xref: /linux/arch/x86/kernel/crash.c (revision e406d57be7bd2a4e73ea512c1ae36a40a44e499e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Architecture specific (i386/x86_64) functions for kexec based crash dumps.
4  *
5  * Created by: Hariprasad Nellitheertha (hari@in.ibm.com)
6  *
7  * Copyright (C) IBM Corporation, 2004. All rights reserved.
8  * Copyright (C) Red Hat Inc., 2014. All rights reserved.
9  * Authors:
10  *      Vivek Goyal <vgoyal@redhat.com>
11  *
12  */
13 
14 #define pr_fmt(fmt)	"kexec: " fmt
15 
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/smp.h>
19 #include <linux/reboot.h>
20 #include <linux/kexec.h>
21 #include <linux/delay.h>
22 #include <linux/elf.h>
23 #include <linux/elfcore.h>
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/vmalloc.h>
27 #include <linux/memblock.h>
28 
29 #include <asm/bootparam.h>
30 #include <asm/processor.h>
31 #include <asm/hardirq.h>
32 #include <asm/nmi.h>
33 #include <asm/hw_irq.h>
34 #include <asm/apic.h>
35 #include <asm/e820/types.h>
36 #include <asm/io_apic.h>
37 #include <asm/hpet.h>
38 #include <linux/kdebug.h>
39 #include <asm/cpu.h>
40 #include <asm/reboot.h>
41 #include <asm/intel_pt.h>
42 #include <asm/crash.h>
43 #include <asm/cmdline.h>
44 #include <asm/sev.h>
45 
46 /* Used while preparing memory map entries for second kernel */
47 struct crash_memmap_data {
48 	struct boot_params *params;
49 	/* Type of memory */
50 	unsigned int type;
51 };
52 
53 #if defined(CONFIG_SMP) && defined(CONFIG_X86_LOCAL_APIC)
54 
kdump_nmi_callback(int cpu,struct pt_regs * regs)55 static void kdump_nmi_callback(int cpu, struct pt_regs *regs)
56 {
57 	crash_save_cpu(regs, cpu);
58 
59 	/*
60 	 * Disable Intel PT to stop its logging
61 	 */
62 	cpu_emergency_stop_pt();
63 
64 	kdump_sev_callback();
65 
66 	disable_local_APIC();
67 }
68 
kdump_nmi_shootdown_cpus(void)69 void kdump_nmi_shootdown_cpus(void)
70 {
71 	nmi_shootdown_cpus(kdump_nmi_callback);
72 
73 	disable_local_APIC();
74 }
75 
76 /* Override the weak function in kernel/panic.c */
crash_smp_send_stop(void)77 void crash_smp_send_stop(void)
78 {
79 	static int cpus_stopped;
80 
81 	if (cpus_stopped)
82 		return;
83 
84 	if (smp_ops.crash_stop_other_cpus)
85 		smp_ops.crash_stop_other_cpus();
86 	else
87 		smp_send_stop();
88 
89 	cpus_stopped = 1;
90 }
91 
92 #else
crash_smp_send_stop(void)93 void crash_smp_send_stop(void)
94 {
95 	/* There are no cpus to shootdown */
96 }
97 #endif
98 
native_machine_crash_shutdown(struct pt_regs * regs)99 void native_machine_crash_shutdown(struct pt_regs *regs)
100 {
101 	/* This function is only called after the system
102 	 * has panicked or is otherwise in a critical state.
103 	 * The minimum amount of code to allow a kexec'd kernel
104 	 * to run successfully needs to happen here.
105 	 *
106 	 * In practice this means shooting down the other cpus in
107 	 * an SMP system.
108 	 */
109 	/* The kernel is broken so disable interrupts */
110 	local_irq_disable();
111 
112 	crash_smp_send_stop();
113 
114 	cpu_emergency_disable_virtualization();
115 
116 	/*
117 	 * Disable Intel PT to stop its logging
118 	 */
119 	cpu_emergency_stop_pt();
120 
121 #ifdef CONFIG_X86_IO_APIC
122 	/* Prevent crash_kexec() from deadlocking on ioapic_lock. */
123 	ioapic_zap_locks();
124 	clear_IO_APIC();
125 #endif
126 	lapic_shutdown();
127 	restore_boot_irq_mode();
128 #ifdef CONFIG_HPET_TIMER
129 	hpet_disable();
130 #endif
131 
132 	/*
133 	 * Non-crash kexec calls enc_kexec_begin() while scheduling is still
134 	 * active. This allows the callback to wait until all in-flight
135 	 * shared<->private conversions are complete. In a crash scenario,
136 	 * enc_kexec_begin() gets called after all but one CPU have been shut
137 	 * down and interrupts have been disabled. This allows the callback to
138 	 * detect a race with the conversion and report it.
