xref: /linux/arch/arm64/kvm/at.c (revision 51d90a15fedf8366cb96ef68d0ea2d0bf15417d2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2017 - Linaro Ltd
4  * Author: Jintack Lim <jintack.lim@linaro.org>
5  */
6 
7 #include <linux/kvm_host.h>
8 
9 #include <asm/esr.h>
10 #include <asm/kvm_hyp.h>
11 #include <asm/kvm_mmu.h>
12 
fail_s1_walk(struct s1_walk_result * wr,u8 fst,bool s1ptw)13 static void fail_s1_walk(struct s1_walk_result *wr, u8 fst, bool s1ptw)
14 {
15 	wr->fst		= fst;
16 	wr->ptw		= s1ptw;
17 	wr->s2		= s1ptw;
18 	wr->failed	= true;
19 }
20 
21 #define S1_MMU_DISABLED		(-127)
22 
get_ia_size(struct s1_walk_info * wi)23 static int get_ia_size(struct s1_walk_info *wi)
24 {
25 	return 64 - wi->txsz;
26 }
27 
28 /* Return true if the IPA is out of the OA range */
check_output_size(u64 ipa,struct s1_walk_info * wi)29 static bool check_output_size(u64 ipa, struct s1_walk_info *wi)
30 {
31 	if (wi->pa52bit)
32 		return wi->max_oa_bits < 52 && (ipa & GENMASK_ULL(51, wi->max_oa_bits));
33 	return wi->max_oa_bits < 48 && (ipa & GENMASK_ULL(47, wi->max_oa_bits));
34 }
35 
has_52bit_pa(struct kvm_vcpu * vcpu,struct s1_walk_info * wi,u64 tcr)36 static bool has_52bit_pa(struct kvm_vcpu *vcpu, struct s1_walk_info *wi, u64 tcr)
37 {
38 	switch (BIT(wi->pgshift)) {
39 	case SZ_64K:
40 	default:		/* IMPDEF: treat any other value as 64k */
41 		if (!kvm_has_feat_enum(vcpu->kvm, ID_AA64MMFR0_EL1, PARANGE, 52))
42 			return false;
43 		return ((wi->regime == TR_EL2 ?
44 			 FIELD_GET(TCR_EL2_PS_MASK, tcr) :
45 			 FIELD_GET(TCR_IPS_MASK, tcr)) == 0b0110);
46 	case SZ_16K:
47 		if (!kvm_has_feat(vcpu->kvm, ID_AA64MMFR0_EL1, TGRAN16, 52_BIT))
48 			return false;
49 		break;
50 	case SZ_4K:
51 		if (!kvm_has_feat(vcpu->kvm, ID_AA64MMFR0_EL1, TGRAN4, 52_BIT))
52 			return false;
53 		break;
54 	}
55 
56 	return (tcr & (wi->regime == TR_EL2 ? TCR_EL2_DS : TCR_DS));
57 }
58 
desc_to_oa(struct s1_walk_info * wi,u64 desc)59 static u64 desc_to_oa(struct s1_walk_info *wi, u64 desc)
60 {
61 	u64 addr;
62 
63 	if (!wi->pa52bit)
64 		return desc & GENMASK_ULL(47, wi->pgshift);
65 
66 	switch (BIT(wi->pgshift)) {
67 	case SZ_4K:
68 	case SZ_16K:
69 		addr = desc & GENMASK_ULL(49, wi->pgshift);
70 		addr |= FIELD_GET(KVM_PTE_ADDR_51_50_LPA2, desc) << 50;
71 		break;
72 	case SZ_64K:
73 	default:	    /* IMPDEF: treat any other value as 64k */
74 		addr = desc & GENMASK_ULL(47, wi->pgshift);
75 		addr |= FIELD_GET(KVM_PTE_ADDR_51_48, desc) << 48;
76 		break;
77 	}
78 
79 	return addr;
80 }
81 
82 /* Return the translation regime that applies to an AT instruction */
compute_translation_regime(struct kvm_vcpu * vcpu,u32 op)83 static enum trans_regime compute_translation_regime(struct kvm_vcpu *vcpu, u32 op)
84 {
85 	/*
86 	 * We only get here from guest EL2, so the translation
87 	 * regime AT applies to is solely defined by {E2H,TGE}.
88 	 */
89 	switch (op) {
90 	case OP_AT_S1E2R:
91 	case OP_AT_S1E2W:
92 	case OP_AT_S1E2A:
93 		return vcpu_el2_e2h_is_set(vcpu) ? TR_EL20 : TR_EL2;
94 	default:
95 		return (vcpu_el2_e2h_is_set(vcpu) &&
96 			vcpu_el2_tge_is_set(vcpu)) ? TR_EL20 : TR_EL10;
97 	}
98 }
99 
effective_tcr2(struct kvm_vcpu * vcpu,enum trans_regime regime)100 static u64 effective_tcr2(struct kvm_vcpu *vcpu, enum trans_regime regime)
101 {
102 	if (regime == TR_EL10) {
103 		if (vcpu_has_nv(vcpu) &&
104 		    !(__vcpu_sys_reg(vcpu, HCRX_EL2) & HCRX_EL2_TCR2En))
105 			return 0;
106 
107 		return vcpu_read_sys_reg(vcpu, TCR2_EL1);
108 	}
109 
110 	return vcpu_read_sys_reg(vcpu, TCR2_EL2);
111 }
112 
s1pie_enabled(struct kvm_vcpu * vcpu,enum trans_regime regime)113 static bool s1pie_enabled(struct kvm_vcpu *vcpu, enum trans_regime regime)
114 {
115 	if (!kvm_has_s1pie(vcpu->kvm))
116 		return false;
117 
118 	/* Abuse TCR2_EL1_PIE and use it for EL2 as well */
119 	return effective_tcr2(vcpu, regime) & TCR2_EL1_PIE;
120 }
121 
compute_s1poe(struct kvm_vcpu * vcpu,struct s1_walk_info * wi)122 static void compute_s1poe(struct kvm_vcpu *vcpu, struct s1_walk_info *wi)
123 {
124 	u64 val;
125 
126 	if (!kvm_has_s1poe(vcpu->kvm)) {
127 		wi->poe = wi->e0poe = false;
128 		return;
129 	}
130 
131 	val = effective_tcr2(vcpu, wi->regime);
132 
133 	/* Abuse TCR2_EL1_* for EL2 */
134 	wi->poe = val & TCR2_EL1_POE;
135 	wi->e0poe = (wi->regime != TR_EL2) && (val & TCR2_EL1_E0POE);
136 }
137 
setup_s1_walk(struct kvm_vcpu * vcpu,struct s1_walk_info * wi,struct s1_walk_result * wr,u64 va)138 static int setup_s1_walk(struct kvm_vcpu *vcpu, struct s1_walk_info *wi,
139 			 struct s1_walk_result *wr, u64 va)
140 {
141 	u64 hcr, sctlr, tcr, tg, ps, ia_bits, ttbr;
142 	unsigned int stride, x;
143 	bool va55, tbi, lva;
144 
145 	va55 = va & BIT(55);
146 
147 	if (vcpu_has_nv(vcpu)) {
148 		hcr = __vcpu_sys_reg(vcpu, HCR_EL2);
149 		wi->s2 = wi->regime == TR_EL10 && (hcr & (HCR_VM | HCR_DC));
150 	} else {
151 		WARN_ON_ONCE(wi->regime != TR_EL10);
152 		wi->s2 = false;
153 		hcr = 0;
154 	}
155 
156 	switch (wi->regime) {
157 	case TR_EL10:
158 		sctlr	= vcpu_read_sys_reg(vcpu, SCTLR_EL1);
159 		tcr	= vcpu_read_sys_reg(vcpu, TCR_EL1);
160 		ttbr	= (va55 ?
161 			   vcpu_read_sys_reg(vcpu, TTBR1_EL1) :
162 			   vcpu_read_sys_reg(vcpu, TTBR0_EL1));
163 		break;
164 	case TR_EL2:
165 	case TR_EL20:
166 		sctlr	= vcpu_read_sys_reg(vcpu, SCTLR_EL2);
167 		tcr	= vcpu_read_sys_reg(vcpu, TCR_EL2);
168 		ttbr	= (va55 ?
169 			   vcpu_read_sys_reg(vcpu, TTBR1_EL2) :
170 			   vcpu_read_sys_reg(vcpu, TTBR0_EL2));
171 		break;
172 	default:
173 		BUG();
174 	}
175 
176 	/* Someone was silly enough to encode TG0/TG1 differently */
177 	if (va55 && wi->regime != TR_EL2) {
178 		wi->txsz = FIELD_GET(TCR_T1SZ_MASK, tcr);
179 		tg = FIELD_GET(TCR_TG1_MASK, tcr);
180 
181 		switch (tg << TCR_TG1_SHIFT) {
182 		case TCR_TG1_4K:
183 			wi->pgshift = 12;	 break;
184 		case TCR_TG1_16K:
185 			wi->pgshift = 14;	 break;
186 		case TCR_TG1_64K:
187 		default:	    /* IMPDEF: treat any other value as 64k */
188 			wi->pgshift = 16;	 break;
189 		}
190 	} else {
191 		wi->txsz = FIELD_GET(TCR_T0SZ_MASK, tcr);
192 		tg = FIELD_GET(TCR_TG0_MASK, tcr);
193 
194 		switch (tg << TCR_TG0_SHIFT) {
195 		case TCR_TG0_4K:
196 			wi->pgshift = 12;	 break;
197 		case TCR_TG0_16K:
198 			wi->pgshift = 14;	 break;
199 		case TCR_TG0_64K:
200 		default:	    /* IMPDEF: treat any other value as 64k */
201 			wi->pgshift = 16;	 break;
202 		}
203 	}
204 
205 	wi->pa52bit = has_52bit_pa(vcpu, wi, tcr);
206 
207 	ia_bits = get_ia_size(wi);
208 
209 	/* AArch64.S1StartLevel() */
210 	stride = wi->pgshift - 3;
211 	wi->sl = 3 - (((ia_bits - 1) - wi->pgshift) / stride);
212 
213 	if (wi->regime == TR_EL2 && va55)
214 		goto addrsz;
215 
216 	tbi = (wi->regime == TR_EL2 ?
