xref: /linux/arch/x86/kernel/apic/x2apic_uv_x.c (revision 79790b6818e96c58fe2bffee1b418c16e64e7b80)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * SGI UV APIC functions (note: not an Intel compatible APIC)
7  *
8  * (C) Copyright 2020 Hewlett Packard Enterprise Development LP
9  * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved.
10  */
11 #include <linux/crash_dump.h>
12 #include <linux/cpuhotplug.h>
13 #include <linux/cpumask.h>
14 #include <linux/proc_fs.h>
15 #include <linux/memory.h>
16 #include <linux/export.h>
17 #include <linux/pci.h>
18 #include <linux/acpi.h>
19 #include <linux/efi.h>
20 
21 #include <asm/e820/api.h>
22 #include <asm/uv/uv_mmrs.h>
23 #include <asm/uv/uv_hub.h>
24 #include <asm/uv/bios.h>
25 #include <asm/uv/uv.h>
26 #include <asm/apic.h>
27 
28 #include "local.h"
29 
30 static enum uv_system_type	uv_system_type;
31 static int			uv_hubbed_system;
32 static int			uv_hubless_system;
33 static u64			gru_start_paddr, gru_end_paddr;
34 static union uvh_apicid		uvh_apicid;
35 static int			uv_node_id;
36 
37 /* Unpack AT/OEM/TABLE ID's to be NULL terminated strings */
38 static u8 uv_archtype[UV_AT_SIZE + 1];
39 static u8 oem_id[ACPI_OEM_ID_SIZE + 1];
40 static u8 oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
41 
42 /* Information derived from CPUID and some UV MMRs */
43 static struct {
44 	unsigned int apicid_shift;
45 	unsigned int apicid_mask;
46 	unsigned int socketid_shift;	/* aka pnode_shift for UV2/3 */
47 	unsigned int pnode_mask;
48 	unsigned int nasid_shift;
49 	unsigned int gpa_shift;
50 	unsigned int gnode_shift;
51 	unsigned int m_skt;
52 	unsigned int n_skt;
53 } uv_cpuid;
54 
55 static int uv_min_hub_revision_id;
56 
57 static struct apic apic_x2apic_uv_x;
58 static struct uv_hub_info_s uv_hub_info_node0;
59 
60 /* Set this to use hardware error handler instead of kernel panic: */
61 static int disable_uv_undefined_panic = 1;
62 
uv_undefined(char * str)63 unsigned long uv_undefined(char *str)
64 {
65 	if (likely(!disable_uv_undefined_panic))
66 		panic("UV: error: undefined MMR: %s\n", str);
67 	else
68 		pr_crit("UV: error: undefined MMR: %s\n", str);
69 
70 	/* Cause a machine fault: */
71 	return ~0ul;
72 }
73 EXPORT_SYMBOL(uv_undefined);
74 
uv_early_read_mmr(unsigned long addr)75 static unsigned long __init uv_early_read_mmr(unsigned long addr)
76 {
77 	unsigned long val, *mmr;
78 
79 	mmr = early_ioremap(UV_LOCAL_MMR_BASE | addr, sizeof(*mmr));
80 	val = *mmr;
81 	early_iounmap(mmr, sizeof(*mmr));
82 
83 	return val;
84 }
85 
is_GRU_range(u64 start,u64 end)86 static inline bool is_GRU_range(u64 start, u64 end)
87 {
88 	if (!gru_start_paddr)
89 		return false;
90 
91 	return start >= gru_start_paddr && end <= gru_end_paddr;
92 }
93 
uv_is_untracked_pat_range(u64 start,u64 end)94 static bool uv_is_untracked_pat_range(u64 start, u64 end)
95 {
96 	return is_ISA_range(start, end) || is_GRU_range(start, end);
97 }
98 
early_get_pnodeid(void)99 static void __init early_get_pnodeid(void)
100 {
101 	int pnode;
102 
103 	uv_cpuid.m_skt = 0;
104 	if (UVH_RH10_GAM_ADDR_MAP_CONFIG) {
105 		union uvh_rh10_gam_addr_map_config_u  m_n_config;
106 
107 		m_n_config.v = uv_early_read_mmr(UVH_RH10_GAM_ADDR_MAP_CONFIG);
108 		uv_cpuid.n_skt = m_n_config.s.n_skt;
109 		uv_cpuid.nasid_shift = 0;
110 	} else if (UVH_RH_GAM_ADDR_MAP_CONFIG) {
111 		union uvh_rh_gam_addr_map_config_u  m_n_config;
112 
113 		m_n_config.v = uv_early_read_mmr(UVH_RH_GAM_ADDR_MAP_CONFIG);
114 		uv_cpuid.n_skt = m_n_config.s.n_skt;
115 		if (is_uv(UV3))
116 			uv_cpuid.m_skt = m_n_config.s3.m_skt;
117 		if (is_uv(UV2))
118 			uv_cpuid.m_skt = m_n_config.s2.m_skt;
119 		uv_cpuid.nasid_shift = 1;
120 	} else {
121 		unsigned long GAM_ADDR_MAP_CONFIG = 0;
122 
123 		WARN(GAM_ADDR_MAP_CONFIG == 0,
124 			"UV: WARN: GAM_ADDR_MAP_CONFIG is not available\n");
125 		uv_cpuid.n_skt = 0;
126 		uv_cpuid.nasid_shift = 0;
127 	}
128 
129 	if (is_uv(UV4|UVY))
130 		uv_cpuid.gnode_shift = 2; /* min partition is 4 sockets */
131 
132 	uv_cpuid.pnode_mask = (1 << uv_cpuid.n_skt) - 1;
133 	pnode = (uv_node_id >> uv_cpuid.nasid_shift) & uv_cpuid.pnode_mask;
134 	uv_cpuid.gpa_shift = 46;	/* Default unless changed */
135 
136 	pr_info("UV: n_skt:%d pnmsk:%x pn:%x\n",
137 		uv_cpuid.n_skt, uv_cpuid.pnode_mask, pnode);
138 }
139 
140 /* Running on a UV Hubbed system, determine which UV Hub Type it is */
early_set_hub_type(void)141 static int __init early_set_hub_type(void)
142 {
143 	union uvh_node_id_u node_id;
144 
145 	/*
146 	 * The NODE_ID MMR is always at offset 0.
147 	 * Contains the chip part # + revision.
148 	 * Node_id field started with 15 bits,
149 	 * ... now 7 but upper 8 are masked to 0.
150 	 * All blades/nodes have the same part # and hub revision.
151 	 */
152 	node_id.v = uv_early_read_mmr(UVH_NODE_ID);
153 	uv_node_id = node_id.sx.node_id;
154 
155 	switch (node_id.s.part_number) {
156 
157 	case UV5_HUB_PART_NUMBER:
158 		uv_min_hub_revision_id = node_id.s.revision
159 					 + UV5_HUB_REVISION_BASE;
160 		uv_hub_type_set(UV5);
161 		break;
162 
163 	/* UV4/4A only have a revision difference */
164 	case UV4_HUB_PART_NUMBER:
165 		uv_min_hub_revision_id = node_id.s.revision
166 					 + UV4_HUB_REVISION_BASE - 1;
167 		uv_hub_type_set(UV4);
168 		if (uv_min_hub_revision_id == UV4A_HUB_REVISION_BASE)
169 			uv_hub_type_set(UV4|UV4A);
170 		break;
171 
172 	case UV3_HUB_PART_NUMBER:
173 	case UV3_HUB_PART_NUMBER_X:
174 		uv_min_hub_revision_id = node_id.s.revision
175 					 + UV3_HUB_REVISION_BASE;
176 		uv_hub_type_set(UV3);
177 		break;
178 
179 	case UV2_HUB_PART_NUMBER:
180 	case UV2_HUB_PART_NUMBER_X:
181 		uv_min_hub_revision_id = node_id.s.revision
182 					 + UV2_HUB_REVISION_BASE - 1;
183 		uv_hub_type_set(UV2);
184 		break;
185 
186 	default:
187 		return 0;
188 	}
189 
190 	pr_info("UV: part#:%x rev:%d rev_id:%d UVtype:0x%x\n",
191 		node_id.s.part_number, node_id.s.revision,
192 		uv_min_hub_revision_id, is_uv(~0));
193 
194 	return 1;
195 }
196 
uv_tsc_check_sync(void)197 static void __init uv_tsc_check_sync(void)
198 {
199 	u64 mmr;
200 	int sync_state;
201 	int mmr_shift;
202 	char *state;
203 
204 	/* UV5 guarantees synced TSCs; do not zero TSC_ADJUST */
205 	if (!is_uv(UV2|UV3|UV4)) {
206 		mark_tsc_async_resets("UV5+");
207 		return;
208 	}
209 
210 	/* UV2,3,4, UV BIOS TSC sync state available */
211 	mmr = uv_early_read_mmr(UVH_TSC_SYNC_MMR);
212 	mmr_shift =
213 		is_uv2_hub() ? UVH_TSC_SYNC_SHIFT_UV2K : UVH_TSC_SYNC_SHIFT;
214 	sync_state = (mmr >> mmr_shift) & UVH_TSC_SYNC_MASK;
215 
216 	/* Check if TSC is valid for all sockets */
217 	switch (sync_state) {
218 	case UVH_TSC_SYNC_VALID:
219 		state = "in sync";
220 		mark_tsc_async_resets("UV BIOS");
221 		break;
222 
223 	/* If BIOS state unknown, don't do anything */
224 	case UVH_TSC_SYNC_UNKNOWN:
225 		state = "unknown";
226 		break;
227 
228 	/* Otherwise, BIOS indicates problem with TSC */
229 	default:
230 		state = "unstable";
231 		mark_tsc_unstable("UV BIOS");
232 		break;
233 	}
234 	pr_info("UV: TSC sync state from BIOS:0%d(%s)\n", sync_state, state);
235 }
236 
237 /* Selector for (4|4A|5) structs */
238 #define uvxy_field(sname, field, undef) (	\
239 	is_uv(UV4A) ? sname.s4a.field :		\
240 	is_uv(UV4) ? sname.s4.field :		\
241 	is_uv(UV3) ? sname.s3.field :		\
242 	undef)
243 
early_get_apic_socketid_shift(void)244 static void __init early_get_apic_socketid_shift(void)
245 {
246 	unsigned int sid_shift = topology_get_domain_shift(TOPO_PKG_DOMAIN);
247 
248 	if (is_uv2_hub() || is_uv3_hub())
