1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * file.c
4 *
5 * File open, close, extend, truncate
6 *
7 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
8 */
9
10 #include <linux/capability.h>
11 #include <linux/fs.h>
12 #include <linux/types.h>
13 #include <linux/slab.h>
14 #include <linux/highmem.h>
15 #include <linux/pagemap.h>
16 #include <linux/uio.h>
17 #include <linux/sched.h>
18 #include <linux/splice.h>
19 #include <linux/mount.h>
20 #include <linux/writeback.h>
21 #include <linux/falloc.h>
22 #include <linux/quotaops.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25
26 #include <cluster/masklog.h>
27
28 #include "ocfs2.h"
29
30 #include "alloc.h"
31 #include "aops.h"
32 #include "dir.h"
33 #include "dlmglue.h"
34 #include "extent_map.h"
35 #include "file.h"
36 #include "sysfile.h"
37 #include "inode.h"
38 #include "ioctl.h"
39 #include "journal.h"
40 #include "locks.h"
41 #include "mmap.h"
42 #include "suballoc.h"
43 #include "super.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "quota.h"
47 #include "refcounttree.h"
48 #include "ocfs2_trace.h"
49
50 #include "buffer_head_io.h"
51
ocfs2_init_file_private(struct inode * inode,struct file * file)52 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
53 {
54 struct ocfs2_file_private *fp;
55
56 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
57 if (!fp)
58 return -ENOMEM;
59
60 fp->fp_file = file;
61 mutex_init(&fp->fp_mutex);
62 ocfs2_file_lock_res_init(&fp->fp_flock, fp);
63 file->private_data = fp;
64
65 return 0;
66 }
67
ocfs2_free_file_private(struct inode * inode,struct file * file)68 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
69 {
70 struct ocfs2_file_private *fp = file->private_data;
71 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
72
73 if (fp) {
74 ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
75 ocfs2_lock_res_free(&fp->fp_flock);
76 kfree(fp);
77 file->private_data = NULL;
78 }
79 }
80
ocfs2_file_open(struct inode * inode,struct file * file)81 static int ocfs2_file_open(struct inode *inode, struct file *file)
82 {
83 int status;
84 int mode = file->f_flags;
85 struct ocfs2_inode_info *oi = OCFS2_I(inode);
86
87 trace_ocfs2_file_open(inode, file, file->f_path.dentry,
88 (unsigned long long)oi->ip_blkno,
89 file->f_path.dentry->d_name.len,
90 file->f_path.dentry->d_name.name, mode);
91
92 if (file->f_mode & FMODE_WRITE) {
93 status = dquot_initialize(inode);
94 if (status)
95 goto leave;
96 }
97
98 spin_lock(&oi->ip_lock);
99
100 /* Check that the inode hasn't been wiped from disk by another
101 * node. If it hasn't then we're safe as long as we hold the
102 * spin lock until our increment of open count. */
103 if (oi->ip_flags & OCFS2_INODE_DELETED) {
104 spin_unlock(&oi->ip_lock);
105
106 status = -ENOENT;
107 goto leave;
108 }
109
110 if (mode & O_DIRECT)
111 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
112
113 oi->ip_open_count++;
114 spin_unlock(&oi->ip_lock);
115
116 status = ocfs2_init_file_private(inode, file);
117 if (status) {
118 /*
119 * We want to set open count back if we're failing the
120 * open.
121 */
122 spin_lock(&oi->ip_lock);
123 oi->ip_open_count--;
124 spin_unlock(&oi->ip_lock);
125 }
126
127 file->f_mode |= FMODE_NOWAIT;
128
129 leave:
130 return status;
131 }
132
ocfs2_file_release(struct inode * inode,struct file * file)133 static int ocfs2_file_release(struct inode *inode, struct file *file)
134 {
135 struct ocfs2_inode_info *oi = OCFS2_I(inode);
136
137 spin_lock(&oi->ip_lock);
138 if (!--oi->ip_open_count)
139 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
140
141 trace_ocfs2_file_release(inode, file, file->f_path.dentry,
142 oi->ip_blkno,
143 file->f_path.dentry->d_name.len,
144 file->f_path.dentry->d_name.name,
145 oi->ip_open_count);
146 spin_unlock(&oi->ip_lock);
147
148 ocfs2_free_file_private(inode, file);
149
150 return 0;
151 }
152
ocfs2_dir_open(struct inode * inode,struct file * file)153 static int ocfs2_dir_open(struct inode *inode, struct file *file)
154 {
155 return ocfs2_init_file_private(inode, file);
156 }
157
ocfs2_dir_release(struct inode * inode,struct file * file)158 static int ocfs2_dir_release(struct inode *inode, struct file *file)
159 {
160 ocfs2_free_file_private(inode, file);
161 return 0;
162 }
163
ocfs2_sync_file(struct file * file,loff_t start,loff_t end,int datasync)164 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
165 int datasync)
166 {
167 int err = 0;
168 struct inode *inode = file->f_mapping->host;
169 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
170 struct ocfs2_inode_info *oi = OCFS2_I(inode);
171 journal_t *journal = osb->journal->j_journal;
172 int ret;
173 tid_t commit_tid;
174 bool needs_barrier = false;
175
176 trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
177 oi->ip_blkno,
178 file->f_path.dentry->d_name.len,
179 file->f_path.dentry->d_name.name,
180 (unsigned long long)datasync);
181
182 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
183 return -EROFS;
184
185 err = file_write_and_wait_range(file, start, end);
186 if (err)
187 return err;
188
189 commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
190 if (journal->j_flags & JBD2_BARRIER &&
191 !jbd2_trans_will_send_data_barrier(journal, commit_tid))
192 needs_barrier = true;
193 err = jbd2_complete_transaction(journal, commit_tid);
194 if (needs_barrier) {
195 ret = blkdev_issue_flush(inode->i_sb->s_bdev);
196 if (!err)
197 err = ret;
198 }
199
200 if (err)
201 mlog_errno(err);
202
203 return (err < 0) ? -EIO : 0;
204 }
205
ocfs2_should_update_atime(struct inode * inode,struct vfsmount * vfsmnt)206 int ocfs2_should_update_atime(struct inode *inode,
207 struct vfsmount *vfsmnt)
208 {
209 struct timespec64 now;
210 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
211
212 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
213 return 0;
214
215 if ((inode->i_flags & S_NOATIME) ||
216 ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)))
217 return 0;
218
219 /*
220 * We can be called with no vfsmnt structure - NFSD will
221 * sometimes do this.
222 *
223 * Note that our action here is different than touch_atime() -
224 * if we can't tell whether this is a noatime mount, then we
225 * don't know whether to trust the value of s_atime_quantum.
226 */
227 if (vfsmnt == NULL)
228 return 0;
229
230 if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
231 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
232 return 0;
233
234 if (vfsmnt->mnt_flags & MNT_RELATIME) {
235 struct timespec64 ctime = inode_get_ctime(inode);
236 struct timespec64 atime = inode_get_atime(inode);
237 struct timespec64 mtime = inode_get_mtime(inode);
238
239 if ((timespec64_compare(&atime, &mtime) <= 0) ||
240 (timespec64_compare(&atime, &ctime) <= 0))
241 return 1;
242
243 return 0;
244 }
245
246 now = current_time(inode);
247 if ((now.tv_sec - inode_get_atime_sec(inode) <= osb->s_atime_quantum))
248 return 0;
249 else
250 return 1;
251 }
252
ocfs2_update_inode_atime(struct inode * inode,struct buffer_head * bh)253 int ocfs2_update_inode_atime(struct inode *inode,
254 struct buffer_head *bh)
255 {
256 int ret;
257 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
258 handle_t *handle;
259 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
260
261 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
262 if (IS_ERR(handle)) {
263 ret = PTR_ERR(handle);
264 mlog_errno(ret);
265 goto out;
266 }
267
268 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
269 OCFS2_JOURNAL_ACCESS_WRITE);
270 if (ret) {
271 mlog_errno(ret);
272 goto out_commit;
273 }
274
275 /*
276 * Don't use ocfs2_mark_inode_dirty() here as we don't always
277 * have i_rwsem to guard against concurrent changes to other
278 * inode fields.
279 */
280 inode_set_atime_to_ts(inode, current_time(inode));
281 di->i_atime = cpu_to_le64(inode_get_atime_sec(inode));
282 di->i_atime_nsec = cpu_to_le32(inode_get_atime_nsec(inode));
283 ocfs2_update_inode_fsync_trans(handle, inode, 0);
284 ocfs2_journal_dirty(handle, bh);
285
286 out_commit:
287 ocfs2_commit_trans(osb, handle);
288 out:
289 return ret;
290 }
291
ocfs2_set_inode_size(handle_t * handle,struct inode * inode,struct buffer_head * fe_bh,u64 new_i_size)292 int ocfs2_set_inode_size(handle_t *handle,
293 struct inode *inode,
294 struct buffer_head *fe_bh,
295 u64 new_i_size)
296 {
297 int status;
298
299 i_size_write(inode, new_i_size);
300 inode->i_blocks = ocfs2_inode_sector_count(inode);
301 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
302
303 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
304 if (status < 0) {
305 mlog_errno(status);
306 goto bail;
307 }
308
309 bail:
310 return status;
311 }
312
ocfs2_simple_size_update(struct inode * inode,struct buffer_head * di_bh,u64 new_i_size)313 int ocfs2_simple_size_update(struct inode *inode,
314 struct buffer_head *di_bh,
315 u64 new_i_size)
316 {
317 int ret;
318 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
319 handle_t *handle = NULL;
320
321 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
322 if (IS_ERR(handle)) {
323 ret = PTR_ERR(handle);
324 mlog_errno(ret);
325 goto out;
326 }
327
328 ret = ocfs2_set_inode_size(handle, inode, di_bh,
329 new_i_size);
330 if (ret < 0)
331 mlog_errno(ret);
332
333 ocfs2_update_inode_fsync_trans(handle, inode, 0);
334 ocfs2_commit_trans(osb, handle);
335 out:
336 return ret;
337 }
338
ocfs2_cow_file_pos(struct inode * inode,struct buffer_head * fe_bh,u64 offset)339 static int ocfs2_cow_file_pos(struct inode *inode,
340 struct buffer_head *fe_bh,
341 u64 offset)
342 {
343 int status;
344 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
345 unsigned int num_clusters = 0;
346 unsigned int ext_flags = 0;
347
348 /*
349 * If the new offset is aligned to the range of the cluster, there is
350 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
351 * CoW either.
352 */
353 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
354 return 0;
355
356 status = ocfs2_get_clusters(inode, cpos, &phys,
357 &num_clusters, &ext_flags);
358 if (status) {
359 mlog_errno(status);
360 goto out;
361 }
362
363 if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
364 goto out;
365
366 return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
367
368 out:
369 return status;
370 }
371
ocfs2_orphan_for_truncate(struct ocfs2_super * osb,struct inode * inode,struct buffer_head * fe_bh,u64 new_i_size)372 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
373 struct inode *inode,
374 struct buffer_head *fe_bh,
375 u64 new_i_size)
376 {
377 int status;
378 handle_t *handle;
379 struct ocfs2_dinode *di;
380 u64 cluster_bytes;
381
382 /*
383 * We need to CoW the cluster contains the offset if it is reflinked
384 * since we will call ocfs2_zero_range_for_truncate later which will
385 * write "0" from offset to the end of the cluster.
