xref: /linux/drivers/perf/arm_pmuv3.c (revision 6fb44438a5e1897a72dd11139274735256be8069)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ARMv8 PMUv3 Performance Events handling code.
4  *
5  * Copyright (C) 2012 ARM Limited
6  * Author: Will Deacon <will.deacon@arm.com>
7  *
8  * This code is based heavily on the ARMv7 perf event code.
9  */
10 
11 #include <asm/irq_regs.h>
12 #include <asm/perf_event.h>
13 #include <asm/virt.h>
14 
15 #include <clocksource/arm_arch_timer.h>
16 
17 #include <linux/acpi.h>
18 #include <linux/bitfield.h>
19 #include <linux/clocksource.h>
20 #include <linux/of.h>
21 #include <linux/perf/arm_pmu.h>
22 #include <linux/perf/arm_pmuv3.h>
23 #include <linux/platform_device.h>
24 #include <linux/sched_clock.h>
25 #include <linux/smp.h>
26 #include <linux/nmi.h>
27 
28 #include "arm_brbe.h"
29 
30 /* ARMv8 Cortex-A53 specific event types. */
31 #define ARMV8_A53_PERFCTR_PREF_LINEFILL				0xC2
32 
33 /* ARMv8 Cavium ThunderX specific event types. */
34 #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_MISS_ST			0xE9
35 #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_ACCESS		0xEA
36 #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_MISS		0xEB
37 #define ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_ACCESS		0xEC
38 #define ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_MISS		0xED
39 
40 /*
41  * ARMv8 Architectural defined events, not all of these may
42  * be supported on any given implementation. Unsupported events will
43  * be disabled at run-time based on the PMCEID registers.
44  */
45 static const unsigned armv8_pmuv3_perf_map[PERF_COUNT_HW_MAX] = {
46 	PERF_MAP_ALL_UNSUPPORTED,
47 	[PERF_COUNT_HW_CPU_CYCLES]		= ARMV8_PMUV3_PERFCTR_CPU_CYCLES,
48 	[PERF_COUNT_HW_INSTRUCTIONS]		= ARMV8_PMUV3_PERFCTR_INST_RETIRED,
49 	[PERF_COUNT_HW_CACHE_REFERENCES]	= ARMV8_PMUV3_PERFCTR_L1D_CACHE,
50 	[PERF_COUNT_HW_CACHE_MISSES]		= ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL,
51 	[PERF_COUNT_HW_BRANCH_MISSES]		= ARMV8_PMUV3_PERFCTR_BR_MIS_PRED,
52 	[PERF_COUNT_HW_BUS_CYCLES]		= ARMV8_PMUV3_PERFCTR_BUS_CYCLES,
53 	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= ARMV8_PMUV3_PERFCTR_STALL_FRONTEND,
54 	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= ARMV8_PMUV3_PERFCTR_STALL_BACKEND,
55 };
56 
57 static const unsigned armv8_pmuv3_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
58 						[PERF_COUNT_HW_CACHE_OP_MAX]
59 						[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
60 	PERF_CACHE_MAP_ALL_UNSUPPORTED,
61 
62 	[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_L1D_CACHE,
63 	[C(L1D)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL,
64 
65 	[C(L1I)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_L1I_CACHE,
66 	[C(L1I)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_L1I_CACHE_REFILL,
67 
68 	[C(DTLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_L1D_TLB_REFILL,
69 	[C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_L1D_TLB,
70 
71 	[C(ITLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_L1I_TLB_REFILL,
72 	[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_L1I_TLB,
73 
74 	[C(LL)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS_RD,
75 	[C(LL)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_LL_CACHE_RD,
76 
77 	[C(BPU)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_BR_PRED,
78 	[C(BPU)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_BR_MIS_PRED,
79 };
80 
81 static const unsigned armv8_a53_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
82 					      [PERF_COUNT_HW_CACHE_OP_MAX]
83 					      [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
84 	PERF_CACHE_MAP_ALL_UNSUPPORTED,
85 
86 	[C(L1D)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_A53_PERFCTR_PREF_LINEFILL,
87 
88 	[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD,
89 	[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR,
90 };
91 
92 static const unsigned armv8_a57_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
93 					      [PERF_COUNT_HW_CACHE_OP_MAX]
94 					      [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
95 	PERF_CACHE_MAP_ALL_UNSUPPORTED,
96 
97 	[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
98 	[C(L1D)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD,
99 	[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
100 	[C(L1D)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_WR,
101 
102 	[C(DTLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD,
103 	[C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR,
104 
105 	[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD,
106 	[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR,
107 };
108 
109 static const unsigned armv8_a73_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
110 					      [PERF_COUNT_HW_CACHE_OP_MAX]
111 					      [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
112 	PERF_CACHE_MAP_ALL_UNSUPPORTED,
113 
114 	[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
115 	[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
116 };
117 
118 static const unsigned armv8_thunder_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
119 						   [PERF_COUNT_HW_CACHE_OP_MAX]
120 						   [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
121 	PERF_CACHE_MAP_ALL_UNSUPPORTED,
122 
123 	[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
124 	[C(L1D)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD,
125 	[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
126 	[C(L1D)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_THUNDER_PERFCTR_L1D_CACHE_MISS_ST,
127 	[C(L1D)][C(OP_PREFETCH)][C(RESULT_ACCESS)] = ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_ACCESS,
128 	[C(L1D)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_MISS,
129 
130 	[C(L1I)][C(OP_PREFETCH)][C(RESULT_ACCESS)] = ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_ACCESS,
131 	[C(L1I)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_MISS,
132 
133 	[C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_RD,
134 	[C(DTLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD,
135 	[C(DTLB)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_WR,
136 	[C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR,
137 };
138 
139 static const unsigned armv8_vulcan_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
140 					      [PERF_COUNT_HW_CACHE_OP_MAX]
141 					      [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
142 	PERF_CACHE_MAP_ALL_UNSUPPORTED,
143 
144 	[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
145 	[C(L1D)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD,
146 	[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
147 	[C(L1D)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_WR,
148 
149 	[C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_RD,
150 	[C(DTLB)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_WR,
151 	[C(DTLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD,
152 	[C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR,
153 
154 	[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD,
155 	[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR,
156 };
157 
158 static ssize_t
armv8pmu_events_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)159 armv8pmu_events_sysfs_show(struct device *dev,
160 			   struct device_attribute *attr, char *page)
161 {
162 	struct perf_pmu_events_attr *pmu_attr;
163 
164 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
165 
166 	return sprintf(page, "event=0x%04llx\n", pmu_attr->id);
167 }
168 
169 #define ARMV8_EVENT_ATTR(name, config)						\
170 	PMU_EVENT_ATTR_ID(name, armv8pmu_events_sysfs_show, config)
171 
172 static struct attribute *armv8_pmuv3_event_attrs[] = {
173 	/*
174 	 * Don't expose the sw_incr event in /sys. It's not usable as writes to
175 	 * PMSWINC_EL0 will trap as PMUSERENR.{SW,EN}=={0,0} and event rotation
176 	 * means we don't have a fixed event<->counter relationship regardless.
177 	 */
178 	ARMV8_EVENT_ATTR(l1i_cache_refill, ARMV8_PMUV3_PERFCTR_L1I_CACHE_REFILL),
179 	ARMV8_EVENT_ATTR(l1i_tlb_refill, ARMV8_PMUV3_PERFCTR_L1I_TLB_REFILL),
180 	ARMV8_EVENT_ATTR(l1d_cache_refill, ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL),
181 	ARMV8_EVENT_ATTR(l1d_cache, ARMV8_PMUV3_PERFCTR_L1D_CACHE),
182 	ARMV8_EVENT_ATTR(l1d_tlb_refill, ARMV8_PMUV3_PERFCTR_L1D_TLB_REFILL),
183 	ARMV8_EVENT_ATTR(ld_retired, ARMV8_PMUV3_PERFCTR_LD_RETIRED),
184 	ARMV8_EVENT_ATTR(st_retired, ARMV8_PMUV3_PERFCTR_ST_RETIRED),
185 	ARMV8_EVENT_ATTR(inst_retired, ARMV8_PMUV3_PERFCTR_INST_RETIRED),
186 	ARMV8_EVENT_ATTR(exc_taken, ARMV8_PMUV3_PERFCTR_EXC_TAKEN),
187 	ARMV8_EVENT_ATTR(exc_return, ARMV8_PMUV3_PERFCTR_EXC_RETURN),
188 	ARMV8_EVENT_ATTR(cid_write_retired, ARMV8_PMUV3_PERFCTR_CID_WRITE_RETIRED),
189 	ARMV8_EVENT_ATTR(pc_write_retired, ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED),
190 	ARMV8_EVENT_ATTR(br_immed_retired, ARMV8_PMUV3_PERFCTR_BR_IMMED_RETIRED),
191 	ARMV8_EVENT_ATTR(br_return_retired, ARMV8_PMUV3_PERFCTR_BR_RETURN_RETIRED),
