1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/clocksource/arm_arch_timer.c
4 *
5 * Copyright (C) 2011 ARM Ltd.
6 * All Rights Reserved
7 */
8
9 #define pr_fmt(fmt) "arch_timer: " fmt
10
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/clocksource_ids.h>
20 #include <linux/interrupt.h>
21 #include <linux/kstrtox.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_address.h>
24 #include <linux/io.h>
25 #include <linux/slab.h>
26 #include <linux/sched/clock.h>
27 #include <linux/sched_clock.h>
28 #include <linux/acpi.h>
29 #include <linux/arm-smccc.h>
30 #include <linux/ptp_kvm.h>
31
32 #include <asm/arch_timer.h>
33 #include <asm/virt.h>
34
35 #include <clocksource/arm_arch_timer.h>
36
37 /*
38 * The minimum amount of time a generic counter is guaranteed to not roll over
39 * (40 years)
40 */
41 #define MIN_ROLLOVER_SECS (40ULL * 365 * 24 * 3600)
42
43 static u32 arch_timer_rate __ro_after_init;
44 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
45
46 static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
47 [ARCH_TIMER_PHYS_SECURE_PPI] = "sec-phys",
48 [ARCH_TIMER_PHYS_NONSECURE_PPI] = "phys",
49 [ARCH_TIMER_VIRT_PPI] = "virt",
50 [ARCH_TIMER_HYP_PPI] = "hyp-phys",
51 [ARCH_TIMER_HYP_VIRT_PPI] = "hyp-virt",
52 };
53
54 static struct clock_event_device __percpu *arch_timer_evt;
55
56 static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
57 static bool arch_timer_c3stop __ro_after_init;
58 static bool arch_counter_suspend_stop __ro_after_init;
59 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
60 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
61 #else
62 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
63 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
64
65 static cpumask_t evtstrm_available = CPU_MASK_NONE;
66 static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
67
early_evtstrm_cfg(char * buf)68 static int __init early_evtstrm_cfg(char *buf)
69 {
70 return kstrtobool(buf, &evtstrm_enable);
71 }
72 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
73
74 /*
75 * Makes an educated guess at a valid counter width based on the Generic Timer
76 * specification. Of note:
77 * 1) the system counter is at least 56 bits wide
78 * 2) a roll-over time of not less than 40 years
79 *
80 * See 'ARM DDI 0487G.a D11.1.2 ("The system counter")' for more details.
81 */
arch_counter_get_width(void)82 static int arch_counter_get_width(void)
83 {
84 u64 min_cycles = MIN_ROLLOVER_SECS * arch_timer_rate;
85
86 /* guarantee the returned width is within the valid range */
87 return clamp_val(ilog2(min_cycles - 1) + 1, 56, 64);
88 }
89
90 /*
91 * Architected system timer support.
92 */
raw_counter_get_cntpct_stable(void)93 static noinstr u64 raw_counter_get_cntpct_stable(void)
94 {
95 return __arch_counter_get_cntpct_stable();
96 }
97
arch_counter_get_cntpct_stable(void)98 static notrace u64 arch_counter_get_cntpct_stable(void)
99 {
100 u64 val;
101 preempt_disable_notrace();
102 val = __arch_counter_get_cntpct_stable();
103 preempt_enable_notrace();
104 return val;
105 }
106
arch_counter_get_cntpct(void)107 static noinstr u64 arch_counter_get_cntpct(void)
108 {
109 return __arch_counter_get_cntpct();
110 }
111
raw_counter_get_cntvct_stable(void)112 static noinstr u64 raw_counter_get_cntvct_stable(void)
113 {
114 return __arch_counter_get_cntvct_stable();
115 }
116
arch_counter_get_cntvct_stable(void)117 static notrace u64 arch_counter_get_cntvct_stable(void)
118 {
119 u64 val;
120 preempt_disable_notrace();
121 val = __arch_counter_get_cntvct_stable();
122 preempt_enable_notrace();
123 return val;
124 }
125
arch_counter_get_cntvct(void)126 static noinstr u64 arch_counter_get_cntvct(void)
127 {
128 return __arch_counter_get_cntvct();
129 }
130
131 /*
132 * Default to cp15 based access because arm64 uses this function for
133 * sched_clock() before DT is probed and the cp15 method is guaranteed
134 * to exist on arm64. arm doesn't use this before DT is probed so even
135 * if we don't have the cp15 accessors we won't have a problem.
136 */
137 u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
138 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
139
arch_counter_read(struct clocksource * cs)140 static u64 arch_counter_read(struct clocksource *cs)
141 {
142 return arch_timer_read_counter();
143 }
144
arch_counter_read_cc(struct cyclecounter * cc)145 static u64 arch_counter_read_cc(struct cyclecounter *cc)
146 {
147 return arch_timer_read_counter();
148 }
149
150 static struct clocksource clocksource_counter = {
151 .name = "arch_sys_counter",
152 .id = CSID_ARM_ARCH_COUNTER,
153 .rating = 400,
154 .read = arch_counter_read,
155 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
156 };
157
158 static struct cyclecounter cyclecounter __ro_after_init = {
159 .read = arch_counter_read_cc,
160 };
161
162 struct ate_acpi_oem_info {
163 char oem_id[ACPI_OEM_ID_SIZE + 1];
164 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
165 u32 oem_revision;
166 };
167
168 #ifdef CONFIG_FSL_ERRATUM_A008585
169 /*
170 * The number of retries is an arbitrary value well beyond the highest number
171 * of iterations the loop has been observed to take.