386 */
387 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
388 if (status) {
389 mlog_errno(status);
390 return status;
391 }
392
393 /* TODO: This needs to actually orphan the inode in this
394 * transaction. */
395
396 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
397 if (IS_ERR(handle)) {
398 status = PTR_ERR(handle);
399 mlog_errno(status);
400 goto out;
401 }
402
403 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
404 OCFS2_JOURNAL_ACCESS_WRITE);
405 if (status < 0) {
406 mlog_errno(status);
407 goto out_commit;
408 }
409
410 /*
411 * Do this before setting i_size.
412 */
413 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
414 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
415 cluster_bytes);
416 if (status) {
417 mlog_errno(status);
418 goto out_commit;
419 }
420
421 i_size_write(inode, new_i_size);
422 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
423
424 di = (struct ocfs2_dinode *) fe_bh->b_data;
425 di->i_size = cpu_to_le64(new_i_size);
426 di->i_ctime = di->i_mtime = cpu_to_le64(inode_get_ctime_sec(inode));
427 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode_get_ctime_nsec(inode));
428 ocfs2_update_inode_fsync_trans(handle, inode, 0);
429
430 ocfs2_journal_dirty(handle, fe_bh);
431
432 out_commit:
433 ocfs2_commit_trans(osb, handle);
434 out:
435 return status;
436 }
437
ocfs2_truncate_file(struct inode * inode,struct buffer_head * di_bh,u64 new_i_size)438 int ocfs2_truncate_file(struct inode *inode,
439 struct buffer_head *di_bh,
440 u64 new_i_size)
441 {
442 int status = 0;
443 struct ocfs2_dinode *fe = NULL;
444 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
445
446 /* We trust di_bh because it comes from ocfs2_inode_lock(), which
447 * already validated it */
448 fe = (struct ocfs2_dinode *) di_bh->b_data;
449
450 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
451 (unsigned long long)le64_to_cpu(fe->i_size),
452 (unsigned long long)new_i_size);
453
454 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
455 "Inode %llu, inode i_size = %lld != di "
456 "i_size = %llu, i_flags = 0x%x\n",
457 (unsigned long long)OCFS2_I(inode)->ip_blkno,
458 i_size_read(inode),
459 (unsigned long long)le64_to_cpu(fe->i_size),
460 le32_to_cpu(fe->i_flags));
461
462 if (new_i_size > le64_to_cpu(fe->i_size)) {
463 trace_ocfs2_truncate_file_error(
464 (unsigned long long)le64_to_cpu(fe->i_size),
465 (unsigned long long)new_i_size);
466 status = -EINVAL;
467 mlog_errno(status);
468 goto bail;
469 }
470
471 down_write(&OCFS2_I(inode)->ip_alloc_sem);
472
473 ocfs2_resv_discard(&osb->osb_la_resmap,
474 &OCFS2_I(inode)->ip_la_data_resv);
475
476 /*
477 * The inode lock forced other nodes to sync and drop their
478 * pages, which (correctly) happens even if we have a truncate
479 * without allocation change - ocfs2 cluster sizes can be much
480 * greater than page size, so we have to truncate them
481 * anyway.
482 */
483
484 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
485 unmap_mapping_range(inode->i_mapping,
486 new_i_size + PAGE_SIZE - 1, 0, 1);
487 truncate_inode_pages(inode->i_mapping, new_i_size);
488 status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
489 i_size_read(inode), 1);
490 if (status)
491 mlog_errno(status);
492
493 goto bail_unlock_sem;
494 }
495
496 /* alright, we're going to need to do a full blown alloc size
497 * change. Orphan the inode so that recovery can complete the
498 * truncate if necessary. This does the task of marking
499 * i_size. */
500 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
501 if (status < 0) {
502 mlog_errno(status);
503 goto bail_unlock_sem;
504 }
505
506 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
507 truncate_inode_pages(inode->i_mapping, new_i_size);
508
509 status = ocfs2_commit_truncate(osb, inode, di_bh);
510 if (status < 0) {
511 mlog_errno(status);
512 goto bail_unlock_sem;
513 }
514
515 /* TODO: orphan dir cleanup here. */
516 bail_unlock_sem:
517 up_write(&OCFS2_I(inode)->ip_alloc_sem);
518
519 bail:
520 if (!status && OCFS2_I(inode)->ip_clusters == 0)
521 status = ocfs2_try_remove_refcount_tree(inode, di_bh);
522
523 return status;
524 }
525
526 /*
527 * extend file allocation only here.
528 * we'll update all the disk stuff, and oip->alloc_size
529 *
530 * expect stuff to be locked, a transaction started and enough data /
531 * metadata reservations in the contexts.
532 *
533 * Will return -EAGAIN, and a reason if a restart is needed.
534 * If passed in, *reason will always be set, even in error.
535 */
ocfs2_add_inode_data(struct ocfs2_super * osb,struct inode * inode,u32 * logical_offset,u32 clusters_to_add,int mark_unwritten,struct buffer_head * fe_bh,handle_t * handle,struct ocfs2_alloc_context * data_ac,struct ocfs2_alloc_context * meta_ac,enum ocfs2_alloc_restarted * reason_ret)536 int ocfs2_add_inode_data(struct ocfs2_super *osb,
537 struct inode *inode,
538 u32 *logical_offset,
539 u32 clusters_to_add,
540 int mark_unwritten,
541 struct buffer_head *fe_bh,
542 handle_t *handle,
543 struct ocfs2_alloc_context *data_ac,
544 struct ocfs2_alloc_context *meta_ac,
545 enum ocfs2_alloc_restarted *reason_ret)
546 {
547 struct ocfs2_extent_tree et;
548
549 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
550 return ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
551 clusters_to_add, mark_unwritten,
552 data_ac, meta_ac, reason_ret);
553 }
554
ocfs2_extend_allocation(struct inode * inode,u32 logical_start,u32 clusters_to_add,int mark_unwritten)555 static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
556 u32 clusters_to_add, int mark_unwritten)
557 {
558 int status = 0;
559 int restart_func = 0;
560 int credits;
561 u32 prev_clusters;
562 struct buffer_head *bh = NULL;
563 struct ocfs2_dinode *fe = NULL;
564 handle_t *handle = NULL;
565 struct ocfs2_alloc_context *data_ac = NULL;
566 struct ocfs2_alloc_context *meta_ac = NULL;
567 enum ocfs2_alloc_restarted why = RESTART_NONE;
568 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
569 struct ocfs2_extent_tree et;
570 int did_quota = 0;
571
572 /*
573 * Unwritten extent only exists for file systems which
574 * support holes.
575 */
576 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
577
578 status = ocfs2_read_inode_block(inode, &bh);
579 if (status < 0) {
580 mlog_errno(status);
581 goto leave;
582 }
583 fe = (struct ocfs2_dinode *) bh->b_data;
584
585 restart_all:
586 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
587
588 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
589 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
590 &data_ac, &meta_ac);
591 if (status) {
592 mlog_errno(status);
593 goto leave;
594 }
595
596 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
597 handle = ocfs2_start_trans(osb, credits);
598 if (IS_ERR(handle)) {
599 status = PTR_ERR(handle);
600 handle = NULL;
601 mlog_errno(status);
602 goto leave;
603 }
604
605 restarted_transaction:
606 trace_ocfs2_extend_allocation(
607 (unsigned long long)OCFS2_I(inode)->ip_blkno,
608 (unsigned long long)i_size_read(inode),
609 le32_to_cpu(fe->i_clusters), clusters_to_add,
610 why, restart_func);
611
612 status = dquot_alloc_space_nodirty(inode,
613 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
614 if (status)
615 goto leave;
616 did_quota = 1;
617
618 /* reserve a write to the file entry early on - that we if we
619 * run out of credits in the allocation path, we can still
620 * update i_size. */
621 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
622 OCFS2_JOURNAL_ACCESS_WRITE);
623 if (status < 0) {
624 mlog_errno(status);
625 goto leave;
626 }
627
628 prev_clusters = OCFS2_I(inode)->ip_clusters;
629
630 status = ocfs2_add_inode_data(osb,
631 inode,
632 &logical_start,
633 clusters_to_add,
634 mark_unwritten,
635 bh,
636 handle,
637 data_ac,
638 meta_ac,
639 &why);
640 if ((status < 0) && (status != -EAGAIN)) {
641 if (status != -ENOSPC)
642 mlog_errno(status);
643 goto leave;
644 }
645 ocfs2_update_inode_fsync_trans(handle, inode, 1);
646 ocfs2_journal_dirty(handle, bh);
647
648 spin_lock(&OCFS2_I(inode)->ip_lock);
649 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
650 spin_unlock(&OCFS2_I(inode)->ip_lock);
651 /* Release unused quota reservation */
652 dquot_free_space(inode,
653 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
654 did_quota = 0;
655
656 if (why != RESTART_NONE && clusters_to_add) {
657 if (why == RESTART_META) {
658 restart_func = 1;
659 status = 0;
660 } else {
661 BUG_ON(why != RESTART_TRANS);
662
663 status = ocfs2_allocate_extend_trans(handle, 1);
664 if (status < 0) {
665 /* handle still has to be committed at
666 * this point. */
667 status = -ENOMEM;
668 mlog_errno(status);
669 goto leave;
670 }
671 goto restarted_transaction;
672 }
673 }
674
675 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
676 le32_to_cpu(fe->i_clusters),
677 (unsigned long long)le64_to_cpu(fe->i_size),
678 OCFS2_I(inode)->ip_clusters,
679 (unsigned long long)i_size_read(inode));
680
681 leave:
682 if (status < 0 && did_quota)
683 dquot_free_space(inode,
684 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
685 if (handle) {
686 ocfs2_commit_trans(osb, handle);
687 handle = NULL;
688 }
689 if (data_ac) {
690 ocfs2_free_alloc_context(data_ac);
691 data_ac = NULL;
692 }
693 if (meta_ac) {
694 ocfs2_free_alloc_context(meta_ac);
695 meta_ac = NULL;
696 }
697 if ((!status) && restart_func) {
698 restart_func = 0;
699 goto restart_all;
700 }
701 brelse(bh);
702 bh = NULL;
703
704 return status;
705 }
706
707 /*
708 * While a write will already be ordering the data, a truncate will not.
709 * Thus, we need to explicitly order the zeroed pages.
