xref: /linux/kernel/power/swap.c (revision 4f9786035f9e519db41375818e1d0b5f20da2f10)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/kernel/power/swap.c
4  *
5  * This file provides functions for reading the suspend image from
6  * and writing it to a swap partition.
7  *
8  * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
9  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
10  * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
11  */
12 
13 #define pr_fmt(fmt) "PM: " fmt
14 
15 #include <crypto/acompress.h>
16 #include <linux/module.h>
17 #include <linux/file.h>
18 #include <linux/delay.h>
19 #include <linux/bitops.h>
20 #include <linux/device.h>
21 #include <linux/bio.h>
22 #include <linux/blkdev.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/pm.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/cpumask.h>
29 #include <linux/atomic.h>
30 #include <linux/kthread.h>
31 #include <linux/crc32.h>
32 #include <linux/ktime.h>
33 
34 #include "power.h"
35 
36 #define HIBERNATE_SIG	"S1SUSPEND"
37 
38 u32 swsusp_hardware_signature;
39 
40 /*
41  * When reading an {un,}compressed image, we may restore pages in place,
42  * in which case some architectures need these pages cleaning before they
43  * can be executed. We don't know which pages these may be, so clean the lot.
44  */
45 static bool clean_pages_on_read;
46 static bool clean_pages_on_decompress;
47 
48 /*
49  *	The swap map is a data structure used for keeping track of each page
50  *	written to a swap partition.  It consists of many swap_map_page
51  *	structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
52  *	These structures are stored on the swap and linked together with the
53  *	help of the .next_swap member.
54  *
55  *	The swap map is created during suspend.  The swap map pages are
56  *	allocated and populated one at a time, so we only need one memory
57  *	page to set up the entire structure.
58  *
59  *	During resume we pick up all swap_map_page structures into a list.
60  */
61 
62 #define MAP_PAGE_ENTRIES	(PAGE_SIZE / sizeof(sector_t) - 1)
63 
64 /*
65  * Number of free pages that are not high.
66  */
67 static inline unsigned long low_free_pages(void)
68 {
69 	return nr_free_pages() - nr_free_highpages();
70 }
71 
72 /*
73  * Number of pages required to be kept free while writing the image. Always
74  * half of all available low pages before the writing starts.
75  */
76 static inline unsigned long reqd_free_pages(void)
77 {
78 	return low_free_pages() / 2;
79 }
80 
81 struct swap_map_page {
82 	sector_t entries[MAP_PAGE_ENTRIES];
83 	sector_t next_swap;
84 };
85 
86 struct swap_map_page_list {
87 	struct swap_map_page *map;
88 	struct swap_map_page_list *next;
89 };
90 
91 /*
92  *	The swap_map_handle structure is used for handling swap in
93  *	a file-alike way
94  */
95 
96 struct swap_map_handle {
97 	struct swap_map_page *cur;
98 	struct swap_map_page_list *maps;
99 	sector_t cur_swap;
100 	sector_t first_sector;
101 	unsigned int k;
102 	unsigned long reqd_free_pages;
103 	u32 crc32;
104 };
105 
106 struct swsusp_header {
107 	char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
108 	              sizeof(u32) - sizeof(u32)];
109 	u32	hw_sig;
110 	u32	crc32;
111 	sector_t image;
112 	unsigned int flags;	/* Flags to pass to the "boot" kernel */
113 	char	orig_sig[10];
114 	char	sig[10];
115 } __packed;
116 
117 static struct swsusp_header *swsusp_header;
118 
119 /*
120  *	The following functions are used for tracing the allocated
121  *	swap pages, so that they can be freed in case of an error.
122  */
123 
124 struct swsusp_extent {
125 	struct rb_node node;
126 	unsigned long start;
127 	unsigned long end;
128 };
129 
130 static struct rb_root swsusp_extents = RB_ROOT;
131 
132 static int swsusp_extents_insert(unsigned long swap_offset)
133 {
134 	struct rb_node **new = &(swsusp_extents.rb_node);
135 	struct rb_node *parent = NULL;
136 	struct swsusp_extent *ext;
137 
138 	/* Figure out where to put the new node */
139 	while (*new) {
140 		ext = rb_entry(*new, struct swsusp_extent, node);
141 		parent = *new;
142 		if (swap_offset < ext->start) {
143 			/* Try to merge */
144 			if (swap_offset == ext->start - 1) {
145 				ext->start--;
146 				return 0;
147 			}
148 			new = &((*new)->rb_left);
149 		} else if (swap_offset > ext->end) {
150 			/* Try to merge */
151 			if (swap_offset == ext->end + 1) {
152 				ext->end++;
153 				return 0;
154 			}
155 			new = &((*new)->rb_right);
156 		} else {
157 			/* It already is in the tree */
158 			return -EINVAL;
159 		}
160 	}
161 	/* Add the new node and rebalance the tree. */
162 	ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
163 	if (!ext)
164 		return -ENOMEM;
165 
166 	ext->start = swap_offset;
167 	ext->end = swap_offset;
168 	rb_link_node(&ext->node, parent, new);
169 	rb_insert_color(&ext->node, &swsusp_extents);
170 	return 0;
171 }
172 
173 /*
174  *	alloc_swapdev_block - allocate a swap page and register that it has
175  *	been allocated, so that it can be freed in case of an error.
176  */
177 
178 sector_t alloc_swapdev_block(int swap)
179 {
180 	unsigned long offset;
181 
182 	offset = swp_offset(get_swap_page_of_type(swap));
183 	if (offset) {
184 		if (swsusp_extents_insert(offset))
185 			swap_free(swp_entry(swap, offset));
186 		else
187 			return swapdev_block(swap, offset);
188 	}
189 	return 0;
190 }
191 
192 /*
193  *	free_all_swap_pages - free swap pages allocated for saving image data.
194  *	It also frees the extents used to register which swap entries had been
195  *	allocated.