249 		uvh_apicid.v = uv_early_read_mmr(UVH_APICID);
250 
251 	if (sid_shift) {
252 		uv_cpuid.apicid_shift	= 0;
253 		uv_cpuid.apicid_mask	= (~(-1 << sid_shift));
254 		uv_cpuid.socketid_shift = sid_shift;
255 	} else {
256 		pr_info("UV: CPU does not have valid CPUID.11\n");
257 	}
258 
259 	pr_info("UV: apicid_shift:%d apicid_mask:0x%x\n", uv_cpuid.apicid_shift, uv_cpuid.apicid_mask);
260 	pr_info("UV: socketid_shift:%d pnode_mask:0x%x\n", uv_cpuid.socketid_shift, uv_cpuid.pnode_mask);
261 }
262 
uv_stringify(int len,char * to,char * from)263 static void __init uv_stringify(int len, char *to, char *from)
264 {
265 	strscpy(to, from, len);
266 
267 	/* Trim trailing spaces */
268 	(void)strim(to);
269 }
270 
271 /* Find UV arch type entry in UVsystab */
early_find_archtype(struct uv_systab * st)272 static unsigned long __init early_find_archtype(struct uv_systab *st)
273 {
274 	int i;
275 
276 	for (i = 0; st->entry[i].type != UV_SYSTAB_TYPE_UNUSED; i++) {
277 		unsigned long ptr = st->entry[i].offset;
278 
279 		if (!ptr)
280 			continue;
281 		ptr += (unsigned long)st;
282 		if (st->entry[i].type == UV_SYSTAB_TYPE_ARCH_TYPE)
283 			return ptr;
284 	}
285 	return 0;
286 }
287 
288 /* Validate UV arch type field in UVsystab */
decode_arch_type(unsigned long ptr)289 static int __init decode_arch_type(unsigned long ptr)
290 {
291 	struct uv_arch_type_entry *uv_ate = (struct uv_arch_type_entry *)ptr;
292 	int n = strlen(uv_ate->archtype);
293 
294 	if (n > 0 && n < sizeof(uv_ate->archtype)) {
295 		pr_info("UV: UVarchtype received from BIOS\n");
296 		uv_stringify(sizeof(uv_archtype), uv_archtype, uv_ate->archtype);
297 		return 1;
298 	}
299 	return 0;
300 }
301 
302 /* Determine if UV arch type entry might exist in UVsystab */
early_get_arch_type(void)303 static int __init early_get_arch_type(void)
304 {
305 	unsigned long uvst_physaddr, uvst_size, ptr;
306 	struct uv_systab *st;
307 	u32 rev;
308 	int ret;
309 
310 	uvst_physaddr = get_uv_systab_phys(0);
311 	if (!uvst_physaddr)
312 		return 0;
313 
314 	st = early_memremap_ro(uvst_physaddr, sizeof(struct uv_systab));
315 	if (!st) {
316 		pr_err("UV: Cannot access UVsystab, remap failed\n");
317 		return 0;
318 	}
319 
320 	rev = st->revision;
321 	if (rev < UV_SYSTAB_VERSION_UV5) {
322 		early_memunmap(st, sizeof(struct uv_systab));
323 		return 0;
324 	}
325 
326 	uvst_size = st->size;
327 	early_memunmap(st, sizeof(struct uv_systab));
328 	st = early_memremap_ro(uvst_physaddr, uvst_size);
329 	if (!st) {
330 		pr_err("UV: Cannot access UVarchtype, remap failed\n");
331 		return 0;
332 	}
333 
334 	ptr = early_find_archtype(st);
335 	if (!ptr) {
336 		early_memunmap(st, uvst_size);
337 		return 0;
338 	}
339 
340 	ret = decode_arch_type(ptr);
341 	early_memunmap(st, uvst_size);
342 	return ret;
343 }
344 
345 /* UV system found, check which APIC MODE BIOS already selected */
early_set_apic_mode(void)346 static void __init early_set_apic_mode(void)
347 {
348 	if (x2apic_enabled())
349 		uv_system_type = UV_X2APIC;
350 	else
351 		uv_system_type = UV_LEGACY_APIC;
352 }
353 
uv_set_system_type(char * _oem_id,char * _oem_table_id)354 static int __init uv_set_system_type(char *_oem_id, char *_oem_table_id)
355 {
356 	/* Save OEM_ID passed from ACPI MADT */
357 	uv_stringify(sizeof(oem_id), oem_id, _oem_id);
358 
359 	/* Check if BIOS sent us a UVarchtype */
360 	if (!early_get_arch_type())
361 
362 		/* If not use OEM ID for UVarchtype */
363 		uv_stringify(sizeof(uv_archtype), uv_archtype, oem_id);
364 
365 	/* Check if not hubbed */
366 	if (strncmp(uv_archtype, "SGI", 3) != 0) {
367 
368 		/* (Not hubbed), check if not hubless */
369 		if (strncmp(uv_archtype, "NSGI", 4) != 0)
370 
371 			/* (Not hubless), not a UV */
372 			return 0;
373 
374 		/* Is UV hubless system */
375 		uv_hubless_system = 0x01;
376 
377 		/* UV5 Hubless */
378 		if (strncmp(uv_archtype, "NSGI5", 5) == 0)
379 			uv_hubless_system |= 0x20;
380 
381 		/* UV4 Hubless: CH */
382 		else if (strncmp(uv_archtype, "NSGI4", 5) == 0)
383 			uv_hubless_system |= 0x10;
384 
385 		/* UV3 Hubless: UV300/MC990X w/o hub */
386 		else
387 			uv_hubless_system |= 0x8;
388 
389 		/* Copy OEM Table ID */
390 		uv_stringify(sizeof(oem_table_id), oem_table_id, _oem_table_id);
391 
392 		pr_info("UV: OEM IDs %s/%s, SystemType %d, HUBLESS ID %x\n",
393 			oem_id, oem_table_id, uv_system_type, uv_hubless_system);
394 
395 		return 0;
396 	}
397 
398 	if (numa_off) {
399 		pr_err("UV: NUMA is off, disabling UV support\n");
400 		return 0;
401 	}
402 
403 	/* Set hubbed type if true */
404 	uv_hub_info->hub_revision =
405 		!strncmp(uv_archtype, "SGI5", 4) ? UV5_HUB_REVISION_BASE :
406 		!strncmp(uv_archtype, "SGI4", 4) ? UV4_HUB_REVISION_BASE :
407 		!strncmp(uv_archtype, "SGI3", 4) ? UV3_HUB_REVISION_BASE :
408 		!strcmp(uv_archtype, "SGI2") ? UV2_HUB_REVISION_BASE : 0;
409 
410 	switch (uv_hub_info->hub_revision) {
411 	case UV5_HUB_REVISION_BASE:
412 		uv_hubbed_system = 0x21;
413 		uv_hub_type_set(UV5);
414 		break;
415 
416 	case UV4_HUB_REVISION_BASE:
417 		uv_hubbed_system = 0x11;
418 		uv_hub_type_set(UV4);
419 		break;
420 
421 	case UV3_HUB_REVISION_BASE:
422 		uv_hubbed_system = 0x9;
423 		uv_hub_type_set(UV3);
424 		break;
425 
426 	case UV2_HUB_REVISION_BASE:
427 		uv_hubbed_system = 0x5;
428 		uv_hub_type_set(UV2);
429 		break;
430 
431 	default:
432 		return 0;
433 	}
434 
435 	/* Get UV hub chip part number & revision */
436 	early_set_hub_type();
437 
438 	/* Other UV setup functions */
439 	early_set_apic_mode();
440 	early_get_pnodeid();
441 	early_get_apic_socketid_shift();
442 	x86_platform.is_untracked_pat_range = uv_is_untracked_pat_range;
443 	x86_platform.nmi_init = uv_nmi_init;
444 	uv_tsc_check_sync();
445 
446 	return 1;
447 }
448 
449 /* Called early to probe for the correct APIC driver */
uv_acpi_madt_oem_check(char * _oem_id,char * _oem_table_id)450 static int __init uv_acpi_madt_oem_check(char *_oem_id, char *_oem_table_id)
451 {
452 	/* Set up early hub info fields for Node 0 */
453 	uv_cpu_info->p_uv_hub_info = &uv_hub_info_node0;
454 
455 	/* If not UV, return. */
456 	if (uv_set_system_type(_oem_id, _oem_table_id) == 0)
457 		return 0;
458 
459 	/* Save for display of the OEM Table ID */
460 	uv_stringify(sizeof(oem_table_id), oem_table_id, _oem_table_id);
461 
462 	pr_info("UV: OEM IDs %s/%s, System/UVType %d/0x%x, HUB RevID %d\n",
463 		oem_id, oem_table_id, uv_system_type, is_uv(UV_ANY),
464 		uv_min_hub_revision_id);
465 
466 	return 0;
467 }
468 
get_uv_system_type(void)469 enum uv_system_type get_uv_system_type(void)
470 {
471 	return uv_system_type;
472 }
473 
uv_get_hubless_system(void)474 int uv_get_hubless_system(void)
475 {
476 	return uv_hubless_system;
477 }
478 EXPORT_SYMBOL_GPL(uv_get_hubless_system);
479 
uv_get_archtype(char * buf,int len)480 ssize_t uv_get_archtype(char *buf, int len)
481 {
482 	return scnprintf(buf, len, "%s/%s", uv_archtype, oem_table_id);
483 }
484 EXPORT_SYMBOL_GPL(uv_get_archtype);
485 
is_uv_system(void)486 int is_uv_system(void)
487 {
488 	return uv_system_type != UV_NONE;
489 }
490 EXPORT_SYMBOL_GPL(is_uv_system);
491 
is_uv_hubbed(int uvtype)492 int is_uv_hubbed(int uvtype)
493 {
494 	return (uv_hubbed_system & uvtype);
495 }
496 EXPORT_SYMBOL_GPL(is_uv_hubbed);
497 
is_uv_hubless(int uvtype)498 static int is_uv_hubless(int uvtype)
499 {
500 	return (uv_hubless_system & uvtype);
501 }
502 
503 void **__uv_hub_info_list;
504 EXPORT_SYMBOL_GPL(__uv_hub_info_list);
505 
