_context; 3682 const unsigned int *timing = sata_ehc_deb_timing(ehc); 3683 int rc; 3684 3685 /* if we're about to do hardreset, nothing more to do */ 3686 if (ehc->i.action & ATA_EH_HARDRESET) 3687 return 0; 3688 3689 /* if SATA, resume link */ 3690 if (ap->flags & ATA_FLAG_SATA) { 3691 rc = sata_link_resume(link, timing, deadline); 3692 /* whine about phy resume failure but proceed */ 3693 if (rc && rc != -EOPNOTSUPP) 3694 ata_link_warn(link, 3695 "failed to resume link for reset (errno=%d)\n", 3696 rc); 3697 } 3698 3699 /* no point in trying softreset on offline link */ 3700 if (ata_phys_link_offline(link)) 3701 ehc->i.action &= ~ATA_EH_SOFTRESET; 3702 3703 return 0; 3704 } 3705 EXPORT_SYMBOL_GPL(ata_std_prereset); 3706 3707 /** 3708 * ata_std_postreset - standard postreset callback 3709 * @link: the target ata_link 3710 * @classes: classes of attached devices 3711 * 3712 * This function is invoked after a successful reset. Note that 3713 * the device might have been reset more than once using 3714 * different reset methods before postreset is invoked. 3715 * 3716 * LOCKING: 3717 * Kernel thread context (may sleep) 3718 */ ata_std_postreset(struct ata_link * link,unsigned int * classes)3719 void ata_std_postreset(struct ata_link *link, unsigned int *classes) 3720 { 3721 u32 serror; 3722 3723 /* reset complete, clear SError */ 3724 if (!sata_scr_read(link, SCR_ERROR, &serror)) 3725 sata_scr_write(link, SCR_ERROR, serror); 3726 3727 /* print link status */ 3728 sata_print_link_status(link); 3729 } 3730 EXPORT_SYMBOL_GPL(ata_std_postreset); 3731 3732 /** 3733 * ata_dev_same_device - Determine whether new ID matches configured device 3734 * @dev: device to compare against 3735 * @new_class: class of the new device 3736 * @new_id: IDENTIFY page of the new device 3737 * 3738 * Compare @new_class and @new_id against @dev and determine 3739 * whether @dev is the device indicated by @new_class and 3740 * @new_id. 3741 * 3742 * LOCKING: 3743 * None. 3744 * 3745 * RETURNS: 3746 * 1 if @dev matches @new_class and @new_id, 0 otherwise. 3747 */ ata_dev_same_device(struct ata_device * dev,unsigned int new_class,const u16 * new_id)3748 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class, 3749 const u16 *new_id) 3750 { 3751 const u16 *old_id = dev->id; 3752 unsigned char model[2][ATA_ID_PROD_LEN + 1]; 3753 unsigned char serial[2][ATA_ID_SERNO_LEN + 1]; 3754 3755 if (dev->class != new_class) { 3756 ata_dev_info(dev, "class mismatch %d != %d\n", 3757 dev->class, new_class); 3758 return 0; 3759 } 3760 3761 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0])); 3762 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1])); 3763 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0])); 3764 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1])); 3765 3766 if (strcmp(model[0], model[1])) { 3767 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n", 3768 model[0], model[1]); 3769 return 0; 3770 } 3771 3772 if (strcmp(serial[0], serial[1])) { 3773 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n", 3774 serial[0], serial[1]); 3775 return 0; 3776 } 3777 3778 return 1; 3779 } 3780 3781 /** 3782 * ata_dev_reread_id - Re-read IDENTIFY data 3783 * @dev: target ATA device 3784 * @readid_flags: read ID flags 3785 * 3786 * Re-read IDENTIFY page and make sure @dev is still attached to 3787 * the port. 3788 * 3789 * LOCKING: 3790 * Kernel thread context (may sleep) 3791 * 3792 * RETURNS: 3793 * 0 on success, negative errno otherwise 3794 */ ata_dev_reread_id(struct ata_device * dev,unsigned int readid_flags)3795 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags) 3796 { 3797 unsigned int class = dev->class; 3798 u16 *id = (void *)dev->sector_buf; 3799 int rc; 3800 3801 /* read ID data */ 3802 rc = ata_dev_read_id(dev, &class, readid_flags, id); 3803 if (rc) 3804 return rc; 3805 3806 /* is the device still there? */ 3807 if (!ata_dev_same_device(dev, class, id)) 3808 return -ENODEV; 3809 3810 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS); 3811 return 0; 3812 } 3813 3814 /** 3815 * ata_dev_revalidate - Revalidate ATA device 3816 * @dev: device to revalidate 3817 * @new_class: new class code 3818 * @readid_flags: read ID flags 3819 * 3820 * Re-read IDENTIFY page, make sure @dev is still attached to the 3821 * port and reconfigure it according to the new IDENTIFY page. 3822 * 3823 * LOCKING: 3824 * Kernel thread context (may sleep) 3825 * 3826 * RETURNS: 3827 * 0 on success, negative errno otherwise 3828 */ ata_dev_revalidate(struct ata_device * dev,unsigned int new_class,unsigned int readid_flags)3829 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class, 3830 unsigned int readid_flags) 3831 { 3832 u64 n_sectors = dev->n_sectors; 3833 u64 n_native_sectors = dev->n_native_sectors; 3834 int rc; 3835 3836 if (!ata_dev_enabled(dev)) 3837 return -ENODEV; 3838 3839 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */ 3840 if (ata_class_enabled(new_class) && new_class == ATA_DEV_PMP) { 3841 ata_dev_info(dev, "class mismatch %u != %u\n", 3842 dev->class, new_class); 3843 rc = -ENODEV; 3844 goto fail; 3845 } 3846 3847 /* re-read ID */ 3848 rc = ata_dev_reread_id(dev, readid_flags); 3849 if (rc) 3850 goto fail; 3851 3852 /* configure device according to the new ID */ 3853 rc = ata_dev_configure(dev); 3854 if (rc) 3855 goto fail; 3856 3857 /* verify n_sectors hasn't changed */ 3858 if (dev->class != ATA_DEV_ATA || !n_sectors || 3859 dev->n_sectors == n_sectors) 3860 return 0; 3861 3862 /* n_sectors has changed */ 3863 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n", 3864 (unsigned long long)n_sectors, 3865 (unsigned long long)dev->n_sectors); 3866 3867 /* 3868 * Something could have caused HPA to be unlocked 3869 * involuntarily. If n_native_sectors hasn't changed and the 3870 * new size matches it, keep the device. 3871 */ 3872 if (dev->n_native_sectors == n_native_sectors && 3873 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) { 3874 ata_dev_warn(dev, 3875 "new n_sectors matches native, probably " 3876 "late HPA unlock, n_sectors updated\n"); 3877 /* use the larger n_sectors */ 3878 return 0; 3879 } 3880 3881 /* 3882 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try 3883 * unlocking HPA in those cases. 3884 * 3885 * https://bugzilla.kernel.org/show_bug.cgi?id=15396 3886 */ 3887 if (dev->n_native_sectors == n_native_sectors && 3888 dev->n_sectors < n_sectors && n_sectors == n_native_sectors && 3889 !(dev->quirks & ATA_QUIRK_BROKEN_HPA)) { 3890 ata_dev_warn(dev, 3891 "old n_sectors matches native, probably " 3892 "late HPA lock, will try to unlock HPA\n"); 3893 /* try unlocking HPA */ 3894 dev->flags |= ATA_DFLAG_UNLOCK_HPA; 3895 rc = -EIO; 3896 } else 3897 rc = -ENODEV; 3898 3899 /* restore original n_[native_]sectors and fail */ 3900 dev->n_native_sectors = n_native_sectors; 3901 dev->n_sectors = n_sectors; 3902 fail: 3903 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc); 3904 return rc; 3905 } 3906 3907 static const char * const ata_quirk_names[] = { 3908 [__ATA_QUIRK_DIAGNOSTIC] = "diagnostic", 3909 [__ATA_QUIRK_NODMA] = "nodma", 3910 [__ATA_QUIRK_NONCQ] = "noncq", 3911 [__ATA_QUIRK_MAX_SEC_128] = "maxsec128", 3912 [__ATA_QUIRK_BROKEN_HPA] = "brokenhpa", 3913 [__ATA_QUIRK_DISABLE] = "disable", 3914 [__ATA_QUIRK_HPA_SIZE] = "hpasize", 3915 [__ATA_QUIRK_IVB] = "ivb", 3916 [__ATA_QUIRK_STUCK_ERR] = "stuckerr", 3917 [__ATA_QUIRK_BRIDGE_OK] = "bridgeok", 3918 [__ATA_QUIRK_ATAPI_MOD16_DMA] = "atapimod16dma", 3919 [__ATA_QUIRK_FIRMWARE_WARN] = "firmwarewarn", 3920 [__ATA_QUIRK_1_5_GBPS] = "1.5gbps", 3921 [__ATA_QUIRK_NOSETXFER] = "nosetxfer", 3922 [__ATA_QUIRK_BROKEN_FPDMA_AA] = "brokenfpdmaaa", 3923 [__ATA_QUIRK_DUMP_ID] = "dumpid", 3924 [__ATA_QUIRK_MAX_SEC_LBA48] = "maxseclba48", 3925 [__ATA_QUIRK_ATAPI_DMADIR] = "atapidmadir", 3926 [__ATA_QUIRK_NO_NCQ_TRIM] = "noncqtrim", 3927 [__ATA_QUIRK_NOLPM] = "nolpm", 3928 [__ATA_QUIRK_WD_BROKEN_LPM] = "wdbrokenlpm", 3929 [__ATA_QUIRK_ZERO_AFTER_TRIM] = "zeroaftertrim", 3930 [__ATA_QUIRK_NO_DMA_LOG] = "nodmalog", 3931 [__ATA_QUIRK_NOTRIM] = "notrim", 3932 [__ATA_QUIRK_MAX_SEC_1024] = "maxsec1024", 3933 [__ATA_QUIRK_MAX_TRIM_128M] = "maxtrim128m", 3934 [__ATA_QUIRK_NO_NCQ_ON_ATI] = "noncqonati", 3935 [__ATA_QUIRK_NO_LPM_ON_ATI] = "nolpmonati", 3936 [__ATA_QUIRK_NO_ID_DEV_LOG] = "noiddevlog", 3937 [__ATA_QUIRK_NO_LOG_DIR] = "nologdir", 3938 [__ATA_QUIRK_NO_FUA] = "nofua", 3939 }; 3940 ata_dev_print_quirks(const struct ata_device * dev,const char * model,const char * rev,unsigned int quirks)3941 static void ata_dev_print_quirks(const struct ata_device *dev, 3942 const char *model, const char *rev, 3943 unsigned int quirks) 3944 { 3945 struct ata_eh_context *ehc = &dev->link->eh_context; 3946 int n = 0, i; 3947 size_t sz; 3948 char *str; 3949 3950 if (!ata_dev_print_info(dev) || ehc->i.flags & ATA_EHI_DID_PRINT_QUIRKS) 3951 return; 3952 3953 ehc->i.flags |= ATA_EHI_DID_PRINT_QUIRKS; 3954 3955 if (!quirks) 3956 return; 3957 3958 sz = 64 + ARRAY_SIZE(ata_quirk_names) * 16; 3959 str = kmalloc(sz, GFP_KERNEL); 3960 if (!str) 3961 return; 3962 3963 n = snprintf(str, sz, "Model '%s', rev '%s', applying quirks:", 3964 model, rev); 3965 3966 for (i = 0; i < ARRAY_SIZE(ata_quirk_names); i++) { 3967 if (quirks & (1U << i)) 3968 n += snprintf(str + n, sz - n, 3969 " %s", ata_quirk_names[i]); 3970 } 3971 3972 ata_dev_warn(dev, "%s\n", str); 3973 3974 kfree(str); 3975 } 3976 3977 struct ata_dev_quirks_entry { 3978 const char *model_num; 3979 const char *model_rev; 3980 unsigned int quirks; 3981 }; 3982 3983 static const struct ata_dev_quirks_entry __ata_dev_quirks[] = { 3984 /* Devices with DMA related problems under Linux */ 3985 { "WDC AC11000H", NULL, ATA_QUIRK_NODMA }, 3986 { "WDC AC22100H", NULL, ATA_QUIRK_NODMA }, 3987 { "WDC AC32500H", NULL, ATA_QUIRK_NODMA }, 3988 { "WDC AC33100H", NULL, ATA_QUIRK_NODMA }, 3989 { "WDC AC31600H", NULL, ATA_QUIRK_NODMA }, 3990 { "WDC AC32100H", "24.09P07", ATA_QUIRK_NODMA }, 3991 { "WDC AC23200L", "21.10N21", ATA_QUIRK_NODMA }, 3992 { "Compaq CRD-8241B", NULL, ATA_QUIRK_NODMA }, 3993 { "CRD-8400B", NULL, ATA_QUIRK_NODMA }, 3994 { "CRD-848[02]B", NULL, ATA_QUIRK_NODMA }, 3995 { "CRD-84", NULL, ATA_QUIRK_NODMA }, 3996 { "SanDisk SDP3B", NULL, ATA_QUIRK_NODMA }, 3997 { "SanDisk SDP3B-64", NULL, ATA_QUIRK_NODMA }, 3998 { "SANYO CD-ROM CRD", NULL, ATA_QUIRK_NODMA }, 3999 { "HITACHI CDR-8", NULL, ATA_QUIRK_NODMA }, 4000 { "HITACHI CDR-8[34]35", NULL, ATA_QUIRK_NODMA }, 4001 { "Toshiba CD-ROM XM-6202B", NULL, ATA_QUIRK_NODMA }, 4002 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_QUIRK_NODMA }, 4003 { "CD-532E-A", NULL, ATA_QUIRK_NODMA }, 4004 { "E-IDE CD-ROM CR-840", NULL, ATA_QUIRK_NODMA }, 4005 { "CD-ROM Drive/F5A", NULL, ATA_QUIRK_NODMA }, 4006 { "WPI CDD-820", NULL, ATA_QUIRK_NODMA }, 4007 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_QUIRK_NODMA }, 4008 { "SAMSUNG CD-ROM SC", NULL, ATA_QUIRK_NODMA }, 4009 { "ATAPI CD-ROM DRIVE 40X MAXIMUM", NULL, ATA_QUIRK_NODMA }, 4010 { "_NEC DV5800A", NULL, ATA_QUIRK_NODMA }, 4011 { "SAMSUNG CD-ROM SN-124", "N001", ATA_QUIRK_NODMA }, 4012 { "Seagate STT20000A", NULL, ATA_QUIRK_NODMA }, 4013 { " 2GB ATA Flash Disk", "ADMA428M", ATA_QUIRK_NODMA }, 4014 { "VRFDFC22048UCHC-TE*", NULL, ATA_QUIRK_NODMA }, 4015 /* Odd clown on sil3726/4726 PMPs */ 4016 { "Config Disk", NULL, ATA_QUIRK_DISABLE }, 4017 /* Similar story with ASMedia 1092 */ 4018 { "ASMT109x- Config", NULL, ATA_QUIRK_DISABLE }, 4019 4020 /* Weird ATAPI devices */ 4021 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_QUIRK_MAX_SEC_128 }, 4022 { "QUANTUM DAT DAT72-000", NULL, ATA_QUIRK_ATAPI_MOD16_DMA }, 4023 { "Slimtype DVD A DS8A8SH", NULL, ATA_QUIRK_MAX_SEC_LBA48 }, 4024 { "Slimtype DVD A DS8A9SH", NULL, ATA_QUIRK_MAX_SEC_LBA48 }, 4025 4026 /* 4027 * Causes silent data corruption with higher max sects. 4028 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com 4029 */ 4030 { "ST380013AS", "3.20", ATA_QUIRK_MAX_SEC_1024 }, 4031 4032 /* 4033 * These devices time out with higher max sects. 