xref: /linux/drivers/perf/arm_spe_pmu.c (revision feafee284579d29537a5a56ba8f23894f0463f3d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Perf support for the Statistical Profiling Extension, introduced as
4  * part of ARMv8.2.
5  *
6  * Copyright (C) 2016 ARM Limited
7  *
8  * Author: Will Deacon <will.deacon@arm.com>
9  */
10 
11 #define PMUNAME					"arm_spe"
12 #define DRVNAME					PMUNAME "_pmu"
13 #define pr_fmt(fmt)				DRVNAME ": " fmt
14 
15 #include <linux/bitfield.h>
16 #include <linux/bitops.h>
17 #include <linux/bug.h>
18 #include <linux/capability.h>
19 #include <linux/cpuhotplug.h>
20 #include <linux/cpumask.h>
21 #include <linux/device.h>
22 #include <linux/errno.h>
23 #include <linux/interrupt.h>
24 #include <linux/irq.h>
25 #include <linux/kernel.h>
26 #include <linux/list.h>
27 #include <linux/module.h>
28 #include <linux/of.h>
29 #include <linux/perf_event.h>
30 #include <linux/perf/arm_pmu.h>
31 #include <linux/platform_device.h>
32 #include <linux/printk.h>
33 #include <linux/slab.h>
34 #include <linux/smp.h>
35 #include <linux/vmalloc.h>
36 
37 #include <asm/barrier.h>
38 #include <asm/cpufeature.h>
39 #include <asm/mmu.h>
40 #include <asm/sysreg.h>
41 
42 /*
43  * Cache if the event is allowed to trace Context information.
44  * This allows us to perform the check, i.e, perf_allow_kernel(),
45  * in the context of the event owner, once, during the event_init().
46  */
47 #define SPE_PMU_HW_FLAGS_CX			0x00001
48 
49 static_assert((PERF_EVENT_FLAG_ARCH & SPE_PMU_HW_FLAGS_CX) == SPE_PMU_HW_FLAGS_CX);
50 
set_spe_event_has_cx(struct perf_event * event)51 static void set_spe_event_has_cx(struct perf_event *event)
52 {
53 	if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && !perf_allow_kernel())
54 		event->hw.flags |= SPE_PMU_HW_FLAGS_CX;
55 }
56 
get_spe_event_has_cx(struct perf_event * event)57 static bool get_spe_event_has_cx(struct perf_event *event)
58 {
59 	return !!(event->hw.flags & SPE_PMU_HW_FLAGS_CX);
60 }
61 
62 #define ARM_SPE_BUF_PAD_BYTE			0
63 
64 struct arm_spe_pmu_buf {
65 	int					nr_pages;
66 	bool					snapshot;
67 	void					*base;
68 };
69 
70 struct arm_spe_pmu {
71 	struct pmu				pmu;
72 	struct platform_device			*pdev;
73 	cpumask_t				supported_cpus;
74 	struct hlist_node			hotplug_node;
75 
76 	int					irq; /* PPI */
77 	u16					pmsver;
78 	u16					min_period;
79 	u16					counter_sz;
80 
81 #define SPE_PMU_FEAT_FILT_EVT			(1UL << 0)
82 #define SPE_PMU_FEAT_FILT_TYP			(1UL << 1)
83 #define SPE_PMU_FEAT_FILT_LAT			(1UL << 2)
84 #define SPE_PMU_FEAT_ARCH_INST			(1UL << 3)
85 #define SPE_PMU_FEAT_LDS			(1UL << 4)
86 #define SPE_PMU_FEAT_ERND			(1UL << 5)
87 #define SPE_PMU_FEAT_INV_FILT_EVT		(1UL << 6)
88 #define SPE_PMU_FEAT_DISCARD			(1UL << 7)
89 #define SPE_PMU_FEAT_EFT			(1UL << 8)
90 #define SPE_PMU_FEAT_DEV_PROBED			(1UL << 63)
91 	u64					features;
92 
93 	u64					pmsevfr_res0;
94 	u16					max_record_sz;
95 	u16					align;
96 	struct perf_output_handle __percpu	*handle;
97 };
98 
99 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
100 
101 /* Convert a free-running index from perf into an SPE buffer offset */
102 #define PERF_IDX2OFF(idx, buf) \
103 	((idx) % ((unsigned long)(buf)->nr_pages << PAGE_SHIFT))
104 
105 /* Keep track of our dynamic hotplug state */
106 static enum cpuhp_state arm_spe_pmu_online;
107 
108 enum arm_spe_pmu_buf_fault_action {
109 	SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
110 	SPE_PMU_BUF_FAULT_ACT_FATAL,
111 	SPE_PMU_BUF_FAULT_ACT_OK,
112 };
113 
114 /* This sysfs gunk was really good fun to write. */
115 enum arm_spe_pmu_capabilities {
116 	SPE_PMU_CAP_ARCH_INST = 0,
117 	SPE_PMU_CAP_ERND,
118 	SPE_PMU_CAP_FEAT_MAX,
119 	SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
120 	SPE_PMU_CAP_MIN_IVAL,
121 	SPE_PMU_CAP_EVENT_FILTER,
122 };
123 
124 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
125 	[SPE_PMU_CAP_ARCH_INST]	= SPE_PMU_FEAT_ARCH_INST,
126 	[SPE_PMU_CAP_ERND]	= SPE_PMU_FEAT_ERND,
127 };
128 
arm_spe_pmu_cap_get(struct arm_spe_pmu * spe_pmu,int cap)129 static u64 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
130 {
131 	if (cap < SPE_PMU_CAP_FEAT_MAX)
132 		return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
133 
134 	switch (cap) {
135 	case SPE_PMU_CAP_CNT_SZ:
136 		return spe_pmu->counter_sz;
137 	case SPE_PMU_CAP_MIN_IVAL:
138 		return spe_pmu->min_period;
139 	case SPE_PMU_CAP_EVENT_FILTER:
140 		return ~spe_pmu->pmsevfr_res0;
141 	default:
142 		WARN(1, "unknown cap %d\n", cap);
143 	}
144 
145 	return 0;
146 }
147 
arm_spe_pmu_cap_show(struct device * dev,struct device_attribute * attr,char * buf)148 static ssize_t arm_spe_pmu_cap_show(struct device *dev,
149 				    struct device_attribute *attr,
150 				    char *buf)
151 {
152 	struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
153 	struct dev_ext_attribute *ea =
154 		container_of(attr, struct dev_ext_attribute, attr);
155 	int cap = (long)ea->var;
156 
157 	return sysfs_emit(buf, "%llu\n", arm_spe_pmu_cap_get(spe_pmu, cap));
158 }
159 
arm_spe_pmu_cap_show_hex(struct device * dev,struct device_attribute * attr,char * buf)160 static ssize_t arm_spe_pmu_cap_show_hex(struct device *dev,
161 					struct device_attribute *attr,
162 					char *buf)
163 {
164 	struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
165 	struct dev_ext_attribute *ea =
166 		container_of(attr, struct dev_ext_attribute, attr);
167 	int cap = (long)ea->var;
168 
169 	return sysfs_emit(buf, "0x%llx\n", arm_spe_pmu_cap_get(spe_pmu, cap));
170 }
171 
172 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var)				\
173 	&((struct dev_ext_attribute[]) {				\
174 		{ __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var }	\
175 	})[0].attr.attr
176 
177 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var)				\
178 	SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
179 #define SPE_CAP_EXT_ATTR_ENTRY_HEX(_name, _var)				\
180 	SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show_hex, _var)
