1 // SPDX-License-Identifier: GPL-2.0-only
2 #undef DEBUG
3
4 /*
5 * ARM performance counter support.
6 *
7 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
8 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9 *
10 * This code is based on the sparc64 perf event code, which is in turn based
11 * on the x86 code.
12 */
13 #define pr_fmt(fmt) "hw perfevents: " fmt
14
15 #include <linux/bitmap.h>
16 #include <linux/cpumask.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/slab.h>
22 #include <linux/sched/clock.h>
23 #include <linux/spinlock.h>
24 #include <linux/irq.h>
25 #include <linux/irqdesc.h>
26
27 #include <asm/irq_regs.h>
28
29 static int armpmu_count_irq_users(const int irq);
30
31 struct pmu_irq_ops {
32 void (*enable_pmuirq)(unsigned int irq);
33 void (*disable_pmuirq)(unsigned int irq);
34 void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid);
35 };
36
armpmu_free_pmuirq(unsigned int irq,int cpu,void __percpu * devid)37 static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid)
38 {
39 free_irq(irq, per_cpu_ptr(devid, cpu));
40 }
41
42 static const struct pmu_irq_ops pmuirq_ops = {
43 .enable_pmuirq = enable_irq,
44 .disable_pmuirq = disable_irq_nosync,
45 .free_pmuirq = armpmu_free_pmuirq
46 };
47
armpmu_free_pmunmi(unsigned int irq,int cpu,void __percpu * devid)48 static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid)
49 {
50 free_nmi(irq, per_cpu_ptr(devid, cpu));
51 }
52
53 static const struct pmu_irq_ops pmunmi_ops = {
54 .enable_pmuirq = enable_nmi,
55 .disable_pmuirq = disable_nmi_nosync,
56 .free_pmuirq = armpmu_free_pmunmi
57 };
58
armpmu_enable_percpu_pmuirq(unsigned int irq)59 static void armpmu_enable_percpu_pmuirq(unsigned int irq)
60 {
61 enable_percpu_irq(irq, IRQ_TYPE_NONE);
62 }
63
armpmu_free_percpu_pmuirq(unsigned int irq,int cpu,void __percpu * devid)64 static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu,
65 void __percpu *devid)
66 {
67 if (armpmu_count_irq_users(irq) == 1)
68 free_percpu_irq(irq, devid);
69 }
70
71 static const struct pmu_irq_ops percpu_pmuirq_ops = {
72 .enable_pmuirq = armpmu_enable_percpu_pmuirq,
73 .disable_pmuirq = disable_percpu_irq,
74 .free_pmuirq = armpmu_free_percpu_pmuirq
75 };
76
armpmu_enable_percpu_pmunmi(unsigned int irq)77 static void armpmu_enable_percpu_pmunmi(unsigned int irq)
78 {
79 if (!prepare_percpu_nmi(irq))
80 enable_percpu_nmi(irq, IRQ_TYPE_NONE);
81 }
82
armpmu_disable_percpu_pmunmi(unsigned int irq)83 static void armpmu_disable_percpu_pmunmi(unsigned int irq)
84 {
85 disable_percpu_nmi(irq);
86 teardown_percpu_nmi(irq);
87 }
88
armpmu_free_percpu_pmunmi(unsigned int irq,int cpu,void __percpu * devid)89 static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu,
90 void __percpu *devid)
91 {
92 if (armpmu_count_irq_users(irq) == 1)
93 free_percpu_nmi(irq, devid);
94 }
95
96 static const struct pmu_irq_ops percpu_pmunmi_ops = {
97 .enable_pmuirq = armpmu_enable_percpu_pmunmi,
98 .disable_pmuirq = armpmu_disable_percpu_pmunmi,
99 .free_pmuirq = armpmu_free_percpu_pmunmi
100 };
101
102 static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
103 static DEFINE_PER_CPU(int, cpu_irq);
104 static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops);
105
106 static bool has_nmi;
107
arm_pmu_event_max_period(struct perf_event * event)108 static inline u64 arm_pmu_event_max_period(struct perf_event *event)
109 {
110 if (event->hw.flags & ARMPMU_EVT_64BIT)
111 return GENMASK_ULL(63, 0);
112 else if (event->hw.flags & ARMPMU_EVT_63BIT)
113 return GENMASK_ULL(62, 0);