172 */
173 #define __fsl_a008585_read_reg(reg) ({ \
174 u64 _old, _new; \
175 int _retries = 200; \
176 \
177 do { \
178 _old = read_sysreg(reg); \
179 _new = read_sysreg(reg); \
180 _retries--; \
181 } while (unlikely(_old != _new) && _retries); \
182 \
183 WARN_ON_ONCE(!_retries); \
184 _new; \
185 })
186
fsl_a008585_read_cntpct_el0(void)187 static u64 notrace fsl_a008585_read_cntpct_el0(void)
188 {
189 return __fsl_a008585_read_reg(cntpct_el0);
190 }
191
fsl_a008585_read_cntvct_el0(void)192 static u64 notrace fsl_a008585_read_cntvct_el0(void)
193 {
194 return __fsl_a008585_read_reg(cntvct_el0);
195 }
196 #endif
197
198 #ifdef CONFIG_HISILICON_ERRATUM_161010101
199 /*
200 * Verify whether the value of the second read is larger than the first by
201 * less than 32 is the only way to confirm the value is correct, so clear the
202 * lower 5 bits to check whether the difference is greater than 32 or not.
203 * Theoretically the erratum should not occur more than twice in succession
204 * when reading the system counter, but it is possible that some interrupts
205 * may lead to more than twice read errors, triggering the warning, so setting
206 * the number of retries far beyond the number of iterations the loop has been
207 * observed to take.
208 */
209 #define __hisi_161010101_read_reg(reg) ({ \
210 u64 _old, _new; \
211 int _retries = 50; \
212 \
213 do { \
214 _old = read_sysreg(reg); \
215 _new = read_sysreg(reg); \
216 _retries--; \
217 } while (unlikely((_new - _old) >> 5) && _retries); \
218 \
219 WARN_ON_ONCE(!_retries); \
220 _new; \
221 })
222
hisi_161010101_read_cntpct_el0(void)223 static u64 notrace hisi_161010101_read_cntpct_el0(void)
224 {
225 return __hisi_161010101_read_reg(cntpct_el0);
226 }
227
hisi_161010101_read_cntvct_el0(void)228 static u64 notrace hisi_161010101_read_cntvct_el0(void)
229 {
230 return __hisi_161010101_read_reg(cntvct_el0);
231 }
232
233 static const struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
234 /*
235 * Note that trailing spaces are required to properly match
236 * the OEM table information.
237 */
238 {
239 .oem_id = "HISI ",
240 .oem_table_id = "HIP05 ",
241 .oem_revision = 0,
242 },
243 {
244 .oem_id = "HISI ",
245 .oem_table_id = "HIP06 ",
246 .oem_revision = 0,
247 },
248 {
249 .oem_id = "HISI ",
250 .oem_table_id = "HIP07 ",
251 .oem_revision = 0,
252 },
253 { /* Sentinel indicating the end of the OEM array */ },
254 };
255 #endif
256
257 #ifdef CONFIG_ARM64_ERRATUM_858921
arm64_858921_read_cntpct_el0(void)258 static u64 notrace arm64_858921_read_cntpct_el0(void)
259 {
260 u64 old, new;
261
262 old = read_sysreg(cntpct_el0);
263 new = read_sysreg(cntpct_el0);
264 return (((old ^ new) >> 32) & 1) ? old : new;
265 }
266
arm64_858921_read_cntvct_el0(void)267 static u64 notrace arm64_858921_read_cntvct_el0(void)
268 {
269 u64 old, new;
270
271 old = read_sysreg(cntvct_el0);
272 new = read_sysreg(cntvct_el0);
273 return (((old ^ new) >> 32) & 1) ? old : new;
274 }
275 #endif
276
277 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
278 /*
279 * The low bits of the counter registers are indeterminate while bit 10 or
280 * greater is rolling over. Since the counter value can jump both backward
281 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
282 * with all ones or all zeros in the low bits. Bound the loop by the maximum
283 * number of CPU cycles in 3 consecutive 24 MHz counter periods.
284 */
285 #define __sun50i_a64_read_reg(reg) ({ \
286 u64 _val; \
287 int _retries = 150; \
288 \
289 do { \
290 _val = read_sysreg(reg); \
291 _retries--; \
292 } while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries); \
293 \
294 WARN_ON_ONCE(!_retries); \
295 _val; \
296 })
297
sun50i_a64_read_cntpct_el0(void)298 static u64 notrace sun50i_a64_read_cntpct_el0(void)
299 {
300 return __sun50i_a64_read_reg(cntpct_el0);
301 }
302
sun50i_a64_read_cntvct_el0(void)303 static u64 notrace sun50i_a64_read_cntvct_el0(void)
304 {
305 return __sun50i_a64_read_reg(cntvct_el0);
306 }
307 #endif
308
309 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
310 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
311 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
312
313 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
314
315 /*
316 * Force the inlining of this function so that the register accesses
317 * can be themselves correctly inlined.