181 
182 static struct attribute *arm_spe_pmu_cap_attr[] = {
183 	SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
184 	SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
185 	SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
186 	SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
187 	SPE_CAP_EXT_ATTR_ENTRY_HEX(event_filter, SPE_PMU_CAP_EVENT_FILTER),
188 	NULL,
189 };
190 
191 static const struct attribute_group arm_spe_pmu_cap_group = {
192 	.name	= "caps",
193 	.attrs	= arm_spe_pmu_cap_attr,
194 };
195 
196 /* User ABI */
197 #define ATTR_CFG_FLD_ts_enable_CFG		config	/* PMSCR_EL1.TS */
198 #define ATTR_CFG_FLD_ts_enable_LO		0
199 #define ATTR_CFG_FLD_ts_enable_HI		0
200 #define ATTR_CFG_FLD_pa_enable_CFG		config	/* PMSCR_EL1.PA */
201 #define ATTR_CFG_FLD_pa_enable_LO		1
202 #define ATTR_CFG_FLD_pa_enable_HI		1
203 #define ATTR_CFG_FLD_pct_enable_CFG		config	/* PMSCR_EL1.PCT */
204 #define ATTR_CFG_FLD_pct_enable_LO		2
205 #define ATTR_CFG_FLD_pct_enable_HI		2
206 #define ATTR_CFG_FLD_jitter_CFG			config	/* PMSIRR_EL1.RND */
207 #define ATTR_CFG_FLD_jitter_LO			16
208 #define ATTR_CFG_FLD_jitter_HI			16
209 #define ATTR_CFG_FLD_branch_filter_CFG		config	/* PMSFCR_EL1.B */
210 #define ATTR_CFG_FLD_branch_filter_LO		32
211 #define ATTR_CFG_FLD_branch_filter_HI		32
212 #define ATTR_CFG_FLD_load_filter_CFG		config	/* PMSFCR_EL1.LD */
213 #define ATTR_CFG_FLD_load_filter_LO		33
214 #define ATTR_CFG_FLD_load_filter_HI		33
215 #define ATTR_CFG_FLD_store_filter_CFG		config	/* PMSFCR_EL1.ST */
216 #define ATTR_CFG_FLD_store_filter_LO		34
217 #define ATTR_CFG_FLD_store_filter_HI		34
218 #define ATTR_CFG_FLD_discard_CFG		config	/* PMBLIMITR_EL1.FM = DISCARD */
219 #define ATTR_CFG_FLD_discard_LO			35
220 #define ATTR_CFG_FLD_discard_HI			35
221 #define ATTR_CFG_FLD_branch_filter_mask_CFG	config	/* PMSFCR_EL1.Bm */
222 #define ATTR_CFG_FLD_branch_filter_mask_LO	36
223 #define ATTR_CFG_FLD_branch_filter_mask_HI	36
224 #define ATTR_CFG_FLD_load_filter_mask_CFG	config	/* PMSFCR_EL1.LDm */
225 #define ATTR_CFG_FLD_load_filter_mask_LO	37
226 #define ATTR_CFG_FLD_load_filter_mask_HI	37
227 #define ATTR_CFG_FLD_store_filter_mask_CFG	config	/* PMSFCR_EL1.STm */
228 #define ATTR_CFG_FLD_store_filter_mask_LO	38
229 #define ATTR_CFG_FLD_store_filter_mask_HI	38
230 #define ATTR_CFG_FLD_simd_filter_CFG		config	/* PMSFCR_EL1.SIMD */
231 #define ATTR_CFG_FLD_simd_filter_LO		39
232 #define ATTR_CFG_FLD_simd_filter_HI		39
233 #define ATTR_CFG_FLD_simd_filter_mask_CFG	config	/* PMSFCR_EL1.SIMDm */
234 #define ATTR_CFG_FLD_simd_filter_mask_LO	40
235 #define ATTR_CFG_FLD_simd_filter_mask_HI	40
236 #define ATTR_CFG_FLD_float_filter_CFG		config	/* PMSFCR_EL1.FP */
237 #define ATTR_CFG_FLD_float_filter_LO		41
238 #define ATTR_CFG_FLD_float_filter_HI		41
239 #define ATTR_CFG_FLD_float_filter_mask_CFG	config	/* PMSFCR_EL1.FPm */
240 #define ATTR_CFG_FLD_float_filter_mask_LO	42
241 #define ATTR_CFG_FLD_float_filter_mask_HI	42
242 
243 #define ATTR_CFG_FLD_event_filter_CFG		config1	/* PMSEVFR_EL1 */
244 #define ATTR_CFG_FLD_event_filter_LO		0
245 #define ATTR_CFG_FLD_event_filter_HI		63
246 
247 #define ATTR_CFG_FLD_min_latency_CFG		config2	/* PMSLATFR_EL1.MINLAT */
248 #define ATTR_CFG_FLD_min_latency_LO		0
249 #define ATTR_CFG_FLD_min_latency_HI		11
250 
251 #define ATTR_CFG_FLD_inv_event_filter_CFG	config3	/* PMSNEVFR_EL1 */
252 #define ATTR_CFG_FLD_inv_event_filter_LO	0
253 #define ATTR_CFG_FLD_inv_event_filter_HI	63
254 
255 GEN_PMU_FORMAT_ATTR(ts_enable);
256 GEN_PMU_FORMAT_ATTR(pa_enable);
257 GEN_PMU_FORMAT_ATTR(pct_enable);
258 GEN_PMU_FORMAT_ATTR(jitter);
259 GEN_PMU_FORMAT_ATTR(branch_filter);
260 GEN_PMU_FORMAT_ATTR(branch_filter_mask);
261 GEN_PMU_FORMAT_ATTR(load_filter);
262 GEN_PMU_FORMAT_ATTR(load_filter_mask);
263 GEN_PMU_FORMAT_ATTR(store_filter);
264 GEN_PMU_FORMAT_ATTR(store_filter_mask);
265 GEN_PMU_FORMAT_ATTR(simd_filter);
266 GEN_PMU_FORMAT_ATTR(simd_filter_mask);
267 GEN_PMU_FORMAT_ATTR(float_filter);
268 GEN_PMU_FORMAT_ATTR(float_filter_mask);
269 GEN_PMU_FORMAT_ATTR(event_filter);
270 GEN_PMU_FORMAT_ATTR(inv_event_filter);
271 GEN_PMU_FORMAT_ATTR(min_latency);
272 GEN_PMU_FORMAT_ATTR(discard);
273 
274 static struct attribute *arm_spe_pmu_formats_attr[] = {
275 	&format_attr_ts_enable.attr,
276 	&format_attr_pa_enable.attr,
277 	&format_attr_pct_enable.attr,
278 	&format_attr_jitter.attr,
279 	&format_attr_branch_filter.attr,
280 	&format_attr_branch_filter_mask.attr,
281 	&format_attr_load_filter.attr,
282 	&format_attr_load_filter_mask.attr,
283 	&format_attr_store_filter.attr,
284 	&format_attr_store_filter_mask.attr,
285 	&format_attr_simd_filter.attr,
286 	&format_attr_simd_filter_mask.attr,
287 	&format_attr_float_filter.attr,
288 	&format_attr_float_filter_mask.attr,
289 	&format_attr_event_filter.attr,
290 	&format_attr_inv_event_filter.attr,
291 	&format_attr_min_latency.attr,
292 	&format_attr_discard.attr,
293 	NULL,
294 };
295 
arm_spe_pmu_format_attr_is_visible(struct kobject * kobj,struct attribute * attr,int unused)296 static umode_t arm_spe_pmu_format_attr_is_visible(struct kobject *kobj,
297 						  struct attribute *attr,
298 						  int unused)
299 	{
300 	struct device *dev = kobj_to_dev(kobj);
301 	struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
302 
303 	if (attr == &format_attr_discard.attr && !(spe_pmu->features & SPE_PMU_FEAT_DISCARD))
304 		return 0;
305 
306 	if (attr == &format_attr_inv_event_filter.attr && !(spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT))
307 		return 0;
308 
309 	if ((attr == &format_attr_branch_filter_mask.attr ||
310 	     attr == &format_attr_load_filter_mask.attr ||
311 	     attr == &format_attr_store_filter_mask.attr ||
312 	     attr == &format_attr_simd_filter.attr ||
313 	     attr == &format_attr_simd_filter_mask.attr ||
314 	     attr == &format_attr_float_filter.attr ||
315 	     attr == &format_attr_float_filter_mask.attr) &&