192 	ARMV8_EVENT_ATTR(unaligned_ldst_retired, ARMV8_PMUV3_PERFCTR_UNALIGNED_LDST_RETIRED),
193 	ARMV8_EVENT_ATTR(br_mis_pred, ARMV8_PMUV3_PERFCTR_BR_MIS_PRED),
194 	ARMV8_EVENT_ATTR(cpu_cycles, ARMV8_PMUV3_PERFCTR_CPU_CYCLES),
195 	ARMV8_EVENT_ATTR(br_pred, ARMV8_PMUV3_PERFCTR_BR_PRED),
196 	ARMV8_EVENT_ATTR(mem_access, ARMV8_PMUV3_PERFCTR_MEM_ACCESS),
197 	ARMV8_EVENT_ATTR(l1i_cache, ARMV8_PMUV3_PERFCTR_L1I_CACHE),
198 	ARMV8_EVENT_ATTR(l1d_cache_wb, ARMV8_PMUV3_PERFCTR_L1D_CACHE_WB),
199 	ARMV8_EVENT_ATTR(l2d_cache, ARMV8_PMUV3_PERFCTR_L2D_CACHE),
200 	ARMV8_EVENT_ATTR(l2d_cache_refill, ARMV8_PMUV3_PERFCTR_L2D_CACHE_REFILL),
201 	ARMV8_EVENT_ATTR(l2d_cache_wb, ARMV8_PMUV3_PERFCTR_L2D_CACHE_WB),
202 	ARMV8_EVENT_ATTR(bus_access, ARMV8_PMUV3_PERFCTR_BUS_ACCESS),
203 	ARMV8_EVENT_ATTR(memory_error, ARMV8_PMUV3_PERFCTR_MEMORY_ERROR),
204 	ARMV8_EVENT_ATTR(inst_spec, ARMV8_PMUV3_PERFCTR_INST_SPEC),
205 	ARMV8_EVENT_ATTR(ttbr_write_retired, ARMV8_PMUV3_PERFCTR_TTBR_WRITE_RETIRED),
206 	ARMV8_EVENT_ATTR(bus_cycles, ARMV8_PMUV3_PERFCTR_BUS_CYCLES),
207 	/* Don't expose the chain event in /sys, since it's useless in isolation */
208 	ARMV8_EVENT_ATTR(l1d_cache_allocate, ARMV8_PMUV3_PERFCTR_L1D_CACHE_ALLOCATE),
209 	ARMV8_EVENT_ATTR(l2d_cache_allocate, ARMV8_PMUV3_PERFCTR_L2D_CACHE_ALLOCATE),
210 	ARMV8_EVENT_ATTR(br_retired, ARMV8_PMUV3_PERFCTR_BR_RETIRED),
211 	ARMV8_EVENT_ATTR(br_mis_pred_retired, ARMV8_PMUV3_PERFCTR_BR_MIS_PRED_RETIRED),
212 	ARMV8_EVENT_ATTR(stall_frontend, ARMV8_PMUV3_PERFCTR_STALL_FRONTEND),
213 	ARMV8_EVENT_ATTR(stall_backend, ARMV8_PMUV3_PERFCTR_STALL_BACKEND),
214 	ARMV8_EVENT_ATTR(l1d_tlb, ARMV8_PMUV3_PERFCTR_L1D_TLB),
215 	ARMV8_EVENT_ATTR(l1i_tlb, ARMV8_PMUV3_PERFCTR_L1I_TLB),
216 	ARMV8_EVENT_ATTR(l2i_cache, ARMV8_PMUV3_PERFCTR_L2I_CACHE),
217 	ARMV8_EVENT_ATTR(l2i_cache_refill, ARMV8_PMUV3_PERFCTR_L2I_CACHE_REFILL),
218 	ARMV8_EVENT_ATTR(l3d_cache_allocate, ARMV8_PMUV3_PERFCTR_L3D_CACHE_ALLOCATE),
219 	ARMV8_EVENT_ATTR(l3d_cache_refill, ARMV8_PMUV3_PERFCTR_L3D_CACHE_REFILL),
220 	ARMV8_EVENT_ATTR(l3d_cache, ARMV8_PMUV3_PERFCTR_L3D_CACHE),
221 	ARMV8_EVENT_ATTR(l3d_cache_wb, ARMV8_PMUV3_PERFCTR_L3D_CACHE_WB),
222 	ARMV8_EVENT_ATTR(l2d_tlb_refill, ARMV8_PMUV3_PERFCTR_L2D_TLB_REFILL),
223 	ARMV8_EVENT_ATTR(l2i_tlb_refill, ARMV8_PMUV3_PERFCTR_L2I_TLB_REFILL),
224 	ARMV8_EVENT_ATTR(l2d_tlb, ARMV8_PMUV3_PERFCTR_L2D_TLB),
225 	ARMV8_EVENT_ATTR(l2i_tlb, ARMV8_PMUV3_PERFCTR_L2I_TLB),
226 	ARMV8_EVENT_ATTR(remote_access, ARMV8_PMUV3_PERFCTR_REMOTE_ACCESS),
227 	ARMV8_EVENT_ATTR(ll_cache, ARMV8_PMUV3_PERFCTR_LL_CACHE),
228 	ARMV8_EVENT_ATTR(ll_cache_miss, ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS),
229 	ARMV8_EVENT_ATTR(dtlb_walk, ARMV8_PMUV3_PERFCTR_DTLB_WALK),
230 	ARMV8_EVENT_ATTR(itlb_walk, ARMV8_PMUV3_PERFCTR_ITLB_WALK),
231 	ARMV8_EVENT_ATTR(ll_cache_rd, ARMV8_PMUV3_PERFCTR_LL_CACHE_RD),
232 	ARMV8_EVENT_ATTR(ll_cache_miss_rd, ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS_RD),
233 	ARMV8_EVENT_ATTR(remote_access_rd, ARMV8_PMUV3_PERFCTR_REMOTE_ACCESS_RD),
234 	ARMV8_EVENT_ATTR(l1d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L1D_CACHE_LMISS_RD),
235 	ARMV8_EVENT_ATTR(op_retired, ARMV8_PMUV3_PERFCTR_OP_RETIRED),
236 	ARMV8_EVENT_ATTR(op_spec, ARMV8_PMUV3_PERFCTR_OP_SPEC),
237 	ARMV8_EVENT_ATTR(stall, ARMV8_PMUV3_PERFCTR_STALL),
238 	ARMV8_EVENT_ATTR(stall_slot_backend, ARMV8_PMUV3_PERFCTR_STALL_SLOT_BACKEND),
239 	ARMV8_EVENT_ATTR(stall_slot_frontend, ARMV8_PMUV3_PERFCTR_STALL_SLOT_FRONTEND),
240 	ARMV8_EVENT_ATTR(stall_slot, ARMV8_PMUV3_PERFCTR_STALL_SLOT),
241 	ARMV8_EVENT_ATTR(sample_pop, ARMV8_SPE_PERFCTR_SAMPLE_POP),
242 	ARMV8_EVENT_ATTR(sample_feed, ARMV8_SPE_PERFCTR_SAMPLE_FEED),
243 	ARMV8_EVENT_ATTR(sample_filtrate, ARMV8_SPE_PERFCTR_SAMPLE_FILTRATE),
244 	ARMV8_EVENT_ATTR(sample_collision, ARMV8_SPE_PERFCTR_SAMPLE_COLLISION),
245 	ARMV8_EVENT_ATTR(cnt_cycles, ARMV8_AMU_PERFCTR_CNT_CYCLES),
246 	ARMV8_EVENT_ATTR(stall_backend_mem, ARMV8_AMU_PERFCTR_STALL_BACKEND_MEM),
247 	ARMV8_EVENT_ATTR(l1i_cache_lmiss, ARMV8_PMUV3_PERFCTR_L1I_CACHE_LMISS),
248 	ARMV8_EVENT_ATTR(l2d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L2D_CACHE_LMISS_RD),
249 	ARMV8_EVENT_ATTR(l2i_cache_lmiss, ARMV8_PMUV3_PERFCTR_L2I_CACHE_LMISS),
250 	ARMV8_EVENT_ATTR(l3d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L3D_CACHE_LMISS_RD),
251 	ARMV8_EVENT_ATTR(trb_wrap, ARMV8_PMUV3_PERFCTR_TRB_WRAP),
252 	ARMV8_EVENT_ATTR(trb_trig, ARMV8_PMUV3_PERFCTR_TRB_TRIG),
253 	ARMV8_EVENT_ATTR(trcextout0, ARMV8_PMUV3_PERFCTR_TRCEXTOUT0),
254 	ARMV8_EVENT_ATTR(trcextout1, ARMV8_PMUV3_PERFCTR_TRCEXTOUT1),
255 	ARMV8_EVENT_ATTR(trcextout2, ARMV8_PMUV3_PERFCTR_TRCEXTOUT2),
256 	ARMV8_EVENT_ATTR(trcextout3, ARMV8_PMUV3_PERFCTR_TRCEXTOUT3),
257 	ARMV8_EVENT_ATTR(cti_trigout4, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT4),
258 	ARMV8_EVENT_ATTR(cti_trigout5, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT5),
259 	ARMV8_EVENT_ATTR(cti_trigout6, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT6),
260 	ARMV8_EVENT_ATTR(cti_trigout7, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT7),
261 	ARMV8_EVENT_ATTR(ldst_align_lat, ARMV8_PMUV3_PERFCTR_LDST_ALIGN_LAT),
262 	ARMV8_EVENT_ATTR(ld_align_lat, ARMV8_PMUV3_PERFCTR_LD_ALIGN_LAT),
263 	ARMV8_EVENT_ATTR(st_align_lat, ARMV8_PMUV3_PERFCTR_ST_ALIGN_LAT),
264 	ARMV8_EVENT_ATTR(mem_access_checked, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED),
265 	ARMV8_EVENT_ATTR(mem_access_checked_rd, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED_RD),
266 	ARMV8_EVENT_ATTR(mem_access_checked_wr, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED_WR),
267 	NULL,
268 };
269 
270 static umode_t
armv8pmu_event_attr_is_visible(struct kobject * kobj,struct attribute * attr,int unused)271 armv8pmu_event_attr_is_visible(struct kobject *kobj,
272 			       struct attribute *attr, int unused)
273 {
274 	struct device *dev = kobj_to_dev(kobj);
275 	struct pmu *pmu = dev_get_drvdata(dev);
276 	struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
277 	struct perf_pmu_events_attr *pmu_attr;
278 
279 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
280 
281 	if (pmu_attr->id < ARMV8_PMUV3_MAX_COMMON_EVENTS &&
282 	    test_bit(pmu_attr->id, cpu_pmu->pmceid_bitmap))
283 		return attr->mode;
284 
285 	if (pmu_attr->id >= ARMV8_PMUV3_EXT_COMMON_EVENT_BASE) {
286 		u64 id = pmu_attr->id - ARMV8_PMUV3_EXT_COMMON_EVENT_BASE;
287 
288 		if (id < ARMV8_PMUV3_MAX_COMMON_EVENTS &&
289 		    test_bit(id, cpu_pmu->pmceid_ext_bitmap))
290 			return attr->mode;
291 	}
292 
293 	return 0;
294 }
295 
296 static const struct attribute_group armv8_pmuv3_events_attr_group = {
297 	.name = "events",
298 	.attrs = armv8_pmuv3_event_attrs,
299 	.is_visible = armv8pmu_event_attr_is_visible,
300 };
301 
302 /* User ABI */
303 #define ATTR_CFG_FLD_event_CFG		config
304 #define ATTR_CFG_FLD_event_LO		0
305 #define ATTR_CFG_FLD_event_HI		15
306 #define ATTR_CFG_FLD_long_CFG		config1
307 #define ATTR_CFG_FLD_long_LO		0
308 #define ATTR_CFG_FLD_long_HI		0
309 #define ATTR_CFG_FLD_rdpmc_CFG		config1
310 #define ATTR_CFG_FLD_rdpmc_LO		1
311 #define ATTR_CFG_FLD_rdpmc_HI		1
312 #define ATTR_CFG_FLD_threshold_count_CFG	config1 /* PMEVTYPER.TC[0] */
313 #define ATTR_CFG_FLD_threshold_count_LO		2
314 #define ATTR_CFG_FLD_threshold_count_HI		2
315 #define ATTR_CFG_FLD_threshold_compare_CFG	config1 /* PMEVTYPER.TC[2:1] */
316 #define ATTR_CFG_FLD_threshold_compare_LO	3
317 #define ATTR_CFG_FLD_threshold_compare_HI	4
318 #define ATTR_CFG_FLD_threshold_CFG		config1 /* PMEVTYPER.TH */
319 #define ATTR_CFG_FLD_threshold_LO		5
320 #define ATTR_CFG_FLD_threshold_HI		16
321 
322 GEN_PMU_FORMAT_ATTR(event);
323 GEN_PMU_FORMAT_ATTR(long);
324 GEN_PMU_FORMAT_ATTR(rdpmc);
325 GEN_PMU_FORMAT_ATTR(threshold_count);
326 GEN_PMU_FORMAT_ATTR(threshold_compare);
327 GEN_PMU_FORMAT_ATTR(threshold);
328 
329 static int sysctl_perf_user_access __read_mostly;
330 
armv8pmu_event_is_64bit(struct perf_event * event)331 static bool armv8pmu_event_is_64bit(struct perf_event *event)
332 {
333 	return ATTR_CFG_GET_FLD(&event->attr, long);
334 }
335 
armv8pmu_event_want_user_access(struct perf_event * event)336 static bool armv8pmu_event_want_user_access(struct perf_event *event)
337 {
338 	return ATTR_CFG_GET_FLD(&event->attr, rdpmc);
339 }
340 
armv8pmu_event_get_threshold(struct perf_event_attr * attr)341 static u32 armv8pmu_event_get_threshold(struct perf_event_attr *attr)
342 {
343 	return ATTR_CFG_GET_FLD(attr, threshold);
344 }
345 
armv8pmu_event_threshold_control(struct perf_event_attr * attr)346 static u8 armv8pmu_event_threshold_control(struct perf_event_attr *attr)
347 {
348 	u8 th_compare = ATTR_CFG_GET_FLD(attr, threshold_compare);
349 	u8 th_count = ATTR_CFG_GET_FLD(attr, threshold_count);
350 
351 	/*
352 	 * The count bit is always the bottom bit of the full control field, and
353 	 * the comparison is the upper two bits, but it's not explicitly
354 	 * labelled in the Arm ARM. For the Perf interface we split it into two
355 	 * fields, so reconstruct it here.
