xref: /linux/drivers/clocksource/arc_timer.c (revision 03ab8e6297acd1bc0eedaa050e2a1635c576fd11)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016-17 Synopsys, Inc. (www.synopsys.com)
4  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
5  */
6 
7 /* ARC700 has two 32bit independent prog Timers: TIMER0 and TIMER1, Each can be
8  * programmed to go from @count to @limit and optionally interrupt.
9  * We've designated TIMER0 for clockevents and TIMER1 for clocksource
10  *
11  * ARCv2 based HS38 cores have RTC (in-core) and GFRC (inside ARConnect/MCIP)
12  * which are suitable for UP and SMP based clocksources respectively
13  */
14 
15 #include <linux/interrupt.h>
16 #include <linux/bits.h>
17 #include <linux/clk.h>
18 #include <linux/clk-provider.h>
19 #include <linux/clocksource.h>
20 #include <linux/clockchips.h>
21 #include <linux/cpu.h>
22 #include <linux/of.h>
23 #include <linux/of_irq.h>
24 #include <linux/sched_clock.h>
25 
26 #include <soc/arc/timers.h>
27 #include <soc/arc/mcip.h>
28 
29 
30 static unsigned long arc_timer_freq;
31 
arc_get_timer_clk(struct device_node * node)32 static int noinline arc_get_timer_clk(struct device_node *node)
33 {
34 	struct clk *clk;
35 	int ret;
36 
37 	clk = of_clk_get(node, 0);
38 	if (IS_ERR(clk)) {
39 		pr_err("timer missing clk\n");
40 		return PTR_ERR(clk);
41 	}
42 
43 	ret = clk_prepare_enable(clk);
44 	if (ret) {
45 		pr_err("Couldn't enable parent clk\n");
46 		return ret;
47 	}
48 
49 	arc_timer_freq = clk_get_rate(clk);
50 
51 	return 0;
52 }
53 
54 /********** Clock Source Device *********/
55 
56 #ifdef CONFIG_ARC_TIMERS_64BIT
57 
arc_read_gfrc(struct clocksource * cs)58 static u64 arc_read_gfrc(struct clocksource *cs)
59 {
60 	unsigned long flags;
61 	u32 l, h;
62 
63 	/*
64 	 * From a programming model pov, there seems to be just one instance of
65 	 * MCIP_CMD/MCIP_READBACK however micro-architecturally there's
66 	 * an instance PER ARC CORE (not per cluster), and there are dedicated
67 	 * hardware decode logic (per core) inside ARConnect to handle
68 	 * simultaneous read/write accesses from cores via those two registers.
69 	 * So several concurrent commands to ARConnect are OK if they are
70 	 * trying to access two different sub-components (like GFRC,
71 	 * inter-core interrupt, etc...). HW also supports simultaneously
72 	 * accessing GFRC by multiple cores.
73 	 * That's why it is safe to disable hard interrupts on the local CPU
74 	 * before access to GFRC instead of taking global MCIP spinlock
75 	 * defined in arch/arc/kernel/mcip.c
76 	 */
77 	local_irq_save(flags);
78 
79 	__mcip_cmd(CMD_GFRC_READ_LO, 0);
80 	l = read_aux_reg(ARC_REG_MCIP_READBACK);
81 
82 	__mcip_cmd(CMD_GFRC_READ_HI, 0);
83 	h = read_aux_reg(ARC_REG_MCIP_READBACK);
84 
85 	local_irq_restore(flags);
86 
87 	return (((u64)h) << 32) | l;
88 }
89 
arc_gfrc_clock_read(void)90 static notrace u64 arc_gfrc_clock_read(void)
91 {
92 	return arc_read_gfrc(NULL);
93 }
94 
95 static struct clocksource arc_counter_gfrc = {
96 	.name   = "ARConnect GFRC",
97 	.rating = 400,
98 	.read   = arc_read_gfrc,
99 	.mask   = CLOCKSOURCE_MASK(64),
100 	.flags  = CLOCK_SOURCE_IS_CONTINUOUS,
101 };
102 
arc_cs_setup_gfrc(struct device_node * node)103 static int __init arc_cs_setup_gfrc(struct device_node *node)
104 {
105 	struct mcip_bcr mp;
106 	int ret;
107 
108 	READ_BCR(ARC_REG_MCIP_BCR, mp);
109 	if (!mp.gfrc) {
110 		pr_warn("Global-64-bit-Ctr clocksource not detected\n");
111 		return -ENXIO;
112 	}
113 
114 	ret = arc_get_timer_clk(node);
115 	if (ret)
116 		return ret;
117 
118 	sched_clock_register(arc_gfrc_clock_read, 64, arc_timer_freq);
119 
120 	return clocksource_register_hz(&arc_counter_gfrc, arc_timer_freq);
121 }
122 TIMER_OF_DECLARE(arc_gfrc, "snps,archs-timer-gfrc", arc_cs_setup_gfrc);
123 