506 DEFINE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info);
507 EXPORT_PER_CPU_SYMBOL_GPL(__uv_cpu_info);
508 
509 short uv_possible_blades;
510 EXPORT_SYMBOL_GPL(uv_possible_blades);
511 
512 unsigned long sn_rtc_cycles_per_second;
513 EXPORT_SYMBOL(sn_rtc_cycles_per_second);
514 
515 /* The following values are used for the per node hub info struct */
516 static __initdata unsigned short		_min_socket, _max_socket;
517 static __initdata unsigned short		_min_pnode, _max_pnode, _gr_table_len;
518 static __initdata struct uv_gam_range_entry	*uv_gre_table;
519 static __initdata struct uv_gam_parameters	*uv_gp_table;
520 static __initdata unsigned short		*_socket_to_node;
521 static __initdata unsigned short		*_socket_to_pnode;
522 static __initdata unsigned short		*_pnode_to_socket;
523 static __initdata unsigned short		*_node_to_socket;
524 
525 static __initdata struct uv_gam_range_s		*_gr_table;
526 
527 #define	SOCK_EMPTY	((unsigned short)~0)
528 
529 /* Default UV memory block size is 2GB */
530 static unsigned long mem_block_size __initdata = (2UL << 30);
531 
532 /* Kernel parameter to specify UV mem block size */
parse_mem_block_size(char * ptr)533 static int __init parse_mem_block_size(char *ptr)
534 {
535 	unsigned long size = memparse(ptr, NULL);
536 
537 	/* Size will be rounded down by set_block_size() below */
538 	mem_block_size = size;
539 	return 0;
540 }
541 early_param("uv_memblksize", parse_mem_block_size);
542 
adj_blksize(u32 lgre)543 static __init int adj_blksize(u32 lgre)
544 {
545 	unsigned long base = (unsigned long)lgre << UV_GAM_RANGE_SHFT;
546 	unsigned long size;
547 
548 	for (size = mem_block_size; size > MIN_MEMORY_BLOCK_SIZE; size >>= 1)
549 		if (IS_ALIGNED(base, size))
550 			break;
551 
552 	if (size >= mem_block_size)
553 		return 0;
554 
555 	mem_block_size = size;
556 	return 1;
557 }
558 
set_block_size(void)559 static __init void set_block_size(void)
560 {
561 	unsigned int order = ffs(mem_block_size);
562 
563 	if (order) {
564 		/* adjust for ffs return of 1..64 */
565 		set_memory_block_size_order(order - 1);
566 		pr_info("UV: mem_block_size set to 0x%lx\n", mem_block_size);
567 	} else {
568 		/* bad or zero value, default to 1UL << 31 (2GB) */
569 		pr_err("UV: mem_block_size error with 0x%lx\n", mem_block_size);
570 		set_memory_block_size_order(31);
571 	}
572 }
573 
574 /* Build GAM range lookup table: */
build_uv_gr_table(void)575 static __init void build_uv_gr_table(void)
576 {
577 	struct uv_gam_range_entry *gre = uv_gre_table;
578 	struct uv_gam_range_s *grt;
579 	unsigned long last_limit = 0, ram_limit = 0;
580 	int bytes, i, sid, lsid = -1, indx = 0, lindx = -1;
581 
582 	if (!gre)
583 		return;
584 
585 	bytes = _gr_table_len * sizeof(struct uv_gam_range_s);
586 	grt = kzalloc(bytes, GFP_KERNEL);
587 	if (WARN_ON_ONCE(!grt))
588 		return;
589 	_gr_table = grt;
590 
591 	for (; gre->type != UV_GAM_RANGE_TYPE_UNUSED; gre++) {
592 		if (gre->type == UV_GAM_RANGE_TYPE_HOLE) {
593 			if (!ram_limit) {
594 				/* Mark hole between RAM/non-RAM: */
595 				ram_limit = last_limit;
596 				last_limit = gre->limit;
597 				lsid++;
598 				continue;
599 			}
600 			last_limit = gre->limit;
601 			pr_info("UV: extra hole in GAM RE table @%d\n", (int)(gre - uv_gre_table));
602 			continue;
603 		}
604 		if (_max_socket < gre->sockid) {
605 			pr_err("UV: GAM table sockid(%d) too large(>%d) @%d\n", gre->sockid, _max_socket, (int)(gre - uv_gre_table));
606 			continue;
607 		}
608 		sid = gre->sockid - _min_socket;
609 		if (lsid < sid) {
610 			/* New range: */
611 			grt = &_gr_table[indx];
612 			grt->base = lindx;
613 			grt->nasid = gre->nasid;
614 			grt->limit = last_limit = gre->limit;
615 			lsid = sid;
616 			lindx = indx++;
617 			continue;
618 		}
619 		/* Update range: */
620 		if (lsid == sid && !ram_limit) {
621 			/* .. if contiguous: */
622 			if (grt->limit == last_limit) {
623 				grt->limit = last_limit = gre->limit;
624 				continue;
625 			}
626 		}
627 		/* Non-contiguous RAM range: */
628 		if (!ram_limit) {
629 			grt++;
630 			grt->base = lindx;
631 			grt->nasid = gre->nasid;
632 			grt->limit = last_limit = gre->limit;
633 			continue;
634 		}
635 		/* Non-contiguous/non-RAM: */
636 		grt++;
637 		/* base is this entry */
638 		grt->base = grt - _gr_table;
639 		grt->nasid = gre->nasid;
640 		grt->limit = last_limit = gre->limit;
641 		lsid++;
642 	}
643 
644 	/* Shorten table if possible */
645 	grt++;
646 	i = grt - _gr_table;
647 	if (i < _gr_table_len) {
648 		void *ret;
649 
650 		bytes = i * sizeof(struct uv_gam_range_s);
651 		ret = krealloc(_gr_table, bytes, GFP_KERNEL);
652 		if (ret) {
653 			_gr_table = ret;
654 			_gr_table_len = i;
655 		}
656 	}
657 
658 	/* Display resultant GAM range table: */
659 	for (i = 0, grt = _gr_table; i < _gr_table_len; i++, grt++) {
660 		unsigned long start, end;
661 		int gb = grt->base;
662 
663 		start = gb < 0 ?  0 : (unsigned long)_gr_table[gb].limit << UV_GAM_RANGE_SHFT;
664 		end = (unsigned long)grt->limit << UV_GAM_RANGE_SHFT;
665 
666 		pr_info("UV: GAM Range %2d %04x 0x%013lx-0x%013lx (%d)\n", i, grt->nasid, start, end, gb);
667 	}
668 }
669 
uv_wakeup_secondary(u32 phys_apicid,unsigned long start_rip)670 static int uv_wakeup_secondary(u32 phys_apicid, unsigned long start_rip)
671 {
672 	unsigned long val;
673 	int pnode;
674 
675 	pnode = uv_apicid_to_pnode(phys_apicid);
676 
677 	val = (1UL << UVH_IPI_INT_SEND_SHFT) |
678 	    (phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) |
679 	    ((start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) |
680 	    APIC_DM_INIT;
681 
682 	uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
683 
684 	val = (1UL << UVH_IPI_INT_SEND_SHFT) |
685 	    (phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) |
686 	    ((start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) |
687 	    APIC_DM_STARTUP;
688 
689 	uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
690 
691 	return 0;
692 }
693 
uv_send_IPI_one(int cpu,int vector)694 static void uv_send_IPI_one(int cpu, int vector)
695 {
696 	unsigned long apicid = per_cpu(x86_cpu_to_apicid, cpu);
697 	int pnode = uv_apicid_to_pnode(apicid);
698 	unsigned long dmode, val;
699 
700 	if (vector == NMI_VECTOR)
701 		dmode = APIC_DELIVERY_MODE_NMI;
702 	else
703 		dmode = APIC_DELIVERY_MODE_FIXED;
704 
705 	val = (1UL << UVH_IPI_INT_SEND_SHFT) |
706 		(apicid << UVH_IPI_INT_APIC_ID_SHFT) |
707 		(dmode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
708 		(vector << UVH_IPI_INT_VECTOR_SHFT);
709 
710 	uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
711 }
712 
uv_send_IPI_mask(const struct cpumask * mask,int vector)713 static void uv_send_IPI_mask(const struct cpumask *mask, int vector)
714 {
715 	unsigned int cpu;
716 
717 	for_each_cpu(cpu, mask)
718 		uv_send_IPI_one(cpu, vector);
719 }
720 
uv_send_IPI_mask_allbutself(const struct cpumask * mask,int vector)721 static void uv_send_IPI_mask_allbutself(const struct cpumask *mask, int vector)
722 {
723 	unsigned int this_cpu = smp_processor_id();
724 	unsigned int cpu;
725 
726 	for_each_cpu(cpu, mask) {
727 		if (cpu != this_cpu)
728 			uv_send_IPI_one(cpu, vector);
729 	}
730 }
731 
uv_send_IPI_allbutself(int vector)732 static void uv_send_IPI_allbutself(int vector)
733 {
734 	unsigned int this_cpu = smp_processor_id();
735 	unsigned int cpu;
736 
737 	for_each_online_cpu(cpu) {
738 		if (cpu != this_cpu)
739 			uv_send_IPI_one(cpu, vector);
740 	}
741 }
742 
uv_send_IPI_all(int vector)743 static void uv_send_IPI_all(int vector)