217 	       FIELD_GET(TCR_EL2_TBI, tcr) :
218 	       (va55 ?
219 		FIELD_GET(TCR_TBI1, tcr) :
220 		FIELD_GET(TCR_TBI0, tcr)));
221 
222 	if (!tbi && (u64)sign_extend64(va, 55) != va)
223 		goto addrsz;
224 
225 	wi->sh = (wi->regime == TR_EL2 ?
226 		  FIELD_GET(TCR_EL2_SH0_MASK, tcr) :
227 		  (va55 ?
228 		   FIELD_GET(TCR_SH1_MASK, tcr) :
229 		   FIELD_GET(TCR_SH0_MASK, tcr)));
230 
231 	va = (u64)sign_extend64(va, 55);
232 
233 	/* Let's put the MMU disabled case aside immediately */
234 	switch (wi->regime) {
235 	case TR_EL10:
236 		/*
237 		 * If dealing with the EL1&0 translation regime, 3 things
238 		 * can disable the S1 translation:
239 		 *
240 		 * - HCR_EL2.DC = 1
241 		 * - HCR_EL2.{E2H,TGE} = {0,1}
242 		 * - SCTLR_EL1.M = 0
243 		 *
244 		 * The TGE part is interesting. If we have decided that this
245 		 * is EL1&0, then it means that either {E2H,TGE} == {1,0} or
246 		 * {0,x}, and we only need to test for TGE == 1.
247 		 */
248 		if (hcr & (HCR_DC | HCR_TGE)) {
249 			wr->level = S1_MMU_DISABLED;
250 			break;
251 		}
252 		fallthrough;
253 	case TR_EL2:
254 	case TR_EL20:
255 		if (!(sctlr & SCTLR_ELx_M))
256 			wr->level = S1_MMU_DISABLED;
257 		break;
258 	}
259 
260 	if (wr->level == S1_MMU_DISABLED) {
261 		if (va >= BIT(kvm_get_pa_bits(vcpu->kvm)))
262 			goto addrsz;
263 
264 		wr->pa = va;
265 		return 0;
266 	}
267 
268 	wi->be = sctlr & SCTLR_ELx_EE;
269 
270 	wi->hpd  = kvm_has_feat(vcpu->kvm, ID_AA64MMFR1_EL1, HPDS, IMP);
271 	wi->hpd &= (wi->regime == TR_EL2 ?
272 		    FIELD_GET(TCR_EL2_HPD, tcr) :
273 		    (va55 ?
274 		     FIELD_GET(TCR_HPD1, tcr) :
275 		     FIELD_GET(TCR_HPD0, tcr)));
276 	/* R_JHSVW */
277 	wi->hpd |= s1pie_enabled(vcpu, wi->regime);
278 
279 	/* Do we have POE? */
280 	compute_s1poe(vcpu, wi);
281 
282 	/* R_BVXDG */
283 	wi->hpd |= (wi->poe || wi->e0poe);
284 
285 	/* R_PLCGL, R_YXNYW */
286 	if (!kvm_has_feat_enum(vcpu->kvm, ID_AA64MMFR2_EL1, ST, 48_47)) {
287 		if (wi->txsz > 39)
288 			goto transfault;
289 	} else {
290 		if (wi->txsz > 48 || (BIT(wi->pgshift) == SZ_64K && wi->txsz > 47))
291 			goto transfault;
292 	}
293 
294 	/* R_GTJBY, R_SXWGM */
295 	switch (BIT(wi->pgshift)) {
296 	case SZ_4K:
297 	case SZ_16K:
298 		lva = wi->pa52bit;
299 		break;
300 	case SZ_64K:
301 		lva = kvm_has_feat(vcpu->kvm, ID_AA64MMFR2_EL1, VARange, 52);
302 		break;
303 	}
304 
305 	if ((lva && wi->txsz < 12) || (!lva && wi->txsz < 16))
306 		goto transfault;
307 
308 	/* R_YYVYV, I_THCZK */
309 	if ((!va55 && va > GENMASK(ia_bits - 1, 0)) ||
310 	    (va55 && va < GENMASK(63, ia_bits)))
311 		goto transfault;
312 
313 	/* I_ZFSYQ */
314 	if (wi->regime != TR_EL2 &&
315 	    (tcr & (va55 ? TCR_EPD1_MASK : TCR_EPD0_MASK)))
316 		goto transfault;
317 
318 	/* R_BNDVG and following statements */
319 	if (kvm_has_feat(vcpu->kvm, ID_AA64MMFR2_EL1, E0PD, IMP) &&
320 	    wi->as_el0 && (tcr & (va55 ? TCR_E0PD1 : TCR_E0PD0)))
321 		goto transfault;
322 
323 	ps = (wi->regime == TR_EL2 ?
324 	      FIELD_GET(TCR_EL2_PS_MASK, tcr) : FIELD_GET(TCR_IPS_MASK, tcr));
325 
326 	wi->max_oa_bits = min(get_kvm_ipa_limit(), ps_to_output_size(ps, wi->pa52bit));
327 
328 	/* Compute minimal alignment */
329 	x = 3 + ia_bits - ((3 - wi->sl) * stride + wi->pgshift);
330 
331 	wi->baddr = ttbr & TTBRx_EL1_BADDR;
332 	if (wi->pa52bit) {
333 		/*
334 		 * Force the alignment on 64 bytes for top-level tables
335 		 * smaller than 8 entries, since TTBR.BADDR[5:2] are used to
336 		 * store bits [51:48] of the first level of lookup.
337 		 */
338 		x = max(x, 6);
339 
340 		wi->baddr |= FIELD_GET(GENMASK_ULL(5, 2), ttbr) << 48;
341 	}
342 
343 	/* R_VPBBF */
344 	if (check_output_size(wi->baddr, wi))
345 		goto addrsz;
346 
347 	wi->baddr &= GENMASK_ULL(wi->max_oa_bits - 1, x);
348 
349 	wi->ha  = kvm_has_feat(vcpu->kvm, ID_AA64MMFR1_EL1, HAFDBS, AF);
350 	wi->ha &= (wi->regime == TR_EL2 ?
351 		  FIELD_GET(TCR_EL2_HA, tcr) :
352 		  FIELD_GET(TCR_HA, tcr));
353 
354 	return 0;
355 
356 addrsz:
357 	/*
358 	 * Address Size Fault level 0 to indicate it comes from TTBR.
359 	 * yes, this is an oddity.