196  */
197 
198 void free_all_swap_pages(int swap)
199 {
200 	struct rb_node *node;
201 
202 	while ((node = swsusp_extents.rb_node)) {
203 		struct swsusp_extent *ext;
204 
205 		ext = rb_entry(node, struct swsusp_extent, node);
206 		rb_erase(node, &swsusp_extents);
207 		swap_free_nr(swp_entry(swap, ext->start),
208 			     ext->end - ext->start + 1);
209 
210 		kfree(ext);
211 	}
212 }
213 
214 int swsusp_swap_in_use(void)
215 {
216 	return (swsusp_extents.rb_node != NULL);
217 }
218 
219 /*
220  * General things
221  */
222 
223 static unsigned short root_swap = 0xffff;
224 static struct file *hib_resume_bdev_file;
225 
226 struct hib_bio_batch {
227 	atomic_t		count;
228 	wait_queue_head_t	wait;
229 	blk_status_t		error;
230 	struct blk_plug		plug;
231 };
232 
233 static void hib_init_batch(struct hib_bio_batch *hb)
234 {
235 	atomic_set(&hb->count, 0);
236 	init_waitqueue_head(&hb->wait);
237 	hb->error = BLK_STS_OK;
238 	blk_start_plug(&hb->plug);
239 }
240 
241 static void hib_finish_batch(struct hib_bio_batch *hb)
242 {
243 	blk_finish_plug(&hb->plug);
244 }
245 
246 static void hib_end_io(struct bio *bio)
247 {
248 	struct hib_bio_batch *hb = bio->bi_private;
249 	struct page *page = bio_first_page_all(bio);
250 
251 	if (bio->bi_status) {
252 		pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
253 			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
254 			 (unsigned long long)bio->bi_iter.bi_sector);
255 	}
256 
257 	if (bio_data_dir(bio) == WRITE)
258 		put_page(page);
259 	else if (clean_pages_on_read)
260 		flush_icache_range((unsigned long)page_address(page),
261 				   (unsigned long)page_address(page) + PAGE_SIZE);
262 
263 	if (bio->bi_status && !hb->error)
264 		hb->error = bio->bi_status;
265 	if (atomic_dec_and_test(&hb->count))
266 		wake_up(&hb->wait);
267 
268 	bio_put(bio);
269 }
270 
271 static int hib_submit_io(blk_opf_t opf, pgoff_t page_off, void *addr,
272 			 struct hib_bio_batch *hb)
273 {
274 	struct page *page = virt_to_page(addr);
275 	struct bio *bio;
276 	int error = 0;
277 
278 	bio = bio_alloc(file_bdev(hib_resume_bdev_file), 1, opf,
279 			GFP_NOIO | __GFP_HIGH);
280 	bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
281 
282 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
283 		pr_err("Adding page to bio failed at %llu\n",
284 		       (unsigned long long)bio->bi_iter.bi_sector);
285 		bio_put(bio);
286 		return -EFAULT;
287 	}
288 
289 	if (hb) {
290 		bio->bi_end_io = hib_end_io;
291 		bio->bi_private = hb;
292 		atomic_inc(&hb->count);
293 		submit_bio(bio);
294 	} else {
295 		error = submit_bio_wait(bio);
296 		bio_put(bio);
297 	}
298 
299 	return error;
300 }
301 
302 static int hib_wait_io(struct hib_bio_batch *hb)
303 {
304 	/*
305 	 * We are relying on the behavior of blk_plug that a thread with
306 	 * a plug will flush the plug list before sleeping.
307 	 */
308 	wait_event(hb->wait, atomic_read(&hb->count) == 0);
309 	return blk_status_to_errno(hb->error);
310 }
311 
312 /*
313  * Saving part
314  */
315 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
316 {
317 	int error;
318 
319 	hib_submit_io(REQ_OP_READ, swsusp_resume_block, swsusp_header, NULL);
320 	if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
321 	    !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
322 		memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
323 		memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
324 		swsusp_header->image = handle->first_sector;
325 		if (swsusp_hardware_signature) {
326 			swsusp_header->hw_sig = swsusp_hardware_signature;
327 			flags |= SF_HW_SIG;
328 		}
329 		swsusp_header->flags = flags;
330 		if (flags & SF_CRC32_MODE)
331 			swsusp_header->crc32 = handle->crc32;
332 		error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
333 				      swsusp_resume_block, swsusp_header, NULL);
334 	} else {
335 		pr_err("Swap header not found!\n");
336 		error = -ENODEV;
337 	}
338 	return error;
339 }
340 
341 /*
342  * Hold the swsusp_header flag. This is used in software_resume() in
343  * 'kernel/power/hibernate' to check if the image is compressed and query
344  * for the compression algorithm support(if so).
345  */
346 unsigned int swsusp_header_flags;
347 
348 /**
349  *	swsusp_swap_check - check if the resume device is a swap device
350  *	and get its index (if so)
351  *
352  *	This is called before saving image
353  */
354 static int swsusp_swap_check(void)
355 {
356 	int res;
357 
358 	if (swsusp_resume_device)
359 		res = swap_type_of(swsusp_resume_device, swsusp_resume_block);
360 	else
361 		res = find_first_swap(&swsusp_resume_device);
362 	if (res < 0)
363 		return res;
364 	root_swap = res;
365 
366 	hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device,
367 			BLK_OPEN_WRITE, NULL, NULL);
368 	if (IS_ERR(hib_resume_bdev_file))
369 		return PTR_ERR(hib_resume_bdev_file);
370 
371 	return 0;
372 }
373 
374 /**
375  *	write_page - Write one page to given swap location.
376  *	@buf:		Address we're writing.
377  *	@offset:	Offset of the swap page we're writing to.
378  *	@hb:		bio completion batch
379  */
380 
381 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
382 {
383 	void *src;
384 	int ret;
385 
386 	if (!offset)
387 		return -ENOSPC;
388 
389 	if (hb) {
390 		src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN |
391 		                              __GFP_NORETRY);
392 		if (src) {
393 			copy_page(src, buf);
394 		} else {
395 			ret = hib_wait_io(hb); /* Free pages */
396 			if (ret)
397 				return ret;
398 			src = (void *)__get_free_page(GFP_NOIO |
399 			                              __GFP_NOWARN |
400 			                              __GFP_NORETRY);
401 			if (src) {
402 				copy_page(src, buf);
403 			} else {
404 				WARN_ON_ONCE(1);
405 				hb = NULL;	/* Go synchronous */
406 				src = buf;
407 			}
408 		}
409 	} else {
410 		src = buf;
411 	}
412 	return hib_submit_io(REQ_OP_WRITE | REQ_SYNC, offset, src, hb);
413 }
414 
415 static void release_swap_writer(struct swap_map_handle *handle)
416 {
417 	if (handle->cur)
418 		free_page((unsigned long)handle->cur);
419 	handle->cur = NULL;
420 }
421 
422 static int get_swap_writer(struct swap_map_handle *handle)
423 {
424 	int ret;
425 
426 	ret = swsusp_swap_check();
427 	if (ret) {
428 		if (ret != -ENOSPC)
429 			pr_err("Cannot find swap device, try swapon -a\n");
430 		return ret;
431 	}
432 	handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
433 	if (!handle->cur) {
434 		ret = -ENOMEM;
435 		goto err_close;
436 	}
437 	handle->cur_swap = alloc_swapdev_block(root_swap);
438 	if (!handle->cur_swap) {
439 		ret = -ENOSPC;
440 		goto err_rel;
441 	}
442 	handle->k = 0;
443 	handle->reqd_free_pages = reqd_free_pages();
444 	handle->first_sector = handle->cur_swap;
445 	return 0;
446 err_rel:
447 	release_swap_writer(handle);
448 err_close:
449 	swsusp_close();
450 	return ret;
451 }
452 
453 static int swap_write_page(struct swap_map_handle *handle, void *buf,
454 		struct hib_bio_batch *hb)
455 {
456 	int error;
457 	sector_t offset;
458 
459 	if (!handle->cur)
460 		return -EINVAL;
461 	offset = alloc_swapdev_block(root_swap);
462 	error = write_page(buf, offset, hb);
463 	if (error)
464 		return error;
465 	handle->cur->entries[handle->k++] = offset;
466 	if (handle->k >= MAP_PAGE_ENTRIES) {
467 		offset = alloc_swapdev_block(root_swap);
468 		if (!offset)
469 			return -ENOSPC;
470 		handle->cur->next_swap = offset;
471 		error = write_page(handle->cur, handle->cur_swap, hb);
472 		if (error)
473 			goto out;
474 		clear_page(handle->cur);
475 		handle->cur_swap = offset;
476 		handle->k = 0;
477 
478 		if (hb && low_free_pages() <= handle->reqd_free_pages) {
479 			error = hib_wait_io(hb);
480 			if (error)
481 				goto out;
482 			/*
483 			 * Recalculate the number of required free pages, to
484 			 * make sure we never take more than half.