139 	 */
140 	x86_platform.guest.enc_kexec_begin();
141 	x86_platform.guest.enc_kexec_finish();
142 
143 	crash_save_cpu(regs, smp_processor_id());
144 }
145 
146 #if defined(CONFIG_KEXEC_FILE) || defined(CONFIG_CRASH_HOTPLUG)
get_nr_ram_ranges_callback(struct resource * res,void * arg)147 static int get_nr_ram_ranges_callback(struct resource *res, void *arg)
148 {
149 	unsigned int *nr_ranges = arg;
150 
151 	(*nr_ranges)++;
152 	return 0;
153 }
154 
155 /* Gather all the required information to prepare elf headers for ram regions */
fill_up_crash_elf_data(void)156 static struct crash_mem *fill_up_crash_elf_data(void)
157 {
158 	unsigned int nr_ranges = 0;
159 	struct crash_mem *cmem;
160 
161 	walk_system_ram_res(0, -1, &nr_ranges, get_nr_ram_ranges_callback);
162 	if (!nr_ranges)
163 		return NULL;
164 
165 	/*
166 	 * Exclusion of crash region, crashk_low_res and/or crashk_cma_ranges
167 	 * may cause range splits. So add extra slots here.
168 	 *
169 	 * Exclusion of low 1M may not cause another range split, because the
170 	 * range of exclude is [0, 1M] and the condition for splitting a new
171 	 * region is that the start, end parameters are both in a certain
172 	 * existing region in cmem and cannot be equal to existing region's
173 	 * start or end. Obviously, the start of [0, 1M] cannot meet this
174 	 * condition.
175 	 *
176 	 * But in order to lest the low 1M could be changed in the future,
177 	 * (e.g. [start, 1M]), add a extra slot.
178 	 */
179 	nr_ranges += 3 + crashk_cma_cnt;
180 	cmem = vzalloc(struct_size(cmem, ranges, nr_ranges));
181 	if (!cmem)
182 		return NULL;
183 
184 	cmem->max_nr_ranges = nr_ranges;
185 
186 	return cmem;
187 }
188 
189 /*
190  * Look for any unwanted ranges between mstart, mend and remove them. This
191  * might lead to split and split ranges are put in cmem->ranges[] array
192  */
elf_header_exclude_ranges(struct crash_mem * cmem)193 static int elf_header_exclude_ranges(struct crash_mem *cmem)
194 {
195 	int ret = 0;
196 	int i;
197 
198 	/* Exclude the low 1M because it is always reserved */
199 	ret = crash_exclude_mem_range(cmem, 0, SZ_1M - 1);
200 	if (ret)
201 		return ret;
202 
203 	/* Exclude crashkernel region */
204 	ret = crash_exclude_mem_range(cmem, crashk_res.start, crashk_res.end);
205 	if (ret)
206 		return ret;
207 
208 	if (crashk_low_res.end)
209 		ret = crash_exclude_mem_range(cmem, crashk_low_res.start,
210 					      crashk_low_res.end);
211 	if (ret)
212 		return ret;
213 
214 	for (i = 0; i < crashk_cma_cnt; ++i) {
215 		ret = crash_exclude_mem_range(cmem, crashk_cma_ranges[i].start,
216 					      crashk_cma_ranges[i].end);
217 		if (ret)
218 			return ret;
219 	}
220 
221 	return 0;
222 }
223 
prepare_elf64_ram_headers_callback(struct resource * res,void * arg)224 static int prepare_elf64_ram_headers_callback(struct resource *res, void *arg)
225 {
226 	struct crash_mem *cmem = arg;
227 
228 	cmem->ranges[cmem->nr_ranges].start = res->start;
229 	cmem->ranges[cmem->nr_ranges].end = res->end;
230 	cmem->nr_ranges++;
231 
232 	return 0;
233 }
234 
235 /* Prepare elf headers. Return addr and size */
prepare_elf_headers(void ** addr,unsigned long * sz,unsigned long * nr_mem_ranges)236 static int prepare_elf_headers(void **addr, unsigned long *sz,
237 			       unsigned long *nr_mem_ranges)