114 else if (event->hw.flags & ARMPMU_EVT_47BIT)
115 return GENMASK_ULL(46, 0);
116 else
117 return GENMASK_ULL(31, 0);
118 }
119
120 static int
armpmu_map_cache_event(const unsigned (* cache_map)[PERF_COUNT_HW_CACHE_MAX][PERF_COUNT_HW_CACHE_OP_MAX][PERF_COUNT_HW_CACHE_RESULT_MAX],u64 config)121 armpmu_map_cache_event(const unsigned (*cache_map)
122 [PERF_COUNT_HW_CACHE_MAX]
123 [PERF_COUNT_HW_CACHE_OP_MAX]
124 [PERF_COUNT_HW_CACHE_RESULT_MAX],
125 u64 config)
126 {
127 unsigned int cache_type, cache_op, cache_result, ret;
128
129 cache_type = (config >> 0) & 0xff;
130 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
131 return -EINVAL;
132
133 cache_op = (config >> 8) & 0xff;
134 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
135 return -EINVAL;
136
137 cache_result = (config >> 16) & 0xff;
138 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
139 return -EINVAL;
140
141 if (!cache_map)
142 return -ENOENT;
143
144 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
145
146 if (ret == CACHE_OP_UNSUPPORTED)
147 return -ENOENT;
148
149 return ret;
150 }
151
152 static int
armpmu_map_hw_event(const unsigned (* event_map)[PERF_COUNT_HW_MAX],u64 config)153 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
154 {
155 int mapping;
156
157 if (config >= PERF_COUNT_HW_MAX)
158 return -EINVAL;
159
160 if (!event_map)
161 return -ENOENT;
162
163 mapping = (*event_map)[config];
164 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
165 }
166
167 static int
armpmu_map_raw_event(u32 raw_event_mask,u64 config)168 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
169 {
170 return (int)(config & raw_event_mask);
171 }
172
173 int
armpmu_map_event(struct perf_event * event,const unsigned (* event_map)[PERF_COUNT_HW_MAX],const unsigned (* cache_map)[PERF_COUNT_HW_CACHE_MAX][PERF_COUNT_HW_CACHE_OP_MAX][PERF_COUNT_HW_CACHE_RESULT_MAX],u32 raw_event_mask)174 armpmu_map_event(struct perf_event *event,
175 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
176 const unsigned (*cache_map)
177 [PERF_COUNT_HW_CACHE_MAX]
178 [PERF_COUNT_HW_CACHE_OP_MAX]
179 [PERF_COUNT_HW_CACHE_RESULT_MAX],
180 u32 raw_event_mask)
181 {
182 u64 config = event->attr.config;
183 int type = event->attr.type;
184
185 if (type == event->pmu->type)
186 return armpmu_map_raw_event(raw_event_mask, config);
187
188 switch (type) {
189 case PERF_TYPE_HARDWARE:
190 return armpmu_map_hw_event(event_map, config);
191 case PERF_TYPE_HW_CACHE:
192 return armpmu_map_cache_event(cache_map, config);
193 case PERF_TYPE_RAW:
194 return armpmu_map_raw_event(raw_event_mask, config);
195 }
196
197 return -ENOENT;
198 }
199
armpmu_event_set_period(struct perf_event * event)200 int armpmu_event_set_period(struct perf_event *event)
201 {
202 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
203 struct hw_perf_event *hwc = &event->hw;
204 s64 left = local64_read(&hwc->period_left);
205 s64 period = hwc->sample_period;
206 u64 max_period;
207 int ret = 0;
208
209 max_period = arm_pmu_event_max_period(event);
210 if (unlikely(left <= -period)) {
211 left = period;
212 local64_set(&hwc->period_left, left);
213 hwc->last_period = period;
214 ret = 1;
215 }
216
217 if (unlikely(left <= 0)) {
218 left += period;
219 local64_set(&hwc->period_left, left);
220 hwc->last_period = period;
221 ret = 1;
222 }
223
224 /*
225 * Limit the maximum period to prevent the counter value
226 * from overtaking the one we are about to program. In
227 * effect we are reducing max_period to account for
228 * interrupt latency (and we are being very conservative).
