xref: /linux/net/ipv4/arp.c (revision 24c776355f4097316a763005434ffff716aa21a8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* linux/net/ipv4/arp.c
3  *
4  * Copyright (C) 1994 by Florian  La Roche
5  *
6  * This module implements the Address Resolution Protocol ARP (RFC 826),
7  * which is used to convert IP addresses (or in the future maybe other
8  * high-level addresses) into a low-level hardware address (like an Ethernet
9  * address).
10  *
11  * Fixes:
12  *		Alan Cox	:	Removed the Ethernet assumptions in
13  *					Florian's code
14  *		Alan Cox	:	Fixed some small errors in the ARP
15  *					logic
16  *		Alan Cox	:	Allow >4K in /proc
17  *		Alan Cox	:	Make ARP add its own protocol entry
18  *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
19  *		Stephen Henson	:	Add AX25 support to arp_get_info()
20  *		Alan Cox	:	Drop data when a device is downed.
21  *		Alan Cox	:	Use init_timer().
22  *		Alan Cox	:	Double lock fixes.
23  *		Martin Seine	:	Move the arphdr structure
24  *					to if_arp.h for compatibility.
25  *					with BSD based programs.
26  *		Andrew Tridgell :       Added ARP netmask code and
27  *					re-arranged proxy handling.
28  *		Alan Cox	:	Changed to use notifiers.
29  *		Niibe Yutaka	:	Reply for this device or proxies only.
30  *		Alan Cox	:	Don't proxy across hardware types!
31  *		Jonathan Naylor :	Added support for NET/ROM.
32  *		Mike Shaver     :       RFC1122 checks.
33  *		Jonathan Naylor :	Only lookup the hardware address for
34  *					the correct hardware type.
35  *		Germano Caronni	:	Assorted subtle races.
36  *		Craig Schlenter :	Don't modify permanent entry
37  *					during arp_rcv.
38  *		Russ Nelson	:	Tidied up a few bits.
39  *		Alexey Kuznetsov:	Major changes to caching and behaviour,
40  *					eg intelligent arp probing and
41  *					generation
42  *					of host down events.
43  *		Alan Cox	:	Missing unlock in device events.
44  *		Eckes		:	ARP ioctl control errors.
45  *		Alexey Kuznetsov:	Arp free fix.
46  *		Manuel Rodriguez:	Gratuitous ARP.
47  *              Jonathan Layes  :       Added arpd support through kerneld
48  *                                      message queue (960314)
49  *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
50  *		Mike McLagan    :	Routing by source
51  *		Stuart Cheshire	:	Metricom and grat arp fixes
52  *					*** FOR 2.1 clean this up ***
53  *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
54  *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
55  *					folded into the mainstream FDDI code.
56  *					Ack spit, Linus how did you allow that
57  *					one in...
58  *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
59  *					clean up the APFDDI & gen. FDDI bits.
60  *		Alexey Kuznetsov:	new arp state machine;
61  *					now it is in net/core/neighbour.c.
62  *		Krzysztof Halasa:	Added Frame Relay ARP support.
63  *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
64  *		Shmulik Hen:		Split arp_send to arp_create and
65  *					arp_xmit so intermediate drivers like
66  *					bonding can change the skb before
67  *					sending (e.g. insert 8021q tag).
68  *		Harald Welte	:	convert to make use of jenkins hash
69  *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
70  */
71 
72 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
73 
74 #include <linux/module.h>
75 #include <linux/types.h>
76 #include <linux/string.h>
77 #include <linux/kernel.h>
78 #include <linux/capability.h>
79 #include <linux/socket.h>
80 #include <linux/sockios.h>
81 #include <linux/errno.h>
82 #include <linux/hex.h>
83 #include <linux/in.h>
84 #include <linux/mm.h>
85 #include <linux/inet.h>
86 #include <linux/inetdevice.h>
87 #include <linux/netdevice.h>
88 #include <linux/etherdevice.h>
89 #include <linux/fddidevice.h>
90 #include <linux/if_arp.h>
91 #include <linux/skbuff.h>
92 #include <linux/proc_fs.h>
93 #include <linux/seq_file.h>
94 #include <linux/stat.h>
95 #include <linux/init.h>
96 #include <linux/net.h>
97 #include <linux/rcupdate.h>
98 #include <linux/slab.h>
99 #ifdef CONFIG_SYSCTL
100 #include <linux/sysctl.h>
101 #endif
102 
103 #include <net/net_namespace.h>
104 #include <net/ip.h>
105 #include <net/icmp.h>
106 #include <net/route.h>
107 #include <net/protocol.h>
108 #include <net/tcp.h>
109 #include <net/sock.h>
110 #include <net/arp.h>
111 #include <net/ax25.h>
112 #include <net/netrom.h>
113 #include <net/dst_metadata.h>
114 #include <net/ip_tunnels.h>
115 
116 #include <linux/uaccess.h>
117 
118 #include <linux/netfilter_arp.h>
119 
120 /*
121  *	Interface to generic neighbour cache.