238 {
239 	struct crash_mem *cmem;
240 	int ret;
241 
242 	cmem = fill_up_crash_elf_data();
243 	if (!cmem)
244 		return -ENOMEM;
245 
246 	ret = walk_system_ram_res(0, -1, cmem, prepare_elf64_ram_headers_callback);
247 	if (ret)
248 		goto out;
249 
250 	/* Exclude unwanted mem ranges */
251 	ret = elf_header_exclude_ranges(cmem);
252 	if (ret)
253 		goto out;
254 
255 	/* Return the computed number of memory ranges, for hotplug usage */
256 	*nr_mem_ranges = cmem->nr_ranges;
257 
258 	/* By default prepare 64bit headers */
259 	ret = crash_prepare_elf64_headers(cmem, IS_ENABLED(CONFIG_X86_64), addr, sz);
260 
261 out:
262 	vfree(cmem);
263 	return ret;
264 }
265 #endif
266 
267 #ifdef CONFIG_KEXEC_FILE
add_e820_entry(struct boot_params * params,struct e820_entry * entry)268 static int add_e820_entry(struct boot_params *params, struct e820_entry *entry)
269 {
270 	unsigned int nr_e820_entries;
271 
272 	nr_e820_entries = params->e820_entries;
273 	if (nr_e820_entries >= E820_MAX_ENTRIES_ZEROPAGE)
274 		return 1;
275 
276 	memcpy(&params->e820_table[nr_e820_entries], entry, sizeof(struct e820_entry));
277 	params->e820_entries++;
278 	return 0;
279 }
280 
memmap_entry_callback(struct resource * res,void * arg)281 static int memmap_entry_callback(struct resource *res, void *arg)
282 {
283 	struct crash_memmap_data *cmd = arg;
284 	struct boot_params *params = cmd->params;
285 	struct e820_entry ei;
286 
287 	ei.addr = res->start;
288 	ei.size = resource_size(res);
289 	ei.type = cmd->type;
290 	add_e820_entry(params, &ei);
291 
292 	return 0;
293 }
294 
memmap_exclude_ranges(struct kimage * image,struct crash_mem * cmem,unsigned long long mstart,unsigned long long mend)295 static int memmap_exclude_ranges(struct kimage *image, struct crash_mem *cmem,
296 				 unsigned long long mstart,
297 				 unsigned long long mend)
298 {
299 	unsigned long start, end;
300 	int ret;
301 
302 	cmem->ranges[0].start = mstart;
303 	cmem->ranges[0].end = mend;
304 	cmem->nr_ranges = 1;
305 
306 	/* Exclude elf header region */
307 	start = image->elf_load_addr;
308 	end = start + image->elf_headers_sz - 1;
309 	ret = crash_exclude_mem_range(cmem, start, end);
310 
311 	if (ret)
312 		return ret;
313 
314 	/* Exclude dm crypt keys region */
315 	if (image->dm_crypt_keys_addr) {
316 		start = image->dm_crypt_keys_addr;
317 		end = start + image->dm_crypt_keys_sz - 1;
318 		return crash_exclude_mem_range(cmem, start, end);
319 	}
320 
321 	return ret;
322 }
323 
324 /* Prepare memory map for crash dump kernel */
crash_setup_memmap_entries(struct kimage * image,struct boot_params * params)325 int crash_setup_memmap_entries(struct kimage *image, struct boot_params *params)
326 {
327 	unsigned int nr_ranges = 0;
328 	int i, ret = 0;
329 	unsigned long flags;
330 	struct e820_entry ei;
331 	struct crash_memmap_data cmd;
332 	struct crash_mem *cmem;
333 
334 	/*
335 	 * In the current x86 architecture code, the elfheader is always
336 	 * allocated at crashk_res.start. But it depends on the allocation
337 	 * position of elfheader in crashk_res. To avoid potential out of
338 	 * bounds in future, add an extra slot.
339 	 *
340 	 * And using random kexec_buf for passing dm crypt keys may cause a
341 	 * range split too, add another extra slot here.