316 	     !(spe_pmu->features & SPE_PMU_FEAT_EFT))
317 		return 0;
318 
319 	return attr->mode;
320 }
321 
322 static const struct attribute_group arm_spe_pmu_format_group = {
323 	.name	= "format",
324 	.is_visible = arm_spe_pmu_format_attr_is_visible,
325 	.attrs	= arm_spe_pmu_formats_attr,
326 };
327 
cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)328 static ssize_t cpumask_show(struct device *dev,
329 			    struct device_attribute *attr, char *buf)
330 {
331 	struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
332 
333 	return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
334 }
335 static DEVICE_ATTR_RO(cpumask);
336 
337 static struct attribute *arm_spe_pmu_attrs[] = {
338 	&dev_attr_cpumask.attr,
339 	NULL,
340 };
341 
342 static const struct attribute_group arm_spe_pmu_group = {
343 	.attrs	= arm_spe_pmu_attrs,
344 };
345 
346 static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
347 	&arm_spe_pmu_group,
348 	&arm_spe_pmu_cap_group,
349 	&arm_spe_pmu_format_group,
350 	NULL,
351 };
352 
353 /* Convert between user ABI and register values */
arm_spe_event_to_pmscr(struct perf_event * event)354 static u64 arm_spe_event_to_pmscr(struct perf_event *event)
355 {
356 	struct perf_event_attr *attr = &event->attr;
357 	u64 reg = 0;
358 
359 	reg |= FIELD_PREP(PMSCR_EL1_TS, ATTR_CFG_GET_FLD(attr, ts_enable));
360 	reg |= FIELD_PREP(PMSCR_EL1_PA, ATTR_CFG_GET_FLD(attr, pa_enable));
361 	reg |= FIELD_PREP(PMSCR_EL1_PCT, ATTR_CFG_GET_FLD(attr, pct_enable));
362 
363 	if (!attr->exclude_user)
364 		reg |= PMSCR_EL1_E0SPE;
365 
366 	if (!attr->exclude_kernel)
367 		reg |= PMSCR_EL1_E1SPE;
368 
369 	if (get_spe_event_has_cx(event))
370 		reg |= PMSCR_EL1_CX;
371 
372 	return reg;
373 }
374 
arm_spe_event_sanitise_period(struct perf_event * event)375 static void arm_spe_event_sanitise_period(struct perf_event *event)
376 {
377 	u64 period = event->hw.sample_period;
378 	u64 max_period = PMSIRR_EL1_INTERVAL_MASK;
379 
380 	/*
381 	 * The PMSIDR_EL1.Interval field (stored in spe_pmu->min_period) is a
382 	 * recommendation for the minimum interval, not a hardware limitation.
383 	 *
384 	 * According to the Arm ARM (DDI 0487 L.a), section D24.7.12 PMSIRR_EL1,
385 	 * Sampling Interval Reload Register, the INTERVAL field (bits [31:8])
386 	 * states: "Software must set this to a nonzero value". Use 1 as the
387 	 * minimum value.
388 	 */
389 	u64 min_period = FIELD_PREP(PMSIRR_EL1_INTERVAL_MASK, 1);
390 
391 	period = clamp_t(u64, period, min_period, max_period) & max_period;
392 	event->hw.sample_period = period;
393 }
394 
arm_spe_event_to_pmsirr(struct perf_event * event)395 static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
396 {
397 	struct perf_event_attr *attr = &event->attr;
398 	u64 reg = 0;
399 
400 	arm_spe_event_sanitise_period(event);
401 
402 	reg |= FIELD_PREP(PMSIRR_EL1_RND, ATTR_CFG_GET_FLD(attr, jitter));
403 	reg |= event->hw.sample_period;
404 
405 	return reg;
406 }
407 
arm_spe_event_to_pmsfcr(struct perf_event * event)408 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
409 {
410 	struct perf_event_attr *attr = &event->attr;
411 	u64 reg = 0;
412 
413 	reg |= FIELD_PREP(PMSFCR_EL1_LD, ATTR_CFG_GET_FLD(attr, load_filter));
414 	reg |= FIELD_PREP(PMSFCR_EL1_LDm, ATTR_CFG_GET_FLD(attr, load_filter_mask));
415 	reg |= FIELD_PREP(PMSFCR_EL1_ST, ATTR_CFG_GET_FLD(attr, store_filter));
416 	reg |= FIELD_PREP(PMSFCR_EL1_STm, ATTR_CFG_GET_FLD(attr, store_filter_mask));
417 	reg |= FIELD_PREP(PMSFCR_EL1_B, ATTR_CFG_GET_FLD(attr, branch_filter));
418 	reg |= FIELD_PREP(PMSFCR_EL1_Bm, ATTR_CFG_GET_FLD(attr, branch_filter_mask));
419 	reg |= FIELD_PREP(PMSFCR_EL1_SIMD, ATTR_CFG_GET_FLD(attr, simd_filter));
420 	reg |= FIELD_PREP(PMSFCR_EL1_SIMDm, ATTR_CFG_GET_FLD(attr, simd_filter_mask));
421 	reg |= FIELD_PREP(PMSFCR_EL1_FP, ATTR_CFG_GET_FLD(attr, float_filter));
422 	reg |= FIELD_PREP(PMSFCR_EL1_FPm, ATTR_CFG_GET_FLD(attr, float_filter_mask));
423 
424 	if (reg)
425 		reg |= PMSFCR_EL1_FT;
426 
427 	if (ATTR_CFG_GET_FLD(attr, event_filter))
428 		reg |= PMSFCR_EL1_FE;
429 
430 	if (ATTR_CFG_GET_FLD(attr, inv_event_filter))
431 		reg |= PMSFCR_EL1_FnE;
432 
433 	if (ATTR_CFG_GET_FLD(attr, min_latency))
434 		reg |= PMSFCR_EL1_FL;
435 
436 	return reg;
437 }
438 
arm_spe_event_to_pmsevfr(struct perf_event * event)439 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
440 {
441 	struct perf_event_attr *attr = &event->attr;
442 	return ATTR_CFG_GET_FLD(attr, event_filter);
443 }
444 
arm_spe_event_to_pmsnevfr(struct perf_event * event)445 static u64 arm_spe_event_to_pmsnevfr(struct perf_event *event)
446 {
447 	struct perf_event_attr *attr = &event->attr;
448 	return ATTR_CFG_GET_FLD(attr, inv_event_filter);
449 }
450 
arm_spe_event_to_pmslatfr(struct perf_event * event)451 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
452 {
453 	struct perf_event_attr *attr = &event->attr;
454 	return FIELD_PREP(PMSLATFR_EL1_MINLAT, ATTR_CFG_GET_FLD(attr, min_latency));
455 }
456 
arm_spe_pmu_pad_buf(struct perf_output_handle * handle,int len)457 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
458 {
459 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
460 	u64 head = PERF_IDX2OFF(handle->head, buf);
461 
462 	memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
463 	if (!buf->snapshot)
464 		perf_aux_output_skip(handle, len);
465 }
466 
arm_spe_pmu_next_snapshot_off(struct perf_output_handle * handle)467 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
468 {
469 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
470 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
471 	u64 head = PERF_IDX2OFF(handle->head, buf);
472 	u64 limit = buf->nr_pages * PAGE_SIZE;
473 
474 	/*
475 	 * The trace format isn't parseable in reverse, so clamp
476 	 * the limit to half of the buffer size in snapshot mode
477 	 * so that the worst case is half a buffer of records, as
478 	 * opposed to a single record.