360 	 */
361 	fail_s1_walk(wr, ESR_ELx_FSC_ADDRSZ_L(0), false);
362 	return -EFAULT;
363 
364 transfault:
365 	/* Translation Fault on start level */
366 	fail_s1_walk(wr, ESR_ELx_FSC_FAULT_L(wi->sl), false);
367 	return -EFAULT;
368 }
369 
kvm_read_s1_desc(struct kvm_vcpu * vcpu,u64 pa,u64 * desc,struct s1_walk_info * wi)370 static int kvm_read_s1_desc(struct kvm_vcpu *vcpu, u64 pa, u64 *desc,
371 			    struct s1_walk_info *wi)
372 {
373 	u64 val;
374 	int r;
375 
376 	r = kvm_read_guest(vcpu->kvm, pa, &val, sizeof(val));
377 	if (r)
378 		return r;
379 
380 	if (wi->be)
381 		*desc = be64_to_cpu((__force __be64)val);
382 	else
383 		*desc = le64_to_cpu((__force __le64)val);
384 
385 	return 0;
386 }
387 
kvm_swap_s1_desc(struct kvm_vcpu * vcpu,u64 pa,u64 old,u64 new,struct s1_walk_info * wi)388 static int kvm_swap_s1_desc(struct kvm_vcpu *vcpu, u64 pa, u64 old, u64 new,
389 			    struct s1_walk_info *wi)
390 {
391 	if (wi->be) {
392 		old = (__force u64)cpu_to_be64(old);
393 		new = (__force u64)cpu_to_be64(new);
394 	} else {
395 		old = (__force u64)cpu_to_le64(old);
396 		new = (__force u64)cpu_to_le64(new);
397 	}
398 
399 	return __kvm_at_swap_desc(vcpu->kvm, pa, old, new);
400 }
401 
walk_s1(struct kvm_vcpu * vcpu,struct s1_walk_info * wi,struct s1_walk_result * wr,u64 va)402 static int walk_s1(struct kvm_vcpu *vcpu, struct s1_walk_info *wi,
403 		   struct s1_walk_result *wr, u64 va)
404 {
405 	u64 va_top, va_bottom, baddr, desc, new_desc, ipa;
406 	int level, stride, ret;
407 
408 	level = wi->sl;
409 	stride = wi->pgshift - 3;
410 	baddr = wi->baddr;
411 
412 	va_top = get_ia_size(wi) - 1;
413 
414 	while (1) {
415 		u64 index;
416 
417 		va_bottom = (3 - level) * stride + wi->pgshift;
418 		index = (va & GENMASK_ULL(va_top, va_bottom)) >> (va_bottom - 3);
419 
420 		ipa = baddr | index;
421 
422 		if (wi->s2) {
423 			struct kvm_s2_trans s2_trans = {};
424 
425 			ret = kvm_walk_nested_s2(vcpu, ipa, &s2_trans);
426 			if (ret) {
427 				fail_s1_walk(wr,
428 					     (s2_trans.esr & ~ESR_ELx_FSC_LEVEL) | level,
429 					     true);
430 				return ret;
431 			}
432 
433 			if (!kvm_s2_trans_readable(&s2_trans)) {
434 				fail_s1_walk(wr, ESR_ELx_FSC_PERM_L(level),
435 					     true);
436 
437 				return -EPERM;
438 			}
439 
440 			ipa = kvm_s2_trans_output(&s2_trans);
441 		}
442 
443 		if (wi->filter) {
444 			ret = wi->filter->fn(&(struct s1_walk_context)
445 					     {
446 						     .wi	= wi,
447 						     .table_ipa	= baddr,
448 						     .level	= level,
449 					     }, wi->filter->priv);
450 			if (ret)
451 				return ret;
452 		}
453 
454 		ret = kvm_read_s1_desc(vcpu, ipa, &desc, wi);
455 		if (ret) {
456 			fail_s1_walk(wr, ESR_ELx_FSC_SEA_TTW(level), false);
457 			return ret;
458 		}
459 
460 		new_desc = desc;
461 
462 		/* Invalid descriptor */
463 		if (!(desc & BIT(0)))
464 			goto transfault;
465 
466 		/* Block mapping, check validity down the line */
467 		if (!(desc & BIT(1)))
468 			break;
469 
470 		/* Page mapping */
471 		if (level == 3)
472 			break;
473 
474 		/* Table handling */
475 		if (!wi->hpd) {
476 			wr->APTable  |= FIELD_GET(S1_TABLE_AP, desc);
477 			wr->UXNTable |= FIELD_GET(PMD_TABLE_UXN, desc);
478 			wr->PXNTable |= FIELD_GET(PMD_TABLE_PXN, desc);
479 		}
480 
481 		baddr = desc_to_oa(wi, desc);
482 
483 		/* Check for out-of-range OA */
484 		if (check_output_size(baddr, wi))
485 			goto addrsz;
486 
487 		/* Prepare for next round */
488 		va_top = va_bottom - 1;
489 		level++;
490 	}
491 
492 	/* Block mapping, check the validity of the level */
493 	if (!(desc & BIT(1))) {
494 		bool valid_block = false;
495 
496 		switch (BIT(wi->pgshift)) {
497 		case SZ_4K:
498 			valid_block = level == 1 || level == 2 || (wi->pa52bit && level == 0);
499 			break;
500 		case SZ_16K:
501 		case SZ_64K:
502 			valid_block = level == 2 || (wi->pa52bit && level == 1);
503 			break;
504 		}
505 
506 		if (!valid_block)
507 			goto transfault;
508 	}
509 
510 	baddr = desc_to_oa(wi, desc);
511 	if (check_output_size(baddr & GENMASK(52, va_bottom), wi))
512 		goto addrsz;
513 
514 	if (wi->ha)
515 		new_desc |= PTE_AF;
516 
517 	if (new_desc != desc) {
518 		ret = kvm_swap_s1_desc(vcpu, ipa, desc, new_desc, wi);
519 		if (ret)
520 			return ret;
521 
522 		desc = new_desc;
523 	}
524 
525 	if (!(desc & PTE_AF)) {
526 		fail_s1_walk(wr, ESR_ELx_FSC_ACCESS_L(level), false);
527 		return -EACCES;
528 	}
529 
530 	va_bottom += contiguous_bit_shift(desc, wi, level);
531 
532 	wr->failed = false;
533 	wr->level = level;
534 	wr->desc = desc;
535 	wr->pa = baddr & GENMASK(52, va_bottom);
536 	wr->pa |= va & GENMASK_ULL(va_bottom - 1, 0);
537 
538 	wr->nG = (wi->regime != TR_EL2) && (desc & PTE_NG);
539 	if (wr->nG) {
540 		u64 asid_ttbr, tcr;
541 
542 		switch (wi->regime) {
543 		case TR_EL10:
544 			tcr = vcpu_read_sys_reg(vcpu, TCR_EL1);
545 			asid_ttbr = ((tcr & TCR_A1) ?
546 				     vcpu_read_sys_reg(vcpu, TTBR1_EL1) :
547 				     vcpu_read_sys_reg(vcpu, TTBR0_EL1));
548 			break;
549 		case TR_EL20:
550 			tcr = vcpu_read_sys_reg(vcpu, TCR_EL2);
551 			asid_ttbr = ((tcr & TCR_A1) ?
552 				     vcpu_read_sys_reg(vcpu, TTBR1_EL2) :
553 				     vcpu_read_sys_reg(vcpu, TTBR0_EL2));
554 			break;
555 		default:
556 			BUG();
557 		}
558 
559 		wr->asid = FIELD_GET(TTBR_ASID_MASK, asid_ttbr);
560 		if (!kvm_has_feat_enum(vcpu->kvm, ID_AA64MMFR0_EL1, ASIDBITS, 16) ||
561 		    !(tcr & TCR_ASID16))
562 			wr->asid &= GENMASK(7, 0);
563 	}
564 
565 	return 0;
566 
567 addrsz:
568 	fail_s1_walk(wr, ESR_ELx_FSC_ADDRSZ_L(level), false);
569 	return -EINVAL;
570 transfault:
571 	fail_s1_walk(wr, ESR_ELx_FSC_FAULT_L(level), false);
572 	return -ENOENT;
573 }
574 
575 struct mmu_config {
576 	u64	ttbr0;
577 	u64	ttbr1;
578 	u64	tcr;
579 	u64	mair;
580 	u64	tcr2;
581 	u64	pir;
582 	u64	pire0;
583 	u64	por_el0;
584 	u64	por_el1;
585 	u64	sctlr;
586 	u64	vttbr;
587 	u64	vtcr;
588 };
589 
__mmu_config_save(struct mmu_config * config)590 static void __mmu_config_save(struct mmu_config *config)
591 {
592 	config->ttbr0	= read_sysreg_el1(SYS_TTBR0);
593 	config->ttbr1	= read_sysreg_el1(SYS_TTBR1);
594 	config->tcr	= read_sysreg_el1(SYS_TCR);
595 	config->mair	= read_sysreg_el1(SYS_MAIR);
596 	if (cpus_have_final_cap(ARM64_HAS_TCR2)) {
597 		config->tcr2	= read_sysreg_el1(SYS_TCR2);
598 		if (cpus_have_final_cap(ARM64_HAS_S1PIE)) {
599 			config->pir	= read_sysreg_el1(SYS_PIR);
600 			config->pire0	= read_sysreg_el1(SYS_PIRE0);
601 		}
602 		if (system_supports_poe()) {
603 			config->por_el1	= read_sysreg_el1(SYS_POR);
604 			config->por_el0	= read_sysreg_s(SYS_POR_EL0);
605 		}
606 	}
607 	config->sctlr	= read_sysreg_el1(SYS_SCTLR);
608 	config->vttbr	= read_sysreg(vttbr_el2);
609 	config->vtcr	= read_sysreg(vtcr_el2);
610 }
611 
__mmu_config_restore(struct mmu_config * config)612 static void __mmu_config_restore(struct mmu_config *config)
613 {
614 	/*
615 	 * ARM errata 1165522 and 1530923 require TGE to be 1 before
616 	 * we update the guest state.
