xref: /linux/arch/arm64/mm/init.c (revision 9fac145b6d3fe570277438f8d860eabf229dc545)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/init.c
4  *
5  * Copyright (C) 1995-2005 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/export.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/cache.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 #include <linux/gfp.h>
19 #include <linux/math.h>
20 #include <linux/memblock.h>
21 #include <linux/sort.h>
22 #include <linux/of.h>
23 #include <linux/of_fdt.h>
24 #include <linux/dma-direct.h>
25 #include <linux/dma-map-ops.h>
26 #include <linux/efi.h>
27 #include <linux/swiotlb.h>
28 #include <linux/vmalloc.h>
29 #include <linux/mm.h>
30 #include <linux/kexec.h>
31 #include <linux/crash_dump.h>
32 #include <linux/hugetlb.h>
33 #include <linux/acpi_iort.h>
34 #include <linux/kmemleak.h>
35 #include <linux/execmem.h>
36 
37 #include <asm/boot.h>
38 #include <asm/fixmap.h>
39 #include <asm/kasan.h>
40 #include <asm/kernel-pgtable.h>
41 #include <asm/kvm_host.h>
42 #include <asm/memory.h>
43 #include <asm/numa.h>
44 #include <asm/rsi.h>
45 #include <asm/sections.h>
46 #include <asm/setup.h>
47 #include <linux/sizes.h>
48 #include <asm/tlb.h>
49 #include <asm/alternative.h>
50 #include <asm/xen/swiotlb-xen.h>
51 
52 /*
53  * We need to be able to catch inadvertent references to memstart_addr
54  * that occur (potentially in generic code) before arm64_memblock_init()
55  * executes, which assigns it its actual value. So use a default value
56  * that cannot be mistaken for a real physical address.
57  */
58 s64 memstart_addr __ro_after_init = -1;
59 EXPORT_SYMBOL(memstart_addr);
60 
61 /*
62  * If the corresponding config options are enabled, we create both ZONE_DMA
63  * and ZONE_DMA32. By default ZONE_DMA covers the 32-bit addressable memory
64  * unless restricted on specific platforms (e.g. 30-bit on Raspberry Pi 4).
65  * In such case, ZONE_DMA32 covers the rest of the 32-bit addressable memory,
66  * otherwise it is empty.
67  */
68 phys_addr_t __ro_after_init arm64_dma_phys_limit;
69 
70 /*
71  * To make optimal use of block mappings when laying out the linear
72  * mapping, round down the base of physical memory to a size that can
73  * be mapped efficiently, i.e., either PUD_SIZE (4k granule) or PMD_SIZE
74  * (64k granule), or a multiple that can be mapped using contiguous bits
75  * in the page tables: 32 * PMD_SIZE (16k granule)
76  */
77 #if defined(CONFIG_ARM64_4K_PAGES)
78 #define ARM64_MEMSTART_SHIFT		PUD_SHIFT
79 #elif defined(CONFIG_ARM64_16K_PAGES)
80 #define ARM64_MEMSTART_SHIFT		CONT_PMD_SHIFT
81 #else
82 #define ARM64_MEMSTART_SHIFT		PMD_SHIFT
83 #endif
84 
85 /*
86  * sparsemem vmemmap imposes an additional requirement on the alignment of
87  * memstart_addr, due to the fact that the base of the vmemmap region
88  * has a direct correspondence, and needs to appear sufficiently aligned
89  * in the virtual address space.
