xref: /linux/arch/arm64/kernel/smp.c (revision 114143a595895c03fbefccfd8346fc51fb4908ed)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SMP initialisation and IPI support
4  * Based on arch/arm/kernel/smp.c
5  *
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/arm_sdei.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/smp.h>
25 #include <linux/seq_file.h>
26 #include <linux/irq.h>
27 #include <linux/irqchip/arm-gic-v3.h>
28 #include <linux/percpu.h>
29 #include <linux/clockchips.h>
30 #include <linux/completion.h>
31 #include <linux/of.h>
32 #include <linux/irq_work.h>
33 #include <linux/kernel_stat.h>
34 #include <linux/kexec.h>
35 #include <linux/kgdb.h>
36 #include <linux/kvm_host.h>
37 #include <linux/nmi.h>
38 
39 #include <asm/alternative.h>
40 #include <asm/atomic.h>
41 #include <asm/cacheflush.h>
42 #include <asm/cpu.h>
43 #include <asm/cputype.h>
44 #include <asm/cpu_ops.h>
45 #include <asm/daifflags.h>
46 #include <asm/kvm_mmu.h>
47 #include <asm/mmu_context.h>
48 #include <asm/numa.h>
49 #include <asm/processor.h>
50 #include <asm/smp_plat.h>
51 #include <asm/sections.h>
52 #include <asm/tlbflush.h>
53 #include <asm/ptrace.h>
54 #include <asm/virt.h>
55 
56 #include <trace/events/ipi.h>
57 
58 /*
59  * as from 2.5, kernels no longer have an init_tasks structure
60  * so we need some other way of telling a new secondary core
61  * where to place its SVC stack
62  */
63 struct secondary_data secondary_data;
64 /* Number of CPUs which aren't online, but looping in kernel text. */
65 static int cpus_stuck_in_kernel;
66 
67 enum ipi_msg_type {
68 	IPI_RESCHEDULE,
69 	IPI_CALL_FUNC,
70 	IPI_CPU_STOP,
71 	IPI_CPU_STOP_NMI,
72 	IPI_TIMER,
73 	IPI_IRQ_WORK,
74 	NR_IPI,
75 	/*
76 	 * Any enum >= NR_IPI and < MAX_IPI is special and not tracable
77 	 * with trace_ipi_*
78 	 */
79 	IPI_CPU_BACKTRACE = NR_IPI,
80 	IPI_KGDB_ROUNDUP,
81 	MAX_IPI
82 };
83 
84 static int ipi_irq_base __ro_after_init;
85 static int nr_ipi __ro_after_init = NR_IPI;
86 static struct irq_desc *ipi_desc[MAX_IPI] __ro_after_init;
87 
88 static bool crash_stop;
89 
90 static void ipi_setup(int cpu);
91 
92 #ifdef CONFIG_HOTPLUG_CPU
93 static void ipi_teardown(int cpu);
94 static int op_cpu_kill(unsigned int cpu);
95 #else
op_cpu_kill(unsigned int cpu)96 static inline int op_cpu_kill(unsigned int cpu)
97 {
98 	return -ENOSYS;
99 }
100 #endif
101 
102 
103 /*
104  * Boot a secondary CPU, and assign it the specified idle task.
105  * This also gives us the initial stack to use for this CPU.
106  */
boot_secondary(unsigned int cpu,struct task_struct * idle)107 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
108 {
109 	const struct cpu_operations *ops = get_cpu_ops(cpu);
110 
111 	if (ops->cpu_boot)
112 		return ops->cpu_boot(cpu);
113 
114 	return -EOPNOTSUPP;
115 }
116 
117 static DECLARE_COMPLETION(cpu_running);
118 
__cpu_up(unsigned int cpu,struct task_struct * idle)119 int __cpu_up(unsigned int cpu, struct task_struct *idle)
120 {
121 	int ret;
122 	long status;
123 
124 	/*
125 	 * We need to tell the secondary core where to find its stack and the
126 	 * page tables.
127 	 */
128 	secondary_data.task = idle;
129 	update_cpu_boot_status(CPU_MMU_OFF);
130 
131 	/* Now bring the CPU into our world */
132 	ret = boot_secondary(cpu, idle);
133 	if (ret) {
134 		if (ret != -EPERM)
135 			pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
136 		return ret;
137 	}
138 
139 	/*
140 	 * CPU was successfully started, wait for it to come online or
141 	 * time out.
