xref: /linux/drivers/clocksource/arm_arch_timer.c (revision 70de5572a82b3d510df31d2c572c15cd53a00870)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/clocksource/arm_arch_timer.c
4  *
5  *  Copyright (C) 2011 ARM Ltd.
6  *  All Rights Reserved
7  */
8 
9 #define pr_fmt(fmt) 	"arch_timer: " fmt
10 
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/clocksource_ids.h>
20 #include <linux/interrupt.h>
21 #include <linux/kstrtox.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_address.h>
24 #include <linux/io.h>
25 #include <linux/slab.h>
26 #include <linux/sched/clock.h>
27 #include <linux/sched_clock.h>
28 #include <linux/acpi.h>
29 #include <linux/arm-smccc.h>
30 #include <linux/ptp_kvm.h>
31 
32 #include <asm/arch_timer.h>
33 #include <asm/virt.h>
34 
35 #include <clocksource/arm_arch_timer.h>
36 
37 /*
38  * The minimum amount of time a generic counter is guaranteed to not roll over
39  * (40 years)
40  */
41 #define MIN_ROLLOVER_SECS	(40ULL * 365 * 24 * 3600)
42 
43 static u32 arch_timer_rate __ro_after_init;
44 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
45 
46 static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
47 	[ARCH_TIMER_PHYS_SECURE_PPI]	= "sec-phys",
48 	[ARCH_TIMER_PHYS_NONSECURE_PPI]	= "phys",
49 	[ARCH_TIMER_VIRT_PPI]		= "virt",
50 	[ARCH_TIMER_HYP_PPI]		= "hyp-phys",
51 	[ARCH_TIMER_HYP_VIRT_PPI]	= "hyp-virt",
52 };
53 
54 static struct clock_event_device __percpu *arch_timer_evt;
55 
56 static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
57 static bool arch_timer_c3stop __ro_after_init;
58 static bool arch_counter_suspend_stop __ro_after_init;
59 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
60 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
61 #else
62 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
63 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
64 
65 static cpumask_t evtstrm_available = CPU_MASK_NONE;
66 static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
67 
early_evtstrm_cfg(char * buf)68 static int __init early_evtstrm_cfg(char *buf)
69 {
70 	return kstrtobool(buf, &evtstrm_enable);
71 }
72 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
73 
74 /*
75  * Makes an educated guess at a valid counter width based on the Generic Timer
76  * specification. Of note:
77  *   1) the system counter is at least 56 bits wide
78  *   2) a roll-over time of not less than 40 years
79  *
80  * See 'ARM DDI 0487G.a D11.1.2 ("The system counter")' for more details.
81  */
arch_counter_get_width(void)82 static int arch_counter_get_width(void)
83 {
84 	u64 min_cycles = MIN_ROLLOVER_SECS * arch_timer_rate;
85 
86 	/* guarantee the returned width is within the valid range */
87 	return clamp_val(ilog2(min_cycles - 1) + 1, 56, 64);
88 }
89 
90 /*
91  * Architected system timer support.
92  */
raw_counter_get_cntpct_stable(void)93 static noinstr u64 raw_counter_get_cntpct_stable(void)
94 {
95 	return __arch_counter_get_cntpct_stable();
96 }
97 
arch_counter_get_cntpct_stable(void)98 static notrace u64 arch_counter_get_cntpct_stable(void)
99 {
100 	u64 val;
101 	preempt_disable_notrace();
102 	val = __arch_counter_get_cntpct_stable();
103 	preempt_enable_notrace();
104 	return val;
105 }
106 
arch_counter_get_cntpct(void)107 static noinstr u64 arch_counter_get_cntpct(void)
108 {
109 	return __arch_counter_get_cntpct();
110 }
111 
raw_counter_get_cntvct_stable(void)112 static noinstr u64 raw_counter_get_cntvct_stable(void)
113 {
114 	return __arch_counter_get_cntvct_stable();
115 }
116 
arch_counter_get_cntvct_stable(void)117 static notrace u64 arch_counter_get_cntvct_stable(void)
118 {
119 	u64 val;
120 	preempt_disable_notrace();
121 	val = __arch_counter_get_cntvct_stable();
122 	preempt_enable_notrace();
123 	return val;
124 }
125 
arch_counter_get_cntvct(void)126 static noinstr u64 arch_counter_get_cntvct(void)
127 {
128 	return __arch_counter_get_cntvct();
129 }
130 
131 /*
132  * Default to cp15 based access because arm64 uses this function for
133  * sched_clock() before DT is probed and the cp15 method is guaranteed
134  * to exist on arm64. arm doesn't use this before DT is probed so even
135  * if we don't have the cp15 accessors we won't have a problem.
136  */
137 u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
138 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
139 
arch_counter_read(struct clocksource * cs)140 static u64 arch_counter_read(struct clocksource *cs)
141 {
142 	return arch_timer_read_counter();
143 }
144 
arch_counter_read_cc(struct cyclecounter * cc)145 static u64 arch_counter_read_cc(struct cyclecounter *cc)
146 {
147 	return arch_timer_read_counter();
148 }
149 
150 static struct clocksource clocksource_counter = {
151 	.name	= "arch_sys_counter",
152 	.id	= CSID_ARM_ARCH_COUNTER,
153 	.rating	= 400,
154 	.read	= arch_counter_read,
155 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
156 };
157 
158 static struct cyclecounter cyclecounter __ro_after_init = {
159 	.read	= arch_counter_read_cc,
160 };
161 
162 struct ate_acpi_oem_info {
163 	char oem_id[ACPI_OEM_ID_SIZE + 1];
164 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
165 	u32 oem_revision;
166 };
167 
168 #ifdef CONFIG_FSL_ERRATUM_A008585
169 /*
170  * The number of retries is an arbitrary value well beyond the highest number
171  * of iterations the loop has been observed to take.