617 	 */
618 	asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT));
619 
620 	write_sysreg_el1(config->ttbr0,	SYS_TTBR0);
621 	write_sysreg_el1(config->ttbr1,	SYS_TTBR1);
622 	write_sysreg_el1(config->tcr,	SYS_TCR);
623 	write_sysreg_el1(config->mair,	SYS_MAIR);
624 	if (cpus_have_final_cap(ARM64_HAS_TCR2)) {
625 		write_sysreg_el1(config->tcr2, SYS_TCR2);
626 		if (cpus_have_final_cap(ARM64_HAS_S1PIE)) {
627 			write_sysreg_el1(config->pir, SYS_PIR);
628 			write_sysreg_el1(config->pire0, SYS_PIRE0);
629 		}
630 		if (system_supports_poe()) {
631 			write_sysreg_el1(config->por_el1, SYS_POR);
632 			write_sysreg_s(config->por_el0, SYS_POR_EL0);
633 		}
634 	}
635 	write_sysreg_el1(config->sctlr,	SYS_SCTLR);
636 	write_sysreg(config->vttbr,	vttbr_el2);
637 	write_sysreg(config->vtcr,	vtcr_el2);
638 }
639 
at_s1e1p_fast(struct kvm_vcpu * vcpu,u32 op,u64 vaddr)640 static bool at_s1e1p_fast(struct kvm_vcpu *vcpu, u32 op, u64 vaddr)
641 {
642 	u64 host_pan;
643 	bool fail;
644 
645 	host_pan = read_sysreg_s(SYS_PSTATE_PAN);
646 	write_sysreg_s(*vcpu_cpsr(vcpu) & PSTATE_PAN, SYS_PSTATE_PAN);
647 
648 	switch (op) {
649 	case OP_AT_S1E1RP:
650 		fail = __kvm_at(OP_AT_S1E1RP, vaddr);
651 		break;
652 	case OP_AT_S1E1WP:
653 		fail = __kvm_at(OP_AT_S1E1WP, vaddr);
654 		break;
655 	}
656 
657 	write_sysreg_s(host_pan, SYS_PSTATE_PAN);
658 
659 	return fail;
660 }
661 
662 #define MEMATTR(ic, oc)		(MEMATTR_##oc << 4 | MEMATTR_##ic)
663 #define MEMATTR_NC		0b0100
664 #define MEMATTR_Wt		0b1000
665 #define MEMATTR_Wb		0b1100
666 #define MEMATTR_WbRaWa		0b1111
667 
668 #define MEMATTR_IS_DEVICE(m)	(((m) & GENMASK(7, 4)) == 0)
669 
s2_memattr_to_attr(u8 memattr)670 static u8 s2_memattr_to_attr(u8 memattr)
671 {
672 	memattr &= 0b1111;
673 
674 	switch (memattr) {
675 	case 0b0000:
676 	case 0b0001:
677 	case 0b0010:
678 	case 0b0011:
679 		return memattr << 2;
680 	case 0b0100:
681 		return MEMATTR(Wb, Wb);
682 	case 0b0101:
683 		return MEMATTR(NC, NC);
684 	case 0b0110:
685 		return MEMATTR(Wt, NC);
686 	case 0b0111:
687 		return MEMATTR(Wb, NC);
688 	case 0b1000:
689 		/* Reserved, assume NC */
690 		return MEMATTR(NC, NC);
691 	case 0b1001:
692 		return MEMATTR(NC, Wt);
693 	case 0b1010:
694 		return MEMATTR(Wt, Wt);
695 	case 0b1011:
696 		return MEMATTR(Wb, Wt);
697 	case 0b1100:
698 		/* Reserved, assume NC */
699 		return MEMATTR(NC, NC);
700 	case 0b1101:
701 		return MEMATTR(NC, Wb);
702 	case 0b1110:
703 		return MEMATTR(Wt, Wb);
704 	case 0b1111:
705 		return MEMATTR(Wb, Wb);
706 	default:
707 		unreachable();
708 	}
709 }
710 
combine_s1_s2_attr(u8 s1,u8 s2)711 static u8 combine_s1_s2_attr(u8 s1, u8 s2)
712 {
713 	bool transient;
714 	u8 final = 0;
715 
716 	/* Upgrade transient s1 to non-transient to simplify things */
717 	switch (s1) {
718 	case 0b0001 ... 0b0011:	/* Normal, Write-Through Transient */
719 		transient = true;
720 		s1 = MEMATTR_Wt | (s1 & GENMASK(1,0));
721 		break;
722 	case 0b0101 ... 0b0111:	/* Normal, Write-Back Transient */
723 		transient = true;
724 		s1 = MEMATTR_Wb | (s1 & GENMASK(1,0));
725 		break;
726 	default:
727 		transient = false;
728 	}
729 
730 	/* S2CombineS1AttrHints() */
731 	if ((s1 & GENMASK(3, 2)) == MEMATTR_NC ||
732 	    (s2 & GENMASK(3, 2)) == MEMATTR_NC)
733 		final = MEMATTR_NC;
734 	else if ((s1 & GENMASK(3, 2)) == MEMATTR_Wt ||
735 		 (s2 & GENMASK(3, 2)) == MEMATTR_Wt)
736 		final = MEMATTR_Wt;
737 	else
738 		final = MEMATTR_Wb;
739 
740 	if (final != MEMATTR_NC) {
741 		/* Inherit RaWa hints form S1 */
742 		if (transient) {
743 			switch (s1 & GENMASK(3, 2)) {
744 			case MEMATTR_Wt:
745 				final = 0;
746 				break;
747 			case MEMATTR_Wb:
748 				final = MEMATTR_NC;
749 				break;
750 			}
751 		}
752 
753 		final |= s1 & GENMASK(1, 0);
754 	}
755 
756 	return final;
757 }
758 
759 #define ATTR_NSH	0b00
760 #define ATTR_RSV	0b01
761 #define ATTR_OSH	0b10
762 #define ATTR_ISH	0b11
763 
compute_final_sh(u8 attr,u8 sh)764 static u8 compute_final_sh(u8 attr, u8 sh)
765 {
766 	/* Any form of device, as well as NC has SH[1:0]=0b10 */
767 	if (MEMATTR_IS_DEVICE(attr) || attr == MEMATTR(NC, NC))
768 		return ATTR_OSH;
769 
770 	if (sh == ATTR_RSV)		/* Reserved, mapped to NSH */
771 		sh = ATTR_NSH;
772 
773 	return sh;
774 }
775 
compute_s1_sh(struct s1_walk_info * wi,struct s1_walk_result * wr,u8 attr)776 static u8 compute_s1_sh(struct s1_walk_info *wi, struct s1_walk_result *wr,
777 			u8 attr)
778 {
779 	u8 sh;
780 
781 	/*
782 	 * non-52bit and LPA have their basic shareability described in the
783 	 * descriptor. LPA2 gets it from the corresponding field in TCR,
784 	 * conveniently recorded in the walk info.
785 	 */
786 	if (!wi->pa52bit || BIT(wi->pgshift) == SZ_64K)
787 		sh = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_SH, wr->desc);
788 	else
789 		sh = wi->sh;
790 
791 	return compute_final_sh(attr, sh);
792 }
793 
combine_sh(u8 s1_sh,u8 s2_sh)794 static u8 combine_sh(u8 s1_sh, u8 s2_sh)
795 {
796 	if (s1_sh == ATTR_OSH || s2_sh == ATTR_OSH)
797 		return ATTR_OSH;
798 	if (s1_sh == ATTR_ISH || s2_sh == ATTR_ISH)
799 		return ATTR_ISH;
800 
801 	return ATTR_NSH;
802 }
803 
compute_par_s12(struct kvm_vcpu * vcpu,u64 s1_par,struct kvm_s2_trans * tr)804 static u64 compute_par_s12(struct kvm_vcpu *vcpu, u64 s1_par,
805 			   struct kvm_s2_trans *tr)
806 {
807 	u8 s1_parattr, s2_memattr, final_attr, s2_sh;
808 	u64 par;
809 
810 	/* If S2 has failed to translate, report the damage */
811 	if (tr->esr) {
812 		par = SYS_PAR_EL1_RES1;
813 		par |= SYS_PAR_EL1_F;
814 		par |= SYS_PAR_EL1_S;
815 		par |= FIELD_PREP(SYS_PAR_EL1_FST, tr->esr);
816 		return par;
817 	}
818 
819 	s1_parattr = FIELD_GET(SYS_PAR_EL1_ATTR, s1_par);
820 	s2_memattr = FIELD_GET(GENMASK(5, 2), tr->desc);
821 
822 	if (__vcpu_sys_reg(vcpu, HCR_EL2) & HCR_FWB) {
823 		if (!kvm_has_feat(vcpu->kvm, ID_AA64PFR2_EL1, MTEPERM, IMP))
824 			s2_memattr &= ~BIT(3);
825 
826 		/* Combination of R_VRJSW and R_RHWZM */
827 		switch (s2_memattr) {
828 		case 0b0101:
829 			if (MEMATTR_IS_DEVICE(s1_parattr))
830 				final_attr = s1_parattr;
831 			else
832 				final_attr = MEMATTR(NC, NC);
833 			break;
834 		case 0b0110:
835 		case 0b1110:
836 			final_attr = MEMATTR(WbRaWa, WbRaWa);
837 			break;
838 		case 0b0111:
839 		case 0b1111:
840 			/* Preserve S1 attribute */
841 			final_attr = s1_parattr;
842 			break;
843 		case 0b0100:
844 		case 0b1100:
845 		case 0b1101:
846 			/* Reserved, do something non-silly */
847 			final_attr = s1_parattr;
848 			break;
849 		default:
850 			/*
851 			 * MemAttr[2]=0, Device from S2.
852 			 *
853 			 * FWB does not influence the way that stage 1
854 			 * memory types and attributes are combined
855 			 * with stage 2 Device type and attributes.
856 			 */
857 			final_attr = min(s2_memattr_to_attr(s2_memattr),
858 					 s1_parattr);
859 		}
860 	} else {
861 		/* Combination of R_HMNDG, R_TNHFM and R_GQFSF */
862 		u8 s2_parattr = s2_memattr_to_attr(s2_memattr);
863 
864 		if (MEMATTR_IS_DEVICE(s1_parattr) ||
865 		    MEMATTR_IS_DEVICE(s2_parattr)) {
866 			final_attr = min(s1_parattr, s2_parattr);
867 		} else {
868 			/* At this stage, this is memory vs memory */
869 			final_attr  = combine_s1_s2_attr(s1_parattr & 0xf,
870 							 s2_parattr & 0xf);
871 			final_attr |= combine_s1_s2_attr(s1_parattr >> 4,
872 							 s2_parattr >> 4) << 4;
873 		}
874 	}
875 
876 	if ((__vcpu_sys_reg(vcpu, HCR_EL2) & HCR_CD) &&
877 	    !MEMATTR_IS_DEVICE(final_attr))
878 		final_attr = MEMATTR(NC, NC);
879 
880 	s2_sh = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S2_SH, tr->desc);
881 
882 	par  = FIELD_PREP(SYS_PAR_EL1_ATTR, final_attr);
883 	par |= tr->output & GENMASK(47, 12);
884 	par |= FIELD_PREP(SYS_PAR_EL1_SH,
885 			  combine_sh(FIELD_GET(SYS_PAR_EL1_SH, s1_par),
886 				     compute_final_sh(final_attr, s2_sh)));
887 
888 	return par;
889 }
890 
compute_par_s1(struct kvm_vcpu * vcpu,struct s1_walk_info * wi,struct s1_walk_result * wr)891 static u64 compute_par_s1(struct kvm_vcpu *vcpu, struct s1_walk_info *wi,
892 			  struct s1_walk_result *wr)
893 {
894 	u64 par;
895 
896 	if (wr->failed) {
897 		par = SYS_PAR_EL1_RES1;
898 		par |= SYS_PAR_EL1_F;
899 		par |= FIELD_PREP(SYS_PAR_EL1_FST, wr->fst);
900 		par |= wr->ptw ? SYS_PAR_EL1_PTW : 0;
901 		par |= wr->s2 ? SYS_PAR_EL1_S : 0;
902 	} else if (wr->level == S1_MMU_DISABLED) {
903 		/* MMU off or HCR_EL2.DC == 1 */
904 		par  = SYS_PAR_EL1_NSE;
905 		par |= wr->pa & SYS_PAR_EL1_PA;
906 
907 		if (wi->regime == TR_EL10 && vcpu_has_nv(vcpu) &&
908 		    (__vcpu_sys_reg(vcpu, HCR_EL2) & HCR_DC)) {
909 			par |= FIELD_PREP(SYS_PAR_EL1_ATTR,
910 					  MEMATTR(WbRaWa, WbRaWa));
911 			par |= FIELD_PREP(SYS_PAR_EL1_SH, ATTR_NSH);
912 		} else {
913 			par |= FIELD_PREP(SYS_PAR_EL1_ATTR, 0); /* nGnRnE */
914 			par |= FIELD_PREP(SYS_PAR_EL1_SH, ATTR_OSH);
915 		}
916 	} else {
917 		u64 mair, sctlr;
918 		u8 sh;
919 
920 		par  = SYS_PAR_EL1_NSE;
921 
922 		mair = (wi->regime == TR_EL10 ?