124 #define AUX_RTC_CTRL	0x103
125 #define AUX_RTC_LOW	0x104
126 #define AUX_RTC_HIGH	0x105
127 
arc_read_rtc(struct clocksource * cs)128 static u64 arc_read_rtc(struct clocksource *cs)
129 {
130 	unsigned long status;
131 	u32 l, h;
132 
133 	/*
134 	 * hardware has an internal state machine which tracks readout of
135 	 * low/high and updates the CTRL.status if
136 	 *  - interrupt/exception taken between the two reads
137 	 *  - high increments after low has been read
138 	 */
139 	do {
140 		l = read_aux_reg(AUX_RTC_LOW);
141 		h = read_aux_reg(AUX_RTC_HIGH);
142 		status = read_aux_reg(AUX_RTC_CTRL);
143 	} while (!(status & BIT(31)));
144 
145 	return (((u64)h) << 32) | l;
146 }
147 
arc_rtc_clock_read(void)148 static notrace u64 arc_rtc_clock_read(void)
149 {
150 	return arc_read_rtc(NULL);
151 }
152 
153 static struct clocksource arc_counter_rtc = {
154 	.name   = "ARCv2 RTC",
155 	.rating = 350,
156 	.read   = arc_read_rtc,
157 	.mask   = CLOCKSOURCE_MASK(64),
158 	.flags  = CLOCK_SOURCE_IS_CONTINUOUS,
159 };
160 
arc_cs_setup_rtc(struct device_node * node)161 static int __init arc_cs_setup_rtc(struct device_node *node)
162 {
163 	struct bcr_timer timer;
164 	int ret;
165 
166 	READ_BCR(ARC_REG_TIMERS_BCR, timer);
167 	if (!timer.rtc) {
168 		pr_warn("Local-64-bit-Ctr clocksource not detected\n");
169 		return -ENXIO;
170 	}
171 
172 	/* Local to CPU hence not usable in SMP */
173 	if (IS_ENABLED(CONFIG_SMP)) {
174 		pr_warn("Local-64-bit-Ctr not usable in SMP\n");
175 		return -EINVAL;
176 	}
177 
178 	ret = arc_get_timer_clk(node);
179 	if (ret)
180 		return ret;
181 
182 	write_aux_reg(AUX_RTC_CTRL, 1);
183 
184 	sched_clock_register(arc_rtc_clock_read, 64, arc_timer_freq);
185 
186 	return clocksource_register_hz(&arc_counter_rtc, arc_timer_freq);
187 }
188 TIMER_OF_DECLARE(arc_rtc, "snps,archs-timer-rtc", arc_cs_setup_rtc);
189 
190 #endif
191 
192 /*
193  * 32bit TIMER1 to keep counting monotonically and wraparound
194  */
195 
arc_read_timer1(struct clocksource * cs)196 static u64 arc_read_timer1(struct clocksource *cs)
197 {
198 	return (u64) read_aux_reg(ARC_REG_TIMER1_CNT);
199 }
200 
arc_timer1_clock_read(void)201 static notrace u64 arc_timer1_clock_read(void)
202 {
203 	return arc_read_timer1(NULL);
204 }
205 
206 static struct clocksource arc_counter_timer1 = {
207 	.name   = "ARC Timer1",
208 	.rating = 300,
209 	.read   = arc_read_timer1,
210 	.mask   = CLOCKSOURCE_MASK(32),
211 	.flags  = CLOCK_SOURCE_IS_CONTINUOUS,
212 };
213 
arc_cs_setup_timer1(struct device_node * node)214 static int __init arc_cs_setup_timer1(struct device_node *node)
215 {
216 	int ret;
217 
218 	/* Local to CPU hence not usable in SMP */
219 	if (IS_ENABLED(CONFIG_SMP))
220 		return -EINVAL;
221 
222 	ret = arc_get_timer_clk(node);
223 	if (ret)
224 		return ret;
225 
226 	write_aux_reg(ARC_REG_TIMER1_LIMIT, ARC_TIMERN_MAX);
227 	write_aux_reg(ARC_REG_TIMER1_CNT, 0);
228 	write_aux_reg(ARC_REG_TIMER1_CTRL, ARC_TIMER_CTRL_NH);
229 
230 	sched_clock_register(arc_timer1_clock_read, 32, arc_timer_freq);
231 
232 	return clocksource_register_hz(&arc_counter_timer1, arc_timer_freq);
233 }
234 
235 /********** Clock Event Device *********/
236 
237 static int arc_timer_irq;
238 
239 /*
240  * Arm the timer to interrupt after @cycles
241  * The distinction for oneshot/periodic is done in arc_event_timer_ack() below
242  */
arc_timer_event_setup(unsigned int cycles)243 static void arc_timer_event_setup(unsigned int cycles)
244 {
245 	write_aux_reg(ARC_REG_TIMER0_LIMIT, cycles);
246 	write_aux_reg(ARC_REG_TIMER0_CNT, 0);	/* start from 0 */
247 
248 	write_aux_reg(ARC_REG_TIMER0_CTRL, ARC_TIMER_CTRL_IE | ARC_TIMER_CTRL_NH);
249 }
250 
251 
arc_clkevent_set_next_event(unsigned long delta,struct clock_event_device * dev)252 static int arc_clkevent_set_next_event(unsigned long delta,