172  */
173 #define __fsl_a008585_read_reg(reg) ({			\
174 	u64 _old, _new;					\
175 	int _retries = 200;				\
176 							\
177 	do {						\
178 		_old = read_sysreg(reg);		\
179 		_new = read_sysreg(reg);		\
180 		_retries--;				\
181 	} while (unlikely(_old != _new) && _retries);	\
182 							\
183 	WARN_ON_ONCE(!_retries);			\
184 	_new;						\
185 })
186 
fsl_a008585_read_cntpct_el0(void)187 static u64 notrace fsl_a008585_read_cntpct_el0(void)
188 {
189 	return __fsl_a008585_read_reg(cntpct_el0);
190 }
191 
fsl_a008585_read_cntvct_el0(void)192 static u64 notrace fsl_a008585_read_cntvct_el0(void)
193 {
194 	return __fsl_a008585_read_reg(cntvct_el0);
195 }
196 #endif
197 
198 #ifdef CONFIG_HISILICON_ERRATUM_161010101
199 /*
200  * Verify whether the value of the second read is larger than the first by
201  * less than 32 is the only way to confirm the value is correct, so clear the
202  * lower 5 bits to check whether the difference is greater than 32 or not.
203  * Theoretically the erratum should not occur more than twice in succession
204  * when reading the system counter, but it is possible that some interrupts
205  * may lead to more than twice read errors, triggering the warning, so setting
206  * the number of retries far beyond the number of iterations the loop has been
207  * observed to take.
208  */
209 #define __hisi_161010101_read_reg(reg) ({				\
210 	u64 _old, _new;						\
211 	int _retries = 50;					\
212 								\
213 	do {							\
214 		_old = read_sysreg(reg);			\
215 		_new = read_sysreg(reg);			\
216 		_retries--;					\
217 	} while (unlikely((_new - _old) >> 5) && _retries);	\
218 								\
219 	WARN_ON_ONCE(!_retries);				\
220 	_new;							\
221 })
222 
hisi_161010101_read_cntpct_el0(void)223 static u64 notrace hisi_161010101_read_cntpct_el0(void)
224 {
225 	return __hisi_161010101_read_reg(cntpct_el0);
226 }
227 
hisi_161010101_read_cntvct_el0(void)228 static u64 notrace hisi_161010101_read_cntvct_el0(void)
229 {
230 	return __hisi_161010101_read_reg(cntvct_el0);
231 }
232 
233 static const struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
234 	/*
235 	 * Note that trailing spaces are required to properly match
236 	 * the OEM table information.
237 	 */
238 	{
239 		.oem_id		= "HISI  ",
240 		.oem_table_id	= "HIP05   ",
241 		.oem_revision	= 0,
242 	},
243 	{
244 		.oem_id		= "HISI  ",
245 		.oem_table_id	= "HIP06   ",
246 		.oem_revision	= 0,
247 	},
248 	{
249 		.oem_id		= "HISI  ",
250 		.oem_table_id	= "HIP07   ",
251 		.oem_revision	= 0,
252 	},
253 	{ /* Sentinel indicating the end of the OEM array */ },
254 };
255 #endif
256 
257 #ifdef CONFIG_ARM64_ERRATUM_858921
arm64_858921_read_cntpct_el0(void)258 static u64 notrace arm64_858921_read_cntpct_el0(void)
259 {
260 	u64 old, new;
261 
262 	old = read_sysreg(cntpct_el0);
263 	new = read_sysreg(cntpct_el0);
264 	return (((old ^ new) >> 32) & 1) ? old : new;
265 }
266 
arm64_858921_read_cntvct_el0(void)267 static u64 notrace arm64_858921_read_cntvct_el0(void)
268 {
269 	u64 old, new;
270 
271 	old = read_sysreg(cntvct_el0);
272 	new = read_sysreg(cntvct_el0);
273 	return (((old ^ new) >> 32) & 1) ? old : new;
274 }
275 #endif
276 
277 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
278 /*
279  * The low bits of the counter registers are indeterminate while bit 10 or
280  * greater is rolling over. Since the counter value can jump both backward
281  * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
282  * with all ones or all zeros in the low bits. Bound the loop by the maximum
283  * number of CPU cycles in 3 consecutive 24 MHz counter periods.
284  */
285 #define __sun50i_a64_read_reg(reg) ({					\
286 	u64 _val;							\
287 	int _retries = 150;						\
288 									\
289 	do {								\
290 		_val = read_sysreg(reg);				\
291 		_retries--;						\
292 	} while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries);	\
293 									\
294 	WARN_ON_ONCE(!_retries);					\
295 	_val;								\
296 })
297 
sun50i_a64_read_cntpct_el0(void)298 static u64 notrace sun50i_a64_read_cntpct_el0(void)
299 {
300 	return __sun50i_a64_read_reg(cntpct_el0);
301 }
302 
sun50i_a64_read_cntvct_el0(void)303 static u64 notrace sun50i_a64_read_cntvct_el0(void)
304 {
305 	return __sun50i_a64_read_reg(cntvct_el0);
306 }
307 #endif
308 
309 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
310 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
311 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
312 
313 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
314 
315 /*
316  * Force the inlining of this function so that the register accesses
317  * can be themselves correctly inlined.