229 */
230 if (left > (max_period >> 1))
231 left = (max_period >> 1);
232
233 local64_set(&hwc->prev_count, (u64)-left);
234
235 armpmu->write_counter(event, (u64)(-left) & max_period);
236
237 perf_event_update_userpage(event);
238
239 return ret;
240 }
241
armpmu_event_update(struct perf_event * event)242 u64 armpmu_event_update(struct perf_event *event)
243 {
244 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
245 struct hw_perf_event *hwc = &event->hw;
246 u64 delta, prev_raw_count, new_raw_count;
247 u64 max_period = arm_pmu_event_max_period(event);
248
249 again:
250 prev_raw_count = local64_read(&hwc->prev_count);
251 new_raw_count = armpmu->read_counter(event);
252
253 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
254 new_raw_count) != prev_raw_count)
255 goto again;
256
257 delta = (new_raw_count - prev_raw_count) & max_period;
258
259 local64_add(delta, &event->count);
260 local64_sub(delta, &hwc->period_left);
261
262 return new_raw_count;
263 }
264
265 static void
armpmu_read(struct perf_event * event)266 armpmu_read(struct perf_event *event)
267 {
268 armpmu_event_update(event);
269 }
270
271 static void
armpmu_stop(struct perf_event * event,int flags)272 armpmu_stop(struct perf_event *event, int flags)
273 {
274 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
275 struct hw_perf_event *hwc = &event->hw;
276
277 /*
278 * ARM pmu always has to update the counter, so ignore
279 * PERF_EF_UPDATE, see comments in armpmu_start().
280 */
281 if (!(hwc->state & PERF_HES_STOPPED)) {
282 armpmu->disable(event);
283 armpmu_event_update(event);
284 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
285 }
286 }
287
armpmu_start(struct perf_event * event,int flags)288 static void armpmu_start(struct perf_event *event, int flags)
289 {
290 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
291 struct hw_perf_event *hwc = &event->hw;
292
293 /*
294 * ARM pmu always has to reprogram the period, so ignore
295 * PERF_EF_RELOAD, see the comment below.
296 */
297 if (flags & PERF_EF_RELOAD)
298 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
299
300 hwc->state = 0;
301 /*
302 * Set the period again. Some counters can't be stopped, so when we
303 * were stopped we simply disabled the IRQ source and the counter
304 * may have been left counting. If we don't do this step then we may
305 * get an interrupt too soon or *way* too late if the overflow has
306 * happened since disabling.
307 */
308 armpmu_event_set_period(event);
309 armpmu->enable(event);
310 }
311
312 static void
armpmu_del(struct perf_event * event,int flags)313 armpmu_del(struct perf_event *event, int flags)
314 {
315 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
316 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
317 struct hw_perf_event *hwc = &event->hw;
318 int idx = hwc->idx;
319
320 armpmu_stop(event, PERF_EF_UPDATE);
321 hw_events->events[idx] = NULL;
322 armpmu->clear_event_idx(hw_events, event);
323 perf_event_update_userpage(event);
324 /* Clear the allocated counter */
325 hwc->idx = -1;
326 }
327
328 static int
armpmu_add(struct perf_event * event,int flags)329 armpmu_add(struct perf_event *event, int flags)
330 {
331 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
332 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
333 struct hw_perf_event *hwc = &event->hw;
334 int idx;
335
336 /* An event following a process won't be stopped earlier */
337 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
338 return -ENOENT;
339
340 /* If we don't have a space for the counter then finish early. */
341 idx = armpmu->get_event_idx(hw_events, event);
342 if (idx < 0)
343 return idx;
344
345 /*
346 * If there is an event in the counter we are going to use then make
347 * sure it is disabled.
348 */
349 event->hw.idx = idx;
350 armpmu->disable(event);
351 hw_events->events[idx] = event;
352
353 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
354 if (flags & PERF_EF_START)
355 armpmu_start(event, PERF_EF_RELOAD);
356
357 /* Propagate our changes to the userspace mapping. */
358 perf_event_update_userpage(event);
359
360 return 0;
361 }
362
363 static int
validate_event(struct pmu * pmu,struct pmu_hw_events * hw_events,struct perf_event * event)364 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
365 struct perf_event *event)
366 {
367 struct arm_pmu *armpmu;
368
369 if (is_software_event(event))
370 return 1;
371
372 /*
373 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
374 * core perf code won't check that the pmu->ctx == leader->ctx
375 * until after pmu->event_init(event).