710 */
ocfs2_zero_start_ordered_transaction(struct inode * inode,struct buffer_head * di_bh,loff_t start_byte,loff_t length)711 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
712 struct buffer_head *di_bh,
713 loff_t start_byte,
714 loff_t length)
715 {
716 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
717 handle_t *handle = NULL;
718 int ret = 0;
719
720 if (!ocfs2_should_order_data(inode))
721 goto out;
722
723 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
724 if (IS_ERR(handle)) {
725 ret = -ENOMEM;
726 mlog_errno(ret);
727 goto out;
728 }
729
730 ret = ocfs2_jbd2_inode_add_write(handle, inode, start_byte, length);
731 if (ret < 0) {
732 mlog_errno(ret);
733 goto out;
734 }
735
736 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
737 OCFS2_JOURNAL_ACCESS_WRITE);
738 if (ret)
739 mlog_errno(ret);
740 ocfs2_update_inode_fsync_trans(handle, inode, 1);
741
742 out:
743 if (ret) {
744 if (!IS_ERR(handle))
745 ocfs2_commit_trans(osb, handle);
746 handle = ERR_PTR(ret);
747 }
748 return handle;
749 }
750
751 /* Some parts of this taken from generic_cont_expand, which turned out
752 * to be too fragile to do exactly what we need without us having to
753 * worry about recursive locking in ->write_begin() and ->write_end(). */
ocfs2_write_zero_page(struct inode * inode,u64 abs_from,u64 abs_to,struct buffer_head * di_bh)754 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
755 u64 abs_to, struct buffer_head *di_bh)
756 {
757 struct address_space *mapping = inode->i_mapping;
758 struct folio *folio;
759 unsigned long index = abs_from >> PAGE_SHIFT;
760 handle_t *handle;
761 int ret = 0;
762 unsigned zero_from, zero_to, block_start, block_end;
763 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
764
765 BUG_ON(abs_from >= abs_to);
766 BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT));
767 BUG_ON(abs_from & (inode->i_blkbits - 1));
768
769 handle = ocfs2_zero_start_ordered_transaction(inode, di_bh,
770 abs_from,
771 abs_to - abs_from);
772 if (IS_ERR(handle)) {
773 ret = PTR_ERR(handle);
774 goto out;
775 }
776
777 folio = __filemap_get_folio(mapping, index,
778 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, GFP_NOFS);
779 if (IS_ERR(folio)) {
780 ret = PTR_ERR(folio);
781 mlog_errno(ret);
782 goto out_commit_trans;
783 }
784
785 /* Get the offsets within the page that we want to zero */
786 zero_from = abs_from & (PAGE_SIZE - 1);
787 zero_to = abs_to & (PAGE_SIZE - 1);
788 if (!zero_to)
789 zero_to = PAGE_SIZE;
790
791 trace_ocfs2_write_zero_page(
792 (unsigned long long)OCFS2_I(inode)->ip_blkno,
793 (unsigned long long)abs_from,
794 (unsigned long long)abs_to,
795 index, zero_from, zero_to);
796
797 /* We know that zero_from is block aligned */
798 for (block_start = zero_from; block_start < zero_to;
799 block_start = block_end) {
800 block_end = block_start + i_blocksize(inode);
801
802 /*
803 * block_start is block-aligned. Bump it by one to force
804 * __block_write_begin and block_commit_write to zero the
805 * whole block.
806 */
807 ret = __block_write_begin(folio, block_start + 1, 0,
808 ocfs2_get_block);
809 if (ret < 0) {
810 mlog_errno(ret);
811 goto out_unlock;
812 }
813
814
815 /* must not update i_size! */
816 block_commit_write(&folio->page, block_start + 1, block_start + 1);
817 }
818
819 /*
820 * fs-writeback will release the dirty pages without page lock
821 * whose offset are over inode size, the release happens at
822 * block_write_full_folio().
823 */
824 i_size_write(inode, abs_to);
825 inode->i_blocks = ocfs2_inode_sector_count(inode);
826 di->i_size = cpu_to_le64((u64)i_size_read(inode));
827 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
828 di->i_mtime = di->i_ctime = cpu_to_le64(inode_get_mtime_sec(inode));
829 di->i_ctime_nsec = cpu_to_le32(inode_get_mtime_nsec(inode));
830 di->i_mtime_nsec = di->i_ctime_nsec;
831 if (handle) {
832 ocfs2_journal_dirty(handle, di_bh);
833 ocfs2_update_inode_fsync_trans(handle, inode, 1);
834 }
835
836 out_unlock:
837 folio_unlock(folio);
838 folio_put(folio);
839 out_commit_trans:
840 if (handle)
841 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
842 out:
843 return ret;
844 }
845
846 /*
847 * Find the next range to zero. We do this in terms of bytes because
848 * that's what ocfs2_zero_extend() wants, and it is dealing with the
849 * pagecache. We may return multiple extents.
850 *
851 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
852 * needs to be zeroed. range_start and range_end return the next zeroing
853 * range. A subsequent call should pass the previous range_end as its
854 * zero_start. If range_end is 0, there's nothing to do.
855 *
856 * Unwritten extents are skipped over. Refcounted extents are CoWd.
857 */
ocfs2_zero_extend_get_range(struct inode * inode,struct buffer_head * di_bh,u64 zero_start,u64 zero_end,u64 * range_start,u64 * range_end)858 static int ocfs2_zero_extend_get_range(struct inode *inode,
859 struct buffer_head *di_bh,
860 u64 zero_start, u64 zero_end,
861 u64 *range_start, u64 *range_end)
862 {
863 int rc = 0, needs_cow = 0;
864 u32 p_cpos, zero_clusters = 0;
865 u32 zero_cpos =
866 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
867 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
868 unsigned int num_clusters = 0;
869 unsigned int ext_flags = 0;
870
871 while (zero_cpos < last_cpos) {
872 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
873 &num_clusters, &ext_flags);
874 if (rc) {
875 mlog_errno(rc);
876 goto out;
877 }
878
879 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
880 zero_clusters = num_clusters;
881 if (ext_flags & OCFS2_EXT_REFCOUNTED)
882 needs_cow = 1;
883 break;
884 }
885
886 zero_cpos += num_clusters;
887 }
888 if (!zero_clusters) {
889 *range_end = 0;
890 goto out;
891 }
892
893 while ((zero_cpos + zero_clusters) < last_cpos) {
894 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
895 &p_cpos, &num_clusters,
896 &ext_flags);
897 if (rc) {
898 mlog_errno(rc);
899 goto out;
900 }
901
902 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
903 break;
904 if (ext_flags & OCFS2_EXT_REFCOUNTED)
905 needs_cow = 1;
906 zero_clusters += num_clusters;
907 }
908 if ((zero_cpos + zero_clusters) > last_cpos)
909 zero_clusters = last_cpos - zero_cpos;
910
911 if (needs_cow) {
912 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
913 zero_clusters, UINT_MAX);
914 if (rc) {
915 mlog_errno(rc);
916 goto out;
917 }
918 }
919
920 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
921 *range_end = ocfs2_clusters_to_bytes(inode->i_sb,
922 zero_cpos + zero_clusters);
923
924 out:
925 return rc;
926 }
927
928 /*
929 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller
930 * has made sure that the entire range needs zeroing.
931 */
ocfs2_zero_extend_range(struct inode * inode,u64 range_start,u64 range_end,struct buffer_head * di_bh)932 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
933 u64 range_end, struct buffer_head *di_bh)
934 {
935 int rc = 0;
936 u64 next_pos;
937 u64 zero_pos = range_start;
938
939 trace_ocfs2_zero_extend_range(
940 (unsigned long long)OCFS2_I(inode)->ip_blkno,
941 (unsigned long long)range_start,
942 (unsigned long long)range_end);
943 BUG_ON(range_start >= range_end);
944
945 while (zero_pos < range_end) {
946 next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE;
947 if (next_pos > range_end)
948 next_pos = range_end;
949 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
950 if (rc < 0) {
951 mlog_errno(rc);
952 break;
953 }
954 zero_pos = next_pos;
955
956 /*
957 * Very large extends have the potential to lock up
958 * the cpu for extended periods of time.
959 */
960 cond_resched();
961 }
962
963 return rc;
964 }
965
ocfs2_zero_extend(struct inode * inode,struct buffer_head * di_bh,loff_t zero_to_size)966 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
967 loff_t zero_to_size)
968 {
969 int ret = 0;
970 u64 zero_start, range_start = 0, range_end = 0;
971 struct super_block *sb = inode->i_sb;
972
973 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
974 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
975 (unsigned long long)zero_start,
976 (unsigned long long)i_size_read(inode));
977 while (zero_start < zero_to_size) {
978 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
979 zero_to_size,
980 &range_start,
981 &range_end);
982 if (ret) {
983 mlog_errno(ret);
984 break;
985 }
986 if (!range_end)
987 break;
988 /* Trim the ends */
989 if (range_start < zero_start)
990 range_start = zero_start;
991 if (range_end > zero_to_size)
992 range_end = zero_to_size;
993
994 ret = ocfs2_zero_extend_range(inode, range_start,
995 range_end, di_bh);
996 if (ret) {
997 mlog_errno(ret);
998 break;
999 }
1000 zero_start = range_end;
1001 }
1002
1003 return ret;
1004 }
1005
ocfs2_extend_no_holes(struct inode * inode,struct buffer_head * di_bh,u64 new_i_size,u64 zero_to)1006 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1007 u64 new_i_size, u64 zero_to)
1008 {
1009 int ret;
1010 u32 clusters_to_add;
1011 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1012
1013 /*
1014 * Only quota files call this without a bh, and they can't be
1015 * refcounted.
1016 */
1017 BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode));
1018 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1019
1020 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1021 if (clusters_to_add < oi->ip_clusters)
1022 clusters_to_add = 0;
1023 else
1024 clusters_to_add -= oi->ip_clusters;
1025
1026 if (clusters_to_add) {
1027 ret = ocfs2_extend_allocation(inode, oi->ip_clusters,
1028 clusters_to_add, 0);
1029 if (ret) {
1030 mlog_errno(ret);
1031 goto out;
1032 }
1033 }
1034
1035 /*
1036 * Call this even if we don't add any clusters to the tree. We
1037 * still need to zero the area between the old i_size and the
1038 * new i_size.
1039 */
1040 ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1041 if (ret < 0)
1042 mlog_errno(ret);
1043
1044 out:
1045 return ret;
1046 }
1047
ocfs2_extend_file(struct inode * inode,struct buffer_head * di_bh,u64 new_i_size)1048 static int ocfs2_extend_file(struct inode *inode,
1049 struct buffer_head *di_bh,
1050 u64 new_i_size)
1051 {
1052 int ret = 0;
1053 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1054
1055 BUG_ON(!di_bh);
1056
1057 /* setattr sometimes calls us like this. */
1058 if (new_i_size == 0)
1059 goto out;
1060
1061 if (i_size_read(inode) == new_i_size)
1062 goto out;
1063 BUG_ON(new_i_size < i_size_read(inode));
1064
1065 /*
1066 * The alloc sem blocks people in read/write from reading our
1067 * allocation until we're done changing it. We depend on
1068 * i_rwsem to block other extend/truncate calls while we're
1069 * here. We even have to hold it for sparse files because there
1070 * might be some tail zeroing.
1071 */
1072 down_write(&oi->ip_alloc_sem);
1073
1074 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1075 /*
1076 * We can optimize small extends by keeping the inodes
1077 * inline data.
1078 */
1079 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1080 up_write(&oi->ip_alloc_sem);
1081 goto out_update_size;
1082 }
1083
1084 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1085 if (ret) {
1086 up_write(&oi->ip_alloc_sem);
1087 mlog_errno(ret);
1088 goto out;
1089 }
1090 }
1091
1092 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1093 ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1094 else
1095 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1096 new_i_size);
1097
1098 up_write(&oi->ip_alloc_sem);
1099
1100 if (ret < 0) {
1101 mlog_errno(ret);
1102 goto out;
1103 }
1104
1105 out_update_size:
1106 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1107 if (ret < 0)
1108 mlog_errno(ret);
1109
1110 out:
1111 return ret;
1112 }
1113
ocfs2_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1114 int ocfs2_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
1115 struct iattr *attr)
1116 {
1117 int status = 0, size_change;
1118 int inode_locked = 0;
1119 struct inode *inode = d_inode(dentry);
1120 struct super_block *sb = inode->i_sb;
1121 struct ocfs2_super *osb = OCFS2_SB(sb);
1122 struct buffer_head *bh = NULL;
1123 handle_t *handle = NULL;
1124 struct dquot *transfer_to[MAXQUOTAS] = { };
1125 int qtype;
1126 int had_lock;
1127 struct ocfs2_lock_holder oh;
1128
1129 trace_ocfs2_setattr(inode, dentry,
1130 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1131 dentry->d_name.len, dentry->d_name.name,
1132 attr->ia_valid,
1133 attr->ia_valid & ATTR_MODE ? attr->ia_mode : 0,
1134 attr->ia_valid & ATTR_UID ?