318 */
319 static __always_inline
erratum_set_next_event_generic(const int access,unsigned long evt,struct clock_event_device * clk)320 void erratum_set_next_event_generic(const int access, unsigned long evt,
321 struct clock_event_device *clk)
322 {
323 unsigned long ctrl;
324 u64 cval;
325
326 ctrl = arch_timer_reg_read_cp15(access, ARCH_TIMER_REG_CTRL);
327 ctrl |= ARCH_TIMER_CTRL_ENABLE;
328 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
329
330 if (access == ARCH_TIMER_PHYS_ACCESS) {
331 cval = evt + arch_counter_get_cntpct_stable();
332 write_sysreg(cval, cntp_cval_el0);
333 } else {
334 cval = evt + arch_counter_get_cntvct_stable();
335 write_sysreg(cval, cntv_cval_el0);
336 }
337
338 arch_timer_reg_write_cp15(access, ARCH_TIMER_REG_CTRL, ctrl);
339 }
340
erratum_set_next_event_virt(unsigned long evt,struct clock_event_device * clk)341 static __maybe_unused int erratum_set_next_event_virt(unsigned long evt,
342 struct clock_event_device *clk)
343 {
344 erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
345 return 0;
346 }
347
erratum_set_next_event_phys(unsigned long evt,struct clock_event_device * clk)348 static __maybe_unused int erratum_set_next_event_phys(unsigned long evt,
349 struct clock_event_device *clk)
350 {
351 erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
352 return 0;
353 }
354
355 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
356 #ifdef CONFIG_FSL_ERRATUM_A008585
357 {
358 .match_type = ate_match_dt,
359 .id = "fsl,erratum-a008585",
360 .desc = "Freescale erratum a005858",
361 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
362 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
363 .set_next_event_phys = erratum_set_next_event_phys,
364 .set_next_event_virt = erratum_set_next_event_virt,
365 },
366 #endif
367 #ifdef CONFIG_HISILICON_ERRATUM_161010101
368 {
369 .match_type = ate_match_dt,
370 .id = "hisilicon,erratum-161010101",
371 .desc = "HiSilicon erratum 161010101",
372 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
373 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
374 .set_next_event_phys = erratum_set_next_event_phys,
375 .set_next_event_virt = erratum_set_next_event_virt,
376 },
377 {
378 .match_type = ate_match_acpi_oem_info,
379 .id = hisi_161010101_oem_info,
380 .desc = "HiSilicon erratum 161010101",
381 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
382 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
383 .set_next_event_phys = erratum_set_next_event_phys,
384 .set_next_event_virt = erratum_set_next_event_virt,
385 },
386 #endif
387 #ifdef CONFIG_ARM64_ERRATUM_858921
388 {
389 .match_type = ate_match_local_cap_id,
390 .id = (void *)ARM64_WORKAROUND_858921,
391 .desc = "ARM erratum 858921",
392 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
393 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
394 .set_next_event_phys = erratum_set_next_event_phys,
395 .set_next_event_virt = erratum_set_next_event_virt,
396 },
397 #endif
398 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
399 {
400 .match_type = ate_match_dt,
401 .id = "allwinner,erratum-unknown1",
402 .desc = "Allwinner erratum UNKNOWN1",
403 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
404 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
405 .set_next_event_phys = erratum_set_next_event_phys,
406 .set_next_event_virt = erratum_set_next_event_virt,
407 },
408 #endif
409 #ifdef CONFIG_ARM64_ERRATUM_1418040
410 {
411 .match_type = ate_match_local_cap_id,
412 .id = (void *)ARM64_WORKAROUND_1418040,
413 .desc = "ARM erratum 1418040",
414 .disable_compat_vdso = true,
415 },
416 #endif
417 };
418
419 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
420 const void *);
421
422 static
arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)423 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
424 const void *arg)
425 {
426 const struct device_node *np = arg;
427
428 return of_property_read_bool(np, wa->id);
429 }
430
431 static
arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)432 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
433 const void *arg)
434 {
435 return this_cpu_has_cap((uintptr_t)wa->id);
436 }
437
438
439 static
arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)440 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
441 const void *arg)
442 {
443 static const struct ate_acpi_oem_info empty_oem_info = {};
444 const struct ate_acpi_oem_info *info = wa->id;
445 const struct acpi_table_header *table = arg;
446
447 /* Iterate over the ACPI OEM info array, looking for a match */
448 while (memcmp(info, &empty_oem_info, sizeof(*info))) {
449 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
450 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
451 info->oem_revision == table->oem_revision)
452 return true;
453
454 info++;
455 }
456
457 return false;
458 }
459
460 static const struct arch_timer_erratum_workaround *
arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,ate_match_fn_t match_fn,void * arg)461 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
462 ate_match_fn_t match_fn,
463 void *arg)
464 {
465 int i;
466
467 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
468 if (ool_workarounds[i].match_type != type)
469 continue;
470
471 if (match_fn(&ool_workarounds[i], arg))
472 return &ool_workarounds[i];
473 }
474
475 return NULL;
476 }
477
478 static
arch_timer_enable_workaround(const struct arch_timer_erratum_workaround * wa,bool local)479 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
480 bool local)
481 {
482 int i;
483
484 if (local) {
485 __this_cpu_write(timer_unstable_counter_workaround, wa);
486 } else {
487 for_each_possible_cpu(i)
488 per_cpu(timer_unstable_counter_workaround, i) = wa;
489 }
490
491 if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
492 atomic_set(&timer_unstable_counter_workaround_in_use, 1);
493
494 /*
495 * Don't use the vdso fastpath if errata require using the
496 * out-of-line counter accessor. We may change our mind pretty
497 * late in the game (with a per-CPU erratum, for example), so
498 * change both the default value and the vdso itself.