376 */
377 if (event->pmu != pmu)
378 return 0;
379
380 if (event->state < PERF_EVENT_STATE_OFF)
381 return 1;
382
383 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
384 return 1;
385
386 armpmu = to_arm_pmu(event->pmu);
387 return armpmu->get_event_idx(hw_events, event) >= 0;
388 }
389
390 static int
validate_group(struct perf_event * event)391 validate_group(struct perf_event *event)
392 {
393 struct perf_event *sibling, *leader = event->group_leader;
394 struct pmu_hw_events fake_pmu;
395
396 /*
397 * Initialise the fake PMU. We only need to populate the
398 * used_mask for the purposes of validation.
399 */
400 memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
401
402 if (!validate_event(event->pmu, &fake_pmu, leader))
403 return -EINVAL;
404
405 if (event == leader)
406 return 0;
407
408 for_each_sibling_event(sibling, leader) {
409 if (!validate_event(event->pmu, &fake_pmu, sibling))
410 return -EINVAL;
411 }
412
413 if (!validate_event(event->pmu, &fake_pmu, event))
414 return -EINVAL;
415
416 return 0;
417 }
418
armpmu_dispatch_irq(int irq,void * dev)419 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
420 {
421 struct arm_pmu *armpmu;
422 int ret;
423 u64 start_clock, finish_clock;
424
425 /*
426 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
427 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
428 * do any necessary shifting, we just need to perform the first
429 * dereference.
430 */
431 armpmu = *(void **)dev;
432 if (WARN_ON_ONCE(!armpmu))
433 return IRQ_NONE;
434
435 start_clock = sched_clock();
436 ret = armpmu->handle_irq(armpmu);
437 finish_clock = sched_clock();
438
439 perf_sample_event_took(finish_clock - start_clock);
440 return ret;
441 }
442
443 static int
__hw_perf_event_init(struct perf_event * event)444 __hw_perf_event_init(struct perf_event *event)
445 {
446 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
447 struct hw_perf_event *hwc = &event->hw;
448 int mapping, ret;
449
450 hwc->flags = 0;
451 mapping = armpmu->map_event(event);
452
453 if (mapping < 0) {
454 pr_debug("event %x:%llx not supported\n", event->attr.type,
455 event->attr.config);
456 return mapping;
457 }
458
459 /*
460 * We don't assign an index until we actually place the event onto
461 * hardware. Use -1 to signify that we haven't decided where to put it
462 * yet. For SMP systems, each core has it's own PMU so we can't do any
463 * clever allocation or constraints checking at this point.
464 */
465 hwc->idx = -1;
466 hwc->config_base = 0;
467 hwc->config = 0;
468 hwc->event_base = 0;
469
470 /*
471 * Check whether we need to exclude the counter from certain modes.
472 */
473 if (armpmu->set_event_filter) {
474 ret = armpmu->set_event_filter(hwc, &event->attr);
475 if (ret)
476 return ret;
477 }
478
479 /*
480 * Store the event encoding into the config_base field.
481 */
482 hwc->config_base |= (unsigned long)mapping;
483
484 if (!is_sampling_event(event)) {
485 /*
486 * For non-sampling runs, limit the sample_period to half
487 * of the counter width. That way, the new counter value
488 * is far less likely to overtake the previous one unless
489 * you have some serious IRQ latency issues.
490 */
491 hwc->sample_period = arm_pmu_event_max_period(event) >> 1;
492 hwc->last_period = hwc->sample_period;
493 local64_set(&hwc->period_left, hwc->sample_period);
494 }
495
496 return validate_group(event);
497 }
498
armpmu_event_init(struct perf_event * event)499 static int armpmu_event_init(struct perf_event *event)
500 {
501 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
502
503 /*
504 * Reject CPU-affine events for CPUs that are of a different class to
505 * that which this PMU handles. Process-following events (where
506 * event->cpu == -1) can be migrated between CPUs, and thus we have to
507 * reject them later (in armpmu_add) if they're scheduled on a
508 * different class of CPU.