923 			vcpu_read_sys_reg(vcpu, MAIR_EL1) :
924 			vcpu_read_sys_reg(vcpu, MAIR_EL2));
925 
926 		mair >>= FIELD_GET(PTE_ATTRINDX_MASK, wr->desc) * 8;
927 		mair &= 0xff;
928 
929 		sctlr = (wi->regime == TR_EL10 ?
930 			 vcpu_read_sys_reg(vcpu, SCTLR_EL1) :
931 			 vcpu_read_sys_reg(vcpu, SCTLR_EL2));
932 
933 		/* Force NC for memory if SCTLR_ELx.C is clear */
934 		if (!(sctlr & SCTLR_EL1_C) && !MEMATTR_IS_DEVICE(mair))
935 			mair = MEMATTR(NC, NC);
936 
937 		par |= FIELD_PREP(SYS_PAR_EL1_ATTR, mair);
938 		par |= wr->pa & SYS_PAR_EL1_PA;
939 
940 		sh = compute_s1_sh(wi, wr, mair);
941 		par |= FIELD_PREP(SYS_PAR_EL1_SH, sh);
942 	}
943 
944 	return par;
945 }
946 
pan3_enabled(struct kvm_vcpu * vcpu,enum trans_regime regime)947 static bool pan3_enabled(struct kvm_vcpu *vcpu, enum trans_regime regime)
948 {
949 	u64 sctlr;
950 
951 	if (!kvm_has_feat(vcpu->kvm, ID_AA64MMFR1_EL1, PAN, PAN3))
952 		return false;
953 
954 	if (s1pie_enabled(vcpu, regime))
955 		return true;
956 
957 	if (regime == TR_EL10)
958 		sctlr = vcpu_read_sys_reg(vcpu, SCTLR_EL1);
959 	else
960 		sctlr = vcpu_read_sys_reg(vcpu, SCTLR_EL2);
961 
962 	return sctlr & SCTLR_EL1_EPAN;
963 }
964 
compute_s1_direct_permissions(struct kvm_vcpu * vcpu,struct s1_walk_info * wi,struct s1_walk_result * wr)965 static void compute_s1_direct_permissions(struct kvm_vcpu *vcpu,
966 					  struct s1_walk_info *wi,
967 					  struct s1_walk_result *wr)
968 {
969 	bool wxn;
970 
971 	/* Non-hierarchical part of AArch64.S1DirectBasePermissions() */
972 	if (wi->regime != TR_EL2) {
973 		switch (FIELD_GET(PTE_USER | PTE_RDONLY, wr->desc)) {
974 		case 0b00:
975 			wr->pr = wr->pw = true;
976 			wr->ur = wr->uw = false;
977 			break;
978 		case 0b01:
979 			wr->pr = wr->pw = wr->ur = wr->uw = true;
980 			break;
981 		case 0b10:
982 			wr->pr = true;
983 			wr->pw = wr->ur = wr->uw = false;
984 			break;
985 		case 0b11:
986 			wr->pr = wr->ur = true;
987 			wr->pw = wr->uw = false;
988 			break;
989 		}
990 
991 		/* We don't use px for anything yet, but hey... */
992 		wr->px = !((wr->desc & PTE_PXN) || wr->uw);
993 		wr->ux = !(wr->desc & PTE_UXN);
994 	} else {
995 		wr->ur = wr->uw = wr->ux = false;
996 
997 		if (!(wr->desc & PTE_RDONLY)) {
998 			wr->pr = wr->pw = true;
999 		} else {
1000 			wr->pr = true;
1001 			wr->pw = false;
1002 		}
1003 
1004 		/* XN maps to UXN */
1005 		wr->px = !(wr->desc & PTE_UXN);
1006 	}
1007 
1008 	switch (wi->regime) {
1009 	case TR_EL2:
1010 	case TR_EL20:
1011 		wxn = (vcpu_read_sys_reg(vcpu, SCTLR_EL2) & SCTLR_ELx_WXN);
1012 		break;
1013 	case TR_EL10:
1014 		wxn = (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & SCTLR_ELx_WXN);
1015 		break;
1016 	}
1017 
1018 	wr->pwxn = wr->uwxn = wxn;
1019 	wr->pov = wi->poe;
1020 	wr->uov = wi->e0poe;
1021 }
1022 
compute_s1_hierarchical_permissions(struct kvm_vcpu * vcpu,struct s1_walk_info * wi,struct s1_walk_result * wr)1023 static void compute_s1_hierarchical_permissions(struct kvm_vcpu *vcpu,
1024 						struct s1_walk_info *wi,
1025 						struct s1_walk_result *wr)
1026 {
1027 	/* Hierarchical part of AArch64.S1DirectBasePermissions() */
1028 	if (wi->regime != TR_EL2) {
1029 		switch (wr->APTable) {
1030 		case 0b00:
1031 			break;
1032 		case 0b01:
1033 			wr->ur = wr->uw = false;
1034 			break;
1035 		case 0b10:
1036 			wr->pw = wr->uw = false;
1037 			break;
1038 		case 0b11:
1039 			wr->pw = wr->ur = wr->uw = false;
1040 			break;
1041 		}
1042 
1043 		wr->px &= !wr->PXNTable;
1044 		wr->ux &= !wr->UXNTable;
1045 	} else {
1046 		if (wr->APTable & BIT(1))
1047 			wr->pw = false;
1048 
1049 		/* XN maps to UXN */
1050 		wr->px &= !wr->UXNTable;
1051 	}
1052 }
1053 
1054 #define perm_idx(v, r, i)	((vcpu_read_sys_reg((v), (r)) >> ((i) * 4)) & 0xf)
1055 
1056 #define set_priv_perms(wr, r, w, x)	\
1057 	do {				\
1058 		(wr)->pr = (r);		\
1059 		(wr)->pw = (w);		\
1060 		(wr)->px = (x);		\
1061 	} while (0)
1062 
1063 #define set_unpriv_perms(wr, r, w, x)	\
1064 	do {				\
1065 		(wr)->ur = (r);		\
1066 		(wr)->uw = (w);		\
1067 		(wr)->ux = (x);		\
1068 	} while (0)
1069 
1070 #define set_priv_wxn(wr, v)		\
1071 	do {				\
1072 		(wr)->pwxn = (v);	\
1073 	} while (0)
1074 
1075 #define set_unpriv_wxn(wr, v)		\
1076 	do {				\
1077 		(wr)->uwxn = (v);	\
1078 	} while (0)
1079 
1080 /* Similar to AArch64.S1IndirectBasePermissions(), without GCS  */
1081 #define set_perms(w, wr, ip)						\
1082 	do {								\
1083 		/* R_LLZDZ */						\
1084 		switch ((ip)) {						\
1085 		case 0b0000:						\
1086 			set_ ## w ## _perms((wr), false, false, false);	\
1087 			break;						\
1088 		case 0b0001:						\
1089 			set_ ## w ## _perms((wr), true , false, false);	\
1090 			break;						\
1091 		case 0b0010:						\
1092 			set_ ## w ## _perms((wr), false, false, true );	\
1093 			break;						\
1094 		case 0b0011:						\
1095 			set_ ## w ## _perms((wr), true , false, true );	\
1096 			break;						\
1097 		case 0b0100:						\
1098 			set_ ## w ## _perms((wr), false, false, false);	\
1099 			break;						\
1100 		case 0b0101:						\
1101 			set_ ## w ## _perms((wr), true , true , false);	\
1102 			break;						\
1103 		case 0b0110:						\
1104 			set_ ## w ## _perms((wr), true , true , true );	\
1105 			break;						\
1106 		case 0b0111:						\
1107 			set_ ## w ## _perms((wr), true , true , true );	\
1108 			break;						\
1109 		case 0b1000:						\
1110 			set_ ## w ## _perms((wr), true , false, false);	\
1111 			break;						\
1112 		case 0b1001:						\
1113 			set_ ## w ## _perms((wr), true , false, false);	\
1114 			break;						\
1115 		case 0b1010:						\
1116 			set_ ## w ## _perms((wr), true , false, true );	\
1117 			break;						\
1118 		case 0b1011:						\
1119 			set_ ## w ## _perms((wr), false, false, false);	\
1120 			break;						\
1121 		case 0b1100:						\
1122 			set_ ## w ## _perms((wr), true , true , false);	\
1123 			break;						\
1124 		case 0b1101:						\
1125 			set_ ## w ## _perms((wr), false, false, false);	\
1126 			break;						\
1127 		case 0b1110:						\
1128 			set_ ## w ## _perms((wr), true , true , true );	\
1129 			break;						\