142 	 */
143 	wait_for_completion_timeout(&cpu_running,
144 				    msecs_to_jiffies(5000));
145 	if (cpu_online(cpu))
146 		return 0;
147 
148 	pr_crit("CPU%u: failed to come online\n", cpu);
149 	secondary_data.task = NULL;
150 	status = READ_ONCE(secondary_data.status);
151 	if (status == CPU_MMU_OFF)
152 		status = READ_ONCE(__early_cpu_boot_status);
153 
154 	switch (status & CPU_BOOT_STATUS_MASK) {
155 	default:
156 		pr_err("CPU%u: failed in unknown state : 0x%lx\n",
157 		       cpu, status);
158 		cpus_stuck_in_kernel++;
159 		break;
160 	case CPU_KILL_ME:
161 		if (!op_cpu_kill(cpu)) {
162 			pr_crit("CPU%u: died during early boot\n", cpu);
163 			break;
164 		}
165 		pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
166 		fallthrough;
167 	case CPU_STUCK_IN_KERNEL:
168 		pr_crit("CPU%u: is stuck in kernel\n", cpu);
169 		if (status & CPU_STUCK_REASON_52_BIT_VA)
170 			pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
171 		if (status & CPU_STUCK_REASON_NO_GRAN) {
172 			pr_crit("CPU%u: does not support %luK granule\n",
173 				cpu, PAGE_SIZE / SZ_1K);
174 		}
175 		cpus_stuck_in_kernel++;
176 		break;
177 	case CPU_PANIC_KERNEL:
178 		panic("CPU%u detected unsupported configuration\n", cpu);
179 	}
180 
181 	return -EIO;
182 }
183 
init_gic_priority_masking(void)184 static void init_gic_priority_masking(void)
185 {
186 	u32 cpuflags;
187 
188 	if (WARN_ON(!gic_enable_sre()))
189 		return;
190 
191 	cpuflags = read_sysreg(daif);
192 
193 	WARN_ON(!(cpuflags & PSR_I_BIT));
194 	WARN_ON(!(cpuflags & PSR_F_BIT));
195 
196 	gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
197 }
198 
199 /*
200  * This is the secondary CPU boot entry.  We're using this CPUs
201  * idle thread stack, but a set of temporary page tables.
202  */
secondary_start_kernel(void)203 asmlinkage notrace void secondary_start_kernel(void)
204 {
205 	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
206 	struct mm_struct *mm = &init_mm;
207 	const struct cpu_operations *ops;
208 	unsigned int cpu = smp_processor_id();
209 
210 	/*
211 	 * All kernel threads share the same mm context; grab a
212 	 * reference and switch to it.
213 	 */
214 	mmgrab(mm);
215 	current->active_mm = mm;
216 
217 	/*
218 	 * TTBR0 is only used for the identity mapping at this stage. Make it
219 	 * point to zero page to avoid speculatively fetching new entries.
220 	 */
221 	cpu_uninstall_idmap();
222 
223 	if (system_uses_irq_prio_masking())
224 		init_gic_priority_masking();
225 
226 	rcutree_report_cpu_starting(cpu);
227 	trace_hardirqs_off();
228 
229 	/*
230 	 * If the system has established the capabilities, make sure
231 	 * this CPU ticks all of those. If it doesn't, the CPU will
232 	 * fail to come online.
233 	 */
234 	check_local_cpu_capabilities();
235 
236 	ops = get_cpu_ops(cpu);
237 	if (ops->cpu_postboot)
238 		ops->cpu_postboot();
239 
240 	/*
241 	 * Log the CPU info before it is marked online and might get read.
242 	 */
243 	cpuinfo_store_cpu();
244 	store_cpu_topology(cpu);
245 
246 	/*
247 	 * Enable GIC and timers.
248 	 */
249 	notify_cpu_starting(cpu);
250 
251 	ipi_setup(cpu);
252 
253 	numa_add_cpu(cpu);
254 
255 	/*
256 	 * OK, now it's safe to let the boot CPU continue.  Wait for
257 	 * the CPU migration code to notice that the CPU is online
258 	 * before we continue.
259 	 */
260 	pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
261 					 cpu, (unsigned long)mpidr,
262 					 read_cpuid_id());
263 	update_cpu_boot_status(CPU_BOOT_SUCCESS);
264 	set_cpu_online(cpu, true);
265 	complete(&cpu_running);
266 
267 	/*
268 	 * Secondary CPUs enter the kernel with all DAIF exceptions masked.
269 	 *
270 	 * As with setup_arch() we must unmask Debug and SError exceptions, and
271 	 * as the root irqchip has already been detected and initialized we can
272 	 * unmask IRQ and FIQ at the same time.
273 	 */
274 	local_daif_restore(DAIF_PROCCTX);
275 
276 	/*
277 	 * OK, it's off to the idle thread for us
278 	 */
279 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
280 }
281 
282 #ifdef CONFIG_HOTPLUG_CPU
op_cpu_disable(unsigned int cpu)283 static int op_cpu_disable(unsigned int cpu)
284 {
285 	const struct cpu_operations *ops = get_cpu_ops(cpu);
286 
287 	/*
288 	 * If we don't have a cpu_die method, abort before we reach the point
289 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
290 	 */
291 	if (!ops || !ops->cpu_die)
292 		return -EOPNOTSUPP;
293 
294 	/*
295 	 * We may need to abort a hot unplug for some other mechanism-specific
296 	 * reason.
297 	 */
298 	if (ops->cpu_disable)
299 		return ops->cpu_disable(cpu);
300 
301 	return 0;
302 }
303 
304 /*
305  * __cpu_disable runs on the processor to be shutdown.
306  */
__cpu_disable(void)307 int __cpu_disable(void)
308 {
309 	unsigned int cpu = smp_processor_id();
310 	int ret;
311 
312 	ret = op_cpu_disable(cpu);
313 	if (ret)
314 		return ret;
315 
316 	remove_cpu_topology(cpu);
317 	numa_remove_cpu(cpu);
318 
319 	/*
320 	 * Take this CPU offline.  Once we clear this, we can't return,
321 	 * and we must not schedule until we're ready to give up the cpu.
322 	 */
323 	set_cpu_online(cpu, false);
324 	ipi_teardown(cpu);
325 
326 	/*
327 	 * OK - migrate IRQs away from this CPU
328 	 */
329 	irq_migrate_all_off_this_cpu();
330 
331 	return 0;
332 }
333 
op_cpu_kill(unsigned int cpu)334 static int op_cpu_kill(unsigned int cpu)
335 {
336 	const struct cpu_operations *ops = get_cpu_ops(cpu);
337 
338 	/*
339 	 * If we have no means of synchronising with the dying CPU, then assume
340 	 * that it is really dead. We can only wait for an arbitrary length of
341 	 * time and hope that it's dead, so let's skip the wait and just hope.