318  */
319 static __always_inline
erratum_set_next_event_generic(const int access,unsigned long evt,struct clock_event_device * clk)320 void erratum_set_next_event_generic(const int access, unsigned long evt,
321 				    struct clock_event_device *clk)
322 {
323 	unsigned long ctrl;
324 	u64 cval;
325 
326 	ctrl = arch_timer_reg_read_cp15(access, ARCH_TIMER_REG_CTRL);
327 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
328 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
329 
330 	if (access == ARCH_TIMER_PHYS_ACCESS) {
331 		cval = evt + arch_counter_get_cntpct_stable();
332 		write_sysreg(cval, cntp_cval_el0);
333 	} else {
334 		cval = evt + arch_counter_get_cntvct_stable();
335 		write_sysreg(cval, cntv_cval_el0);
336 	}
337 
338 	arch_timer_reg_write_cp15(access, ARCH_TIMER_REG_CTRL, ctrl);
339 }
340 
erratum_set_next_event_virt(unsigned long evt,struct clock_event_device * clk)341 static __maybe_unused int erratum_set_next_event_virt(unsigned long evt,
342 					    struct clock_event_device *clk)
343 {
344 	erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
345 	return 0;
346 }
347 
erratum_set_next_event_phys(unsigned long evt,struct clock_event_device * clk)348 static __maybe_unused int erratum_set_next_event_phys(unsigned long evt,
349 					    struct clock_event_device *clk)
350 {
351 	erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
352 	return 0;
353 }
354 
355 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
356 #ifdef CONFIG_FSL_ERRATUM_A008585
357 	{
358 		.match_type = ate_match_dt,
359 		.id = "fsl,erratum-a008585",
360 		.desc = "Freescale erratum a005858",
361 		.read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
362 		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
363 		.set_next_event_phys = erratum_set_next_event_phys,
364 		.set_next_event_virt = erratum_set_next_event_virt,
365 	},
366 #endif
367 #ifdef CONFIG_HISILICON_ERRATUM_161010101
368 	{
369 		.match_type = ate_match_dt,
370 		.id = "hisilicon,erratum-161010101",
371 		.desc = "HiSilicon erratum 161010101",
372 		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
373 		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
374 		.set_next_event_phys = erratum_set_next_event_phys,
375 		.set_next_event_virt = erratum_set_next_event_virt,
376 	},
377 	{
378 		.match_type = ate_match_acpi_oem_info,
379 		.id = hisi_161010101_oem_info,
380 		.desc = "HiSilicon erratum 161010101",
381 		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
382 		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
383 		.set_next_event_phys = erratum_set_next_event_phys,
384 		.set_next_event_virt = erratum_set_next_event_virt,
385 	},
386 #endif
387 #ifdef CONFIG_ARM64_ERRATUM_858921
388 	{
389 		.match_type = ate_match_local_cap_id,
390 		.id = (void *)ARM64_WORKAROUND_858921,
391 		.desc = "ARM erratum 858921",
392 		.read_cntpct_el0 = arm64_858921_read_cntpct_el0,
393 		.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
394 		.set_next_event_phys = erratum_set_next_event_phys,
395 		.set_next_event_virt = erratum_set_next_event_virt,
396 	},
397 #endif
398 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
399 	{
400 		.match_type = ate_match_dt,
401 		.id = "allwinner,erratum-unknown1",
402 		.desc = "Allwinner erratum UNKNOWN1",
403 		.read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
404 		.read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
405 		.set_next_event_phys = erratum_set_next_event_phys,
406 		.set_next_event_virt = erratum_set_next_event_virt,
407 	},
408 #endif
409 #ifdef CONFIG_ARM64_ERRATUM_1418040
410 	{
411 		.match_type = ate_match_local_cap_id,
412 		.id = (void *)ARM64_WORKAROUND_1418040,
413 		.desc = "ARM erratum 1418040",
414 		.disable_compat_vdso = true,
415 	},
416 #endif
417 };
418 
419 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
420 			       const void *);
421 
422 static
arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)423 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
424 				 const void *arg)
425 {
426 	const struct device_node *np = arg;
427 
428 	return of_property_read_bool(np, wa->id);
429 }
430 
431 static
arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)432 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
433 					const void *arg)
434 {
435 	return this_cpu_has_cap((uintptr_t)wa->id);
436 }
437 
438 
439 static
arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)440 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
441 				       const void *arg)
442 {
443 	static const struct ate_acpi_oem_info empty_oem_info = {};
444 	const struct ate_acpi_oem_info *info = wa->id;
445 	const struct acpi_table_header *table = arg;
446 
447 	/* Iterate over the ACPI OEM info array, looking for a match */
448 	while (memcmp(info, &empty_oem_info, sizeof(*info))) {
449 		if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
450 		    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
451 		    info->oem_revision == table->oem_revision)
452 			return true;
453 
454 		info++;
455 	}
456 
457 	return false;
458 }
459 
460 static const struct arch_timer_erratum_workaround *
arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,ate_match_fn_t match_fn,void * arg)461 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
462 			  ate_match_fn_t match_fn,
463 			  void *arg)
464 {
465 	int i;
466 
467 	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
468 		if (ool_workarounds[i].match_type != type)
469 			continue;
470 
471 		if (match_fn(&ool_workarounds[i], arg))
472 			return &ool_workarounds[i];
473 	}
474 
475 	return NULL;
476 }
477 
478 static
arch_timer_enable_workaround(const struct arch_timer_erratum_workaround * wa,bool local)479 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
480 				  bool local)
481 {
482 	int i;
483 
484 	if (local) {
485 		__this_cpu_write(timer_unstable_counter_workaround, wa);
486 	} else {
487 		for_each_possible_cpu(i)
488 			per_cpu(timer_unstable_counter_workaround, i) = wa;
489 	}
490 
491 	if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
492 		atomic_set(&timer_unstable_counter_workaround_in_use, 1);
493 
494 	/*
495 	 * Don't use the vdso fastpath if errata require using the
496 	 * out-of-line counter accessor. We may change our mind pretty
497 	 * late in the game (with a per-CPU erratum, for example), so
498 	 * change both the default value and the vdso itself.