356 	 */
357 	return (th_compare << 1) | th_count;
358 }
359 
360 static struct attribute *armv8_pmuv3_format_attrs[] = {
361 	&format_attr_event.attr,
362 	&format_attr_long.attr,
363 	&format_attr_rdpmc.attr,
364 	&format_attr_threshold.attr,
365 	&format_attr_threshold_compare.attr,
366 	&format_attr_threshold_count.attr,
367 	NULL,
368 };
369 
370 static const struct attribute_group armv8_pmuv3_format_attr_group = {
371 	.name = "format",
372 	.attrs = armv8_pmuv3_format_attrs,
373 };
374 
slots_show(struct device * dev,struct device_attribute * attr,char * page)375 static ssize_t slots_show(struct device *dev, struct device_attribute *attr,
376 			  char *page)
377 {
378 	struct pmu *pmu = dev_get_drvdata(dev);
379 	struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
380 	u32 slots = FIELD_GET(ARMV8_PMU_SLOTS, cpu_pmu->reg_pmmir);
381 
382 	return sysfs_emit(page, "0x%08x\n", slots);
383 }
384 
385 static DEVICE_ATTR_RO(slots);
386 
bus_slots_show(struct device * dev,struct device_attribute * attr,char * page)387 static ssize_t bus_slots_show(struct device *dev, struct device_attribute *attr,
388 			      char *page)
389 {
390 	struct pmu *pmu = dev_get_drvdata(dev);
391 	struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
392 	u32 bus_slots = FIELD_GET(ARMV8_PMU_BUS_SLOTS, cpu_pmu->reg_pmmir);
393 
394 	return sysfs_emit(page, "0x%08x\n", bus_slots);
395 }
396 
397 static DEVICE_ATTR_RO(bus_slots);
398 
bus_width_show(struct device * dev,struct device_attribute * attr,char * page)399 static ssize_t bus_width_show(struct device *dev, struct device_attribute *attr,
400 			      char *page)
401 {
402 	struct pmu *pmu = dev_get_drvdata(dev);
403 	struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
404 	u32 bus_width = FIELD_GET(ARMV8_PMU_BUS_WIDTH, cpu_pmu->reg_pmmir);
405 	u32 val = 0;
406 
407 	/* Encoded as Log2(number of bytes), plus one */
408 	if (bus_width > 2 && bus_width < 13)
409 		val = 1 << (bus_width - 1);
410 
411 	return sysfs_emit(page, "0x%08x\n", val);
412 }
413 
414 static DEVICE_ATTR_RO(bus_width);
415 
threshold_max(struct arm_pmu * cpu_pmu)416 static u32 threshold_max(struct arm_pmu *cpu_pmu)
417 {
418 	/*
419 	 * PMMIR.THWIDTH is readable and non-zero on aarch32, but it would be
420 	 * impossible to write the threshold in the upper 32 bits of PMEVTYPER.
421 	 */
422 	if (IS_ENABLED(CONFIG_ARM))
423 		return 0;
424 
425 	/*
426 	 * The largest value that can be written to PMEVTYPER<n>_EL0.TH is
427 	 * (2 ^ PMMIR.THWIDTH) - 1.
428 	 */
429 	return (1 << FIELD_GET(ARMV8_PMU_THWIDTH, cpu_pmu->reg_pmmir)) - 1;
430 }
431 
threshold_max_show(struct device * dev,struct device_attribute * attr,char * page)432 static ssize_t threshold_max_show(struct device *dev,
433 				  struct device_attribute *attr, char *page)
434 {
435 	struct pmu *pmu = dev_get_drvdata(dev);
436 	struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
437 
438 	return sysfs_emit(page, "0x%08x\n", threshold_max(cpu_pmu));
439 }
440 
441 static DEVICE_ATTR_RO(threshold_max);
442 
branches_show(struct device * dev,struct device_attribute * attr,char * page)443 static ssize_t branches_show(struct device *dev,
444 			     struct device_attribute *attr, char *page)
445 {
446 	struct pmu *pmu = dev_get_drvdata(dev);
447 	struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
448 
449 	return sysfs_emit(page, "%d\n", brbe_num_branch_records(cpu_pmu));
450 }
451 
452 static DEVICE_ATTR_RO(branches);
453 
454 static struct attribute *armv8_pmuv3_caps_attrs[] = {
455 	&dev_attr_branches.attr,
456 	&dev_attr_slots.attr,
457 	&dev_attr_bus_slots.attr,
458 	&dev_attr_bus_width.attr,
459 	&dev_attr_threshold_max.attr,
460 	NULL,
461 };
462 
caps_is_visible(struct kobject * kobj,struct attribute * attr,int i)463 static umode_t caps_is_visible(struct kobject *kobj, struct attribute *attr, int i)
464 {
465 	struct device *dev = kobj_to_dev(kobj);
466 	struct pmu *pmu = dev_get_drvdata(dev);
467 	struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
468 
469 	if (i == 0)
470 		return brbe_num_branch_records(cpu_pmu) ? attr->mode : 0;
471 
472 	return attr->mode;
473 }
474 
475 static const struct attribute_group armv8_pmuv3_caps_attr_group = {
476 	.name = "caps",
477 	.attrs = armv8_pmuv3_caps_attrs,
478 	.is_visible = caps_is_visible,
479 };
480 
481 /*
482  * We unconditionally enable ARMv8.5-PMU long event counter support
483  * (64-bit events) where supported. Indicate if this arm_pmu has long
484  * event counter support.
485  *
486  * On AArch32, long counters make no sense (you can't access the top
487  * bits), so we only enable this on AArch64.
488  */
armv8pmu_has_long_event(struct arm_pmu * cpu_pmu)489 static bool armv8pmu_has_long_event(struct arm_pmu *cpu_pmu)
490 {
491 	return (IS_ENABLED(CONFIG_ARM64) && is_pmuv3p5(cpu_pmu->pmuver));
492 }
493 
armv8pmu_event_has_user_read(struct perf_event * event)494 static bool armv8pmu_event_has_user_read(struct perf_event *event)
495 {
496 	return event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT;
497 }
498 
499 /*
500  * We must chain two programmable counters for 64 bit events,
501  * except when we have allocated the 64bit cycle counter (for CPU
502  * cycles event) or when user space counter access is enabled.