1135 from_kuid(&init_user_ns, attr->ia_uid) : 0,
1136 attr->ia_valid & ATTR_GID ?
1137 from_kgid(&init_user_ns, attr->ia_gid) : 0);
1138
1139 /* ensuring we don't even attempt to truncate a symlink */
1140 if (S_ISLNK(inode->i_mode))
1141 attr->ia_valid &= ~ATTR_SIZE;
1142
1143 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1144 | ATTR_GID | ATTR_UID | ATTR_MODE)
1145 if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1146 return 0;
1147
1148 status = setattr_prepare(&nop_mnt_idmap, dentry, attr);
1149 if (status)
1150 return status;
1151
1152 if (is_quota_modification(&nop_mnt_idmap, inode, attr)) {
1153 status = dquot_initialize(inode);
1154 if (status)
1155 return status;
1156 }
1157 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1158 if (size_change) {
1159 /*
1160 * Here we should wait dio to finish before inode lock
1161 * to avoid a deadlock between ocfs2_setattr() and
1162 * ocfs2_dio_end_io_write()
1163 */
1164 inode_dio_wait(inode);
1165
1166 status = ocfs2_rw_lock(inode, 1);
1167 if (status < 0) {
1168 mlog_errno(status);
1169 goto bail;
1170 }
1171 }
1172
1173 had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh);
1174 if (had_lock < 0) {
1175 status = had_lock;
1176 goto bail_unlock_rw;
1177 } else if (had_lock) {
1178 /*
1179 * As far as we know, ocfs2_setattr() could only be the first
1180 * VFS entry point in the call chain of recursive cluster
1181 * locking issue.
1182 *
1183 * For instance:
1184 * chmod_common()
1185 * notify_change()
1186 * ocfs2_setattr()
1187 * posix_acl_chmod()
1188 * ocfs2_iop_get_acl()
1189 *
1190 * But, we're not 100% sure if it's always true, because the
1191 * ordering of the VFS entry points in the call chain is out
1192 * of our control. So, we'd better dump the stack here to
1193 * catch the other cases of recursive locking.
1194 */
1195 mlog(ML_ERROR, "Another case of recursive locking:\n");
1196 dump_stack();
1197 }
1198 inode_locked = 1;
1199
1200 if (size_change) {
1201 status = inode_newsize_ok(inode, attr->ia_size);
1202 if (status)
1203 goto bail_unlock;
1204
1205 if (i_size_read(inode) >= attr->ia_size) {
1206 if (ocfs2_should_order_data(inode)) {
1207 status = ocfs2_begin_ordered_truncate(inode,
1208 attr->ia_size);
1209 if (status)
1210 goto bail_unlock;
1211 }
1212 status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1213 } else
1214 status = ocfs2_extend_file(inode, bh, attr->ia_size);
1215 if (status < 0) {
1216 if (status != -ENOSPC)
1217 mlog_errno(status);
1218 status = -ENOSPC;
1219 goto bail_unlock;
1220 }
1221 }
1222
1223 if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1224 (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1225 /*
1226 * Gather pointers to quota structures so that allocation /
1227 * freeing of quota structures happens here and not inside
1228 * dquot_transfer() where we have problems with lock ordering
1229 */
1230 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1231 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1232 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1233 transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1234 if (IS_ERR(transfer_to[USRQUOTA])) {
1235 status = PTR_ERR(transfer_to[USRQUOTA]);
1236 transfer_to[USRQUOTA] = NULL;
1237 goto bail_unlock;
1238 }
1239 }
1240 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1241 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1242 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1243 transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1244 if (IS_ERR(transfer_to[GRPQUOTA])) {
1245 status = PTR_ERR(transfer_to[GRPQUOTA]);
1246 transfer_to[GRPQUOTA] = NULL;
1247 goto bail_unlock;
1248 }
1249 }
1250 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1251 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1252 2 * ocfs2_quota_trans_credits(sb));
1253 if (IS_ERR(handle)) {
1254 status = PTR_ERR(handle);
1255 mlog_errno(status);
1256 goto bail_unlock_alloc;
1257 }
1258 status = __dquot_transfer(inode, transfer_to);
1259 if (status < 0)
1260 goto bail_commit;
1261 } else {
1262 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1263 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1264 if (IS_ERR(handle)) {
1265 status = PTR_ERR(handle);
1266 mlog_errno(status);
1267 goto bail_unlock_alloc;
1268 }
1269 }
1270
1271 setattr_copy(&nop_mnt_idmap, inode, attr);
1272 mark_inode_dirty(inode);
1273
1274 status = ocfs2_mark_inode_dirty(handle, inode, bh);
1275 if (status < 0)
1276 mlog_errno(status);
1277
1278 bail_commit:
1279 ocfs2_commit_trans(osb, handle);
1280 bail_unlock_alloc:
1281 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1282 bail_unlock:
1283 if (status && inode_locked) {
1284 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1285 inode_locked = 0;
1286 }
1287 bail_unlock_rw:
1288 if (size_change)
1289 ocfs2_rw_unlock(inode, 1);
1290 bail:
1291
1292 /* Release quota pointers in case we acquired them */
1293 for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
1294 dqput(transfer_to[qtype]);
1295
1296 if (!status && attr->ia_valid & ATTR_MODE) {
1297 status = ocfs2_acl_chmod(inode, bh);
1298 if (status < 0)
1299 mlog_errno(status);
1300 }
1301 if (inode_locked)
1302 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1303
1304 brelse(bh);
1305 return status;
1306 }
1307
ocfs2_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int flags)1308 int ocfs2_getattr(struct mnt_idmap *idmap, const struct path *path,
1309 struct kstat *stat, u32 request_mask, unsigned int flags)
1310 {
1311 struct inode *inode = d_inode(path->dentry);
1312 struct super_block *sb = path->dentry->d_sb;
1313 struct ocfs2_super *osb = sb->s_fs_info;
1314 int err;
1315
1316 err = ocfs2_inode_revalidate(path->dentry);
1317 if (err) {
1318 if (err != -ENOENT)
1319 mlog_errno(err);
1320 goto bail;
1321 }
1322
1323 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
1324 /*
1325 * If there is inline data in the inode, the inode will normally not
1326 * have data blocks allocated (it may have an external xattr block).
1327 * Report at least one sector for such files, so tools like tar, rsync,
1328 * others don't incorrectly think the file is completely sparse.
1329 */
1330 if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1331 stat->blocks += (stat->size + 511)>>9;
1332
1333 /* We set the blksize from the cluster size for performance */
1334 stat->blksize = osb->s_clustersize;
1335
1336 bail:
1337 return err;
1338 }
1339
ocfs2_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)1340 int ocfs2_permission(struct mnt_idmap *idmap, struct inode *inode,
1341 int mask)
1342 {
1343 int ret, had_lock;
1344 struct ocfs2_lock_holder oh;
1345
1346 if (mask & MAY_NOT_BLOCK)
1347 return -ECHILD;
1348
1349 had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh);
1350 if (had_lock < 0) {
1351 ret = had_lock;
1352 goto out;
1353 } else if (had_lock) {
1354 /* See comments in ocfs2_setattr() for details.
1355 * The call chain of this case could be:
1356 * do_sys_open()
1357 * may_open()
1358 * inode_permission()
1359 * ocfs2_permission()
1360 * ocfs2_iop_get_acl()
1361 */
1362 mlog(ML_ERROR, "Another case of recursive locking:\n");
1363 dump_stack();
1364 }
1365
1366 ret = generic_permission(&nop_mnt_idmap, inode, mask);
1367
1368 ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock);
1369 out:
1370 return ret;
1371 }
1372
__ocfs2_write_remove_suid(struct inode * inode,struct buffer_head * bh)1373 static int __ocfs2_write_remove_suid(struct inode *inode,
1374 struct buffer_head *bh)
1375 {
1376 int ret;
1377 handle_t *handle;
1378 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1379 struct ocfs2_dinode *di;
1380
1381 trace_ocfs2_write_remove_suid(
1382 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1383 inode->i_mode);
1384
1385 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1386 if (IS_ERR(handle)) {
1387 ret = PTR_ERR(handle);
1388 mlog_errno(ret);
1389 goto out;
1390 }
1391
1392 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1393 OCFS2_JOURNAL_ACCESS_WRITE);
1394 if (ret < 0) {
1395 mlog_errno(ret);
1396 goto out_trans;
1397 }
1398
1399 inode->i_mode &= ~S_ISUID;
1400 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1401 inode->i_mode &= ~S_ISGID;
1402
1403 di = (struct ocfs2_dinode *) bh->b_data;
1404 di->i_mode = cpu_to_le16(inode->i_mode);
1405 ocfs2_update_inode_fsync_trans(handle, inode, 0);
1406
1407 ocfs2_journal_dirty(handle, bh);
1408
1409 out_trans:
1410 ocfs2_commit_trans(osb, handle);
1411 out:
1412 return ret;
1413 }
1414
ocfs2_write_remove_suid(struct inode * inode)1415 static int ocfs2_write_remove_suid(struct inode *inode)
1416 {
1417 int ret;
1418 struct buffer_head *bh = NULL;
1419
1420 ret = ocfs2_read_inode_block(inode, &bh);
1421 if (ret < 0) {
1422 mlog_errno(ret);
1423 goto out;
1424 }
1425
1426 ret = __ocfs2_write_remove_suid(inode, bh);
1427 out:
1428 brelse(bh);
1429 return ret;
1430 }
1431
1432 /*
1433 * Allocate enough extents to cover the region starting at byte offset
1434 * start for len bytes. Existing extents are skipped, any extents
1435 * added are marked as "unwritten".
1436 */
ocfs2_allocate_unwritten_extents(struct inode * inode,u64 start,u64 len)1437 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1438 u64 start, u64 len)
1439 {
1440 int ret;
1441 u32 cpos, phys_cpos, clusters, alloc_size;
1442 u64 end = start + len;
1443 struct buffer_head *di_bh = NULL;
1444
1445 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1446 ret = ocfs2_read_inode_block(inode, &di_bh);
1447 if (ret) {
1448 mlog_errno(ret);
1449 goto out;
1450 }
1451
1452 /*
1453 * Nothing to do if the requested reservation range
1454 * fits within the inode.
1455 */
1456 if (ocfs2_size_fits_inline_data(di_bh, end))
1457 goto out;
1458
1459 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1460 if (ret) {
1461 mlog_errno(ret);
1462 goto out;
1463 }
1464 }
1465
1466 /*
1467 * We consider both start and len to be inclusive.
1468 */
1469 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1470 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1471 clusters -= cpos;
1472
1473 while (clusters) {
1474 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1475 &alloc_size, NULL);
1476 if (ret) {
1477 mlog_errno(ret);
1478 goto out;
1479 }
1480
1481 /*
1482 * Hole or existing extent len can be arbitrary, so
1483 * cap it to our own allocation request.
1484 */
1485 if (alloc_size > clusters)
1486 alloc_size = clusters;
1487
1488 if (phys_cpos) {
1489 /*
1490 * We already have an allocation at this
1491 * region so we can safely skip it.