499 	 */
500 	if (wa->read_cntvct_el0) {
501 		clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
502 		vdso_default = VDSO_CLOCKMODE_NONE;
503 	} else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
504 		vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
505 		clocksource_counter.vdso_clock_mode = vdso_default;
506 	}
507 }
508 
arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,void * arg)509 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
510 					    void *arg)
511 {
512 	const struct arch_timer_erratum_workaround *wa, *__wa;
513 	ate_match_fn_t match_fn = NULL;
514 	bool local = false;
515 
516 	switch (type) {
517 	case ate_match_dt:
518 		match_fn = arch_timer_check_dt_erratum;
519 		break;
520 	case ate_match_local_cap_id:
521 		match_fn = arch_timer_check_local_cap_erratum;
522 		local = true;
523 		break;
524 	case ate_match_acpi_oem_info:
525 		match_fn = arch_timer_check_acpi_oem_erratum;
526 		break;
527 	default:
528 		WARN_ON(1);
529 		return;
530 	}
531 
532 	wa = arch_timer_iterate_errata(type, match_fn, arg);
533 	if (!wa)
534 		return;
535 
536 	__wa = __this_cpu_read(timer_unstable_counter_workaround);
537 	if (__wa && wa != __wa)
538 		pr_warn("Can't enable workaround for %s (clashes with %s\n)",
539 			wa->desc, __wa->desc);
540 
541 	if (__wa)
542 		return;
543 
544 	arch_timer_enable_workaround(wa, local);
545 	pr_info("Enabling %s workaround for %s\n",
546 		local ? "local" : "global", wa->desc);
547 }
548 
arch_timer_this_cpu_has_cntvct_wa(void)549 static bool arch_timer_this_cpu_has_cntvct_wa(void)
550 {
551 	return has_erratum_handler(read_cntvct_el0);
552 }
553 
arch_timer_counter_has_wa(void)554 static bool arch_timer_counter_has_wa(void)
555 {
556 	return atomic_read(&timer_unstable_counter_workaround_in_use);
557 }
558 #else
559 #define arch_timer_check_ool_workaround(t,a)		do { } while(0)
560 #define arch_timer_this_cpu_has_cntvct_wa()		({false;})
561 #define arch_timer_counter_has_wa()			({false;})
562 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
563 
timer_handler(const int access,struct clock_event_device * evt)564 static __always_inline irqreturn_t timer_handler(const int access,
565 					struct clock_event_device *evt)
566 {
567 	unsigned long ctrl;
568 
569 	ctrl = arch_timer_reg_read_cp15(access, ARCH_TIMER_REG_CTRL);
570 	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
571 		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
572 		arch_timer_reg_write_cp15(access, ARCH_TIMER_REG_CTRL, ctrl);
573 		evt->event_handler(evt);
574 		return IRQ_HANDLED;
575 	}
576 
577 	return IRQ_NONE;
578 }
579 
arch_timer_handler_virt(int irq,void * dev_id)580 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
581 {
582 	struct clock_event_device *evt = dev_id;
583 
584 	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
585 }
586 
arch_timer_handler_phys(int irq,void * dev_id)587 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
588 {
589 	struct clock_event_device *evt = dev_id;
590 
591 	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
592 }
593 
arch_timer_shutdown(const int access,struct clock_event_device * clk)594 static __always_inline int arch_timer_shutdown(const int access,
595 					       struct clock_event_device *clk)
596 {
597 	unsigned long ctrl;
598 
599 	ctrl = arch_timer_reg_read_cp15(access, ARCH_TIMER_REG_CTRL);
600 	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
601 	arch_timer_reg_write_cp15(access, ARCH_TIMER_REG_CTRL, ctrl);
602 
603 	return 0;
604 }
605 
arch_timer_shutdown_virt(struct clock_event_device * clk)606 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
607 {
608 	return arch_timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
609 }
610 
arch_timer_shutdown_phys(struct clock_event_device * clk)611 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
612 {
613 	return arch_timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
614 }
615 
set_next_event(const int access,unsigned long evt,struct clock_event_device * clk)616 static __always_inline void set_next_event(const int access, unsigned long evt,
617 					   struct clock_event_device *clk)
618 {
619 	unsigned long ctrl;
620 	u64 cnt;
621 
622 	ctrl = arch_timer_reg_read_cp15(access, ARCH_TIMER_REG_CTRL);
623 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
624 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
625 
626 	if (access == ARCH_TIMER_PHYS_ACCESS)
627 		cnt = __arch_counter_get_cntpct();
628 	else
629 		cnt = __arch_counter_get_cntvct();
630 
631 	arch_timer_reg_write_cp15(access, ARCH_TIMER_REG_CVAL, evt + cnt);
632 	arch_timer_reg_write_cp15(access, ARCH_TIMER_REG_CTRL, ctrl);
633 }
634 
arch_timer_set_next_event_virt(unsigned long evt,struct clock_event_device * clk)635 static int arch_timer_set_next_event_virt(unsigned long evt,
636 					  struct clock_event_device *clk)
637 {
638 	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
639 	return 0;
640 }
641 
arch_timer_set_next_event_phys(unsigned long evt,struct clock_event_device * clk)642 static int arch_timer_set_next_event_phys(unsigned long evt,
643 					  struct clock_event_device *clk)
644 {
645 	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
646 	return 0;
647 }
648 
__arch_timer_check_delta(void)649 static u64 __arch_timer_check_delta(void)
650 {
651 #ifdef CONFIG_ARM64
652 	const struct midr_range broken_cval_midrs[] = {
653 		/*
654 		 * XGene-1 implements CVAL in terms of TVAL, meaning
655 		 * that the maximum timer range is 32bit. Shame on them.