4034 * https://bugzilla.kernel.org/show_bug.cgi?id=121671 4035 */ 4036 { "LITEON CX1-JB*-HP", NULL, ATA_QUIRK_MAX_SEC_1024 }, 4037 { "LITEON EP1-*", NULL, ATA_QUIRK_MAX_SEC_1024 }, 4038 4039 /* Devices we expect to fail diagnostics */ 4040 4041 /* Devices where NCQ should be avoided */ 4042 /* NCQ is slow */ 4043 { "WDC WD740ADFD-00", NULL, ATA_QUIRK_NONCQ }, 4044 { "WDC WD740ADFD-00NLR1", NULL, ATA_QUIRK_NONCQ }, 4045 /* http://thread.gmane.org/gmane.linux.ide/14907 */ 4046 { "FUJITSU MHT2060BH", NULL, ATA_QUIRK_NONCQ }, 4047 /* NCQ is broken */ 4048 { "Maxtor *", "BANC*", ATA_QUIRK_NONCQ }, 4049 { "Maxtor 7V300F0", "VA111630", ATA_QUIRK_NONCQ }, 4050 { "ST380817AS", "3.42", ATA_QUIRK_NONCQ }, 4051 { "ST3160023AS", "3.42", ATA_QUIRK_NONCQ }, 4052 { "OCZ CORE_SSD", "02.10104", ATA_QUIRK_NONCQ }, 4053 4054 /* Seagate NCQ + FLUSH CACHE firmware bug */ 4055 { "ST31500341AS", "SD1[5-9]", ATA_QUIRK_NONCQ | 4056 ATA_QUIRK_FIRMWARE_WARN }, 4057 4058 { "ST31000333AS", "SD1[5-9]", ATA_QUIRK_NONCQ | 4059 ATA_QUIRK_FIRMWARE_WARN }, 4060 4061 { "ST3640[36]23AS", "SD1[5-9]", ATA_QUIRK_NONCQ | 4062 ATA_QUIRK_FIRMWARE_WARN }, 4063 4064 { "ST3320[68]13AS", "SD1[5-9]", ATA_QUIRK_NONCQ | 4065 ATA_QUIRK_FIRMWARE_WARN }, 4066 4067 /* drives which fail FPDMA_AA activation (some may freeze afterwards) 4068 the ST disks also have LPM issues */ 4069 { "ST1000LM024 HN-M101MBB", NULL, ATA_QUIRK_BROKEN_FPDMA_AA | 4070 ATA_QUIRK_NOLPM }, 4071 { "VB0250EAVER", "HPG7", ATA_QUIRK_BROKEN_FPDMA_AA }, 4072 4073 /* Blacklist entries taken from Silicon Image 3124/3132 4074 Windows driver .inf file - also several Linux problem reports */ 4075 { "HTS541060G9SA00", "MB3OC60D", ATA_QUIRK_NONCQ }, 4076 { "HTS541080G9SA00", "MB4OC60D", ATA_QUIRK_NONCQ }, 4077 { "HTS541010G9SA00", "MBZOC60D", ATA_QUIRK_NONCQ }, 4078 4079 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */ 4080 { "C300-CTFDDAC128MAG", "0001", ATA_QUIRK_NONCQ }, 4081 4082 /* Sandisk SD7/8/9s lock up hard on large trims */ 4083 { "SanDisk SD[789]*", NULL, ATA_QUIRK_MAX_TRIM_128M }, 4084 4085 /* devices which puke on READ_NATIVE_MAX */ 4086 { "HDS724040KLSA80", "KFAOA20N", ATA_QUIRK_BROKEN_HPA }, 4087 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_QUIRK_BROKEN_HPA }, 4088 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_QUIRK_BROKEN_HPA }, 4089 { "MAXTOR 6L080L4", "A93.0500", ATA_QUIRK_BROKEN_HPA }, 4090 4091 /* this one allows HPA unlocking but fails IOs on the area */ 4092 { "OCZ-VERTEX", "1.30", ATA_QUIRK_BROKEN_HPA }, 4093 4094 /* Devices which report 1 sector over size HPA */ 4095 { "ST340823A", NULL, ATA_QUIRK_HPA_SIZE }, 4096 { "ST320413A", NULL, ATA_QUIRK_HPA_SIZE }, 4097 { "ST310211A", NULL, ATA_QUIRK_HPA_SIZE }, 4098 4099 /* Devices which get the IVB wrong */ 4100 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_QUIRK_IVB }, 4101 /* Maybe we should just add all TSSTcorp devices... */ 4102 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_QUIRK_IVB }, 4103 4104 /* Devices that do not need bridging limits applied */ 4105 { "MTRON MSP-SATA*", NULL, ATA_QUIRK_BRIDGE_OK }, 4106 { "BUFFALO HD-QSU2/R5", NULL, ATA_QUIRK_BRIDGE_OK }, 4107 4108 /* Devices which aren't very happy with higher link speeds */ 4109 { "WD My Book", NULL, ATA_QUIRK_1_5_GBPS }, 4110 { "Seagate FreeAgent GoFlex", NULL, ATA_QUIRK_1_5_GBPS }, 4111 4112 /* 4113 * Devices which choke on SETXFER. Applies only if both the 4114 * device and controller are SATA. 4115 */ 4116 { "PIONEER DVD-RW DVRTD08", NULL, ATA_QUIRK_NOSETXFER }, 4117 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_QUIRK_NOSETXFER }, 4118 { "PIONEER DVD-RW DVR-215", NULL, ATA_QUIRK_NOSETXFER }, 4119 { "PIONEER DVD-RW DVR-212D", NULL, ATA_QUIRK_NOSETXFER }, 4120 { "PIONEER DVD-RW DVR-216D", NULL, ATA_QUIRK_NOSETXFER }, 4121 4122 /* These specific Pioneer models have LPM issues */ 4123 { "PIONEER BD-RW BDR-207M", NULL, ATA_QUIRK_NOLPM }, 4124 { "PIONEER BD-RW BDR-205", NULL, ATA_QUIRK_NOLPM }, 4125 4126 /* Crucial devices with broken LPM support */ 4127 { "CT*0BX*00SSD1", NULL, ATA_QUIRK_NOLPM }, 4128 4129 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */ 4130 { "Crucial_CT512MX100*", "MU01", ATA_QUIRK_NO_NCQ_TRIM | 4131 ATA_QUIRK_ZERO_AFTER_TRIM | 4132 ATA_QUIRK_NOLPM }, 4133 /* 512GB MX100 with newer firmware has only LPM issues */ 4134 { "Crucial_CT512MX100*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM | 4135 ATA_QUIRK_NOLPM }, 4136 4137 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */ 4138 { "Crucial_CT480M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4139 ATA_QUIRK_ZERO_AFTER_TRIM | 4140 ATA_QUIRK_NOLPM }, 4141 { "Crucial_CT960M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4142 ATA_QUIRK_ZERO_AFTER_TRIM | 4143 ATA_QUIRK_NOLPM }, 4144 4145 /* AMD Radeon devices with broken LPM support */ 4146 { "R3SL240G", NULL, ATA_QUIRK_NOLPM }, 4147 4148 /* Apacer models with LPM issues */ 4149 { "Apacer AS340*", NULL, ATA_QUIRK_NOLPM }, 4150 4151 /* These specific Samsung models/firmware-revs do not handle LPM well */ 4152 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_QUIRK_NOLPM }, 4153 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_QUIRK_NOLPM }, 4154 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_QUIRK_NOLPM }, 4155 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_QUIRK_NOLPM }, 4156 4157 /* devices that don't properly handle queued TRIM commands */ 4158 { "Micron_M500IT_*", "MU01", ATA_QUIRK_NO_NCQ_TRIM | 4159 ATA_QUIRK_ZERO_AFTER_TRIM }, 4160 { "Micron_M500_*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4161 ATA_QUIRK_ZERO_AFTER_TRIM }, 4162 { "Micron_M5[15]0_*", "MU01", ATA_QUIRK_NO_NCQ_TRIM | 4163 ATA_QUIRK_ZERO_AFTER_TRIM }, 4164 { "Micron_1100_*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4165 ATA_QUIRK_ZERO_AFTER_TRIM, }, 4166 { "Crucial_CT*M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4167 ATA_QUIRK_ZERO_AFTER_TRIM }, 4168 { "Crucial_CT*M550*", "MU01", ATA_QUIRK_NO_NCQ_TRIM | 4169 ATA_QUIRK_ZERO_AFTER_TRIM }, 4170 { "Crucial_CT*MX100*", "MU01", ATA_QUIRK_NO_NCQ_TRIM | 4171 ATA_QUIRK_ZERO_AFTER_TRIM }, 4172 { "Samsung SSD 840 EVO*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4173 ATA_QUIRK_NO_DMA_LOG | 4174 ATA_QUIRK_ZERO_AFTER_TRIM }, 4175 { "Samsung SSD 840*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4176 ATA_QUIRK_ZERO_AFTER_TRIM }, 4177 { "Samsung SSD 850*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4178 ATA_QUIRK_ZERO_AFTER_TRIM }, 4179 { "Samsung SSD 860*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4180 ATA_QUIRK_ZERO_AFTER_TRIM | 4181 ATA_QUIRK_NO_NCQ_ON_ATI | 4182 ATA_QUIRK_NO_LPM_ON_ATI }, 4183 { "Samsung SSD 870*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4184 ATA_QUIRK_ZERO_AFTER_TRIM | 4185 ATA_QUIRK_NO_NCQ_ON_ATI | 4186 ATA_QUIRK_NO_LPM_ON_ATI }, 4187 { "SAMSUNG*MZ7LH*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4188 ATA_QUIRK_ZERO_AFTER_TRIM | 4189 ATA_QUIRK_NO_NCQ_ON_ATI | 4190 ATA_QUIRK_NO_LPM_ON_ATI }, 4191 { "FCCT*M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM | 4192 ATA_QUIRK_ZERO_AFTER_TRIM }, 4193 4194 /* devices that don't properly handle TRIM commands */ 4195 { "SuperSSpeed S238*", NULL, ATA_QUIRK_NOTRIM }, 4196 { "M88V29*", NULL, ATA_QUIRK_NOTRIM }, 4197 4198 /* 4199 * As defined, the DRAT (Deterministic Read After Trim) and RZAT 4200 * (Return Zero After Trim) flags in the ATA Command Set are 4201 * unreliable in the sense that they only define what happens if 4202 * the device successfully executed the DSM TRIM command. TRIM 4203 * is only advisory, however, and the device is free to silently 4204 * ignore all or parts of the request. 4205 * 4206 * Whitelist drives that are known to reliably return zeroes 4207 * after TRIM. 4208 */ 4209 4210 /* 4211 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude 4212 * that model before whitelisting all other intel SSDs. 4213 */ 4214 { "INTEL*SSDSC2MH*", NULL, 0 }, 4215 4216 { "Micron*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4217 { "Crucial*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4218 { "INTEL*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4219 { "SSD*INTEL*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4220 { "Samsung*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4221 { "SAMSUNG*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4222 { "SAMSUNG*MZ7KM*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4223 { "ST[1248][0248]0[FH]*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM }, 4224 4225 /* 4226 * Some WD SATA-I drives spin up and down erratically when the link 4227 * is put into the slumber mode. We don't have full list of the 4228 * affected devices. Disable LPM if the device matches one of the 4229 * known prefixes and is SATA-1. As a side effect LPM partial is 4230 * lost too. 4231 * 4232 * https://bugzilla.kernel.org/show_bug.cgi?id=57211 4233 */ 4234 { "WDC WD800JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM }, 4235 { "WDC WD1200JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM }, 4236 { "WDC WD1600JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM }, 4237 { "WDC WD2000JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM }, 4238 { "WDC WD2500JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM }, 4239 { "WDC WD3000JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM }, 4240 { "WDC WD3200JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM }, 4241 4242 /* 4243 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY 4244 * log page is accessed. Ensure we never ask for this log page with 4245 * these devices. 4246 */ 4247 { "SATADOM-ML 3ME", NULL, ATA_QUIRK_NO_LOG_DIR }, 4248 4249 /* Buggy FUA */ 4250 { "Maxtor", "BANC1G10", ATA_QUIRK_NO_FUA }, 4251 { "WDC*WD2500J*", NULL, ATA_QUIRK_NO_FUA }, 4252 { "OCZ-VERTEX*", NULL, ATA_QUIRK_NO_FUA }, 4253 { "INTEL*SSDSC2CT*", NULL, ATA_QUIRK_NO_FUA }, 4254 4255 /* End Marker */ 4256 { } 4257 }; 4258 ata_dev_quirks(const struct ata_device * dev)4259 static unsigned int ata_dev_quirks(const struct ata_device *dev) 4260 { 4261 unsigned char model_num[ATA_ID_PROD_LEN + 1]; 4262 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1]; 4263 const struct ata_dev_quirks_entry *ad = __ata_dev_quirks; 4264 4265 /* dev->quirks is an unsigned int. */ 4266 BUILD_BUG_ON(__ATA_QUIRK_MAX > 32); 4267 4268 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num)); 4269 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev)); 4270 4271 while (ad->model_num) { 4272 if (glob_match(ad->model_num, model_num) && 4273 (!ad->model_rev || glob_match(ad->model_rev, model_rev))) { 4274 ata_dev_print_quirks(dev, model_num, model_rev, 4275 ad->quirks); 4276 return ad->quirks; 4277 } 4278 ad++; 4279 } 4280 return 0; 4281 } 4282 ata_dev_nodma(const struct ata_device * dev)4283 static bool ata_dev_nodma(const struct ata_device *dev) 4284 { 4285 /* 4286 * We do not support polling DMA. Deny DMA for those ATAPI devices 4287 * with CDB-intr (and use PIO) if the LLDD handles only interrupts in 4288 * the HSM_ST_LAST state. 4289 */ 4290 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) && 4291 (dev->flags & ATA_DFLAG_CDB_INTR)) 4292 return true; 4293 return dev->quirks & ATA_QUIRK_NODMA; 4294 } 4295 4296 /** 4297 * ata_is_40wire - check drive side detection 4298 * @dev: device 4299 * 4300 * Perform drive side detection decoding, allowing for device vendors 4301 * who can't follow the documentation. 4302 */ 4303 ata_is_40wire(struct ata_device * dev)4304 static int ata_is_40wire(struct ata_device *dev) 4305 { 4306 if (dev->quirks & ATA_QUIRK_IVB) 4307 return ata_drive_40wire_relaxed(dev->id); 4308 return ata_drive_40wire(dev->id); 4309 } 4310 4311 /** 4312 * cable_is_40wire - 40/80/SATA decider 4313 * @ap: port to consider 4314 * 4315 * This function encapsulates the policy for speed management 4316 * in one place. At the moment we don't cache the result but 4317 * there is a good case for setting ap->cbl to the result when 4318 * we are called with unknown cables (and figuring out if it 4319 * impacts hotplug at all). 