485 			 */
486 			handle->reqd_free_pages = reqd_free_pages();
487 		}
488 	}
489  out:
490 	return error;
491 }
492 
493 static int flush_swap_writer(struct swap_map_handle *handle)
494 {
495 	if (handle->cur && handle->cur_swap)
496 		return write_page(handle->cur, handle->cur_swap, NULL);
497 	else
498 		return -EINVAL;
499 }
500 
501 static int swap_writer_finish(struct swap_map_handle *handle,
502 		unsigned int flags, int error)
503 {
504 	if (!error) {
505 		pr_info("S");
506 		error = mark_swapfiles(handle, flags);
507 		pr_cont("|\n");
508 		flush_swap_writer(handle);
509 	}
510 
511 	if (error)
512 		free_all_swap_pages(root_swap);
513 	release_swap_writer(handle);
514 	swsusp_close();
515 
516 	return error;
517 }
518 
519 /*
520  * Bytes we need for compressed data in worst case. We assume(limitation)
521  * this is the worst of all the compression algorithms.
522  */
523 #define bytes_worst_compress(x) ((x) + ((x) / 16) + 64 + 3 + 2)
524 
525 /* We need to remember how much compressed data we need to read. */
526 #define CMP_HEADER	sizeof(size_t)
527 
528 /* Number of pages/bytes we'll compress at one time. */
529 #define UNC_PAGES	32
530 #define UNC_SIZE	(UNC_PAGES * PAGE_SIZE)
531 
532 /* Number of pages we need for compressed data (worst case). */
533 #define CMP_PAGES	DIV_ROUND_UP(bytes_worst_compress(UNC_SIZE) + \
534 				CMP_HEADER, PAGE_SIZE)
535 #define CMP_SIZE	(CMP_PAGES * PAGE_SIZE)
536 
537 /* Maximum number of threads for compression/decompression. */
538 #define CMP_THREADS	3
539 
540 /* Minimum/maximum number of pages for read buffering. */
541 #define CMP_MIN_RD_PAGES	1024
542 #define CMP_MAX_RD_PAGES	8192
543 
544 /**
545  *	save_image - save the suspend image data
546  */
547 
548 static int save_image(struct swap_map_handle *handle,
549                       struct snapshot_handle *snapshot,
550                       unsigned int nr_to_write)
551 {
552 	unsigned int m;
553 	int ret;
554 	int nr_pages;
555 	int err2;
556 	struct hib_bio_batch hb;
557 	ktime_t start;
558 	ktime_t stop;
559 
560 	hib_init_batch(&hb);
561 
562 	pr_info("Saving image data pages (%u pages)...\n",
563 		nr_to_write);
564 	m = nr_to_write / 10;
565 	if (!m)
566 		m = 1;
567 	nr_pages = 0;
568 	start = ktime_get();
569 	while (1) {
570 		ret = snapshot_read_next(snapshot);
571 		if (ret <= 0)
572 			break;
573 		ret = swap_write_page(handle, data_of(*snapshot), &hb);
574 		if (ret)
575 			break;
576 		if (!(nr_pages % m))
577 			pr_info("Image saving progress: %3d%%\n",
578 				nr_pages / m * 10);
579 		nr_pages++;
580 	}
581 	err2 = hib_wait_io(&hb);
582 	hib_finish_batch(&hb);
583 	stop = ktime_get();
584 	if (!ret)
585 		ret = err2;
586 	if (!ret)
587 		pr_info("Image saving done\n");
588 	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
589 	return ret;
590 }
591 
592 /*
593  * Structure used for CRC32.
594  */
595 struct crc_data {
596 	struct task_struct *thr;                  /* thread */
597 	atomic_t ready;                           /* ready to start flag */
598 	atomic_t stop;                            /* ready to stop flag */
599 	unsigned run_threads;                     /* nr current threads */
600 	wait_queue_head_t go;                     /* start crc update */
601 	wait_queue_head_t done;                   /* crc update done */
602 	u32 *crc32;                               /* points to handle's crc32 */
603 	size_t *unc_len[CMP_THREADS];             /* uncompressed lengths */
604 	unsigned char *unc[CMP_THREADS];          /* uncompressed data */
605 };
606 
607 /*
608  * CRC32 update function that runs in its own thread.
609  */
610 static int crc32_threadfn(void *data)
611 {
612 	struct crc_data *d = data;
613 	unsigned i;
614 
615 	while (1) {
616 		wait_event(d->go, atomic_read_acquire(&d->ready) ||
617 		                  kthread_should_stop());
618 		if (kthread_should_stop()) {
619 			d->thr = NULL;
620 			atomic_set_release(&d->stop, 1);
621 			wake_up(&d->done);
622 			break;
623 		}
624 		atomic_set(&d->ready, 0);
625 
626 		for (i = 0; i < d->run_threads; i++)
627 			*d->crc32 = crc32_le(*d->crc32,
628 			                     d->unc[i], *d->unc_len[i]);
629 		atomic_set_release(&d->stop, 1);
630 		wake_up(&d->done);
631 	}
632 	return 0;
633 }
634 /*
635  * Structure used for data compression.
636  */
637 struct cmp_data {
638 	struct task_struct *thr;                  /* thread */
639 	struct crypto_acomp *cc;		  /* crypto compressor */
640 	struct acomp_req *cr;			  /* crypto request */
641 	atomic_t ready;                           /* ready to start flag */
642 	atomic_t stop;                            /* ready to stop flag */
643 	int ret;                                  /* return code */
644 	wait_queue_head_t go;                     /* start compression */
645 	wait_queue_head_t done;                   /* compression done */
646 	size_t unc_len;                           /* uncompressed length */
647 	size_t cmp_len;                           /* compressed length */
648 	unsigned char unc[UNC_SIZE];              /* uncompressed buffer */
649 	unsigned char cmp[CMP_SIZE];              /* compressed buffer */
650 };
651 
652 /* Indicates the image size after compression */
653 static atomic_t compressed_size = ATOMIC_INIT(0);
654 
655 /*
656  * Compression function that runs in its own thread.