503  */
armv8pmu_event_is_chained(struct perf_event * event)504 static bool armv8pmu_event_is_chained(struct perf_event *event)
505 {
506 	int idx = event->hw.idx;
507 	struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
508 
509 	return !armv8pmu_event_has_user_read(event) &&
510 	       armv8pmu_event_is_64bit(event) &&
511 	       !armv8pmu_has_long_event(cpu_pmu) &&
512 	       (idx < ARMV8_PMU_MAX_GENERAL_COUNTERS);
513 }
514 
515 /*
516  * ARMv8 low level PMU access
517  */
armv8pmu_pmcr_read(void)518 static u64 armv8pmu_pmcr_read(void)
519 {
520 	return read_pmcr();
521 }
522 
armv8pmu_pmcr_write(u64 val)523 static void armv8pmu_pmcr_write(u64 val)
524 {
525 	val &= ARMV8_PMU_PMCR_MASK;
526 	isb();
527 	write_pmcr(val);
528 }
529 
armv8pmu_has_overflowed(u64 pmovsr)530 static int armv8pmu_has_overflowed(u64 pmovsr)
531 {
532 	return !!(pmovsr & ARMV8_PMU_OVERFLOWED_MASK);
533 }
534 
armv8pmu_counter_has_overflowed(u64 pmnc,int idx)535 static int armv8pmu_counter_has_overflowed(u64 pmnc, int idx)
536 {
537 	return !!(pmnc & BIT(idx));
538 }
539 
armv8pmu_read_evcntr(int idx)540 static u64 armv8pmu_read_evcntr(int idx)
541 {
542 	return read_pmevcntrn(idx);
543 }
544 
armv8pmu_read_hw_counter(struct perf_event * event)545 static u64 armv8pmu_read_hw_counter(struct perf_event *event)
546 {
547 	int idx = event->hw.idx;
548 	u64 val = armv8pmu_read_evcntr(idx);
549 
550 	if (armv8pmu_event_is_chained(event))
551 		val = (val << 32) | armv8pmu_read_evcntr(idx - 1);
552 	return val;
553 }
554 
555 /*
556  * The cycle counter is always a 64-bit counter. When ARMV8_PMU_PMCR_LP
557  * is set the event counters also become 64-bit counters. Unless the
558  * user has requested a long counter (attr.config1) then we want to
559  * interrupt upon 32-bit overflow - we achieve this by applying a bias.
560  */
armv8pmu_event_needs_bias(struct perf_event * event)561 static bool armv8pmu_event_needs_bias(struct perf_event *event)
562 {
563 	struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
564 	struct hw_perf_event *hwc = &event->hw;
565 	int idx = hwc->idx;
566 
567 	if (armv8pmu_event_is_64bit(event))
568 		return false;
569 
570 	if (armv8pmu_has_long_event(cpu_pmu) ||
571 	    idx >= ARMV8_PMU_MAX_GENERAL_COUNTERS)
572 		return true;
573 
574 	return false;
575 }
576 
armv8pmu_bias_long_counter(struct perf_event * event,u64 value)577 static u64 armv8pmu_bias_long_counter(struct perf_event *event, u64 value)
578 {
579 	if (armv8pmu_event_needs_bias(event))
580 		value |= GENMASK_ULL(63, 32);
581 
582 	return value;
583 }
584 
armv8pmu_unbias_long_counter(struct perf_event * event,u64 value)585 static u64 armv8pmu_unbias_long_counter(struct perf_event *event, u64 value)
586 {
587 	if (armv8pmu_event_needs_bias(event))
588 		value &= ~GENMASK_ULL(63, 32);
589 
590 	return value;
591 }
592 
armv8pmu_read_counter(struct perf_event * event)593 static u64 armv8pmu_read_counter(struct perf_event *event)
594 {
595 	struct hw_perf_event *hwc = &event->hw;
596 	int idx = hwc->idx;
597 	u64 value;
598 
599 	if (idx == ARMV8_PMU_CYCLE_IDX)
600 		value = read_pmccntr();
601 	else if (idx == ARMV8_PMU_INSTR_IDX)
602 		value = read_pmicntr();
603 	else
604 		value = armv8pmu_read_hw_counter(event);
605 
606 	return  armv8pmu_unbias_long_counter(event, value);
607 }
608 
armv8pmu_write_evcntr(int idx,u64 value)609 static void armv8pmu_write_evcntr(int idx, u64 value)
610 {
611 	write_pmevcntrn(idx, value);
612 }
613 
armv8pmu_write_hw_counter(struct perf_event * event,u64 value)614 static void armv8pmu_write_hw_counter(struct perf_event *event,
615 					     u64 value)
616 {
617 	int idx = event->hw.idx;
618 
619 	if (armv8pmu_event_is_chained(event)) {
620 		armv8pmu_write_evcntr(idx, upper_32_bits(value));
621 		armv8pmu_write_evcntr(idx - 1, lower_32_bits(value));
622 	} else {
623 		armv8pmu_write_evcntr(idx, value);
624 	}
625 }
626 
armv8pmu_write_counter(struct perf_event * event,u64 value)627 static void armv8pmu_write_counter(struct perf_event *event, u64 value)
628 {
629 	struct hw_perf_event *hwc = &event->hw;
630 	int idx = hwc->idx;
631 
632 	value = armv8pmu_bias_long_counter(event, value);
633 
634 	if (idx == ARMV8_PMU_CYCLE_IDX)
635 		write_pmccntr(value);
636 	else if (idx == ARMV8_PMU_INSTR_IDX)
637 		write_pmicntr(value);
638 	else
639 		armv8pmu_write_hw_counter(event, value);
640 }
641 
armv8pmu_write_evtype(int idx,unsigned long val)642 static void armv8pmu_write_evtype(int idx, unsigned long val)
643 {
644 	unsigned long mask = ARMV8_PMU_EVTYPE_EVENT |
645 			     ARMV8_PMU_INCLUDE_EL2 |
646 			     ARMV8_PMU_EXCLUDE_EL0 |
647 			     ARMV8_PMU_EXCLUDE_EL1;
648 
649 	if (IS_ENABLED(CONFIG_ARM64))
650 		mask |= ARMV8_PMU_EVTYPE_TC | ARMV8_PMU_EVTYPE_TH;
651 
652 	val &= mask;
653 	write_pmevtypern(idx, val);
654 }
655 
armv8pmu_write_event_type(struct perf_event * event)656 static void armv8pmu_write_event_type(struct perf_event *event)
657 {
658 	struct hw_perf_event *hwc = &event->hw;
659 	int idx = hwc->idx;
660 
661 	/*
662 	 * For chained events, the low counter is programmed to count
663 	 * the event of interest and the high counter is programmed
664 	 * with CHAIN event code with filters set to count at all ELs.
665 	 */
666 	if (armv8pmu_event_is_chained(event)) {
667 		u32 chain_evt = ARMV8_PMUV3_PERFCTR_CHAIN |
668 				ARMV8_PMU_INCLUDE_EL2;
669 
670 		armv8pmu_write_evtype(idx - 1, hwc->config_base);
671 		armv8pmu_write_evtype(idx, chain_evt);
672 	} else {
673 		if (idx == ARMV8_PMU_CYCLE_IDX)
674 			write_pmccfiltr(hwc->config_base);
675 		else if (idx == ARMV8_PMU_INSTR_IDX)
676 			write_pmicfiltr(hwc->config_base);
677 		else
678 			armv8pmu_write_evtype(idx, hwc->config_base);
679 	}
680 }
681 
armv8pmu_event_cnten_mask(struct perf_event * event)682 static u64 armv8pmu_event_cnten_mask(struct perf_event *event)
683 {
684 	int counter = event->hw.idx;
685 	u64 mask = BIT(counter);
686 
687 	if (armv8pmu_event_is_chained(event))
688 		mask |= BIT(counter - 1);
689 	return mask;
690 }
691 
armv8pmu_enable_counter(u64 mask)692 static void armv8pmu_enable_counter(u64 mask)
693 {
694 	/*
695 	 * Make sure event configuration register writes are visible before we
696 	 * enable the counter.
697 	 * */
698 	isb();
699 	write_pmcntenset(mask);
700 }
701 
armv8pmu_enable_event_counter(struct perf_event * event)702 static void armv8pmu_enable_event_counter(struct perf_event *event)
703 {
704 	struct perf_event_attr *attr = &event->attr;
705 	u64 mask = armv8pmu_event_cnten_mask(event);
706 
707 	kvm_set_pmu_events(mask, attr);
708 
709 	/* We rely on the hypervisor switch code to enable guest counters */
710 	if (!kvm_pmu_counter_deferred(attr))
711 		armv8pmu_enable_counter(mask);
712 }
713 
armv8pmu_disable_counter(u64 mask)714 static void armv8pmu_disable_counter(u64 mask)
715 {
716 	write_pmcntenclr(mask);
717 	/*
718 	 * Make sure the effects of disabling the counter are visible before we
719 	 * start configuring the event.
720 	 */
721 	isb();
722 }
723 
armv8pmu_disable_event_counter(struct perf_event * event)724 static void armv8pmu_disable_event_counter(struct perf_event *event)
725 {
726 	struct perf_event_attr *attr = &event->attr;
727 	u64 mask = armv8pmu_event_cnten_mask(event);
728 
729 	kvm_clr_pmu_events(mask);
730 
731 	/* We rely on the hypervisor switch code to disable guest counters */
732 	if (!kvm_pmu_counter_deferred(attr))
733 		armv8pmu_disable_counter(mask);
734 }
735 
armv8pmu_enable_intens(u64 mask)736 static void armv8pmu_enable_intens(u64 mask)
737 {
738 	write_pmintenset(mask);
739 }
740 
armv8pmu_enable_event_irq(struct perf_event * event)741 static void armv8pmu_enable_event_irq(struct perf_event *event)
742 {
743 	armv8pmu_enable_intens(BIT(event->hw.idx));
744 }
745 
armv8pmu_disable_intens(u64 mask)746 static void armv8pmu_disable_intens(u64 mask)
747 {
748 	write_pmintenclr(mask);
749 	isb();
750 	/* Clear the overflow flag in case an interrupt is pending. */
751 	write_pmovsclr(mask);
752 	isb();
753 }
754 
armv8pmu_disable_event_irq(struct perf_event * event)755 static void armv8pmu_disable_event_irq(struct perf_event *event)
756 {
757 	armv8pmu_disable_intens(BIT(event->hw.idx));
758 }
759 
armv8pmu_getreset_flags(void)760 static u64 armv8pmu_getreset_flags(void)
761 {
762 	u64 value;
763 
764 	/* Read */
765 	value = read_pmovsclr();
766 
767 	/* Write to clear flags */
768 	value &= ARMV8_PMU_OVERFLOWED_MASK;
769 	write_pmovsclr(value);
770 
771 	return value;
772 }
773 
update_pmuserenr(u64 val)774 static void update_pmuserenr(u64 val)
775 {
776 	lockdep_assert_irqs_disabled();
777 
778 	/*
779 	 * The current PMUSERENR_EL0 value might be the value for the guest.
780 	 * If that's the case, have KVM keep tracking of the register value
781 	 * for the host EL0 so that KVM can restore it before returning to
782 	 * the host EL0. Otherwise, update the register now.