479 	 */
480 	if (head < limit >> 1)
481 		limit >>= 1;
482 
483 	/*
484 	 * If we're within max_record_sz of the limit, we must
485 	 * pad, move the head index and recompute the limit.
486 	 */
487 	if (limit - head < spe_pmu->max_record_sz) {
488 		arm_spe_pmu_pad_buf(handle, limit - head);
489 		handle->head = PERF_IDX2OFF(limit, buf);
490 		limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
491 	}
492 
493 	return limit;
494 }
495 
__arm_spe_pmu_next_off(struct perf_output_handle * handle)496 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
497 {
498 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
499 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
500 	const u64 bufsize = buf->nr_pages * PAGE_SIZE;
501 	u64 limit = bufsize;
502 	u64 head, tail, wakeup;
503 
504 	/*
505 	 * The head can be misaligned for two reasons:
506 	 *
507 	 * 1. The hardware left PMBPTR pointing to the first byte after
508 	 *    a record when generating a buffer management event.
509 	 *
510 	 * 2. We used perf_aux_output_skip to consume handle->size bytes
511 	 *    and CIRC_SPACE was used to compute the size, which always
512 	 *    leaves one entry free.
513 	 *
514 	 * Deal with this by padding to the next alignment boundary and
515 	 * moving the head index. If we run out of buffer space, we'll
516 	 * reduce handle->size to zero and end up reporting truncation.
517 	 */
518 	head = PERF_IDX2OFF(handle->head, buf);
519 	if (!IS_ALIGNED(head, spe_pmu->align)) {
520 		unsigned long delta = roundup(head, spe_pmu->align) - head;
521 
522 		delta = min(delta, handle->size);
523 		arm_spe_pmu_pad_buf(handle, delta);
524 		head = PERF_IDX2OFF(handle->head, buf);
525 	}
526 
527 	/* If we've run out of free space, then nothing more to do */
528 	if (!handle->size)
529 		goto no_space;
530 
531 	/* Compute the tail and wakeup indices now that we've aligned head */
532 	tail = PERF_IDX2OFF(handle->head + handle->size, buf);
533 	wakeup = PERF_IDX2OFF(handle->wakeup, buf);
534 
535 	/*
536 	 * Avoid clobbering unconsumed data. We know we have space, so
537 	 * if we see head == tail we know that the buffer is empty. If
538 	 * head > tail, then there's nothing to clobber prior to
539 	 * wrapping.
540 	 */
541 	if (head < tail)
542 		limit = round_down(tail, PAGE_SIZE);
543 
544 	/*
545 	 * Wakeup may be arbitrarily far into the future. If it's not in
546 	 * the current generation, either we'll wrap before hitting it,
547 	 * or it's in the past and has been handled already.
548 	 *
549 	 * If there's a wakeup before we wrap, arrange to be woken up by
550 	 * the page boundary following it. Keep the tail boundary if
551 	 * that's lower.
552 	 */
553 	if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
554 		limit = min(limit, round_up(wakeup, PAGE_SIZE));
555 
556 	if (limit > head)
557 		return limit;
558 
559 	arm_spe_pmu_pad_buf(handle, handle->size);
560 no_space:
561 	perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
562 	perf_aux_output_end(handle, 0);
563 	return 0;
564 }
565 
arm_spe_pmu_next_off(struct perf_output_handle * handle)566 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
567 {
568 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
569 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
570 	u64 limit = __arm_spe_pmu_next_off(handle);
571 	u64 head = PERF_IDX2OFF(handle->head, buf);
572 
573 	/*
574 	 * If the head has come too close to the end of the buffer,
575 	 * then pad to the end and recompute the limit.
576 	 */
577 	if (limit && (limit - head < spe_pmu->max_record_sz)) {
578 		arm_spe_pmu_pad_buf(handle, limit - head);
579 		limit = __arm_spe_pmu_next_off(handle);
580 	}
581 
582 	return limit;
583 }
584 
arm_spe_perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)585 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
586 					  struct perf_event *event)
587 {
588 	u64 base, limit;
589 	struct arm_spe_pmu_buf *buf;
590 
591 	if (ATTR_CFG_GET_FLD(&event->attr, discard)) {
592 		limit = FIELD_PREP(PMBLIMITR_EL1_FM, PMBLIMITR_EL1_FM_DISCARD);
593 		limit |= PMBLIMITR_EL1_E;
594 		goto out_write_limit;
595 	}
596 
597 	/* Start a new aux session */
598 	buf = perf_aux_output_begin(handle, event);
599 	if (!buf) {
600 		event->hw.state |= PERF_HES_STOPPED;
601 		/*
602 		 * We still need to clear the limit pointer, since the
603 		 * profiler might only be disabled by virtue of a fault.
604 		 */
605 		limit = 0;
606 		goto out_write_limit;
607 	}
608 
609 	limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
610 			      : arm_spe_pmu_next_off(handle);
611 	if (limit)
612 		limit |= PMBLIMITR_EL1_E;
613 
614 	limit += (u64)buf->base;
615 	base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
616 	write_sysreg_s(base, SYS_PMBPTR_EL1);
617 
618 out_write_limit:
619 	write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
620 }
621 
arm_spe_perf_aux_output_end(struct perf_output_handle * handle)622 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
623 {
624 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
625 	u64 offset, size;
626 
627 	offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
628 	size = offset - PERF_IDX2OFF(handle->head, buf);
629 
630 	if (buf->snapshot)
631 		handle->head = offset;
632 
633 	perf_aux_output_end(handle, size);
634 }
635 
arm_spe_pmu_disable_and_drain_local(void)636 static void arm_spe_pmu_disable_and_drain_local(void)
637 {
638 	/* Disable profiling at EL0 and EL1 */
639 	write_sysreg_s(0, SYS_PMSCR_EL1);
640 	isb();
641 
642 	/* Drain any buffered data */
643 	psb_csync();
644 	dsb(nsh);
645 
646 	/* Disable the profiling buffer */
647 	write_sysreg_s(0, SYS_PMBLIMITR_EL1);
648 	isb();
649 }
650 
651 /* IRQ handling */
652 static enum arm_spe_pmu_buf_fault_action
arm_spe_pmu_buf_get_fault_act(struct perf_output_handle * handle)653 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
654 {
655 	const char *err_str;
656 	u64 pmbsr;
657 	enum arm_spe_pmu_buf_fault_action ret;
658 
659 	/*
660 	 * Ensure new profiling data is visible to the CPU and any external
661 	 * aborts have been resolved.