4320 * 4321 * Return 1 if the cable appears to be 40 wire. 4322 */ 4323 cable_is_40wire(struct ata_port * ap)4324 static int cable_is_40wire(struct ata_port *ap) 4325 { 4326 struct ata_link *link; 4327 struct ata_device *dev; 4328 4329 /* If the controller thinks we are 40 wire, we are. */ 4330 if (ap->cbl == ATA_CBL_PATA40) 4331 return 1; 4332 4333 /* If the controller thinks we are 80 wire, we are. */ 4334 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA) 4335 return 0; 4336 4337 /* If the system is known to be 40 wire short cable (eg 4338 * laptop), then we allow 80 wire modes even if the drive 4339 * isn't sure. 4340 */ 4341 if (ap->cbl == ATA_CBL_PATA40_SHORT) 4342 return 0; 4343 4344 /* If the controller doesn't know, we scan. 4345 * 4346 * Note: We look for all 40 wire detects at this point. Any 4347 * 80 wire detect is taken to be 80 wire cable because 4348 * - in many setups only the one drive (slave if present) will 4349 * give a valid detect 4350 * - if you have a non detect capable drive you don't want it 4351 * to colour the choice 4352 */ 4353 ata_for_each_link(link, ap, EDGE) { 4354 ata_for_each_dev(dev, link, ENABLED) { 4355 if (!ata_is_40wire(dev)) 4356 return 0; 4357 } 4358 } 4359 return 1; 4360 } 4361 4362 /** 4363 * ata_dev_xfermask - Compute supported xfermask of the given device 4364 * @dev: Device to compute xfermask for 4365 * 4366 * Compute supported xfermask of @dev and store it in 4367 * dev->*_mask. This function is responsible for applying all 4368 * known limits including host controller limits, device quirks, etc... 4369 * 4370 * LOCKING: 4371 * None. 4372 */ ata_dev_xfermask(struct ata_device * dev)4373 static void ata_dev_xfermask(struct ata_device *dev) 4374 { 4375 struct ata_link *link = dev->link; 4376 struct ata_port *ap = link->ap; 4377 struct ata_host *host = ap->host; 4378 unsigned int xfer_mask; 4379 4380 /* controller modes available */ 4381 xfer_mask = ata_pack_xfermask(ap->pio_mask, 4382 ap->mwdma_mask, ap->udma_mask); 4383 4384 /* drive modes available */ 4385 xfer_mask &= ata_pack_xfermask(dev->pio_mask, 4386 dev->mwdma_mask, dev->udma_mask); 4387 xfer_mask &= ata_id_xfermask(dev->id); 4388 4389 /* 4390 * CFA Advanced TrueIDE timings are not allowed on a shared 4391 * cable 4392 */ 4393 if (ata_dev_pair(dev)) { 4394 /* No PIO5 or PIO6 */ 4395 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5)); 4396 /* No MWDMA3 or MWDMA 4 */ 4397 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3)); 4398 } 4399 4400 if (ata_dev_nodma(dev)) { 4401 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4402 ata_dev_warn(dev, 4403 "device does not support DMA, disabling DMA\n"); 4404 } 4405 4406 if ((host->flags & ATA_HOST_SIMPLEX) && 4407 host->simplex_claimed && host->simplex_claimed != ap) { 4408 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); 4409 ata_dev_warn(dev, 4410 "simplex DMA is claimed by other device, disabling DMA\n"); 4411 } 4412 4413 if (ap->flags & ATA_FLAG_NO_IORDY) 4414 xfer_mask &= ata_pio_mask_no_iordy(dev); 4415 4416 if (ap->ops->mode_filter) 4417 xfer_mask = ap->ops->mode_filter(dev, xfer_mask); 4418 4419 /* Apply cable rule here. Don't apply it early because when 4420 * we handle hot plug the cable type can itself change. 4421 * Check this last so that we know if the transfer rate was 4422 * solely limited by the cable. 4423 * Unknown or 80 wire cables reported host side are checked 4424 * drive side as well. Cases where we know a 40wire cable 4425 * is used safely for 80 are not checked here. 4426 */ 4427 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA)) 4428 /* UDMA/44 or higher would be available */ 4429 if (cable_is_40wire(ap)) { 4430 ata_dev_warn(dev, 4431 "limited to UDMA/33 due to 40-wire cable\n"); 4432 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA); 4433 } 4434 4435 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, 4436 &dev->mwdma_mask, &dev->udma_mask); 4437 } 4438 4439 /** 4440 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command 4441 * @dev: Device to which command will be sent 4442 * 4443 * Issue SET FEATURES - XFER MODE command to device @dev 4444 * on port @ap. 4445 * 4446 * LOCKING: 4447 * PCI/etc. bus probe sem. 4448 * 4449 * RETURNS: 4450 * 0 on success, AC_ERR_* mask otherwise. 4451 */ 4452 ata_dev_set_xfermode(struct ata_device * dev)4453 static unsigned int ata_dev_set_xfermode(struct ata_device *dev) 4454 { 4455 struct ata_taskfile tf; 4456 4457 /* set up set-features taskfile */ 4458 ata_dev_dbg(dev, "set features - xfer mode\n"); 4459 4460 /* Some controllers and ATAPI devices show flaky interrupt 4461 * behavior after setting xfer mode. Use polling instead. 4462 */ 4463 ata_tf_init(dev, &tf); 4464 tf.command = ATA_CMD_SET_FEATURES; 4465 tf.feature = SETFEATURES_XFER; 4466 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING; 4467 tf.protocol = ATA_PROT_NODATA; 4468 /* If we are using IORDY we must send the mode setting command */ 4469 if (ata_pio_need_iordy(dev)) 4470 tf.nsect = dev->xfer_mode; 4471 /* If the device has IORDY and the controller does not - turn it off */ 4472 else if (ata_id_has_iordy(dev->id)) 4473 tf.nsect = 0x01; 4474 else /* In the ancient relic department - skip all of this */ 4475 return 0; 4476 4477 /* 4478 * On some disks, this command causes spin-up, so we need longer 4479 * timeout. 4480 */ 4481 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000); 4482 } 4483 4484 /** 4485 * ata_dev_set_feature - Issue SET FEATURES 4486 * @dev: Device to which command will be sent 4487 * @subcmd: The SET FEATURES subcommand to be sent 4488 * @action: The sector count represents a subcommand specific action 4489 * 4490 * Issue SET FEATURES command to device @dev on port @ap with sector count 4491 * 4492 * LOCKING: 4493 * PCI/etc. bus probe sem. 4494 * 4495 * RETURNS: 4496 * 0 on success, AC_ERR_* mask otherwise. 4497 */ ata_dev_set_feature(struct ata_device * dev,u8 subcmd,u8 action)4498 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action) 4499 { 4500 struct ata_taskfile tf; 4501 unsigned int timeout = 0; 4502 4503 /* set up set-features taskfile */ 4504 ata_dev_dbg(dev, "set features\n"); 4505 4506 ata_tf_init(dev, &tf); 4507 tf.command = ATA_CMD_SET_FEATURES; 4508 tf.feature = subcmd; 4509 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4510 tf.protocol = ATA_PROT_NODATA; 4511 tf.nsect = action; 4512 4513 if (subcmd == SETFEATURES_SPINUP) 4514 timeout = ata_probe_timeout ? 4515 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT; 4516 4517 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout); 4518 } 4519 EXPORT_SYMBOL_GPL(ata_dev_set_feature); 4520 4521 /** 4522 * ata_dev_init_params - Issue INIT DEV PARAMS command 4523 * @dev: Device to which command will be sent 4524 * @heads: Number of heads (taskfile parameter) 4525 * @sectors: Number of sectors (taskfile parameter) 4526 * 4527 * LOCKING: 4528 * Kernel thread context (may sleep) 4529 * 4530 * RETURNS: 4531 * 0 on success, AC_ERR_* mask otherwise. 4532 */ ata_dev_init_params(struct ata_device * dev,u16 heads,u16 sectors)4533 static unsigned int ata_dev_init_params(struct ata_device *dev, 4534 u16 heads, u16 sectors) 4535 { 4536 struct ata_taskfile tf; 4537 unsigned int err_mask; 4538 4539 /* Number of sectors per track 1-255. Number of heads 1-16 */ 4540 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) 4541 return AC_ERR_INVALID; 4542 4543 /* set up init dev params taskfile */ 4544 ata_dev_dbg(dev, "init dev params \n"); 4545 4546 ata_tf_init(dev, &tf); 4547 tf.command = ATA_CMD_INIT_DEV_PARAMS; 4548 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; 4549 tf.protocol = ATA_PROT_NODATA; 4550 tf.nsect = sectors; 4551 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ 4552 4553 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0); 4554 /* A clean abort indicates an original or just out of spec drive 4555 and we should continue as we issue the setup based on the 4556 drive reported working geometry */ 4557 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED)) 4558 err_mask = 0; 4559 4560 return err_mask; 4561 } 4562 4563 /** 4564 * atapi_check_dma - Check whether ATAPI DMA can be supported 4565 * @qc: Metadata associated with taskfile to check 4566 * 4567 * Allow low-level driver to filter ATA PACKET commands, returning 4568 * a status indicating whether or not it is OK to use DMA for the 4569 * supplied PACKET command. 4570 * 4571 * LOCKING: 4572 * spin_lock_irqsave(host lock) 4573 * 4574 * RETURNS: 0 when ATAPI DMA can be used 4575 * nonzero otherwise 4576 */ atapi_check_dma(struct ata_queued_cmd * qc)4577 int atapi_check_dma(struct ata_queued_cmd *qc) 4578 { 4579 struct ata_port *ap = qc->ap; 4580 4581 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a 4582 * few ATAPI devices choke on such DMA requests. 4583 */ 4584 if (!(qc->dev->quirks & ATA_QUIRK_ATAPI_MOD16_DMA) && 4585 unlikely(qc->nbytes & 15)) 4586 return -EOPNOTSUPP; 4587 4588 if (ap->ops->check_atapi_dma) 4589 return ap->ops->check_atapi_dma(qc); 4590 4591 return 0; 4592 } 4593 4594 /** 4595 * ata_std_qc_defer - Check whether a qc needs to be deferred 4596 * @qc: ATA command in question 4597 * 4598 * Non-NCQ commands cannot run with any other command, NCQ or 4599 * not. As upper layer only knows the queue depth, we are 4600 * responsible for maintaining exclusion. This function checks 4601 * whether a new command @qc can be issued. 4602 * 4603 * LOCKING: 4604 * spin_lock_irqsave(host lock) 4605 * 4606 * RETURNS: 4607 * ATA_DEFER_* if deferring is needed, 0 otherwise. 4608 */ ata_std_qc_defer(struct ata_queued_cmd * qc)4609 int ata_std_qc_defer(struct ata_queued_cmd *qc) 4610 { 4611 struct ata_link *link = qc->dev->link; 4612 4613 if (ata_is_ncq(qc->tf.protocol)) { 4614 if (!ata_tag_valid(link->active_tag)) 4615 return 0; 4616 } else { 4617 if (!ata_tag_valid(link->active_tag) && !link->sactive) 4618 return 0; 4619 } 4620 4621 return ATA_DEFER_LINK; 4622 } 4623 EXPORT_SYMBOL_GPL(ata_std_qc_defer); 4624 4625 /** 4626 * ata_sg_init - Associate command with scatter-gather table. 4627 * @qc: Command to be associated 4628 * @sg: Scatter-gather table. 4629 * @n_elem: Number of elements in s/g table. 4630 * 4631 * Initialize the data-related elements of queued_cmd @qc 4632 * to point to a scatter-gather table @sg, containing @n_elem 4633 * elements. 4634 * 4635 * LOCKING: 4636 * spin_lock_irqsave(host lock) 4637 */ ata_sg_init(struct ata_queued_cmd * qc,struct scatterlist * sg,unsigned int n_elem)4638 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, 4639 unsigned int n_elem) 4640 { 4641 qc->sg = sg; 4642 qc->n_elem = n_elem; 4643 qc->cursg = qc->sg; 4644 } 4645 4646 #ifdef CONFIG_HAS_DMA 4647 4648 /** 4649 * ata_sg_clean - Unmap DMA memory associated with command 4650 * @qc: Command containing DMA memory to be released 4651 * 4652 * Unmap all mapped DMA memory associated with this command. 4653 * 4654 * LOCKING: 4655 * spin_lock_irqsave(host lock) 4656 */ ata_sg_clean(struct ata_queued_cmd * qc)4657 static void ata_sg_clean(struct ata_queued_cmd *qc) 4658 { 4659 struct ata_port *ap = qc->ap; 4660 struct scatterlist *sg = qc->sg; 4661 int dir = qc->dma_dir; 4662 4663 WARN_ON_ONCE(sg == NULL); 4664 4665 if (qc->n_elem) 4666 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir); 4667 4668 qc->flags &= ~ATA_QCFLAG_DMAMAP; 4669 qc->sg = NULL; 4670 } 4671 4672 /** 4673 * ata_sg_setup - DMA-map the scatter-gather table associated with a command. 4674 * @qc: Command with scatter-gather table to be mapped. 4675 * 4676 * DMA-map the scatter-gather table associated with queued_cmd @qc. 4677 * 4678 * LOCKING: 4679 * spin_lock_irqsave(host lock) 4680 * 4681 * RETURNS: 4682 * Zero on success, negative on error. 