1130 		case 0b1111:						\
1131 			set_ ## w ## _perms((wr), false, false, false);	\
1132 			break;						\
1133 		}							\
1134 									\
1135 		/* R_HJYGR */						\
1136 		set_ ## w ## _wxn((wr), ((ip) == 0b0110));		\
1137 									\
1138 	} while (0)
1139 
compute_s1_indirect_permissions(struct kvm_vcpu * vcpu,struct s1_walk_info * wi,struct s1_walk_result * wr)1140 static void compute_s1_indirect_permissions(struct kvm_vcpu *vcpu,
1141 					    struct s1_walk_info *wi,
1142 					    struct s1_walk_result *wr)
1143 {
1144 	u8 up, pp, idx;
1145 
1146 	idx = pte_pi_index(wr->desc);
1147 
1148 	switch (wi->regime) {
1149 	case TR_EL10:
1150 		pp = perm_idx(vcpu, PIR_EL1, idx);
1151 		up = perm_idx(vcpu, PIRE0_EL1, idx);
1152 		break;
1153 	case TR_EL20:
1154 		pp = perm_idx(vcpu, PIR_EL2, idx);
1155 		up = perm_idx(vcpu, PIRE0_EL2, idx);
1156 		break;
1157 	case TR_EL2:
1158 		pp = perm_idx(vcpu, PIR_EL2, idx);
1159 		up = 0;
1160 		break;
1161 	}
1162 
1163 	set_perms(priv, wr, pp);
1164 
1165 	if (wi->regime != TR_EL2)
1166 		set_perms(unpriv, wr, up);
1167 	else
1168 		set_unpriv_perms(wr, false, false, false);
1169 
1170 	wr->pov = wi->poe && !(pp & BIT(3));
1171 	wr->uov = wi->e0poe && !(up & BIT(3));
1172 
1173 	/* R_VFPJF */
1174 	if (wr->px && wr->uw) {
1175 		set_priv_perms(wr, false, false, false);
1176 		set_unpriv_perms(wr, false, false, false);
1177 	}
1178 }
1179 
compute_s1_overlay_permissions(struct kvm_vcpu * vcpu,struct s1_walk_info * wi,struct s1_walk_result * wr)1180 static void compute_s1_overlay_permissions(struct kvm_vcpu *vcpu,
1181 					   struct s1_walk_info *wi,
1182 					   struct s1_walk_result *wr)
1183 {
1184 	u8 idx, pov_perms, uov_perms;
1185 
1186 	idx = FIELD_GET(PTE_PO_IDX_MASK, wr->desc);
1187 
1188 	if (wr->pov) {
1189 		switch (wi->regime) {
1190 		case TR_EL10:
1191 			pov_perms = perm_idx(vcpu, POR_EL1, idx);
1192 			break;
1193 		case TR_EL20:
1194 			pov_perms = perm_idx(vcpu, POR_EL2, idx);
1195 			break;
1196 		case TR_EL2:
1197 			pov_perms = perm_idx(vcpu, POR_EL2, idx);
1198 			break;
1199 		}
1200 
1201 		if (pov_perms & ~POE_RWX)
1202 			pov_perms = POE_NONE;
1203 
1204 		/* R_QXXPC, S1PrivOverflow enabled */
1205 		if (wr->pwxn && (pov_perms & POE_X))
1206 			pov_perms &= ~POE_W;
1207 
1208 		wr->pr &= pov_perms & POE_R;
1209 		wr->pw &= pov_perms & POE_W;
1210 		wr->px &= pov_perms & POE_X;
1211 	}
1212 
1213 	if (wr->uov) {
1214 		switch (wi->regime) {
1215 		case TR_EL10:
1216 			uov_perms = perm_idx(vcpu, POR_EL0, idx);
1217 			break;
1218 		case TR_EL20:
1219 			uov_perms = perm_idx(vcpu, POR_EL0, idx);
1220 			break;
1221 		case TR_EL2:
1222 			uov_perms = 0;
1223 			break;
1224 		}
1225 
1226 		if (uov_perms & ~POE_RWX)
1227 			uov_perms = POE_NONE;
1228 
1229 		/* R_NPBXC, S1UnprivOverlay enabled */
1230 		if (wr->uwxn && (uov_perms & POE_X))
1231 			uov_perms &= ~POE_W;
1232 
1233 		wr->ur &= uov_perms & POE_R;
1234 		wr->uw &= uov_perms & POE_W;
1235 		wr->ux &= uov_perms & POE_X;
1236 	}
1237 }
1238 
compute_s1_permissions(struct kvm_vcpu * vcpu,struct s1_walk_info * wi,struct s1_walk_result * wr)1239 static void compute_s1_permissions(struct kvm_vcpu *vcpu,
1240 				   struct s1_walk_info *wi,
1241 				   struct s1_walk_result *wr)
1242 {
1243 	bool pan;
1244 
1245 	if (!s1pie_enabled(vcpu, wi->regime))
1246 		compute_s1_direct_permissions(vcpu, wi, wr);
1247 	else
1248 		compute_s1_indirect_permissions(vcpu, wi, wr);
1249 
1250 	if (!wi->hpd)
1251 		compute_s1_hierarchical_permissions(vcpu, wi, wr);
1252 
1253 	compute_s1_overlay_permissions(vcpu, wi, wr);
1254 
1255 	/* R_QXXPC, S1PrivOverlay disabled */
1256 	if (!wr->pov)
1257 		wr->px &= !(wr->pwxn && wr->pw);
1258 
1259 	/* R_NPBXC, S1UnprivOverlay disabled */
1260 	if (!wr->uov)
1261 		wr->ux &= !(wr->uwxn && wr->uw);
1262 
1263 	pan = wi->pan && (wr->ur || wr->uw ||
1264 			  (pan3_enabled(vcpu, wi->regime) && wr->ux));
1265 	wr->pw &= !pan;
1266 	wr->pr &= !pan;
1267 }
1268 
handle_at_slow(struct kvm_vcpu * vcpu,u32 op,u64 vaddr,u64 * par)1269 static int handle_at_slow(struct kvm_vcpu *vcpu, u32 op, u64 vaddr, u64 *par)
1270 {
1271 	struct s1_walk_result wr = {};
1272 	struct s1_walk_info wi = {};
1273 	bool perm_fail = false;
1274 	int ret, idx;
1275 
1276 	wi.regime = compute_translation_regime(vcpu, op);
1277 	wi.as_el0 = (op == OP_AT_S1E0R || op == OP_AT_S1E0W);
1278 	wi.pan = (op == OP_AT_S1E1RP || op == OP_AT_S1E1WP) &&
1279 		 (*vcpu_cpsr(vcpu) & PSR_PAN_BIT);
1280 
1281 	ret = setup_s1_walk(vcpu, &wi, &wr, vaddr);
1282 	if (ret)
1283 		goto compute_par;
1284 
1285 	if (wr.level == S1_MMU_DISABLED)
1286 		goto compute_par;
1287 
1288 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1289 
1290 	ret = walk_s1(vcpu, &wi, &wr, vaddr);
1291 
1292 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1293 
1294 	/*
1295 	 * Race to update a descriptor -- restart the walk.
1296 	 */
1297 	if (ret == -EAGAIN)
1298 		return ret;
1299 	if (ret)
1300 		goto compute_par;
1301 
1302 	compute_s1_permissions(vcpu, &wi, &wr);
1303 
1304 	switch (op) {
1305 	case OP_AT_S1E1RP:
1306 	case OP_AT_S1E1R:
1307 	case OP_AT_S1E2R:
1308 		perm_fail = !wr.pr;
1309 		break;
1310 	case OP_AT_S1E1WP:
1311 	case OP_AT_S1E1W:
1312 	case OP_AT_S1E2W:
1313 		perm_fail = !wr.pw;
1314 		break;
1315 	case OP_AT_S1E0R:
1316 		perm_fail = !wr.ur;
1317 		break;
1318 	case OP_AT_S1E0W:
1319 		perm_fail = !wr.uw;
1320 		break;
1321 	case OP_AT_S1E1A:
1322 	case OP_AT_S1E2A:
1323 		break;
1324 	default:
1325 		BUG();
1326 	}
1327 
1328 	if (perm_fail)
1329 		fail_s1_walk(&wr, ESR_ELx_FSC_PERM_L(wr.level), false);
1330 
1331 compute_par:
1332 	*par = compute_par_s1(vcpu, &wi, &wr);
1333 	return 0;
1334 }
1335 
1336 /*
1337  * Return the PAR_EL1 value as the result of a valid translation.
1338  *
1339  * If the translation is unsuccessful, the value may only contain
1340  * PAR_EL1.F, and cannot be taken at face value. It isn't an
1341  * indication of the translation having failed, only that the fast
1342  * path did not succeed, *unless* it indicates a S1 permission or
1343  * access fault.