342 	 */
343 	nr_ranges = 3;
344 	cmem = vzalloc(struct_size(cmem, ranges, nr_ranges));
345 	if (!cmem)
346 		return -ENOMEM;
347 
348 	cmem->max_nr_ranges = nr_ranges;
349 
350 	memset(&cmd, 0, sizeof(struct crash_memmap_data));
351 	cmd.params = params;
352 
353 	/* Add the low 1M */
354 	cmd.type = E820_TYPE_RAM;
355 	flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
356 	walk_iomem_res_desc(IORES_DESC_NONE, flags, 0, (1<<20)-1, &cmd,
357 			    memmap_entry_callback);
358 
359 	/* Add ACPI tables */
360 	cmd.type = E820_TYPE_ACPI;
361 	flags = IORESOURCE_MEM | IORESOURCE_BUSY;
362 	walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1, &cmd,
363 			    memmap_entry_callback);
364 
365 	/* Add ACPI Non-volatile Storage */
366 	cmd.type = E820_TYPE_NVS;
367 	walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1, &cmd,
368 			    memmap_entry_callback);
369 
370 	/* Add e820 reserved ranges */
371 	cmd.type = E820_TYPE_RESERVED;
372 	flags = IORESOURCE_MEM;
373 	walk_iomem_res_desc(IORES_DESC_RESERVED, flags, 0, -1, &cmd,
374 			    memmap_entry_callback);
375 
376 	/* Add crashk_low_res region */
377 	if (crashk_low_res.end) {
378 		ei.addr = crashk_low_res.start;
379 		ei.size = resource_size(&crashk_low_res);
380 		ei.type = E820_TYPE_RAM;
381 		add_e820_entry(params, &ei);
382 	}
383 
384 	/* Exclude some ranges from crashk_res and add rest to memmap */
385 	ret = memmap_exclude_ranges(image, cmem, crashk_res.start, crashk_res.end);
386 	if (ret)
387 		goto out;
388 
389 	for (i = 0; i < cmem->nr_ranges; i++) {
390 		ei.size = cmem->ranges[i].end - cmem->ranges[i].start + 1;
391 
392 		/* If entry is less than a page, skip it */
393 		if (ei.size < PAGE_SIZE)
394 			continue;
395 		ei.addr = cmem->ranges[i].start;
396 		ei.type = E820_TYPE_RAM;
397 		add_e820_entry(params, &ei);
398 	}
399 
400 	for (i = 0; i < crashk_cma_cnt; ++i) {
401 		ei.addr = crashk_cma_ranges[i].start;
402 		ei.size = crashk_cma_ranges[i].end -
403 			  crashk_cma_ranges[i].start + 1;
404 		ei.type = E820_TYPE_RAM;
405 		add_e820_entry(params, &ei);
406 	}
407 
408 out:
409 	vfree(cmem);
410 	return ret;
411 }
412 
crash_load_segments(struct kimage * image)413 int crash_load_segments(struct kimage *image)
414 {
415 	int ret;
416 	unsigned long pnum = 0;
417 	struct kexec_buf kbuf = { .image = image, .buf_min = 0,
418 				  .buf_max = ULONG_MAX, .top_down = false };
419 
420 	/* Prepare elf headers and add a segment */
421 	ret = prepare_elf_headers(&kbuf.buffer, &kbuf.bufsz, &pnum);
422 	if (ret)
423 		return ret;
424 
425 	image->elf_headers	= kbuf.buffer;
426 	image->elf_headers_sz	= kbuf.bufsz;
427 	kbuf.memsz		= kbuf.bufsz;
428 
429 #ifdef CONFIG_CRASH_HOTPLUG
430 	/*
431 	 * The elfcorehdr segment size accounts for VMCOREINFO, kernel_map,
432 	 * maximum CPUs and maximum memory ranges.
433 	 */
434 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG))
435 		pnum = 2 + CONFIG_NR_CPUS_DEFAULT + CONFIG_CRASH_MAX_MEMORY_RANGES;
436 	else
437 		pnum += 2 + CONFIG_NR_CPUS_DEFAULT;
438 
439 	if (pnum < (unsigned long)PN_XNUM) {
440 		kbuf.memsz = pnum * sizeof(Elf64_Phdr);
441 		kbuf.memsz += sizeof(Elf64_Ehdr);
442 
443 		image->elfcorehdr_index = image->nr_segments;
444 
445 		/* Mark as usable to crash kernel, else crash kernel fails on boot */
446 		image->elf_headers_sz = kbuf.memsz;
447 	} else {
448 		pr_err("number of Phdrs %lu exceeds max\n", pnum);
449 	}
450 #endif
451 
452 	kbuf.buf_align = ELF_CORE_HEADER_ALIGN;
453 	kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
454 	ret = kexec_add_buffer(&kbuf);
455 	if (ret)
456 		return ret;
457 	image->elf_load_addr = kbuf.mem;
458 	kexec_dprintk("Loaded ELF headers at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
459 		      image->elf_load_addr, kbuf.bufsz, kbuf.memsz);
460 
461 	return ret;
462 }
463 #endif /* CONFIG_KEXEC_FILE */
464 
465 #ifdef CONFIG_CRASH_HOTPLUG
466 
467 #undef pr_fmt
468 #define pr_fmt(fmt) "crash hp: " fmt
469 
arch_crash_hotplug_support(struct kimage * image,unsigned long kexec_flags)470 int arch_crash_hotplug_support(struct kimage *image, unsigned long kexec_flags)
471 {
472 
473 #ifdef CONFIG_KEXEC_FILE
474 	if (image->file_mode)
475 		return 1;
476 #endif
477 	/*
478 	 * Initially, crash hotplug support for kexec_load was added
479 	 * with the KEXEC_UPDATE_ELFCOREHDR flag. Later, this
480 	 * functionality was expanded to accommodate multiple kexec
481 	 * segment updates, leading to the introduction of the
482 	 * KEXEC_CRASH_HOTPLUG_SUPPORT kexec flag bit. Consequently,
483 	 * when the kexec tool sends either of these flags, it indicates
484 	 * that the required kexec segment (elfcorehdr) is excluded from
485 	 * the SHA calculation.