1492 */
1493 goto next;
1494 }
1495
1496 ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1497 if (ret) {
1498 if (ret != -ENOSPC)
1499 mlog_errno(ret);
1500 goto out;
1501 }
1502
1503 next:
1504 cpos += alloc_size;
1505 clusters -= alloc_size;
1506 }
1507
1508 ret = 0;
1509 out:
1510
1511 brelse(di_bh);
1512 return ret;
1513 }
1514
1515 /*
1516 * Truncate a byte range, avoiding pages within partial clusters. This
1517 * preserves those pages for the zeroing code to write to.
1518 */
ocfs2_truncate_cluster_pages(struct inode * inode,u64 byte_start,u64 byte_len)1519 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1520 u64 byte_len)
1521 {
1522 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1523 loff_t start, end;
1524 struct address_space *mapping = inode->i_mapping;
1525
1526 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1527 end = byte_start + byte_len;
1528 end = end & ~(osb->s_clustersize - 1);
1529
1530 if (start < end) {
1531 unmap_mapping_range(mapping, start, end - start, 0);
1532 truncate_inode_pages_range(mapping, start, end - 1);
1533 }
1534 }
1535
1536 /*
1537 * zero out partial blocks of one cluster.
1538 *
1539 * start: file offset where zero starts, will be made upper block aligned.
1540 * len: it will be trimmed to the end of current cluster if "start + len"
1541 * is bigger than it.
1542 */
ocfs2_zeroout_partial_cluster(struct inode * inode,u64 start,u64 len)1543 static int ocfs2_zeroout_partial_cluster(struct inode *inode,
1544 u64 start, u64 len)
1545 {
1546 int ret;
1547 u64 start_block, end_block, nr_blocks;
1548 u64 p_block, offset;
1549 u32 cluster, p_cluster, nr_clusters;
1550 struct super_block *sb = inode->i_sb;
1551 u64 end = ocfs2_align_bytes_to_clusters(sb, start);
1552
1553 if (start + len < end)
1554 end = start + len;
1555
1556 start_block = ocfs2_blocks_for_bytes(sb, start);
1557 end_block = ocfs2_blocks_for_bytes(sb, end);
1558 nr_blocks = end_block - start_block;
1559 if (!nr_blocks)
1560 return 0;
1561
1562 cluster = ocfs2_bytes_to_clusters(sb, start);
1563 ret = ocfs2_get_clusters(inode, cluster, &p_cluster,
1564 &nr_clusters, NULL);
1565 if (ret)
1566 return ret;
1567 if (!p_cluster)
1568 return 0;
1569
1570 offset = start_block - ocfs2_clusters_to_blocks(sb, cluster);
1571 p_block = ocfs2_clusters_to_blocks(sb, p_cluster) + offset;
1572 return sb_issue_zeroout(sb, p_block, nr_blocks, GFP_NOFS);
1573 }
1574
ocfs2_zero_partial_clusters(struct inode * inode,u64 start,u64 len)1575 static int ocfs2_zero_partial_clusters(struct inode *inode,
1576 u64 start, u64 len)
1577 {
1578 int ret = 0;
1579 u64 tmpend = 0;
1580 u64 end = start + len;
1581 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1582 unsigned int csize = osb->s_clustersize;
1583 handle_t *handle;
1584 loff_t isize = i_size_read(inode);
1585
1586 /*
1587 * The "start" and "end" values are NOT necessarily part of
1588 * the range whose allocation is being deleted. Rather, this
1589 * is what the user passed in with the request. We must zero
1590 * partial clusters here. There's no need to worry about
1591 * physical allocation - the zeroing code knows to skip holes.
1592 */
1593 trace_ocfs2_zero_partial_clusters(
1594 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1595 (unsigned long long)start, (unsigned long long)end);
1596
1597 /*
1598 * If both edges are on a cluster boundary then there's no
1599 * zeroing required as the region is part of the allocation to
1600 * be truncated.
1601 */
1602 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1603 goto out;
1604
1605 /* No page cache for EOF blocks, issue zero out to disk. */
1606 if (end > isize) {
1607 /*
1608 * zeroout eof blocks in last cluster starting from
1609 * "isize" even "start" > "isize" because it is
1610 * complicated to zeroout just at "start" as "start"
1611 * may be not aligned with block size, buffer write
1612 * would be required to do that, but out of eof buffer
1613 * write is not supported.
1614 */
1615 ret = ocfs2_zeroout_partial_cluster(inode, isize,
1616 end - isize);
1617 if (ret) {
1618 mlog_errno(ret);
1619 goto out;
1620 }
1621 if (start >= isize)
1622 goto out;
1623 end = isize;
1624 }
1625 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1626 if (IS_ERR(handle)) {
1627 ret = PTR_ERR(handle);
1628 mlog_errno(ret);
1629 goto out;
1630 }
1631
1632 /*
1633 * If start is on a cluster boundary and end is somewhere in another
1634 * cluster, we have not COWed the cluster starting at start, unless
1635 * end is also within the same cluster. So, in this case, we skip this
1636 * first call to ocfs2_zero_range_for_truncate() truncate and move on
1637 * to the next one.
1638 */
1639 if ((start & (csize - 1)) != 0) {
1640 /*
1641 * We want to get the byte offset of the end of the 1st
1642 * cluster.
1643 */
1644 tmpend = (u64)osb->s_clustersize +
1645 (start & ~(osb->s_clustersize - 1));
1646 if (tmpend > end)
1647 tmpend = end;
1648
1649 trace_ocfs2_zero_partial_clusters_range1(
1650 (unsigned long long)start,
1651 (unsigned long long)tmpend);
1652
1653 ret = ocfs2_zero_range_for_truncate(inode, handle, start,
1654 tmpend);
1655 if (ret)
1656 mlog_errno(ret);
1657 }
1658
1659 if (tmpend < end) {
1660 /*
1661 * This may make start and end equal, but the zeroing
1662 * code will skip any work in that case so there's no
1663 * need to catch it up here.
1664 */
1665 start = end & ~(osb->s_clustersize - 1);
1666
1667 trace_ocfs2_zero_partial_clusters_range2(
1668 (unsigned long long)start, (unsigned long long)end);
1669
1670 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1671 if (ret)
1672 mlog_errno(ret);
1673 }
1674 ocfs2_update_inode_fsync_trans(handle, inode, 1);
1675
1676 ocfs2_commit_trans(osb, handle);
1677 out:
1678 return ret;
1679 }
1680
ocfs2_find_rec(struct ocfs2_extent_list * el,u32 pos)1681 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1682 {
1683 int i;
1684 struct ocfs2_extent_rec *rec = NULL;
1685
1686 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1687
1688 rec = &el->l_recs[i];
1689
1690 if (le32_to_cpu(rec->e_cpos) < pos)
1691 break;
1692 }
1693
1694 return i;
1695 }
1696
1697 /*
1698 * Helper to calculate the punching pos and length in one run, we handle the
1699 * following three cases in order:
1700 *
1701 * - remove the entire record
1702 * - remove a partial record
1703 * - no record needs to be removed (hole-punching completed)
1704 */
ocfs2_calc_trunc_pos(struct inode * inode,struct ocfs2_extent_list * el,struct ocfs2_extent_rec * rec,u32 trunc_start,u32 * trunc_cpos,u32 * trunc_len,u32 * trunc_end,u64 * blkno,int * done)1705 static void ocfs2_calc_trunc_pos(struct inode *inode,
1706 struct ocfs2_extent_list *el,
1707 struct ocfs2_extent_rec *rec,
1708 u32 trunc_start, u32 *trunc_cpos,
1709 u32 *trunc_len, u32 *trunc_end,
1710 u64 *blkno, int *done)
1711 {
1712 int ret = 0;
1713 u32 coff, range;
1714
1715 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1716
1717 if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1718 /*
1719 * remove an entire extent record.
1720 */
1721 *trunc_cpos = le32_to_cpu(rec->e_cpos);
1722 /*
1723 * Skip holes if any.
1724 */
1725 if (range < *trunc_end)
1726 *trunc_end = range;
1727 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1728 *blkno = le64_to_cpu(rec->e_blkno);
1729 *trunc_end = le32_to_cpu(rec->e_cpos);
1730 } else if (range > trunc_start) {
1731 /*
1732 * remove a partial extent record, which means we're
1733 * removing the last extent record.
1734 */
1735 *trunc_cpos = trunc_start;
1736 /*
1737 * skip hole if any.
1738 */
1739 if (range < *trunc_end)
1740 *trunc_end = range;
1741 *trunc_len = *trunc_end - trunc_start;
1742 coff = trunc_start - le32_to_cpu(rec->e_cpos);
1743 *blkno = le64_to_cpu(rec->e_blkno) +
1744 ocfs2_clusters_to_blocks(inode->i_sb, coff);
1745 *trunc_end = trunc_start;
1746 } else {
1747 /*
1748 * It may have two following possibilities:
1749 *
1750 * - last record has been removed
1751 * - trunc_start was within a hole
1752 *
1753 * both two cases mean the completion of hole punching.
1754 */
1755 ret = 1;
1756 }
1757
1758 *done = ret;
1759 }
1760
ocfs2_remove_inode_range(struct inode * inode,struct buffer_head * di_bh,u64 byte_start,u64 byte_len)1761 int ocfs2_remove_inode_range(struct inode *inode,
1762 struct buffer_head *di_bh, u64 byte_start,
1763 u64 byte_len)
1764 {
1765 int ret = 0, flags = 0, done = 0, i;
1766 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1767 u32 cluster_in_el;
1768 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1769 struct ocfs2_cached_dealloc_ctxt dealloc;
1770 struct address_space *mapping = inode->i_mapping;
1771 struct ocfs2_extent_tree et;
1772 struct ocfs2_path *path = NULL;
1773 struct ocfs2_extent_list *el = NULL;
1774 struct ocfs2_extent_rec *rec = NULL;
1775 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1776 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1777
1778 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1779 ocfs2_init_dealloc_ctxt(&dealloc);
1780
1781 trace_ocfs2_remove_inode_range(
1782 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1783 (unsigned long long)byte_start,
1784 (unsigned long long)byte_len);
1785
1786 if (byte_len == 0)
1787 return 0;
1788
1789 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1790 int id_count = ocfs2_max_inline_data_with_xattr(inode->i_sb, di);
1791
1792 if (byte_start > id_count || byte_start + byte_len > id_count) {
1793 ret = -EINVAL;
1794 mlog_errno(ret);
1795 goto out;
1796 }
1797
1798 ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1799 byte_start + byte_len, 0);
1800 if (ret) {
1801 mlog_errno(ret);
1802 goto out;
1803 }
1804 /*
1805 * There's no need to get fancy with the page cache
1806 * truncate of an inline-data inode. We're talking
1807 * about less than a page here, which will be cached
1808 * in the dinode buffer anyway.
1809 */
1810 unmap_mapping_range(mapping, 0, 0, 0);
1811 truncate_inode_pages(mapping, 0);
1812 goto out;
1813 }
1814
1815 /*
1816 * For reflinks, we may need to CoW 2 clusters which might be
1817 * partially zero'd later, if hole's start and end offset were
1818 * within one cluster(means is not exactly aligned to clustersize).