90  */
91 #if ARM64_MEMSTART_SHIFT < SECTION_SIZE_BITS
92 #define ARM64_MEMSTART_ALIGN	(1UL << SECTION_SIZE_BITS)
93 #else
94 #define ARM64_MEMSTART_ALIGN	(1UL << ARM64_MEMSTART_SHIFT)
95 #endif
96 
97 static void __init arch_reserve_crashkernel(void)
98 {
99 	unsigned long long low_size = 0;
100 	unsigned long long crash_base, crash_size;
101 	bool high = false;
102 	int ret;
103 
104 	if (!IS_ENABLED(CONFIG_CRASH_RESERVE))
105 		return;
106 
107 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
108 				&crash_size, &crash_base,
109 				&low_size, NULL, &high);
110 	if (ret)
111 		return;
112 
113 	reserve_crashkernel_generic(crash_size, crash_base, low_size, high);
114 }
115 
116 static phys_addr_t __init max_zone_phys(phys_addr_t zone_limit)
117 {
118 	return min(zone_limit, memblock_end_of_DRAM() - 1) + 1;
119 }
120 
121 void __init arch_zone_limits_init(unsigned long *max_zone_pfns)
122 {
123 	phys_addr_t __maybe_unused dma32_phys_limit =
124 		max_zone_phys(DMA_BIT_MASK(32));
125 
126 #ifdef CONFIG_ZONE_DMA
127 	max_zone_pfns[ZONE_DMA] = PFN_DOWN(max_zone_phys(zone_dma_limit));
128 #endif
129 #ifdef CONFIG_ZONE_DMA32
130 	max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit);
131 #endif
132 	max_zone_pfns[ZONE_NORMAL] = max_pfn;
133 }
134 
135 static void __init dma_limits_init(void)
136 {
137 	phys_addr_t __maybe_unused acpi_zone_dma_limit;
138 	phys_addr_t __maybe_unused dt_zone_dma_limit;
139 	phys_addr_t __maybe_unused dma32_phys_limit =
140 		max_zone_phys(DMA_BIT_MASK(32));
141 
142 #ifdef CONFIG_ZONE_DMA
143 	acpi_zone_dma_limit = acpi_iort_dma_get_max_cpu_address();
144 	dt_zone_dma_limit = of_dma_get_max_cpu_address(NULL);
145 	zone_dma_limit = min(dt_zone_dma_limit, acpi_zone_dma_limit);
146 	/*
147 	 * Information we get from firmware (e.g. DT dma-ranges) describe DMA
148 	 * bus constraints. Devices using DMA might have their own limitations.
149 	 * Some of them rely on DMA zone in low 32-bit memory. Keep low RAM
150 	 * DMA zone on platforms that have RAM there.
151 	 */
152 	if (memblock_start_of_DRAM() < U32_MAX)
153 		zone_dma_limit = min(zone_dma_limit, U32_MAX);
154 	arm64_dma_phys_limit = max_zone_phys(zone_dma_limit);
155 #endif
156 #ifdef CONFIG_ZONE_DMA32
157 	if (!arm64_dma_phys_limit)
158 		arm64_dma_phys_limit = dma32_phys_limit;
159 #endif
160 	if (!arm64_dma_phys_limit)
161 		arm64_dma_phys_limit = PHYS_MASK + 1;
162 }
163 
164 int pfn_is_map_memory(unsigned long pfn)
165 {
166 	phys_addr_t addr = PFN_PHYS(pfn);
167 
168 	/* avoid false positives for bogus PFNs, see comment in pfn_valid() */
169 	if (PHYS_PFN(addr) != pfn)
170 		return 0;
171 
172 	return memblock_is_map_memory(addr);
173 }
174 EXPORT_SYMBOL(pfn_is_map_memory);
175 
176 static phys_addr_t memory_limit __ro_after_init = PHYS_ADDR_MAX;
177 
178 /*
179  * Limit the memory size that was specified via FDT.
180  */
181 static int __init early_mem(char *p)
182 {
183 	if (!p)
184 		return 1;
185 
186 	memory_limit = memparse(p, &p) & PAGE_MASK;
187 	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
188 
189 	return 0;
190 }
191 early_param("mem", early_mem);
192 
193 void __init arm64_memblock_init(void)
194 {
195 	s64 linear_region_size = PAGE_END - _PAGE_OFFSET(vabits_actual);
196 
197 	/*
198 	 * Corner case: 52-bit VA capable systems running KVM in nVHE mode may
199 	 * be limited in their ability to support a linear map that exceeds 51
200 	 * bits of VA space, depending on the placement of the ID map. Given
201 	 * that the placement of the ID map may be randomized, let's simply
202 	 * limit the kernel's linear map to 51 bits as well if we detect this
203 	 * configuration.
204 	 */
205 	if (IS_ENABLED(CONFIG_KVM) && vabits_actual == 52 &&
206 	    is_hyp_mode_available() && !is_kernel_in_hyp_mode()) {
207 		pr_info("Capping linear region to 51 bits for KVM in nVHE mode on LVA capable hardware.\n");
208 		linear_region_size = min_t(u64, linear_region_size, BIT(51));
209 	}
210 
211 	/* Remove memory above our supported physical address size */
212 	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
213 
214 	/*
215 	 * Select a suitable value for the base of physical memory.