509 */
510 if (event->cpu != -1 &&
511 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
512 return -ENOENT;
513
514 /* does not support taken branch sampling */
515 if (has_branch_stack(event))
516 return -EOPNOTSUPP;
517
518 return __hw_perf_event_init(event);
519 }
520
armpmu_enable(struct pmu * pmu)521 static void armpmu_enable(struct pmu *pmu)
522 {
523 struct arm_pmu *armpmu = to_arm_pmu(pmu);
524 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
525 bool enabled = !bitmap_empty(hw_events->used_mask, ARMPMU_MAX_HWEVENTS);
526
527 /* For task-bound events we may be called on other CPUs */
528 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
529 return;
530
531 if (enabled)
532 armpmu->start(armpmu);
533 }
534
armpmu_disable(struct pmu * pmu)535 static void armpmu_disable(struct pmu *pmu)
536 {
537 struct arm_pmu *armpmu = to_arm_pmu(pmu);
538
539 /* For task-bound events we may be called on other CPUs */
540 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
541 return;
542
543 armpmu->stop(armpmu);
544 }
545
546 /*
547 * In heterogeneous systems, events are specific to a particular
548 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
549 * the same microarchitecture.
550 */
armpmu_filter(struct pmu * pmu,int cpu)551 static bool armpmu_filter(struct pmu *pmu, int cpu)
552 {
553 struct arm_pmu *armpmu = to_arm_pmu(pmu);
554 return !cpumask_test_cpu(cpu, &armpmu->supported_cpus);
555 }
556
cpus_show(struct device * dev,struct device_attribute * attr,char * buf)557 static ssize_t cpus_show(struct device *dev,
558 struct device_attribute *attr, char *buf)
559 {
560 struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
561 return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
562 }
563
564 static DEVICE_ATTR_RO(cpus);
565
566 static struct attribute *armpmu_common_attrs[] = {
567 &dev_attr_cpus.attr,
568 NULL,
569 };
570
571 static const struct attribute_group armpmu_common_attr_group = {
572 .attrs = armpmu_common_attrs,
573 };
574
armpmu_count_irq_users(const int irq)575 static int armpmu_count_irq_users(const int irq)
576 {
577 int cpu, count = 0;
578
579 for_each_possible_cpu(cpu) {
580 if (per_cpu(cpu_irq, cpu) == irq)
581 count++;
582 }
583
584 return count;
585 }
586
armpmu_find_irq_ops(int irq)587 static const struct pmu_irq_ops *armpmu_find_irq_ops(int irq)
588 {
589 const struct pmu_irq_ops *ops = NULL;
590 int cpu;
591
592 for_each_possible_cpu(cpu) {
593 if (per_cpu(cpu_irq, cpu) != irq)
594 continue;
595
596 ops = per_cpu(cpu_irq_ops, cpu);
597 if (ops)
598 break;
599 }
600
601 return ops;
602 }
603
armpmu_free_irq(int irq,int cpu)604 void armpmu_free_irq(int irq, int cpu)
605 {
606 if (per_cpu(cpu_irq, cpu) == 0)
607 return;
608 if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
609 return;
610
611 per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, &cpu_armpmu);
612
613 per_cpu(cpu_irq, cpu) = 0;
614 per_cpu(cpu_irq_ops, cpu) = NULL;
615 }
616
armpmu_request_irq(int irq,int cpu)617 int armpmu_request_irq(int irq, int cpu)
618 {
619 int err = 0;
620 const irq_handler_t handler = armpmu_dispatch_irq;
621 const struct pmu_irq_ops *irq_ops;
622
623 if (!irq)
624 return 0;
625
626 if (!irq_is_percpu_devid(irq)) {
627 unsigned long irq_flags;
628
629 err = irq_force_affinity(irq, cpumask_of(cpu));
630
631 if (err && num_possible_cpus() > 1) {
632 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
633 irq, cpu);
634 goto err_out;
635 }
636
637 irq_flags = IRQF_PERCPU |
638 IRQF_NOBALANCING | IRQF_NO_AUTOEN |
639 IRQF_NO_THREAD;
640
641 err = request_nmi(irq, handler, irq_flags, "arm-pmu",
642 per_cpu_ptr(&cpu_armpmu, cpu));
643
644 /* If cannot get an NMI, get a normal interrupt */
645 if (err) {