662 	 */
663 	psb_csync();
664 	dsb(nsh);
665 
666 	/* Ensure hardware updates to PMBPTR_EL1 are visible */
667 	isb();
668 
669 	/* Service required? */
670 	pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
671 	if (!FIELD_GET(PMBSR_EL1_S, pmbsr))
672 		return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
673 
674 	/*
675 	 * If we've lost data, disable profiling and also set the PARTIAL
676 	 * flag to indicate that the last record is corrupted.
677 	 */
678 	if (FIELD_GET(PMBSR_EL1_DL, pmbsr))
679 		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
680 					     PERF_AUX_FLAG_PARTIAL);
681 
682 	/* Report collisions to userspace so that it can up the period */
683 	if (FIELD_GET(PMBSR_EL1_COLL, pmbsr))
684 		perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
685 
686 	/* We only expect buffer management events */
687 	switch (FIELD_GET(PMBSR_EL1_EC, pmbsr)) {
688 	case PMBSR_EL1_EC_BUF:
689 		/* Handled below */
690 		break;
691 	case PMBSR_EL1_EC_FAULT_S1:
692 	case PMBSR_EL1_EC_FAULT_S2:
693 		err_str = "Unexpected buffer fault";
694 		goto out_err;
695 	default:
696 		err_str = "Unknown error code";
697 		goto out_err;
698 	}
699 
700 	/* Buffer management event */
701 	switch (FIELD_GET(PMBSR_EL1_BUF_BSC_MASK, pmbsr)) {
702 	case PMBSR_EL1_BUF_BSC_FULL:
703 		ret = SPE_PMU_BUF_FAULT_ACT_OK;
704 		goto out_stop;
705 	default:
706 		err_str = "Unknown buffer status code";
707 	}
708 
709 out_err:
710 	pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
711 			   err_str, smp_processor_id(), pmbsr,
712 			   read_sysreg_s(SYS_PMBPTR_EL1),
713 			   read_sysreg_s(SYS_PMBLIMITR_EL1));
714 	ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
715 
716 out_stop:
717 	arm_spe_perf_aux_output_end(handle);
718 	return ret;
719 }
720 
arm_spe_pmu_irq_handler(int irq,void * dev)721 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
722 {
723 	struct perf_output_handle *handle = dev;
724 	struct perf_event *event = handle->event;
725 	enum arm_spe_pmu_buf_fault_action act;
726 
727 	if (!perf_get_aux(handle))
728 		return IRQ_NONE;
729 
730 	act = arm_spe_pmu_buf_get_fault_act(handle);
731 	if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
732 		return IRQ_NONE;
733 
734 	/*
735 	 * Ensure perf callbacks have completed, which may disable the
736 	 * profiling buffer in response to a TRUNCATION flag.
737 	 */
738 	irq_work_run();
739 
740 	switch (act) {
741 	case SPE_PMU_BUF_FAULT_ACT_FATAL:
742 		/*
743 		 * If a fatal exception occurred then leaving the profiling
744 		 * buffer enabled is a recipe waiting to happen. Since
745 		 * fatal faults don't always imply truncation, make sure
746 		 * that the profiling buffer is disabled explicitly before
747 		 * clearing the syndrome register.
748 		 */
749 		arm_spe_pmu_disable_and_drain_local();
750 		break;
751 	case SPE_PMU_BUF_FAULT_ACT_OK:
752 		/*
753 		 * We handled the fault (the buffer was full), so resume
754 		 * profiling as long as we didn't detect truncation.
755 		 * PMBPTR might be misaligned, but we'll burn that bridge
756 		 * when we get to it.
757 		 */
758 		if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
759 			arm_spe_perf_aux_output_begin(handle, event);
760 			isb();
761 		}
762 		break;
763 	case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
764 		/* We've seen you before, but GCC has the memory of a sieve. */
765 		break;
766 	}
767 
768 	/* The buffer pointers are now sane, so resume profiling. */
769 	write_sysreg_s(0, SYS_PMBSR_EL1);
770 	return IRQ_HANDLED;
771 }
772 
773 /* Perf callbacks */
arm_spe_pmu_event_init(struct perf_event * event)774 static int arm_spe_pmu_event_init(struct perf_event *event)
775 {
776 	u64 reg;
777 	struct perf_event_attr *attr = &event->attr;
778 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
779 
780 	/* This is, of course, deeply driver-specific */
781 	if (attr->type != event->pmu->type)
782 		return -ENOENT;
783 
784 	if (event->cpu >= 0 &&
785 	    !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
786 		return -ENOENT;
787 
788 	if (arm_spe_event_to_pmsevfr(event) & spe_pmu->pmsevfr_res0)
789 		return -EOPNOTSUPP;
790 
791 	if (arm_spe_event_to_pmsnevfr(event) & spe_pmu->pmsevfr_res0)
792 		return -EOPNOTSUPP;
793 
794 	if (attr->exclude_idle)
795 		return -EOPNOTSUPP;
796 
797 	/*
798 	 * Feedback-directed frequency throttling doesn't work when we
799 	 * have a buffer of samples. We'd need to manually count the
800 	 * samples in the buffer when it fills up and adjust the event
801 	 * count to reflect that. Instead, just force the user to specify
802 	 * a sample period.