499 */
500 if (wa->read_cntvct_el0) {
501 clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
502 vdso_default = VDSO_CLOCKMODE_NONE;
503 } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
504 vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
505 clocksource_counter.vdso_clock_mode = vdso_default;
506 }
507 }
508
arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,void * arg)509 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
510 void *arg)
511 {
512 const struct arch_timer_erratum_workaround *wa, *__wa;
513 ate_match_fn_t match_fn = NULL;
514 bool local = false;
515
516 switch (type) {
517 case ate_match_dt:
518 match_fn = arch_timer_check_dt_erratum;
519 break;
520 case ate_match_local_cap_id:
521 match_fn = arch_timer_check_local_cap_erratum;
522 local = true;
523 break;
524 case ate_match_acpi_oem_info:
525 match_fn = arch_timer_check_acpi_oem_erratum;
526 break;
527 default:
528 WARN_ON(1);
529 return;
530 }
531
532 wa = arch_timer_iterate_errata(type, match_fn, arg);
533 if (!wa)
534 return;
535
536 __wa = __this_cpu_read(timer_unstable_counter_workaround);
537 if (__wa && wa != __wa)
538 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
539 wa->desc, __wa->desc);
540
541 if (__wa)
542 return;
543
544 arch_timer_enable_workaround(wa, local);
545 pr_info("Enabling %s workaround for %s\n",
546 local ? "local" : "global", wa->desc);
547 }
548
arch_timer_this_cpu_has_cntvct_wa(void)549 static bool arch_timer_this_cpu_has_cntvct_wa(void)
550 {
551 return has_erratum_handler(read_cntvct_el0);
552 }
553
arch_timer_counter_has_wa(void)554 static bool arch_timer_counter_has_wa(void)
555 {
556 return atomic_read(&timer_unstable_counter_workaround_in_use);
557 }
558 #else
559 #define arch_timer_check_ool_workaround(t,a) do { } while(0)
560 #define arch_timer_this_cpu_has_cntvct_wa() ({false;})
561 #define arch_timer_counter_has_wa() ({false;})
562 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
563
timer_handler(const int access,struct clock_event_device * evt)564 static __always_inline irqreturn_t timer_handler(const int access,
565 struct clock_event_device *evt)
566 {
567 unsigned long ctrl;
568
569 ctrl = arch_timer_reg_read_cp15(access, ARCH_TIMER_REG_CTRL);
570 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
571 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
572 arch_timer_reg_write_cp15(access, ARCH_TIMER_REG_CTRL, ctrl);
573 evt->event_handler(evt);
574 return IRQ_HANDLED;
575 }
576
577 return IRQ_NONE;
578 }
579
arch_timer_handler_virt(int irq,void * dev_id)580 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
581 {
582 struct clock_event_device *evt = dev_id;
583
584 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
585 }
586
arch_timer_handler_phys(int irq,void * dev_id)587 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
588 {
589 struct clock_event_device *evt = dev_id;
590
591 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
592 }
593
arch_timer_shutdown(const int access,struct clock_event_device * clk)594 static __always_inline int arch_timer_shutdown(const int access,
595 struct clock_event_device *clk)
596 {
597 unsigned long ctrl;
598
599 ctrl = arch_timer_reg_read_cp15(access, ARCH_TIMER_REG_CTRL);
600 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
601 arch_timer_reg_write_cp15(access, ARCH_TIMER_REG_CTRL, ctrl);
602
603 return 0;
604 }
605
arch_timer_shutdown_virt(struct clock_event_device * clk)606 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
607 {
608 return arch_timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
609 }
610
arch_timer_shutdown_phys(struct clock_event_device * clk)611 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
612 {
613 return arch_timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
614 }
615
set_next_event(const int access,unsigned long evt,struct clock_event_device * clk)616 static __always_inline void set_next_event(const int access, unsigned long evt,
617 struct clock_event_device *clk)
618 {
619 unsigned long ctrl;
620 u64 cnt;
621
622 ctrl = arch_timer_reg_read_cp15(access, ARCH_TIMER_REG_CTRL);
623 ctrl |= ARCH_TIMER_CTRL_ENABLE;
624 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
625
626 if (access == ARCH_TIMER_PHYS_ACCESS)
627 cnt = __arch_counter_get_cntpct();
628 else
629 cnt = __arch_counter_get_cntvct();
630
631 arch_timer_reg_write_cp15(access, ARCH_TIMER_REG_CVAL, evt + cnt);
632 arch_timer_reg_write_cp15(access, ARCH_TIMER_REG_CTRL, ctrl);
633 }
634
arch_timer_set_next_event_virt(unsigned long evt,struct clock_event_device * clk)635 static int arch_timer_set_next_event_virt(unsigned long evt,
636 struct clock_event_device *clk)
637 {
638 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
639 return 0;
640 }
641
arch_timer_set_next_event_phys(unsigned long evt,struct clock_event_device * clk)642 static int arch_timer_set_next_event_phys(unsigned long evt,
643 struct clock_event_device *clk)
644 {
645 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
646 return 0;
647 }
648
__arch_timer_check_delta(void)649 static u64 __arch_timer_check_delta(void)
650 {
651 #ifdef CONFIG_ARM64
652 const struct midr_range broken_cval_midrs[] = {
653 /*
654 * XGene-1 implements CVAL in terms of TVAL, meaning
655 * that the maximum timer range is 32bit. Shame on them.