744 {
745 	uv_send_IPI_mask(cpu_online_mask, vector);
746 }
747 
uv_probe(void)748 static int uv_probe(void)
749 {
750 	return apic == &apic_x2apic_uv_x;
751 }
752 
753 static struct apic apic_x2apic_uv_x __ro_after_init = {
754 
755 	.name				= "UV large system",
756 	.probe				= uv_probe,
757 	.acpi_madt_oem_check		= uv_acpi_madt_oem_check,
758 
759 	.dest_mode_logical		= false,
760 
761 	.disable_esr			= 0,
762 
763 	.cpu_present_to_apicid		= default_cpu_present_to_apicid,
764 
765 	.max_apic_id			= UINT_MAX,
766 	.get_apic_id			= x2apic_get_apic_id,
767 
768 	.calc_dest_apicid		= apic_default_calc_apicid,
769 
770 	.send_IPI			= uv_send_IPI_one,
771 	.send_IPI_mask			= uv_send_IPI_mask,
772 	.send_IPI_mask_allbutself	= uv_send_IPI_mask_allbutself,
773 	.send_IPI_allbutself		= uv_send_IPI_allbutself,
774 	.send_IPI_all			= uv_send_IPI_all,
775 	.send_IPI_self			= x2apic_send_IPI_self,
776 
777 	.wakeup_secondary_cpu		= uv_wakeup_secondary,
778 
779 	.read				= native_apic_msr_read,
780 	.write				= native_apic_msr_write,
781 	.eoi				= native_apic_msr_eoi,
782 	.icr_read			= native_x2apic_icr_read,
783 	.icr_write			= native_x2apic_icr_write,
784 };
785 
786 #define	UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_LENGTH	3
787 #define DEST_SHIFT UVXH_RH_GAM_ALIAS_0_REDIRECT_CONFIG_DEST_BASE_SHFT
788 
get_lowmem_redirect(unsigned long * base,unsigned long * size)789 static __init void get_lowmem_redirect(unsigned long *base, unsigned long *size)
790 {
791 	union uvh_rh_gam_alias_2_overlay_config_u alias;
792 	union uvh_rh_gam_alias_2_redirect_config_u redirect;
793 	unsigned long m_redirect;
794 	unsigned long m_overlay;
795 	int i;
796 
797 	for (i = 0; i < UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_LENGTH; i++) {
798 		switch (i) {
799 		case 0:
800 			m_redirect = UVH_RH_GAM_ALIAS_0_REDIRECT_CONFIG;
801 			m_overlay  = UVH_RH_GAM_ALIAS_0_OVERLAY_CONFIG;
802 			break;
803 		case 1:
804 			m_redirect = UVH_RH_GAM_ALIAS_1_REDIRECT_CONFIG;
805 			m_overlay  = UVH_RH_GAM_ALIAS_1_OVERLAY_CONFIG;
806 			break;
807 		case 2:
808 			m_redirect = UVH_RH_GAM_ALIAS_2_REDIRECT_CONFIG;
809 			m_overlay  = UVH_RH_GAM_ALIAS_2_OVERLAY_CONFIG;
810 			break;
811 		}
812 		alias.v = uv_read_local_mmr(m_overlay);
813 		if (alias.s.enable && alias.s.base == 0) {
814 			*size = (1UL << alias.s.m_alias);
815 			redirect.v = uv_read_local_mmr(m_redirect);
816 			*base = (unsigned long)redirect.s.dest_base << DEST_SHIFT;
817 			return;
818 		}
819 	}
820 	*base = *size = 0;
821 }
822 
823 enum map_type {map_wb, map_uc};
824 static const char * const mt[] = { "WB", "UC" };
825 
map_high(char * id,unsigned long base,int pshift,int bshift,int max_pnode,enum map_type map_type)826 static __init void map_high(char *id, unsigned long base, int pshift, int bshift, int max_pnode, enum map_type map_type)
827 {
828 	unsigned long bytes, paddr;
829 
830 	paddr = base << pshift;
831 	bytes = (1UL << bshift) * (max_pnode + 1);
832 	if (!paddr) {
833 		pr_info("UV: Map %s_HI base address NULL\n", id);
834 		return;
835 	}
836 	if (map_type == map_uc)
837 		init_extra_mapping_uc(paddr, bytes);
838 	else
839 		init_extra_mapping_wb(paddr, bytes);
840 
841 	pr_info("UV: Map %s_HI 0x%lx - 0x%lx %s (%d segments)\n",
842 		id, paddr, paddr + bytes, mt[map_type], max_pnode + 1);
843 }
844 
map_gru_high(int max_pnode)845 static __init void map_gru_high(int max_pnode)
846 {
847 	union uvh_rh_gam_gru_overlay_config_u gru;
848 	unsigned long mask, base;
849 	int shift;
850 
851 	if (UVH_RH_GAM_GRU_OVERLAY_CONFIG) {
852 		gru.v = uv_read_local_mmr(UVH_RH_GAM_GRU_OVERLAY_CONFIG);
853 		shift = UVH_RH_GAM_GRU_OVERLAY_CONFIG_BASE_SHFT;
854 		mask = UVH_RH_GAM_GRU_OVERLAY_CONFIG_BASE_MASK;
855 	} else if (UVH_RH10_GAM_GRU_OVERLAY_CONFIG) {
856 		gru.v = uv_read_local_mmr(UVH_RH10_GAM_GRU_OVERLAY_CONFIG);
857 		shift = UVH_RH10_GAM_GRU_OVERLAY_CONFIG_BASE_SHFT;
858 		mask = UVH_RH10_GAM_GRU_OVERLAY_CONFIG_BASE_MASK;
859 	} else {
860 		pr_err("UV: GRU unavailable (no MMR)\n");
861 		return;
862 	}
863 
864 	if (!gru.s.enable) {
865 		pr_info("UV: GRU disabled (by BIOS)\n");
866 		return;
867 	}
868 
869 	base = (gru.v & mask) >> shift;
870 	map_high("GRU", base, shift, shift, max_pnode, map_wb);
871 	gru_start_paddr = ((u64)base << shift);
872 	gru_end_paddr = gru_start_paddr + (1UL << shift) * (max_pnode + 1);
873 }
874 
map_mmr_high(int max_pnode)875 static __init void map_mmr_high(int max_pnode)
876 {
877 	unsigned long base;
878 	int shift;
879 	bool enable;
880 
881 	if (UVH_RH10_GAM_MMR_OVERLAY_CONFIG) {
882 		union uvh_rh10_gam_mmr_overlay_config_u mmr;
883 
884 		mmr.v = uv_read_local_mmr(UVH_RH10_GAM_MMR_OVERLAY_CONFIG);
885 		enable = mmr.s.enable;
886 		base = mmr.s.base;
887 		shift = UVH_RH10_GAM_MMR_OVERLAY_CONFIG_BASE_SHFT;
888 	} else if (UVH_RH_GAM_MMR_OVERLAY_CONFIG) {
889 		union uvh_rh_gam_mmr_overlay_config_u mmr;
890 
891 		mmr.v = uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG);
892 		enable = mmr.s.enable;
893 		base = mmr.s.base;
894 		shift = UVH_RH_GAM_MMR_OVERLAY_CONFIG_BASE_SHFT;
895 	} else {
896 		pr_err("UV:%s:RH_GAM_MMR_OVERLAY_CONFIG MMR undefined?\n",
897 			__func__);
898 		return;
899 	}
900 
901 	if (enable)
902 		map_high("MMR", base, shift, shift, max_pnode, map_uc);
903 	else
904 		pr_info("UV: MMR disabled\n");
905 }
906 
907 /* Arch specific ENUM cases */
908 enum mmioh_arch {
909 	UV2_MMIOH = -1,
910 	UVY_MMIOH0, UVY_MMIOH1,
911 	UVX_MMIOH0, UVX_MMIOH1,
912 };
913 
914 /* Calculate and Map MMIOH Regions */
calc_mmioh_map(enum mmioh_arch index,int min_pnode,int max_pnode,int shift,unsigned long base,int m_io,int n_io)915 static void __init calc_mmioh_map(enum mmioh_arch index,
916 	int min_pnode, int max_pnode,
917 	int shift, unsigned long base, int m_io, int n_io)
918 {
919 	unsigned long mmr, nasid_mask;
920 	int nasid, min_nasid, max_nasid, lnasid, mapped;
921 	int i, fi, li, n, max_io;
922 	char id[8];
923 
924 	/* One (UV2) mapping */
925 	if (index == UV2_MMIOH) {
926 		strscpy(id, "MMIOH", sizeof(id));
927 		max_io = max_pnode;
928 		mapped = 0;
929 		goto map_exit;
930 	}
931 
932 	/* small and large MMIOH mappings */
933 	switch (index) {
934 	case UVY_MMIOH0:
935 		mmr = UVH_RH10_GAM_MMIOH_REDIRECT_CONFIG0;
936 		nasid_mask = UVYH_RH10_GAM_MMIOH_REDIRECT_CONFIG0_NASID_MASK;
937 		n = UVH_RH10_GAM_MMIOH_REDIRECT_CONFIG0_DEPTH;
938 		min_nasid = min_pnode;
939 		max_nasid = max_pnode;
940 		mapped = 1;
941 		break;
942 	case UVY_MMIOH1:
943 		mmr = UVH_RH10_GAM_MMIOH_REDIRECT_CONFIG1;
944 		nasid_mask = UVYH_RH10_GAM_MMIOH_REDIRECT_CONFIG1_NASID_MASK;
945 		n = UVH_RH10_GAM_MMIOH_REDIRECT_CONFIG1_DEPTH;
946 		min_nasid = min_pnode;
947 		max_nasid = max_pnode;
948 		mapped = 1;
949 		break;
950 	case UVX_MMIOH0:
951 		mmr = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG0;
952 		nasid_mask = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG0_NASID_MASK;
953 		n = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG0_DEPTH;
954 		min_nasid = min_pnode * 2;
955 		max_nasid = max_pnode * 2;
956 		mapped = 1;
957 		break;
958 	case UVX_MMIOH1:
959 		mmr = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG1;
960 		nasid_mask = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG1_NASID_MASK;
961 		n = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG1_DEPTH;
962 		min_nasid = min_pnode * 2;
963 		max_nasid = max_pnode * 2;
964 		mapped = 1;
965 		break;
966 	default:
967 		pr_err("UV:%s:Invalid mapping type:%d\n", __func__, index);