342 	 */
343 	if (!ops->cpu_kill)
344 		return 0;
345 
346 	return ops->cpu_kill(cpu);
347 }
348 
349 /*
350  * Called on the thread which is asking for a CPU to be shutdown after the
351  * shutdown completed.
352  */
arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)353 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
354 {
355 	int err;
356 
357 	pr_debug("CPU%u: shutdown\n", cpu);
358 
359 	/*
360 	 * Now that the dying CPU is beyond the point of no return w.r.t.
361 	 * in-kernel synchronisation, try to get the firwmare to help us to
362 	 * verify that it has really left the kernel before we consider
363 	 * clobbering anything it might still be using.
364 	 */
365 	err = op_cpu_kill(cpu);
366 	if (err)
367 		pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err);
368 }
369 
370 /*
371  * Called from the idle thread for the CPU which has been shutdown.
372  *
373  */
cpu_die(void)374 void __noreturn cpu_die(void)
375 {
376 	unsigned int cpu = smp_processor_id();
377 	const struct cpu_operations *ops = get_cpu_ops(cpu);
378 
379 	idle_task_exit();
380 
381 	local_daif_mask();
382 
383 	/* Tell cpuhp_bp_sync_dead() that this CPU is now safe to dispose of */
384 	cpuhp_ap_report_dead();
385 
386 	/*
387 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
388 	 * mechanism must perform all required cache maintenance to ensure that
389 	 * no dirty lines are lost in the process of shutting down the CPU.
390 	 */
391 	ops->cpu_die(cpu);
392 
393 	BUG();
394 }
395 #endif
396 
__cpu_try_die(int cpu)397 static void __cpu_try_die(int cpu)
398 {
399 #ifdef CONFIG_HOTPLUG_CPU
400 	const struct cpu_operations *ops = get_cpu_ops(cpu);
401 
402 	if (ops && ops->cpu_die)
403 		ops->cpu_die(cpu);
404 #endif
405 }
406 
407 /*
408  * Kill the calling secondary CPU, early in bringup before it is turned
409  * online.
410  */
cpu_die_early(void)411 void __noreturn cpu_die_early(void)
412 {
413 	int cpu = smp_processor_id();
414 
415 	pr_crit("CPU%d: will not boot\n", cpu);
416 
417 	/* Mark this CPU absent */
418 	set_cpu_present(cpu, 0);
419 	rcutree_report_cpu_dead();
420 
421 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
422 		update_cpu_boot_status(CPU_KILL_ME);
423 		__cpu_try_die(cpu);
424 	}
425 
426 	update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
427 
428 	cpu_park_loop();
429 }
430 
hyp_mode_check(void)431 static void __init hyp_mode_check(void)
432 {
433 	if (is_hyp_mode_available())
434 		pr_info("CPU: All CPU(s) started at EL2\n");
435 	else if (is_hyp_mode_mismatched())
436 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
437 			   "CPU: CPUs started in inconsistent modes");
438 	else
439 		pr_info("CPU: All CPU(s) started at EL1\n");
440 	if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) {
441 		kvm_compute_layout();
442 		kvm_apply_hyp_relocations();
443 	}
444 }
445 
smp_cpus_done(unsigned int max_cpus)446 void __init smp_cpus_done(unsigned int max_cpus)
447 {
448 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
449 	hyp_mode_check();
450 	setup_system_features();
451 	setup_user_features();
452 	mark_linear_text_alias_ro();
453 }
454 
smp_prepare_boot_cpu(void)455 void __init smp_prepare_boot_cpu(void)
456 {
457 	/*
458 	 * The runtime per-cpu areas have been allocated by
459 	 * setup_per_cpu_areas(), and CPU0's boot time per-cpu area will be
460 	 * freed shortly, so we must move over to the runtime per-cpu area.
461 	 */
462 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
463 
464 	cpuinfo_store_boot_cpu();
465 	setup_boot_cpu_features();
466 
467 	/* Conditionally switch to GIC PMR for interrupt masking */
468 	if (system_uses_irq_prio_masking())
469 		init_gic_priority_masking();
470 
471 	kasan_init_hw_tags();
472 	/* Init percpu seeds for random tags after cpus are set up. */
473 	kasan_init_sw_tags();
474 }
475 
476 /*
477  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
478  * entries and check for duplicates. If any is found just ignore the
479  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
480  * matching valid MPIDR values.