122  */
123 static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
124 static bool arp_key_eq(const struct neighbour *n, const void *pkey);
125 static int arp_constructor(struct neighbour *neigh);
126 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
127 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
128 static void parp_redo(struct sk_buff *skb);
129 static int arp_is_multicast(const void *pkey);
130 
131 static const struct neigh_ops arp_generic_ops = {
132 	.family =		AF_INET,
133 	.solicit =		arp_solicit,
134 	.error_report =		arp_error_report,
135 	.output =		neigh_resolve_output,
136 	.connected_output =	neigh_connected_output,
137 };
138 
139 static const struct neigh_ops arp_hh_ops = {
140 	.family =		AF_INET,
141 	.solicit =		arp_solicit,
142 	.error_report =		arp_error_report,
143 	.output =		neigh_resolve_output,
144 	.connected_output =	neigh_resolve_output,
145 };
146 
147 static const struct neigh_ops arp_direct_ops = {
148 	.family =		AF_INET,
149 	.output =		neigh_direct_output,
150 	.connected_output =	neigh_direct_output,
151 };
152 
153 struct neigh_table arp_tbl = {
154 	.family		= AF_INET,
155 	.key_len	= 4,
156 	.protocol	= cpu_to_be16(ETH_P_IP),
157 	.hash		= arp_hash,
158 	.key_eq		= arp_key_eq,
159 	.constructor	= arp_constructor,
160 	.proxy_redo	= parp_redo,
161 	.is_multicast	= arp_is_multicast,
162 	.id		= "arp_cache",
163 	.parms		= {
164 		.tbl			= &arp_tbl,
165 		.reachable_time		= 30 * HZ,
166 		.data	= {
167 			[NEIGH_VAR_MCAST_PROBES] = 3,
168 			[NEIGH_VAR_UCAST_PROBES] = 3,
169 			[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
170 			[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
171 			[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
172 			[NEIGH_VAR_INTERVAL_PROBE_TIME_MS] = 5 * HZ,
173 			[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
174 			[NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_DEFAULT,
175 			[NEIGH_VAR_PROXY_QLEN] = 64,
176 			[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
177 			[NEIGH_VAR_PROXY_DELAY]	= (8 * HZ) / 10,
178 			[NEIGH_VAR_LOCKTIME] = 1 * HZ,
179 		},
180 	},
181 	.gc_interval	= 30 * HZ,
182 	.gc_thresh1	= 128,
183 	.gc_thresh2	= 512,
184 	.gc_thresh3	= 1024,
185 };
186 EXPORT_SYMBOL(arp_tbl);
187 
188 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
189 {
190 	switch (dev->type) {
191 	case ARPHRD_ETHER:
192 	case ARPHRD_FDDI:
193 	case ARPHRD_IEEE802:
194 		ip_eth_mc_map(addr, haddr);
195 		return 0;
196 	case ARPHRD_INFINIBAND:
197 		ip_ib_mc_map(addr, dev->broadcast, haddr);
198 		return 0;
199 	case ARPHRD_IPGRE:
200 		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
201 		return 0;
202 	default:
203 		if (dir) {
204 			memcpy(haddr, dev->broadcast, dev->addr_len);
205 			return 0;
206 		}
207 	}
208 	return -EINVAL;
209 }
210 
211 
212 static u32 arp_hash(const void *pkey,
213 		    const struct net_device *dev,
214 		    __u32 *hash_rnd)
215 {
216 	return arp_hashfn(pkey, dev, hash_rnd);
217 }
218 
219 static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
220 {
221 	return neigh_key_eq32(neigh, pkey);
222 }
223 
224 static int arp_constructor(struct neighbour *neigh)
225 {
226 	__be32 addr;
227 	struct net_device *dev = neigh->dev;
228 	struct in_device *in_dev;
229 	struct neigh_parms *parms;
230 	u32 inaddr_any = INADDR_ANY;
231 
232 	if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
233 		memcpy(neigh->primary_key, &inaddr_any, arp_tbl.key_len);
234 
235 	addr = *(__be32 *)neigh->primary_key;
236 	rcu_read_lock();
237 	in_dev = __in_dev_get_rcu(dev);
238 	if (!in_dev) {
239 		rcu_read_unlock();
240 		return -EINVAL;
241 	}
242 
243 	neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
244 
245 	parms = in_dev->arp_parms;
246 	__neigh_parms_put(neigh->parms);
247 	neigh->parms = neigh_parms_clone(parms);
248 	rcu_read_unlock();
249 
250 	if (!dev->header_ops) {
251 		neigh->nud_state = NUD_NOARP;
252 		neigh->ops = &arp_direct_ops;
253 		neigh->output = neigh_direct_output;
254 	} else {
255 		/* Good devices (checked by reading texts, but only Ethernet is
256 		   tested)
257 
258 		   ARPHRD_ETHER: (ethernet, apfddi)
259 		   ARPHRD_FDDI: (fddi)
260 		   ARPHRD_IEEE802: (tr)
261 		   ARPHRD_METRICOM: (strip)
262 		   ARPHRD_ARCNET:
263 		   etc. etc. etc.
264 
265 		   ARPHRD_IPDDP will also work, if author repairs it.
266 		   I did not it, because this driver does not work even
267 		   in old paradigm.
268 		 */
269 
270 		if (neigh->type == RTN_MULTICAST) {
271 			neigh->nud_state = NUD_NOARP;
272 			arp_mc_map(addr, neigh->ha, dev, 1);
273 		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
274 			neigh->nud_state = NUD_NOARP;
275 			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
276 		} else if (neigh->type == RTN_BROADCAST ||
277 			   (dev->flags & IFF_POINTOPOINT)) {
278 			neigh->nud_state = NUD_NOARP;
279 			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
280 		}
281 
282 		if (dev->header_ops->cache)
283 			neigh->ops = &arp_hh_ops;
284 		else
285 			neigh->ops = &arp_generic_ops;
286 
287 		if (neigh->nud_state & NUD_VALID)
288 			neigh->output = neigh->ops->connected_output;
289 		else
290 			neigh->output = neigh->ops->output;
291 	}
292 	return 0;
293 }
294 
295 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
296 {
297 	dst_link_failure(skb);
298 	kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_FAILED);
299 }
300 
301 /* Create and send an arp packet. */
302 static void arp_send_dst(int type, int ptype, __be32 dest_ip,
303 			 struct net_device *dev, __be32 src_ip,
304 			 const unsigned char *dest_hw,
305 			 const unsigned char *src_hw,
306 			 const unsigned char *target_hw,
307 			 struct dst_entry *dst)
308 {
309 	struct sk_buff *skb;
310 
311 	/* arp on this interface. */
312 	if (dev->flags & IFF_NOARP)
313 		return;
314 
315 	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
316 			 dest_hw, src_hw, target_hw);
317 	if (!skb)
318 		return;
319 
320 	skb_dst_set(skb, dst_clone(dst));
321 	arp_xmit(skb);
322 }
323 
324 void arp_send(int type, int ptype, __be32 dest_ip,
325 	      struct net_device *dev, __be32 src_ip,
326 	      const unsigned char *dest_hw, const unsigned char *src_hw,
327 	      const unsigned char *target_hw)
328 {
329 	arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