646 err = request_irq(irq, handler, irq_flags, "arm-pmu",
647 per_cpu_ptr(&cpu_armpmu, cpu));
648 irq_ops = &pmuirq_ops;
649 } else {
650 has_nmi = true;
651 irq_ops = &pmunmi_ops;
652 }
653 } else if (armpmu_count_irq_users(irq) == 0) {
654 err = request_percpu_nmi(irq, handler, "arm-pmu", &cpu_armpmu);
655
656 /* If cannot get an NMI, get a normal interrupt */
657 if (err) {
658 err = request_percpu_irq(irq, handler, "arm-pmu",
659 &cpu_armpmu);
660 irq_ops = &percpu_pmuirq_ops;
661 } else {
662 has_nmi = true;
663 irq_ops = &percpu_pmunmi_ops;
664 }
665 } else {
666 /* Per cpudevid irq was already requested by another CPU */
667 irq_ops = armpmu_find_irq_ops(irq);
668
669 if (WARN_ON(!irq_ops))
670 err = -EINVAL;
671 }
672
673 if (err)
674 goto err_out;
675
676 per_cpu(cpu_irq, cpu) = irq;
677 per_cpu(cpu_irq_ops, cpu) = irq_ops;
678 return 0;
679
680 err_out:
681 pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
682 return err;
683 }
684
armpmu_get_cpu_irq(struct arm_pmu * pmu,int cpu)685 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
686 {
687 struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
688 return per_cpu(hw_events->irq, cpu);
689 }
690
arm_pmu_irq_is_nmi(void)691 bool arm_pmu_irq_is_nmi(void)
692 {
693 return has_nmi;
694 }
695
696 /*
697 * PMU hardware loses all context when a CPU goes offline.
698 * When a CPU is hotplugged back in, since some hardware registers are
699 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
700 * junk values out of them.
701 */
arm_perf_starting_cpu(unsigned int cpu,struct hlist_node * node)702 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
703 {
704 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
705 int irq;
706
707 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
708 return 0;
709 if (pmu->reset)
710 pmu->reset(pmu);
711
712 per_cpu(cpu_armpmu, cpu) = pmu;
713
714 irq = armpmu_get_cpu_irq(pmu, cpu);
715 if (irq)
716 per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq);
717
718 return 0;
719 }
720
arm_perf_teardown_cpu(unsigned int cpu,struct hlist_node * node)721 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
722 {
723 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
724 int irq;
725
726 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
727 return 0;
728
729 irq = armpmu_get_cpu_irq(pmu, cpu);
730 if (irq)
731 per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq);
732
733 per_cpu(cpu_armpmu, cpu) = NULL;
734
735 return 0;
736 }
737
738 #ifdef CONFIG_CPU_PM
cpu_pm_pmu_setup(struct arm_pmu * armpmu,unsigned long cmd)739 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
740 {
741 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
742 struct perf_event *event;
743 int idx;
744
745 for_each_set_bit(idx, armpmu->cntr_mask, ARMPMU_MAX_HWEVENTS) {
746 event = hw_events->events[idx];
747 if (!event)
748 continue;
749
750 switch (cmd) {
751 case CPU_PM_ENTER:
752 /*
753 * Stop and update the counter
754 */
755 armpmu_stop(event, PERF_EF_UPDATE);
756 break;
757 case CPU_PM_EXIT:
758 case CPU_PM_ENTER_FAILED:
759 /*
760 * Restore and enable the counter.
761 */
762 armpmu_start(event, PERF_EF_RELOAD);
763 break;
764 default:
765 break;
766 }
767 }
768 }
769
cpu_pm_pmu_notify(struct notifier_block * b,unsigned long cmd,void * v)770 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
771 void *v)
772 {
773 struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
774 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
775 bool enabled = !bitmap_empty(hw_events->used_mask, ARMPMU_MAX_HWEVENTS);
776
777 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
778 return NOTIFY_DONE;
779
780 /*
781 * Always reset the PMU registers on power-up even if
782 * there are no events running.