657  */
658 static int compress_threadfn(void *data)
659 {
660 	struct cmp_data *d = data;
661 
662 	while (1) {
663 		wait_event(d->go, atomic_read_acquire(&d->ready) ||
664 		                  kthread_should_stop());
665 		if (kthread_should_stop()) {
666 			d->thr = NULL;
667 			d->ret = -1;
668 			atomic_set_release(&d->stop, 1);
669 			wake_up(&d->done);
670 			break;
671 		}
672 		atomic_set(&d->ready, 0);
673 
674 		acomp_request_set_callback(d->cr, CRYPTO_TFM_REQ_MAY_SLEEP,
675 					   NULL, NULL);
676 		acomp_request_set_src_nondma(d->cr, d->unc, d->unc_len);
677 		acomp_request_set_dst_nondma(d->cr, d->cmp + CMP_HEADER,
678 					     CMP_SIZE - CMP_HEADER);
679 		d->ret = crypto_acomp_compress(d->cr);
680 		d->cmp_len = d->cr->dlen;
681 
682 		atomic_set(&compressed_size, atomic_read(&compressed_size) + d->cmp_len);
683 		atomic_set_release(&d->stop, 1);
684 		wake_up(&d->done);
685 	}
686 	return 0;
687 }
688 
689 /**
690  * save_compressed_image - Save the suspend image data after compression.
691  * @handle: Swap map handle to use for saving the image.
692  * @snapshot: Image to read data from.
693  * @nr_to_write: Number of pages to save.
694  */
695 static int save_compressed_image(struct swap_map_handle *handle,
696 				 struct snapshot_handle *snapshot,
697 				 unsigned int nr_to_write)
698 {
699 	unsigned int m;
700 	int ret = 0;
701 	int nr_pages;
702 	int err2;
703 	struct hib_bio_batch hb;
704 	ktime_t start;
705 	ktime_t stop;
706 	size_t off;
707 	unsigned thr, run_threads, nr_threads;
708 	unsigned char *page = NULL;
709 	struct cmp_data *data = NULL;
710 	struct crc_data *crc = NULL;
711 
712 	hib_init_batch(&hb);
713 
714 	atomic_set(&compressed_size, 0);
715 
716 	/*
717 	 * We'll limit the number of threads for compression to limit memory
718 	 * footprint.
719 	 */
720 	nr_threads = num_online_cpus() - 1;
721 	nr_threads = clamp_val(nr_threads, 1, CMP_THREADS);
722 
723 	page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH);
724 	if (!page) {
725 		pr_err("Failed to allocate %s page\n", hib_comp_algo);
726 		ret = -ENOMEM;
727 		goto out_clean;
728 	}
729 
730 	data = vzalloc(array_size(nr_threads, sizeof(*data)));
731 	if (!data) {
732 		pr_err("Failed to allocate %s data\n", hib_comp_algo);
733 		ret = -ENOMEM;
734 		goto out_clean;
735 	}
736 
737 	crc = kzalloc(sizeof(*crc), GFP_KERNEL);
738 	if (!crc) {
739 		pr_err("Failed to allocate crc\n");
740 		ret = -ENOMEM;
741 		goto out_clean;
742 	}
743 
744 	/*
745 	 * Start the compression threads.
746 	 */
747 	for (thr = 0; thr < nr_threads; thr++) {
748 		init_waitqueue_head(&data[thr].go);
749 		init_waitqueue_head(&data[thr].done);
750 
751 		data[thr].cc = crypto_alloc_acomp(hib_comp_algo, 0, CRYPTO_ALG_ASYNC);
752 		if (IS_ERR_OR_NULL(data[thr].cc)) {
753 			pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc));
754 			ret = -EFAULT;
755 			goto out_clean;
756 		}
757 
758 		data[thr].cr = acomp_request_alloc(data[thr].cc);
759 		if (!data[thr].cr) {
760 			pr_err("Could not allocate comp request\n");
761 			ret = -ENOMEM;
762 			goto out_clean;
763 		}
764 
765 		data[thr].thr = kthread_run(compress_threadfn,
766 		                            &data[thr],
767 		                            "image_compress/%u", thr);
768 		if (IS_ERR(data[thr].thr)) {
769 			data[thr].thr = NULL;
770 			pr_err("Cannot start compression threads\n");
771 			ret = -ENOMEM;
772 			goto out_clean;
773 		}
774 	}
775 
776 	/*
777 	 * Start the CRC32 thread.
778 	 */
779 	init_waitqueue_head(&crc->go);
780 	init_waitqueue_head(&crc->done);
781 
782 	handle->crc32 = 0;
783 	crc->crc32 = &handle->crc32;
784 	for (thr = 0; thr < nr_threads; thr++) {
785 		crc->unc[thr] = data[thr].unc;
786 		crc->unc_len[thr] = &data[thr].unc_len;
787 	}
788 
789 	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
790 	if (IS_ERR(crc->thr)) {
791 		crc->thr = NULL;
792 		pr_err("Cannot start CRC32 thread\n");
793 		ret = -ENOMEM;
794 		goto out_clean;
795 	}
796 
797 	/*
798 	 * Adjust the number of required free pages after all allocations have
799 	 * been done. We don't want to run out of pages when writing.
800 	 */
801 	handle->reqd_free_pages = reqd_free_pages();
802 
803 	pr_info("Using %u thread(s) for %s compression\n", nr_threads, hib_comp_algo);
804 	pr_info("Compressing and saving image data (%u pages)...\n",
805 		nr_to_write);
806 	m = nr_to_write / 10;
807 	if (!m)
808 		m = 1;
809 	nr_pages = 0;
810 	start = ktime_get();
811 	for (;;) {
812 		for (thr = 0; thr < nr_threads; thr++) {
813 			for (off = 0; off < UNC_SIZE; off += PAGE_SIZE) {
814 				ret = snapshot_read_next(snapshot);
815 				if (ret < 0)
816 					goto out_finish;
817 
818 				if (!ret)
819 					break;
820 
821 				memcpy(data[thr].unc + off,
822 				       data_of(*snapshot), PAGE_SIZE);
823 
824 				if (!(nr_pages % m))
825 					pr_info("Image saving progress: %3d%%\n",
826 						nr_pages / m * 10);
827 				nr_pages++;
828 			}
829 			if (!off)
830 				break;
831 
832 			data[thr].unc_len = off;
833 
834 			atomic_set_release(&data[thr].ready, 1);
835 			wake_up(&data[thr].go);
836 		}
837 
838 		if (!thr)
839 			break;
840 
841 		crc->run_threads = thr;
842 		atomic_set_release(&crc->ready, 1);
843 		wake_up(&crc->go);
844 
845 		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
846 			wait_event(data[thr].done,
847 				atomic_read_acquire(&data[thr].stop));
848 			atomic_set(&data[thr].stop, 0);
849 
850 			ret = data[thr].ret;
851 
852 			if (ret < 0) {
853 				pr_err("%s compression failed\n", hib_comp_algo);
854 				goto out_finish;
855 			}
856 
857 			if (unlikely(!data[thr].cmp_len ||
858 			             data[thr].cmp_len >
859 				     bytes_worst_compress(data[thr].unc_len))) {
860 				pr_err("Invalid %s compressed length\n", hib_comp_algo);
861 				ret = -1;
862 				goto out_finish;
863 			}
864 
865 			*(size_t *)data[thr].cmp = data[thr].cmp_len;
866 
867 			/*
868 			 * Given we are writing one page at a time to disk, we
869 			 * copy that much from the buffer, although the last
870 			 * bit will likely be smaller than full page. This is
871 			 * OK - we saved the length of the compressed data, so
872 			 * any garbage at the end will be discarded when we
873 			 * read it.