656 		 *
657 		 * Note that TVAL is signed, thus has only 31 of its
658 		 * 32 bits to express magnitude.
659 		 */
660 		MIDR_REV_RANGE(MIDR_CPU_MODEL(ARM_CPU_IMP_APM,
661 					      APM_CPU_PART_XGENE),
662 			       APM_CPU_VAR_POTENZA, 0x0, 0xf),
663 		{},
664 	};
665 
666 	if (is_midr_in_range_list(broken_cval_midrs)) {
667 		pr_warn_once("Broken CNTx_CVAL_EL1, using 31 bit TVAL instead.\n");
668 		return CLOCKSOURCE_MASK(31);
669 	}
670 #endif
671 	return CLOCKSOURCE_MASK(arch_counter_get_width());
672 }
673 
__arch_timer_setup(struct clock_event_device * clk)674 static void __arch_timer_setup(struct clock_event_device *clk)
675 {
676 	typeof(clk->set_next_event) sne;
677 	u64 max_delta;
678 
679 	clk->features = CLOCK_EVT_FEAT_ONESHOT;
680 
681 	arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
682 
683 	if (arch_timer_c3stop)
684 		clk->features |= CLOCK_EVT_FEAT_C3STOP;
685 	clk->name = "arch_sys_timer";
686 	clk->rating = 450;
687 	clk->cpumask = cpumask_of(smp_processor_id());
688 	clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
689 	switch (arch_timer_uses_ppi) {
690 	case ARCH_TIMER_VIRT_PPI:
691 		clk->set_state_shutdown = arch_timer_shutdown_virt;
692 		clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
693 		sne = erratum_handler(set_next_event_virt);
694 		break;
695 	case ARCH_TIMER_PHYS_SECURE_PPI:
696 	case ARCH_TIMER_PHYS_NONSECURE_PPI:
697 	case ARCH_TIMER_HYP_PPI:
698 		clk->set_state_shutdown = arch_timer_shutdown_phys;
699 		clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
700 		sne = erratum_handler(set_next_event_phys);
701 		break;
702 	default:
703 		BUG();
704 	}
705 
706 	clk->set_next_event = sne;
707 	max_delta = __arch_timer_check_delta();
708 
709 	clk->set_state_shutdown(clk);
710 
711 	clockevents_config_and_register(clk, arch_timer_rate, 0xf, max_delta);
712 }
713 
arch_timer_evtstrm_enable(unsigned int divider)714 static void arch_timer_evtstrm_enable(unsigned int divider)
715 {
716 	u32 cntkctl = arch_timer_get_cntkctl();
717 
718 #ifdef CONFIG_ARM64
719 	/* ECV is likely to require a large divider. Use the EVNTIS flag. */
720 	if (cpus_have_final_cap(ARM64_HAS_ECV) && divider > 15) {
721 		cntkctl |= ARCH_TIMER_EVT_INTERVAL_SCALE;
722 		divider -= 8;
723 	}
724 #endif
725 
726 	divider = min(divider, 15U);
727 	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
728 	/* Set the divider and enable virtual event stream */
729 	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
730 			| ARCH_TIMER_VIRT_EVT_EN;
731 	arch_timer_set_cntkctl(cntkctl);
732 	arch_timer_set_evtstrm_feature();
733 	cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
734 }
735 
arch_timer_configure_evtstream(void)736 static void arch_timer_configure_evtstream(void)
737 {
738 	int evt_stream_div, lsb;
739 
740 	/*
741 	 * As the event stream can at most be generated at half the frequency
742 	 * of the counter, use half the frequency when computing the divider.