330 		     target_hw, NULL);
331 }
332 EXPORT_SYMBOL(arp_send);
333 
334 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
335 {
336 	__be32 saddr = 0;
337 	u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
338 	struct net_device *dev = neigh->dev;
339 	__be32 target = *(__be32 *)neigh->primary_key;
340 	int probes = atomic_read(&neigh->probes);
341 	struct in_device *in_dev;
342 	struct dst_entry *dst = NULL;
343 
344 	rcu_read_lock();
345 	in_dev = __in_dev_get_rcu(dev);
346 	if (!in_dev) {
347 		rcu_read_unlock();
348 		return;
349 	}
350 	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
351 	default:
352 	case 0:		/* By default announce any local IP */
353 		if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
354 					  ip_hdr(skb)->saddr) == RTN_LOCAL)
355 			saddr = ip_hdr(skb)->saddr;
356 		break;
357 	case 1:		/* Restrict announcements of saddr in same subnet */
358 		if (!skb)
359 			break;
360 		saddr = ip_hdr(skb)->saddr;
361 		if (inet_addr_type_dev_table(dev_net(dev), dev,
362 					     saddr) == RTN_LOCAL) {
363 			/* saddr should be known to target */
364 			if (inet_addr_onlink(in_dev, target, saddr))
365 				break;
366 		}
367 		saddr = 0;
368 		break;
369 	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
370 		break;
371 	}
372 	rcu_read_unlock();
373 
374 	if (!saddr)
375 		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
376 
377 	probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
378 	if (probes < 0) {
379 		if (!(READ_ONCE(neigh->nud_state) & NUD_VALID))
380 			pr_debug("trying to ucast probe in NUD_INVALID\n");
381 		neigh_ha_snapshot(dst_ha, neigh, dev);
382 		dst_hw = dst_ha;
383 	} else {
384 		probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
385 		if (probes < 0) {
386 			neigh_app_ns(neigh);
387 			return;
388 		}
389 	}
390 
391 	if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
392 		dst = skb_dst(skb);
393 	arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
394 		     dst_hw, dev->dev_addr, NULL, dst);
395 }
396 
397 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
398 {
399 	struct net *net = dev_net(in_dev->dev);
400 	int scope;
401 
402 	switch (IN_DEV_ARP_IGNORE(in_dev)) {
403 	case 0:	/* Reply, the tip is already validated */
404 		return 0;
405 	case 1:	/* Reply only if tip is configured on the incoming interface */
406 		sip = 0;
407 		scope = RT_SCOPE_HOST;
408 		break;
409 	case 2:	/*
410 		 * Reply only if tip is configured on the incoming interface
411 		 * and is in same subnet as sip
412 		 */
413 		scope = RT_SCOPE_HOST;
414 		break;
415 	case 3:	/* Do not reply for scope host addresses */
416 		sip = 0;
417 		scope = RT_SCOPE_LINK;
418 		in_dev = NULL;
419 		break;
420 	case 4:	/* Reserved */
421 	case 5:
422 	case 6:
423 	case 7:
424 		return 0;
425 	case 8:	/* Do not reply */
426 		return 1;
427 	default:
428 		return 0;
429 	}
430 	return !inet_confirm_addr(net, in_dev, sip, tip, scope);
431 }
432 
433 static int arp_accept(struct in_device *in_dev, __be32 sip)
434 {
435 	struct net *net = dev_net(in_dev->dev);
436 	int scope = RT_SCOPE_LINK;
437 
438 	switch (IN_DEV_ARP_ACCEPT(in_dev)) {
439 	case 0: /* Don't create new entries from garp */
440 		return 0;
441 	case 1: /* Create new entries from garp */
442 		return 1;
443 	case 2: /* Create a neighbor in the arp table only if sip
444 		 * is in the same subnet as an address configured
445 		 * on the interface that received the garp message
446 		 */
447 		return !!inet_confirm_addr(net, in_dev, sip, 0, scope);
448 	default:
449 		return 0;
450 	}
451 }
452 
453 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
454 {
455 	struct rtable *rt;
456 	int flag = 0;
457 	/*unsigned long now; */
458 	struct net *net = dev_net(dev);
459 
460 	rt = ip_route_output(net, sip, tip, 0, l3mdev_master_ifindex_rcu(dev),
461 			     RT_SCOPE_UNIVERSE);
462 	if (IS_ERR(rt))
463 		return 1;
464 	if (rt->dst.dev != dev) {
465 		__NET_INC_STATS(net, LINUX_MIB_ARPFILTER);
466 		flag = 1;
467 	}
468 	ip_rt_put(rt);
469 	return flag;
470 }
471 
472 /*
473  * Check if we can use proxy ARP for this path
474  */
475 static inline int arp_fwd_proxy(struct in_device *in_dev,
476 				struct net_device *dev,	struct rtable *rt)
477 {
478 	struct in_device *out_dev;
479 	int imi, omi = -1;
480 
481 	if (rt->dst.dev == dev)
482 		return 0;
483 
484 	if (!IN_DEV_PROXY_ARP(in_dev))
485 		return 0;
486 	imi = IN_DEV_MEDIUM_ID(in_dev);
487 	if (imi == 0)
488 		return 1;
489 	if (imi == -1)
490 		return 0;
491 
492 	/* place to check for proxy_arp for routes */
493 
494 	out_dev = __in_dev_get_rcu(rt->dst.dev);
495 	if (out_dev)
496 		omi = IN_DEV_MEDIUM_ID(out_dev);
497 
498 	return omi != imi && omi != -1;
499 }
500 
501 /*
502  * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
503  *
504  * RFC3069 supports proxy arp replies back to the same interface.  This
505  * is done to support (ethernet) switch features, like RFC 3069, where
506  * the individual ports are not allowed to communicate with each
507  * other, BUT they are allowed to talk to the upstream router.  As
508  * described in RFC 3069, it is possible to allow these hosts to
509  * communicate through the upstream router, by proxy_arp'ing.
510  *
511  * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
512  *
513  *  This technology is known by different names:
514  *    In RFC 3069 it is called VLAN Aggregation.
515  *    Cisco and Allied Telesyn call it Private VLAN.
516  *    Hewlett-Packard call it Source-Port filtering or port-isolation.
517  *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
518  *
519  */
520 static inline int arp_fwd_pvlan(struct in_device *in_dev,
521 				struct net_device *dev,	struct rtable *rt,
522 				__be32 sip, __be32 tip)
523 {
524 	/* Private VLAN is only concerned about the same ethernet segment */
525 	if (rt->dst.dev != dev)
526 		return 0;
527 
528 	/* Don't reply on self probes (often done by windowz boxes)*/
529 	if (sip == tip)
530 		return 0;
531 
532 	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
533 		return 1;
534 	else
535 		return 0;
536 }
537 
538 /*
539  *	Interface to link layer: send routine and receive handler.
540  */
541 
542 /*
543  *	Create an arp packet. If dest_hw is not set, we create a broadcast
544  *	message.