1344  */
__kvm_at_s1e01_fast(struct kvm_vcpu * vcpu,u32 op,u64 vaddr)1345 static u64 __kvm_at_s1e01_fast(struct kvm_vcpu *vcpu, u32 op, u64 vaddr)
1346 {
1347 	struct mmu_config config;
1348 	struct kvm_s2_mmu *mmu;
1349 	bool fail, mmu_cs;
1350 	u64 par;
1351 
1352 	par = SYS_PAR_EL1_F;
1353 
1354 	/*
1355 	 * We've trapped, so everything is live on the CPU. As we will
1356 	 * be switching contexts behind everybody's back, disable
1357 	 * interrupts while holding the mmu lock.
1358 	 */
1359 	guard(write_lock_irqsave)(&vcpu->kvm->mmu_lock);
1360 
1361 	/*
1362 	 * If HCR_EL2.{E2H,TGE} == {1,1}, the MMU context is already
1363 	 * the right one (as we trapped from vEL2). If not, save the
1364 	 * full MMU context.
1365 	 *
1366 	 * We are also guaranteed to be in the correct context if
1367 	 * we're not in a nested VM.
1368 	 */
1369 	mmu_cs = (vcpu_has_nv(vcpu) &&
1370 		  !(vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu)));
1371 	if (!mmu_cs)
1372 		goto skip_mmu_switch;
1373 
1374 	/*
1375 	 * Obtaining the S2 MMU for a L2 is horribly racy, and we may not
1376 	 * find it (recycled by another vcpu, for example). When this
1377 	 * happens, admit defeat immediately and use the SW (slow) path.
1378 	 */
1379 	mmu = lookup_s2_mmu(vcpu);
1380 	if (!mmu)
1381 		return par;
1382 
1383 	__mmu_config_save(&config);
1384 
1385 	write_sysreg_el1(vcpu_read_sys_reg(vcpu, TTBR0_EL1),	SYS_TTBR0);
1386 	write_sysreg_el1(vcpu_read_sys_reg(vcpu, TTBR1_EL1),	SYS_TTBR1);
1387 	write_sysreg_el1(vcpu_read_sys_reg(vcpu, TCR_EL1),	SYS_TCR);
1388 	write_sysreg_el1(vcpu_read_sys_reg(vcpu, MAIR_EL1),	SYS_MAIR);
1389 	if (kvm_has_tcr2(vcpu->kvm)) {
1390 		write_sysreg_el1(vcpu_read_sys_reg(vcpu, TCR2_EL1), SYS_TCR2);
1391 		if (kvm_has_s1pie(vcpu->kvm)) {
1392 			write_sysreg_el1(vcpu_read_sys_reg(vcpu, PIR_EL1), SYS_PIR);
1393 			write_sysreg_el1(vcpu_read_sys_reg(vcpu, PIRE0_EL1), SYS_PIRE0);
1394 		}
1395 		if (kvm_has_s1poe(vcpu->kvm)) {
1396 			write_sysreg_el1(vcpu_read_sys_reg(vcpu, POR_EL1), SYS_POR);
1397 			write_sysreg_s(vcpu_read_sys_reg(vcpu, POR_EL0), SYS_POR_EL0);
1398 		}
1399 	}
1400 	write_sysreg_el1(vcpu_read_sys_reg(vcpu, SCTLR_EL1),	SYS_SCTLR);
1401 	__load_stage2(mmu, mmu->arch);
1402 
1403 skip_mmu_switch:
1404 	/* Temporarily switch back to guest context */
1405 	write_sysreg_hcr(vcpu->arch.hcr_el2);
1406 	isb();
1407 
1408 	switch (op) {
1409 	case OP_AT_S1E1RP:
1410 	case OP_AT_S1E1WP:
1411 		fail = at_s1e1p_fast(vcpu, op, vaddr);
1412 		break;
1413 	case OP_AT_S1E1R:
1414 		fail = __kvm_at(OP_AT_S1E1R, vaddr);
1415 		break;
1416 	case OP_AT_S1E1W:
1417 		fail = __kvm_at(OP_AT_S1E1W, vaddr);
1418 		break;
1419 	case OP_AT_S1E0R:
1420 		fail = __kvm_at(OP_AT_S1E0R, vaddr);
1421 		break;
1422 	case OP_AT_S1E0W:
1423 		fail = __kvm_at(OP_AT_S1E0W, vaddr);
1424 		break;
1425 	case OP_AT_S1E1A:
1426 		fail = __kvm_at(OP_AT_S1E1A, vaddr);
1427 		break;
1428 	default:
1429 		WARN_ON_ONCE(1);
1430 		fail = true;
1431 		break;
1432 	}
1433 
1434 	if (!fail)
1435 		par = read_sysreg_par();
1436 
1437 	write_sysreg_hcr(HCR_HOST_VHE_FLAGS);
1438 
1439 	if (mmu_cs)
1440 		__mmu_config_restore(&config);
1441 
1442 	return par;
1443 }
1444 
par_check_s1_perm_fault(u64 par)1445 static bool par_check_s1_perm_fault(u64 par)
1446 {
1447 	u8 fst = FIELD_GET(SYS_PAR_EL1_FST, par);
1448 
1449 	return  ((fst & ESR_ELx_FSC_TYPE) == ESR_ELx_FSC_PERM &&
1450 		 !(par & SYS_PAR_EL1_S));
1451 }
1452 
par_check_s1_access_fault(u64 par)1453 static bool par_check_s1_access_fault(u64 par)
1454 {
1455 	u8 fst = FIELD_GET(SYS_PAR_EL1_FST, par);
1456 
1457 	return  ((fst & ESR_ELx_FSC_TYPE) == ESR_ELx_FSC_ACCESS &&
1458 		 !(par & SYS_PAR_EL1_S));
1459 }
1460 
__kvm_at_s1e01(struct kvm_vcpu * vcpu,u32 op,u64 vaddr)1461 int __kvm_at_s1e01(struct kvm_vcpu *vcpu, u32 op, u64 vaddr)
1462 {
1463 	u64 par = __kvm_at_s1e01_fast(vcpu, op, vaddr);
1464 	int ret;
1465 
1466 	/*
1467 	 * If PAR_EL1 reports that AT failed on a S1 permission or access
1468 	 * fault, we know for sure that the PTW was able to walk the S1
1469 	 * tables and there's nothing else to do.
1470 	 *
1471 	 * If AT failed for any other reason, then we must walk the guest S1
1472 	 * to emulate the instruction.
1473 	 */
1474 	if ((par & SYS_PAR_EL1_F) &&
1475 	    !par_check_s1_perm_fault(par) &&
1476 	    !par_check_s1_access_fault(par)) {
1477 		ret = handle_at_slow(vcpu, op, vaddr, &par);
1478 		if (ret)
1479 			return ret;
1480 	}
1481 
1482 	vcpu_write_sys_reg(vcpu, par, PAR_EL1);
1483 	return 0;
1484 }
1485 
__kvm_at_s1e2(struct kvm_vcpu * vcpu,u32 op,u64 vaddr)1486 int __kvm_at_s1e2(struct kvm_vcpu *vcpu, u32 op, u64 vaddr)
1487 {
1488 	u64 par;
1489 	int ret;
1490 
1491 	/*
1492 	 * We've trapped, so everything is live on the CPU. As we will be
1493 	 * switching context behind everybody's back, disable interrupts...
1494 	 */
1495 	scoped_guard(write_lock_irqsave, &vcpu->kvm->mmu_lock) {
1496 		u64 val, hcr;
1497 		bool fail;
1498 
1499 		val = hcr = read_sysreg(hcr_el2);
1500 		val &= ~HCR_TGE;
1501 		val |= HCR_VM;
1502 
1503 		if (!vcpu_el2_e2h_is_set(vcpu))
1504 			val |= HCR_NV | HCR_NV1;
1505 
1506 		write_sysreg_hcr(val);
1507 		isb();
1508 
1509 		par = SYS_PAR_EL1_F;
1510 
1511 		switch (op) {
1512 		case OP_AT_S1E2R:
1513 			fail = __kvm_at(OP_AT_S1E1R, vaddr);
1514 			break;
1515 		case OP_AT_S1E2W:
1516 			fail = __kvm_at(OP_AT_S1E1W, vaddr);
1517 			break;
1518 		case OP_AT_S1E2A:
1519 			fail = __kvm_at(OP_AT_S1E1A, vaddr);
1520 			break;
1521 		default:
1522 			WARN_ON_ONCE(1);
1523 			fail = true;
1524 		}
1525 
1526 		isb();
1527 
1528 		if (!fail)
1529 			par = read_sysreg_par();
1530 
1531 		write_sysreg_hcr(hcr);
1532 		isb();
1533 	}
1534 
1535 	/* We failed the translation, let's replay it in slow motion */
1536 	if ((par & SYS_PAR_EL1_F) && !par_check_s1_perm_fault(par)) {
1537 		ret = handle_at_slow(vcpu, op, vaddr, &par);
1538 		if (ret)
1539 			return ret;
1540 	}
1541 
1542 	vcpu_write_sys_reg(vcpu, par, PAR_EL1);
1543 	return 0;
1544 }
1545 
__kvm_at_s12(struct kvm_vcpu * vcpu,u32 op,u64 vaddr)1546 int __kvm_at_s12(struct kvm_vcpu *vcpu, u32 op, u64 vaddr)
1547 {
1548 	struct kvm_s2_trans out = {};
1549 	u64 ipa, par;
1550 	bool write;
1551 	int ret;
1552 
1553 	/* Do the stage-1 translation */
1554 	switch (op) {
1555 	case OP_AT_S12E1R:
1556 		op = OP_AT_S1E1R;
1557 		write = false;
1558 		break;
1559 	case OP_AT_S12E1W:
1560 		op = OP_AT_S1E1W;
1561 		write = true;
1562 		break;
1563 	case OP_AT_S12E0R:
1564 		op = OP_AT_S1E0R;
1565 		write = false;
1566 		break;
1567 	case OP_AT_S12E0W:
1568 		op = OP_AT_S1E0W;
1569 		write = true;
1570 		break;
1571 	default:
1572 		WARN_ON_ONCE(1);
1573 		return 0;
1574 	}
1575 
1576 	__kvm_at_s1e01(vcpu, op, vaddr);
1577 	par = vcpu_read_sys_reg(vcpu, PAR_EL1);
1578 	if (par & SYS_PAR_EL1_F)
1579 		return 0;
1580 
1581 	/*
1582 	 * If we only have a single stage of translation (EL2&0), exit
1583 	 * early. Same thing if {VM,DC}=={0,0}.