968 		return;
969 	}
970 
971 	/* enum values chosen so (index mod 2) is MMIOH 0/1 (low/high) */
972 	snprintf(id, sizeof(id), "MMIOH%d", index%2);
973 
974 	max_io = lnasid = fi = li = -1;
975 	for (i = 0; i < n; i++) {
976 		unsigned long m_redirect = mmr + i * 8;
977 		unsigned long redirect = uv_read_local_mmr(m_redirect);
978 
979 		nasid = redirect & nasid_mask;
980 		if (i == 0)
981 			pr_info("UV: %s redirect base 0x%lx(@0x%lx) 0x%04x\n",
982 				id, redirect, m_redirect, nasid);
983 
984 		/* Invalid NASID check */
985 		if (nasid < min_nasid || max_nasid < nasid) {
986 			/* Not an error: unused table entries get "poison" values */
987 			pr_debug("UV:%s:Invalid NASID(%x):%x (range:%x..%x)\n",
988 			       __func__, index, nasid, min_nasid, max_nasid);
989 			nasid = -1;
990 		}
991 
992 		if (nasid == lnasid) {
993 			li = i;
994 			/* Last entry check: */
995 			if (i != n-1)
996 				continue;
997 		}
998 
999 		/* Check if we have a cached (or last) redirect to print: */
1000 		if (lnasid != -1 || (i == n-1 && nasid != -1))  {
1001 			unsigned long addr1, addr2;
1002 			int f, l;
1003 
1004 			if (lnasid == -1) {
1005 				f = l = i;
1006 				lnasid = nasid;
1007 			} else {
1008 				f = fi;
1009 				l = li;
1010 			}
1011 			addr1 = (base << shift) + f * (1ULL << m_io);
1012 			addr2 = (base << shift) + (l + 1) * (1ULL << m_io);
1013 			pr_info("UV: %s[%03d..%03d] NASID 0x%04x ADDR 0x%016lx - 0x%016lx\n",
1014 				id, fi, li, lnasid, addr1, addr2);
1015 			if (max_io < l)
1016 				max_io = l;
1017 		}
1018 		fi = li = i;
1019 		lnasid = nasid;
1020 	}
1021 
1022 map_exit:
1023 	pr_info("UV: %s base:0x%lx shift:%d m_io:%d max_io:%d max_pnode:0x%x\n",
1024 		id, base, shift, m_io, max_io, max_pnode);
1025 
1026 	if (max_io >= 0 && !mapped)
1027 		map_high(id, base, shift, m_io, max_io, map_uc);
1028 }
1029 
map_mmioh_high(int min_pnode,int max_pnode)1030 static __init void map_mmioh_high(int min_pnode, int max_pnode)
1031 {
1032 	/* UVY flavor */
1033 	if (UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG0) {
1034 		union uvh_rh10_gam_mmioh_overlay_config0_u mmioh0;
1035 		union uvh_rh10_gam_mmioh_overlay_config1_u mmioh1;
1036 
1037 		mmioh0.v = uv_read_local_mmr(UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG0);
1038 		if (unlikely(mmioh0.s.enable == 0))
1039 			pr_info("UV: MMIOH0 disabled\n");
1040 		else
1041 			calc_mmioh_map(UVY_MMIOH0, min_pnode, max_pnode,
1042 				UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG0_BASE_SHFT,
1043 				mmioh0.s.base, mmioh0.s.m_io, mmioh0.s.n_io);
1044 
1045 		mmioh1.v = uv_read_local_mmr(UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG1);
1046 		if (unlikely(mmioh1.s.enable == 0))
1047 			pr_info("UV: MMIOH1 disabled\n");
1048 		else
1049 			calc_mmioh_map(UVY_MMIOH1, min_pnode, max_pnode,
1050 				UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG1_BASE_SHFT,
1051 				mmioh1.s.base, mmioh1.s.m_io, mmioh1.s.n_io);
1052 		return;
1053 	}
1054 	/* UVX flavor */
1055 	if (UVH_RH_GAM_MMIOH_OVERLAY_CONFIG0) {
1056 		union uvh_rh_gam_mmioh_overlay_config0_u mmioh0;
1057 		union uvh_rh_gam_mmioh_overlay_config1_u mmioh1;
1058 
1059 		mmioh0.v = uv_read_local_mmr(UVH_RH_GAM_MMIOH_OVERLAY_CONFIG0);
1060 		if (unlikely(mmioh0.s.enable == 0))
1061 			pr_info("UV: MMIOH0 disabled\n");
1062 		else {
1063 			unsigned long base = uvxy_field(mmioh0, base, 0);
1064 			int m_io = uvxy_field(mmioh0, m_io, 0);
1065 			int n_io = uvxy_field(mmioh0, n_io, 0);
1066 
1067 			calc_mmioh_map(UVX_MMIOH0, min_pnode, max_pnode,
1068 				UVH_RH_GAM_MMIOH_OVERLAY_CONFIG0_BASE_SHFT,
1069 				base, m_io, n_io);
1070 		}
1071 
1072 		mmioh1.v = uv_read_local_mmr(UVH_RH_GAM_MMIOH_OVERLAY_CONFIG1);
1073 		if (unlikely(mmioh1.s.enable == 0))
1074 			pr_info("UV: MMIOH1 disabled\n");
1075 		else {
1076 			unsigned long base = uvxy_field(mmioh1, base, 0);
1077 			int m_io = uvxy_field(mmioh1, m_io, 0);
1078 			int n_io = uvxy_field(mmioh1, n_io, 0);
1079 
1080 			calc_mmioh_map(UVX_MMIOH1, min_pnode, max_pnode,
1081 				UVH_RH_GAM_MMIOH_OVERLAY_CONFIG1_BASE_SHFT,
1082 				base, m_io, n_io);
1083 		}
1084 		return;
1085 	}
1086 
1087 	/* UV2 flavor */
1088 	if (UVH_RH_GAM_MMIOH_OVERLAY_CONFIG) {
1089 		union uvh_rh_gam_mmioh_overlay_config_u mmioh;
1090 
1091 		mmioh.v	= uv_read_local_mmr(UVH_RH_GAM_MMIOH_OVERLAY_CONFIG);
1092 		if (unlikely(mmioh.s2.enable == 0))
1093 			pr_info("UV: MMIOH disabled\n");
1094 		else
1095 			calc_mmioh_map(UV2_MMIOH, min_pnode, max_pnode,
1096 				UV2H_RH_GAM_MMIOH_OVERLAY_CONFIG_BASE_SHFT,
1097 				mmioh.s2.base, mmioh.s2.m_io, mmioh.s2.n_io);
1098 		return;
1099 	}
1100 }
1101 
map_low_mmrs(void)1102 static __init void map_low_mmrs(void)
1103 {
1104 	if (UV_GLOBAL_MMR32_BASE)
1105 		init_extra_mapping_uc(UV_GLOBAL_MMR32_BASE, UV_GLOBAL_MMR32_SIZE);
1106 
1107 	if (UV_LOCAL_MMR_BASE)
1108 		init_extra_mapping_uc(UV_LOCAL_MMR_BASE, UV_LOCAL_MMR_SIZE);
1109 }
1110 
uv_rtc_init(void)1111 static __init void uv_rtc_init(void)
1112 {
1113 	long status;
1114 	u64 ticks_per_sec;
1115 
1116 	status = uv_bios_freq_base(BIOS_FREQ_BASE_REALTIME_CLOCK, &ticks_per_sec);
1117 
1118 	if (status != BIOS_STATUS_SUCCESS || ticks_per_sec < 100000) {
1119 		pr_warn("UV: unable to determine platform RTC clock frequency, guessing.\n");
1120 
1121 		/* BIOS gives wrong value for clock frequency, so guess: */
1122 		sn_rtc_cycles_per_second = 1000000000000UL / 30000UL;
1123 	} else {
1124 		sn_rtc_cycles_per_second = ticks_per_sec;
1125 	}
1126 }
1127 
1128 /* Direct Legacy VGA I/O traffic to designated IOH */
uv_set_vga_state(struct pci_dev * pdev,bool decode,unsigned int command_bits,u32 flags)1129 static int uv_set_vga_state(struct pci_dev *pdev, bool decode, unsigned int command_bits, u32 flags)
1130 {
1131 	int domain, bus, rc;
1132 
1133 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
1134 		return 0;
1135 
1136 	if ((command_bits & PCI_COMMAND_IO) == 0)
1137 		return 0;
1138 
1139 	domain = pci_domain_nr(pdev->bus);
1140 	bus = pdev->bus->number;
1141 
1142 	rc = uv_bios_set_legacy_vga_target(decode, domain, bus);
1143 
1144 	return rc;
1145 }
1146 
1147 /*
1148  * Called on each CPU to initialize the per_cpu UV data area.
1149  * FIXME: hotplug not supported yet
1150  */
uv_cpu_init(void)1151 void uv_cpu_init(void)
1152 {
1153 	/* CPU 0 initialization will be done via uv_system_init. */
1154 	if (smp_processor_id() == 0)
1155 		return;
1156 
1157 	uv_hub_info->nr_online_cpus++;
1158 }
1159 
1160 struct mn {
1161 	unsigned char	m_val;
1162 	unsigned char	n_val;
1163 	unsigned char	m_shift;
1164 	unsigned char	n_lshift;
1165 };
1166 
1167 /* Initialize caller's MN struct and fill in values */
get_mn(struct mn * mnp)1168 static void get_mn(struct mn *mnp)
1169 {
1170 	memset(mnp, 0, sizeof(*mnp));
1171 	mnp->n_val	= uv_cpuid.n_skt;
1172 	if (is_uv(UV4|UVY)) {
1173 		mnp->m_val	= 0;
1174 		mnp->n_lshift	= 0;
1175 	} else if (is_uv3_hub()) {
1176 		union uvyh_gr0_gam_gr_config_u m_gr_config;
1177 
1178 		mnp->m_val	= uv_cpuid.m_skt;
1179 		m_gr_config.v	= uv_read_local_mmr(UVH_GR0_GAM_GR_CONFIG);
1180 		mnp->n_lshift	= m_gr_config.s3.m_skt;
1181 	} else if (is_uv2_hub()) {
1182 		mnp->m_val	= uv_cpuid.m_skt;
1183 		mnp->n_lshift	= mnp->m_val == 40 ? 40 : 39;
1184 	}
1185 	mnp->m_shift = mnp->m_val ? 64 - mnp->m_val : 0;
1186 }
1187 
uv_init_hub_info(struct uv_hub_info_s * hi)1188 static void __init uv_init_hub_info(struct uv_hub_info_s *hi)
1189 {
1190 	struct mn mn;
1191 
1192 	get_mn(&mn);
1193 	hi->gpa_mask = mn.m_val ?