545  */
546 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
547 			   struct net_device *dev, __be32 src_ip,
548 			   const unsigned char *dest_hw,
549 			   const unsigned char *src_hw,
550 			   const unsigned char *target_hw)
551 {
552 	struct sk_buff *skb;
553 	struct arphdr *arp;
554 	unsigned char *arp_ptr;
555 	int hlen = LL_RESERVED_SPACE(dev);
556 	int tlen = dev->needed_tailroom;
557 
558 	/*
559 	 *	Allocate a buffer
560 	 */
561 
562 	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
563 	if (!skb)
564 		return NULL;
565 
566 	skb_reserve(skb, hlen);
567 	skb_reset_network_header(skb);
568 	skb_put(skb, arp_hdr_len(dev));
569 	skb->dev = dev;
570 	skb->protocol = htons(ETH_P_ARP);
571 	if (!src_hw)
572 		src_hw = dev->dev_addr;
573 	if (!dest_hw)
574 		dest_hw = dev->broadcast;
575 
576 	/* Fill the device header for the ARP frame.
577 	 * Note: skb->head can be changed.
578 	 */
579 	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
580 		goto out;
581 
582 	arp = arp_hdr(skb);
583 	/*
584 	 * Fill out the arp protocol part.
585 	 *
586 	 * The arp hardware type should match the device type, except for FDDI,
587 	 * which (according to RFC 1390) should always equal 1 (Ethernet).
588 	 */
589 	/*
590 	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
591 	 *	DIX code for the protocol. Make these device structure fields.
592 	 */
593 	switch (dev->type) {
594 	default:
595 		arp->ar_hrd = htons(dev->type);
596 		arp->ar_pro = htons(ETH_P_IP);
597 		break;
598 
599 #if IS_ENABLED(CONFIG_AX25)
600 	case ARPHRD_AX25:
601 		arp->ar_hrd = htons(ARPHRD_AX25);
602 		arp->ar_pro = htons(AX25_P_IP);
603 		break;
604 
605 #if IS_ENABLED(CONFIG_NETROM)
606 	case ARPHRD_NETROM:
607 		arp->ar_hrd = htons(ARPHRD_NETROM);
608 		arp->ar_pro = htons(AX25_P_IP);
609 		break;
610 #endif
611 #endif
612 
613 #if IS_ENABLED(CONFIG_FDDI)
614 	case ARPHRD_FDDI:
615 		arp->ar_hrd = htons(ARPHRD_ETHER);
616 		arp->ar_pro = htons(ETH_P_IP);
617 		break;
618 #endif
619 	}
620 
621 	arp->ar_hln = dev->addr_len;
622 	arp->ar_pln = 4;
623 	arp->ar_op = htons(type);
624 
625 	arp_ptr = (unsigned char *)(arp + 1);
626 
627 	memcpy(arp_ptr, src_hw, dev->addr_len);
628 	arp_ptr += dev->addr_len;
629 	memcpy(arp_ptr, &src_ip, 4);
630 	arp_ptr += 4;
631 
632 	switch (dev->type) {
633 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
634 	case ARPHRD_IEEE1394:
635 		break;
636 #endif
637 	default:
638 		if (target_hw)
639 			memcpy(arp_ptr, target_hw, dev->addr_len);
640 		else
641 			memset(arp_ptr, 0, dev->addr_len);
642 		arp_ptr += dev->addr_len;
643 	}
644 	memcpy(arp_ptr, &dest_ip, 4);
645 
646 	return skb;
647 
648 out:
649 	kfree_skb(skb);
650 	return NULL;
651 }
652 EXPORT_SYMBOL(arp_create);
653 
654 static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
655 {
656 	return dev_queue_xmit(skb);
657 }
658 
659 /*
660  *	Send an arp packet.
661  */
662 void arp_xmit(struct sk_buff *skb)
663 {
664 	rcu_read_lock();
665 	/* Send it off, maybe filter it using firewalling first.  */
666 	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
667 		dev_net_rcu(skb->dev), NULL, skb, NULL, skb->dev,
668 		arp_xmit_finish);
669 	rcu_read_unlock();
670 }
671 EXPORT_SYMBOL(arp_xmit);
672 
673 static bool arp_is_garp(struct net *net, struct net_device *dev,
674 			int *addr_type, __be16 ar_op,
675 			__be32 sip, __be32 tip,
676 			unsigned char *sha, unsigned char *tha)
677 {
678 	bool is_garp = tip == sip;
679 
680 	/* Gratuitous ARP _replies_ also require target hwaddr to be
681 	 * the same as source.
682 	 */
683 	if (is_garp && ar_op == htons(ARPOP_REPLY))
684 		is_garp =
685 			/* IPv4 over IEEE 1394 doesn't provide target
686 			 * hardware address field in its ARP payload.
687 			 */
688 			tha &&
689 			!memcmp(tha, sha, dev->addr_len);
690 
691 	if (is_garp) {
692 		*addr_type = inet_addr_type_dev_table(net, dev, sip);
693 		if (*addr_type != RTN_UNICAST)
694 			is_garp = false;
695 	}
696 	return is_garp;
697 }
698 
699 /*
700  *	Process an arp request.
701  */
702 
703 static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
704 {
705 	struct net_device *dev = skb->dev;
706 	struct in_device *in_dev = __in_dev_get_rcu(dev);
707 	struct arphdr *arp;
708 	unsigned char *arp_ptr;
709 	struct rtable *rt;
710 	unsigned char *sha;
711 	unsigned char *tha = NULL;
712 	__be32 sip, tip;
713 	u16 dev_type = dev->type;
714 	int addr_type;
715 	struct neighbour *n;
716 	struct dst_entry *reply_dst = NULL;
717 	bool is_garp = false;
718 
719 	/* arp_rcv below verifies the ARP header and verifies the device
720 	 * is ARP'able.