783 */
784 if (cmd == CPU_PM_EXIT && armpmu->reset)
785 armpmu->reset(armpmu);
786
787 if (!enabled)
788 return NOTIFY_OK;
789
790 switch (cmd) {
791 case CPU_PM_ENTER:
792 armpmu->stop(armpmu);
793 cpu_pm_pmu_setup(armpmu, cmd);
794 break;
795 case CPU_PM_EXIT:
796 case CPU_PM_ENTER_FAILED:
797 cpu_pm_pmu_setup(armpmu, cmd);
798 armpmu->start(armpmu);
799 break;
800 default:
801 return NOTIFY_DONE;
802 }
803
804 return NOTIFY_OK;
805 }
806
cpu_pm_pmu_register(struct arm_pmu * cpu_pmu)807 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
808 {
809 cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
810 return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
811 }
812
cpu_pm_pmu_unregister(struct arm_pmu * cpu_pmu)813 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
814 {
815 cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
816 }
817 #else
cpu_pm_pmu_register(struct arm_pmu * cpu_pmu)818 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
cpu_pm_pmu_unregister(struct arm_pmu * cpu_pmu)819 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
820 #endif
821
cpu_pmu_init(struct arm_pmu * cpu_pmu)822 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
823 {
824 int err;
825
826 err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
827 &cpu_pmu->node);
828 if (err)
829 goto out;
830
831 err = cpu_pm_pmu_register(cpu_pmu);
832 if (err)
833 goto out_unregister;
834
835 return 0;
836
837 out_unregister:
838 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
839 &cpu_pmu->node);
840 out:
841 return err;
842 }
843
cpu_pmu_destroy(struct arm_pmu * cpu_pmu)844 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
845 {
846 cpu_pm_pmu_unregister(cpu_pmu);
847 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
848 &cpu_pmu->node);
849 }
850
armpmu_alloc(void)851 struct arm_pmu *armpmu_alloc(void)
852 {
853 struct arm_pmu *pmu;
854 int cpu;
855
856 pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
857 if (!pmu)
858 goto out;
859
860 pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, GFP_KERNEL);
861 if (!pmu->hw_events) {
862 pr_info("failed to allocate per-cpu PMU data.\n");
863 goto out_free_pmu;
864 }
865
866 pmu->pmu = (struct pmu) {
867 .pmu_enable = armpmu_enable,
868 .pmu_disable = armpmu_disable,
869 .event_init = armpmu_event_init,
870 .add = armpmu_add,
871 .del = armpmu_del,
872 .start = armpmu_start,
873 .stop = armpmu_stop,
874 .read = armpmu_read,
875 .filter = armpmu_filter,
876 .attr_groups = pmu->attr_groups,
877 /*
878 * This is a CPU PMU potentially in a heterogeneous
879 * configuration (e.g. big.LITTLE) so
880 * PERF_PMU_CAP_EXTENDED_HW_TYPE is required to open
881 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE events on a
882 * specific PMU.
883 */
884 .capabilities = PERF_PMU_CAP_EXTENDED_REGS |
885 PERF_PMU_CAP_EXTENDED_HW_TYPE,
886 };
887
888 pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
889 &armpmu_common_attr_group;
890
891 for_each_possible_cpu(cpu) {
892 struct pmu_hw_events *events;
893
894 events = per_cpu_ptr(pmu->hw_events, cpu);
895 events->percpu_pmu = pmu;
896 }
897
898 return pmu;
899
900 out_free_pmu:
901 kfree(pmu);
902 out:
903 return NULL;
904 }
905
armpmu_free(struct arm_pmu * pmu)906 void armpmu_free(struct arm_pmu *pmu)
907 {
908 free_percpu(pmu->hw_events);
909 kfree(pmu);
910 }
911
armpmu_register(struct arm_pmu * pmu)912 int armpmu_register(struct arm_pmu *pmu)
913 {
914 int ret;
915
916 ret = cpu_pmu_init(pmu);
917 if (ret)
918 return ret;
919
920 if (!pmu->set_event_filter)
921 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
922
923 ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
924 if (ret)
925 goto out_destroy;
926
927 pr_info("enabled with %s PMU driver, %d (%*pb) counters available%s\n",
928 pmu->name, bitmap_weight(pmu->cntr_mask, ARMPMU_MAX_HWEVENTS),
929 ARMPMU_MAX_HWEVENTS, &pmu->cntr_mask,
930 has_nmi ? ", using NMIs" : "");
931
932 kvm_host_pmu_init(pmu);
933
934 return 0;
935
936 out_destroy:
937 cpu_pmu_destroy(pmu);
938 return ret;
939 }
940
arm_pmu_hp_init(void)941 static int arm_pmu_hp_init(void)
942 {
943 int ret;
944
945 ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
946 "perf/arm/pmu:starting",
947 arm_perf_starting_cpu,
948 arm_perf_teardown_cpu);
949 if (ret)
950 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
951 ret);
952 return ret;
953 }
954 subsys_initcall(arm_pmu_hp_init);
955