743 	 */
744 	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
745 
746 	/*
747 	 * Find the closest power of two to the divisor. If the adjacent bit
748 	 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
749 	 */
750 	lsb = fls(evt_stream_div) - 1;
751 	if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
752 		lsb++;
753 
754 	/* enable event stream */
755 	arch_timer_evtstrm_enable(max(0, lsb));
756 }
757 
arch_timer_evtstrm_starting_cpu(unsigned int cpu)758 static int arch_timer_evtstrm_starting_cpu(unsigned int cpu)
759 {
760 	arch_timer_configure_evtstream();
761 	return 0;
762 }
763 
arch_timer_evtstrm_dying_cpu(unsigned int cpu)764 static int arch_timer_evtstrm_dying_cpu(unsigned int cpu)
765 {
766 	cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
767 	return 0;
768 }
769 
arch_timer_evtstrm_register(void)770 static int __init arch_timer_evtstrm_register(void)
771 {
772 	if (!arch_timer_evt || !evtstrm_enable)
773 		return 0;
774 
775 	return cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_EVTSTRM_STARTING,
776 				 "clockevents/arm/arch_timer_evtstrm:starting",
777 				 arch_timer_evtstrm_starting_cpu,
778 				 arch_timer_evtstrm_dying_cpu);
779 }
780 core_initcall(arch_timer_evtstrm_register);
781 
arch_counter_set_user_access(void)782 static void arch_counter_set_user_access(void)
783 {
784 	u32 cntkctl = arch_timer_get_cntkctl();
785 
786 	/* Disable user access to the timers and both counters */
787 	/* Also disable virtual event stream */
788 	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
789 			| ARCH_TIMER_USR_VT_ACCESS_EN
790 		        | ARCH_TIMER_USR_VCT_ACCESS_EN
791 			| ARCH_TIMER_VIRT_EVT_EN
792 			| ARCH_TIMER_USR_PCT_ACCESS_EN);
793 
794 	/*
795 	 * Enable user access to the virtual counter if it doesn't
796 	 * need to be workaround. The vdso may have been already
797 	 * disabled though.
798 	 */
799 	if (arch_timer_this_cpu_has_cntvct_wa())
800 		pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
801 	else
802 		cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
803 
804 	arch_timer_set_cntkctl(cntkctl);
805 }
806 
arch_timer_has_nonsecure_ppi(void)807 static bool arch_timer_has_nonsecure_ppi(void)
808 {
809 	return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
810 		arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
811 }
812 
check_ppi_trigger(int irq)813 static u32 check_ppi_trigger(int irq)
814 {
815 	u32 flags = irq_get_trigger_type(irq);
816 
817 	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
818 		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
819 		pr_warn("WARNING: Please fix your firmware\n");
820 		flags = IRQF_TRIGGER_LOW;
821 	}
822 
823 	return flags;
824 }
825 
arch_timer_starting_cpu(unsigned int cpu)826 static int arch_timer_starting_cpu(unsigned int cpu)
827 {
828 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
829 	u32 flags;
830 
831 	__arch_timer_setup(clk);
832 
833 	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
834 	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
835 
836 	if (arch_timer_has_nonsecure_ppi()) {
837 		flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
838 		enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
839 				  flags);
840 	}
841 
842 	arch_counter_set_user_access();
843 
844 	return 0;
845 }
846 
validate_timer_rate(void)847 static int validate_timer_rate(void)
848 {
849 	if (!arch_timer_rate)
850 		return -EINVAL;
851 
852 	/* Arch timer frequency < 1MHz can cause trouble */
853 	WARN_ON(arch_timer_rate < 1000000);
854 
855 	return 0;
856 }
857 
858 /*
859  * For historical reasons, when probing with DT we use whichever (non-zero)
860  * rate was probed first, and don't verify that others match. If the first node
861  * probed has a clock-frequency property, this overrides the HW register.
862  */
arch_timer_of_configure_rate(u32 rate,struct device_node * np)863 static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
864 {
865 	/* Who has more than one independent system counter? */
866 	if (arch_timer_rate)
867 		return;
868 
869 	if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
870 		arch_timer_rate = rate;
871 
872 	/* Check the timer frequency. */
873 	if (validate_timer_rate())
874 		pr_warn("frequency not available\n");
875 }
876 
arch_timer_banner(void)877 static void __init arch_timer_banner(void)
878 {
879 	pr_info("cp15 timer running at %lu.%02luMHz (%s).\n",
880 		(unsigned long)arch_timer_rate / 1000000,
881 		(unsigned long)(arch_timer_rate / 10000) % 100,
882 		(arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys");
883 }
884 
arch_timer_get_rate(void)885 u32 arch_timer_get_rate(void)
886 {
887 	return arch_timer_rate;
888 }
889 
arch_timer_evtstrm_available(void)890 bool arch_timer_evtstrm_available(void)
891 {
892 	/*
893 	 * We might get called from a preemptible context. This is fine
894 	 * because availability of the event stream should be always the same
895 	 * for a preemptible context and context where we might resume a task.