4683 * 4684 */ ata_sg_setup(struct ata_queued_cmd * qc)4685 static int ata_sg_setup(struct ata_queued_cmd *qc) 4686 { 4687 struct ata_port *ap = qc->ap; 4688 unsigned int n_elem; 4689 4690 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir); 4691 if (n_elem < 1) 4692 return -1; 4693 4694 qc->orig_n_elem = qc->n_elem; 4695 qc->n_elem = n_elem; 4696 qc->flags |= ATA_QCFLAG_DMAMAP; 4697 4698 return 0; 4699 } 4700 4701 #else /* !CONFIG_HAS_DMA */ 4702 ata_sg_clean(struct ata_queued_cmd * qc)4703 static inline void ata_sg_clean(struct ata_queued_cmd *qc) {} ata_sg_setup(struct ata_queued_cmd * qc)4704 static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; } 4705 4706 #endif /* !CONFIG_HAS_DMA */ 4707 4708 /** 4709 * swap_buf_le16 - swap halves of 16-bit words in place 4710 * @buf: Buffer to swap 4711 * @buf_words: Number of 16-bit words in buffer. 4712 * 4713 * Swap halves of 16-bit words if needed to convert from 4714 * little-endian byte order to native cpu byte order, or 4715 * vice-versa. 4716 * 4717 * LOCKING: 4718 * Inherited from caller. 4719 */ swap_buf_le16(u16 * buf,unsigned int buf_words)4720 void swap_buf_le16(u16 *buf, unsigned int buf_words) 4721 { 4722 #ifdef __BIG_ENDIAN 4723 unsigned int i; 4724 4725 for (i = 0; i < buf_words; i++) 4726 buf[i] = le16_to_cpu(buf[i]); 4727 #endif /* __BIG_ENDIAN */ 4728 } 4729 4730 /** 4731 * ata_qc_free - free unused ata_queued_cmd 4732 * @qc: Command to complete 4733 * 4734 * Designed to free unused ata_queued_cmd object 4735 * in case something prevents using it. 4736 * 4737 * LOCKING: 4738 * spin_lock_irqsave(host lock) 4739 */ ata_qc_free(struct ata_queued_cmd * qc)4740 void ata_qc_free(struct ata_queued_cmd *qc) 4741 { 4742 qc->flags = 0; 4743 if (ata_tag_valid(qc->tag)) 4744 qc->tag = ATA_TAG_POISON; 4745 } 4746 __ata_qc_complete(struct ata_queued_cmd * qc)4747 void __ata_qc_complete(struct ata_queued_cmd *qc) 4748 { 4749 struct ata_port *ap; 4750 struct ata_link *link; 4751 4752 if (WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE))) 4753 return; 4754 4755 ap = qc->ap; 4756 link = qc->dev->link; 4757 4758 if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) 4759 ata_sg_clean(qc); 4760 4761 /* command should be marked inactive atomically with qc completion */ 4762 if (ata_is_ncq(qc->tf.protocol)) { 4763 link->sactive &= ~(1 << qc->hw_tag); 4764 if (!link->sactive) 4765 ap->nr_active_links--; 4766 } else { 4767 link->active_tag = ATA_TAG_POISON; 4768 ap->nr_active_links--; 4769 } 4770 4771 /* clear exclusive status */ 4772 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL && 4773 ap->excl_link == link)) 4774 ap->excl_link = NULL; 4775 4776 /* 4777 * Mark qc as inactive to prevent the port interrupt handler from 4778 * completing the command twice later, before the error handler is 4779 * called. 4780 */ 4781 qc->flags &= ~ATA_QCFLAG_ACTIVE; 4782 ap->qc_active &= ~(1ULL << qc->tag); 4783 4784 /* call completion callback */ 4785 qc->complete_fn(qc); 4786 } 4787 fill_result_tf(struct ata_queued_cmd * qc)4788 static void fill_result_tf(struct ata_queued_cmd *qc) 4789 { 4790 struct ata_port *ap = qc->ap; 4791 4792 /* 4793 * rtf may already be filled (e.g. for successful NCQ commands). 4794 * If that is the case, we have nothing to do. 4795 */ 4796 if (qc->flags & ATA_QCFLAG_RTF_FILLED) 4797 return; 4798 4799 qc->result_tf.flags = qc->tf.flags; 4800 ap->ops->qc_fill_rtf(qc); 4801 qc->flags |= ATA_QCFLAG_RTF_FILLED; 4802 } 4803 ata_verify_xfer(struct ata_queued_cmd * qc)4804 static void ata_verify_xfer(struct ata_queued_cmd *qc) 4805 { 4806 struct ata_device *dev = qc->dev; 4807 4808 if (!ata_is_data(qc->tf.protocol)) 4809 return; 4810 4811 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol)) 4812 return; 4813 4814 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER; 4815 } 4816 4817 /** 4818 * ata_qc_complete - Complete an active ATA command 4819 * @qc: Command to complete 4820 * 4821 * Indicate to the mid and upper layers that an ATA command has 4822 * completed, with either an ok or not-ok status. 4823 * 4824 * Refrain from calling this function multiple times when 4825 * successfully completing multiple NCQ commands. 4826 * ata_qc_complete_multiple() should be used instead, which will 4827 * properly update IRQ expect state. 4828 * 4829 * LOCKING: 4830 * spin_lock_irqsave(host lock) 4831 */ ata_qc_complete(struct ata_queued_cmd * qc)4832 void ata_qc_complete(struct ata_queued_cmd *qc) 4833 { 4834 struct ata_port *ap = qc->ap; 4835 struct ata_device *dev = qc->dev; 4836 struct ata_eh_info *ehi = &dev->link->eh_info; 4837 4838 /* Trigger the LED (if available) */ 4839 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE)); 4840 4841 /* 4842 * In order to synchronize EH with the regular execution path, a qc that 4843 * is owned by EH is marked with ATA_QCFLAG_EH. 4844 * 4845 * The normal execution path is responsible for not accessing a qc owned 4846 * by EH. libata core enforces the rule by returning NULL from 4847 * ata_qc_from_tag() for qcs owned by EH. 4848 */ 4849 if (unlikely(qc->err_mask)) 4850 qc->flags |= ATA_QCFLAG_EH; 4851 4852 /* 4853 * Finish internal commands without any further processing and always 4854 * with the result TF filled. 4855 */ 4856 if (unlikely(ata_tag_internal(qc->tag))) { 4857 fill_result_tf(qc); 4858 trace_ata_qc_complete_internal(qc); 4859 __ata_qc_complete(qc); 4860 return; 4861 } 4862 4863 /* Non-internal qc has failed. Fill the result TF and summon EH. */ 4864 if (unlikely(qc->flags & ATA_QCFLAG_EH)) { 4865 fill_result_tf(qc); 4866 trace_ata_qc_complete_failed(qc); 4867 ata_qc_schedule_eh(qc); 4868 return; 4869 } 4870 4871 WARN_ON_ONCE(ata_port_is_frozen(ap)); 4872 4873 /* read result TF if requested */ 4874 if (qc->flags & ATA_QCFLAG_RESULT_TF) 4875 fill_result_tf(qc); 4876 4877 trace_ata_qc_complete_done(qc); 4878 4879 /* 4880 * For CDL commands that completed without an error, check if we have 4881 * sense data (ATA_SENSE is set). If we do, then the command may have 4882 * been aborted by the device due to a limit timeout using the policy 4883 * 0xD. For these commands, invoke EH to get the command sense data. 4884 */ 4885 if (qc->flags & ATA_QCFLAG_HAS_CDL && 4886 qc->result_tf.status & ATA_SENSE) { 4887 /* 4888 * Tell SCSI EH to not overwrite scmd->result even if this 4889 * command is finished with result SAM_STAT_GOOD. 4890 */ 4891 qc->scsicmd->flags |= SCMD_FORCE_EH_SUCCESS; 4892 qc->flags |= ATA_QCFLAG_EH_SUCCESS_CMD; 4893 ehi->dev_action[dev->devno] |= ATA_EH_GET_SUCCESS_SENSE; 4894 4895 /* 4896 * set pending so that ata_qc_schedule_eh() does not trigger 4897 * fast drain, and freeze the port. 4898 */ 4899 ap->pflags |= ATA_PFLAG_EH_PENDING; 4900 ata_qc_schedule_eh(qc); 4901 return; 4902 } 4903 4904 /* Some commands need post-processing after successful completion. */ 4905 switch (qc->tf.command) { 4906 case ATA_CMD_SET_FEATURES: 4907 if (qc->tf.feature != SETFEATURES_WC_ON && 4908 qc->tf.feature != SETFEATURES_WC_OFF && 4909 qc->tf.feature != SETFEATURES_RA_ON && 4910 qc->tf.feature != SETFEATURES_RA_OFF) 4911 break; 4912 fallthrough; 4913 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */ 4914 case ATA_CMD_SET_MULTI: /* multi_count changed */ 4915 /* revalidate device */ 4916 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE; 4917 ata_port_schedule_eh(ap); 4918 break; 4919 4920 case ATA_CMD_SLEEP: 4921 dev->flags |= ATA_DFLAG_SLEEPING; 4922 break; 4923 } 4924 4925 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER)) 4926 ata_verify_xfer(qc); 4927 4928 __ata_qc_complete(qc); 4929 } 4930 EXPORT_SYMBOL_GPL(ata_qc_complete); 4931 4932 /** 4933 * ata_qc_get_active - get bitmask of active qcs 4934 * @ap: port in question 4935 * 4936 * LOCKING: 4937 * spin_lock_irqsave(host lock) 4938 * 4939 * RETURNS: 4940 * Bitmask of active qcs 4941 */ ata_qc_get_active(struct ata_port * ap)4942 u64 ata_qc_get_active(struct ata_port *ap) 4943 { 4944 u64 qc_active = ap->qc_active; 4945 4946 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */ 4947 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) { 4948 qc_active |= (1 << 0); 4949 qc_active &= ~(1ULL << ATA_TAG_INTERNAL); 4950 } 4951 4952 return qc_active; 4953 } 4954 EXPORT_SYMBOL_GPL(ata_qc_get_active); 4955 4956 /** 4957 * ata_qc_issue - issue taskfile to device 4958 * @qc: command to issue to device 4959 * 4960 * Prepare an ATA command to submission to device. 4961 * This includes mapping the data into a DMA-able 4962 * area, filling in the S/G table, and finally 4963 * writing the taskfile to hardware, starting the command. 4964 * 4965 * LOCKING: 4966 * spin_lock_irqsave(host lock) 4967 */ ata_qc_issue(struct ata_queued_cmd * qc)4968 void ata_qc_issue(struct ata_queued_cmd *qc) 4969 { 4970 struct ata_port *ap = qc->ap; 4971 struct ata_link *link = qc->dev->link; 4972 u8 prot = qc->tf.protocol; 4973 4974 /* Make sure only one non-NCQ command is outstanding. */ 4975 WARN_ON_ONCE(ata_tag_valid(link->active_tag)); 4976 4977 if (ata_is_ncq(prot)) { 4978 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag)); 4979 4980 if (!link->sactive) 4981 ap->nr_active_links++; 4982 link->sactive |= 1 << qc->hw_tag; 4983 } else { 4984 WARN_ON_ONCE(link->sactive); 4985 4986 ap->nr_active_links++; 4987 link->active_tag = qc->tag; 4988 } 4989 4990 qc->flags |= ATA_QCFLAG_ACTIVE; 4991 ap->qc_active |= 1ULL << qc->tag; 4992 4993 /* 4994 * We guarantee to LLDs that they will have at least one 4995 * non-zero sg if the command is a data command. 4996 */ 4997 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes)) 4998 goto sys_err; 4999 5000 if (ata_is_dma(prot) || (ata_is_pio(prot) && 5001 (ap->flags & ATA_FLAG_PIO_DMA))) 5002 if (ata_sg_setup(qc)) 5003 goto sys_err; 5004 5005 /* if device is sleeping, schedule reset and abort the link */ 5006 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) { 5007 link->eh_info.action |= ATA_EH_RESET; 5008 ata_ehi_push_desc(&link->eh_info, "waking up from sleep"); 5009 ata_link_abort(link); 5010 return; 5011 } 5012 5013 if (ap->ops->qc_prep) { 5014 trace_ata_qc_prep(qc); 5015 qc->err_mask |= ap->ops->qc_prep(qc); 5016 if (unlikely(qc->err_mask)) 5017 goto err; 5018 } 5019 5020 trace_ata_qc_issue(qc); 5021 qc->err_mask |= ap->ops->qc_issue(qc); 5022 if (unlikely(qc->err_mask)) 5023 goto err; 5024 return; 5025 5026 sys_err: 5027 qc->err_mask |= AC_ERR_SYSTEM; 5028 err: 5029 ata_qc_complete(qc); 5030 } 5031 5032 /** 5033 * ata_phys_link_online - test whether the given link is online 5034 * @link: ATA link to test 5035 * 5036 * Test whether @link is online. Note that this function returns 5037 * 0 if online status of @link cannot be obtained, so 5038 * ata_link_online(link) != !ata_link_offline(link). 5039 * 5040 * LOCKING: 5041 * None. 5042 * 5043 * RETURNS: 5044 * True if the port online status is available and online. 5045 */ ata_phys_link_online(struct ata_link * link)5046 bool ata_phys_link_online(struct ata_link *link) 5047 { 5048 u32 sstatus; 5049 5050 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5051 ata_sstatus_online(sstatus)) 5052 return true; 5053 return false; 5054 } 5055 5056 /** 5057 * ata_phys_link_offline - test whether the given link is offline 5058 * @link: ATA link to test 5059 * 5060 * Test whether @link is offline. Note that this function 5061 * returns 0 if offline status of @link cannot be obtained, so 5062 * ata_link_online(link) != !ata_link_offline(link). 5063 * 5064 * LOCKING: 5065 * None. 5066 * 5067 * RETURNS: 5068 * True if the port offline status is available and offline. 5069 */ ata_phys_link_offline(struct ata_link * link)5070 bool ata_phys_link_offline(struct ata_link *link) 5071 { 5072 u32 sstatus; 5073 5074 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 && 5075 !ata_sstatus_online(sstatus)) 5076 return true; 5077 return false; 5078 } 5079 5080 /** 5081 * ata_link_online - test whether the given link is online 5082 * @link: ATA link to test 5083 * 5084 * Test whether @link is online. This is identical to 5085 * ata_phys_link_online() when there's no slave link. When 5086 * there's a slave link, this function should only be called on 5087 * the master link and will return true if any of M/S links is 5088 * online. 