481  */
is_mpidr_duplicate(unsigned int cpu,u64 hwid)482 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
483 {
484 	unsigned int i;
485 
486 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
487 		if (cpu_logical_map(i) == hwid)
488 			return true;
489 	return false;
490 }
491 
492 /*
493  * Initialize cpu operations for a logical cpu and
494  * set it in the possible mask on success
495  */
smp_cpu_setup(int cpu)496 static int __init smp_cpu_setup(int cpu)
497 {
498 	const struct cpu_operations *ops;
499 
500 	if (init_cpu_ops(cpu))
501 		return -ENODEV;
502 
503 	ops = get_cpu_ops(cpu);
504 	if (ops->cpu_init(cpu))
505 		return -ENODEV;
506 
507 	set_cpu_possible(cpu, true);
508 
509 	return 0;
510 }
511 
512 static bool bootcpu_valid __initdata;
513 static unsigned int cpu_count = 1;
514 
arch_register_cpu(int cpu)515 int arch_register_cpu(int cpu)
516 {
517 	acpi_handle acpi_handle = acpi_get_processor_handle(cpu);
518 	struct cpu *c = &per_cpu(cpu_devices, cpu);
519 
520 	if (!acpi_disabled && !acpi_handle &&
521 	    IS_ENABLED(CONFIG_ACPI_HOTPLUG_CPU))
522 		return -EPROBE_DEFER;
523 
524 #ifdef CONFIG_ACPI_HOTPLUG_CPU
525 	/* For now block anything that looks like physical CPU Hotplug */
526 	if (invalid_logical_cpuid(cpu) || !cpu_present(cpu)) {
527 		pr_err_once("Changing CPU present bit is not supported\n");
528 		return -ENODEV;
529 	}
530 #endif
531 
532 	/*
533 	 * Availability of the acpi handle is sufficient to establish
534 	 * that _STA has aleady been checked. No need to recheck here.
535 	 */
536 	c->hotpluggable = arch_cpu_is_hotpluggable(cpu);
537 
538 	return register_cpu(c, cpu);
539 }
540 
541 #ifdef CONFIG_ACPI_HOTPLUG_CPU
arch_unregister_cpu(int cpu)542 void arch_unregister_cpu(int cpu)
543 {
544 	acpi_handle acpi_handle = acpi_get_processor_handle(cpu);
545 	struct cpu *c = &per_cpu(cpu_devices, cpu);
546 	acpi_status status;
547 	unsigned long long sta;
548 
549 	if (!acpi_handle) {
550 		pr_err_once("Removing a CPU without associated ACPI handle\n");
551 		return;
552 	}
553 
554 	status = acpi_evaluate_integer(acpi_handle, "_STA", NULL, &sta);
555 	if (ACPI_FAILURE(status))
556 		return;
557 
558 	/* For now do not allow anything that looks like physical CPU HP */
559 	if (cpu_present(cpu) && !(sta & ACPI_STA_DEVICE_PRESENT)) {
560 		pr_err_once("Changing CPU present bit is not supported\n");
561 		return;
562 	}
563 
564 	unregister_cpu(c);
565 }
566 #endif /* CONFIG_ACPI_HOTPLUG_CPU */
567 
568 #ifdef CONFIG_ACPI
569 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
570 
acpi_cpu_get_madt_gicc(int cpu)571 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
572 {
573 	return &cpu_madt_gicc[cpu];
574 }
575 EXPORT_SYMBOL_GPL(acpi_cpu_get_madt_gicc);
576 
577 /*
578  * acpi_map_gic_cpu_interface - parse processor MADT entry
579  *
580  * Carry out sanity checks on MADT processor entry and initialize
581  * cpu_logical_map on success
582  */
583 static void __init
acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt * processor)584 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
585 {
586 	u64 hwid = processor->arm_mpidr;
587 
588 	if (!(processor->flags &
589 	      (ACPI_MADT_ENABLED | ACPI_MADT_GICC_ONLINE_CAPABLE))) {
590 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
591 		return;
592 	}
593 
594 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
595 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
596 		return;
597 	}
598 
599 	if (is_mpidr_duplicate(cpu_count, hwid)) {
600 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
601 		return;
602 	}
603 
604 	/* Check if GICC structure of boot CPU is available in the MADT */
605 	if (cpu_logical_map(0) == hwid) {
606 		if (bootcpu_valid) {
607 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
608 			       hwid);
609 			return;
610 		}
611 		bootcpu_valid = true;
612 		cpu_madt_gicc[0] = *processor;
613 		return;
614 	}
615 
616 	if (cpu_count >= NR_CPUS)
617 		return;
618 
619 	/* map the logical cpu id to cpu MPIDR */
620 	set_cpu_logical_map(cpu_count, hwid);
621 
622 	cpu_madt_gicc[cpu_count] = *processor;
623 
624 	/*
625 	 * Set-up the ACPI parking protocol cpu entries
626 	 * while initializing the cpu_logical_map to
627 	 * avoid parsing MADT entries multiple times for
628 	 * nothing (ie a valid cpu_logical_map entry should
629 	 * contain a valid parking protocol data set to
630 	 * initialize the cpu if the parking protocol is
631 	 * the only available enable method).
632 	 */
633 	acpi_set_mailbox_entry(cpu_count, processor);
634 
635 	cpu_count++;
636 }
637 
638 static int __init
acpi_parse_gic_cpu_interface(union acpi_subtable_headers * header,const unsigned long end)639 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
640 			     const unsigned long end)
641 {
642 	struct acpi_madt_generic_interrupt *processor;
643 
644 	processor = (struct acpi_madt_generic_interrupt *)header;
645 	if (BAD_MADT_GICC_ENTRY(processor, end))
646 		return -EINVAL;
647 
648 	acpi_table_print_madt_entry(&header->common);
649 
650 	acpi_map_gic_cpu_interface(processor);
651 
652 	return 0;
653 }
654 
acpi_parse_and_init_cpus(void)655 static void __init acpi_parse_and_init_cpus(void)
656 {
657 	int i;
658 
659 	/*
660 	 * do a walk of MADT to determine how many CPUs
661 	 * we have including disabled CPUs, and get information
662 	 * we need for SMP init.
663 	 */
664 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
665 				      acpi_parse_gic_cpu_interface, 0);
666 
667 	/*
668 	 * In ACPI, SMP and CPU NUMA information is provided in separate
669 	 * static tables, namely the MADT and the SRAT.