896 	 */
897 	return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
898 }
899 
900 static struct arch_timer_kvm_info arch_timer_kvm_info;
901 
arch_timer_get_kvm_info(void)902 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
903 {
904 	return &arch_timer_kvm_info;
905 }
906 
arch_counter_register(void)907 static void __init arch_counter_register(void)
908 {
909 	u64 (*scr)(void);
910 	u64 (*rd)(void);
911 	u64 start_count;
912 	int width;
913 
914 	if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
915 	    arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
916 		if (arch_timer_counter_has_wa()) {
917 			rd = arch_counter_get_cntvct_stable;
918 			scr = raw_counter_get_cntvct_stable;
919 		} else {
920 			rd = arch_counter_get_cntvct;
921 			scr = arch_counter_get_cntvct;
922 		}
923 	} else {
924 		if (arch_timer_counter_has_wa()) {
925 			rd = arch_counter_get_cntpct_stable;
926 			scr = raw_counter_get_cntpct_stable;
927 		} else {
928 			rd = arch_counter_get_cntpct;
929 			scr = arch_counter_get_cntpct;
930 		}
931 	}
932 
933 	arch_timer_read_counter = rd;
934 	clocksource_counter.vdso_clock_mode = vdso_default;
935 
936 	width = arch_counter_get_width();
937 	clocksource_counter.mask = CLOCKSOURCE_MASK(width);
938 	cyclecounter.mask = CLOCKSOURCE_MASK(width);
939 
940 	if (!arch_counter_suspend_stop)
941 		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
942 	start_count = arch_timer_read_counter();
943 	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
944 	cyclecounter.mult = clocksource_counter.mult;
945 	cyclecounter.shift = clocksource_counter.shift;
946 	timecounter_init(&arch_timer_kvm_info.timecounter,
947 			 &cyclecounter, start_count);
948 
949 	sched_clock_register(scr, width, arch_timer_rate);
950 }
951 
arch_timer_stop(struct clock_event_device * clk)952 static void arch_timer_stop(struct clock_event_device *clk)
953 {
954 	pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
955 
956 	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
957 	if (arch_timer_has_nonsecure_ppi())
958 		disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
959 }
960 
arch_timer_dying_cpu(unsigned int cpu)961 static int arch_timer_dying_cpu(unsigned int cpu)
962 {
963 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
964 
965 	arch_timer_stop(clk);
966 	return 0;
967 }
968 
969 #ifdef CONFIG_CPU_PM
970 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
arch_timer_cpu_pm_notify(struct notifier_block * self,unsigned long action,void * hcpu)971 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
972 				    unsigned long action, void *hcpu)
973 {
974 	if (action == CPU_PM_ENTER) {
975 		__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
976 
977 		cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
978 	} else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
979 		arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
980 
981 		if (arch_timer_have_evtstrm_feature())
982 			cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
983 	}
984 	return NOTIFY_OK;
985 }
986 
987 static struct notifier_block arch_timer_cpu_pm_notifier = {
988 	.notifier_call = arch_timer_cpu_pm_notify,
989 };
990 
arch_timer_cpu_pm_init(void)991 static int __init arch_timer_cpu_pm_init(void)
992 {
993 	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
994 }
995 
arch_timer_cpu_pm_deinit(void)996 static void __init arch_timer_cpu_pm_deinit(void)
997 {
998 	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
999 }
1000 
1001 #else
arch_timer_cpu_pm_init(void)1002 static int __init arch_timer_cpu_pm_init(void)
1003 {
1004 	return 0;
1005 }
1006 
arch_timer_cpu_pm_deinit(void)1007 static void __init arch_timer_cpu_pm_deinit(void)
1008 {
1009 }
1010 #endif
1011 
arch_timer_register(void)1012 static int __init arch_timer_register(void)
1013 {
1014 	int err;
1015 	int ppi;
1016 
1017 	arch_timer_evt = alloc_percpu(struct clock_event_device);
1018 	if (!arch_timer_evt) {
1019 		err = -ENOMEM;
1020 		goto out;
1021 	}
1022 
1023 	ppi = arch_timer_ppi[arch_timer_uses_ppi];
1024 	switch (arch_timer_uses_ppi) {
1025 	case ARCH_TIMER_VIRT_PPI:
1026 		err = request_percpu_irq(ppi, arch_timer_handler_virt,
1027 					 "arch_timer", arch_timer_evt);
1028 		break;
1029 	case ARCH_TIMER_PHYS_SECURE_PPI:
1030 	case ARCH_TIMER_PHYS_NONSECURE_PPI:
1031 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1032 					 "arch_timer", arch_timer_evt);
1033 		if (!err && arch_timer_has_nonsecure_ppi()) {
1034 			ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1035 			err = request_percpu_irq(ppi, arch_timer_handler_phys,
1036 						 "arch_timer", arch_timer_evt);
1037 			if (err)
1038 				free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1039 						arch_timer_evt);
1040 		}
1041 		break;
1042 	case ARCH_TIMER_HYP_PPI:
1043 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1044 					 "arch_timer", arch_timer_evt);
1045 		break;
1046 	default:
1047 		BUG();
1048 	}
1049 
1050 	if (err) {
1051 		pr_err("can't register interrupt %d (%d)\n", ppi, err);
1052 		goto out_free;
1053 	}
1054 
1055 	err = arch_timer_cpu_pm_init();
1056 	if (err)
1057 		goto out_unreg_notify;
1058 
1059 	/* Register and immediately configure the timer on the boot CPU */
1060 	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1061 				"clockevents/arm/arch_timer:starting",
1062 				arch_timer_starting_cpu, arch_timer_dying_cpu);
1063 	if (err)
1064 		goto out_unreg_cpupm;
1065 	return 0;
1066 
1067 out_unreg_cpupm:
1068 	arch_timer_cpu_pm_deinit();
1069 
1070 out_unreg_notify:
1071 	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1072 	if (arch_timer_has_nonsecure_ppi())
1073 		free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1074 				arch_timer_evt);
1075 
1076 out_free:
1077 	free_percpu(arch_timer_evt);
1078 	arch_timer_evt = NULL;
1079 out:
1080 	return err;
1081 }
1082 
arch_timer_common_init(void)1083 static int __init arch_timer_common_init(void)
1084 {
1085 	arch_timer_banner();
1086 	arch_counter_register();
1087 	return arch_timer_arch_init();
1088 }
1089 
1090 /**
1091  * arch_timer_select_ppi() - Select suitable PPI for the current system.
1092  *
1093  * If HYP mode is available, we know that the physical timer
1094  * has been configured to be accessible from PL1. Use it, so
1095  * that a guest can use the virtual timer instead.
1096  *
1097  * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1098  * accesses to CNTP_*_EL1 registers are silently redirected to
1099  * their CNTHP_*_EL2 counterparts, and use a different PPI
1100  * number.
1101  *
1102  * If no interrupt provided for virtual timer, we'll have to
1103  * stick to the physical timer. It'd better be accessible...