5089 * 5090 * LOCKING: 5091 * None. 5092 * 5093 * RETURNS: 5094 * True if the port online status is available and online. 5095 */ ata_link_online(struct ata_link * link)5096 bool ata_link_online(struct ata_link *link) 5097 { 5098 struct ata_link *slave = link->ap->slave_link; 5099 5100 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5101 5102 return ata_phys_link_online(link) || 5103 (slave && ata_phys_link_online(slave)); 5104 } 5105 EXPORT_SYMBOL_GPL(ata_link_online); 5106 5107 /** 5108 * ata_link_offline - test whether the given link is offline 5109 * @link: ATA link to test 5110 * 5111 * Test whether @link is offline. This is identical to 5112 * ata_phys_link_offline() when there's no slave link. When 5113 * there's a slave link, this function should only be called on 5114 * the master link and will return true if both M/S links are 5115 * offline. 5116 * 5117 * LOCKING: 5118 * None. 5119 * 5120 * RETURNS: 5121 * True if the port offline status is available and offline. 5122 */ ata_link_offline(struct ata_link * link)5123 bool ata_link_offline(struct ata_link *link) 5124 { 5125 struct ata_link *slave = link->ap->slave_link; 5126 5127 WARN_ON(link == slave); /* shouldn't be called on slave link */ 5128 5129 return ata_phys_link_offline(link) && 5130 (!slave || ata_phys_link_offline(slave)); 5131 } 5132 EXPORT_SYMBOL_GPL(ata_link_offline); 5133 5134 #ifdef CONFIG_PM ata_port_request_pm(struct ata_port * ap,pm_message_t mesg,unsigned int action,unsigned int ehi_flags,bool async)5135 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg, 5136 unsigned int action, unsigned int ehi_flags, 5137 bool async) 5138 { 5139 struct ata_link *link; 5140 unsigned long flags; 5141 5142 spin_lock_irqsave(ap->lock, flags); 5143 5144 /* 5145 * A previous PM operation might still be in progress. Wait for 5146 * ATA_PFLAG_PM_PENDING to clear. 5147 */ 5148 if (ap->pflags & ATA_PFLAG_PM_PENDING) { 5149 spin_unlock_irqrestore(ap->lock, flags); 5150 ata_port_wait_eh(ap); 5151 spin_lock_irqsave(ap->lock, flags); 5152 } 5153 5154 /* Request PM operation to EH */ 5155 ap->pm_mesg = mesg; 5156 ap->pflags |= ATA_PFLAG_PM_PENDING; 5157 ata_for_each_link(link, ap, HOST_FIRST) { 5158 link->eh_info.action |= action; 5159 link->eh_info.flags |= ehi_flags; 5160 } 5161 5162 ata_port_schedule_eh(ap); 5163 5164 spin_unlock_irqrestore(ap->lock, flags); 5165 5166 if (!async) 5167 ata_port_wait_eh(ap); 5168 } 5169 ata_port_suspend(struct ata_port * ap,pm_message_t mesg,bool async)5170 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg, 5171 bool async) 5172 { 5173 /* 5174 * We are about to suspend the port, so we do not care about 5175 * scsi_rescan_device() calls scheduled by previous resume operations. 5176 * The next resume will schedule the rescan again. So cancel any rescan 5177 * that is not done yet. 5178 */ 5179 cancel_delayed_work_sync(&ap->scsi_rescan_task); 5180 5181 /* 5182 * On some hardware, device fails to respond after spun down for 5183 * suspend. As the device will not be used until being resumed, we 5184 * do not need to touch the device. Ask EH to skip the usual stuff 5185 * and proceed directly to suspend. 5186 * 5187 * http://thread.gmane.org/gmane.linux.ide/46764 5188 */ 5189 ata_port_request_pm(ap, mesg, 0, 5190 ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY | 5191 ATA_EHI_NO_RECOVERY, 5192 async); 5193 } 5194 ata_port_pm_suspend(struct device * dev)5195 static int ata_port_pm_suspend(struct device *dev) 5196 { 5197 struct ata_port *ap = to_ata_port(dev); 5198 5199 if (pm_runtime_suspended(dev)) 5200 return 0; 5201 5202 ata_port_suspend(ap, PMSG_SUSPEND, false); 5203 return 0; 5204 } 5205 ata_port_pm_freeze(struct device * dev)5206 static int ata_port_pm_freeze(struct device *dev) 5207 { 5208 struct ata_port *ap = to_ata_port(dev); 5209 5210 if (pm_runtime_suspended(dev)) 5211 return 0; 5212 5213 ata_port_suspend(ap, PMSG_FREEZE, false); 5214 return 0; 5215 } 5216 ata_port_pm_poweroff(struct device * dev)5217 static int ata_port_pm_poweroff(struct device *dev) 5218 { 5219 if (!pm_runtime_suspended(dev)) 5220 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE, false); 5221 return 0; 5222 } 5223 ata_port_resume(struct ata_port * ap,pm_message_t mesg,bool async)5224 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg, 5225 bool async) 5226 { 5227 ata_port_request_pm(ap, mesg, ATA_EH_RESET, 5228 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 5229 async); 5230 } 5231 ata_port_pm_resume(struct device * dev)5232 static int ata_port_pm_resume(struct device *dev) 5233 { 5234 if (!pm_runtime_suspended(dev)) 5235 ata_port_resume(to_ata_port(dev), PMSG_RESUME, true); 5236 return 0; 5237 } 5238 5239 /* 5240 * For ODDs, the upper layer will poll for media change every few seconds, 5241 * which will make it enter and leave suspend state every few seconds. And 5242 * as each suspend will cause a hard/soft reset, the gain of runtime suspend 5243 * is very little and the ODD may malfunction after constantly being reset. 5244 * So the idle callback here will not proceed to suspend if a non-ZPODD capable 5245 * ODD is attached to the port. 5246 */ ata_port_runtime_idle(struct device * dev)5247 static int ata_port_runtime_idle(struct device *dev) 5248 { 5249 struct ata_port *ap = to_ata_port(dev); 5250 struct ata_link *link; 5251 struct ata_device *adev; 5252 5253 ata_for_each_link(link, ap, HOST_FIRST) { 5254 ata_for_each_dev(adev, link, ENABLED) 5255 if (adev->class == ATA_DEV_ATAPI && 5256 !zpodd_dev_enabled(adev)) 5257 return -EBUSY; 5258 } 5259 5260 return 0; 5261 } 5262 ata_port_runtime_suspend(struct device * dev)5263 static int ata_port_runtime_suspend(struct device *dev) 5264 { 5265 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND, false); 5266 return 0; 5267 } 5268 ata_port_runtime_resume(struct device * dev)5269 static int ata_port_runtime_resume(struct device *dev) 5270 { 5271 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME, false); 5272 return 0; 5273 } 5274 5275 static const struct dev_pm_ops ata_port_pm_ops = { 5276 .suspend = ata_port_pm_suspend, 5277 .resume = ata_port_pm_resume, 5278 .freeze = ata_port_pm_freeze, 5279 .thaw = ata_port_pm_resume, 5280 .poweroff = ata_port_pm_poweroff, 5281 .restore = ata_port_pm_resume, 5282 5283 .runtime_suspend = ata_port_runtime_suspend, 5284 .runtime_resume = ata_port_runtime_resume, 5285 .runtime_idle = ata_port_runtime_idle, 5286 }; 5287 5288 /* sas ports don't participate in pm runtime management of ata_ports, 5289 * and need to resume ata devices at the domain level, not the per-port 5290 * level. sas suspend/resume is async to allow parallel port recovery 5291 * since sas has multiple ata_port instances per Scsi_Host. 5292 */ ata_sas_port_suspend(struct ata_port * ap)5293 void ata_sas_port_suspend(struct ata_port *ap) 5294 { 5295 ata_port_suspend(ap, PMSG_SUSPEND, true); 5296 } 5297 EXPORT_SYMBOL_GPL(ata_sas_port_suspend); 5298 ata_sas_port_resume(struct ata_port * ap)5299 void ata_sas_port_resume(struct ata_port *ap) 5300 { 5301 ata_port_resume(ap, PMSG_RESUME, true); 5302 } 5303 EXPORT_SYMBOL_GPL(ata_sas_port_resume); 5304 5305 /** 5306 * ata_host_suspend - suspend host 5307 * @host: host to suspend 5308 * @mesg: PM message 5309 * 5310 * Suspend @host. Actual operation is performed by port suspend. 5311 */ ata_host_suspend(struct ata_host * host,pm_message_t mesg)5312 void ata_host_suspend(struct ata_host *host, pm_message_t mesg) 5313 { 5314 host->dev->power.power_state = mesg; 5315 } 5316 EXPORT_SYMBOL_GPL(ata_host_suspend); 5317 5318 /** 5319 * ata_host_resume - resume host 5320 * @host: host to resume 5321 * 5322 * Resume @host. Actual operation is performed by port resume. 5323 */ ata_host_resume(struct ata_host * host)5324 void ata_host_resume(struct ata_host *host) 5325 { 5326 host->dev->power.power_state = PMSG_ON; 5327 } 5328 EXPORT_SYMBOL_GPL(ata_host_resume); 5329 #endif 5330 5331 const struct device_type ata_port_type = { 5332 .name = ATA_PORT_TYPE_NAME, 5333 #ifdef CONFIG_PM 5334 .pm = &ata_port_pm_ops, 5335 #endif 5336 }; 5337 5338 /** 5339 * ata_dev_init - Initialize an ata_device structure 5340 * @dev: Device structure to initialize 5341 * 5342 * Initialize @dev in preparation for probing. 5343 * 5344 * LOCKING: 5345 * Inherited from caller. 5346 */ ata_dev_init(struct ata_device * dev)5347 void ata_dev_init(struct ata_device *dev) 5348 { 5349 struct ata_link *link = ata_dev_phys_link(dev); 5350 struct ata_port *ap = link->ap; 5351 unsigned long flags; 5352 5353 /* SATA spd limit is bound to the attached device, reset together */ 5354 link->sata_spd_limit = link->hw_sata_spd_limit; 5355 link->sata_spd = 0; 5356 5357 /* High bits of dev->flags are used to record warm plug 5358 * requests which occur asynchronously. Synchronize using 5359 * host lock. 5360 */ 5361 spin_lock_irqsave(ap->lock, flags); 5362 dev->flags &= ~ATA_DFLAG_INIT_MASK; 5363 dev->quirks = 0; 5364 spin_unlock_irqrestore(ap->lock, flags); 5365 5366 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0, 5367 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN); 5368 dev->pio_mask = UINT_MAX; 5369 dev->mwdma_mask = UINT_MAX; 5370 dev->udma_mask = UINT_MAX; 5371 } 5372 5373 /** 5374 * ata_link_init - Initialize an ata_link structure 5375 * @ap: ATA port link is attached to 5376 * @link: Link structure to initialize 5377 * @pmp: Port multiplier port number 5378 * 5379 * Initialize @link. 5380 * 5381 * LOCKING: 5382 * Kernel thread context (may sleep) 5383 */ ata_link_init(struct ata_port * ap,struct ata_link * link,int pmp)5384 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp) 5385 { 5386 int i; 5387 5388 /* clear everything except for devices */ 5389 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0, 5390 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN); 5391 5392 link->ap = ap; 5393 link->pmp = pmp; 5394 link->active_tag = ATA_TAG_POISON; 5395 link->hw_sata_spd_limit = UINT_MAX; 5396 5397 /* can't use iterator, ap isn't initialized yet */ 5398 for (i = 0; i < ATA_MAX_DEVICES; i++) { 5399 struct ata_device *dev = &link->device[i]; 5400 5401 dev->link = link; 5402 dev->devno = dev - link->device; 5403 #ifdef CONFIG_ATA_ACPI 5404 dev->gtf_filter = ata_acpi_gtf_filter; 5405 #endif 5406 ata_dev_init(dev); 5407 } 5408 } 5409 5410 /** 5411 * sata_link_init_spd - Initialize link->sata_spd_limit 5412 * @link: Link to configure sata_spd_limit for 5413 * 5414 * Initialize ``link->[hw_]sata_spd_limit`` to the currently 5415 * configured value. 5416 * 5417 * LOCKING: 5418 * Kernel thread context (may sleep). 5419 * 5420 * RETURNS: 5421 * 0 on success, -errno on failure. 5422 */ sata_link_init_spd(struct ata_link * link)5423 int sata_link_init_spd(struct ata_link *link) 5424 { 5425 u8 spd; 5426 int rc; 5427 5428 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol); 5429 if (rc) 5430 return rc; 5431 5432 spd = (link->saved_scontrol >> 4) & 0xf; 5433 if (spd) 5434 link->hw_sata_spd_limit &= (1 << spd) - 1; 5435 5436 ata_force_link_limits(link); 5437 5438 link->sata_spd_limit = link->hw_sata_spd_limit; 5439 5440 return 0; 5441 } 5442 5443 /** 5444 * ata_port_alloc - allocate and initialize basic ATA port resources 5445 * @host: ATA host this allocated port belongs to 5446 * 5447 * Allocate and initialize basic ATA port resources. 5448 * 5449 * RETURNS: 5450 * Allocate ATA port on success, NULL on failure. 5451 * 5452 * LOCKING: 5453 * Inherited from calling layer (may sleep). 