216 	 */
217 	memstart_addr = round_down(memblock_start_of_DRAM(),
218 				   ARM64_MEMSTART_ALIGN);
219 
220 	if ((memblock_end_of_DRAM() - memstart_addr) > linear_region_size)
221 		pr_warn("Memory doesn't fit in the linear mapping, VA_BITS too small\n");
222 
223 	/*
224 	 * Remove the memory that we will not be able to cover with the
225 	 * linear mapping. Take care not to clip the kernel which may be
226 	 * high in memory.
227 	 */
228 	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
229 			__pa_symbol(_end)), ULLONG_MAX);
230 	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
231 		/* ensure that memstart_addr remains sufficiently aligned */
232 		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
233 					 ARM64_MEMSTART_ALIGN);
234 		memblock_remove(0, memstart_addr);
235 	}
236 
237 	/*
238 	 * If we are running with a 52-bit kernel VA config on a system that
239 	 * does not support it, we have to place the available physical
240 	 * memory in the 48-bit addressable part of the linear region, i.e.,
241 	 * we have to move it upward. Since memstart_addr represents the
242 	 * physical address of PAGE_OFFSET, we have to *subtract* from it.
243 	 */
244 	if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52))
245 		memstart_addr -= _PAGE_OFFSET(vabits_actual) - _PAGE_OFFSET(52);
246 
247 	/*
248 	 * Apply the memory limit if it was set. Since the kernel may be loaded
249 	 * high up in memory, add back the kernel region that must be accessible
250 	 * via the linear mapping.
251 	 */
252 	if (memory_limit != PHYS_ADDR_MAX) {
253 		memblock_mem_limit_remove_map(memory_limit);
254 		memblock_add(__pa_symbol(_text), (resource_size_t)(_end - _text));
255 	}
256 
257 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
258 		/*
259 		 * Add back the memory we just removed if it results in the
260 		 * initrd to become inaccessible via the linear mapping.
261 		 * Otherwise, this is a no-op
262 		 */
263 		phys_addr_t base = phys_initrd_start & PAGE_MASK;
264 		resource_size_t size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
265 
266 		/*
267 		 * We can only add back the initrd memory if we don't end up
268 		 * with more memory than we can address via the linear mapping.
269 		 * It is up to the bootloader to position the kernel and the
270 		 * initrd reasonably close to each other (i.e., within 32 GB of
271 		 * each other) so that all granule/#levels combinations can
272 		 * always access both.
273 		 */
274 		if (WARN(base < memblock_start_of_DRAM() ||
275 			 base + size > memblock_start_of_DRAM() +
276 				       linear_region_size,
277 			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
278 			phys_initrd_size = 0;
279 		} else {
280 			memblock_add(base, size);
281 			memblock_clear_nomap(base, size);
282 			memblock_reserve(base, size);
283 		}
284 	}
285 
286 	/*
287 	 * Register the kernel text, kernel data, initrd, and initial
288 	 * pagetables with memblock.
289 	 */
290 	memblock_reserve(__pa_symbol(_text), _end - _text);
291 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
292 		/* the generic initrd code expects virtual addresses */
293 		initrd_start = __phys_to_virt(phys_initrd_start);
294 		initrd_end = initrd_start + phys_initrd_size;
295 	}
296 
297 	early_init_fdt_scan_reserved_mem();
298 }
299 
300 void __init bootmem_init(void)
301 {
302 	unsigned long min, max;
303 
304 	min = PFN_UP(memblock_start_of_DRAM());
305 	max = PFN_DOWN(memblock_end_of_DRAM());
306 
307 	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
308 
309 	max_pfn = max_low_pfn = max;
310 	min_low_pfn = min;
311 
312 	arch_numa_init();
313 
314 	kvm_hyp_reserve();
315 	dma_limits_init();
316 
317 	/*
318 	 * Reserve the CMA area after arm64_dma_phys_limit was initialised.
319 	 */
320 	dma_contiguous_reserve(arm64_dma_phys_limit);
321 
322 	/*
323 	 * request_standard_resources() depends on crashkernel's memory being
324 	 * reserved, so do it here.