486 	 */
487 	return (kexec_flags & KEXEC_UPDATE_ELFCOREHDR ||
488 		kexec_flags & KEXEC_CRASH_HOTPLUG_SUPPORT);
489 }
490 
arch_crash_get_elfcorehdr_size(void)491 unsigned int arch_crash_get_elfcorehdr_size(void)
492 {
493 	unsigned int sz;
494 
495 	/* kernel_map, VMCOREINFO and maximum CPUs */
496 	sz = 2 + CONFIG_NR_CPUS_DEFAULT;
497 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG))
498 		sz += CONFIG_CRASH_MAX_MEMORY_RANGES;
499 	sz *= sizeof(Elf64_Phdr);
500 	return sz;
501 }
502 
503 /**
504  * arch_crash_handle_hotplug_event() - Handle hotplug elfcorehdr changes
505  * @image: a pointer to kexec_crash_image
506  * @arg: struct memory_notify handler for memory hotplug case and
507  *       NULL for CPU hotplug case.
508  *
509  * Prepare the new elfcorehdr and replace the existing elfcorehdr.
510  */
arch_crash_handle_hotplug_event(struct kimage * image,void * arg)511 void arch_crash_handle_hotplug_event(struct kimage *image, void *arg)
512 {
513 	void *elfbuf = NULL, *old_elfcorehdr;
514 	unsigned long nr_mem_ranges;
515 	unsigned long mem, memsz;
516 	unsigned long elfsz = 0;
517 
518 	/*
519 	 * As crash_prepare_elf64_headers() has already described all
520 	 * possible CPUs, there is no need to update the elfcorehdr
521 	 * for additional CPU changes.
522 	 */
523 	if ((image->file_mode || image->elfcorehdr_updated) &&
524 		((image->hp_action == KEXEC_CRASH_HP_ADD_CPU) ||
525 		(image->hp_action == KEXEC_CRASH_HP_REMOVE_CPU)))
526 		return;
527 
528 	/*
529 	 * Create the new elfcorehdr reflecting the changes to CPU and/or
530 	 * memory resources.
531 	 */
532 	if (prepare_elf_headers(&elfbuf, &elfsz, &nr_mem_ranges)) {
533 		pr_err("unable to create new elfcorehdr");
534 		goto out;
535 	}
536 
537 	/*
538 	 * Obtain address and size of the elfcorehdr segment, and
539 	 * check it against the new elfcorehdr buffer.
540 	 */
541 	mem = image->segment[image->elfcorehdr_index].mem;
542 	memsz = image->segment[image->elfcorehdr_index].memsz;
543 	if (elfsz > memsz) {
544 		pr_err("update elfcorehdr elfsz %lu > memsz %lu",
545 			elfsz, memsz);
546 		goto out;
547 	}
548 
549 	/*
550 	 * Copy new elfcorehdr over the old elfcorehdr at destination.
551 	 */
552 	old_elfcorehdr = kmap_local_page(pfn_to_page(mem >> PAGE_SHIFT));
553 	if (!old_elfcorehdr) {
554 		pr_err("mapping elfcorehdr segment failed\n");
555 		goto out;
556 	}
557 
558 	/*
559 	 * Temporarily invalidate the crash image while the
560 	 * elfcorehdr is updated.
561 	 */
562 	xchg(&kexec_crash_image, NULL);
563 	memcpy_flushcache(old_elfcorehdr, elfbuf, elfsz);
564 	xchg(&kexec_crash_image, image);
565 	kunmap_local(old_elfcorehdr);
566 	pr_debug("updated elfcorehdr\n");
567 
568 out:
569 	vfree(elfbuf);
570 }
571 #endif
572