1194 		(1UL << (mn.m_val + mn.n_val)) - 1 :
1195 		(1UL << uv_cpuid.gpa_shift) - 1;
1196 
1197 	hi->m_val		= mn.m_val;
1198 	hi->n_val		= mn.n_val;
1199 	hi->m_shift		= mn.m_shift;
1200 	hi->n_lshift		= mn.n_lshift ? mn.n_lshift : 0;
1201 	hi->hub_revision	= uv_hub_info->hub_revision;
1202 	hi->hub_type		= uv_hub_info->hub_type;
1203 	hi->pnode_mask		= uv_cpuid.pnode_mask;
1204 	hi->nasid_shift		= uv_cpuid.nasid_shift;
1205 	hi->min_pnode		= _min_pnode;
1206 	hi->min_socket		= _min_socket;
1207 	hi->node_to_socket	= _node_to_socket;
1208 	hi->pnode_to_socket	= _pnode_to_socket;
1209 	hi->socket_to_node	= _socket_to_node;
1210 	hi->socket_to_pnode	= _socket_to_pnode;
1211 	hi->gr_table_len	= _gr_table_len;
1212 	hi->gr_table		= _gr_table;
1213 
1214 	uv_cpuid.gnode_shift	= max_t(unsigned int, uv_cpuid.gnode_shift, mn.n_val);
1215 	hi->gnode_extra		= (uv_node_id & ~((1 << uv_cpuid.gnode_shift) - 1)) >> 1;
1216 	if (mn.m_val)
1217 		hi->gnode_upper	= (u64)hi->gnode_extra << mn.m_val;
1218 
1219 	if (uv_gp_table) {
1220 		hi->global_mmr_base	= uv_gp_table->mmr_base;
1221 		hi->global_mmr_shift	= uv_gp_table->mmr_shift;
1222 		hi->global_gru_base	= uv_gp_table->gru_base;
1223 		hi->global_gru_shift	= uv_gp_table->gru_shift;
1224 		hi->gpa_shift		= uv_gp_table->gpa_shift;
1225 		hi->gpa_mask		= (1UL << hi->gpa_shift) - 1;
1226 	} else {
1227 		hi->global_mmr_base	=
1228 			uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG) &
1229 			~UV_MMR_ENABLE;
1230 		hi->global_mmr_shift	= _UV_GLOBAL_MMR64_PNODE_SHIFT;
1231 	}
1232 
1233 	get_lowmem_redirect(&hi->lowmem_remap_base, &hi->lowmem_remap_top);
1234 
1235 	hi->apic_pnode_shift = uv_cpuid.socketid_shift;
1236 
1237 	/* Show system specific info: */
1238 	pr_info("UV: N:%d M:%d m_shift:%d n_lshift:%d\n", hi->n_val, hi->m_val, hi->m_shift, hi->n_lshift);
1239 	pr_info("UV: gpa_mask/shift:0x%lx/%d pnode_mask:0x%x apic_pns:%d\n", hi->gpa_mask, hi->gpa_shift, hi->pnode_mask, hi->apic_pnode_shift);
1240 	pr_info("UV: mmr_base/shift:0x%lx/%ld\n", hi->global_mmr_base, hi->global_mmr_shift);
1241 	if (hi->global_gru_base)
1242 		pr_info("UV: gru_base/shift:0x%lx/%ld\n",
1243 			hi->global_gru_base, hi->global_gru_shift);
1244 
1245 	pr_info("UV: gnode_upper:0x%lx gnode_extra:0x%x\n", hi->gnode_upper, hi->gnode_extra);
1246 }
1247 
decode_gam_params(unsigned long ptr)1248 static void __init decode_gam_params(unsigned long ptr)
1249 {
1250 	uv_gp_table = (struct uv_gam_parameters *)ptr;
1251 
1252 	pr_info("UV: GAM Params...\n");
1253 	pr_info("UV: mmr_base/shift:0x%llx/%d gru_base/shift:0x%llx/%d gpa_shift:%d\n",
1254 		uv_gp_table->mmr_base, uv_gp_table->mmr_shift,
1255 		uv_gp_table->gru_base, uv_gp_table->gru_shift,
1256 		uv_gp_table->gpa_shift);
1257 }
1258 
decode_gam_rng_tbl(unsigned long ptr)1259 static void __init decode_gam_rng_tbl(unsigned long ptr)
1260 {
1261 	struct uv_gam_range_entry *gre = (struct uv_gam_range_entry *)ptr;
1262 	unsigned long lgre = 0, gend = 0;
1263 	int index = 0;
1264 	int sock_min = INT_MAX, pnode_min = INT_MAX;
1265 	int sock_max = -1, pnode_max = -1;
1266 
1267 	uv_gre_table = gre;
1268 	for (; gre->type != UV_GAM_RANGE_TYPE_UNUSED; gre++) {
1269 		unsigned long size = ((unsigned long)(gre->limit - lgre)
1270 					<< UV_GAM_RANGE_SHFT);
1271 		int order = 0;
1272 		char suffix[] = " KMGTPE";
1273 		int flag = ' ';
1274 
1275 		while (size > 9999 && order < sizeof(suffix)) {
1276 			size /= 1024;
1277 			order++;
1278 		}
1279 
1280 		/* adjust max block size to current range start */
1281 		if (gre->type == 1 || gre->type == 2)
1282 			if (adj_blksize(lgre))
1283 				flag = '*';
1284 
1285 		if (!index) {
1286 			pr_info("UV: GAM Range Table...\n");
1287 			pr_info("UV:  # %20s %14s %6s %4s %5s %3s %2s\n", "Range", "", "Size", "Type", "NASID", "SID", "PN");
1288 		}
1289 		pr_info("UV: %2d: 0x%014lx-0x%014lx%c %5lu%c %3d   %04x  %02x %02x\n",
1290 			index++,
1291 			(unsigned long)lgre << UV_GAM_RANGE_SHFT,
1292 			(unsigned long)gre->limit << UV_GAM_RANGE_SHFT,
1293 			flag, size, suffix[order],
1294 			gre->type, gre->nasid, gre->sockid, gre->pnode);
1295 
1296 		if (gre->type == UV_GAM_RANGE_TYPE_HOLE)
1297 			gend = (unsigned long)gre->limit << UV_GAM_RANGE_SHFT;
1298 
1299 		/* update to next range start */
1300 		lgre = gre->limit;
1301 		if (sock_min > gre->sockid)
1302 			sock_min = gre->sockid;
1303 		if (sock_max < gre->sockid)
1304 			sock_max = gre->sockid;
1305 		if (pnode_min > gre->pnode)
1306 			pnode_min = gre->pnode;
1307 		if (pnode_max < gre->pnode)
1308 			pnode_max = gre->pnode;
1309 	}
1310 	_min_socket	= sock_min;
1311 	_max_socket	= sock_max;
1312 	_min_pnode	= pnode_min;
1313 	_max_pnode	= pnode_max;
1314 	_gr_table_len	= index;
1315 
1316 	pr_info("UV: GRT: %d entries, sockets(min:%x,max:%x), pnodes(min:%x,max:%x), gap_end(%d)\n",
1317 	  index, _min_socket, _max_socket, _min_pnode, _max_pnode, fls64(gend));
1318 }
1319 
1320 /* Walk through UVsystab decoding the fields */
decode_uv_systab(void)1321 static int __init decode_uv_systab(void)
1322 {
1323 	struct uv_systab *st;
1324 	int i;
1325 
1326 	/* Get mapped UVsystab pointer */
1327 	st = uv_systab;
1328 
1329 	/* If UVsystab is version 1, there is no extended UVsystab */
1330 	if (st && st->revision == UV_SYSTAB_VERSION_1)
1331 		return 0;
1332 
1333 	if ((!st) || (st->revision < UV_SYSTAB_VERSION_UV4_LATEST)) {
1334 		int rev = st ? st->revision : 0;
1335 
1336 		pr_err("UV: BIOS UVsystab mismatch, (%x < %x)\n",
1337 			rev, UV_SYSTAB_VERSION_UV4_LATEST);
1338 		pr_err("UV: Does not support UV, switch to non-UV x86_64\n");
1339 		uv_system_type = UV_NONE;
1340 
1341 		return -EINVAL;
1342 	}
1343 
1344 	for (i = 0; st->entry[i].type != UV_SYSTAB_TYPE_UNUSED; i++) {
1345 		unsigned long ptr = st->entry[i].offset;
1346 
1347 		if (!ptr)
1348 			continue;
1349 
1350 		/* point to payload */
1351 		ptr += (unsigned long)st;
1352 
1353 		switch (st->entry[i].type) {
1354 		case UV_SYSTAB_TYPE_GAM_PARAMS:
1355 			decode_gam_params(ptr);
1356 			break;
1357 
1358 		case UV_SYSTAB_TYPE_GAM_RNG_TBL:
1359 			decode_gam_rng_tbl(ptr);
1360 			break;
1361 
1362 		case UV_SYSTAB_TYPE_ARCH_TYPE:
1363 			/* already processed in early startup */
1364 			break;
1365 
1366 		default:
1367 			pr_err("UV:%s:Unrecognized UV_SYSTAB_TYPE:%d, skipped\n",
1368 				__func__, st->entry[i].type);
1369 			break;
1370 		}
1371 	}
1372 	return 0;
1373 }
1374 
1375 /*
1376  * Given a bitmask 'bits' representing presnt blades, numbered
1377  * starting at 'base', masking off unused high bits of blade number
1378  * with 'mask', update the minimum and maximum blade numbers that we
1379  * have found.  (Masking with 'mask' necessary because of BIOS
1380  * treatment of system partitioning when creating this table we are
1381  * interpreting.)