721 	 */
722 
723 	if (!in_dev)
724 		goto out_free_skb;
725 
726 	arp = arp_hdr(skb);
727 
728 	switch (dev_type) {
729 	default:
730 		if (arp->ar_pro != htons(ETH_P_IP) ||
731 		    htons(dev_type) != arp->ar_hrd)
732 			goto out_free_skb;
733 		break;
734 	case ARPHRD_ETHER:
735 	case ARPHRD_FDDI:
736 	case ARPHRD_IEEE802:
737 		/*
738 		 * ETHERNET, and Fibre Channel (which are IEEE 802
739 		 * devices, according to RFC 2625) devices will accept ARP
740 		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
741 		 * This is the case also of FDDI, where the RFC 1390 says that
742 		 * FDDI devices should accept ARP hardware of (1) Ethernet,
743 		 * however, to be more robust, we'll accept both 1 (Ethernet)
744 		 * or 6 (IEEE 802.2)
745 		 */
746 		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
747 		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
748 		    arp->ar_pro != htons(ETH_P_IP))
749 			goto out_free_skb;
750 		break;
751 	case ARPHRD_AX25:
752 		if (arp->ar_pro != htons(AX25_P_IP) ||
753 		    arp->ar_hrd != htons(ARPHRD_AX25))
754 			goto out_free_skb;
755 		break;
756 	case ARPHRD_NETROM:
757 		if (arp->ar_pro != htons(AX25_P_IP) ||
758 		    arp->ar_hrd != htons(ARPHRD_NETROM))
759 			goto out_free_skb;
760 		break;
761 	}
762 
763 	/* Understand only these message types */
764 
765 	if (arp->ar_op != htons(ARPOP_REPLY) &&
766 	    arp->ar_op != htons(ARPOP_REQUEST))
767 		goto out_free_skb;
768 
769 /*
770  *	Extract fields
771  */
772 	arp_ptr = (unsigned char *)(arp + 1);
773 	sha	= arp_ptr;
774 	arp_ptr += dev->addr_len;
775 	memcpy(&sip, arp_ptr, 4);
776 	arp_ptr += 4;
777 	switch (dev_type) {
778 #if IS_ENABLED(CONFIG_FIREWIRE_NET)
779 	case ARPHRD_IEEE1394:
780 		break;
781 #endif
782 	default:
783 		tha = arp_ptr;
784 		arp_ptr += dev->addr_len;
785 	}
786 	memcpy(&tip, arp_ptr, 4);
787 /*
788  *	Check for bad requests for 127.x.x.x and requests for multicast
789  *	addresses.  If this is one such, delete it.
790  */
791 	if (ipv4_is_multicast(tip) ||
792 	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
793 		goto out_free_skb;
794 
795  /*
796   *	For some 802.11 wireless deployments (and possibly other networks),
797   *	there will be an ARP proxy and gratuitous ARP frames are attacks
798   *	and thus should not be accepted.
799   */
800 	if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP))
801 		goto out_free_skb;
802 
803 /*
804  *     Special case: We must set Frame Relay source Q.922 address
805  */
806 	if (dev_type == ARPHRD_DLCI)
807 		sha = dev->broadcast;
808 
809 /*
810  *  Process entry.  The idea here is we want to send a reply if it is a
811  *  request for us or if it is a request for someone else that we hold
812  *  a proxy for.  We want to add an entry to our cache if it is a reply
813  *  to us or if it is a request for our address.
814  *  (The assumption for this last is that if someone is requesting our
815  *  address, they are probably intending to talk to us, so it saves time
816  *  if we cache their address.  Their address is also probably not in
817  *  our cache, since ours is not in their cache.)
818  *
819  *  Putting this another way, we only care about replies if they are to
820  *  us, in which case we add them to the cache.  For requests, we care
821  *  about those for us and those for our proxies.  We reply to both,
822  *  and in the case of requests for us we add the requester to the arp
823  *  cache.
824  */
825 
826 	if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
827 		reply_dst = (struct dst_entry *)
828 			    iptunnel_metadata_reply(skb_metadata_dst(skb),
829 						    GFP_ATOMIC);
830 
831 	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
832 	if (sip == 0) {
833 		if (arp->ar_op == htons(ARPOP_REQUEST) &&
834 		    inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
835 		    !arp_ignore(in_dev, sip, tip))
836 			arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
837 				     sha, dev->dev_addr, sha, reply_dst);
838 		goto out_consume_skb;
839 	}
840 
841 	if (arp->ar_op == htons(ARPOP_REQUEST) &&
842 	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
843 
844 		rt = skb_rtable(skb);
845 		addr_type = rt->rt_type;
846 
847 		if (addr_type == RTN_LOCAL) {
848 			int dont_send;
849 
850 			dont_send = arp_ignore(in_dev, sip, tip);
851 			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
852 				dont_send = arp_filter(sip, tip, dev);
853 			if (!dont_send) {
854 				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
855 				if (n) {
856 					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
857 						     sip, dev, tip, sha,
858 						     dev->dev_addr, sha,
859 						     reply_dst);
860 					neigh_release(n);
861 				}
862 			}
863 			goto out_consume_skb;
864 		} else if (IN_DEV_FORWARD(in_dev)) {
865 			if (addr_type == RTN_UNICAST  &&
866 			    (arp_fwd_proxy(in_dev, dev, rt) ||
867 			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
868 			     (rt->dst.dev != dev &&
869 			      pneigh_lookup(&arp_tbl, net, &tip, dev)))) {
870 				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
871 				if (n)
872 					neigh_release(n);
873 
874 				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
875 				    skb->pkt_type == PACKET_HOST ||
876 				    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
877 					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
878 						     sip, dev, tip, sha,
879 						     dev->dev_addr, sha,
880 						     reply_dst);
881 				} else {
882 					pneigh_enqueue(&arp_tbl,
883 						       in_dev->arp_parms, skb);
884 					goto out_free_dst;
885 				}
886 				goto out_consume_skb;
887 			}
888 		}
889 	}
890 
891 	/* Update our ARP tables */
892 
893 	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
894 
895 	addr_type = -1;
896 	if (n || arp_accept(in_dev, sip)) {
897 		is_garp = arp_is_garp(net, dev, &addr_type, arp->ar_op,
898 				      sip, tip, sha, tha);
899 	}
900 
901 	if (arp_accept(in_dev, sip)) {
902 		/* Unsolicited ARP is not accepted by default.
903 		   It is possible, that this option should be enabled for some
904 		   devices (strip is candidate)
905 		 */
906 		if (!n &&
907 		    (is_garp ||
908 		     (arp->ar_op == htons(ARPOP_REPLY) &&
909 		      (addr_type == RTN_UNICAST ||
910 		       (addr_type < 0 &&
911 			/* postpone calculation to as late as possible */
912 			inet_addr_type_dev_table(net, dev, sip) ==
913 				RTN_UNICAST)))))
914 			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
915 	}
916 
917 	if (n) {
918 		int state = NUD_REACHABLE;
919 		int override;
920 
921 		/* If several different ARP replies follows back-to-back,
922 		   use the FIRST one. It is possible, if several proxy
923 		   agents are active. Taking the first reply prevents
924 		   arp trashing and chooses the fastest router.
925 		 */
926 		override = time_after(jiffies,
927 				      n->updated +
928 				      NEIGH_VAR(n->parms, LOCKTIME)) ||
929 			   is_garp;
930 
931 		/* Broadcast replies and request packets
932 		   do not assert neighbour reachability.