803 	 */
804 	if (attr->freq)
805 		return -EINVAL;
806 
807 	reg = arm_spe_event_to_pmsfcr(event);
808 	if ((FIELD_GET(PMSFCR_EL1_FE, reg)) &&
809 	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
810 		return -EOPNOTSUPP;
811 
812 	if ((FIELD_GET(PMSFCR_EL1_FnE, reg)) &&
813 	    !(spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT))
814 		return -EOPNOTSUPP;
815 
816 	if ((FIELD_GET(PMSFCR_EL1_FT, reg)) &&
817 	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
818 		return -EOPNOTSUPP;
819 
820 	if ((FIELD_GET(PMSFCR_EL1_FL, reg)) &&
821 	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
822 		return -EOPNOTSUPP;
823 
824 	if ((FIELD_GET(PMSFCR_EL1_LDm, reg) ||
825 	     FIELD_GET(PMSFCR_EL1_STm, reg) ||
826 	     FIELD_GET(PMSFCR_EL1_Bm, reg) ||
827 	     FIELD_GET(PMSFCR_EL1_SIMD, reg) ||
828 	     FIELD_GET(PMSFCR_EL1_SIMDm, reg) ||
829 	     FIELD_GET(PMSFCR_EL1_FP, reg) ||
830 	     FIELD_GET(PMSFCR_EL1_FPm, reg)) &&
831 	    !(spe_pmu->features & SPE_PMU_FEAT_EFT))
832 		return -EOPNOTSUPP;
833 
834 	if (ATTR_CFG_GET_FLD(&event->attr, discard) &&
835 	    !(spe_pmu->features & SPE_PMU_FEAT_DISCARD))
836 		return -EOPNOTSUPP;
837 
838 	set_spe_event_has_cx(event);
839 	reg = arm_spe_event_to_pmscr(event);
840 	if (reg & (PMSCR_EL1_PA | PMSCR_EL1_PCT))
841 		return perf_allow_kernel();
842 
843 	return 0;
844 }
845 
arm_spe_pmu_start(struct perf_event * event,int flags)846 static void arm_spe_pmu_start(struct perf_event *event, int flags)
847 {
848 	u64 reg;
849 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
850 	struct hw_perf_event *hwc = &event->hw;
851 	struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
852 
853 	hwc->state = 0;
854 	arm_spe_perf_aux_output_begin(handle, event);
855 	if (hwc->state)
856 		return;
857 
858 	reg = arm_spe_event_to_pmsfcr(event);
859 	write_sysreg_s(reg, SYS_PMSFCR_EL1);
860 
861 	reg = arm_spe_event_to_pmsevfr(event);
862 	write_sysreg_s(reg, SYS_PMSEVFR_EL1);
863 
864 	if (spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT) {
865 		reg = arm_spe_event_to_pmsnevfr(event);
866 		write_sysreg_s(reg, SYS_PMSNEVFR_EL1);
867 	}
868 
869 	reg = arm_spe_event_to_pmslatfr(event);
870 	write_sysreg_s(reg, SYS_PMSLATFR_EL1);
871 
872 	if (flags & PERF_EF_RELOAD) {
873 		reg = arm_spe_event_to_pmsirr(event);
874 		write_sysreg_s(reg, SYS_PMSIRR_EL1);
875 		isb();
876 		reg = local64_read(&hwc->period_left);
877 		write_sysreg_s(reg, SYS_PMSICR_EL1);
878 	}
879 
880 	reg = arm_spe_event_to_pmscr(event);
881 	isb();
882 	write_sysreg_s(reg, SYS_PMSCR_EL1);
883 }
884 
arm_spe_pmu_stop(struct perf_event * event,int flags)885 static void arm_spe_pmu_stop(struct perf_event *event, int flags)
886 {
887 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
888 	struct hw_perf_event *hwc = &event->hw;
889 	struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
890 
891 	/* If we're already stopped, then nothing to do */
892 	if (hwc->state & PERF_HES_STOPPED)
893 		return;
894 
895 	/* Stop all trace generation */
896 	arm_spe_pmu_disable_and_drain_local();
897 
898 	if (flags & PERF_EF_UPDATE) {
899 		/*
900 		 * If there's a fault pending then ensure we contain it
901 		 * to this buffer, since we might be on the context-switch
902 		 * path.
903 		 */
904 		if (perf_get_aux(handle)) {
905 			enum arm_spe_pmu_buf_fault_action act;
906 
907 			act = arm_spe_pmu_buf_get_fault_act(handle);
908 			if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
909 				arm_spe_perf_aux_output_end(handle);
910 			else
911 				write_sysreg_s(0, SYS_PMBSR_EL1);
912 		}
913 
914 		/*
915 		 * This may also contain ECOUNT, but nobody else should
916 		 * be looking at period_left, since we forbid frequency
917 		 * based sampling.
918 		 */
919 		local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
920 		hwc->state |= PERF_HES_UPTODATE;
921 	}
922 
923 	hwc->state |= PERF_HES_STOPPED;
924 }
925 
arm_spe_pmu_add(struct perf_event * event,int flags)926 static int arm_spe_pmu_add(struct perf_event *event, int flags)
927 {
928 	int ret = 0;
929 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
930 	struct hw_perf_event *hwc = &event->hw;
931 	int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
932 
933 	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
934 		return -ENOENT;
935 
936 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
937 
938 	if (flags & PERF_EF_START) {
939 		arm_spe_pmu_start(event, PERF_EF_RELOAD);
940 		if (hwc->state & PERF_HES_STOPPED)
941 			ret = -EINVAL;
942 	}
943 
944 	return ret;
945 }
946 
arm_spe_pmu_del(struct perf_event * event,int flags)947 static void arm_spe_pmu_del(struct perf_event *event, int flags)
948 {
949 	arm_spe_pmu_stop(event, PERF_EF_UPDATE);
950 }
951 
arm_spe_pmu_read(struct perf_event * event)952 static void arm_spe_pmu_read(struct perf_event *event)
953 {
954 }
955 
arm_spe_pmu_setup_aux(struct perf_event * event,void ** pages,int nr_pages,bool snapshot)956 static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages,
957 				   int nr_pages, bool snapshot)
958 {
959 	int i, cpu = event->cpu;
960 	struct page **pglist;
961 	struct arm_spe_pmu_buf *buf;
962 
963 	/* We need at least two pages for this to work. */
964 	if (nr_pages < 2)
965 		return NULL;
966 
967 	/*
968 	 * We require an even number of pages for snapshot mode, so that
969 	 * we can effectively treat the buffer as consisting of two equal
970 	 * parts and give userspace a fighting chance of getting some
971 	 * useful data out of it.
972 	 */
973 	if (snapshot && (nr_pages & 1))
974 		return NULL;
975 
976 	if (cpu == -1)
977 		cpu = raw_smp_processor_id();
978 
979 	buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
980 	if (!buf)
981 		return NULL;
982 
983 	pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
984 	if (!pglist)
985 		goto out_free_buf;
986 
987 	for (i = 0; i < nr_pages; ++i)
988 		pglist[i] = virt_to_page(pages[i]);
989 
990 	buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
991 	if (!buf->base)
992 		goto out_free_pglist;
993 
994 	buf->nr_pages	= nr_pages;
995 	buf->snapshot	= snapshot;
996 
997 	kfree(pglist);
998 	return buf;
999 
1000 out_free_pglist:
1001 	kfree(pglist);
1002 out_free_buf:
1003 	kfree(buf);
1004 	return NULL;
1005 }
1006 
arm_spe_pmu_free_aux(void * aux)1007 static void arm_spe_pmu_free_aux(void *aux)
1008 {
1009 	struct arm_spe_pmu_buf *buf = aux;
1010 
1011 	vunmap(buf->base);
1012 	kfree(buf);
1013 }
1014 
1015 /* Initialisation and teardown functions */
arm_spe_pmu_perf_init(struct arm_spe_pmu * spe_pmu)1016 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
1017 {
1018 	static atomic_t pmu_idx = ATOMIC_INIT(-1);
1019 
1020 	int idx;
1021 	char *name;
1022 	struct device *dev = &spe_pmu->pdev->dev;
1023 
1024 	spe_pmu->pmu = (struct pmu) {
1025 		.module = THIS_MODULE,
1026 		.parent		= &spe_pmu->pdev->dev,
1027 		.capabilities	= PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
1028 		.attr_groups	= arm_spe_pmu_attr_groups,
1029 		/*
1030 		 * We hitch a ride on the software context here, so that
1031 		 * we can support per-task profiling (which is not possible
1032 		 * with the invalid context as it doesn't get sched callbacks).
1033 		 * This requires that userspace either uses a dummy event for
1034 		 * perf_event_open, since the aux buffer is not setup until
1035 		 * a subsequent mmap, or creates the profiling event in a
1036 		 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
1037 		 * once the buffer has been created.