1104  * For arm64 we never use the secure interrupt.
1105  *
1106  * Return: a suitable PPI type for the current system.
1107  */
arch_timer_select_ppi(void)1108 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1109 {
1110 	if (is_kernel_in_hyp_mode())
1111 		return ARCH_TIMER_HYP_PPI;
1112 
1113 	if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1114 		return ARCH_TIMER_VIRT_PPI;
1115 
1116 	if (IS_ENABLED(CONFIG_ARM64))
1117 		return ARCH_TIMER_PHYS_NONSECURE_PPI;
1118 
1119 	return ARCH_TIMER_PHYS_SECURE_PPI;
1120 }
1121 
arch_timer_populate_kvm_info(void)1122 static void __init arch_timer_populate_kvm_info(void)
1123 {
1124 	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1125 	if (is_kernel_in_hyp_mode())
1126 		arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1127 }
1128 
arch_timer_of_init(struct device_node * np)1129 static int __init arch_timer_of_init(struct device_node *np)
1130 {
1131 	int i, irq, ret;
1132 	u32 rate;
1133 	bool has_names;
1134 
1135 	if (arch_timer_evt) {
1136 		pr_warn("multiple nodes in dt, skipping\n");
1137 		return 0;
1138 	}
1139 
1140 	has_names = of_property_present(np, "interrupt-names");
1141 
1142 	for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
1143 		if (has_names)
1144 			irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
1145 		else
1146 			irq = of_irq_get(np, i);
1147 		if (irq > 0)
1148 			arch_timer_ppi[i] = irq;
1149 	}
1150 
1151 	arch_timer_populate_kvm_info();
1152 
1153 	rate = arch_timer_get_cntfrq();
1154 	arch_timer_of_configure_rate(rate, np);
1155 
1156 	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1157 
1158 	/* Check for globally applicable workarounds */
1159 	arch_timer_check_ool_workaround(ate_match_dt, np);
1160 
1161 	/*
1162 	 * If we cannot rely on firmware initializing the timer registers then
1163 	 * we should use the physical timers instead.
1164 	 */
1165 	if (IS_ENABLED(CONFIG_ARM) &&
1166 	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1167 		arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1168 	else
1169 		arch_timer_uses_ppi = arch_timer_select_ppi();
1170 
1171 	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1172 		pr_err("No interrupt available, giving up\n");
1173 		return -EINVAL;
1174 	}
1175 
1176 	/* On some systems, the counter stops ticking when in suspend. */
1177 	arch_counter_suspend_stop = of_property_read_bool(np,
1178 							 "arm,no-tick-in-suspend");
1179 
1180 	ret = arch_timer_register();
1181 	if (ret)
1182 		return ret;
1183 
1184 	return arch_timer_common_init();
1185 }
1186 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1187 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1188 
1189 #ifdef CONFIG_ACPI_GTDT
arch_timer_acpi_init(struct acpi_table_header * table)1190 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1191 {
1192 	int ret;
1193 
1194 	if (arch_timer_evt) {
1195 		pr_warn("already initialized, skipping\n");
1196 		return -EINVAL;
1197 	}
1198 
1199 	ret = acpi_gtdt_init(table, NULL);
1200 	if (ret)
1201 		return ret;
1202 
1203 	arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1204 		acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1205 
1206 	arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1207 		acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1208 
1209 	arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1210 		acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1211 
1212 	arch_timer_populate_kvm_info();
1213 
1214 	/*
1215 	 * When probing via ACPI, we have no mechanism to override the sysreg
1216 	 * CNTFRQ value. This *must* be correct.
1217 	 */
1218 	arch_timer_rate = arch_timer_get_cntfrq();
1219 	ret = validate_timer_rate();
1220 	if (ret) {
1221 		pr_err(FW_BUG "frequency not available.\n");
1222 		return ret;
1223 	}
1224 
1225 	arch_timer_uses_ppi = arch_timer_select_ppi();
1226 	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1227 		pr_err("No interrupt available, giving up\n");
1228 		return -EINVAL;
1229 	}
1230 
1231 	/* Always-on capability */
1232 	arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1233 
1234 	/* Check for globally applicable workarounds */
1235 	arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1236 
1237 	ret = arch_timer_register();
1238 	if (ret)
1239 		return ret;
1240 
1241 	return arch_timer_common_init();
1242 }
1243 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1244 #endif
1245 
kvm_arch_ptp_get_crosststamp(u64 * cycle,struct timespec64 * ts,enum clocksource_ids * cs_id)1246 int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts,
1247 				 enum clocksource_ids *cs_id)
1248 {
1249 	struct arm_smccc_res hvc_res;
1250 	u32 ptp_counter;
1251 	ktime_t ktime;
1252 
1253 	if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY))
1254 		return -EOPNOTSUPP;
1255 
1256 	if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1257 		ptp_counter = KVM_PTP_VIRT_COUNTER;
1258 	else
1259 		ptp_counter = KVM_PTP_PHYS_COUNTER;
1260 
1261 	arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID,
1262 			     ptp_counter, &hvc_res);
1263 
1264 	if ((int)(hvc_res.a0) < 0)
1265 		return -EOPNOTSUPP;
1266 
1267 	ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1;
1268 	*ts = ktime_to_timespec64(ktime);
1269 	if (cycle)
1270 		*cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3;
1271 	if (cs_id)
1272 		*cs_id = CSID_ARM_ARCH_COUNTER;
1273 
1274 	return 0;
1275 }
1276 EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);
1277