656 *
657 * Note that TVAL is signed, thus has only 31 of its
658 * 32 bits to express magnitude.
659 */
660 MIDR_REV_RANGE(MIDR_CPU_MODEL(ARM_CPU_IMP_APM,
661 APM_CPU_PART_XGENE),
662 APM_CPU_VAR_POTENZA, 0x0, 0xf),
663 {},
664 };
665
666 if (is_midr_in_range_list(broken_cval_midrs)) {
667 pr_warn_once("Broken CNTx_CVAL_EL1, using 31 bit TVAL instead.\n");
668 return CLOCKSOURCE_MASK(31);
669 }
670 #endif
671 return CLOCKSOURCE_MASK(arch_counter_get_width());
672 }
673
__arch_timer_setup(struct clock_event_device * clk)674 static void __arch_timer_setup(struct clock_event_device *clk)
675 {
676 typeof(clk->set_next_event) sne;
677 u64 max_delta;
678
679 clk->features = CLOCK_EVT_FEAT_ONESHOT;
680
681 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
682
683 if (arch_timer_c3stop)
684 clk->features |= CLOCK_EVT_FEAT_C3STOP;
685 clk->name = "arch_sys_timer";
686 clk->rating = 450;
687 clk->cpumask = cpumask_of(smp_processor_id());
688 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
689 switch (arch_timer_uses_ppi) {
690 case ARCH_TIMER_VIRT_PPI:
691 clk->set_state_shutdown = arch_timer_shutdown_virt;
692 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
693 sne = erratum_handler(set_next_event_virt);
694 break;
695 case ARCH_TIMER_PHYS_SECURE_PPI:
696 case ARCH_TIMER_PHYS_NONSECURE_PPI:
697 case ARCH_TIMER_HYP_PPI:
698 clk->set_state_shutdown = arch_timer_shutdown_phys;
699 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
700 sne = erratum_handler(set_next_event_phys);
701 break;
702 default:
703 BUG();
704 }
705
706 clk->set_next_event = sne;
707 max_delta = __arch_timer_check_delta();
708
709 clk->set_state_shutdown(clk);
710
711 clockevents_config_and_register(clk, arch_timer_rate, 0xf, max_delta);
712 }
713
arch_timer_evtstrm_enable(unsigned int divider)714 static void arch_timer_evtstrm_enable(unsigned int divider)
715 {
716 u32 cntkctl = arch_timer_get_cntkctl();
717
718 #ifdef CONFIG_ARM64
719 /* ECV is likely to require a large divider. Use the EVNTIS flag. */
720 if (cpus_have_final_cap(ARM64_HAS_ECV) && divider > 15) {
721 cntkctl |= ARCH_TIMER_EVT_INTERVAL_SCALE;
722 divider -= 8;
723 }
724 #endif
725
726 divider = min(divider, 15U);
727 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
728 /* Set the divider and enable virtual event stream */
729 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
730 | ARCH_TIMER_VIRT_EVT_EN;
731 arch_timer_set_cntkctl(cntkctl);
732 arch_timer_set_evtstrm_feature();
733 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
734 }
735
arch_timer_configure_evtstream(void)736 static void arch_timer_configure_evtstream(void)
737 {
738 int evt_stream_div, lsb;
739
740 /*
741 * As the event stream can at most be generated at half the frequency
742 * of the counter, use half the frequency when computing the divider.