933 		 */
934 		if (arp->ar_op != htons(ARPOP_REPLY) ||
935 		    skb->pkt_type != PACKET_HOST)
936 			state = NUD_STALE;
937 		neigh_update(n, sha, state,
938 			     override ? NEIGH_UPDATE_F_OVERRIDE : 0, 0);
939 		neigh_release(n);
940 	}
941 
942 out_consume_skb:
943 	consume_skb(skb);
944 
945 out_free_dst:
946 	dst_release(reply_dst);
947 	return NET_RX_SUCCESS;
948 
949 out_free_skb:
950 	kfree_skb(skb);
951 	return NET_RX_DROP;
952 }
953 
954 static void parp_redo(struct sk_buff *skb)
955 {
956 	arp_process(dev_net(skb->dev), NULL, skb);
957 }
958 
959 static int arp_is_multicast(const void *pkey)
960 {
961 	return ipv4_is_multicast(*((__be32 *)pkey));
962 }
963 
964 /*
965  *	Receive an arp request from the device layer.
966  */
967 
968 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
969 		   struct packet_type *pt, struct net_device *orig_dev)
970 {
971 	enum skb_drop_reason drop_reason;
972 	const struct arphdr *arp;
973 
974 	/* do not tweak dropwatch on an ARP we will ignore */
975 	if (dev->flags & IFF_NOARP ||
976 	    skb->pkt_type == PACKET_OTHERHOST ||
977 	    skb->pkt_type == PACKET_LOOPBACK)
978 		goto consumeskb;
979 
980 	skb = skb_share_check(skb, GFP_ATOMIC);
981 	if (!skb)
982 		goto out_of_mem;
983 
984 	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
985 	drop_reason = pskb_may_pull_reason(skb, arp_hdr_len(dev));
986 	if (drop_reason != SKB_NOT_DROPPED_YET)
987 		goto freeskb;
988 
989 	arp = arp_hdr(skb);
990 	if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4) {
991 		drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
992 		goto freeskb;
993 	}
994 
995 	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
996 
997 	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
998 		       dev_net(dev), NULL, skb, dev, NULL,
999 		       arp_process);
1000 
1001 consumeskb:
1002 	consume_skb(skb);
1003 	return NET_RX_SUCCESS;
1004 freeskb:
1005 	kfree_skb_reason(skb, drop_reason);
1006 out_of_mem:
1007 	return NET_RX_DROP;
1008 }
1009 
1010 /*
1011  *	User level interface (ioctl)
1012  */
1013 
1014 static struct net_device *arp_req_dev_by_name(struct net *net, struct arpreq *r,
1015 					      bool getarp)
1016 {
1017 	struct net_device *dev;
1018 
1019 	if (getarp)
1020 		dev = dev_get_by_name_rcu(net, r->arp_dev);
1021 	else
1022 		dev = __dev_get_by_name(net, r->arp_dev);
1023 	if (!dev)
1024 		return ERR_PTR(-ENODEV);
1025 
1026 	/* Mmmm... It is wrong... ARPHRD_NETROM == 0 */
1027 	if (!r->arp_ha.sa_family)
1028 		r->arp_ha.sa_family = dev->type;
1029 
1030 	if ((r->arp_flags & ATF_COM) && r->arp_ha.sa_family != dev->type)
1031 		return ERR_PTR(-EINVAL);
1032 
1033 	return dev;
1034 }
1035 
1036 static struct net_device *arp_req_dev(struct net *net, struct arpreq *r)
1037 {
1038 	struct net_device *dev;
1039 	struct rtable *rt;
1040 	__be32 ip;
1041 
1042 	if (r->arp_dev[0])
1043 		return arp_req_dev_by_name(net, r, false);
1044 
1045 	if (r->arp_flags & ATF_PUBL)
1046 		return NULL;
1047 
1048 	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1049 
1050 	rt = ip_route_output(net, ip, 0, 0, 0, RT_SCOPE_LINK);
1051 	if (IS_ERR(rt))
1052 		return ERR_CAST(rt);
1053 
1054 	dev = rt->dst.dev;
1055 	ip_rt_put(rt);
1056 
1057 	if (!dev)
1058 		return ERR_PTR(-EINVAL);
1059 
1060 	return dev;
1061 }
1062 
1063 /*
1064  *	Set (create) an ARP cache entry.
1065  */
1066 
1067 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
1068 {
1069 	if (!dev) {
1070 		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
1071 		return 0;
1072 	}
1073 	if (__in_dev_get_rtnl_net(dev)) {
1074 		IN_DEV_CONF_SET(__in_dev_get_rtnl_net(dev), PROXY_ARP, on);
1075 		return 0;
1076 	}
1077 	return -ENXIO;
1078 }
1079 
1080 static int arp_req_set_public(struct net *net, struct arpreq *r,
1081 		struct net_device *dev)
1082 {
1083 	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1084 
1085 	if (!dev && (r->arp_flags & ATF_COM)) {
1086 		dev = dev_getbyhwaddr(net, r->arp_ha.sa_family,
1087 				      r->arp_ha.sa_data);
1088 		if (!dev)
1089 			return -ENODEV;
1090 	}
1091 	if (mask) {
1092 		__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1093 
1094 		return pneigh_create(&arp_tbl, net, &ip, dev, 0, 0, false);
1095 	}
1096 
1097 	return arp_req_set_proxy(net, dev, 1);
1098 }
1099 
1100 static int arp_req_set(struct net *net, struct arpreq *r)
1101 {
1102 	struct neighbour *neigh;
1103 	struct net_device *dev;
1104 	__be32 ip;
1105 	int err;
1106 
1107 	dev = arp_req_dev(net, r);
1108 	if (IS_ERR(dev))
1109 		return PTR_ERR(dev);
1110 
1111 	if (r->arp_flags & ATF_PUBL)
1112 		return arp_req_set_public(net, r, dev);
1113 
1114 	switch (dev->type) {
1115 #if IS_ENABLED(CONFIG_FDDI)
1116 	case ARPHRD_FDDI:
1117 		/*
1118 		 * According to RFC 1390, FDDI devices should accept ARP
1119 		 * hardware types of 1 (Ethernet).  However, to be more
1120 		 * robust, we'll accept hardware types of either 1 (Ethernet)
1121 		 * or 6 (IEEE 802.2).