874 			 */
875 			for (off = 0;
876 			     off < CMP_HEADER + data[thr].cmp_len;
877 			     off += PAGE_SIZE) {
878 				memcpy(page, data[thr].cmp + off, PAGE_SIZE);
879 
880 				ret = swap_write_page(handle, page, &hb);
881 				if (ret)
882 					goto out_finish;
883 			}
884 		}
885 
886 		wait_event(crc->done, atomic_read_acquire(&crc->stop));
887 		atomic_set(&crc->stop, 0);
888 	}
889 
890 out_finish:
891 	err2 = hib_wait_io(&hb);
892 	stop = ktime_get();
893 	if (!ret)
894 		ret = err2;
895 	if (!ret)
896 		pr_info("Image saving done\n");
897 	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
898 	pr_info("Image size after compression: %d kbytes\n",
899 		(atomic_read(&compressed_size) / 1024));
900 
901 out_clean:
902 	hib_finish_batch(&hb);
903 	if (crc) {
904 		if (crc->thr)
905 			kthread_stop(crc->thr);
906 		kfree(crc);
907 	}
908 	if (data) {
909 		for (thr = 0; thr < nr_threads; thr++) {
910 			if (data[thr].thr)
911 				kthread_stop(data[thr].thr);
912 			acomp_request_free(data[thr].cr);
913 			crypto_free_acomp(data[thr].cc);
914 		}
915 		vfree(data);
916 	}
917 	if (page) free_page((unsigned long)page);
918 
919 	return ret;
920 }
921 
922 /**
923  *	enough_swap - Make sure we have enough swap to save the image.
924  *
925  *	Returns TRUE or FALSE after checking the total amount of swap
926  *	space available from the resume partition.
927  */
928 
929 static int enough_swap(unsigned int nr_pages)
930 {
931 	unsigned int free_swap = count_swap_pages(root_swap, 1);
932 	unsigned int required;
933 
934 	pr_debug("Free swap pages: %u\n", free_swap);
935 
936 	required = PAGES_FOR_IO + nr_pages;
937 	return free_swap > required;
938 }
939 
940 /**
941  *	swsusp_write - Write entire image and metadata.
942  *	@flags: flags to pass to the "boot" kernel in the image header
943  *
944  *	It is important _NOT_ to umount filesystems at this point. We want
945  *	them synced (in case something goes wrong) but we DO not want to mark
946  *	filesystem clean: it is not. (And it does not matter, if we resume
947  *	correctly, we'll mark system clean, anyway.)
948  */
949 
950 int swsusp_write(unsigned int flags)
951 {
952 	struct swap_map_handle handle;
953 	struct snapshot_handle snapshot;
954 	struct swsusp_info *header;
955 	unsigned long pages;
956 	int error;
957 
958 	pages = snapshot_get_image_size();
959 	error = get_swap_writer(&handle);
960 	if (error) {
961 		pr_err("Cannot get swap writer\n");
962 		return error;
963 	}
964 	if (flags & SF_NOCOMPRESS_MODE) {
965 		if (!enough_swap(pages)) {
966 			pr_err("Not enough free swap\n");
967 			error = -ENOSPC;
968 			goto out_finish;
969 		}
970 	}
971 	memset(&snapshot, 0, sizeof(struct snapshot_handle));
972 	error = snapshot_read_next(&snapshot);
973 	if (error < (int)PAGE_SIZE) {
974 		if (error >= 0)
975 			error = -EFAULT;
976 
977 		goto out_finish;
978 	}
979 	header = (struct swsusp_info *)data_of(snapshot);
980 	error = swap_write_page(&handle, header, NULL);
981 	if (!error) {
982 		error = (flags & SF_NOCOMPRESS_MODE) ?
983 			save_image(&handle, &snapshot, pages - 1) :
984 			save_compressed_image(&handle, &snapshot, pages - 1);
985 	}
986 out_finish:
987 	error = swap_writer_finish(&handle, flags, error);
988 	return error;
989 }
990 
991 /*
992  *	The following functions allow us to read data using a swap map
993  *	in a file-like way.
994  */
995 
996 static void release_swap_reader(struct swap_map_handle *handle)
997 {
998 	struct swap_map_page_list *tmp;
999 
1000 	while (handle->maps) {
1001 		if (handle->maps->map)
1002 			free_page((unsigned long)handle->maps->map);
1003 		tmp = handle->maps;
1004 		handle->maps = handle->maps->next;
1005 		kfree(tmp);
1006 	}
1007 	handle->cur = NULL;
1008 }
1009 
1010 static int get_swap_reader(struct swap_map_handle *handle,
1011 		unsigned int *flags_p)
1012 {
1013 	int error;
1014 	struct swap_map_page_list *tmp, *last;
1015 	sector_t offset;
1016 
1017 	*flags_p = swsusp_header->flags;
1018 
1019 	if (!swsusp_header->image) /* how can this happen? */
1020 		return -EINVAL;
1021 
1022 	handle->cur = NULL;
1023 	last = handle->maps = NULL;
1024 	offset = swsusp_header->image;
1025 	while (offset) {
1026 		tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL);
1027 		if (!tmp) {
1028 			release_swap_reader(handle);
1029 			return -ENOMEM;
1030 		}
1031 		if (!handle->maps)
1032 			handle->maps = tmp;
1033 		if (last)
1034 			last->next = tmp;
1035 		last = tmp;
1036 
1037 		tmp->map = (struct swap_map_page *)
1038 			   __get_free_page(GFP_NOIO | __GFP_HIGH);
1039 		if (!tmp->map) {
1040 			release_swap_reader(handle);
1041 			return -ENOMEM;
1042 		}
1043 
1044 		error = hib_submit_io(REQ_OP_READ, offset, tmp->map, NULL);
1045 		if (error) {
1046 			release_swap_reader(handle);
1047 			return error;
1048 		}
1049 		offset = tmp->map->next_swap;
1050 	}
1051 	handle->k = 0;
1052 	handle->cur = handle->maps->map;
1053 	return 0;
1054 }
1055 
1056 static int swap_read_page(struct swap_map_handle *handle, void *buf,
1057 		struct hib_bio_batch *hb)
1058 {
1059 	sector_t offset;
1060 	int error;
1061 	struct swap_map_page_list *tmp;
1062 
1063 	if (!handle->cur)
1064 		return -EINVAL;
1065 	offset = handle->cur->entries[handle->k];
1066 	if (!offset)
1067 		return -EFAULT;
1068 	error = hib_submit_io(REQ_OP_READ, offset, buf, hb);
1069 	if (error)
1070 		return error;
1071 	if (++handle->k >= MAP_PAGE_ENTRIES) {
1072 		handle->k = 0;
1073 		free_page((unsigned long)handle->maps->map);
1074 		tmp = handle->maps;
1075 		handle->maps = handle->maps->next;
1076 		kfree(tmp);
1077 		if (!handle->maps)
1078 			release_swap_reader(handle);
1079 		else
1080 			handle->cur = handle->maps->map;
1081 	}
1082 	return error;
1083 }
1084 
1085 static int swap_reader_finish(struct swap_map_handle *handle)
1086 {
1087 	release_swap_reader(handle);
1088 
1089 	return 0;
1090 }
1091 
1092 /**
1093  *	load_image - load the image using the swap map handle
1094  *	@handle and the snapshot handle @snapshot
1095  *	(assume there are @nr_pages pages to load)
1096  */
1097 
1098 static int load_image(struct swap_map_handle *handle,
1099                       struct snapshot_handle *snapshot,
1100                       unsigned int nr_to_read)
1101 {
1102 	unsigned int m;
1103 	int ret = 0;
1104 	ktime_t start;
1105 	ktime_t stop;
1106 	struct hib_bio_batch hb;
1107 	int err2;
1108 	unsigned nr_pages;
1109 
1110 	hib_init_batch(&hb);
1111 
1112 	clean_pages_on_read = true;
1113 	pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
1114 	m = nr_to_read / 10;
1115 	if (!m)
1116 		m = 1;
1117 	nr_pages = 0;
1118 	start = ktime_get();
1119 	for ( ; ; ) {
1120 		ret = snapshot_write_next(snapshot);
1121 		if (ret <= 0)
1122 			break;
1123 		ret = swap_read_page(handle, data_of(*snapshot), &hb);
1124 		if (ret)
1125 			break;
1126 		if (snapshot->sync_read)
1127 			ret = hib_wait_io(&hb);
1128 		if (ret)
1129 			break;
1130 		if (!(nr_pages % m))
1131 			pr_info("Image loading progress: %3d%%\n",
1132 				nr_pages / m * 10);
1133 		nr_pages++;
1134 	}
1135 	err2 = hib_wait_io(&hb);
1136 	hib_finish_batch(&hb);
1137 	stop = ktime_get();
1138 	if (!ret)
1139 		ret = err2;
1140 	if (!ret) {
1141 		pr_info("Image loading done\n");
1142 		ret = snapshot_write_finalize(snapshot);
1143 		if (!ret && !snapshot_image_loaded(snapshot))
1144 			ret = -ENODATA;
1145 	}
1146 	swsusp_show_speed(start, stop, nr_to_read, "Read");
1147 	return ret;
1148 }
1149 
1150 /*
1151  * Structure used for data decompression.