783 	 */
784 	if (kvm_set_pmuserenr(val))
785 		return;
786 
787 	write_pmuserenr(val);
788 }
789 
armv8pmu_disable_user_access(void)790 static void armv8pmu_disable_user_access(void)
791 {
792 	update_pmuserenr(0);
793 }
794 
armv8pmu_enable_user_access(struct arm_pmu * cpu_pmu)795 static void armv8pmu_enable_user_access(struct arm_pmu *cpu_pmu)
796 {
797 	int i;
798 	struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events);
799 
800 	if (is_pmuv3p9(cpu_pmu->pmuver)) {
801 		u64 mask = 0;
802 		for_each_set_bit(i, cpuc->used_mask, ARMPMU_MAX_HWEVENTS) {
803 			if (armv8pmu_event_has_user_read(cpuc->events[i]))
804 				mask |= BIT(i);
805 		}
806 		write_pmuacr(mask);
807 	} else {
808 		/* Clear any unused counters to avoid leaking their contents */
809 		for_each_andnot_bit(i, cpu_pmu->cntr_mask, cpuc->used_mask,
810 				    ARMPMU_MAX_HWEVENTS) {
811 			if (i == ARMV8_PMU_CYCLE_IDX)
812 				write_pmccntr(0);
813 			else if (i == ARMV8_PMU_INSTR_IDX)
814 				write_pmicntr(0);
815 			else
816 				armv8pmu_write_evcntr(i, 0);
817 		}
818 	}
819 
820 	update_pmuserenr(ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_UEN);
821 }
822 
armv8pmu_enable_event(struct perf_event * event)823 static void armv8pmu_enable_event(struct perf_event *event)
824 {
825 	armv8pmu_write_event_type(event);
826 	armv8pmu_enable_event_irq(event);
827 	armv8pmu_enable_event_counter(event);
828 }
829 
armv8pmu_disable_event(struct perf_event * event)830 static void armv8pmu_disable_event(struct perf_event *event)
831 {
832 	armv8pmu_disable_event_counter(event);
833 	armv8pmu_disable_event_irq(event);
834 }
835 
armv8pmu_start(struct arm_pmu * cpu_pmu)836 static void armv8pmu_start(struct arm_pmu *cpu_pmu)
837 {
838 	struct perf_event_context *ctx;
839 	struct pmu_hw_events *hw_events = this_cpu_ptr(cpu_pmu->hw_events);
840 	int nr_user = 0;
841 
842 	ctx = perf_cpu_task_ctx();
843 	if (ctx)
844 		nr_user = ctx->nr_user;
845 
846 	if (sysctl_perf_user_access && nr_user)
847 		armv8pmu_enable_user_access(cpu_pmu);
848 	else
849 		armv8pmu_disable_user_access();
850 
851 	kvm_vcpu_pmu_resync_el0();
852 
853 	if (hw_events->branch_users)
854 		brbe_enable(cpu_pmu);
855 
856 	/* Enable all counters */
857 	armv8pmu_pmcr_write(armv8pmu_pmcr_read() | ARMV8_PMU_PMCR_E);
858 }
859 
armv8pmu_stop(struct arm_pmu * cpu_pmu)860 static void armv8pmu_stop(struct arm_pmu *cpu_pmu)
861 {
862 	struct pmu_hw_events *hw_events = this_cpu_ptr(cpu_pmu->hw_events);
863 
864 	if (hw_events->branch_users)
865 		brbe_disable();
866 
867 	/* Disable all counters */
868 	armv8pmu_pmcr_write(armv8pmu_pmcr_read() & ~ARMV8_PMU_PMCR_E);
869 }
870 
read_branch_records(struct pmu_hw_events * cpuc,struct perf_event * event,struct perf_sample_data * data)871 static void read_branch_records(struct pmu_hw_events *cpuc,
872 				struct perf_event *event,
873 				struct perf_sample_data *data)
874 {
875 	struct perf_branch_stack *branch_stack = cpuc->branch_stack;
876 
877 	brbe_read_filtered_entries(branch_stack, event);
878 	perf_sample_save_brstack(data, event, branch_stack, NULL);
879 }
880 
armv8pmu_handle_irq(struct arm_pmu * cpu_pmu)881 static irqreturn_t armv8pmu_handle_irq(struct arm_pmu *cpu_pmu)
882 {
883 	u64 pmovsr;
884 	struct perf_sample_data data;
885 	struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events);
886 	struct pt_regs *regs;
887 	int idx;
888 
889 	/*
890 	 * Get and reset the IRQ flags
891 	 */
892 	pmovsr = armv8pmu_getreset_flags();
893 
894 	/*
895 	 * Did an overflow occur?
896 	 */
897 	if (!armv8pmu_has_overflowed(pmovsr))
898 		return IRQ_NONE;
899 
900 	/*
901 	 * Handle the counter(s) overflow(s)
902 	 */
903 	regs = get_irq_regs();
904 
905 	/*
906 	 * Stop the PMU while processing the counter overflows
907 	 * to prevent skews in group events.
908 	 */
909 	armv8pmu_stop(cpu_pmu);
910 	for_each_set_bit(idx, cpu_pmu->cntr_mask, ARMPMU_MAX_HWEVENTS) {
911 		struct perf_event *event = cpuc->events[idx];
912 		struct hw_perf_event *hwc;
913 
914 		/* Ignore if we don't have an event. */
915 		if (!event)
916 			continue;
917 
918 		/*
919 		 * We have a single interrupt for all counters. Check that
920 		 * each counter has overflowed before we process it.
921 		 */
922 		if (!armv8pmu_counter_has_overflowed(pmovsr, idx))
923 			continue;
924 
925 		hwc = &event->hw;
926 		armpmu_event_update(event);
927 		perf_sample_data_init(&data, 0, hwc->last_period);
928 		if (!armpmu_event_set_period(event))
929 			continue;
930 
931 		if (has_branch_stack(event))
932 			read_branch_records(cpuc, event, &data);
933 
934 		/*
935 		 * Perf event overflow will queue the processing of the event as
936 		 * an irq_work which will be taken care of in the handling of
937 		 * IPI_IRQ_WORK.
938 		 */
939 		perf_event_overflow(event, &data, regs);
940 	}
941 	armv8pmu_start(cpu_pmu);
942 
943 	return IRQ_HANDLED;
944 }
945 
armv8pmu_get_single_idx(struct pmu_hw_events * cpuc,struct arm_pmu * cpu_pmu)946 static int armv8pmu_get_single_idx(struct pmu_hw_events *cpuc,
947 				    struct arm_pmu *cpu_pmu)
948 {
949 	int idx;
950 
951 	for_each_set_bit(idx, cpu_pmu->cntr_mask, ARMV8_PMU_MAX_GENERAL_COUNTERS) {
952 		if (!test_and_set_bit(idx, cpuc->used_mask))
953 			return idx;
954 	}
955 	return -EAGAIN;
956 }
957 
armv8pmu_get_chain_idx(struct pmu_hw_events * cpuc,struct arm_pmu * cpu_pmu)958 static int armv8pmu_get_chain_idx(struct pmu_hw_events *cpuc,
959 				   struct arm_pmu *cpu_pmu)
960 {
961 	int idx;
962 
963 	/*
964 	 * Chaining requires two consecutive event counters, where
965 	 * the lower idx must be even.
966 	 */
967 	for_each_set_bit(idx, cpu_pmu->cntr_mask, ARMV8_PMU_MAX_GENERAL_COUNTERS) {
968 		if (!(idx & 0x1))
969 			continue;
970 		if (!test_and_set_bit(idx, cpuc->used_mask)) {
971 			/* Check if the preceding even counter is available */
972 			if (!test_and_set_bit(idx - 1, cpuc->used_mask))
973 				return idx;
974 			/* Release the Odd counter */
975 			clear_bit(idx, cpuc->used_mask);
976 		}
977 	}
978 	return -EAGAIN;
979 }
980 
armv8pmu_get_event_idx(struct pmu_hw_events * cpuc,struct perf_event * event)981 static int armv8pmu_get_event_idx(struct pmu_hw_events *cpuc,
982 				  struct perf_event *event)
983 {
984 	struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
985 	struct hw_perf_event *hwc = &event->hw;
986 	unsigned long evtype = hwc->config_base & ARMV8_PMU_EVTYPE_EVENT;
987 
988 	/* Always prefer to place a cycle counter into the cycle counter. */
989 	if ((evtype == ARMV8_PMUV3_PERFCTR_CPU_CYCLES) &&
990 	    !armv8pmu_event_get_threshold(&event->attr) && !has_branch_stack(event)) {
991 		if (!test_and_set_bit(ARMV8_PMU_CYCLE_IDX, cpuc->used_mask))
992 			return ARMV8_PMU_CYCLE_IDX;
993 		else if (armv8pmu_event_is_64bit(event) &&
994 			   armv8pmu_event_want_user_access(event) &&
995 			   !armv8pmu_has_long_event(cpu_pmu))
996 				return -EAGAIN;
997 	}
998 
999 	/*
1000 	 * Always prefer to place a instruction counter into the instruction counter,
1001 	 * but don't expose the instruction counter to userspace access as userspace
1002 	 * may not know how to handle it.
1003 	 */
1004 	if ((evtype == ARMV8_PMUV3_PERFCTR_INST_RETIRED) &&
1005 	    !armv8pmu_event_get_threshold(&event->attr) &&
1006 	    test_bit(ARMV8_PMU_INSTR_IDX, cpu_pmu->cntr_mask) &&
1007 	    !armv8pmu_event_want_user_access(event)) {
1008 		if (!test_and_set_bit(ARMV8_PMU_INSTR_IDX, cpuc->used_mask))
1009 			return ARMV8_PMU_INSTR_IDX;
1010 	}
1011 
1012 	/*
1013 	 * Otherwise use events counters
1014 	 */
1015 	if (armv8pmu_event_is_chained(event))
1016 		return	armv8pmu_get_chain_idx(cpuc, cpu_pmu);
1017 	else
1018 		return armv8pmu_get_single_idx(cpuc, cpu_pmu);
1019 }
1020 
armv8pmu_clear_event_idx(struct pmu_hw_events * cpuc,struct perf_event * event)1021 static void armv8pmu_clear_event_idx(struct pmu_hw_events *cpuc,
1022 				     struct perf_event *event)
1023 {
1024 	int idx = event->hw.idx;
1025 
1026 	clear_bit(idx, cpuc->used_mask);
1027 	if (armv8pmu_event_is_chained(event))
1028 		clear_bit(idx - 1, cpuc->used_mask);
1029 }
1030 
armv8pmu_user_event_idx(struct perf_event * event)1031 static int armv8pmu_user_event_idx(struct perf_event *event)
1032 {
1033 	if (!sysctl_perf_user_access || !armv8pmu_event_has_user_read(event))
1034 		return 0;
1035 
1036 	return event->hw.idx + 1;
1037 }
1038 
armv8pmu_sched_task(struct perf_event_pmu_context * pmu_ctx,struct task_struct * task,bool sched_in)1039 static void armv8pmu_sched_task(struct perf_event_pmu_context *pmu_ctx,
1040 				struct task_struct *task, bool sched_in)
1041 {
1042 	struct arm_pmu *armpmu = *this_cpu_ptr(&cpu_armpmu);
1043 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
1044 
1045 	if (!hw_events->branch_users)
1046 		return;
1047 
1048 	if (sched_in)
1049 		brbe_invalidate();
1050 }
1051 
1052 /*
1053  * Add an event filter to a given event.