1382  */
blade_update_min_max(unsigned long bits,int base,int mask,int * min,int * max)1383 static inline void blade_update_min_max(unsigned long bits, int base, int mask, int *min, int *max)
1384 {
1385 	int first, last;
1386 
1387 	if (!bits)
1388 		return;
1389 	first = (base + __ffs(bits)) & mask;
1390 	last =  (base + __fls(bits)) & mask;
1391 
1392 	if (*min > first)
1393 		*min = first;
1394 	if (*max < last)
1395 		*max = last;
1396 }
1397 
1398 /* Set up physical blade translations from UVH_NODE_PRESENT_TABLE */
boot_init_possible_blades(struct uv_hub_info_s * hub_info)1399 static __init void boot_init_possible_blades(struct uv_hub_info_s *hub_info)
1400 {
1401 	unsigned long np;
1402 	int i, uv_pb = 0;
1403 	int sock_min = INT_MAX, sock_max = -1, s_mask;
1404 
1405 	s_mask = (1 << uv_cpuid.n_skt) - 1;
1406 
1407 	if (UVH_NODE_PRESENT_TABLE) {
1408 		pr_info("UV: NODE_PRESENT_DEPTH = %d\n",
1409 			UVH_NODE_PRESENT_TABLE_DEPTH);
1410 		for (i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++) {
1411 			np = uv_read_local_mmr(UVH_NODE_PRESENT_TABLE + i * 8);
1412 			pr_info("UV: NODE_PRESENT(%d) = 0x%016lx\n", i, np);
1413 			blade_update_min_max(np, i * 64, s_mask, &sock_min, &sock_max);
1414 		}
1415 	}
1416 	if (UVH_NODE_PRESENT_0) {
1417 		np = uv_read_local_mmr(UVH_NODE_PRESENT_0);
1418 		pr_info("UV: NODE_PRESENT_0 = 0x%016lx\n", np);
1419 		blade_update_min_max(np, 0, s_mask, &sock_min, &sock_max);
1420 	}
1421 	if (UVH_NODE_PRESENT_1) {
1422 		np = uv_read_local_mmr(UVH_NODE_PRESENT_1);
1423 		pr_info("UV: NODE_PRESENT_1 = 0x%016lx\n", np);
1424 		blade_update_min_max(np, 64, s_mask, &sock_min, &sock_max);
1425 	}
1426 
1427 	/* Only update if we actually found some bits indicating blades present */
1428 	if (sock_max >= sock_min) {
1429 		_min_socket = sock_min;
1430 		_max_socket = sock_max;
1431 		uv_pb = sock_max - sock_min + 1;
1432 	}
1433 	if (uv_possible_blades != uv_pb)
1434 		uv_possible_blades = uv_pb;
1435 
1436 	pr_info("UV: number nodes/possible blades %d (%d - %d)\n",
1437 		uv_pb, sock_min, sock_max);
1438 }
1439 
alloc_conv_table(int num_elem,unsigned short ** table)1440 static int __init alloc_conv_table(int num_elem, unsigned short **table)
1441 {
1442 	int i;
1443 	size_t bytes;
1444 
1445 	bytes = num_elem * sizeof(*table[0]);
1446 	*table = kmalloc(bytes, GFP_KERNEL);
1447 	if (WARN_ON_ONCE(!*table))
1448 		return -ENOMEM;
1449 	for (i = 0; i < num_elem; i++)
1450 		((unsigned short *)*table)[i] = SOCK_EMPTY;
1451 	return 0;
1452 }
1453 
1454 /* Remove conversion table if it's 1:1 */
1455 #define FREE_1_TO_1_TABLE(tbl, min, max, max2) free_1_to_1_table(&tbl, #tbl, min, max, max2)
1456 
free_1_to_1_table(unsigned short ** tp,char * tname,int min,int max,int max2)1457 static void __init free_1_to_1_table(unsigned short **tp, char *tname, int min, int max, int max2)
1458 {
1459 	int i;
1460 	unsigned short *table = *tp;
1461 
1462 	if (table == NULL)
1463 		return;
1464 	if (max != max2)
1465 		return;
1466 	for (i = 0; i < max; i++) {
1467 		if (i != table[i])
1468 			return;
1469 	}
1470 	kfree(table);
1471 	*tp = NULL;
1472 	pr_info("UV: %s is 1:1, conversion table removed\n", tname);
1473 }
1474 
1475 /*
1476  * Build Socket Tables
1477  * If the number of nodes is >1 per socket, socket to node table will
1478  * contain lowest node number on that socket.
1479  */
build_socket_tables(void)1480 static void __init build_socket_tables(void)
1481 {
1482 	struct uv_gam_range_entry *gre = uv_gre_table;
1483 	int nums, numn, nump;
1484 	int i, lnid, apicid;
1485 	int minsock = _min_socket;
1486 	int maxsock = _max_socket;
1487 	int minpnode = _min_pnode;
1488 	int maxpnode = _max_pnode;
1489 
1490 	if (!gre) {
1491 		if (is_uv2_hub() || is_uv3_hub()) {
1492 			pr_info("UV: No UVsystab socket table, ignoring\n");
1493 			return;
1494 		}
1495 		pr_err("UV: Error: UVsystab address translations not available!\n");
1496 		WARN_ON_ONCE(!gre);
1497 		return;
1498 	}
1499 
1500 	numn = num_possible_nodes();
1501 	nump = maxpnode - minpnode + 1;
1502 	nums = maxsock - minsock + 1;
1503 
1504 	/* Allocate and clear tables */
1505 	if ((alloc_conv_table(nump, &_pnode_to_socket) < 0)
1506 	    || (alloc_conv_table(nums, &_socket_to_pnode) < 0)
1507 	    || (alloc_conv_table(numn, &_node_to_socket) < 0)
1508 	    || (alloc_conv_table(nums, &_socket_to_node) < 0)) {
1509 		kfree(_pnode_to_socket);
1510 		kfree(_socket_to_pnode);
1511 		kfree(_node_to_socket);
1512 		return;
1513 	}
1514 
1515 	/* Fill in pnode/node/addr conversion list values: */
1516 	for (; gre->type != UV_GAM_RANGE_TYPE_UNUSED; gre++) {
1517 		if (gre->type == UV_GAM_RANGE_TYPE_HOLE)
1518 			continue;
1519 		i = gre->sockid - minsock;
1520 		if (_socket_to_pnode[i] == SOCK_EMPTY)
1521 			_socket_to_pnode[i] = gre->pnode;
1522 
1523 		i = gre->pnode - minpnode;
1524 		if (_pnode_to_socket[i] == SOCK_EMPTY)
1525 			_pnode_to_socket[i] = gre->sockid;
1526 
1527 		pr_info("UV: sid:%02x type:%d nasid:%04x pn:%02x pn2s:%2x\n",
1528 			gre->sockid, gre->type, gre->nasid,
1529 			_socket_to_pnode[gre->sockid - minsock],
1530 			_pnode_to_socket[gre->pnode - minpnode]);
1531 	}
1532 
1533 	/* Set socket -> node values: */
1534 	lnid = NUMA_NO_NODE;
1535 	for (apicid = 0; apicid < ARRAY_SIZE(__apicid_to_node); apicid++) {
1536 		int nid = __apicid_to_node[apicid];
1537 		int sockid;
1538 
1539 		if ((nid == NUMA_NO_NODE) || (lnid == nid))
1540 			continue;
1541 		lnid = nid;
1542 
1543 		sockid = apicid >> uv_cpuid.socketid_shift;
1544 
1545 		if (_socket_to_node[sockid - minsock] == SOCK_EMPTY)
1546 			_socket_to_node[sockid - minsock] = nid;
1547 
1548 		if (_node_to_socket[nid] == SOCK_EMPTY)
1549 			_node_to_socket[nid] = sockid;
1550 
1551 		pr_info("UV: sid:%02x: apicid:%04x socket:%02d node:%03x s2n:%03x\n",
1552 			sockid,
1553 			apicid,
1554 			_node_to_socket[nid],
1555 			nid,
1556 			_socket_to_node[sockid - minsock]);
1557 	}
1558 
1559 	/*
1560 	 * If e.g. socket id == pnode for all pnodes,
1561 	 *   system runs faster by removing corresponding conversion table.
1562 	 */
1563 	FREE_1_TO_1_TABLE(_socket_to_node, _min_socket, nums, numn);
1564 	FREE_1_TO_1_TABLE(_node_to_socket, _min_socket, nums, numn);
1565 	FREE_1_TO_1_TABLE(_socket_to_pnode, _min_pnode, nums, nump);
1566 	FREE_1_TO_1_TABLE(_pnode_to_socket, _min_pnode, nums, nump);
1567 }
1568 
1569 /* Check which reboot to use */
check_efi_reboot(void)1570 static void check_efi_reboot(void)
1571 {
1572 	/* If EFI reboot not available, use ACPI reboot */
1573 	if (!efi_enabled(EFI_BOOT))
1574 		reboot_type = BOOT_ACPI;
1575 }
1576 
1577 /*
1578  * User proc fs file handling now deprecated.
1579  * Recommend using /sys/firmware/sgi_uv/... instead.