1152  */
1153 struct dec_data {
1154 	struct task_struct *thr;                  /* thread */
1155 	struct crypto_acomp *cc;		  /* crypto compressor */
1156 	struct acomp_req *cr;			  /* crypto request */
1157 	atomic_t ready;                           /* ready to start flag */
1158 	atomic_t stop;                            /* ready to stop flag */
1159 	int ret;                                  /* return code */
1160 	wait_queue_head_t go;                     /* start decompression */
1161 	wait_queue_head_t done;                   /* decompression done */
1162 	size_t unc_len;                           /* uncompressed length */
1163 	size_t cmp_len;                           /* compressed length */
1164 	unsigned char unc[UNC_SIZE];              /* uncompressed buffer */
1165 	unsigned char cmp[CMP_SIZE];              /* compressed buffer */
1166 };
1167 
1168 /*
1169  * Decompression function that runs in its own thread.
1170  */
1171 static int decompress_threadfn(void *data)
1172 {
1173 	struct dec_data *d = data;
1174 
1175 	while (1) {
1176 		wait_event(d->go, atomic_read_acquire(&d->ready) ||
1177 		                  kthread_should_stop());
1178 		if (kthread_should_stop()) {
1179 			d->thr = NULL;
1180 			d->ret = -1;
1181 			atomic_set_release(&d->stop, 1);
1182 			wake_up(&d->done);
1183 			break;
1184 		}
1185 		atomic_set(&d->ready, 0);
1186 
1187 		acomp_request_set_callback(d->cr, CRYPTO_TFM_REQ_MAY_SLEEP,
1188 					   NULL, NULL);
1189 		acomp_request_set_src_nondma(d->cr, d->cmp + CMP_HEADER,
1190 					     d->cmp_len);
1191 		acomp_request_set_dst_nondma(d->cr, d->unc, UNC_SIZE);
1192 		d->ret = crypto_acomp_decompress(d->cr);
1193 		d->unc_len = d->cr->dlen;
1194 
1195 		if (clean_pages_on_decompress)
1196 			flush_icache_range((unsigned long)d->unc,
1197 					   (unsigned long)d->unc + d->unc_len);
1198 
1199 		atomic_set_release(&d->stop, 1);
1200 		wake_up(&d->done);
1201 	}
1202 	return 0;
1203 }
1204 
1205 /**
1206  * load_compressed_image - Load compressed image data and decompress it.
1207  * @handle: Swap map handle to use for loading data.
1208  * @snapshot: Image to copy uncompressed data into.
1209  * @nr_to_read: Number of pages to load.
1210  */
1211 static int load_compressed_image(struct swap_map_handle *handle,
1212 				 struct snapshot_handle *snapshot,
1213 				 unsigned int nr_to_read)
1214 {
1215 	unsigned int m;
1216 	int ret = 0;
1217 	int eof = 0;
1218 	struct hib_bio_batch hb;
1219 	ktime_t start;
1220 	ktime_t stop;
1221 	unsigned nr_pages;
1222 	size_t off;
1223 	unsigned i, thr, run_threads, nr_threads;
1224 	unsigned ring = 0, pg = 0, ring_size = 0,
1225 	         have = 0, want, need, asked = 0;
1226 	unsigned long read_pages = 0;
1227 	unsigned char **page = NULL;
1228 	struct dec_data *data = NULL;
1229 	struct crc_data *crc = NULL;
1230 
1231 	hib_init_batch(&hb);
1232 
1233 	/*
1234 	 * We'll limit the number of threads for decompression to limit memory
1235 	 * footprint.
1236 	 */
1237 	nr_threads = num_online_cpus() - 1;
1238 	nr_threads = clamp_val(nr_threads, 1, CMP_THREADS);
1239 
1240 	page = vmalloc(array_size(CMP_MAX_RD_PAGES, sizeof(*page)));
1241 	if (!page) {
1242 		pr_err("Failed to allocate %s page\n", hib_comp_algo);
1243 		ret = -ENOMEM;
1244 		goto out_clean;
1245 	}
1246 
1247 	data = vzalloc(array_size(nr_threads, sizeof(*data)));
1248 	if (!data) {
1249 		pr_err("Failed to allocate %s data\n", hib_comp_algo);
1250 		ret = -ENOMEM;
1251 		goto out_clean;
1252 	}
1253 
1254 	crc = kzalloc(sizeof(*crc), GFP_KERNEL);
1255 	if (!crc) {
1256 		pr_err("Failed to allocate crc\n");
1257 		ret = -ENOMEM;
1258 		goto out_clean;
1259 	}
1260 
1261 	clean_pages_on_decompress = true;
1262 
1263 	/*
1264 	 * Start the decompression threads.