1054  */
armv8pmu_set_event_filter(struct hw_perf_event * event,struct perf_event_attr * attr)1055 static int armv8pmu_set_event_filter(struct hw_perf_event *event,
1056 				     struct perf_event_attr *attr)
1057 {
1058 	unsigned long config_base = 0;
1059 	struct perf_event *perf_event = container_of(attr, struct perf_event,
1060 						     attr);
1061 	struct arm_pmu *cpu_pmu = to_arm_pmu(perf_event->pmu);
1062 	u32 th;
1063 
1064 	if (attr->exclude_idle) {
1065 		pr_debug("ARM performance counters do not support mode exclusion\n");
1066 		return -EOPNOTSUPP;
1067 	}
1068 
1069 	if (has_branch_stack(perf_event)) {
1070 		if (!brbe_num_branch_records(cpu_pmu) || !brbe_branch_attr_valid(perf_event))
1071 			return -EOPNOTSUPP;
1072 
1073 		perf_event->attach_state |= PERF_ATTACH_SCHED_CB;
1074 	}
1075 
1076 	/*
1077 	 * If we're running in hyp mode, then we *are* the hypervisor.
1078 	 * Therefore we ignore exclude_hv in this configuration, since
1079 	 * there's no hypervisor to sample anyway. This is consistent
1080 	 * with other architectures (x86 and Power).
1081 	 */
1082 	if (is_kernel_in_hyp_mode()) {
1083 		if (!attr->exclude_kernel && !attr->exclude_host)
1084 			config_base |= ARMV8_PMU_INCLUDE_EL2;
1085 		if (attr->exclude_guest)
1086 			config_base |= ARMV8_PMU_EXCLUDE_EL1;
1087 		if (attr->exclude_host)
1088 			config_base |= ARMV8_PMU_EXCLUDE_EL0;
1089 	} else {
1090 		if (!attr->exclude_hv && !attr->exclude_host)
1091 			config_base |= ARMV8_PMU_INCLUDE_EL2;
1092 	}
1093 
1094 	/*
1095 	 * Filter out !VHE kernels and guest kernels
1096 	 */
1097 	if (attr->exclude_kernel)
1098 		config_base |= ARMV8_PMU_EXCLUDE_EL1;
1099 
1100 	if (attr->exclude_user)
1101 		config_base |= ARMV8_PMU_EXCLUDE_EL0;
1102 
1103 	/*
1104 	 * If FEAT_PMUv3_TH isn't implemented, then THWIDTH (threshold_max) will
1105 	 * be 0 and will also trigger this check, preventing it from being used.
1106 	 */
1107 	th = armv8pmu_event_get_threshold(attr);
1108 	if (th > threshold_max(cpu_pmu)) {
1109 		pr_debug("PMU event threshold exceeds max value\n");
1110 		return -EINVAL;
1111 	}
1112 
1113 	if (th) {
1114 		config_base |= FIELD_PREP(ARMV8_PMU_EVTYPE_TH, th);
1115 		config_base |= FIELD_PREP(ARMV8_PMU_EVTYPE_TC,
1116 					  armv8pmu_event_threshold_control(attr));
1117 	}
1118 
1119 	/*
1120 	 * Install the filter into config_base as this is used to
1121 	 * construct the event type.
1122 	 */
1123 	event->config_base = config_base;
1124 
1125 	return 0;
1126 }
1127 
armv8pmu_reset(void * info)1128 static void armv8pmu_reset(void *info)
1129 {
1130 	struct arm_pmu *cpu_pmu = (struct arm_pmu *)info;
1131 	u64 pmcr, mask;
1132 
1133 	bitmap_to_arr64(&mask, cpu_pmu->cntr_mask, ARMPMU_MAX_HWEVENTS);
1134 
1135 	/* The counter and interrupt enable registers are unknown at reset. */
1136 	armv8pmu_disable_counter(mask);
1137 	armv8pmu_disable_intens(mask);
1138 
1139 	/* Clear the counters we flip at guest entry/exit */
1140 	kvm_clr_pmu_events(mask);
1141 
1142 	if (brbe_num_branch_records(cpu_pmu)) {
1143 		brbe_disable();
1144 		brbe_invalidate();
1145 	}
1146 
1147 	/*
1148 	 * Initialize & Reset PMNC. Request overflow interrupt for
1149 	 * 64 bit cycle counter but cheat in armv8pmu_write_counter().
1150 	 */
1151 	pmcr = ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C | ARMV8_PMU_PMCR_LC;
1152 
1153 	/* Enable long event counter support where available */
1154 	if (armv8pmu_has_long_event(cpu_pmu))
1155 		pmcr |= ARMV8_PMU_PMCR_LP;
1156 
1157 	armv8pmu_pmcr_write(pmcr);
1158 }
1159 
__armv8_pmuv3_map_event_id(struct arm_pmu * armpmu,struct perf_event * event)1160 static int __armv8_pmuv3_map_event_id(struct arm_pmu *armpmu,
1161 				      struct perf_event *event)
1162 {
1163 	if (event->attr.type == PERF_TYPE_HARDWARE &&
1164 	    event->attr.config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) {
1165 
1166 		if (test_bit(ARMV8_PMUV3_PERFCTR_BR_RETIRED,
1167 			     armpmu->pmceid_bitmap))
1168 			return ARMV8_PMUV3_PERFCTR_BR_RETIRED;
1169 
1170 		if (test_bit(ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED,
1171 			     armpmu->pmceid_bitmap))
1172 			return ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED;
1173 
1174 		return HW_OP_UNSUPPORTED;
1175 	}
1176 
1177 	return armpmu_map_event(event, &armv8_pmuv3_perf_map,
1178 				&armv8_pmuv3_perf_cache_map,
1179 				ARMV8_PMU_EVTYPE_EVENT);
1180 }
1181 
__armv8_pmuv3_map_event(struct perf_event * event,const unsigned (* extra_event_map)[PERF_COUNT_HW_MAX],const unsigned (* extra_cache_map)[PERF_COUNT_HW_CACHE_MAX][PERF_COUNT_HW_CACHE_OP_MAX][PERF_COUNT_HW_CACHE_RESULT_MAX])1182 static int __armv8_pmuv3_map_event(struct perf_event *event,
1183 				   const unsigned (*extra_event_map)
1184 						  [PERF_COUNT_HW_MAX],
1185 				   const unsigned (*extra_cache_map)
1186 						  [PERF_COUNT_HW_CACHE_MAX]
1187 						  [PERF_COUNT_HW_CACHE_OP_MAX]
1188 						  [PERF_COUNT_HW_CACHE_RESULT_MAX])
1189 {
1190 	int hw_event_id;
1191 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
1192 
1193 	hw_event_id = __armv8_pmuv3_map_event_id(armpmu, event);
1194 
1195 	/*
1196 	 * CHAIN events only work when paired with an adjacent counter, and it
1197 	 * never makes sense for a user to open one in isolation, as they'll be
1198 	 * rotated arbitrarily.
1199 	 */
1200 	if (hw_event_id == ARMV8_PMUV3_PERFCTR_CHAIN)
1201 		return -EINVAL;
1202 
1203 	if (armv8pmu_event_is_64bit(event))
1204 		event->hw.flags |= ARMPMU_EVT_64BIT;
1205 
1206 	/*
1207 	 * User events must be allocated into a single counter, and so
1208 	 * must not be chained.
1209 	 *
1210 	 * Most 64-bit events require long counter support, but 64-bit
1211 	 * CPU_CYCLES events can be placed into the dedicated cycle
1212 	 * counter when this is free.