5454 */ ata_port_alloc(struct ata_host * host)5455 struct ata_port *ata_port_alloc(struct ata_host *host) 5456 { 5457 struct ata_port *ap; 5458 int id; 5459 5460 ap = kzalloc(sizeof(*ap), GFP_KERNEL); 5461 if (!ap) 5462 return NULL; 5463 5464 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN; 5465 ap->lock = &host->lock; 5466 id = ida_alloc_min(&ata_ida, 1, GFP_KERNEL); 5467 if (id < 0) { 5468 kfree(ap); 5469 return NULL; 5470 } 5471 ap->print_id = id; 5472 ap->host = host; 5473 ap->dev = host->dev; 5474 5475 mutex_init(&ap->scsi_scan_mutex); 5476 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug); 5477 INIT_DELAYED_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan); 5478 INIT_LIST_HEAD(&ap->eh_done_q); 5479 init_waitqueue_head(&ap->eh_wait_q); 5480 init_completion(&ap->park_req_pending); 5481 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn, 5482 TIMER_DEFERRABLE); 5483 5484 ap->cbl = ATA_CBL_NONE; 5485 5486 ata_link_init(ap, &ap->link, 0); 5487 5488 #ifdef ATA_IRQ_TRAP 5489 ap->stats.unhandled_irq = 1; 5490 ap->stats.idle_irq = 1; 5491 #endif 5492 ata_sff_port_init(ap); 5493 5494 ata_force_pflags(ap); 5495 5496 return ap; 5497 } 5498 EXPORT_SYMBOL_GPL(ata_port_alloc); 5499 ata_port_free(struct ata_port * ap)5500 void ata_port_free(struct ata_port *ap) 5501 { 5502 if (!ap) 5503 return; 5504 5505 kfree(ap->pmp_link); 5506 kfree(ap->slave_link); 5507 ida_free(&ata_ida, ap->print_id); 5508 kfree(ap); 5509 } 5510 EXPORT_SYMBOL_GPL(ata_port_free); 5511 ata_devres_release(struct device * gendev,void * res)5512 static void ata_devres_release(struct device *gendev, void *res) 5513 { 5514 struct ata_host *host = dev_get_drvdata(gendev); 5515 int i; 5516 5517 for (i = 0; i < host->n_ports; i++) { 5518 struct ata_port *ap = host->ports[i]; 5519 5520 if (!ap) 5521 continue; 5522 5523 if (ap->scsi_host) 5524 scsi_host_put(ap->scsi_host); 5525 5526 } 5527 5528 dev_set_drvdata(gendev, NULL); 5529 ata_host_put(host); 5530 } 5531 ata_host_release(struct kref * kref)5532 static void ata_host_release(struct kref *kref) 5533 { 5534 struct ata_host *host = container_of(kref, struct ata_host, kref); 5535 int i; 5536 5537 for (i = 0; i < host->n_ports; i++) { 5538 ata_port_free(host->ports[i]); 5539 host->ports[i] = NULL; 5540 } 5541 kfree(host); 5542 } 5543 ata_host_get(struct ata_host * host)5544 void ata_host_get(struct ata_host *host) 5545 { 5546 kref_get(&host->kref); 5547 } 5548 ata_host_put(struct ata_host * host)5549 void ata_host_put(struct ata_host *host) 5550 { 5551 kref_put(&host->kref, ata_host_release); 5552 } 5553 EXPORT_SYMBOL_GPL(ata_host_put); 5554 5555 /** 5556 * ata_host_alloc - allocate and init basic ATA host resources 5557 * @dev: generic device this host is associated with 5558 * @n_ports: the number of ATA ports associated with this host 5559 * 5560 * Allocate and initialize basic ATA host resources. LLD calls 5561 * this function to allocate a host, initializes it fully and 5562 * attaches it using ata_host_register(). 5563 * 5564 * RETURNS: 5565 * Allocate ATA host on success, NULL on failure. 5566 * 5567 * LOCKING: 5568 * Inherited from calling layer (may sleep). 5569 */ ata_host_alloc(struct device * dev,int n_ports)5570 struct ata_host *ata_host_alloc(struct device *dev, int n_ports) 5571 { 5572 struct ata_host *host; 5573 size_t sz; 5574 int i; 5575 void *dr; 5576 5577 /* alloc a container for our list of ATA ports (buses) */ 5578 sz = sizeof(struct ata_host) + n_ports * sizeof(void *); 5579 host = kzalloc(sz, GFP_KERNEL); 5580 if (!host) 5581 return NULL; 5582 5583 if (!devres_open_group(dev, NULL, GFP_KERNEL)) { 5584 kfree(host); 5585 return NULL; 5586 } 5587 5588 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL); 5589 if (!dr) { 5590 kfree(host); 5591 goto err_out; 5592 } 5593 5594 devres_add(dev, dr); 5595 dev_set_drvdata(dev, host); 5596 5597 spin_lock_init(&host->lock); 5598 mutex_init(&host->eh_mutex); 5599 host->dev = dev; 5600 host->n_ports = n_ports; 5601 kref_init(&host->kref); 5602 5603 /* allocate ports bound to this host */ 5604 for (i = 0; i < n_ports; i++) { 5605 struct ata_port *ap; 5606 5607 ap = ata_port_alloc(host); 5608 if (!ap) 5609 goto err_out; 5610 5611 ap->port_no = i; 5612 host->ports[i] = ap; 5613 } 5614 5615 devres_remove_group(dev, NULL); 5616 return host; 5617 5618 err_out: 5619 devres_release_group(dev, NULL); 5620 return NULL; 5621 } 5622 EXPORT_SYMBOL_GPL(ata_host_alloc); 5623 5624 /** 5625 * ata_host_alloc_pinfo - alloc host and init with port_info array 5626 * @dev: generic device this host is associated with 5627 * @ppi: array of ATA port_info to initialize host with 5628 * @n_ports: number of ATA ports attached to this host 5629 * 5630 * Allocate ATA host and initialize with info from @ppi. If NULL 5631 * terminated, @ppi may contain fewer entries than @n_ports. The 5632 * last entry will be used for the remaining ports. 5633 * 5634 * RETURNS: 5635 * Allocate ATA host on success, NULL on failure. 5636 * 5637 * LOCKING: 5638 * Inherited from calling layer (may sleep). 5639 */ ata_host_alloc_pinfo(struct device * dev,const struct ata_port_info * const * ppi,int n_ports)5640 struct ata_host *ata_host_alloc_pinfo(struct device *dev, 5641 const struct ata_port_info * const * ppi, 5642 int n_ports) 5643 { 5644 const struct ata_port_info *pi = &ata_dummy_port_info; 5645 struct ata_host *host; 5646 int i, j; 5647 5648 host = ata_host_alloc(dev, n_ports); 5649 if (!host) 5650 return NULL; 5651 5652 for (i = 0, j = 0; i < host->n_ports; i++) { 5653 struct ata_port *ap = host->ports[i]; 5654 5655 if (ppi[j]) 5656 pi = ppi[j++]; 5657 5658 ap->pio_mask = pi->pio_mask; 5659 ap->mwdma_mask = pi->mwdma_mask; 5660 ap->udma_mask = pi->udma_mask; 5661 ap->flags |= pi->flags; 5662 ap->link.flags |= pi->link_flags; 5663 ap->ops = pi->port_ops; 5664 5665 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops)) 5666 host->ops = pi->port_ops; 5667 } 5668 5669 return host; 5670 } 5671 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo); 5672 ata_host_stop(struct device * gendev,void * res)5673 static void ata_host_stop(struct device *gendev, void *res) 5674 { 5675 struct ata_host *host = dev_get_drvdata(gendev); 5676 int i; 5677 5678 WARN_ON(!(host->flags & ATA_HOST_STARTED)); 5679 5680 for (i = 0; i < host->n_ports; i++) { 5681 struct ata_port *ap = host->ports[i]; 5682 5683 if (ap->ops->port_stop) 5684 ap->ops->port_stop(ap); 5685 } 5686 5687 if (host->ops->host_stop) 5688 host->ops->host_stop(host); 5689 } 5690 5691 /** 5692 * ata_finalize_port_ops - finalize ata_port_operations 5693 * @ops: ata_port_operations to finalize 5694 * 5695 * An ata_port_operations can inherit from another ops and that 5696 * ops can again inherit from another. This can go on as many 5697 * times as necessary as long as there is no loop in the 5698 * inheritance chain. 5699 * 5700 * Ops tables are finalized when the host is started. NULL or 5701 * unspecified entries are inherited from the closet ancestor 5702 * which has the method and the entry is populated with it. 5703 * After finalization, the ops table directly points to all the 5704 * methods and ->inherits is no longer necessary and cleared. 5705 * 5706 * Using ATA_OP_NULL, inheriting ops can force a method to NULL. 5707 * 5708 * LOCKING: 5709 * None. 5710 */ ata_finalize_port_ops(struct ata_port_operations * ops)5711 static void ata_finalize_port_ops(struct ata_port_operations *ops) 5712 { 5713 static DEFINE_SPINLOCK(lock); 5714 const struct ata_port_operations *cur; 5715 void **begin = (void **)ops; 5716 void **end = (void **)&ops->inherits; 5717 void **pp; 5718 5719 if (!ops || !ops->inherits) 5720 return; 5721 5722 spin_lock(&lock); 5723 5724 for (cur = ops->inherits; cur; cur = cur->inherits) { 5725 void **inherit = (void **)cur; 5726 5727 for (pp = begin; pp < end; pp++, inherit++) 5728 if (!*pp) 5729 *pp = *inherit; 5730 } 5731 5732 for (pp = begin; pp < end; pp++) 5733 if (IS_ERR(*pp)) 5734 *pp = NULL; 5735 5736 ops->inherits = NULL; 5737 5738 spin_unlock(&lock); 5739 } 5740 5741 /** 5742 * ata_host_start - start and freeze ports of an ATA host 5743 * @host: ATA host to start ports for 5744 * 5745 * Start and then freeze ports of @host. Started status is 5746 * recorded in host->flags, so this function can be called 5747 * multiple times. Ports are guaranteed to get started only 5748 * once. If host->ops is not initialized yet, it is set to the 5749 * first non-dummy port ops. 5750 * 5751 * LOCKING: 5752 * Inherited from calling layer (may sleep). 5753 * 5754 * RETURNS: 5755 * 0 if all ports are started successfully, -errno otherwise. 5756 */ ata_host_start(struct ata_host * host)5757 int ata_host_start(struct ata_host *host) 5758 { 5759 int have_stop = 0; 5760 void *start_dr = NULL; 5761 int i, rc; 5762 5763 if (host->flags & ATA_HOST_STARTED) 5764 return 0; 5765 5766 ata_finalize_port_ops(host->ops); 5767 5768 for (i = 0; i < host->n_ports; i++) { 5769 struct ata_port *ap = host->ports[i]; 5770 5771 ata_finalize_port_ops(ap->ops); 5772 5773 if (!host->ops && !ata_port_is_dummy(ap)) 5774 host->ops = ap->ops; 5775 5776 if (ap->ops->port_stop) 5777 have_stop = 1; 5778 } 5779 5780 if (host->ops && host->ops->host_stop) 5781 have_stop = 1; 5782 5783 if (have_stop) { 5784 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL); 5785 if (!start_dr) 5786 return -ENOMEM; 5787 } 5788 5789 for (i = 0; i < host->n_ports; i++) { 5790 struct ata_port *ap = host->ports[i]; 5791 5792 if (ap->ops->port_start) { 5793 rc = ap->ops->port_start(ap); 5794 if (rc) { 5795 if (rc != -ENODEV) 5796 dev_err(host->dev, 5797 "failed to start port %d (errno=%d)\n", 5798 i, rc); 5799 goto err_out; 5800 } 5801 } 5802 ata_eh_freeze_port(ap); 5803 } 5804 5805 if (start_dr) 5806 devres_add(host->dev, start_dr); 5807 host->flags |= ATA_HOST_STARTED; 5808 return 0; 5809 5810 err_out: 5811 while (--i >= 0) { 5812 struct ata_port *ap = host->ports[i]; 5813 5814 if (ap->ops->port_stop) 5815 ap->ops->port_stop(ap); 5816 } 5817 devres_free(start_dr); 5818 return rc; 5819 } 5820 EXPORT_SYMBOL_GPL(ata_host_start); 5821 5822 /** 5823 * ata_host_init - Initialize a host struct for sas (ipr, libsas) 5824 * @host: host to initialize 5825 * @dev: device host is attached to 5826 * @ops: port_ops 5827 * 5828 */ ata_host_init(struct ata_host * host,struct device * dev,struct ata_port_operations * ops)5829 void ata_host_init(struct ata_host *host, struct device *dev, 5830 struct ata_port_operations *ops) 5831 { 5832 spin_lock_init(&host->lock); 5833 mutex_init(&host->eh_mutex); 5834 host->n_tags = ATA_MAX_QUEUE; 5835 host->dev = dev; 5836 host->ops = ops; 5837 kref_init(&host->kref); 5838 } 5839 EXPORT_SYMBOL_GPL(ata_host_init); 5840 ata_port_probe(struct ata_port * ap)5841 void ata_port_probe(struct ata_port *ap) 5842 { 5843 struct ata_eh_info *ehi = &ap->link.eh_info; 5844 unsigned long flags; 5845 5846 /* kick EH for boot probing */ 5847 spin_lock_irqsave(ap->lock, flags); 5848 5849 ehi->probe_mask |= ATA_ALL_DEVICES; 5850 ehi->action |= ATA_EH_RESET; 5851 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET; 5852 5853 ap->pflags &= ~ATA_PFLAG_INITIALIZING; 5854 ap->pflags |= ATA_PFLAG_LOADING; 5855 ata_port_schedule_eh(ap); 5856 5857 spin_unlock_irqrestore(ap->lock, flags); 5858 } 5859 EXPORT_SYMBOL_GPL(ata_port_probe); 5860 async_port_probe(void * data,async_cookie_t cookie)5861 static void async_port_probe(void *data, async_cookie_t cookie) 5862 { 5863 struct ata_port *ap = data; 5864 5865 /* 5866 * If we're not allowed to scan this host in parallel, 5867 * we need to wait until all previous scans have completed 5868 * before going further. 5869 * Jeff Garzik says this is only within a controller, so we 5870 * don't need to wait for port 0, only for later ports. 5871 */ 5872 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0) 5873 async_synchronize_cookie(cookie); 5874 5875 ata_port_probe(ap); 5876 ata_port_wait_eh(ap); 5877 5878 /* in order to keep device order, we need to synchronize at this point */ 5879 async_synchronize_cookie(cookie); 5880 5881 ata_scsi_scan_host(ap, 1); 5882 } 5883 5884 /** 5885 * ata_host_register - register initialized ATA host 5886 * @host: ATA host to register 5887 * @sht: template for SCSI host 5888 * 5889 * Register initialized ATA host. @host is allocated using 5890 * ata_host_alloc() and fully initialized by LLD. This function 5891 * starts ports, registers @host with ATA and SCSI layers and 5892 * probe registered devices. 