743 */
744 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
745
746 /*
747 * Find the closest power of two to the divisor. If the adjacent bit
748 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
749 */
750 lsb = fls(evt_stream_div) - 1;
751 if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
752 lsb++;
753
754 /* enable event stream */
755 arch_timer_evtstrm_enable(max(0, lsb));
756 }
757
arch_timer_evtstrm_starting_cpu(unsigned int cpu)758 static int arch_timer_evtstrm_starting_cpu(unsigned int cpu)
759 {
760 arch_timer_configure_evtstream();
761 return 0;
762 }
763
arch_timer_evtstrm_dying_cpu(unsigned int cpu)764 static int arch_timer_evtstrm_dying_cpu(unsigned int cpu)
765 {
766 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
767 return 0;
768 }
769
arch_timer_evtstrm_register(void)770 static int __init arch_timer_evtstrm_register(void)
771 {
772 if (!arch_timer_evt || !evtstrm_enable)
773 return 0;
774
775 return cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_EVTSTRM_STARTING,
776 "clockevents/arm/arch_timer_evtstrm:starting",
777 arch_timer_evtstrm_starting_cpu,
778 arch_timer_evtstrm_dying_cpu);
779 }
780 core_initcall(arch_timer_evtstrm_register);
781
arch_counter_set_user_access(void)782 static void arch_counter_set_user_access(void)
783 {
784 u32 cntkctl = arch_timer_get_cntkctl();
785
786 /* Disable user access to the timers and both counters */
787 /* Also disable virtual event stream */
788 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
789 | ARCH_TIMER_USR_VT_ACCESS_EN
790 | ARCH_TIMER_USR_VCT_ACCESS_EN
791 | ARCH_TIMER_VIRT_EVT_EN
792 | ARCH_TIMER_USR_PCT_ACCESS_EN);
793
794 /*
795 * Enable user access to the virtual counter if it doesn't
796 * need to be workaround. The vdso may have been already
797 * disabled though.
798 */
799 if (arch_timer_this_cpu_has_cntvct_wa())
800 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
801 else
802 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
803
804 arch_timer_set_cntkctl(cntkctl);
805 }
806
arch_timer_has_nonsecure_ppi(void)807 static bool arch_timer_has_nonsecure_ppi(void)
808 {
809 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
810 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
811 }
812
check_ppi_trigger(int irq)813 static u32 check_ppi_trigger(int irq)
814 {
815 u32 flags = irq_get_trigger_type(irq);
816
817 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
818 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
819 pr_warn("WARNING: Please fix your firmware\n");
820 flags = IRQF_TRIGGER_LOW;
821 }
822
823 return flags;
824 }
825
arch_timer_starting_cpu(unsigned int cpu)826 static int arch_timer_starting_cpu(unsigned int cpu)
827 {
828 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
829 u32 flags;
830
831 __arch_timer_setup(clk);
832
833 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
834 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
835
836 if (arch_timer_has_nonsecure_ppi()) {
837 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
838 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
839 flags);
840 }
841
842 arch_counter_set_user_access();
843
844 return 0;
845 }
846
validate_timer_rate(void)847 static int validate_timer_rate(void)
848 {
849 if (!arch_timer_rate)
850 return -EINVAL;
851
852 /* Arch timer frequency < 1MHz can cause trouble */
853 WARN_ON(arch_timer_rate < 1000000);
854
855 return 0;
856 }
857
858 /*
859 * For historical reasons, when probing with DT we use whichever (non-zero)
860 * rate was probed first, and don't verify that others match. If the first node
861 * probed has a clock-frequency property, this overrides the HW register.
862 */
arch_timer_of_configure_rate(u32 rate,struct device_node * np)863 static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
864 {
865 /* Who has more than one independent system counter? */
866 if (arch_timer_rate)
867 return;
868
869 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
870 arch_timer_rate = rate;
871
872 /* Check the timer frequency. */
873 if (validate_timer_rate())
874 pr_warn("frequency not available\n");
875 }
876
arch_timer_banner(void)877 static void __init arch_timer_banner(void)
878 {
879 pr_info("cp15 timer running at %lu.%02luMHz (%s).\n",
880 (unsigned long)arch_timer_rate / 1000000,
881 (unsigned long)(arch_timer_rate / 10000) % 100,
882 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys");
883 }
884
arch_timer_get_rate(void)885 u32 arch_timer_get_rate(void)
886 {
887 return arch_timer_rate;
888 }
889
arch_timer_evtstrm_available(void)890 bool arch_timer_evtstrm_available(void)
891 {
892 /*
893 * We might get called from a preemptible context. This is fine
894 * because availability of the event stream should be always the same
895 * for a preemptible context and context where we might resume a task.