1122 		 */
1123 		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1124 		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1125 		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1126 			return -EINVAL;
1127 		break;
1128 #endif
1129 	default:
1130 		if (r->arp_ha.sa_family != dev->type)
1131 			return -EINVAL;
1132 		break;
1133 	}
1134 
1135 	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1136 
1137 	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1138 	err = PTR_ERR(neigh);
1139 	if (!IS_ERR(neigh)) {
1140 		unsigned int state = NUD_STALE;
1141 
1142 		if (r->arp_flags & ATF_PERM) {
1143 			r->arp_flags |= ATF_COM;
1144 			state = NUD_PERMANENT;
1145 		}
1146 
1147 		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1148 				   r->arp_ha.sa_data : NULL, state,
1149 				   NEIGH_UPDATE_F_OVERRIDE |
1150 				   NEIGH_UPDATE_F_ADMIN, 0);
1151 		neigh_release(neigh);
1152 	}
1153 	return err;
1154 }
1155 
1156 static unsigned int arp_state_to_flags(struct neighbour *neigh)
1157 {
1158 	if (neigh->nud_state&NUD_PERMANENT)
1159 		return ATF_PERM | ATF_COM;
1160 	else if (neigh->nud_state&NUD_VALID)
1161 		return ATF_COM;
1162 	else
1163 		return 0;
1164 }
1165 
1166 /*
1167  *	Get an ARP cache entry.
1168  */
1169 
1170 static int arp_req_get(struct net *net, struct arpreq *r)
1171 {
1172 	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1173 	struct neighbour *neigh;
1174 	struct net_device *dev;
1175 
1176 	if (!r->arp_dev[0])
1177 		return -ENODEV;
1178 
1179 	dev = arp_req_dev_by_name(net, r, true);
1180 	if (IS_ERR(dev))
1181 		return PTR_ERR(dev);
1182 
1183 	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1184 	if (!neigh)
1185 		return -ENXIO;
1186 
1187 	if (READ_ONCE(neigh->nud_state) & NUD_NOARP) {
1188 		neigh_release(neigh);
1189 		return -ENXIO;
1190 	}
1191 
1192 	read_lock_bh(&neigh->lock);
1193 	memcpy(r->arp_ha.sa_data, neigh->ha,
1194 	       min(dev->addr_len, sizeof(r->arp_ha.sa_data)));
1195 	r->arp_flags = arp_state_to_flags(neigh);
1196 	read_unlock_bh(&neigh->lock);
1197 
1198 	neigh_release(neigh);
1199 
1200 	r->arp_ha.sa_family = dev->type;
1201 	netdev_copy_name(dev, r->arp_dev);
1202 
1203 	return 0;
1204 }
1205 
1206 int arp_invalidate(struct net_device *dev, __be32 ip, bool force)
1207 {
1208 	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1209 	int err = -ENXIO;
1210 	struct neigh_table *tbl = &arp_tbl;
1211 
1212 	if (neigh) {
1213 		if ((READ_ONCE(neigh->nud_state) & NUD_VALID) && !force) {
1214 			neigh_release(neigh);
1215 			return 0;
1216 		}
1217 
1218 		if (READ_ONCE(neigh->nud_state) & ~NUD_NOARP)
1219 			err = neigh_update(neigh, NULL, NUD_FAILED,
1220 					   NEIGH_UPDATE_F_OVERRIDE|
1221 					   NEIGH_UPDATE_F_ADMIN, 0);
1222 		spin_lock_bh(&tbl->lock);
1223 		neigh_release(neigh);
1224 		neigh_remove_one(neigh);
1225 		spin_unlock_bh(&tbl->lock);
1226 	}
1227 
1228 	return err;
1229 }
1230 
1231 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1232 		struct net_device *dev)
1233 {
1234 	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1235 
1236 	if (mask) {
1237 		__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1238 
1239 		return pneigh_delete(&arp_tbl, net, &ip, dev);
1240 	}
1241 
1242 	return arp_req_set_proxy(net, dev, 0);
1243 }
1244 
1245 static int arp_req_delete(struct net *net, struct arpreq *r)
1246 {
1247 	struct net_device *dev;
1248 	__be32 ip;
1249 
1250 	dev = arp_req_dev(net, r);
1251 	if (IS_ERR(dev))
1252 		return PTR_ERR(dev);
1253 
1254 	if (r->arp_flags & ATF_PUBL)
1255 		return arp_req_delete_public(net, r, dev);
1256 
1257 	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1258 
1259 	return arp_invalidate(dev, ip, true);
1260 }
1261 
1262 /*
1263  *	Handle an ARP layer I/O control request.
1264  */
1265 
1266 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1267 {
1268 	struct arpreq r;
1269 	__be32 *netmask;
1270 	int err;
1271 
1272 	switch (cmd) {
1273 	case SIOCDARP:
1274 	case SIOCSARP:
1275 		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1276 			return -EPERM;
1277 		fallthrough;
1278 	case SIOCGARP:
1279 		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1280 		if (err)
1281 			return -EFAULT;
1282 		break;
1283 	default:
1284 		return -EINVAL;
1285 	}
1286 
1287 	if (r.arp_pa.sa_family != AF_INET)
1288 		return -EPFNOSUPPORT;
1289 
1290 	if (!(r.arp_flags & ATF_PUBL) &&
1291 	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1292 		return -EINVAL;
1293 
1294 	netmask = &((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr;
1295 	if (!(r.arp_flags & ATF_NETMASK))
1296 		*netmask = htonl(0xFFFFFFFFUL);
1297 	else if (*netmask && *netmask != htonl(0xFFFFFFFFUL))
1298 		return -EINVAL;
1299 
1300 	switch (cmd) {
1301 	case SIOCDARP:
1302 		rtnl_net_lock(net);
1303 		err = arp_req_delete(net, &r);
1304 		rtnl_net_unlock(net);
1305 		break;
1306 	case SIOCSARP:
1307 		rtnl_net_lock(net);
1308 		err = arp_req_set(net, &r);
1309 		rtnl_net_unlock(net);
1310 		break;
1311 	case SIOCGARP:
1312 		rcu_read_lock();
1313 		err = arp_req_get(net, &r);
1314 		rcu_read_unlock();
1315 
1316 		if (!err && copy_to_user(arg, &r, sizeof(r)))
1317 			err = -EFAULT;
1318 		break;
1319 	}
1320 
1321 	return err;
1322 }
1323 
1324 static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1325 			    void *ptr)
1326 {
1327 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1328 	struct netdev_notifier_change_info *change_info;
1329 	struct in_device *in_dev;
1330 	bool evict_nocarrier;
1331 
1332 	switch (event) {
1333 	case NETDEV_CHANGEADDR:
1334 		neigh_changeaddr(&arp_tbl, dev);
1335 		rt_cache_flush(dev_net(dev));
1336 		break;
1337 	case NETDEV_CHANGE:
1338 		change_info = ptr;
1339 		if (change_info->flags_changed & IFF_NOARP)
1340 			neigh_changeaddr(&arp_tbl, dev);
1341 
1342 		in_dev = __in_dev_get_rtnl(dev);
1343 		if (!in_dev)
1344 			evict_nocarrier = true;
1345 		else
1346 			evict_nocarrier = IN_DEV_ARP_EVICT_NOCARRIER(in_dev);
1347 
1348 		if (evict_nocarrier && !netif_carrier_ok(dev))
1349 			neigh_carrier_down(&arp_tbl, dev);
1350 		break;
1351 	default:
1352 		break;
1353 	}
1354 
1355 	return NOTIFY_DONE;
1356 }
1357 
1358 static struct notifier_block arp_netdev_notifier = {
1359 	.notifier_call = arp_netdev_event,
1360 };
1361 
1362 /* Note, that it is not on notifier chain.