253 				       struct clock_event_device *dev)
254 {
255 	arc_timer_event_setup(delta);
256 	return 0;
257 }
258 
arc_clkevent_set_periodic(struct clock_event_device * dev)259 static int arc_clkevent_set_periodic(struct clock_event_device *dev)
260 {
261 	/*
262 	 * At X Hz, 1 sec = 1000ms -> X cycles;
263 	 *		      10ms -> X / 100 cycles
264 	 */
265 	arc_timer_event_setup(arc_timer_freq / HZ);
266 	return 0;
267 }
268 
269 static DEFINE_PER_CPU(struct clock_event_device, arc_clockevent_device) = {
270 	.name			= "ARC Timer0",
271 	.features		= CLOCK_EVT_FEAT_ONESHOT |
272 				  CLOCK_EVT_FEAT_PERIODIC,
273 	.rating			= 300,
274 	.set_next_event		= arc_clkevent_set_next_event,
275 	.set_state_periodic	= arc_clkevent_set_periodic,
276 };
277 
timer_irq_handler(int irq,void * dev_id)278 static irqreturn_t timer_irq_handler(int irq, void *dev_id)
279 {
280 	/*
281 	 * Note that generic IRQ core could have passed @evt for @dev_id if
282 	 * irq_set_chip_and_handler() asked for handle_percpu_devid_irq()
283 	 */
284 	struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
285 	int irq_reenable = clockevent_state_periodic(evt);
286 
287 	/*
288 	 * 1. ACK the interrupt
289 	 *    - For ARC700, any write to CTRL reg ACKs it, so just rewrite
290 	 *      Count when [N]ot [H]alted bit.
291 	 *    - For HS3x, it is a bit subtle. On taken count-down interrupt,
292 	 *      IP bit [3] is set, which needs to be cleared for ACK'ing.
293 	 *      The write below can only update the other two bits, hence
294 	 *      explicitly clears IP bit
295 	 * 2. Re-arm interrupt if periodic by writing to IE bit [0]
296 	 */
297 	write_aux_reg(ARC_REG_TIMER0_CTRL, irq_reenable | ARC_TIMER_CTRL_NH);
298 
299 	evt->event_handler(evt);
300 
301 	return IRQ_HANDLED;
302 }
303 
304 
arc_timer_starting_cpu(unsigned int cpu)305 static int arc_timer_starting_cpu(unsigned int cpu)
306 {
307 	struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
308 
309 	evt->cpumask = cpumask_of(smp_processor_id());
310 
311 	clockevents_config_and_register(evt, arc_timer_freq, 0, ARC_TIMERN_MAX);
312 	enable_percpu_irq(arc_timer_irq, 0);
313 	return 0;
314 }
315 
arc_timer_dying_cpu(unsigned int cpu)316 static int arc_timer_dying_cpu(unsigned int cpu)
317 {
318 	disable_percpu_irq(arc_timer_irq);
319 	return 0;
320 }
321 
322 /*
323  * clockevent setup for boot CPU
324  */
arc_clockevent_setup(struct device_node * node)325 static int __init arc_clockevent_setup(struct device_node *node)
326 {
327 	struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
328 	int ret;
329 
330 	arc_timer_irq = irq_of_parse_and_map(node, 0);
331 	if (arc_timer_irq <= 0) {
332 		pr_err("clockevent: missing irq\n");
333 		return -EINVAL;
334 	}
335 
336 	ret = arc_get_timer_clk(node);
337 	if (ret)
338 		return ret;
339 
340 	/* Needs apriori irq_set_percpu_devid() done in intc map function */
341 	ret = request_percpu_irq(arc_timer_irq, timer_irq_handler,
342 				 "Timer0 (per-cpu-tick)", evt);
343 	if (ret) {
344 		pr_err("clockevent: unable to request irq\n");
345 		return ret;
346 	}
347 
348 	ret = cpuhp_setup_state(CPUHP_AP_ARC_TIMER_STARTING,
349 				"clockevents/arc/timer:starting",
350 				arc_timer_starting_cpu,
351 				arc_timer_dying_cpu);
352 	if (ret) {
353 		pr_err("Failed to setup hotplug state\n");
354 		return ret;
355 	}
356 	return 0;
357 }
358 
arc_of_timer_init(struct device_node * np)359 static int __init arc_of_timer_init(struct device_node *np)
360 {
361 	static int init_count = 0;
362 	int ret;
363 
364 	if (!init_count) {
365 		init_count = 1;
366 		ret = arc_clockevent_setup(np);
367 	} else {
368 		ret = arc_cs_setup_timer1(np);
369 	}
370 
371 	return ret;
372 }
373 TIMER_OF_DECLARE(arc_clkevt, "snps,arc-timer", arc_of_timer_init);
374