1819 */
1820
1821 if (ocfs2_is_refcount_inode(inode)) {
1822 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1823 if (ret) {
1824 mlog_errno(ret);
1825 goto out;
1826 }
1827
1828 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1829 if (ret) {
1830 mlog_errno(ret);
1831 goto out;
1832 }
1833 }
1834
1835 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1836 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1837 cluster_in_el = trunc_end;
1838
1839 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1840 if (ret) {
1841 mlog_errno(ret);
1842 goto out;
1843 }
1844
1845 path = ocfs2_new_path_from_et(&et);
1846 if (!path) {
1847 ret = -ENOMEM;
1848 mlog_errno(ret);
1849 goto out;
1850 }
1851
1852 while (trunc_end > trunc_start) {
1853
1854 ret = ocfs2_find_path(INODE_CACHE(inode), path,
1855 cluster_in_el);
1856 if (ret) {
1857 mlog_errno(ret);
1858 goto out;
1859 }
1860
1861 el = path_leaf_el(path);
1862
1863 i = ocfs2_find_rec(el, trunc_end);
1864 /*
1865 * Need to go to previous extent block.
1866 */
1867 if (i < 0) {
1868 if (path->p_tree_depth == 0)
1869 break;
1870
1871 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1872 path,
1873 &cluster_in_el);
1874 if (ret) {
1875 mlog_errno(ret);
1876 goto out;
1877 }
1878
1879 /*
1880 * We've reached the leftmost extent block,
1881 * it's safe to leave.
1882 */
1883 if (cluster_in_el == 0)
1884 break;
1885
1886 /*
1887 * The 'pos' searched for previous extent block is
1888 * always one cluster less than actual trunc_end.
1889 */
1890 trunc_end = cluster_in_el + 1;
1891
1892 ocfs2_reinit_path(path, 1);
1893
1894 continue;
1895
1896 } else
1897 rec = &el->l_recs[i];
1898
1899 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1900 &trunc_len, &trunc_end, &blkno, &done);
1901 if (done)
1902 break;
1903
1904 flags = rec->e_flags;
1905 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1906
1907 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1908 phys_cpos, trunc_len, flags,
1909 &dealloc, refcount_loc, false);
1910 if (ret < 0) {
1911 mlog_errno(ret);
1912 goto out;
1913 }
1914
1915 cluster_in_el = trunc_end;
1916
1917 ocfs2_reinit_path(path, 1);
1918 }
1919
1920 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1921
1922 out:
1923 ocfs2_free_path(path);
1924 ocfs2_schedule_truncate_log_flush(osb, 1);
1925 ocfs2_run_deallocs(osb, &dealloc);
1926
1927 return ret;
1928 }
1929
1930 /*
1931 * Parts of this function taken from xfs_change_file_space()
1932 */
__ocfs2_change_file_space(struct file * file,struct inode * inode,loff_t f_pos,unsigned int cmd,struct ocfs2_space_resv * sr,int change_size)1933 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1934 loff_t f_pos, unsigned int cmd,
1935 struct ocfs2_space_resv *sr,
1936 int change_size)
1937 {
1938 int ret;
1939 s64 llen;
1940 loff_t size, orig_isize;
1941 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1942 struct buffer_head *di_bh = NULL;
1943 handle_t *handle;
1944 unsigned long long max_off = inode->i_sb->s_maxbytes;
1945
1946 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1947 return -EROFS;
1948
1949 inode_lock(inode);
1950
1951 /* Wait all existing dio workers, newcomers will block on i_rwsem */
1952 inode_dio_wait(inode);
1953 /*
1954 * This prevents concurrent writes on other nodes
1955 */
1956 ret = ocfs2_rw_lock(inode, 1);
1957 if (ret) {
1958 mlog_errno(ret);
1959 goto out;
1960 }
1961
1962 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1963 if (ret) {
1964 mlog_errno(ret);
1965 goto out_rw_unlock;
1966 }
1967
1968 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1969 ret = -EPERM;
1970 goto out_inode_unlock;
1971 }
1972
1973 switch (sr->l_whence) {
1974 case 0: /*SEEK_SET*/
1975 break;
1976 case 1: /*SEEK_CUR*/
1977 sr->l_start += f_pos;
1978 break;
1979 case 2: /*SEEK_END*/
1980 sr->l_start += i_size_read(inode);
1981 break;
1982 default:
1983 ret = -EINVAL;
1984 goto out_inode_unlock;
1985 }
1986 sr->l_whence = 0;
1987
1988 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1989
1990 if (sr->l_start < 0
1991 || sr->l_start > max_off
1992 || (sr->l_start + llen) < 0
1993 || (sr->l_start + llen) > max_off) {
1994 ret = -EINVAL;
1995 goto out_inode_unlock;
1996 }
1997 size = sr->l_start + sr->l_len;
1998
1999 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
2000 cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
2001 if (sr->l_len <= 0) {
2002 ret = -EINVAL;
2003 goto out_inode_unlock;
2004 }
2005 }
2006
2007 if (file && setattr_should_drop_suidgid(&nop_mnt_idmap, file_inode(file))) {
2008 ret = __ocfs2_write_remove_suid(inode, di_bh);
2009 if (ret) {
2010 mlog_errno(ret);
2011 goto out_inode_unlock;
2012 }
2013 }
2014
2015 down_write(&OCFS2_I(inode)->ip_alloc_sem);
2016 switch (cmd) {
2017 case OCFS2_IOC_RESVSP:
2018 case OCFS2_IOC_RESVSP64:
2019 /*
2020 * This takes unsigned offsets, but the signed ones we
2021 * pass have been checked against overflow above.
2022 */
2023 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
2024 sr->l_len);
2025 break;
2026 case OCFS2_IOC_UNRESVSP:
2027 case OCFS2_IOC_UNRESVSP64:
2028 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
2029 sr->l_len);
2030 break;
2031 default:
2032 ret = -EINVAL;
2033 }
2034
2035 orig_isize = i_size_read(inode);
2036 /* zeroout eof blocks in the cluster. */
2037 if (!ret && change_size && orig_isize < size) {
2038 ret = ocfs2_zeroout_partial_cluster(inode, orig_isize,
2039 size - orig_isize);
2040 if (!ret)
2041 i_size_write(inode, size);
2042 }
2043 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2044 if (ret) {
2045 mlog_errno(ret);
2046 goto out_inode_unlock;
2047 }
2048
2049 /*
2050 * We update c/mtime for these changes
2051 */
2052 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
2053 if (IS_ERR(handle)) {
2054 ret = PTR_ERR(handle);
2055 mlog_errno(ret);
2056 goto out_inode_unlock;
2057 }
2058
2059 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2060 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
2061 if (ret < 0)
2062 mlog_errno(ret);
2063
2064 if (file && (file->f_flags & O_SYNC))
2065 handle->h_sync = 1;
2066
2067 ocfs2_commit_trans(osb, handle);
2068
2069 out_inode_unlock:
2070 brelse(di_bh);
2071 ocfs2_inode_unlock(inode, 1);
2072 out_rw_unlock:
2073 ocfs2_rw_unlock(inode, 1);
2074
2075 out:
2076 inode_unlock(inode);
2077 return ret;
2078 }
2079
ocfs2_change_file_space(struct file * file,unsigned int cmd,struct ocfs2_space_resv * sr)2080 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
2081 struct ocfs2_space_resv *sr)
2082 {
2083 struct inode *inode = file_inode(file);
2084 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2085 int ret;
2086
2087 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
2088 !ocfs2_writes_unwritten_extents(osb))
2089 return -ENOTTY;
2090 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
2091 !ocfs2_sparse_alloc(osb))
2092 return -ENOTTY;
2093
2094 if (!S_ISREG(inode->i_mode))
2095 return -EINVAL;
2096
2097 if (!(file->f_mode & FMODE_WRITE))
2098 return -EBADF;
2099
2100 ret = mnt_want_write_file(file);
2101 if (ret)
2102 return ret;
2103 ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
2104 mnt_drop_write_file(file);
2105 return ret;
2106 }
2107
ocfs2_fallocate(struct file * file,int mode,loff_t offset,loff_t len)2108 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
2109 loff_t len)
2110 {
2111 struct inode *inode = file_inode(file);
2112 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2113 struct ocfs2_space_resv sr;
2114 int change_size = 1;
2115 int cmd = OCFS2_IOC_RESVSP64;
2116 int ret = 0;
2117
2118 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2119 return -EOPNOTSUPP;
2120 if (!ocfs2_writes_unwritten_extents(osb))
2121 return -EOPNOTSUPP;
2122
2123 if (mode & FALLOC_FL_KEEP_SIZE) {
2124 change_size = 0;
2125 } else {
2126 ret = inode_newsize_ok(inode, offset + len);
2127 if (ret)
2128 return ret;
2129 }
2130
2131 if (mode & FALLOC_FL_PUNCH_HOLE)
2132 cmd = OCFS2_IOC_UNRESVSP64;
2133
2134 sr.l_whence = 0;
2135 sr.l_start = (s64)offset;
2136 sr.l_len = (s64)len;
2137
2138 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2139 change_size);
2140 }
2141
ocfs2_check_range_for_refcount(struct inode * inode,loff_t pos,size_t count)2142 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2143 size_t count)
2144 {
2145 int ret = 0;
2146 unsigned int extent_flags;
2147 u32 cpos, clusters, extent_len, phys_cpos;
2148 struct super_block *sb = inode->i_sb;
2149
2150 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2151 !ocfs2_is_refcount_inode(inode) ||
2152 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2153 return 0;
2154
2155 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2156 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2157
2158 while (clusters) {
2159 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2160 &extent_flags);
2161 if (ret < 0) {
2162 mlog_errno(ret);
2163 goto out;
2164 }
2165
2166 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2167 ret = 1;
2168 break;
2169 }
2170
2171 if (extent_len > clusters)
2172 extent_len = clusters;
2173
2174 clusters -= extent_len;
2175 cpos += extent_len;
2176 }
2177 out:
2178 return ret;
2179 }
2180
ocfs2_is_io_unaligned(struct inode * inode,size_t count,loff_t pos)2181 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2182 {
2183 int blockmask = inode->i_sb->s_blocksize - 1;
2184 loff_t final_size = pos + count;
2185
2186 if ((pos & blockmask) || (final_size & blockmask))
2187 return 1;
2188 return 0;
2189 }
2190
ocfs2_inode_lock_for_extent_tree(struct inode * inode,struct buffer_head ** di_bh,int meta_level,int write_sem,int wait)2191 static int ocfs2_inode_lock_for_extent_tree(struct inode *inode,
2192 struct buffer_head **di_bh,
2193 int meta_level,
2194 int write_sem,
2195 int wait)
2196 {
2197 int ret = 0;
2198
2199 if (wait)
2200 ret = ocfs2_inode_lock(inode, di_bh, meta_level);
2201 else
2202 ret = ocfs2_try_inode_lock(inode, di_bh, meta_level);
2203 if (ret < 0)
2204 goto out;
2205
2206 if (wait) {
2207 if (write_sem)
2208 down_write(&OCFS2_I(inode)->ip_alloc_sem);
2209 else
2210 down_read(&OCFS2_I(inode)->ip_alloc_sem);
2211 } else {
2212 if (write_sem)
2213 ret = down_write_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2214 else
2215 ret = down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2216
2217 if (!ret) {
2218 ret = -EAGAIN;
2219 goto out_unlock;
2220 }
2221 }
2222
2223 return ret;
2224
2225 out_unlock:
2226 brelse(*di_bh);
2227 *di_bh = NULL;
2228 ocfs2_inode_unlock(inode, meta_level);
2229 out:
2230 return ret;
2231 }
2232
ocfs2_inode_unlock_for_extent_tree(struct inode * inode,struct buffer_head ** di_bh,int meta_level,int write_sem)2233 static void ocfs2_inode_unlock_for_extent_tree(struct inode *inode,
2234 struct buffer_head **di_bh,
2235 int meta_level,
2236 int write_sem)
2237 {
2238 if (write_sem)
2239 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2240 else
2241 up_read(&OCFS2_I(inode)->ip_alloc_sem);
2242
2243 brelse(*di_bh);
2244 *di_bh = NULL;
2245
2246 if (meta_level >= 0)
2247 ocfs2_inode_unlock(inode, meta_level);
2248 }
2249
ocfs2_prepare_inode_for_write(struct file * file,loff_t pos,size_t count,int wait)2250 static int ocfs2_prepare_inode_for_write(struct file *file,
2251 loff_t pos, size_t count, int wait)
2252 {
2253 int ret = 0, meta_level = 0, overwrite_io = 0;
2254 int write_sem = 0;
2255 struct dentry *dentry = file->f_path.dentry;
2256 struct inode *inode = d_inode(dentry);
2257 struct buffer_head *di_bh = NULL;
2258 u32 cpos;
2259 u32 clusters;
2260
2261 /*
2262 * We start with a read level meta lock and only jump to an ex
2263 * if we need to make modifications here.