670 	 *
671 	 * Thus, it is simpler to first create the cpu logical map through
672 	 * an MADT walk and then map the logical cpus to their node ids
673 	 * as separate steps.
674 	 */
675 	acpi_map_cpus_to_nodes();
676 
677 	for (i = 0; i < nr_cpu_ids; i++)
678 		early_map_cpu_to_node(i, acpi_numa_get_nid(i));
679 }
680 #else
681 #define acpi_parse_and_init_cpus(...)	do { } while (0)
682 #endif
683 
684 /*
685  * Enumerate the possible CPU set from the device tree and build the
686  * cpu logical map array containing MPIDR values related to logical
687  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
688  */
of_parse_and_init_cpus(void)689 static void __init of_parse_and_init_cpus(void)
690 {
691 	struct device_node *dn;
692 
693 	for_each_of_cpu_node(dn) {
694 		u64 hwid = of_get_cpu_hwid(dn, 0);
695 
696 		if (hwid & ~MPIDR_HWID_BITMASK)
697 			goto next;
698 
699 		if (is_mpidr_duplicate(cpu_count, hwid)) {
700 			pr_err("%pOF: duplicate cpu reg properties in the DT\n",
701 				dn);
702 			goto next;
703 		}
704 
705 		/*
706 		 * The numbering scheme requires that the boot CPU
707 		 * must be assigned logical id 0. Record it so that
708 		 * the logical map built from DT is validated and can
709 		 * be used.
710 		 */
711 		if (hwid == cpu_logical_map(0)) {
712 			if (bootcpu_valid) {
713 				pr_err("%pOF: duplicate boot cpu reg property in DT\n",
714 					dn);
715 				goto next;
716 			}
717 
718 			bootcpu_valid = true;
719 			early_map_cpu_to_node(0, of_node_to_nid(dn));
720 
721 			/*
722 			 * cpu_logical_map has already been
723 			 * initialized and the boot cpu doesn't need
724 			 * the enable-method so continue without
725 			 * incrementing cpu.
726 			 */
727 			continue;
728 		}
729 
730 		if (cpu_count >= NR_CPUS)
731 			goto next;
732 
733 		pr_debug("cpu logical map 0x%llx\n", hwid);
734 		set_cpu_logical_map(cpu_count, hwid);
735 
736 		early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
737 next:
738 		cpu_count++;
739 	}
740 }
741 
742 /*
743  * Enumerate the possible CPU set from the device tree or ACPI and build the
744  * cpu logical map array containing MPIDR values related to logical
745  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
746  */
smp_init_cpus(void)747 void __init smp_init_cpus(void)
748 {
749 	int i;
750 
751 	if (acpi_disabled)
752 		of_parse_and_init_cpus();
753 	else
754 		acpi_parse_and_init_cpus();
755 
756 	if (cpu_count > nr_cpu_ids)
757 		pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
758 			cpu_count, nr_cpu_ids);
759 
760 	if (!bootcpu_valid) {
761 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
762 		return;
763 	}
764 
765 	/*
766 	 * We need to set the cpu_logical_map entries before enabling
767 	 * the cpus so that cpu processor description entries (DT cpu nodes
768 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
769 	 * with entries in cpu_logical_map while initializing the cpus.
770 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
771 	 */
772 	for (i = 1; i < nr_cpu_ids; i++) {
773 		if (cpu_logical_map(i) != INVALID_HWID) {
774 			if (smp_cpu_setup(i))
775 				set_cpu_logical_map(i, INVALID_HWID);
776 		}
777 	}
778 }
779 
smp_prepare_cpus(unsigned int max_cpus)780 void __init smp_prepare_cpus(unsigned int max_cpus)
781 {
782 	const struct cpu_operations *ops;
783 	int err;
784 	unsigned int cpu;
785 	unsigned int this_cpu;
786 
787 	init_cpu_topology();
788 
789 	this_cpu = smp_processor_id();
790 	store_cpu_topology(this_cpu);
791 	numa_store_cpu_info(this_cpu);
792 	numa_add_cpu(this_cpu);
793 
794 	/*
795 	 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
796 	 * secondary CPUs present.
797 	 */
798 	if (max_cpus == 0)
799 		return;
800 
801 	/*
802 	 * Initialise the present map (which describes the set of CPUs
803 	 * actually populated at the present time) and release the
804 	 * secondaries from the bootloader.