1584 	 */
1585 	if (compute_translation_regime(vcpu, op) == TR_EL20 ||
1586 	    !(vcpu_read_sys_reg(vcpu, HCR_EL2) & (HCR_VM | HCR_DC)))
1587 		return 0;
1588 
1589 	/* Do the stage-2 translation */
1590 	ipa = (par & GENMASK_ULL(47, 12)) | (vaddr & GENMASK_ULL(11, 0));
1591 	out.esr = 0;
1592 	ret = kvm_walk_nested_s2(vcpu, ipa, &out);
1593 	if (ret < 0)
1594 		return ret;
1595 
1596 	/* Check the access permission */
1597 	if (!out.esr &&
1598 	    ((!write && !out.readable) || (write && !out.writable)))
1599 		out.esr = ESR_ELx_FSC_PERM_L(out.level & 0x3);
1600 
1601 	par = compute_par_s12(vcpu, par, &out);
1602 	vcpu_write_sys_reg(vcpu, par, PAR_EL1);
1603 	return 0;
1604 }
1605 
1606 /*
1607  * Translate a VA for a given EL in a given translation regime, with
1608  * or without PAN. This requires wi->{regime, as_el0, pan} to be
1609  * set. The rest of the wi and wr should be 0-initialised.
1610  */
__kvm_translate_va(struct kvm_vcpu * vcpu,struct s1_walk_info * wi,struct s1_walk_result * wr,u64 va)1611 int __kvm_translate_va(struct kvm_vcpu *vcpu, struct s1_walk_info *wi,
1612 		       struct s1_walk_result *wr, u64 va)
1613 {
1614 	int ret;
1615 
1616 	ret = setup_s1_walk(vcpu, wi, wr, va);
1617 	if (ret)
1618 		return ret;
1619 
1620 	if (wr->level == S1_MMU_DISABLED) {
1621 		wr->ur = wr->uw = wr->ux = true;
1622 		wr->pr = wr->pw = wr->px = true;
1623 	} else {
1624 		ret = walk_s1(vcpu, wi, wr, va);
1625 		if (ret)
1626 			return ret;
1627 
1628 		compute_s1_permissions(vcpu, wi, wr);
1629 	}
1630 
1631 	return 0;
1632 }
1633 
1634 struct desc_match {
1635 	u64	ipa;
1636 	int	level;
1637 };
1638 
match_s1_desc(struct s1_walk_context * ctxt,void * priv)1639 static int match_s1_desc(struct s1_walk_context *ctxt, void *priv)
1640 {
1641 	struct desc_match *dm = priv;
1642 	u64 ipa = dm->ipa;
1643 
1644 	/* Use S1 granule alignment */
1645 	ipa &= GENMASK(51, ctxt->wi->pgshift);
1646 
1647 	/* Not the IPA we're looking for? Continue. */
1648 	if (ipa != ctxt->table_ipa)
1649 		return 0;
1650 
1651 	/* Note the level and interrupt the walk */
1652 	dm->level = ctxt->level;
1653 	return -EINTR;
1654 }
1655 
__kvm_find_s1_desc_level(struct kvm_vcpu * vcpu,u64 va,u64 ipa,int * level)1656 int __kvm_find_s1_desc_level(struct kvm_vcpu *vcpu, u64 va, u64 ipa, int *level)
1657 {
1658 	struct desc_match dm = {
1659 		.ipa	= ipa,
1660 	};
1661 	struct s1_walk_info wi = {
1662 		.filter	= &(struct s1_walk_filter){
1663 			.fn	= match_s1_desc,
1664 			.priv	= &dm,
1665 		},
1666 		.as_el0	= false,
1667 		.pan	= false,
1668 	};
1669 	struct s1_walk_result wr = {};
1670 	int ret;
1671 
1672 	if (is_hyp_ctxt(vcpu))
1673 		wi.regime = vcpu_el2_e2h_is_set(vcpu) ? TR_EL20 : TR_EL2;
1674 	else
1675 		wi.regime = TR_EL10;
1676 
1677 	ret = setup_s1_walk(vcpu, &wi, &wr, va);
1678 	if (ret)
1679 		return ret;
1680 
1681 	/* We really expect the S1 MMU to be on here... */
1682 	if (WARN_ON_ONCE(wr.level == S1_MMU_DISABLED)) {
1683 		*level = 0;
1684 		return 0;
1685 	}
1686 
1687 	/* Walk the guest's PT, looking for a match along the way */
1688 	ret = walk_s1(vcpu, &wi, &wr, va);
1689 	switch (ret) {
1690 	case -EINTR:
1691 		/* We interrupted the walk on a match, return the level */
1692 		*level = dm.level;
1693 		return 0;
1694 	case 0:
1695 		/* The walk completed, we failed to find the entry */
1696 		return -ENOENT;
1697 	default:
1698 		/* Any other error... */
1699 		return ret;
1700 	}
1701 }
1702 
1703 #ifdef CONFIG_ARM64_LSE_ATOMICS
__lse_swap_desc(u64 __user * ptep,u64 old,u64 new)1704 static int __lse_swap_desc(u64 __user *ptep, u64 old, u64 new)
1705 {
1706 	u64 tmp = old;
1707 	int ret = 0;
1708 
1709 	uaccess_enable_privileged();
1710 
1711 	asm volatile(__LSE_PREAMBLE
1712 		     "1: cas	%[old], %[new], %[addr]\n"
1713 		     "2:\n"
1714 		     _ASM_EXTABLE_UACCESS_ERR(1b, 2b, %w[ret])
1715 		     : [old] "+r" (old), [addr] "+Q" (*ptep), [ret] "+r" (ret)
1716 		     : [new] "r" (new)
1717 		     : "memory");
1718 
1719 	uaccess_disable_privileged();
1720 
1721 	if (ret)
1722 		return ret;
1723 	if (tmp != old)
1724 		return -EAGAIN;
1725 
1726 	return ret;
1727 }
1728 #else
__lse_swap_desc(u64 __user * ptep,u64 old,u64 new)1729 static int __lse_swap_desc(u64 __user *ptep, u64 old, u64 new)
1730 {
1731 	return -EINVAL;
1732 }
1733 #endif
1734 
__llsc_swap_desc(u64 __user * ptep,u64 old,u64 new)1735 static int __llsc_swap_desc(u64 __user *ptep, u64 old, u64 new)
1736 {
1737 	int ret = 1;
1738 	u64 tmp;
1739 
1740 	uaccess_enable_privileged();
1741 
1742 	asm volatile("prfm	pstl1strm, %[addr]\n"
1743 		     "1: ldxr	%[tmp], %[addr]\n"
1744 		     "sub	%[tmp], %[tmp], %[old]\n"
1745 		     "cbnz	%[tmp], 3f\n"
1746 		     "2: stlxr	%w[ret], %[new], %[addr]\n"
1747 		     "3:\n"
1748 		     _ASM_EXTABLE_UACCESS_ERR(1b, 3b, %w[ret])
1749 		     _ASM_EXTABLE_UACCESS_ERR(2b, 3b, %w[ret])
1750 		     : [ret] "+r" (ret), [addr] "+Q" (*ptep), [tmp] "=&r" (tmp)
1751 		     : [old] "r" (old), [new] "r" (new)
1752 		     : "memory");
1753 
1754 	uaccess_disable_privileged();
1755 
1756 	/* STLXR didn't update the descriptor, or the compare failed */
1757 	if (ret == 1)
1758 		return -EAGAIN;
1759 
1760 	return ret;
1761 }
1762 
__kvm_at_swap_desc(struct kvm * kvm,gpa_t ipa,u64 old,u64 new)1763 int __kvm_at_swap_desc(struct kvm *kvm, gpa_t ipa, u64 old, u64 new)
1764 {
1765 	struct kvm_memory_slot *slot;
1766 	unsigned long hva;
1767 	u64 __user *ptep;
1768 	bool writable;
1769 	int offset;
1770 	gfn_t gfn;
1771 	int r;
1772 
1773 	lockdep_assert(srcu_read_lock_held(&kvm->srcu));
1774 
1775 	gfn = ipa >> PAGE_SHIFT;
1776 	offset = offset_in_page(ipa);
1777 	slot = gfn_to_memslot(kvm, gfn);
1778 	hva = gfn_to_hva_memslot_prot(slot, gfn, &writable);
1779 	if (kvm_is_error_hva(hva))
1780 		return -EINVAL;
1781 	if (!writable)
1782 		return -EPERM;
1783 
1784 	ptep = (u64 __user *)hva + offset;
1785 	if (cpus_have_final_cap(ARM64_HAS_LSE_ATOMICS))
1786 		r = __lse_swap_desc(ptep, old, new);
1787 	else
1788 		r = __llsc_swap_desc(ptep, old, new);
1789 
1790 	if (r < 0)
1791 		return r;
1792 
1793 	mark_page_dirty_in_slot(kvm, slot, gfn);
1794 	return 0;
1795 }
1796