325 	 */
326 	arch_reserve_crashkernel();
327 
328 	memblock_dump_all();
329 }
330 
331 void __init arch_mm_preinit(void)
332 {
333 	unsigned int flags = SWIOTLB_VERBOSE;
334 	bool swiotlb = max_pfn > PFN_DOWN(arm64_dma_phys_limit);
335 
336 	if (is_realm_world()) {
337 		swiotlb = true;
338 		flags |= SWIOTLB_FORCE;
339 	}
340 
341 	if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && !swiotlb) {
342 		/*
343 		 * If no bouncing needed for ZONE_DMA, reduce the swiotlb
344 		 * buffer for kmalloc() bouncing to 1MB per 1GB of RAM.
345 		 */
346 		unsigned long size =
347 			DIV_ROUND_UP(memblock_phys_mem_size(), 1024);
348 		swiotlb_adjust_size(min(swiotlb_size_or_default(), size));
349 		swiotlb = true;
350 	}
351 
352 	swiotlb_init(swiotlb, flags);
353 	swiotlb_update_mem_attributes();
354 
355 	/*
356 	 * Check boundaries twice: Some fundamental inconsistencies can be
357 	 * detected at build time already.
358 	 */
359 #ifdef CONFIG_COMPAT
360 	BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
361 #endif
362 
363 	/*
364 	 * Selected page table levels should match when derived from
365 	 * scratch using the virtual address range and page size.
366 	 */
367 	BUILD_BUG_ON(ARM64_HW_PGTABLE_LEVELS(CONFIG_ARM64_VA_BITS) !=
368 		     CONFIG_PGTABLE_LEVELS);
369 
370 	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
371 		extern int sysctl_overcommit_memory;
372 		/*
373 		 * On a machine this small we won't get anywhere without
374 		 * overcommit, so turn it on by default.
375 		 */
376 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
377 	}
378 }
379 
380 void free_initmem(void)
381 {
382 	void *lm_init_begin = lm_alias(__init_begin);
383 	void *lm_init_end = lm_alias(__init_end);
384 
385 	WARN_ON(!IS_ALIGNED((unsigned long)lm_init_begin, PAGE_SIZE));
386 	WARN_ON(!IS_ALIGNED((unsigned long)lm_init_end, PAGE_SIZE));
387 
388 	/* Delete __init region from memblock.reserved. */
389 	memblock_free(lm_init_begin, lm_init_end - lm_init_begin);
390 
391 	free_reserved_area(lm_init_begin, lm_init_end,
392 			   POISON_FREE_INITMEM, "unused kernel");
393 	/*
394 	 * Unmap the __init region but leave the VM area in place. This
395 	 * prevents the region from being reused for kernel modules, which
396 	 * is not supported by kallsyms.
397 	 */
398 	vunmap_range((u64)__init_begin, (u64)__init_end);
399 }
400 
401 void dump_mem_limit(void)
402 {
403 	if (memory_limit != PHYS_ADDR_MAX) {
404 		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
405 	} else {
406 		pr_emerg("Memory Limit: none\n");
407 	}
408 }
409 
410 #ifdef CONFIG_EXECMEM
411 static u64 module_direct_base __ro_after_init = 0;
412 static u64 module_plt_base __ro_after_init = 0;
413 
414 /*
415  * Choose a random page-aligned base address for a window of 'size' bytes which
416  * entirely contains the interval [start, end - 1].
417  */
418 static u64 __init random_bounding_box(u64 size, u64 start, u64 end)
419 {
420 	u64 max_pgoff, pgoff;
421 
422 	if ((end - start) >= size)
423 		return 0;
424 
425 	max_pgoff = (size - (end - start)) / PAGE_SIZE;
426 	pgoff = get_random_u32_inclusive(0, max_pgoff);
427 
428 	return start - pgoff * PAGE_SIZE;
429 }
430 
431 /*
432  * Modules may directly reference data and text anywhere within the kernel
433  * image and other modules. References using PREL32 relocations have a +/-2G
434  * range, and so we need to ensure that the entire kernel image and all modules
435  * fall within a 2G window such that these are always within range.