896 */
897 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
898 }
899
900 static struct arch_timer_kvm_info arch_timer_kvm_info;
901
arch_timer_get_kvm_info(void)902 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
903 {
904 return &arch_timer_kvm_info;
905 }
906
arch_counter_register(void)907 static void __init arch_counter_register(void)
908 {
909 u64 (*scr)(void);
910 u64 (*rd)(void);
911 u64 start_count;
912 int width;
913
914 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
915 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
916 if (arch_timer_counter_has_wa()) {
917 rd = arch_counter_get_cntvct_stable;
918 scr = raw_counter_get_cntvct_stable;
919 } else {
920 rd = arch_counter_get_cntvct;
921 scr = arch_counter_get_cntvct;
922 }
923 } else {
924 if (arch_timer_counter_has_wa()) {
925 rd = arch_counter_get_cntpct_stable;
926 scr = raw_counter_get_cntpct_stable;
927 } else {
928 rd = arch_counter_get_cntpct;
929 scr = arch_counter_get_cntpct;
930 }
931 }
932
933 arch_timer_read_counter = rd;
934 clocksource_counter.vdso_clock_mode = vdso_default;
935
936 width = arch_counter_get_width();
937 clocksource_counter.mask = CLOCKSOURCE_MASK(width);
938 cyclecounter.mask = CLOCKSOURCE_MASK(width);
939
940 if (!arch_counter_suspend_stop)
941 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
942 start_count = arch_timer_read_counter();
943 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
944 cyclecounter.mult = clocksource_counter.mult;
945 cyclecounter.shift = clocksource_counter.shift;
946 timecounter_init(&arch_timer_kvm_info.timecounter,
947 &cyclecounter, start_count);
948
949 sched_clock_register(scr, width, arch_timer_rate);
950 }
951
arch_timer_stop(struct clock_event_device * clk)952 static void arch_timer_stop(struct clock_event_device *clk)
953 {
954 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
955
956 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
957 if (arch_timer_has_nonsecure_ppi())
958 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
959 }
960
arch_timer_dying_cpu(unsigned int cpu)961 static int arch_timer_dying_cpu(unsigned int cpu)
962 {
963 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
964
965 arch_timer_stop(clk);
966 return 0;
967 }
968
969 #ifdef CONFIG_CPU_PM
970 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
arch_timer_cpu_pm_notify(struct notifier_block * self,unsigned long action,void * hcpu)971 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
972 unsigned long action, void *hcpu)
973 {
974 if (action == CPU_PM_ENTER) {
975 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
976
977 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
978 } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
979 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
980
981 if (arch_timer_have_evtstrm_feature())
982 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
983 }
984 return NOTIFY_OK;
985 }
986
987 static struct notifier_block arch_timer_cpu_pm_notifier = {
988 .notifier_call = arch_timer_cpu_pm_notify,
989 };
990
arch_timer_cpu_pm_init(void)991 static int __init arch_timer_cpu_pm_init(void)
992 {
993 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
994 }
995
arch_timer_cpu_pm_deinit(void)996 static void __init arch_timer_cpu_pm_deinit(void)
997 {
998 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
999 }
1000
1001 #else
arch_timer_cpu_pm_init(void)1002 static int __init arch_timer_cpu_pm_init(void)
1003 {
1004 return 0;
1005 }
1006
arch_timer_cpu_pm_deinit(void)1007 static void __init arch_timer_cpu_pm_deinit(void)
1008 {
1009 }
1010 #endif
1011
arch_timer_register(void)1012 static int __init arch_timer_register(void)
1013 {
1014 int err;
1015 int ppi;
1016
1017 arch_timer_evt = alloc_percpu(struct clock_event_device);
1018 if (!arch_timer_evt) {
1019 err = -ENOMEM;
1020 goto out;
1021 }
1022
1023 ppi = arch_timer_ppi[arch_timer_uses_ppi];
1024 switch (arch_timer_uses_ppi) {
1025 case ARCH_TIMER_VIRT_PPI:
1026 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1027 "arch_timer", arch_timer_evt);
1028 break;
1029 case ARCH_TIMER_PHYS_SECURE_PPI:
1030 case ARCH_TIMER_PHYS_NONSECURE_PPI:
1031 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1032 "arch_timer", arch_timer_evt);
1033 if (!err && arch_timer_has_nonsecure_ppi()) {
1034 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1035 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1036 "arch_timer", arch_timer_evt);
1037 if (err)
1038 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1039 arch_timer_evt);
1040 }
1041 break;
1042 case ARCH_TIMER_HYP_PPI:
1043 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1044 "arch_timer", arch_timer_evt);
1045 break;
1046 default:
1047 BUG();
1048 }
1049
1050 if (err) {
1051 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1052 goto out_free;
1053 }
1054
1055 err = arch_timer_cpu_pm_init();
1056 if (err)
1057 goto out_unreg_notify;
1058
1059 /* Register and immediately configure the timer on the boot CPU */
1060 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1061 "clockevents/arm/arch_timer:starting",
1062 arch_timer_starting_cpu, arch_timer_dying_cpu);
1063 if (err)
1064 goto out_unreg_cpupm;
1065 return 0;
1066
1067 out_unreg_cpupm:
1068 arch_timer_cpu_pm_deinit();
1069
1070 out_unreg_notify:
1071 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1072 if (arch_timer_has_nonsecure_ppi())
1073 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1074 arch_timer_evt);
1075
1076 out_free:
1077 free_percpu(arch_timer_evt);
1078 arch_timer_evt = NULL;
1079 out:
1080 return err;
1081 }
1082
arch_timer_common_init(void)1083 static int __init arch_timer_common_init(void)
1084 {
1085 arch_timer_banner();
1086 arch_counter_register();
1087 return arch_timer_arch_init();
1088 }
1089
1090 /**
1091 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1092 *
1093 * If HYP mode is available, we know that the physical timer
1094 * has been configured to be accessible from PL1. Use it, so
1095 * that a guest can use the virtual timer instead.
1096 *
1097 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1098 * accesses to CNTP_*_EL1 registers are silently redirected to
1099 * their CNTHP_*_EL2 counterparts, and use a different PPI
1100 * number.