1038 		 */
1039 		.task_ctx_nr	= perf_sw_context,
1040 		.event_init	= arm_spe_pmu_event_init,
1041 		.add		= arm_spe_pmu_add,
1042 		.del		= arm_spe_pmu_del,
1043 		.start		= arm_spe_pmu_start,
1044 		.stop		= arm_spe_pmu_stop,
1045 		.read		= arm_spe_pmu_read,
1046 		.setup_aux	= arm_spe_pmu_setup_aux,
1047 		.free_aux	= arm_spe_pmu_free_aux,
1048 	};
1049 
1050 	idx = atomic_inc_return(&pmu_idx);
1051 	name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
1052 	if (!name) {
1053 		dev_err(dev, "failed to allocate name for pmu %d\n", idx);
1054 		return -ENOMEM;
1055 	}
1056 
1057 	return perf_pmu_register(&spe_pmu->pmu, name, -1);
1058 }
1059 
arm_spe_pmu_perf_destroy(struct arm_spe_pmu * spe_pmu)1060 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
1061 {
1062 	perf_pmu_unregister(&spe_pmu->pmu);
1063 }
1064 
__arm_spe_pmu_dev_probe(void * info)1065 static void __arm_spe_pmu_dev_probe(void *info)
1066 {
1067 	int fld;
1068 	u64 reg;
1069 	struct arm_spe_pmu *spe_pmu = info;
1070 	struct device *dev = &spe_pmu->pdev->dev;
1071 
1072 	fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
1073 						   ID_AA64DFR0_EL1_PMSVer_SHIFT);
1074 	if (!fld) {
1075 		dev_err(dev,
1076 			"unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
1077 			fld, smp_processor_id());
1078 		return;
1079 	}
1080 	spe_pmu->pmsver = (u16)fld;
1081 
1082 	/* Read PMBIDR first to determine whether or not we have access */
1083 	reg = read_sysreg_s(SYS_PMBIDR_EL1);
1084 	if (FIELD_GET(PMBIDR_EL1_P, reg)) {
1085 		dev_err(dev,
1086 			"profiling buffer owned by higher exception level\n");
1087 		return;
1088 	}
1089 
1090 	/* Minimum alignment. If it's out-of-range, then fail the probe */
1091 	fld = FIELD_GET(PMBIDR_EL1_ALIGN, reg);
1092 	spe_pmu->align = 1 << fld;
1093 	if (spe_pmu->align > SZ_2K) {
1094 		dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
1095 			fld, smp_processor_id());
1096 		return;
1097 	}
1098 
1099 	/* It's now safe to read PMSIDR and figure out what we've got */
1100 	reg = read_sysreg_s(SYS_PMSIDR_EL1);
1101 	if (FIELD_GET(PMSIDR_EL1_FE, reg))
1102 		spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
1103 
1104 	if (FIELD_GET(PMSIDR_EL1_FnE, reg))
1105 		spe_pmu->features |= SPE_PMU_FEAT_INV_FILT_EVT;
1106 
1107 	if (FIELD_GET(PMSIDR_EL1_FT, reg))
1108 		spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
1109 
1110 	if (FIELD_GET(PMSIDR_EL1_FL, reg))
1111 		spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
1112 
1113 	if (FIELD_GET(PMSIDR_EL1_ARCHINST, reg))
1114 		spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
1115 
1116 	if (FIELD_GET(PMSIDR_EL1_LDS, reg))
1117 		spe_pmu->features |= SPE_PMU_FEAT_LDS;
1118 
1119 	if (FIELD_GET(PMSIDR_EL1_ERND, reg))
1120 		spe_pmu->features |= SPE_PMU_FEAT_ERND;
1121 
1122 	if (spe_pmu->pmsver >= ID_AA64DFR0_EL1_PMSVer_V1P2)
1123 		spe_pmu->features |= SPE_PMU_FEAT_DISCARD;
1124 
1125 	if (FIELD_GET(PMSIDR_EL1_EFT, reg))
1126 		spe_pmu->features |= SPE_PMU_FEAT_EFT;
1127 
1128 	/* This field has a spaced out encoding, so just use a look-up */
1129 	fld = FIELD_GET(PMSIDR_EL1_INTERVAL, reg);
1130 	switch (fld) {
1131 	case PMSIDR_EL1_INTERVAL_256:
1132 		spe_pmu->min_period = 256;
1133 		break;
1134 	case PMSIDR_EL1_INTERVAL_512:
1135 		spe_pmu->min_period = 512;
1136 		break;
1137 	case PMSIDR_EL1_INTERVAL_768:
1138 		spe_pmu->min_period = 768;
1139 		break;
1140 	case PMSIDR_EL1_INTERVAL_1024:
1141 		spe_pmu->min_period = 1024;
1142 		break;
1143 	case PMSIDR_EL1_INTERVAL_1536:
1144 		spe_pmu->min_period = 1536;
1145 		break;
1146 	case PMSIDR_EL1_INTERVAL_2048:
1147 		spe_pmu->min_period = 2048;
1148 		break;
1149 	case PMSIDR_EL1_INTERVAL_3072:
1150 		spe_pmu->min_period = 3072;
1151 		break;
1152 	default:
1153 		dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1154 			 fld);
1155 		fallthrough;
1156 	case PMSIDR_EL1_INTERVAL_4096:
1157 		spe_pmu->min_period = 4096;
1158 	}
1159 
1160 	/* Maximum record size. If it's out-of-range, then fail the probe */
1161 	fld = FIELD_GET(PMSIDR_EL1_MAXSIZE, reg);
1162 	spe_pmu->max_record_sz = 1 << fld;
1163 	if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1164 		dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1165 			fld, smp_processor_id());
1166 		return;
1167 	}
1168 
1169 	fld = FIELD_GET(PMSIDR_EL1_COUNTSIZE, reg);
1170 	switch (fld) {
1171 	default:
1172 		dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1173 			 fld);
1174 		fallthrough;
1175 	case PMSIDR_EL1_COUNTSIZE_12_BIT_SAT:
1176 		spe_pmu->counter_sz = 12;
1177 		break;
1178 	case PMSIDR_EL1_COUNTSIZE_16_BIT_SAT:
1179 		spe_pmu->counter_sz = 16;
1180 	}
1181 
1182 	/* Write all 1s and then read back. Unsupported filter bits are RAZ/WI. */
1183 	write_sysreg_s(U64_MAX, SYS_PMSEVFR_EL1);
1184 	spe_pmu->pmsevfr_res0 = ~read_sysreg_s(SYS_PMSEVFR_EL1);
1185 
1186 	dev_info(dev,
1187 		 "probed SPEv1.%d for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1188 		 spe_pmu->pmsver - 1, cpumask_pr_args(&spe_pmu->supported_cpus),
1189 		 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1190 
1191 	spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1192 }
1193 
__arm_spe_pmu_reset_local(void)1194 static void __arm_spe_pmu_reset_local(void)
1195 {
1196 	/*
1197 	 * This is probably overkill, as we have no idea where we're
1198 	 * draining any buffered data to...