1363    It is necessary, that this routine was called after route cache will be
1364    flushed.
1365  */
1366 void arp_ifdown(struct net_device *dev)
1367 {
1368 	neigh_ifdown(&arp_tbl, dev);
1369 }
1370 
1371 
1372 /*
1373  *	Called once on startup.
1374  */
1375 
1376 static struct packet_type arp_packet_type __read_mostly = {
1377 	.type =	cpu_to_be16(ETH_P_ARP),
1378 	.func =	arp_rcv,
1379 };
1380 
1381 #ifdef CONFIG_PROC_FS
1382 #if IS_ENABLED(CONFIG_AX25)
1383 
1384 /*
1385  *	ax25 -> ASCII conversion
1386  */
1387 static void ax2asc2(ax25_address *a, char *buf)
1388 {
1389 	char c, *s;
1390 	int n;
1391 
1392 	for (n = 0, s = buf; n < 6; n++) {
1393 		c = (a->ax25_call[n] >> 1) & 0x7F;
1394 
1395 		if (c != ' ')
1396 			*s++ = c;
1397 	}
1398 
1399 	*s++ = '-';
1400 	n = (a->ax25_call[6] >> 1) & 0x0F;
1401 	if (n > 9) {
1402 		*s++ = '1';
1403 		n -= 10;
1404 	}
1405 
1406 	*s++ = n + '0';
1407 	*s++ = '\0';
1408 
1409 	if (*buf == '\0' || *buf == '-') {
1410 		buf[0] = '*';
1411 		buf[1] = '\0';
1412 	}
1413 }
1414 #endif /* CONFIG_AX25 */
1415 
1416 #define HBUFFERLEN 30
1417 
1418 static void arp_format_neigh_entry(struct seq_file *seq,
1419 				   struct neighbour *n)
1420 {
1421 	char hbuffer[HBUFFERLEN];
1422 	int k, j;
1423 	char tbuf[16];
1424 	struct net_device *dev = n->dev;
1425 	int hatype = dev->type;
1426 
1427 	read_lock(&n->lock);
1428 	/* Convert hardware address to XX:XX:XX:XX ... form. */
1429 #if IS_ENABLED(CONFIG_AX25)
1430 	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1431 		ax2asc2((ax25_address *)n->ha, hbuffer);
1432 	else {
1433 #endif
1434 	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1435 		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1436 		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1437 		hbuffer[k++] = ':';
1438 	}
1439 	if (k != 0)
1440 		--k;
1441 	hbuffer[k] = 0;
1442 #if IS_ENABLED(CONFIG_AX25)
1443 	}
1444 #endif
1445 	sprintf(tbuf, "%pI4", n->primary_key);
1446 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%-17s     *        %s\n",
1447 		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1448 	read_unlock(&n->lock);
1449 }
1450 
1451 static void arp_format_pneigh_entry(struct seq_file *seq,
1452 				    struct pneigh_entry *n)
1453 {
1454 	struct net_device *dev = n->dev;
1455 	int hatype = dev ? dev->type : 0;
1456 	char tbuf[16];
1457 
1458 	sprintf(tbuf, "%pI4", n->key);
1459 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1460 		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1461 		   dev ? dev->name : "*");
1462 }
1463 
1464 static int arp_seq_show(struct seq_file *seq, void *v)
1465 {
1466 	if (v == SEQ_START_TOKEN) {
1467 		seq_puts(seq, "IP address       HW type     Flags       "
1468 			      "HW address            Mask     Device\n");
1469 	} else {
1470 		struct neigh_seq_state *state = seq->private;
1471 
1472 		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1473 			arp_format_pneigh_entry(seq, v);
1474 		else
1475 			arp_format_neigh_entry(seq, v);
1476 	}
1477 
1478 	return 0;
1479 }
1480 
1481 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1482 {
1483 	/* Don't want to confuse "arp -a" w/ magic entries,
1484 	 * so we tell the generic iterator to skip NUD_NOARP.
1485 	 */
1486 	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1487 }
1488 
1489 static const struct seq_operations arp_seq_ops = {
1490 	.start	= arp_seq_start,
1491 	.next	= neigh_seq_next,
1492 	.stop	= neigh_seq_stop,
1493 	.show	= arp_seq_show,
1494 };
1495 #endif /* CONFIG_PROC_FS */
1496 
1497 static int __net_init arp_net_init(struct net *net)
1498 {
1499 	if (!proc_create_net("arp", 0444, net->proc_net, &arp_seq_ops,
1500 			sizeof(struct neigh_seq_state)))
1501 		return -ENOMEM;
1502 	return 0;
1503 }
1504 
1505 static void __net_exit arp_net_exit(struct net *net)
1506 {
1507 	remove_proc_entry("arp", net->proc_net);
1508 }
1509 
1510 static struct pernet_operations arp_net_ops = {
1511 	.init = arp_net_init,
1512 	.exit = arp_net_exit,
1513 };
1514 
1515 void __init arp_init(void)
1516 {
1517 	neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1518 
1519 	dev_add_pack(&arp_packet_type);
1520 	register_pernet_subsys(&arp_net_ops);
1521 #ifdef CONFIG_SYSCTL
1522 	neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1523 #endif
1524 	register_netdevice_notifier(&arp_netdev_notifier);
1525 }
1526