805 	 */
806 	for_each_possible_cpu(cpu) {
807 
808 		if (cpu == smp_processor_id())
809 			continue;
810 
811 		ops = get_cpu_ops(cpu);
812 		if (!ops)
813 			continue;
814 
815 		err = ops->cpu_prepare(cpu);
816 		if (err)
817 			continue;
818 
819 		set_cpu_present(cpu, true);
820 		numa_store_cpu_info(cpu);
821 	}
822 }
823 
824 static const char *ipi_types[MAX_IPI] __tracepoint_string = {
825 	[IPI_RESCHEDULE]	= "Rescheduling interrupts",
826 	[IPI_CALL_FUNC]		= "Function call interrupts",
827 	[IPI_CPU_STOP]		= "CPU stop interrupts",
828 	[IPI_CPU_STOP_NMI]	= "CPU stop NMIs",
829 	[IPI_TIMER]		= "Timer broadcast interrupts",
830 	[IPI_IRQ_WORK]		= "IRQ work interrupts",
831 	[IPI_CPU_BACKTRACE]	= "CPU backtrace interrupts",
832 	[IPI_KGDB_ROUNDUP]	= "KGDB roundup interrupts",
833 };
834 
835 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
836 
837 unsigned long irq_err_count;
838 
arch_show_interrupts(struct seq_file * p,int prec)839 int arch_show_interrupts(struct seq_file *p, int prec)
840 {
841 	unsigned int cpu, i;
842 
843 	for (i = 0; i < MAX_IPI; i++) {
844 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
845 			   prec >= 4 ? " " : "");
846 		for_each_online_cpu(cpu)
847 			seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu));
848 		seq_printf(p, "      %s\n", ipi_types[i]);
849 	}
850 
851 	seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count);
852 	return 0;
853 }
854 
arch_send_call_function_ipi_mask(const struct cpumask * mask)855 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
856 {
857 	smp_cross_call(mask, IPI_CALL_FUNC);
858 }
859 
arch_send_call_function_single_ipi(int cpu)860 void arch_send_call_function_single_ipi(int cpu)
861 {
862 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
863 }
864 
865 #ifdef CONFIG_IRQ_WORK
arch_irq_work_raise(void)866 void arch_irq_work_raise(void)
867 {
868 	smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
869 }
870 #endif
871 
local_cpu_stop(unsigned int cpu)872 static void __noreturn local_cpu_stop(unsigned int cpu)
873 {
874 	set_cpu_online(cpu, false);
875 
876 	local_daif_mask();
877 	sdei_mask_local_cpu();
878 	cpu_park_loop();
879 }
880 
881 /*
882  * We need to implement panic_smp_self_stop() for parallel panic() calls, so
883  * that cpu_online_mask gets correctly updated and smp_send_stop() can skip
884  * CPUs that have already stopped themselves.
885  */
panic_smp_self_stop(void)886 void __noreturn panic_smp_self_stop(void)
887 {
888 	local_cpu_stop(smp_processor_id());
889 }
890 
ipi_cpu_crash_stop(unsigned int cpu,struct pt_regs * regs)891 static void __noreturn ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
892 {
893 #ifdef CONFIG_KEXEC_CORE
894 	/*
895 	 * Use local_daif_mask() instead of local_irq_disable() to make sure
896 	 * that pseudo-NMIs are disabled. The "crash stop" code starts with
897 	 * an IRQ and falls back to NMI (which might be pseudo). If the IRQ
898 	 * finally goes through right as we're timing out then the NMI could
899 	 * interrupt us. It's better to prevent the NMI and let the IRQ
900 	 * finish since the pt_regs will be better.
901 	 */
902 	local_daif_mask();
903 
904 	crash_save_cpu(regs, cpu);
905 
906 	set_cpu_online(cpu, false);
907 
908 	sdei_mask_local_cpu();
909 
910 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
911 		__cpu_try_die(cpu);
912 
913 	/* just in case */
914 	cpu_park_loop();
915 #else
916 	BUG();
917 #endif
918 }
919 
arm64_backtrace_ipi(cpumask_t * mask)920 static void arm64_backtrace_ipi(cpumask_t *mask)
921 {
922 	__ipi_send_mask(ipi_desc[IPI_CPU_BACKTRACE], mask);
923 }
924 
arch_trigger_cpumask_backtrace(const cpumask_t * mask,int exclude_cpu)925 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, int exclude_cpu)
926 {
927 	/*
928 	 * NOTE: though nmi_trigger_cpumask_backtrace() has "nmi_" in the name,
929 	 * nothing about it truly needs to be implemented using an NMI, it's
930 	 * just that it's _allowed_ to work with NMIs. If ipi_should_be_nmi()
931 	 * returned false our backtrace attempt will just use a regular IPI.
932 	 */
933 	nmi_trigger_cpumask_backtrace(mask, exclude_cpu, arm64_backtrace_ipi);
934 }
935 
936 #ifdef CONFIG_KGDB
kgdb_roundup_cpus(void)937 void kgdb_roundup_cpus(void)
938 {
939 	int this_cpu = raw_smp_processor_id();
940 	int cpu;
941 
942 	for_each_online_cpu(cpu) {
943 		/* No need to roundup ourselves */
944 		if (cpu == this_cpu)
945 			continue;
946 
947 		__ipi_send_single(ipi_desc[IPI_KGDB_ROUNDUP], cpu);
948 	}
949 }
950 #endif
951 
952 /*
953  * Main handler for inter-processor interrupts
954  */
do_handle_IPI(int ipinr)955 static void do_handle_IPI(int ipinr)
956 {
957 	unsigned int cpu = smp_processor_id();
958 
959 	if ((unsigned)ipinr < NR_IPI)
960 		trace_ipi_entry(ipi_types[ipinr]);
961 
962 	switch (ipinr) {
963 	case IPI_RESCHEDULE:
964 		scheduler_ipi();
965 		break;
966 
967 	case IPI_CALL_FUNC:
968 		generic_smp_call_function_interrupt();
969 		break;
970 
971 	case IPI_CPU_STOP:
972 	case IPI_CPU_STOP_NMI:
973 		if (IS_ENABLED(CONFIG_KEXEC_CORE) && crash_stop) {
974 			ipi_cpu_crash_stop(cpu, get_irq_regs());
975 			unreachable();
976 		} else {
977 			local_cpu_stop(cpu);
978 		}
979 		break;
980 
981 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
982 	case IPI_TIMER:
983 		tick_receive_broadcast();
984 		break;
985 #endif
986 
987 #ifdef CONFIG_IRQ_WORK
988 	case IPI_IRQ_WORK:
989 		irq_work_run();
990 		break;
991 #endif
992 
993 	case IPI_CPU_BACKTRACE:
994 		/*
995 		 * NOTE: in some cases this _won't_ be NMI context. See the
996 		 * comment in arch_trigger_cpumask_backtrace().