436  *
437  * Modules may directly branch to functions and code within the kernel text,
438  * and to functions and code within other modules. These branches will use
439  * CALL26/JUMP26 relocations with a +/-128M range. Without PLTs, we must ensure
440  * that the entire kernel text and all module text falls within a 128M window
441  * such that these are always within range. With PLTs, we can expand this to a
442  * 2G window.
443  *
444  * We chose the 128M region to surround the entire kernel image (rather than
445  * just the text) as using the same bounds for the 128M and 2G regions ensures
446  * by construction that we never select a 128M region that is not a subset of
447  * the 2G region. For very large and unusual kernel configurations this means
448  * we may fall back to PLTs where they could have been avoided, but this keeps
449  * the logic significantly simpler.
450  */
451 static int __init module_init_limits(void)
452 {
453 	u64 kernel_end = (u64)_end;
454 	u64 kernel_start = (u64)_text;
455 	u64 kernel_size = kernel_end - kernel_start;
456 
457 	/*
458 	 * The default modules region is placed immediately below the kernel
459 	 * image, and is large enough to use the full 2G relocation range.
460 	 */
461 	BUILD_BUG_ON(KIMAGE_VADDR != MODULES_END);
462 	BUILD_BUG_ON(MODULES_VSIZE < SZ_2G);
463 
464 	if (!kaslr_enabled()) {
465 		if (kernel_size < SZ_128M)
466 			module_direct_base = kernel_end - SZ_128M;
467 		if (kernel_size < SZ_2G)
468 			module_plt_base = kernel_end - SZ_2G;
469 	} else {
470 		u64 min = kernel_start;
471 		u64 max = kernel_end;
472 
473 		if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) {
474 			pr_info("2G module region forced by RANDOMIZE_MODULE_REGION_FULL\n");
475 		} else {
476 			module_direct_base = random_bounding_box(SZ_128M, min, max);
477 			if (module_direct_base) {
478 				min = module_direct_base;
479 				max = module_direct_base + SZ_128M;
480 			}
481 		}
482 
483 		module_plt_base = random_bounding_box(SZ_2G, min, max);
484 	}
485 
486 	pr_info("%llu pages in range for non-PLT usage",
487 		module_direct_base ? (SZ_128M - kernel_size) / PAGE_SIZE : 0);
488 	pr_info("%llu pages in range for PLT usage",
489 		module_plt_base ? (SZ_2G - kernel_size) / PAGE_SIZE : 0);
490 
491 	return 0;
492 }
493 
494 static struct execmem_info execmem_info __ro_after_init;
495 
496 struct execmem_info __init *execmem_arch_setup(void)
497 {
498 	unsigned long fallback_start = 0, fallback_end = 0;
499 	unsigned long start = 0, end = 0;
500 
501 	module_init_limits();
502 
503 	/*
504 	 * Where possible, prefer to allocate within direct branch range of the
505 	 * kernel such that no PLTs are necessary.
506 	 */
507 	if (module_direct_base) {
508 		start = module_direct_base;
509 		end = module_direct_base + SZ_128M;
510 
511 		if (module_plt_base) {
512 			fallback_start = module_plt_base;
513 			fallback_end = module_plt_base + SZ_2G;
514 		}
515 	} else if (module_plt_base) {
516 		start = module_plt_base;
517 		end = module_plt_base + SZ_2G;
518 	}
519 
520 	execmem_info = (struct execmem_info){
521 		.ranges = {
522 			[EXECMEM_DEFAULT] = {
523 				.start	= start,
524 				.end	= end,
525 				.pgprot	= PAGE_KERNEL,
526 				.alignment = 1,
527 				.fallback_start	= fallback_start,
528 				.fallback_end	= fallback_end,
529 			},
530 			[EXECMEM_KPROBES] = {
531 				.start	= VMALLOC_START,
532 				.end	= VMALLOC_END,
533 				.pgprot	= PAGE_KERNEL_ROX,
534 				.alignment = 1,
535 			},
536 			[EXECMEM_BPF] = {
537 				.start	= VMALLOC_START,
538 				.end	= VMALLOC_END,
539 				.pgprot	= PAGE_KERNEL,
540 				.alignment = 1,
541 			},
542 		},
543 	};
544 
545 	return &execmem_info;
546 }
547 #endif /* CONFIG_EXECMEM */
548