1265 	 */
1266 	for (thr = 0; thr < nr_threads; thr++) {
1267 		init_waitqueue_head(&data[thr].go);
1268 		init_waitqueue_head(&data[thr].done);
1269 
1270 		data[thr].cc = crypto_alloc_acomp(hib_comp_algo, 0, CRYPTO_ALG_ASYNC);
1271 		if (IS_ERR_OR_NULL(data[thr].cc)) {
1272 			pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc));
1273 			ret = -EFAULT;
1274 			goto out_clean;
1275 		}
1276 
1277 		data[thr].cr = acomp_request_alloc(data[thr].cc);
1278 		if (!data[thr].cr) {
1279 			pr_err("Could not allocate comp request\n");
1280 			ret = -ENOMEM;
1281 			goto out_clean;
1282 		}
1283 
1284 		data[thr].thr = kthread_run(decompress_threadfn,
1285 		                            &data[thr],
1286 		                            "image_decompress/%u", thr);
1287 		if (IS_ERR(data[thr].thr)) {
1288 			data[thr].thr = NULL;
1289 			pr_err("Cannot start decompression threads\n");
1290 			ret = -ENOMEM;
1291 			goto out_clean;
1292 		}
1293 	}
1294 
1295 	/*
1296 	 * Start the CRC32 thread.
1297 	 */
1298 	init_waitqueue_head(&crc->go);
1299 	init_waitqueue_head(&crc->done);
1300 
1301 	handle->crc32 = 0;
1302 	crc->crc32 = &handle->crc32;
1303 	for (thr = 0; thr < nr_threads; thr++) {
1304 		crc->unc[thr] = data[thr].unc;
1305 		crc->unc_len[thr] = &data[thr].unc_len;
1306 	}
1307 
1308 	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1309 	if (IS_ERR(crc->thr)) {
1310 		crc->thr = NULL;
1311 		pr_err("Cannot start CRC32 thread\n");
1312 		ret = -ENOMEM;
1313 		goto out_clean;
1314 	}
1315 
1316 	/*
1317 	 * Set the number of pages for read buffering.
1318 	 * This is complete guesswork, because we'll only know the real
1319 	 * picture once prepare_image() is called, which is much later on
1320 	 * during the image load phase. We'll assume the worst case and
1321 	 * say that none of the image pages are from high memory.
1322 	 */
1323 	if (low_free_pages() > snapshot_get_image_size())
1324 		read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1325 	read_pages = clamp_val(read_pages, CMP_MIN_RD_PAGES, CMP_MAX_RD_PAGES);
1326 
1327 	for (i = 0; i < read_pages; i++) {
1328 		page[i] = (void *)__get_free_page(i < CMP_PAGES ?
1329 						  GFP_NOIO | __GFP_HIGH :
1330 						  GFP_NOIO | __GFP_NOWARN |
1331 						  __GFP_NORETRY);
1332 
1333 		if (!page[i]) {
1334 			if (i < CMP_PAGES) {
1335 				ring_size = i;
1336 				pr_err("Failed to allocate %s pages\n", hib_comp_algo);
1337 				ret = -ENOMEM;
1338 				goto out_clean;
1339 			} else {
1340 				break;
1341 			}
1342 		}
1343 	}
1344 	want = ring_size = i;
1345 
1346 	pr_info("Using %u thread(s) for %s decompression\n", nr_threads, hib_comp_algo);
1347 	pr_info("Loading and decompressing image data (%u pages)...\n",
1348 		nr_to_read);
1349 	m = nr_to_read / 10;
1350 	if (!m)
1351 		m = 1;
1352 	nr_pages = 0;
1353 	start = ktime_get();
1354 
1355 	ret = snapshot_write_next(snapshot);
1356 	if (ret <= 0)
1357 		goto out_finish;
1358 
1359 	for(;;) {
1360 		for (i = 0; !eof && i < want; i++) {
1361 			ret = swap_read_page(handle, page[ring], &hb);
1362 			if (ret) {
1363 				/*
1364 				 * On real read error, finish. On end of data,
1365 				 * set EOF flag and just exit the read loop.
1366 				 */
1367 				if (handle->cur &&
1368 				    handle->cur->entries[handle->k]) {
1369 					goto out_finish;
1370 				} else {
1371 					eof = 1;
1372 					break;
1373 				}
1374 			}
1375 			if (++ring >= ring_size)
1376 				ring = 0;
1377 		}
1378 		asked += i;
1379 		want -= i;
1380 
1381 		/*
1382 		 * We are out of data, wait for some more.
1383 		 */
1384 		if (!have) {
1385 			if (!asked)
1386 				break;
1387 
1388 			ret = hib_wait_io(&hb);
1389 			if (ret)
1390 				goto out_finish;
1391 			have += asked;
1392 			asked = 0;
1393 			if (eof)
1394 				eof = 2;
1395 		}
1396 
1397 		if (crc->run_threads) {
1398 			wait_event(crc->done, atomic_read_acquire(&crc->stop));
1399 			atomic_set(&crc->stop, 0);
1400 			crc->run_threads = 0;
1401 		}
1402 
1403 		for (thr = 0; have && thr < nr_threads; thr++) {
1404 			data[thr].cmp_len = *(size_t *)page[pg];
1405 			if (unlikely(!data[thr].cmp_len ||
1406 			             data[thr].cmp_len >
1407 					bytes_worst_compress(UNC_SIZE))) {
1408 				pr_err("Invalid %s compressed length\n", hib_comp_algo);
1409 				ret = -1;
1410 				goto out_finish;
1411 			}
1412 
1413 			need = DIV_ROUND_UP(data[thr].cmp_len + CMP_HEADER,
1414 			                    PAGE_SIZE);
1415 			if (need > have) {
1416 				if (eof > 1) {
1417 					ret = -1;
1418 					goto out_finish;
1419 				}
1420 				break;
1421 			}
1422 
1423 			for (off = 0;
1424 			     off < CMP_HEADER + data[thr].cmp_len;
1425 			     off += PAGE_SIZE) {
1426 				memcpy(data[thr].cmp + off,
1427 				       page[pg], PAGE_SIZE);
1428 				have--;
1429 				want++;
1430 				if (++pg >= ring_size)
1431 					pg = 0;
1432 			}
1433 
1434 			atomic_set_release(&data[thr].ready, 1);
1435 			wake_up(&data[thr].go);
1436 		}
1437 
1438 		/*
1439 		 * Wait for more data while we are decompressing.