5893 * 5894 * LOCKING: 5895 * Inherited from calling layer (may sleep). 5896 * 5897 * RETURNS: 5898 * 0 on success, -errno otherwise. 5899 */ ata_host_register(struct ata_host * host,const struct scsi_host_template * sht)5900 int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht) 5901 { 5902 int i, rc; 5903 5904 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE); 5905 5906 /* host must have been started */ 5907 if (!(host->flags & ATA_HOST_STARTED)) { 5908 dev_err(host->dev, "BUG: trying to register unstarted host\n"); 5909 WARN_ON(1); 5910 return -EINVAL; 5911 } 5912 5913 /* Create associated sysfs transport objects */ 5914 for (i = 0; i < host->n_ports; i++) { 5915 rc = ata_tport_add(host->dev,host->ports[i]); 5916 if (rc) { 5917 goto err_tadd; 5918 } 5919 } 5920 5921 rc = ata_scsi_add_hosts(host, sht); 5922 if (rc) 5923 goto err_tadd; 5924 5925 /* set cable, sata_spd_limit and report */ 5926 for (i = 0; i < host->n_ports; i++) { 5927 struct ata_port *ap = host->ports[i]; 5928 unsigned int xfer_mask; 5929 5930 /* set SATA cable type if still unset */ 5931 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA)) 5932 ap->cbl = ATA_CBL_SATA; 5933 5934 /* init sata_spd_limit to the current value */ 5935 sata_link_init_spd(&ap->link); 5936 if (ap->slave_link) 5937 sata_link_init_spd(ap->slave_link); 5938 5939 /* print per-port info to dmesg */ 5940 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask, 5941 ap->udma_mask); 5942 5943 if (!ata_port_is_dummy(ap)) { 5944 ata_port_info(ap, "%cATA max %s %s\n", 5945 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P', 5946 ata_mode_string(xfer_mask), 5947 ap->link.eh_info.desc); 5948 ata_ehi_clear_desc(&ap->link.eh_info); 5949 } else 5950 ata_port_info(ap, "DUMMY\n"); 5951 } 5952 5953 /* perform each probe asynchronously */ 5954 for (i = 0; i < host->n_ports; i++) { 5955 struct ata_port *ap = host->ports[i]; 5956 ap->cookie = async_schedule(async_port_probe, ap); 5957 } 5958 5959 return 0; 5960 5961 err_tadd: 5962 while (--i >= 0) { 5963 ata_tport_delete(host->ports[i]); 5964 } 5965 return rc; 5966 5967 } 5968 EXPORT_SYMBOL_GPL(ata_host_register); 5969 5970 /** 5971 * ata_host_activate - start host, request IRQ and register it 5972 * @host: target ATA host 5973 * @irq: IRQ to request 5974 * @irq_handler: irq_handler used when requesting IRQ 5975 * @irq_flags: irq_flags used when requesting IRQ 5976 * @sht: scsi_host_template to use when registering the host 5977 * 5978 * After allocating an ATA host and initializing it, most libata 5979 * LLDs perform three steps to activate the host - start host, 5980 * request IRQ and register it. This helper takes necessary 5981 * arguments and performs the three steps in one go. 5982 * 5983 * An invalid IRQ skips the IRQ registration and expects the host to 5984 * have set polling mode on the port. In this case, @irq_handler 5985 * should be NULL. 5986 * 5987 * LOCKING: 5988 * Inherited from calling layer (may sleep). 5989 * 5990 * RETURNS: 5991 * 0 on success, -errno otherwise. 5992 */ ata_host_activate(struct ata_host * host,int irq,irq_handler_t irq_handler,unsigned long irq_flags,const struct scsi_host_template * sht)5993 int ata_host_activate(struct ata_host *host, int irq, 5994 irq_handler_t irq_handler, unsigned long irq_flags, 5995 const struct scsi_host_template *sht) 5996 { 5997 int i, rc; 5998 char *irq_desc; 5999 6000 rc = ata_host_start(host); 6001 if (rc) 6002 return rc; 6003 6004 /* Special case for polling mode */ 6005 if (!irq) { 6006 WARN_ON(irq_handler); 6007 return ata_host_register(host, sht); 6008 } 6009 6010 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]", 6011 dev_driver_string(host->dev), 6012 dev_name(host->dev)); 6013 if (!irq_desc) 6014 return -ENOMEM; 6015 6016 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags, 6017 irq_desc, host); 6018 if (rc) 6019 return rc; 6020 6021 for (i = 0; i < host->n_ports; i++) 6022 ata_port_desc_misc(host->ports[i], irq); 6023 6024 rc = ata_host_register(host, sht); 6025 /* if failed, just free the IRQ and leave ports alone */ 6026 if (rc) 6027 devm_free_irq(host->dev, irq, host); 6028 6029 return rc; 6030 } 6031 EXPORT_SYMBOL_GPL(ata_host_activate); 6032 6033 /** 6034 * ata_dev_free_resources - Free a device resources 6035 * @dev: Target ATA device 6036 * 6037 * Free resources allocated to support a device features. 6038 * 6039 * LOCKING: 6040 * Kernel thread context (may sleep). 6041 */ ata_dev_free_resources(struct ata_device * dev)6042 void ata_dev_free_resources(struct ata_device *dev) 6043 { 6044 if (zpodd_dev_enabled(dev)) 6045 zpodd_exit(dev); 6046 6047 ata_dev_cleanup_cdl_resources(dev); 6048 } 6049 6050 /** 6051 * ata_port_detach - Detach ATA port in preparation of device removal 6052 * @ap: ATA port to be detached 6053 * 6054 * Detach all ATA devices and the associated SCSI devices of @ap; 6055 * then, remove the associated SCSI host. @ap is guaranteed to 6056 * be quiescent on return from this function. 6057 * 6058 * LOCKING: 6059 * Kernel thread context (may sleep). 6060 */ ata_port_detach(struct ata_port * ap)6061 static void ata_port_detach(struct ata_port *ap) 6062 { 6063 unsigned long flags; 6064 struct ata_link *link; 6065 struct ata_device *dev; 6066 6067 /* Ensure ata_port probe has completed */ 6068 async_synchronize_cookie(ap->cookie + 1); 6069 6070 /* Wait for any ongoing EH */ 6071 ata_port_wait_eh(ap); 6072 6073 mutex_lock(&ap->scsi_scan_mutex); 6074 spin_lock_irqsave(ap->lock, flags); 6075 6076 /* Remove scsi devices */ 6077 ata_for_each_link(link, ap, HOST_FIRST) { 6078 ata_for_each_dev(dev, link, ALL) { 6079 if (dev->sdev) { 6080 spin_unlock_irqrestore(ap->lock, flags); 6081 scsi_remove_device(dev->sdev); 6082 spin_lock_irqsave(ap->lock, flags); 6083 dev->sdev = NULL; 6084 } 6085 } 6086 } 6087 6088 /* Tell EH to disable all devices */ 6089 ap->pflags |= ATA_PFLAG_UNLOADING; 6090 ata_port_schedule_eh(ap); 6091 6092 spin_unlock_irqrestore(ap->lock, flags); 6093 mutex_unlock(&ap->scsi_scan_mutex); 6094 6095 /* wait till EH commits suicide */ 6096 ata_port_wait_eh(ap); 6097 6098 /* it better be dead now */ 6099 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED)); 6100 6101 cancel_delayed_work_sync(&ap->hotplug_task); 6102 cancel_delayed_work_sync(&ap->scsi_rescan_task); 6103 6104 /* Delete port multiplier link transport devices */ 6105 if (ap->pmp_link) { 6106 int i; 6107 6108 for (i = 0; i < SATA_PMP_MAX_PORTS; i++) 6109 ata_tlink_delete(&ap->pmp_link[i]); 6110 } 6111 6112 /* Remove the associated SCSI host */ 6113 scsi_remove_host(ap->scsi_host); 6114 ata_tport_delete(ap); 6115 } 6116 6117 /** 6118 * ata_host_detach - Detach all ports of an ATA host 6119 * @host: Host to detach 6120 * 6121 * Detach all ports of @host. 6122 * 6123 * LOCKING: 6124 * Kernel thread context (may sleep). 6125 */ ata_host_detach(struct ata_host * host)6126 void ata_host_detach(struct ata_host *host) 6127 { 6128 int i; 6129 6130 for (i = 0; i < host->n_ports; i++) 6131 ata_port_detach(host->ports[i]); 6132 6133 /* the host is dead now, dissociate ACPI */ 6134 ata_acpi_dissociate(host); 6135 } 6136 EXPORT_SYMBOL_GPL(ata_host_detach); 6137 6138 #ifdef CONFIG_PCI 6139 6140 /** 6141 * ata_pci_remove_one - PCI layer callback for device removal 6142 * @pdev: PCI device that was removed 6143 * 6144 * PCI layer indicates to libata via this hook that hot-unplug or 6145 * module unload event has occurred. Detach all ports. Resource 6146 * release is handled via devres. 6147 * 6148 * LOCKING: 6149 * Inherited from PCI layer (may sleep). 6150 */ ata_pci_remove_one(struct pci_dev * pdev)6151 void ata_pci_remove_one(struct pci_dev *pdev) 6152 { 6153 struct ata_host *host = pci_get_drvdata(pdev); 6154 6155 ata_host_detach(host); 6156 } 6157 EXPORT_SYMBOL_GPL(ata_pci_remove_one); 6158 ata_pci_shutdown_one(struct pci_dev * pdev)6159 void ata_pci_shutdown_one(struct pci_dev *pdev) 6160 { 6161 struct ata_host *host = pci_get_drvdata(pdev); 6162 int i; 6163 6164 for (i = 0; i < host->n_ports; i++) { 6165 struct ata_port *ap = host->ports[i]; 6166 6167 ap->pflags |= ATA_PFLAG_FROZEN; 6168 6169 /* Disable port interrupts */ 6170 if (ap->ops->freeze) 6171 ap->ops->freeze(ap); 6172 6173 /* Stop the port DMA engines */ 6174 if (ap->ops->port_stop) 6175 ap->ops->port_stop(ap); 6176 } 6177 } 6178 EXPORT_SYMBOL_GPL(ata_pci_shutdown_one); 6179 6180 /* move to PCI subsystem */ pci_test_config_bits(struct pci_dev * pdev,const struct pci_bits * bits)6181 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) 6182 { 6183 unsigned long tmp = 0; 6184 6185 switch (bits->width) { 6186 case 1: { 6187 u8 tmp8 = 0; 6188 pci_read_config_byte(pdev, bits->reg, &tmp8); 6189 tmp = tmp8; 6190 break; 6191 } 6192 case 2: { 6193 u16 tmp16 = 0; 6194 pci_read_config_word(pdev, bits->reg, &tmp16); 6195 tmp = tmp16; 6196 break; 6197 } 6198 case 4: { 6199 u32 tmp32 = 0; 6200 pci_read_config_dword(pdev, bits->reg, &tmp32); 6201 tmp = tmp32; 6202 break; 6203 } 6204 6205 default: 6206 return -EINVAL; 6207 } 6208 6209 tmp &= bits->mask; 6210 6211 return (tmp == bits->val) ? 1 : 0; 6212 } 6213 EXPORT_SYMBOL_GPL(pci_test_config_bits); 6214 6215 #ifdef CONFIG_PM ata_pci_device_do_suspend(struct pci_dev * pdev,pm_message_t mesg)6216 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg) 6217 { 6218 pci_save_state(pdev); 6219 pci_disable_device(pdev); 6220 6221 if (mesg.event & PM_EVENT_SLEEP) 6222 pci_set_power_state(pdev, PCI_D3hot); 6223 } 6224 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend); 6225 ata_pci_device_do_resume(struct pci_dev * pdev)6226 int ata_pci_device_do_resume(struct pci_dev *pdev) 6227 { 6228 int rc; 6229 6230 pci_set_power_state(pdev, PCI_D0); 6231 pci_restore_state(pdev); 6232 6233 rc = pcim_enable_device(pdev); 6234 if (rc) { 6235 dev_err(&pdev->dev, 6236 "failed to enable device after resume (%d)\n", rc); 6237 return rc; 6238 } 6239 6240 pci_set_master(pdev); 6241 return 0; 6242 } 6243 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume); 6244 ata_pci_device_suspend(struct pci_dev * pdev,pm_message_t mesg)6245 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg) 6246 { 6247 struct ata_host *host = pci_get_drvdata(pdev); 6248 6249 ata_host_suspend(host, mesg); 6250 6251 ata_pci_device_do_suspend(pdev, mesg); 6252 6253 return 0; 6254 } 6255 EXPORT_SYMBOL_GPL(ata_pci_device_suspend); 6256 ata_pci_device_resume(struct pci_dev * pdev)6257 int ata_pci_device_resume(struct pci_dev *pdev) 6258 { 6259 struct ata_host *host = pci_get_drvdata(pdev); 6260 int rc; 6261 6262 rc = ata_pci_device_do_resume(pdev); 6263 if (rc == 0) 6264 ata_host_resume(host); 6265 return rc; 6266 } 6267 EXPORT_SYMBOL_GPL(ata_pci_device_resume); 6268 #endif /* CONFIG_PM */ 6269 #endif /* CONFIG_PCI */ 6270 6271 /** 6272 * ata_platform_remove_one - Platform layer callback for device removal 6273 * @pdev: Platform device that was removed 6274 * 6275 * Platform layer indicates to libata via this hook that hot-unplug or 6276 * module unload event has occurred. Detach all ports. Resource 6277 * release is handled via devres. 6278 * 6279 * LOCKING: 6280 * Inherited from platform layer (may sleep). 