997 		 */
998 		nmi_cpu_backtrace(get_irq_regs());
999 		break;
1000 
1001 	case IPI_KGDB_ROUNDUP:
1002 		kgdb_nmicallback(cpu, get_irq_regs());
1003 		break;
1004 
1005 	default:
1006 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
1007 		break;
1008 	}
1009 
1010 	if ((unsigned)ipinr < NR_IPI)
1011 		trace_ipi_exit(ipi_types[ipinr]);
1012 }
1013 
ipi_handler(int irq,void * data)1014 static irqreturn_t ipi_handler(int irq, void *data)
1015 {
1016 	do_handle_IPI(irq - ipi_irq_base);
1017 	return IRQ_HANDLED;
1018 }
1019 
smp_cross_call(const struct cpumask * target,unsigned int ipinr)1020 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
1021 {
1022 	trace_ipi_raise(target, ipi_types[ipinr]);
1023 	__ipi_send_mask(ipi_desc[ipinr], target);
1024 }
1025 
ipi_should_be_nmi(enum ipi_msg_type ipi)1026 static bool ipi_should_be_nmi(enum ipi_msg_type ipi)
1027 {
1028 	if (!system_uses_irq_prio_masking())
1029 		return false;
1030 
1031 	switch (ipi) {
1032 	case IPI_CPU_STOP_NMI:
1033 	case IPI_CPU_BACKTRACE:
1034 	case IPI_KGDB_ROUNDUP:
1035 		return true;
1036 	default:
1037 		return false;
1038 	}
1039 }
1040 
ipi_setup(int cpu)1041 static void ipi_setup(int cpu)
1042 {
1043 	int i;
1044 
1045 	if (WARN_ON_ONCE(!ipi_irq_base))
1046 		return;
1047 
1048 	for (i = 0; i < nr_ipi; i++) {
1049 		if (ipi_should_be_nmi(i)) {
1050 			prepare_percpu_nmi(ipi_irq_base + i);
1051 			enable_percpu_nmi(ipi_irq_base + i, 0);
1052 		} else {
1053 			enable_percpu_irq(ipi_irq_base + i, 0);
1054 		}
1055 	}
1056 }
1057 
1058 #ifdef CONFIG_HOTPLUG_CPU
ipi_teardown(int cpu)1059 static void ipi_teardown(int cpu)
1060 {
1061 	int i;
1062 
1063 	if (WARN_ON_ONCE(!ipi_irq_base))
1064 		return;
1065 
1066 	for (i = 0; i < nr_ipi; i++) {
1067 		if (ipi_should_be_nmi(i)) {
1068 			disable_percpu_nmi(ipi_irq_base + i);
1069 			teardown_percpu_nmi(ipi_irq_base + i);
1070 		} else {
1071 			disable_percpu_irq(ipi_irq_base + i);
1072 		}
1073 	}
1074 }
1075 #endif
1076 
set_smp_ipi_range(int ipi_base,int n)1077 void __init set_smp_ipi_range(int ipi_base, int n)
1078 {
1079 	int i;
1080 
1081 	WARN_ON(n < MAX_IPI);
1082 	nr_ipi = min(n, MAX_IPI);
1083 
1084 	for (i = 0; i < nr_ipi; i++) {
1085 		int err;
1086 
1087 		if (ipi_should_be_nmi(i)) {
1088 			err = request_percpu_nmi(ipi_base + i, ipi_handler,
1089 						 "IPI", &irq_stat);
1090 			WARN(err, "Could not request IPI %d as NMI, err=%d\n",
1091 			     i, err);
1092 		} else {
1093 			err = request_percpu_irq(ipi_base + i, ipi_handler,
1094 						 "IPI", &irq_stat);
1095 			WARN(err, "Could not request IPI %d as IRQ, err=%d\n",
1096 			     i, err);
1097 		}
1098 
1099 		ipi_desc[i] = irq_to_desc(ipi_base + i);
1100 		irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
1101 	}
1102 
1103 	ipi_irq_base = ipi_base;
1104 
1105 	/* Setup the boot CPU immediately */
1106 	ipi_setup(smp_processor_id());
1107 }
1108 
arch_smp_send_reschedule(int cpu)1109 void arch_smp_send_reschedule(int cpu)
1110 {
1111 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
1112 }
1113 
1114 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
arch_send_wakeup_ipi(unsigned int cpu)1115 void arch_send_wakeup_ipi(unsigned int cpu)
1116 {
1117 	/*
1118 	 * We use a scheduler IPI to wake the CPU as this avoids the need for a
1119 	 * dedicated IPI and we can safely handle spurious scheduler IPIs.
1120 	 */
1121 	smp_send_reschedule(cpu);
1122 }
1123 #endif
1124 
1125 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast(const struct cpumask * mask)1126 void tick_broadcast(const struct cpumask *mask)
1127 {
1128 	smp_cross_call(mask, IPI_TIMER);
1129 }
1130 #endif
1131 
1132 /*
1133  * The number of CPUs online, not counting this CPU (which may not be
1134  * fully online and so not counted in num_online_cpus()).