1440 		 */
1441 		if (have < CMP_PAGES && asked) {
1442 			ret = hib_wait_io(&hb);
1443 			if (ret)
1444 				goto out_finish;
1445 			have += asked;
1446 			asked = 0;
1447 			if (eof)
1448 				eof = 2;
1449 		}
1450 
1451 		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1452 			wait_event(data[thr].done,
1453 				atomic_read_acquire(&data[thr].stop));
1454 			atomic_set(&data[thr].stop, 0);
1455 
1456 			ret = data[thr].ret;
1457 
1458 			if (ret < 0) {
1459 				pr_err("%s decompression failed\n", hib_comp_algo);
1460 				goto out_finish;
1461 			}
1462 
1463 			if (unlikely(!data[thr].unc_len ||
1464 				data[thr].unc_len > UNC_SIZE ||
1465 				data[thr].unc_len & (PAGE_SIZE - 1))) {
1466 				pr_err("Invalid %s uncompressed length\n", hib_comp_algo);
1467 				ret = -1;
1468 				goto out_finish;
1469 			}
1470 
1471 			for (off = 0;
1472 			     off < data[thr].unc_len; off += PAGE_SIZE) {
1473 				memcpy(data_of(*snapshot),
1474 				       data[thr].unc + off, PAGE_SIZE);
1475 
1476 				if (!(nr_pages % m))
1477 					pr_info("Image loading progress: %3d%%\n",
1478 						nr_pages / m * 10);
1479 				nr_pages++;
1480 
1481 				ret = snapshot_write_next(snapshot);
1482 				if (ret <= 0) {
1483 					crc->run_threads = thr + 1;
1484 					atomic_set_release(&crc->ready, 1);
1485 					wake_up(&crc->go);
1486 					goto out_finish;
1487 				}
1488 			}
1489 		}
1490 
1491 		crc->run_threads = thr;
1492 		atomic_set_release(&crc->ready, 1);
1493 		wake_up(&crc->go);
1494 	}
1495 
1496 out_finish:
1497 	if (crc->run_threads) {
1498 		wait_event(crc->done, atomic_read_acquire(&crc->stop));
1499 		atomic_set(&crc->stop, 0);
1500 	}
1501 	stop = ktime_get();
1502 	if (!ret) {
1503 		pr_info("Image loading done\n");
1504 		ret = snapshot_write_finalize(snapshot);
1505 		if (!ret && !snapshot_image_loaded(snapshot))
1506 			ret = -ENODATA;
1507 		if (!ret) {
1508 			if (swsusp_header->flags & SF_CRC32_MODE) {
1509 				if(handle->crc32 != swsusp_header->crc32) {
1510 					pr_err("Invalid image CRC32!\n");
1511 					ret = -ENODATA;
1512 				}
1513 			}
1514 		}
1515 	}
1516 	swsusp_show_speed(start, stop, nr_to_read, "Read");
1517 out_clean:
1518 	hib_finish_batch(&hb);
1519 	for (i = 0; i < ring_size; i++)
1520 		free_page((unsigned long)page[i]);
1521 	if (crc) {
1522 		if (crc->thr)
1523 			kthread_stop(crc->thr);
1524 		kfree(crc);
1525 	}
1526 	if (data) {
1527 		for (thr = 0; thr < nr_threads; thr++) {
1528 			if (data[thr].thr)
1529 				kthread_stop(data[thr].thr);
1530 			acomp_request_free(data[thr].cr);
1531 			crypto_free_acomp(data[thr].cc);
1532 		}
1533 		vfree(data);
1534 	}
1535 	vfree(page);
1536 
1537 	return ret;
1538 }
1539 
1540 /**
1541  *	swsusp_read - read the hibernation image.
1542  *	@flags_p: flags passed by the "frozen" kernel in the image header should
1543  *		  be written into this memory location
1544  */
1545 
1546 int swsusp_read(unsigned int *flags_p)
1547 {
1548 	int error;
1549 	struct swap_map_handle handle;
1550 	struct snapshot_handle snapshot;
1551 	struct swsusp_info *header;
1552 
1553 	memset(&snapshot, 0, sizeof(struct snapshot_handle));
1554 	error = snapshot_write_next(&snapshot);
1555 	if (error < (int)PAGE_SIZE)
1556 		return error < 0 ? error : -EFAULT;
1557 	header = (struct swsusp_info *)data_of(snapshot);
1558 	error = get_swap_reader(&handle, flags_p);
1559 	if (error)
1560 		goto end;
1561 	if (!error)
1562 		error = swap_read_page(&handle, header, NULL);
1563 	if (!error) {
1564 		error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1565 			load_image(&handle, &snapshot, header->pages - 1) :
1566 			load_compressed_image(&handle, &snapshot, header->pages - 1);
1567 	}
1568 	swap_reader_finish(&handle);
1569 end:
1570 	if (!error)
1571 		pr_debug("Image successfully loaded\n");
1572 	else
1573 		pr_debug("Error %d resuming\n", error);
1574 	return error;
1575 }
1576 
1577 static void *swsusp_holder;
1578 
1579 /**
1580  * swsusp_check - Open the resume device and check for the swsusp signature.
1581  * @exclusive: Open the resume device exclusively.
1582  */
1583 
1584 int swsusp_check(bool exclusive)
1585 {
1586 	void *holder = exclusive ? &swsusp_holder : NULL;
1587 	int error;
1588 
1589 	hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device,
1590 				BLK_OPEN_READ, holder, NULL);
1591 	if (!IS_ERR(hib_resume_bdev_file)) {
1592 		clear_page(swsusp_header);
1593 		error = hib_submit_io(REQ_OP_READ, swsusp_resume_block,
1594 					swsusp_header, NULL);
1595 		if (error)
1596 			goto put;
1597 
1598 		if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1599 			memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1600 			swsusp_header_flags = swsusp_header->flags;
1601 			/* Reset swap signature now */
1602 			error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1603 						swsusp_resume_block,
1604 						swsusp_header, NULL);
1605 		} else {
1606 			error = -EINVAL;
1607 		}
1608 		if (!error && swsusp_header->flags & SF_HW_SIG &&
1609 		    swsusp_header->hw_sig != swsusp_hardware_signature) {
1610 			pr_info("Suspend image hardware signature mismatch (%08x now %08x); aborting resume.\n",
1611 				swsusp_header->hw_sig, swsusp_hardware_signature);
1612 			error = -EINVAL;
1613 		}
1614 
1615 put:
1616 		if (error)
1617 			bdev_fput(hib_resume_bdev_file);
1618 		else
1619 			pr_debug("Image signature found, resuming\n");
1620 	} else {
1621 		error = PTR_ERR(hib_resume_bdev_file);
1622 	}
1623 
1624 	if (error)
1625 		pr_debug("Image not found (code %d)\n", error);
1626 
1627 	return error;
1628 }
1629 
1630 /**
1631  * swsusp_close - close resume device.
1632  */
1633 
1634 void swsusp_close(void)
1635 {
1636 	if (IS_ERR(hib_resume_bdev_file)) {
1637 		pr_debug("Image device not initialised\n");
1638 		return;
1639 	}
1640 
1641 	fput(hib_resume_bdev_file);
1642 }
1643 
1644 /**
1645  *      swsusp_unmark - Unmark swsusp signature in the resume device
1646  */
1647 
1648 #ifdef CONFIG_SUSPEND
1649 int swsusp_unmark(void)
1650 {
1651 	int error;
1652 
1653 	hib_submit_io(REQ_OP_READ, swsusp_resume_block,
1654 			swsusp_header, NULL);
1655 	if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1656 		memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1657 		error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1658 					swsusp_resume_block,
1659 					swsusp_header, NULL);
1660 	} else {
1661 		pr_err("Cannot find swsusp signature!\n");
1662 		error = -ENODEV;
1663 	}
1664 
1665 	/*
1666 	 * We just returned from suspend, we don't need the image any more.
1667 	 */
1668 	free_all_swap_pages(root_swap);
1669 
1670 	return error;
1671 }
1672 #endif
1673 
1674 static int __init swsusp_header_init(void)
1675 {
1676 	swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1677 	if (!swsusp_header)
1678 		panic("Could not allocate memory for swsusp_header\n");
1679 	return 0;
1680 }
1681 
1682 core_initcall(swsusp_header_init);
1683