2264 */
2265 for(;;) {
2266 ret = ocfs2_inode_lock_for_extent_tree(inode,
2267 &di_bh,
2268 meta_level,
2269 write_sem,
2270 wait);
2271 if (ret < 0) {
2272 if (ret != -EAGAIN)
2273 mlog_errno(ret);
2274 goto out;
2275 }
2276
2277 /*
2278 * Check if IO will overwrite allocated blocks in case
2279 * IOCB_NOWAIT flag is set.
2280 */
2281 if (!wait && !overwrite_io) {
2282 overwrite_io = 1;
2283
2284 ret = ocfs2_overwrite_io(inode, di_bh, pos, count);
2285 if (ret < 0) {
2286 if (ret != -EAGAIN)
2287 mlog_errno(ret);
2288 goto out_unlock;
2289 }
2290 }
2291
2292 /* Clear suid / sgid if necessary. We do this here
2293 * instead of later in the write path because
2294 * remove_suid() calls ->setattr without any hint that
2295 * we may have already done our cluster locking. Since
2296 * ocfs2_setattr() *must* take cluster locks to
2297 * proceed, this will lead us to recursively lock the
2298 * inode. There's also the dinode i_size state which
2299 * can be lost via setattr during extending writes (we
2300 * set inode->i_size at the end of a write. */
2301 if (setattr_should_drop_suidgid(&nop_mnt_idmap, inode)) {
2302 if (meta_level == 0) {
2303 ocfs2_inode_unlock_for_extent_tree(inode,
2304 &di_bh,
2305 meta_level,
2306 write_sem);
2307 meta_level = 1;
2308 continue;
2309 }
2310
2311 ret = ocfs2_write_remove_suid(inode);
2312 if (ret < 0) {
2313 mlog_errno(ret);
2314 goto out_unlock;
2315 }
2316 }
2317
2318 ret = ocfs2_check_range_for_refcount(inode, pos, count);
2319 if (ret == 1) {
2320 ocfs2_inode_unlock_for_extent_tree(inode,
2321 &di_bh,
2322 meta_level,
2323 write_sem);
2324 meta_level = 1;
2325 write_sem = 1;
2326 ret = ocfs2_inode_lock_for_extent_tree(inode,
2327 &di_bh,
2328 meta_level,
2329 write_sem,
2330 wait);
2331 if (ret < 0) {
2332 if (ret != -EAGAIN)
2333 mlog_errno(ret);
2334 goto out;
2335 }
2336
2337 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2338 clusters =
2339 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2340 ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2341 }
2342
2343 if (ret < 0) {
2344 if (ret != -EAGAIN)
2345 mlog_errno(ret);
2346 goto out_unlock;
2347 }
2348
2349 break;
2350 }
2351
2352 out_unlock:
2353 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2354 pos, count, wait);
2355
2356 ocfs2_inode_unlock_for_extent_tree(inode,
2357 &di_bh,
2358 meta_level,
2359 write_sem);
2360
2361 out:
2362 return ret;
2363 }
2364
ocfs2_file_write_iter(struct kiocb * iocb,struct iov_iter * from)2365 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
2366 struct iov_iter *from)
2367 {
2368 int rw_level;
2369 ssize_t written = 0;
2370 ssize_t ret;
2371 size_t count = iov_iter_count(from);
2372 struct file *file = iocb->ki_filp;
2373 struct inode *inode = file_inode(file);
2374 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2375 int full_coherency = !(osb->s_mount_opt &
2376 OCFS2_MOUNT_COHERENCY_BUFFERED);
2377 void *saved_ki_complete = NULL;
2378 int append_write = ((iocb->ki_pos + count) >=
2379 i_size_read(inode) ? 1 : 0);
2380 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2381 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2382
2383 trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry,
2384 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2385 file->f_path.dentry->d_name.len,
2386 file->f_path.dentry->d_name.name,
2387 (unsigned int)from->nr_segs); /* GRRRRR */
2388
2389 if (!direct_io && nowait)
2390 return -EOPNOTSUPP;
2391
2392 if (count == 0)
2393 return 0;
2394
2395 if (nowait) {
2396 if (!inode_trylock(inode))
2397 return -EAGAIN;
2398 } else
2399 inode_lock(inode);
2400
2401 ocfs2_iocb_init_rw_locked(iocb);
2402
2403 /*
2404 * Concurrent O_DIRECT writes are allowed with
2405 * mount_option "coherency=buffered".
2406 * For append write, we must take rw EX.
2407 */
2408 rw_level = (!direct_io || full_coherency || append_write);
2409
2410 if (nowait)
2411 ret = ocfs2_try_rw_lock(inode, rw_level);
2412 else
2413 ret = ocfs2_rw_lock(inode, rw_level);
2414 if (ret < 0) {
2415 if (ret != -EAGAIN)
2416 mlog_errno(ret);
2417 goto out_mutex;
2418 }
2419
2420 /*
2421 * O_DIRECT writes with "coherency=full" need to take EX cluster
2422 * inode_lock to guarantee coherency.
2423 */
2424 if (direct_io && full_coherency) {
2425 /*
2426 * We need to take and drop the inode lock to force
2427 * other nodes to drop their caches. Buffered I/O
2428 * already does this in write_begin().
2429 */
2430 if (nowait)
2431 ret = ocfs2_try_inode_lock(inode, NULL, 1);
2432 else
2433 ret = ocfs2_inode_lock(inode, NULL, 1);
2434 if (ret < 0) {
2435 if (ret != -EAGAIN)
2436 mlog_errno(ret);
2437 goto out;
2438 }
2439
2440 ocfs2_inode_unlock(inode, 1);
2441 }
2442
2443 ret = generic_write_checks(iocb, from);
2444 if (ret <= 0) {
2445 if (ret)
2446 mlog_errno(ret);
2447 goto out;
2448 }
2449 count = ret;
2450
2451 ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait);
2452 if (ret < 0) {
2453 if (ret != -EAGAIN)
2454 mlog_errno(ret);
2455 goto out;
2456 }
2457
2458 if (direct_io && !is_sync_kiocb(iocb) &&
2459 ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) {
2460 /*
2461 * Make it a sync io if it's an unaligned aio.
2462 */
2463 saved_ki_complete = xchg(&iocb->ki_complete, NULL);
2464 }
2465
2466 /* communicate with ocfs2_dio_end_io */
2467 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2468
2469 written = __generic_file_write_iter(iocb, from);
2470 /* buffered aio wouldn't have proper lock coverage today */
2471 BUG_ON(written == -EIOCBQUEUED && !direct_io);
2472
2473 /*
2474 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2475 * function pointer which is called when o_direct io completes so that
2476 * it can unlock our rw lock.
2477 * Unfortunately there are error cases which call end_io and others
2478 * that don't. so we don't have to unlock the rw_lock if either an
2479 * async dio is going to do it in the future or an end_io after an
2480 * error has already done it.
2481 */
2482 if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2483 rw_level = -1;
2484 }
2485
2486 if (unlikely(written <= 0))
2487 goto out;
2488
2489 if (((file->f_flags & O_DSYNC) && !direct_io) ||
2490 IS_SYNC(inode)) {
2491 ret = filemap_fdatawrite_range(file->f_mapping,
2492 iocb->ki_pos - written,
2493 iocb->ki_pos - 1);
2494 if (ret < 0)
2495 written = ret;
2496
2497 if (!ret) {
2498 ret = jbd2_journal_force_commit(osb->journal->j_journal);
2499 if (ret < 0)
2500 written = ret;
2501 }
2502
2503 if (!ret)
2504 ret = filemap_fdatawait_range(file->f_mapping,
2505 iocb->ki_pos - written,
2506 iocb->ki_pos - 1);
2507 }
2508
2509 out:
2510 if (saved_ki_complete)
2511 xchg(&iocb->ki_complete, saved_ki_complete);
2512
2513 if (rw_level != -1)
2514 ocfs2_rw_unlock(inode, rw_level);
2515
2516 out_mutex:
2517 inode_unlock(inode);
2518
2519 if (written)
2520 ret = written;
2521 return ret;
2522 }
2523
ocfs2_file_read_iter(struct kiocb * iocb,struct iov_iter * to)2524 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb,
2525 struct iov_iter *to)
2526 {
2527 int ret = 0, rw_level = -1, lock_level = 0;
2528 struct file *filp = iocb->ki_filp;
2529 struct inode *inode = file_inode(filp);
2530 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2531 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2532
2533 trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry,
2534 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2535 filp->f_path.dentry->d_name.len,
2536 filp->f_path.dentry->d_name.name,
2537 to->nr_segs); /* GRRRRR */
2538
2539
2540 if (!inode) {
2541 ret = -EINVAL;
2542 mlog_errno(ret);
2543 goto bail;
2544 }
2545
2546 if (!direct_io && nowait)
2547 return -EOPNOTSUPP;
2548
2549 ocfs2_iocb_init_rw_locked(iocb);
2550
2551 /*
2552 * buffered reads protect themselves in ->read_folio(). O_DIRECT reads
2553 * need locks to protect pending reads from racing with truncate.
2554 */
2555 if (direct_io) {
2556 if (nowait)
2557 ret = ocfs2_try_rw_lock(inode, 0);
2558 else
2559 ret = ocfs2_rw_lock(inode, 0);
2560
2561 if (ret < 0) {
2562 if (ret != -EAGAIN)
2563 mlog_errno(ret);
2564 goto bail;
2565 }
2566 rw_level = 0;
2567 /* communicate with ocfs2_dio_end_io */
2568 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2569 }
2570
2571 /*
2572 * We're fine letting folks race truncates and extending
2573 * writes with read across the cluster, just like they can
2574 * locally. Hence no rw_lock during read.
2575 *
2576 * Take and drop the meta data lock to update inode fields
2577 * like i_size. This allows the checks down below
2578 * copy_splice_read() a chance of actually working.