1135  */
num_other_online_cpus(void)1136 static inline unsigned int num_other_online_cpus(void)
1137 {
1138 	unsigned int this_cpu_online = cpu_online(smp_processor_id());
1139 
1140 	return num_online_cpus() - this_cpu_online;
1141 }
1142 
smp_send_stop(void)1143 void smp_send_stop(void)
1144 {
1145 	static unsigned long stop_in_progress;
1146 	cpumask_t mask;
1147 	unsigned long timeout;
1148 
1149 	/*
1150 	 * If this cpu is the only one alive at this point in time, online or
1151 	 * not, there are no stop messages to be sent around, so just back out.
1152 	 */
1153 	if (num_other_online_cpus() == 0)
1154 		goto skip_ipi;
1155 
1156 	/* Only proceed if this is the first CPU to reach this code */
1157 	if (test_and_set_bit(0, &stop_in_progress))
1158 		return;
1159 
1160 	/*
1161 	 * Send an IPI to all currently online CPUs except the CPU running
1162 	 * this code.
1163 	 *
1164 	 * NOTE: we don't do anything here to prevent other CPUs from coming
1165 	 * online after we snapshot `cpu_online_mask`. Ideally, the calling code
1166 	 * should do something to prevent other CPUs from coming up. This code
1167 	 * can be called in the panic path and thus it doesn't seem wise to
1168 	 * grab the CPU hotplug mutex ourselves. Worst case:
1169 	 * - If a CPU comes online as we're running, we'll likely notice it
1170 	 *   during the 1 second wait below and then we'll catch it when we try
1171 	 *   with an NMI (assuming NMIs are enabled) since we re-snapshot the
1172 	 *   mask before sending an NMI.
1173 	 * - If we leave the function and see that CPUs are still online we'll
1174 	 *   at least print a warning. Especially without NMIs this function
1175 	 *   isn't foolproof anyway so calling code will just have to accept
1176 	 *   the fact that there could be cases where a CPU can't be stopped.
1177 	 */
1178 	cpumask_copy(&mask, cpu_online_mask);
1179 	cpumask_clear_cpu(smp_processor_id(), &mask);
1180 
1181 	if (system_state <= SYSTEM_RUNNING)
1182 		pr_crit("SMP: stopping secondary CPUs\n");
1183 
1184 	/*
1185 	 * Start with a normal IPI and wait up to one second for other CPUs to
1186 	 * stop. We do this first because it gives other processors a chance
1187 	 * to exit critical sections / drop locks and makes the rest of the
1188 	 * stop process (especially console flush) more robust.
1189 	 */
1190 	smp_cross_call(&mask, IPI_CPU_STOP);
1191 	timeout = USEC_PER_SEC;
1192 	while (num_other_online_cpus() && timeout--)
1193 		udelay(1);
1194 
1195 	/*
1196 	 * If CPUs are still online, try an NMI. There's no excuse for this to
1197 	 * be slow, so we only give them an extra 10 ms to respond.
1198 	 */
1199 	if (num_other_online_cpus() && ipi_should_be_nmi(IPI_CPU_STOP_NMI)) {
1200 		smp_rmb();
1201 		cpumask_copy(&mask, cpu_online_mask);
1202 		cpumask_clear_cpu(smp_processor_id(), &mask);
1203 
1204 		pr_info("SMP: retry stop with NMI for CPUs %*pbl\n",
1205 			cpumask_pr_args(&mask));
1206 
1207 		smp_cross_call(&mask, IPI_CPU_STOP_NMI);
1208 		timeout = USEC_PER_MSEC * 10;
1209 		while (num_other_online_cpus() && timeout--)
1210 			udelay(1);
1211 	}
1212 
1213 	if (num_other_online_cpus()) {
1214 		smp_rmb();
1215 		cpumask_copy(&mask, cpu_online_mask);
1216 		cpumask_clear_cpu(smp_processor_id(), &mask);
1217 
1218 		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1219 			cpumask_pr_args(&mask));
1220 	}
1221 
1222 skip_ipi:
1223 	sdei_mask_local_cpu();
1224 }
1225 
1226 #ifdef CONFIG_KEXEC_CORE
crash_smp_send_stop(void)1227 void crash_smp_send_stop(void)
1228 {
1229 	/*
1230 	 * This function can be called twice in panic path, but obviously
1231 	 * we execute this only once.
1232 	 *
1233 	 * We use this same boolean to tell whether the IPI we send was a
1234 	 * stop or a "crash stop".
1235 	 */
1236 	if (crash_stop)
1237 		return;
1238 	crash_stop = 1;
1239 
1240 	smp_send_stop();
1241 
1242 	sdei_handler_abort();
1243 }
1244 
smp_crash_stop_failed(void)1245 bool smp_crash_stop_failed(void)
1246 {
1247 	return num_other_online_cpus() != 0;
1248 }
1249 #endif
1250 
have_cpu_die(void)1251 static bool have_cpu_die(void)
1252 {
1253 #ifdef CONFIG_HOTPLUG_CPU
1254 	int any_cpu = raw_smp_processor_id();
1255 	const struct cpu_operations *ops = get_cpu_ops(any_cpu);
1256 
1257 	if (ops && ops->cpu_die)
1258 		return true;
1259 #endif
1260 	return false;
1261 }
1262 
cpus_are_stuck_in_kernel(void)1263 bool cpus_are_stuck_in_kernel(void)
1264 {
1265 	bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1266 
1267 	return !!cpus_stuck_in_kernel || smp_spin_tables ||
1268 		is_protected_kvm_enabled();
1269 }
1270