1580  */
proc_hubbed_show(struct seq_file * file,void * data)1581 static int __maybe_unused proc_hubbed_show(struct seq_file *file, void *data)
1582 {
1583 	pr_notice_once("%s: using deprecated /proc/sgi_uv/hubbed, use /sys/firmware/sgi_uv/hub_type\n",
1584 		       current->comm);
1585 	seq_printf(file, "0x%x\n", uv_hubbed_system);
1586 	return 0;
1587 }
1588 
proc_hubless_show(struct seq_file * file,void * data)1589 static int __maybe_unused proc_hubless_show(struct seq_file *file, void *data)
1590 {
1591 	pr_notice_once("%s: using deprecated /proc/sgi_uv/hubless, use /sys/firmware/sgi_uv/hubless\n",
1592 		       current->comm);
1593 	seq_printf(file, "0x%x\n", uv_hubless_system);
1594 	return 0;
1595 }
1596 
proc_archtype_show(struct seq_file * file,void * data)1597 static int __maybe_unused proc_archtype_show(struct seq_file *file, void *data)
1598 {
1599 	pr_notice_once("%s: using deprecated /proc/sgi_uv/archtype, use /sys/firmware/sgi_uv/archtype\n",
1600 		       current->comm);
1601 	seq_printf(file, "%s/%s\n", uv_archtype, oem_table_id);
1602 	return 0;
1603 }
1604 
uv_setup_proc_files(int hubless)1605 static __init void uv_setup_proc_files(int hubless)
1606 {
1607 	struct proc_dir_entry *pde;
1608 
1609 	pde = proc_mkdir(UV_PROC_NODE, NULL);
1610 	proc_create_single("archtype", 0, pde, proc_archtype_show);
1611 	if (hubless)
1612 		proc_create_single("hubless", 0, pde, proc_hubless_show);
1613 	else
1614 		proc_create_single("hubbed", 0, pde, proc_hubbed_show);
1615 }
1616 
1617 /* Initialize UV hubless systems */
uv_system_init_hubless(void)1618 static __init int uv_system_init_hubless(void)
1619 {
1620 	int rc;
1621 
1622 	/* Setup PCH NMI handler */
1623 	uv_nmi_setup_hubless();
1624 
1625 	/* Init kernel/BIOS interface */
1626 	rc = uv_bios_init();
1627 	if (rc < 0)
1628 		return rc;
1629 
1630 	/* Process UVsystab */
1631 	rc = decode_uv_systab();
1632 	if (rc < 0)
1633 		return rc;
1634 
1635 	/* Set section block size for current node memory */
1636 	set_block_size();
1637 
1638 	/* Create user access node */
1639 	if (rc >= 0)
1640 		uv_setup_proc_files(1);
1641 
1642 	check_efi_reboot();
1643 
1644 	return rc;
1645 }
1646 
uv_system_init_hub(void)1647 static void __init uv_system_init_hub(void)
1648 {
1649 	struct uv_hub_info_s hub_info = {0};
1650 	int bytes, cpu, nodeid, bid;
1651 	unsigned short min_pnode = USHRT_MAX, max_pnode = 0;
1652 	char *hub = is_uv5_hub() ? "UV500" :
1653 		    is_uv4_hub() ? "UV400" :
1654 		    is_uv3_hub() ? "UV300" :
1655 		    is_uv2_hub() ? "UV2000/3000" : NULL;
1656 	struct uv_hub_info_s **uv_hub_info_list_blade;
1657 
1658 	if (!hub) {
1659 		pr_err("UV: Unknown/unsupported UV hub\n");
1660 		return;
1661 	}
1662 	pr_info("UV: Found %s hub\n", hub);
1663 
1664 	map_low_mmrs();
1665 
1666 	/* Get uv_systab for decoding, setup UV BIOS calls */
1667 	uv_bios_init();
1668 
1669 	/* If there's an UVsystab problem then abort UV init: */
1670 	if (decode_uv_systab() < 0) {
1671 		pr_err("UV: Mangled UVsystab format\n");
1672 		return;
1673 	}
1674 
1675 	build_socket_tables();
1676 	build_uv_gr_table();
1677 	set_block_size();
1678 	uv_init_hub_info(&hub_info);
1679 	/* If UV2 or UV3 may need to get # blades from HW */
1680 	if (is_uv(UV2|UV3) && !uv_gre_table)
1681 		boot_init_possible_blades(&hub_info);
1682 	else
1683 		/* min/max sockets set in decode_gam_rng_tbl */
1684 		uv_possible_blades = (_max_socket - _min_socket) + 1;
1685 
1686 	/* uv_num_possible_blades() is really the hub count: */
1687 	pr_info("UV: Found %d hubs, %d nodes, %d CPUs\n", uv_num_possible_blades(), num_possible_nodes(), num_possible_cpus());
1688 
1689 	uv_bios_get_sn_info(0, &uv_type, &sn_partition_id, &sn_coherency_id, &sn_region_size, &system_serial_number);
1690 	hub_info.coherency_domain_number = sn_coherency_id;
1691 	uv_rtc_init();
1692 
1693 	/*
1694 	 * __uv_hub_info_list[] is indexed by node, but there is only
1695 	 * one hub_info structure per blade.  First, allocate one
1696 	 * structure per blade.  Further down we create a per-node
1697 	 * table (__uv_hub_info_list[]) pointing to hub_info
1698 	 * structures for the correct blade.
1699 	 */
1700 
1701 	bytes = sizeof(void *) * uv_num_possible_blades();
1702 	uv_hub_info_list_blade = kzalloc(bytes, GFP_KERNEL);
1703 	if (WARN_ON_ONCE(!uv_hub_info_list_blade))
1704 		return;
1705 
1706 	bytes = sizeof(struct uv_hub_info_s);
1707 	for_each_possible_blade(bid) {
1708 		struct uv_hub_info_s *new_hub;
1709 
1710 		/* Allocate & fill new per hub info list */
1711 		new_hub = (bid == 0) ?  &uv_hub_info_node0
1712 			: kzalloc_node(bytes, GFP_KERNEL, uv_blade_to_node(bid));
1713 		if (WARN_ON_ONCE(!new_hub)) {
1714 			/* do not kfree() bid 0, which is statically allocated */
1715 			while (--bid > 0)
1716 				kfree(uv_hub_info_list_blade[bid]);
1717 			kfree(uv_hub_info_list_blade);
1718 			return;
1719 		}
1720 
1721 		uv_hub_info_list_blade[bid] = new_hub;
1722 		*new_hub = hub_info;
1723 
1724 		/* Use information from GAM table if available: */
1725 		if (uv_gre_table)
1726 			new_hub->pnode = uv_blade_to_pnode(bid);
1727 		else /* Or fill in during CPU loop: */
1728 			new_hub->pnode = 0xffff;
1729 
1730 		new_hub->numa_blade_id = bid;
1731 		new_hub->memory_nid = NUMA_NO_NODE;
1732 		new_hub->nr_possible_cpus = 0;
1733 		new_hub->nr_online_cpus = 0;
1734 	}
1735 
1736 	/*
1737 	 * Now populate __uv_hub_info_list[] for each node with the
1738 	 * pointer to the struct for the blade it resides on.
1739 	 */
1740 
1741 	bytes = sizeof(void *) * num_possible_nodes();
1742 	__uv_hub_info_list = kzalloc(bytes, GFP_KERNEL);
1743 	if (WARN_ON_ONCE(!__uv_hub_info_list)) {
1744 		for_each_possible_blade(bid)
1745 			/* bid 0 is statically allocated */
1746 			if (bid != 0)
1747 				kfree(uv_hub_info_list_blade[bid]);
1748 		kfree(uv_hub_info_list_blade);
1749 		return;
1750 	}
1751 
1752 	for_each_node(nodeid)
1753 		__uv_hub_info_list[nodeid] = uv_hub_info_list_blade[uv_node_to_blade_id(nodeid)];
1754 
1755 	/* Initialize per CPU info: */
1756 	for_each_possible_cpu(cpu) {
1757 		int apicid = per_cpu(x86_cpu_to_apicid, cpu);
1758 		unsigned short bid;
1759 		unsigned short pnode;
1760 
1761 		pnode = uv_apicid_to_pnode(apicid);
1762 		bid = uv_pnode_to_socket(pnode) - _min_socket;
1763 
1764 		uv_cpu_info_per(cpu)->p_uv_hub_info = uv_hub_info_list_blade[bid];
1765 		uv_cpu_info_per(cpu)->blade_cpu_id = uv_cpu_hub_info(cpu)->nr_possible_cpus++;
1766 		if (uv_cpu_hub_info(cpu)->memory_nid == NUMA_NO_NODE)
1767 			uv_cpu_hub_info(cpu)->memory_nid = cpu_to_node(cpu);
1768 
1769 		if (uv_cpu_hub_info(cpu)->pnode == 0xffff)
1770 			uv_cpu_hub_info(cpu)->pnode = pnode;
1771 	}
1772 
1773 	for_each_possible_blade(bid) {
1774 		unsigned short pnode = uv_hub_info_list_blade[bid]->pnode;
1775 
1776 		if (pnode == 0xffff)
1777 			continue;
1778 
1779 		min_pnode = min(pnode, min_pnode);
1780 		max_pnode = max(pnode, max_pnode);
1781 		pr_info("UV: HUB:%2d pn:%02x nrcpus:%d\n",
1782 			bid,
1783 			uv_hub_info_list_blade[bid]->pnode,
1784 			uv_hub_info_list_blade[bid]->nr_possible_cpus);
1785 	}
1786 
1787 	pr_info("UV: min_pnode:%02x max_pnode:%02x\n", min_pnode, max_pnode);
1788 	map_gru_high(max_pnode);
1789 	map_mmr_high(max_pnode);
1790 	map_mmioh_high(min_pnode, max_pnode);
1791 
1792 	kfree(uv_hub_info_list_blade);
1793 	uv_hub_info_list_blade = NULL;
1794 
1795 	uv_nmi_setup();
1796 	uv_cpu_init();
1797 	uv_setup_proc_files(0);
1798 
1799 	/* Register Legacy VGA I/O redirection handler: */
1800 	pci_register_set_vga_state(uv_set_vga_state);
1801 
1802 	check_efi_reboot();
1803 }
1804 
1805 /*
1806  * There is a different code path needed to initialize a UV system that does
1807  * not have a "UV HUB" (referred to as "hubless").
1808  */
uv_system_init(void)1809 void __init uv_system_init(void)
1810 {
1811 	if (likely(!is_uv_system() && !is_uv_hubless(1)))
1812 		return;
1813 
1814 	if (is_uv_system())
1815 		uv_system_init_hub();
1816 	else
1817 		uv_system_init_hubless();
1818 }
1819 
1820 apic_driver(apic_x2apic_uv_x);
1821