2579 */
2580 ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level,
2581 !nowait);
2582 if (ret < 0) {
2583 if (ret != -EAGAIN)
2584 mlog_errno(ret);
2585 goto bail;
2586 }
2587 ocfs2_inode_unlock(inode, lock_level);
2588
2589 ret = generic_file_read_iter(iocb, to);
2590 trace_generic_file_read_iter_ret(ret);
2591
2592 /* buffered aio wouldn't have proper lock coverage today */
2593 BUG_ON(ret == -EIOCBQUEUED && !direct_io);
2594
2595 /* see ocfs2_file_write_iter */
2596 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2597 rw_level = -1;
2598 }
2599
2600 bail:
2601 if (rw_level != -1)
2602 ocfs2_rw_unlock(inode, rw_level);
2603
2604 return ret;
2605 }
2606
ocfs2_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)2607 static ssize_t ocfs2_file_splice_read(struct file *in, loff_t *ppos,
2608 struct pipe_inode_info *pipe,
2609 size_t len, unsigned int flags)
2610 {
2611 struct inode *inode = file_inode(in);
2612 ssize_t ret = 0;
2613 int lock_level = 0;
2614
2615 trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry,
2616 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2617 in->f_path.dentry->d_name.len,
2618 in->f_path.dentry->d_name.name,
2619 flags);
2620
2621 /*
2622 * We're fine letting folks race truncates and extending writes with
2623 * read across the cluster, just like they can locally. Hence no
2624 * rw_lock during read.
2625 *
2626 * Take and drop the meta data lock to update inode fields like i_size.
2627 * This allows the checks down below filemap_splice_read() a chance of
2628 * actually working.
2629 */
2630 ret = ocfs2_inode_lock_atime(inode, in->f_path.mnt, &lock_level, 1);
2631 if (ret < 0) {
2632 if (ret != -EAGAIN)
2633 mlog_errno(ret);
2634 goto bail;
2635 }
2636 ocfs2_inode_unlock(inode, lock_level);
2637
2638 ret = filemap_splice_read(in, ppos, pipe, len, flags);
2639 trace_filemap_splice_read_ret(ret);
2640 bail:
2641 return ret;
2642 }
2643
2644 /* Refer generic_file_llseek_unlocked() */
ocfs2_file_llseek(struct file * file,loff_t offset,int whence)2645 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2646 {
2647 struct inode *inode = file->f_mapping->host;
2648 int ret = 0;
2649
2650 inode_lock(inode);
2651
2652 switch (whence) {
2653 case SEEK_SET:
2654 break;
2655 case SEEK_END:
2656 /* SEEK_END requires the OCFS2 inode lock for the file
2657 * because it references the file's size.
2658 */
2659 ret = ocfs2_inode_lock(inode, NULL, 0);
2660 if (ret < 0) {
2661 mlog_errno(ret);
2662 goto out;
2663 }
2664 offset += i_size_read(inode);
2665 ocfs2_inode_unlock(inode, 0);
2666 break;
2667 case SEEK_CUR:
2668 if (offset == 0) {
2669 offset = file->f_pos;
2670 goto out;
2671 }
2672 offset += file->f_pos;
2673 break;
2674 case SEEK_DATA:
2675 case SEEK_HOLE:
2676 ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2677 if (ret)
2678 goto out;
2679 break;
2680 default:
2681 ret = -EINVAL;
2682 goto out;
2683 }
2684
2685 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2686
2687 out:
2688 inode_unlock(inode);
2689 if (ret)
2690 return ret;
2691 return offset;
2692 }
2693
ocfs2_remap_file_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,loff_t len,unsigned int remap_flags)2694 static loff_t ocfs2_remap_file_range(struct file *file_in, loff_t pos_in,
2695 struct file *file_out, loff_t pos_out,
2696 loff_t len, unsigned int remap_flags)
2697 {
2698 struct inode *inode_in = file_inode(file_in);
2699 struct inode *inode_out = file_inode(file_out);
2700 struct ocfs2_super *osb = OCFS2_SB(inode_in->i_sb);
2701 struct buffer_head *in_bh = NULL, *out_bh = NULL;
2702 bool same_inode = (inode_in == inode_out);
2703 loff_t remapped = 0;
2704 ssize_t ret;
2705
2706 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
2707 return -EINVAL;
2708 if (!ocfs2_refcount_tree(osb))
2709 return -EOPNOTSUPP;
2710 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
2711 return -EROFS;
2712
2713 /* Lock both files against IO */
2714 ret = ocfs2_reflink_inodes_lock(inode_in, &in_bh, inode_out, &out_bh);
2715 if (ret)
2716 return ret;
2717
2718 /* Check file eligibility and prepare for block sharing. */
2719 ret = -EINVAL;
2720 if ((OCFS2_I(inode_in)->ip_flags & OCFS2_INODE_SYSTEM_FILE) ||
2721 (OCFS2_I(inode_out)->ip_flags & OCFS2_INODE_SYSTEM_FILE))
2722 goto out_unlock;
2723
2724 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
2725 &len, remap_flags);
2726 if (ret < 0 || len == 0)
2727 goto out_unlock;
2728
2729 /* Lock out changes to the allocation maps and remap. */
2730 down_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2731 if (!same_inode)
2732 down_write_nested(&OCFS2_I(inode_out)->ip_alloc_sem,
2733 SINGLE_DEPTH_NESTING);
2734
2735 /* Zap any page cache for the destination file's range. */
2736 truncate_inode_pages_range(&inode_out->i_data,
2737 round_down(pos_out, PAGE_SIZE),
2738 round_up(pos_out + len, PAGE_SIZE) - 1);
2739
2740 remapped = ocfs2_reflink_remap_blocks(inode_in, in_bh, pos_in,
2741 inode_out, out_bh, pos_out, len);
2742 up_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2743 if (!same_inode)
2744 up_write(&OCFS2_I(inode_out)->ip_alloc_sem);
2745 if (remapped < 0) {
2746 ret = remapped;
2747 mlog_errno(ret);
2748 goto out_unlock;
2749 }
2750
2751 /*
2752 * Empty the extent map so that we may get the right extent
2753 * record from the disk.
2754 */
2755 ocfs2_extent_map_trunc(inode_in, 0);
2756 ocfs2_extent_map_trunc(inode_out, 0);
2757
2758 ret = ocfs2_reflink_update_dest(inode_out, out_bh, pos_out + len);
2759 if (ret) {
2760 mlog_errno(ret);
2761 goto out_unlock;
2762 }
2763
2764 out_unlock:
2765 ocfs2_reflink_inodes_unlock(inode_in, in_bh, inode_out, out_bh);
2766 return remapped > 0 ? remapped : ret;
2767 }
2768
ocfs2_dir_llseek(struct file * file,loff_t offset,int whence)2769 static loff_t ocfs2_dir_llseek(struct file *file, loff_t offset, int whence)
2770 {
2771 struct ocfs2_file_private *fp = file->private_data;
2772
2773 return generic_llseek_cookie(file, offset, whence, &fp->cookie);
2774 }
2775
2776 const struct inode_operations ocfs2_file_iops = {
2777 .setattr = ocfs2_setattr,
2778 .getattr = ocfs2_getattr,
2779 .permission = ocfs2_permission,
2780 .listxattr = ocfs2_listxattr,
2781 .fiemap = ocfs2_fiemap,
2782 .get_inode_acl = ocfs2_iop_get_acl,
2783 .set_acl = ocfs2_iop_set_acl,
2784 .fileattr_get = ocfs2_fileattr_get,
2785 .fileattr_set = ocfs2_fileattr_set,
2786 };
2787
2788 const struct inode_operations ocfs2_special_file_iops = {
2789 .setattr = ocfs2_setattr,
2790 .getattr = ocfs2_getattr,
2791 .listxattr = ocfs2_listxattr,
2792 .permission = ocfs2_permission,
2793 .get_inode_acl = ocfs2_iop_get_acl,
2794 .set_acl = ocfs2_iop_set_acl,
2795 };
2796
2797 /*
2798 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2799 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2800 */
2801 const struct file_operations ocfs2_fops = {
2802 .llseek = ocfs2_file_llseek,
2803 .mmap = ocfs2_mmap,
2804 .fsync = ocfs2_sync_file,
2805 .release = ocfs2_file_release,
2806 .open = ocfs2_file_open,
2807 .read_iter = ocfs2_file_read_iter,
2808 .write_iter = ocfs2_file_write_iter,
2809 .unlocked_ioctl = ocfs2_ioctl,
2810 #ifdef CONFIG_COMPAT
2811 .compat_ioctl = ocfs2_compat_ioctl,
2812 #endif
2813 .lock = ocfs2_lock,
2814 .flock = ocfs2_flock,
2815 .splice_read = ocfs2_file_splice_read,
2816 .splice_write = iter_file_splice_write,
2817 .fallocate = ocfs2_fallocate,
2818 .remap_file_range = ocfs2_remap_file_range,
2819 .fop_flags = FOP_ASYNC_LOCK,
2820 };
2821
2822 WRAP_DIR_ITER(ocfs2_readdir) // FIXME!
2823 const struct file_operations ocfs2_dops = {
2824 .llseek = ocfs2_dir_llseek,
2825 .read = generic_read_dir,
2826 .iterate_shared = shared_ocfs2_readdir,
2827 .fsync = ocfs2_sync_file,
2828 .release = ocfs2_dir_release,
2829 .open = ocfs2_dir_open,
2830 .unlocked_ioctl = ocfs2_ioctl,
2831 #ifdef CONFIG_COMPAT
2832 .compat_ioctl = ocfs2_compat_ioctl,
2833 #endif
2834 .lock = ocfs2_lock,
2835 .flock = ocfs2_flock,
2836 .fop_flags = FOP_ASYNC_LOCK,
2837 };
2838
2839 /*
2840 * POSIX-lockless variants of our file_operations.
2841 *
2842 * These will be used if the underlying cluster stack does not support
2843 * posix file locking, if the user passes the "localflocks" mount
2844 * option, or if we have a local-only fs.
2845 *
2846 * ocfs2_flock is in here because all stacks handle UNIX file locks,
2847 * so we still want it in the case of no stack support for
2848 * plocks. Internally, it will do the right thing when asked to ignore
2849 * the cluster.
2850 */
2851 const struct file_operations ocfs2_fops_no_plocks = {
2852 .llseek = ocfs2_file_llseek,
2853 .mmap = ocfs2_mmap,
2854 .fsync = ocfs2_sync_file,
2855 .release = ocfs2_file_release,
2856 .open = ocfs2_file_open,
2857 .read_iter = ocfs2_file_read_iter,
2858 .write_iter = ocfs2_file_write_iter,
2859 .unlocked_ioctl = ocfs2_ioctl,
2860 #ifdef CONFIG_COMPAT
2861 .compat_ioctl = ocfs2_compat_ioctl,
2862 #endif
2863 .flock = ocfs2_flock,
2864 .splice_read = filemap_splice_read,
2865 .splice_write = iter_file_splice_write,
2866 .fallocate = ocfs2_fallocate,
2867 .remap_file_range = ocfs2_remap_file_range,
2868 };
2869
2870 const struct file_operations ocfs2_dops_no_plocks = {
2871 .llseek = ocfs2_dir_llseek,
2872 .read = generic_read_dir,
2873 .iterate_shared = shared_ocfs2_readdir,
2874 .fsync = ocfs2_sync_file,
2875 .release = ocfs2_dir_release,
2876 .open = ocfs2_dir_open,
2877 .unlocked_ioctl = ocfs2_ioctl,
2878 #ifdef CONFIG_COMPAT
2879 .compat_ioctl = ocfs2_compat_ioctl,
2880 #endif
2881 .flock = ocfs2_flock,
2882 };
2883