1213 	 */
1214 	if (armv8pmu_event_want_user_access(event)) {
1215 		if (!(event->attach_state & PERF_ATTACH_TASK))
1216 			return -EINVAL;
1217 		if (armv8pmu_event_is_64bit(event) &&
1218 		    (hw_event_id != ARMV8_PMUV3_PERFCTR_CPU_CYCLES) &&
1219 		    !armv8pmu_has_long_event(armpmu))
1220 			return -EOPNOTSUPP;
1221 
1222 		event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
1223 	}
1224 
1225 	/* Only expose micro/arch events supported by this PMU */
1226 	if ((hw_event_id > 0) && (hw_event_id < ARMV8_PMUV3_MAX_COMMON_EVENTS)
1227 	    && test_bit(hw_event_id, armpmu->pmceid_bitmap)) {
1228 		return hw_event_id;
1229 	}
1230 
1231 	return armpmu_map_event(event, extra_event_map, extra_cache_map,
1232 				ARMV8_PMU_EVTYPE_EVENT);
1233 }
1234 
armv8_pmuv3_map_event(struct perf_event * event)1235 static int armv8_pmuv3_map_event(struct perf_event *event)
1236 {
1237 	return __armv8_pmuv3_map_event(event, NULL, NULL);
1238 }
1239 
armv8_a53_map_event(struct perf_event * event)1240 static int armv8_a53_map_event(struct perf_event *event)
1241 {
1242 	return __armv8_pmuv3_map_event(event, NULL, &armv8_a53_perf_cache_map);
1243 }
1244 
armv8_a57_map_event(struct perf_event * event)1245 static int armv8_a57_map_event(struct perf_event *event)
1246 {
1247 	return __armv8_pmuv3_map_event(event, NULL, &armv8_a57_perf_cache_map);
1248 }
1249 
armv8_a73_map_event(struct perf_event * event)1250 static int armv8_a73_map_event(struct perf_event *event)
1251 {
1252 	return __armv8_pmuv3_map_event(event, NULL, &armv8_a73_perf_cache_map);
1253 }
1254 
armv8_thunder_map_event(struct perf_event * event)1255 static int armv8_thunder_map_event(struct perf_event *event)
1256 {
1257 	return __armv8_pmuv3_map_event(event, NULL,
1258 				       &armv8_thunder_perf_cache_map);
1259 }
1260 
armv8_vulcan_map_event(struct perf_event * event)1261 static int armv8_vulcan_map_event(struct perf_event *event)
1262 {
1263 	return __armv8_pmuv3_map_event(event, NULL,
1264 				       &armv8_vulcan_perf_cache_map);
1265 }
1266 
1267 struct armv8pmu_probe_info {
1268 	struct arm_pmu *pmu;
1269 	bool present;
1270 };
1271 
__armv8pmu_probe_pmu(void * info)1272 static void __armv8pmu_probe_pmu(void *info)
1273 {
1274 	struct armv8pmu_probe_info *probe = info;
1275 	struct arm_pmu *cpu_pmu = probe->pmu;
1276 	u64 pmceid_raw[2];
1277 	u32 pmceid[2];
1278 	int pmuver;
1279 
1280 	pmuver = read_pmuver();
1281 	if (!pmuv3_implemented(pmuver))
1282 		return;
1283 
1284 	cpu_pmu->pmuver = pmuver;
1285 	probe->present = true;
1286 
1287 	/* Read the nb of CNTx counters supported from PMNC */
1288 	bitmap_set(cpu_pmu->cntr_mask,
1289 		   0, FIELD_GET(ARMV8_PMU_PMCR_N, armv8pmu_pmcr_read()));
1290 
1291 	/* Add the CPU cycles counter */
1292 	set_bit(ARMV8_PMU_CYCLE_IDX, cpu_pmu->cntr_mask);
1293 
1294 	/* Add the CPU instructions counter */
1295 	if (pmuv3_has_icntr())
1296 		set_bit(ARMV8_PMU_INSTR_IDX, cpu_pmu->cntr_mask);
1297 
1298 	pmceid[0] = pmceid_raw[0] = read_pmceid0();
1299 	pmceid[1] = pmceid_raw[1] = read_pmceid1();
1300 
1301 	bitmap_from_arr32(cpu_pmu->pmceid_bitmap,
1302 			     pmceid, ARMV8_PMUV3_MAX_COMMON_EVENTS);
1303 
1304 	pmceid[0] = pmceid_raw[0] >> 32;
1305 	pmceid[1] = pmceid_raw[1] >> 32;
1306 
1307 	bitmap_from_arr32(cpu_pmu->pmceid_ext_bitmap,
1308 			     pmceid, ARMV8_PMUV3_MAX_COMMON_EVENTS);
1309 
1310 	/* store PMMIR register for sysfs */
1311 	if (is_pmuv3p4(pmuver))
1312 		cpu_pmu->reg_pmmir = read_pmmir();
1313 	else
1314 		cpu_pmu->reg_pmmir = 0;
1315 
1316 	brbe_probe(cpu_pmu);
1317 }
1318 
branch_records_alloc(struct arm_pmu * armpmu)1319 static int branch_records_alloc(struct arm_pmu *armpmu)
1320 {
1321 	size_t size = struct_size_t(struct perf_branch_stack, entries,
1322 				    brbe_num_branch_records(armpmu));
1323 	int cpu;
1324 
1325 	for_each_cpu(cpu, &armpmu->supported_cpus) {
1326 		struct pmu_hw_events *events_cpu;
1327 
1328 		events_cpu = per_cpu_ptr(armpmu->hw_events, cpu);
1329 		events_cpu->branch_stack = kmalloc(size, GFP_KERNEL);
1330 		if (!events_cpu->branch_stack)
1331 			return -ENOMEM;
1332 	}
1333 	return 0;
1334 }
1335 
armv8pmu_probe_pmu(struct arm_pmu * cpu_pmu)1336 static int armv8pmu_probe_pmu(struct arm_pmu *cpu_pmu)
1337 {
1338 	struct armv8pmu_probe_info probe = {
1339 		.pmu = cpu_pmu,
1340 		.present = false,
1341 	};
1342 	int ret;
1343 
1344 	ret = smp_call_function_any(&cpu_pmu->supported_cpus,
1345 				    __armv8pmu_probe_pmu,
1346 				    &probe, 1);
1347 	if (ret)
1348 		return ret;
1349 
1350 	if (!probe.present)
1351 		return -ENODEV;
1352 
1353 	if (brbe_num_branch_records(cpu_pmu)) {
1354 		ret = branch_records_alloc(cpu_pmu);
1355 		if (ret)
1356 			return ret;
1357 	}
1358 	return 0;
1359 }
1360 
armv8pmu_disable_user_access_ipi(void * unused)1361 static void armv8pmu_disable_user_access_ipi(void *unused)
1362 {
1363 	armv8pmu_disable_user_access();
1364 }
1365 
armv8pmu_proc_user_access_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1366 static int armv8pmu_proc_user_access_handler(const struct ctl_table *table, int write,
1367 		void *buffer, size_t *lenp, loff_t *ppos)
1368 {
1369 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1370 	if (ret || !write || sysctl_perf_user_access)
1371 		return ret;
1372 
1373 	on_each_cpu(armv8pmu_disable_user_access_ipi, NULL, 1);
1374 	return 0;
1375 }
1376 
1377 static const struct ctl_table armv8_pmu_sysctl_table[] = {
1378 	{
1379 		.procname       = "perf_user_access",
1380 		.data		= &sysctl_perf_user_access,
1381 		.maxlen		= sizeof(unsigned int),
1382 		.mode           = 0644,
1383 		.proc_handler	= armv8pmu_proc_user_access_handler,
1384 		.extra1		= SYSCTL_ZERO,
1385 		.extra2		= SYSCTL_ONE,
1386 	},
1387 };
1388 
armv8_pmu_register_sysctl_table(void)1389 static void armv8_pmu_register_sysctl_table(void)
1390 {
1391 	static u32 tbl_registered = 0;
1392 
1393 	if (!cmpxchg_relaxed(&tbl_registered, 0, 1))
1394 		register_sysctl("kernel", armv8_pmu_sysctl_table);
1395 }
1396 
armv8_pmu_init(struct arm_pmu * cpu_pmu,char * name,int (* map_event)(struct perf_event * event))1397 static int armv8_pmu_init(struct arm_pmu *cpu_pmu, char *name,
1398 			  int (*map_event)(struct perf_event *event))
1399 {
1400 	int ret = armv8pmu_probe_pmu(cpu_pmu);
1401 	if (ret)
1402 		return ret;
1403 
1404 	cpu_pmu->handle_irq		= armv8pmu_handle_irq;
1405 	cpu_pmu->enable			= armv8pmu_enable_event;
1406 	cpu_pmu->disable		= armv8pmu_disable_event;
1407 	cpu_pmu->read_counter		= armv8pmu_read_counter;
1408 	cpu_pmu->write_counter		= armv8pmu_write_counter;
1409 	cpu_pmu->get_event_idx		= armv8pmu_get_event_idx;
1410 	cpu_pmu->clear_event_idx	= armv8pmu_clear_event_idx;
1411 	cpu_pmu->start			= armv8pmu_start;
1412 	cpu_pmu->stop			= armv8pmu_stop;
1413 	cpu_pmu->reset			= armv8pmu_reset;
1414 	cpu_pmu->set_event_filter	= armv8pmu_set_event_filter;
1415 
1416 	cpu_pmu->pmu.event_idx		= armv8pmu_user_event_idx;
1417 	if (brbe_num_branch_records(cpu_pmu))
1418 		cpu_pmu->pmu.sched_task		= armv8pmu_sched_task;
1419 
1420 	cpu_pmu->name			= name;
1421 	cpu_pmu->map_event		= map_event;
1422 	cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_EVENTS] = &armv8_pmuv3_events_attr_group;
1423 	cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_FORMATS] = &armv8_pmuv3_format_attr_group;
1424 	cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_CAPS] = &armv8_pmuv3_caps_attr_group;
1425 	armv8_pmu_register_sysctl_table();
1426 	return 0;
1427 }
1428 
1429 #define PMUV3_INIT_SIMPLE(name)						\
1430 static int name##_pmu_init(struct arm_pmu *cpu_pmu)			\
1431 {									\
1432 	return armv8_pmu_init(cpu_pmu, #name, armv8_pmuv3_map_event);	\
1433 }
1434 
1435 #define PMUV3_INIT_MAP_EVENT(name, map_event)				\
1436 static int name##_pmu_init(struct arm_pmu *cpu_pmu)			\
1437 {									\