6281 */ ata_platform_remove_one(struct platform_device * pdev)6282 void ata_platform_remove_one(struct platform_device *pdev) 6283 { 6284 struct ata_host *host = platform_get_drvdata(pdev); 6285 6286 ata_host_detach(host); 6287 } 6288 EXPORT_SYMBOL_GPL(ata_platform_remove_one); 6289 6290 #ifdef CONFIG_ATA_FORCE 6291 6292 #define force_cbl(name, flag) \ 6293 { #name, .cbl = (flag) } 6294 6295 #define force_spd_limit(spd, val) \ 6296 { #spd, .spd_limit = (val) } 6297 6298 #define force_xfer(mode, shift) \ 6299 { #mode, .xfer_mask = (1UL << (shift)) } 6300 6301 #define force_lflag_on(name, flags) \ 6302 { #name, .lflags_on = (flags) } 6303 6304 #define force_lflag_onoff(name, flags) \ 6305 { "no" #name, .lflags_on = (flags) }, \ 6306 { #name, .lflags_off = (flags) } 6307 6308 #define force_pflag_on(name, flags) \ 6309 { #name, .pflags_on = (flags) } 6310 6311 #define force_quirk_on(name, flag) \ 6312 { #name, .quirk_on = (flag) } 6313 6314 #define force_quirk_onoff(name, flag) \ 6315 { "no" #name, .quirk_on = (flag) }, \ 6316 { #name, .quirk_off = (flag) } 6317 6318 static const struct ata_force_param force_tbl[] __initconst = { 6319 force_cbl(40c, ATA_CBL_PATA40), 6320 force_cbl(80c, ATA_CBL_PATA80), 6321 force_cbl(short40c, ATA_CBL_PATA40_SHORT), 6322 force_cbl(unk, ATA_CBL_PATA_UNK), 6323 force_cbl(ign, ATA_CBL_PATA_IGN), 6324 force_cbl(sata, ATA_CBL_SATA), 6325 6326 force_spd_limit(1.5Gbps, 1), 6327 force_spd_limit(3.0Gbps, 2), 6328 6329 force_xfer(pio0, ATA_SHIFT_PIO + 0), 6330 force_xfer(pio1, ATA_SHIFT_PIO + 1), 6331 force_xfer(pio2, ATA_SHIFT_PIO + 2), 6332 force_xfer(pio3, ATA_SHIFT_PIO + 3), 6333 force_xfer(pio4, ATA_SHIFT_PIO + 4), 6334 force_xfer(pio5, ATA_SHIFT_PIO + 5), 6335 force_xfer(pio6, ATA_SHIFT_PIO + 6), 6336 force_xfer(mwdma0, ATA_SHIFT_MWDMA + 0), 6337 force_xfer(mwdma1, ATA_SHIFT_MWDMA + 1), 6338 force_xfer(mwdma2, ATA_SHIFT_MWDMA + 2), 6339 force_xfer(mwdma3, ATA_SHIFT_MWDMA + 3), 6340 force_xfer(mwdma4, ATA_SHIFT_MWDMA + 4), 6341 force_xfer(udma0, ATA_SHIFT_UDMA + 0), 6342 force_xfer(udma16, ATA_SHIFT_UDMA + 0), 6343 force_xfer(udma/16, ATA_SHIFT_UDMA + 0), 6344 force_xfer(udma1, ATA_SHIFT_UDMA + 1), 6345 force_xfer(udma25, ATA_SHIFT_UDMA + 1), 6346 force_xfer(udma/25, ATA_SHIFT_UDMA + 1), 6347 force_xfer(udma2, ATA_SHIFT_UDMA + 2), 6348 force_xfer(udma33, ATA_SHIFT_UDMA + 2), 6349 force_xfer(udma/33, ATA_SHIFT_UDMA + 2), 6350 force_xfer(udma3, ATA_SHIFT_UDMA + 3), 6351 force_xfer(udma44, ATA_SHIFT_UDMA + 3), 6352 force_xfer(udma/44, ATA_SHIFT_UDMA + 3), 6353 force_xfer(udma4, ATA_SHIFT_UDMA + 4), 6354 force_xfer(udma66, ATA_SHIFT_UDMA + 4), 6355 force_xfer(udma/66, ATA_SHIFT_UDMA + 4), 6356 force_xfer(udma5, ATA_SHIFT_UDMA + 5), 6357 force_xfer(udma100, ATA_SHIFT_UDMA + 5), 6358 force_xfer(udma/100, ATA_SHIFT_UDMA + 5), 6359 force_xfer(udma6, ATA_SHIFT_UDMA + 6), 6360 force_xfer(udma133, ATA_SHIFT_UDMA + 6), 6361 force_xfer(udma/133, ATA_SHIFT_UDMA + 6), 6362 force_xfer(udma7, ATA_SHIFT_UDMA + 7), 6363 6364 force_lflag_on(nohrst, ATA_LFLAG_NO_HRST), 6365 force_lflag_on(nosrst, ATA_LFLAG_NO_SRST), 6366 force_lflag_on(norst, ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST), 6367 force_lflag_on(rstonce, ATA_LFLAG_RST_ONCE), 6368 force_lflag_onoff(dbdelay, ATA_LFLAG_NO_DEBOUNCE_DELAY), 6369 6370 force_pflag_on(external, ATA_PFLAG_EXTERNAL), 6371 6372 force_quirk_onoff(ncq, ATA_QUIRK_NONCQ), 6373 force_quirk_onoff(ncqtrim, ATA_QUIRK_NO_NCQ_TRIM), 6374 force_quirk_onoff(ncqati, ATA_QUIRK_NO_NCQ_ON_ATI), 6375 6376 force_quirk_onoff(trim, ATA_QUIRK_NOTRIM), 6377 force_quirk_on(trim_zero, ATA_QUIRK_ZERO_AFTER_TRIM), 6378 force_quirk_on(max_trim_128m, ATA_QUIRK_MAX_TRIM_128M), 6379 6380 force_quirk_onoff(dma, ATA_QUIRK_NODMA), 6381 force_quirk_on(atapi_dmadir, ATA_QUIRK_ATAPI_DMADIR), 6382 force_quirk_on(atapi_mod16_dma, ATA_QUIRK_ATAPI_MOD16_DMA), 6383 6384 force_quirk_onoff(dmalog, ATA_QUIRK_NO_DMA_LOG), 6385 force_quirk_onoff(iddevlog, ATA_QUIRK_NO_ID_DEV_LOG), 6386 force_quirk_onoff(logdir, ATA_QUIRK_NO_LOG_DIR), 6387 6388 force_quirk_on(max_sec_128, ATA_QUIRK_MAX_SEC_128), 6389 force_quirk_on(max_sec_1024, ATA_QUIRK_MAX_SEC_1024), 6390 force_quirk_on(max_sec_lba48, ATA_QUIRK_MAX_SEC_LBA48), 6391 6392 force_quirk_onoff(lpm, ATA_QUIRK_NOLPM), 6393 force_quirk_onoff(setxfer, ATA_QUIRK_NOSETXFER), 6394 force_quirk_on(dump_id, ATA_QUIRK_DUMP_ID), 6395 force_quirk_onoff(fua, ATA_QUIRK_NO_FUA), 6396 6397 force_quirk_on(disable, ATA_QUIRK_DISABLE), 6398 }; 6399 ata_parse_force_one(char ** cur,struct ata_force_ent * force_ent,const char ** reason)6400 static int __init ata_parse_force_one(char **cur, 6401 struct ata_force_ent *force_ent, 6402 const char **reason) 6403 { 6404 char *start = *cur, *p = *cur; 6405 char *id, *val, *endp; 6406 const struct ata_force_param *match_fp = NULL; 6407 int nr_matches = 0, i; 6408 6409 /* find where this param ends and update *cur */ 6410 while (*p != '\0' && *p != ',') 6411 p++; 6412 6413 if (*p == '\0') 6414 *cur = p; 6415 else 6416 *cur = p + 1; 6417 6418 *p = '\0'; 6419 6420 /* parse */ 6421 p = strchr(start, ':'); 6422 if (!p) { 6423 val = strstrip(start); 6424 goto parse_val; 6425 } 6426 *p = '\0'; 6427 6428 id = strstrip(start); 6429 val = strstrip(p + 1); 6430 6431 /* parse id */ 6432 p = strchr(id, '.'); 6433 if (p) { 6434 *p++ = '\0'; 6435 force_ent->device = simple_strtoul(p, &endp, 10); 6436 if (p == endp || *endp != '\0') { 6437 *reason = "invalid device"; 6438 return -EINVAL; 6439 } 6440 } 6441 6442 force_ent->port = simple_strtoul(id, &endp, 10); 6443 if (id == endp || *endp != '\0') { 6444 *reason = "invalid port/link"; 6445 return -EINVAL; 6446 } 6447 6448 parse_val: 6449 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */ 6450 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) { 6451 const struct ata_force_param *fp = &force_tbl[i]; 6452 6453 if (strncasecmp(val, fp->name, strlen(val))) 6454 continue; 6455 6456 nr_matches++; 6457 match_fp = fp; 6458 6459 if (strcasecmp(val, fp->name) == 0) { 6460 nr_matches = 1; 6461 break; 6462 } 6463 } 6464 6465 if (!nr_matches) { 6466 *reason = "unknown value"; 6467 return -EINVAL; 6468 } 6469 if (nr_matches > 1) { 6470 *reason = "ambiguous value"; 6471 return -EINVAL; 6472 } 6473 6474 force_ent->param = *match_fp; 6475 6476 return 0; 6477 } 6478 ata_parse_force_param(void)6479 static void __init ata_parse_force_param(void) 6480 { 6481 int idx = 0, size = 1; 6482 int last_port = -1, last_device = -1; 6483 char *p, *cur, *next; 6484 6485 /* Calculate maximum number of params and allocate ata_force_tbl */ 6486 for (p = ata_force_param_buf; *p; p++) 6487 if (*p == ',') 6488 size++; 6489 6490 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL); 6491 if (!ata_force_tbl) { 6492 printk(KERN_WARNING "ata: failed to extend force table, " 6493 "libata.force ignored\n"); 6494 return; 6495 } 6496 6497 /* parse and populate the table */ 6498 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) { 6499 const char *reason = ""; 6500 struct ata_force_ent te = { .port = -1, .device = -1 }; 6501 6502 next = cur; 6503 if (ata_parse_force_one(&next, &te, &reason)) { 6504 printk(KERN_WARNING "ata: failed to parse force " 6505 "parameter \"%s\" (%s)\n", 6506 cur, reason); 6507 continue; 6508 } 6509 6510 if (te.port == -1) { 6511 te.port = last_port; 6512 te.device = last_device; 6513 } 6514 6515 ata_force_tbl[idx++] = te; 6516 6517 last_port = te.port; 6518 last_device = te.device; 6519 } 6520 6521 ata_force_tbl_size = idx; 6522 } 6523 ata_free_force_param(void)6524 static void ata_free_force_param(void) 6525 { 6526 kfree(ata_force_tbl); 6527 } 6528 #else ata_parse_force_param(void)6529 static inline void ata_parse_force_param(void) { } ata_free_force_param(void)6530 static inline void ata_free_force_param(void) { } 6531 #endif 6532 ata_init(void)6533 static int __init ata_init(void) 6534 { 6535 int rc; 6536 6537 ata_parse_force_param(); 6538 6539 rc = ata_sff_init(); 6540 if (rc) { 6541 ata_free_force_param(); 6542 return rc; 6543 } 6544 6545 libata_transport_init(); 6546 ata_scsi_transport_template = ata_attach_transport(); 6547 if (!ata_scsi_transport_template) { 6548 ata_sff_exit(); 6549 rc = -ENOMEM; 6550 goto err_out; 6551 } 6552 6553 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); 6554 return 0; 6555 6556 err_out: 6557 return rc; 6558 } 6559 ata_exit(void)6560 static void __exit ata_exit(void) 6561 { 6562 ata_release_transport(ata_scsi_transport_template); 6563 libata_transport_exit(); 6564 ata_sff_exit(); 6565 ata_free_force_param(); 6566 } 6567 6568 subsys_initcall(ata_init); 6569 module_exit(ata_exit); 6570 6571 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1); 6572 ata_ratelimit(void)6573 int ata_ratelimit(void) 6574 { 6575 return __ratelimit(&ratelimit); 6576 } 6577 EXPORT_SYMBOL_GPL(ata_ratelimit); 6578 6579 /** 6580 * ata_msleep - ATA EH owner aware msleep 6581 * @ap: ATA port to attribute the sleep to 6582 * @msecs: duration to sleep in milliseconds 6583 * 6584 * Sleeps @msecs. If the current task is owner of @ap's EH, the 6585 * ownership is released before going to sleep and reacquired 6586 * after the sleep is complete. IOW, other ports sharing the 6587 * @ap->host will be allowed to own the EH while this task is 6588 * sleeping. 6589 * 6590 * LOCKING: 6591 * Might sleep. 6592 */ ata_msleep(struct ata_port * ap,unsigned int msecs)6593 void ata_msleep(struct ata_port *ap, unsigned int msecs) 6594 { 6595 bool owns_eh = ap && ap->host->eh_owner == current; 6596 6597 if (owns_eh) 6598 ata_eh_release(ap); 6599 6600 if (msecs < 20) { 6601 unsigned long usecs = msecs * USEC_PER_MSEC; 6602 usleep_range(usecs, usecs + 50); 6603 } else { 6604 msleep(msecs); 6605 } 6606 6607 if (owns_eh) 6608 ata_eh_acquire(ap); 6609 } 6610 EXPORT_SYMBOL_GPL(ata_msleep); 6611 6612 /** 6613 * ata_wait_register - wait until register value changes 6614 * @ap: ATA port to wait register for, can be NULL 6615 * @reg: IO-mapped register 6616 * @mask: Mask to apply to read register value 6617 * @val: Wait condition 6618 * @interval: polling interval in milliseconds 6619 * @timeout: timeout in milliseconds 6620 * 6621 * Waiting for some bits of register to change is a common 6622 * operation for ATA controllers. This function reads 32bit LE 6623 * IO-mapped register @reg and tests for the following condition. 6624 * 6625 * (*@reg & mask) != val 6626 * 6627 * If the condition is met, it returns; otherwise, the process is 6628 * repeated after @interval_msec until timeout. 6629 * 6630 * LOCKING: 6631 * Kernel thread context (may sleep) 6632 * 6633 * RETURNS: 6634 * The final register value. 6635 */ ata_wait_register(struct ata_port * ap,void __iomem * reg,u32 mask,u32 val,unsigned int interval,unsigned int timeout)6636 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val, 6637 unsigned int interval, unsigned int timeout) 6638 { 6639 unsigned long deadline; 6640 u32 tmp; 6641 6642 tmp = ioread32(reg); 6643 6644 /* Calculate timeout _after_ the first read to make sure 6645 * preceding writes reach the controller before starting to 6646 * eat away the timeout. 6647 */ 6648 deadline = ata_deadline(jiffies, timeout); 6649 6650 while ((tmp & mask) == val && time_before(jiffies, deadline)) { 6651 ata_msleep(ap, interval); 6652 tmp = ioread32(reg); 6653 } 6654 6655 return tmp; 6656 } 6657 EXPORT_SYMBOL_GPL(ata_wait_register); 6658 6659 /* 6660 * Dummy port_ops 6661 */ ata_dummy_qc_issue(struct ata_queued_cmd * qc)6662 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc) 6663 { 6664 return AC_ERR_SYSTEM; 6665 } 6666 ata_dummy_error_handler(struct ata_port * ap)6667 static void ata_dummy_error_handler(struct ata_port *ap) 6668 { 6669 /* truly dummy */ 6670 } 6671 6672 struct ata_port_operations ata_dummy_port_ops = { 6673 .qc_issue = ata_dummy_qc_issue, 6674 .error_handler = ata_dummy_error_handler, 6675 .sched_eh = ata_std_sched_eh, 6676 .end_eh = ata_std_end_eh, 6677 }; 6678 EXPORT_SYMBOL_GPL(ata_dummy_port_ops); 6679 6680 const struct ata_port_info ata_dummy_port_info = { 6681 .port_ops = &ata_dummy_port_ops, 6682 }; 6683 EXPORT_SYMBOL_GPL(ata_dummy_port_info); 6684 ata_print_version(const struct device * dev,const char * version)6685 void ata_print_version(const struct device *dev, const char *version) 6686 { 6687 dev_printk(KERN_DEBUG, dev, "version %s\n", version); 6688 } 6689 EXPORT_SYMBOL(ata_print_version); 6690 6691 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load); 6692 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command); 6693 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup); 6694 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start); 6695 EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status); 6696