1199 	 */
1200 	arm_spe_pmu_disable_and_drain_local();
1201 
1202 	/* Reset the buffer base pointer */
1203 	write_sysreg_s(0, SYS_PMBPTR_EL1);
1204 	isb();
1205 
1206 	/* Clear any pending management interrupts */
1207 	write_sysreg_s(0, SYS_PMBSR_EL1);
1208 	isb();
1209 }
1210 
__arm_spe_pmu_setup_one(void * info)1211 static void __arm_spe_pmu_setup_one(void *info)
1212 {
1213 	struct arm_spe_pmu *spe_pmu = info;
1214 
1215 	__arm_spe_pmu_reset_local();
1216 	enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1217 }
1218 
__arm_spe_pmu_stop_one(void * info)1219 static void __arm_spe_pmu_stop_one(void *info)
1220 {
1221 	struct arm_spe_pmu *spe_pmu = info;
1222 
1223 	disable_percpu_irq(spe_pmu->irq);
1224 	__arm_spe_pmu_reset_local();
1225 }
1226 
arm_spe_pmu_cpu_startup(unsigned int cpu,struct hlist_node * node)1227 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1228 {
1229 	struct arm_spe_pmu *spe_pmu;
1230 
1231 	spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1232 	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1233 		return 0;
1234 
1235 	__arm_spe_pmu_setup_one(spe_pmu);
1236 	return 0;
1237 }
1238 
arm_spe_pmu_cpu_teardown(unsigned int cpu,struct hlist_node * node)1239 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1240 {
1241 	struct arm_spe_pmu *spe_pmu;
1242 
1243 	spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1244 	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1245 		return 0;
1246 
1247 	__arm_spe_pmu_stop_one(spe_pmu);
1248 	return 0;
1249 }
1250 
arm_spe_pmu_dev_init(struct arm_spe_pmu * spe_pmu)1251 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1252 {
1253 	int ret;
1254 	cpumask_t *mask = &spe_pmu->supported_cpus;
1255 
1256 	/* Make sure we probe the hardware on a relevant CPU */
1257 	ret = smp_call_function_any(mask,  __arm_spe_pmu_dev_probe, spe_pmu, 1);
1258 	if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1259 		return -ENXIO;
1260 
1261 	/* Request our PPIs (note that the IRQ is still disabled) */
1262 	ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1263 				 spe_pmu->handle);
1264 	if (ret)
1265 		return ret;
1266 
1267 	/*
1268 	 * Register our hotplug notifier now so we don't miss any events.
1269 	 * This will enable the IRQ for any supported CPUs that are already
1270 	 * up.
1271 	 */
1272 	ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1273 				       &spe_pmu->hotplug_node);
1274 	if (ret)
1275 		free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1276 
1277 	return ret;
1278 }
1279 
arm_spe_pmu_dev_teardown(struct arm_spe_pmu * spe_pmu)1280 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1281 {
1282 	cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1283 	free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1284 }
1285 
1286 /* Driver and device probing */
arm_spe_pmu_irq_probe(struct arm_spe_pmu * spe_pmu)1287 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1288 {
1289 	struct platform_device *pdev = spe_pmu->pdev;
1290 	int irq = platform_get_irq(pdev, 0);
1291 
1292 	if (irq < 0)
1293 		return -ENXIO;
1294 
1295 	if (!irq_is_percpu(irq)) {
1296 		dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1297 		return -EINVAL;
1298 	}
1299 
1300 	if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1301 		dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1302 		return -EINVAL;
1303 	}
1304 
1305 	spe_pmu->irq = irq;
1306 	return 0;
1307 }
1308 
1309 static const struct of_device_id arm_spe_pmu_of_match[] = {
1310 	{ .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1311 	{ /* Sentinel */ },
1312 };
1313 MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match);
1314 
1315 static const struct platform_device_id arm_spe_match[] = {
1316 	{ ARMV8_SPE_PDEV_NAME, 0},
1317 	{ }
1318 };
1319 MODULE_DEVICE_TABLE(platform, arm_spe_match);
1320 
arm_spe_pmu_device_probe(struct platform_device * pdev)1321 static int arm_spe_pmu_device_probe(struct platform_device *pdev)
1322 {
1323 	int ret;
1324 	struct arm_spe_pmu *spe_pmu;
1325 	struct device *dev = &pdev->dev;
1326 
1327 	/*
1328 	 * If kernelspace is unmapped when running at EL0, then the SPE
1329 	 * buffer will fault and prematurely terminate the AUX session.
1330 	 */
1331 	if (arm64_kernel_unmapped_at_el0()) {
1332 		dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1333 		return -EPERM;
1334 	}
1335 
1336 	spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1337 	if (!spe_pmu)
1338 		return -ENOMEM;
1339 
1340 	spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1341 	if (!spe_pmu->handle)
1342 		return -ENOMEM;
1343 
1344 	spe_pmu->pdev = pdev;
1345 	platform_set_drvdata(pdev, spe_pmu);
1346 
1347 	ret = arm_spe_pmu_irq_probe(spe_pmu);
1348 	if (ret)
1349 		goto out_free_handle;
1350 
1351 	ret = arm_spe_pmu_dev_init(spe_pmu);
1352 	if (ret)
1353 		goto out_free_handle;
1354 
1355 	ret = arm_spe_pmu_perf_init(spe_pmu);
1356 	if (ret)
1357 		goto out_teardown_dev;
1358 
1359 	return 0;
1360 
1361 out_teardown_dev:
1362 	arm_spe_pmu_dev_teardown(spe_pmu);
1363 out_free_handle:
1364 	free_percpu(spe_pmu->handle);
1365 	return ret;
1366 }
1367 
arm_spe_pmu_device_remove(struct platform_device * pdev)1368 static void arm_spe_pmu_device_remove(struct platform_device *pdev)
1369 {
1370 	struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1371 
1372 	arm_spe_pmu_perf_destroy(spe_pmu);
1373 	arm_spe_pmu_dev_teardown(spe_pmu);
1374 	free_percpu(spe_pmu->handle);
1375 }
1376 
1377 static struct platform_driver arm_spe_pmu_driver = {
1378 	.id_table = arm_spe_match,
1379 	.driver	= {
1380 		.name		= DRVNAME,
1381 		.of_match_table	= of_match_ptr(arm_spe_pmu_of_match),
1382 		.suppress_bind_attrs = true,
1383 	},
1384 	.probe	= arm_spe_pmu_device_probe,
1385 	.remove = arm_spe_pmu_device_remove,
1386 };
1387 
arm_spe_pmu_init(void)1388 static int __init arm_spe_pmu_init(void)
1389 {
1390 	int ret;
1391 
1392 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1393 				      arm_spe_pmu_cpu_startup,
1394 				      arm_spe_pmu_cpu_teardown);
1395 	if (ret < 0)
1396 		return ret;
1397 	arm_spe_pmu_online = ret;
1398 
1399 	ret = platform_driver_register(&arm_spe_pmu_driver);
1400 	if (ret)
1401 		cpuhp_remove_multi_state(arm_spe_pmu_online);
1402 
1403 	return ret;
1404 }
1405 
arm_spe_pmu_exit(void)1406 static void __exit arm_spe_pmu_exit(void)
1407 {
1408 	platform_driver_unregister(&arm_spe_pmu_driver);
1409 	cpuhp_remove_multi_state(arm_spe_pmu_online);
1410 }
1411 
1412 module_init(arm_spe_pmu_init);
1413 module_exit(arm_spe_pmu_exit);
1414 
1415 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1416 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1417 MODULE_LICENSE("GPL v2");
1418