1438 	return armv8_pmu_init(cpu_pmu, #name, map_event);		\
1439 }
1440 
1441 PMUV3_INIT_SIMPLE(armv8_pmuv3)
1442 
1443 PMUV3_INIT_SIMPLE(armv8_cortex_a34)
1444 PMUV3_INIT_SIMPLE(armv8_cortex_a55)
1445 PMUV3_INIT_SIMPLE(armv8_cortex_a65)
1446 PMUV3_INIT_SIMPLE(armv8_cortex_a75)
1447 PMUV3_INIT_SIMPLE(armv8_cortex_a76)
1448 PMUV3_INIT_SIMPLE(armv8_cortex_a77)
1449 PMUV3_INIT_SIMPLE(armv8_cortex_a78)
1450 PMUV3_INIT_SIMPLE(armv9_cortex_a510)
1451 PMUV3_INIT_SIMPLE(armv9_cortex_a520)
1452 PMUV3_INIT_SIMPLE(armv9_cortex_a710)
1453 PMUV3_INIT_SIMPLE(armv9_cortex_a715)
1454 PMUV3_INIT_SIMPLE(armv9_cortex_a720)
1455 PMUV3_INIT_SIMPLE(armv9_cortex_a725)
1456 PMUV3_INIT_SIMPLE(armv8_cortex_x1)
1457 PMUV3_INIT_SIMPLE(armv9_cortex_x2)
1458 PMUV3_INIT_SIMPLE(armv9_cortex_x3)
1459 PMUV3_INIT_SIMPLE(armv9_cortex_x4)
1460 PMUV3_INIT_SIMPLE(armv9_cortex_x925)
1461 PMUV3_INIT_SIMPLE(armv8_neoverse_e1)
1462 PMUV3_INIT_SIMPLE(armv8_neoverse_n1)
1463 PMUV3_INIT_SIMPLE(armv9_neoverse_n2)
1464 PMUV3_INIT_SIMPLE(armv9_neoverse_n3)
1465 PMUV3_INIT_SIMPLE(armv8_neoverse_v1)
1466 PMUV3_INIT_SIMPLE(armv8_neoverse_v2)
1467 PMUV3_INIT_SIMPLE(armv8_neoverse_v3)
1468 PMUV3_INIT_SIMPLE(armv8_neoverse_v3ae)
1469 PMUV3_INIT_SIMPLE(armv8_rainier)
1470 
1471 PMUV3_INIT_SIMPLE(armv8_nvidia_carmel)
1472 PMUV3_INIT_SIMPLE(armv8_nvidia_denver)
1473 
1474 PMUV3_INIT_SIMPLE(armv8_samsung_mongoose)
1475 
1476 PMUV3_INIT_MAP_EVENT(armv8_cortex_a35, armv8_a53_map_event)
1477 PMUV3_INIT_MAP_EVENT(armv8_cortex_a53, armv8_a53_map_event)
1478 PMUV3_INIT_MAP_EVENT(armv8_cortex_a57, armv8_a57_map_event)
1479 PMUV3_INIT_MAP_EVENT(armv8_cortex_a72, armv8_a57_map_event)
1480 PMUV3_INIT_MAP_EVENT(armv8_cortex_a73, armv8_a73_map_event)
1481 PMUV3_INIT_MAP_EVENT(armv8_cavium_thunder, armv8_thunder_map_event)
1482 PMUV3_INIT_MAP_EVENT(armv8_brcm_vulcan, armv8_vulcan_map_event)
1483 
1484 static const struct of_device_id armv8_pmu_of_device_ids[] = {
1485 	{.compatible = "arm,armv8-pmuv3",	.data = armv8_pmuv3_pmu_init},
1486 	{.compatible = "arm,cortex-a34-pmu",	.data = armv8_cortex_a34_pmu_init},
1487 	{.compatible = "arm,cortex-a35-pmu",	.data = armv8_cortex_a35_pmu_init},
1488 	{.compatible = "arm,cortex-a53-pmu",	.data = armv8_cortex_a53_pmu_init},
1489 	{.compatible = "arm,cortex-a55-pmu",	.data = armv8_cortex_a55_pmu_init},
1490 	{.compatible = "arm,cortex-a57-pmu",	.data = armv8_cortex_a57_pmu_init},
1491 	{.compatible = "arm,cortex-a65-pmu",	.data = armv8_cortex_a65_pmu_init},
1492 	{.compatible = "arm,cortex-a72-pmu",	.data = armv8_cortex_a72_pmu_init},
1493 	{.compatible = "arm,cortex-a73-pmu",	.data = armv8_cortex_a73_pmu_init},
1494 	{.compatible = "arm,cortex-a75-pmu",	.data = armv8_cortex_a75_pmu_init},
1495 	{.compatible = "arm,cortex-a76-pmu",	.data = armv8_cortex_a76_pmu_init},
1496 	{.compatible = "arm,cortex-a77-pmu",	.data = armv8_cortex_a77_pmu_init},
1497 	{.compatible = "arm,cortex-a78-pmu",	.data = armv8_cortex_a78_pmu_init},
1498 	{.compatible = "arm,cortex-a510-pmu",	.data = armv9_cortex_a510_pmu_init},
1499 	{.compatible = "arm,cortex-a520-pmu",	.data = armv9_cortex_a520_pmu_init},
1500 	{.compatible = "arm,cortex-a710-pmu",	.data = armv9_cortex_a710_pmu_init},
1501 	{.compatible = "arm,cortex-a715-pmu",	.data = armv9_cortex_a715_pmu_init},
1502 	{.compatible = "arm,cortex-a720-pmu",	.data = armv9_cortex_a720_pmu_init},
1503 	{.compatible = "arm,cortex-a725-pmu",	.data = armv9_cortex_a725_pmu_init},
1504 	{.compatible = "arm,cortex-x1-pmu",	.data = armv8_cortex_x1_pmu_init},
1505 	{.compatible = "arm,cortex-x2-pmu",	.data = armv9_cortex_x2_pmu_init},
1506 	{.compatible = "arm,cortex-x3-pmu",	.data = armv9_cortex_x3_pmu_init},
1507 	{.compatible = "arm,cortex-x4-pmu",	.data = armv9_cortex_x4_pmu_init},
1508 	{.compatible = "arm,cortex-x925-pmu",	.data = armv9_cortex_x925_pmu_init},
1509 	{.compatible = "arm,neoverse-e1-pmu",	.data = armv8_neoverse_e1_pmu_init},
1510 	{.compatible = "arm,neoverse-n1-pmu",	.data = armv8_neoverse_n1_pmu_init},
1511 	{.compatible = "arm,neoverse-n2-pmu",	.data = armv9_neoverse_n2_pmu_init},
1512 	{.compatible = "arm,neoverse-n3-pmu",	.data = armv9_neoverse_n3_pmu_init},
1513 	{.compatible = "arm,neoverse-v1-pmu",	.data = armv8_neoverse_v1_pmu_init},
1514 	{.compatible = "arm,neoverse-v2-pmu",	.data = armv8_neoverse_v2_pmu_init},
1515 	{.compatible = "arm,neoverse-v3-pmu",	.data = armv8_neoverse_v3_pmu_init},
1516 	{.compatible = "arm,neoverse-v3ae-pmu",	.data = armv8_neoverse_v3ae_pmu_init},
1517 	{.compatible = "arm,rainier-pmu",	.data = armv8_rainier_pmu_init},
1518 	{.compatible = "cavium,thunder-pmu",	.data = armv8_cavium_thunder_pmu_init},
1519 	{.compatible = "brcm,vulcan-pmu",	.data = armv8_brcm_vulcan_pmu_init},
1520 	{.compatible = "nvidia,carmel-pmu",	.data = armv8_nvidia_carmel_pmu_init},
1521 	{.compatible = "nvidia,denver-pmu",	.data = armv8_nvidia_denver_pmu_init},
1522 	{.compatible = "samsung,mongoose-pmu",	.data = armv8_samsung_mongoose_pmu_init},
1523 	{},
1524 };
1525 
armv8_pmu_device_probe(struct platform_device * pdev)1526 static int armv8_pmu_device_probe(struct platform_device *pdev)
1527 {
1528 	return arm_pmu_device_probe(pdev, armv8_pmu_of_device_ids, NULL);
1529 }
1530 
1531 static struct platform_driver armv8_pmu_driver = {
1532 	.driver		= {
1533 		.name	= ARMV8_PMU_PDEV_NAME,
1534 		.of_match_table = armv8_pmu_of_device_ids,
1535 		.suppress_bind_attrs = true,
1536 	},
1537 	.probe		= armv8_pmu_device_probe,
1538 };
1539 
armv8_pmu_driver_init(void)1540 static int __init armv8_pmu_driver_init(void)
1541 {
1542 	int ret;
1543 
1544 	if (acpi_disabled)
1545 		ret = platform_driver_register(&armv8_pmu_driver);
1546 	else
1547 		ret = arm_pmu_acpi_probe(armv8_pmuv3_pmu_init);
1548 
1549 	if (!ret)
1550 		lockup_detector_retry_init();
1551 
1552 	return ret;
1553 }
device_initcall(armv8_pmu_driver_init)1554 device_initcall(armv8_pmu_driver_init)
1555 
1556 void arch_perf_update_userpage(struct perf_event *event,
1557 			       struct perf_event_mmap_page *userpg, u64 now)
1558 {
1559 	struct clock_read_data *rd;
1560 	unsigned int seq;
1561 	u64 ns;
1562 
1563 	userpg->cap_user_time = 0;
1564 	userpg->cap_user_time_zero = 0;
1565 	userpg->cap_user_time_short = 0;
1566 	userpg->cap_user_rdpmc = armv8pmu_event_has_user_read(event);
1567 
1568 	if (userpg->cap_user_rdpmc) {
1569 		if (event->hw.flags & ARMPMU_EVT_64BIT)
1570 			userpg->pmc_width = 64;
1571 		else
1572 			userpg->pmc_width = 32;
1573 	}
1574 
1575 	do {
1576 		rd = sched_clock_read_begin(&seq);
1577 
1578 		if (rd->read_sched_clock != arch_timer_read_counter)
1579 			return;
1580 
1581 		userpg->time_mult = rd->mult;
1582 		userpg->time_shift = rd->shift;
1583 		userpg->time_zero = rd->epoch_ns;
1584 		userpg->time_cycles = rd->epoch_cyc;
1585 		userpg->time_mask = rd->sched_clock_mask;
1586 
1587 		/*
1588 		 * Subtract the cycle base, such that software that
1589 		 * doesn't know about cap_user_time_short still 'works'
1590 		 * assuming no wraps.
1591 		 */
1592 		ns = mul_u64_u32_shr(rd->epoch_cyc, rd->mult, rd->shift);
1593 		userpg->time_zero -= ns;
1594 
1595 	} while (sched_clock_read_retry(seq));
1596 
1597 	userpg->time_offset = userpg->time_zero - now;
1598 
1599 	/*
1600 	 * time_shift is not expected to be greater than 31 due to
1601 	 * the original published conversion algorithm shifting a
1602 	 * 32-bit value (now specifies a 64-bit value) - refer
1603 	 * perf_event_mmap_page documentation in perf_event.h.
1604 	 */
1605 	if (userpg->time_shift == 32) {
1606 		userpg->time_shift = 31;
1607 		userpg->time_mult >>= 1;
1608 	}
1609 
1610 	/*
1611 	 * Internal timekeeping for enabled/running/stopped times
1612 	 * is always computed with the sched_clock.
1613 	 */
1614 	userpg->cap_user_time = 1;
1615 	userpg->cap_user_time_zero = 1;
1616 	userpg->cap_user_time_short = 1;
1617 }
1618