1101 *
1102 * If no interrupt provided for virtual timer, we'll have to
1103 * stick to the physical timer. It'd better be accessible...
1104 * For arm64 we never use the secure interrupt.
1105 *
1106 * Return: a suitable PPI type for the current system.
1107 */
arch_timer_select_ppi(void)1108 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1109 {
1110 if (is_kernel_in_hyp_mode())
1111 return ARCH_TIMER_HYP_PPI;
1112
1113 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1114 return ARCH_TIMER_VIRT_PPI;
1115
1116 if (IS_ENABLED(CONFIG_ARM64))
1117 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1118
1119 return ARCH_TIMER_PHYS_SECURE_PPI;
1120 }
1121
arch_timer_populate_kvm_info(void)1122 static void __init arch_timer_populate_kvm_info(void)
1123 {
1124 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1125 if (is_kernel_in_hyp_mode())
1126 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1127 }
1128
arch_timer_of_init(struct device_node * np)1129 static int __init arch_timer_of_init(struct device_node *np)
1130 {
1131 int i, irq, ret;
1132 u32 rate;
1133 bool has_names;
1134
1135 if (arch_timer_evt) {
1136 pr_warn("multiple nodes in dt, skipping\n");
1137 return 0;
1138 }
1139
1140 has_names = of_property_present(np, "interrupt-names");
1141
1142 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
1143 if (has_names)
1144 irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
1145 else
1146 irq = of_irq_get(np, i);
1147 if (irq > 0)
1148 arch_timer_ppi[i] = irq;
1149 }
1150
1151 arch_timer_populate_kvm_info();
1152
1153 rate = arch_timer_get_cntfrq();
1154 arch_timer_of_configure_rate(rate, np);
1155
1156 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1157
1158 /* Check for globally applicable workarounds */
1159 arch_timer_check_ool_workaround(ate_match_dt, np);
1160
1161 /*
1162 * If we cannot rely on firmware initializing the timer registers then
1163 * we should use the physical timers instead.
1164 */
1165 if (IS_ENABLED(CONFIG_ARM) &&
1166 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1167 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1168 else
1169 arch_timer_uses_ppi = arch_timer_select_ppi();
1170
1171 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1172 pr_err("No interrupt available, giving up\n");
1173 return -EINVAL;
1174 }
1175
1176 /* On some systems, the counter stops ticking when in suspend. */
1177 arch_counter_suspend_stop = of_property_read_bool(np,
1178 "arm,no-tick-in-suspend");
1179
1180 ret = arch_timer_register();
1181 if (ret)
1182 return ret;
1183
1184 return arch_timer_common_init();
1185 }
1186 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1187 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1188
1189 #ifdef CONFIG_ACPI_GTDT
arch_timer_acpi_init(struct acpi_table_header * table)1190 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1191 {
1192 int ret;
1193
1194 if (arch_timer_evt) {
1195 pr_warn("already initialized, skipping\n");
1196 return -EINVAL;
1197 }
1198
1199 ret = acpi_gtdt_init(table, NULL);
1200 if (ret)
1201 return ret;
1202
1203 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1204 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1205
1206 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1207 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1208
1209 arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1210 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1211
1212 arch_timer_populate_kvm_info();
1213
1214 /*
1215 * When probing via ACPI, we have no mechanism to override the sysreg
1216 * CNTFRQ value. This *must* be correct.
1217 */
1218 arch_timer_rate = arch_timer_get_cntfrq();
1219 ret = validate_timer_rate();
1220 if (ret) {
1221 pr_err(FW_BUG "frequency not available.\n");
1222 return ret;
1223 }
1224
1225 arch_timer_uses_ppi = arch_timer_select_ppi();
1226 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1227 pr_err("No interrupt available, giving up\n");
1228 return -EINVAL;
1229 }
1230
1231 /* Always-on capability */
1232 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1233
1234 /* Check for globally applicable workarounds */
1235 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1236
1237 ret = arch_timer_register();
1238 if (ret)
1239 return ret;
1240
1241 return arch_timer_common_init();
1242 }
1243 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1244 #endif
1245
kvm_arch_ptp_get_crosststamp(u64 * cycle,struct timespec64 * ts,enum clocksource_ids * cs_id)1246 int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts,
1247 enum clocksource_ids *cs_id)
1248 {
1249 struct arm_smccc_res hvc_res;
1250 u32 ptp_counter;
1251 ktime_t ktime;
1252
1253 if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY))
1254 return -EOPNOTSUPP;
1255
1256 if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1257 ptp_counter = KVM_PTP_VIRT_COUNTER;
1258 else
1259 ptp_counter = KVM_PTP_PHYS_COUNTER;
1260
1261 arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID,
1262 ptp_counter, &hvc_res);
1263
1264 if ((int)(hvc_res.a0) < 0)
1265 return -EOPNOTSUPP;
1266
1267 ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1;
1268 *ts = ktime_to_timespec64(ktime);
1269 if (cycle)
1270 *cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3;
1271 if (cs_id)
1272 *cs_id = CSID_ARM_ARCH_COUNTER;
1273
1274 return 0;
1275 }
1276 EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);
1277