1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright IBM Corp. 2006, 2023
4 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
5 * Martin Schwidefsky <schwidefsky@de.ibm.com>
6 * Ralph Wuerthner <rwuerthn@de.ibm.com>
7 * Felix Beck <felix.beck@de.ibm.com>
8 * Holger Dengler <hd@linux.vnet.ibm.com>
9 * Harald Freudenberger <freude@linux.ibm.com>
10 *
11 * Adjunct processor bus.
12 */
13
14 #define KMSG_COMPONENT "ap"
15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
16
17 #include <linux/kernel_stat.h>
18 #include <linux/moduleparam.h>
19 #include <linux/export.h>
20 #include <linux/init.h>
21 #include <linux/delay.h>
22 #include <linux/err.h>
23 #include <linux/freezer.h>
24 #include <linux/interrupt.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/notifier.h>
28 #include <linux/kthread.h>
29 #include <linux/mutex.h>
30 #include <asm/machine.h>
31 #include <asm/airq.h>
32 #include <asm/tpi.h>
33 #include <linux/atomic.h>
34 #include <asm/isc.h>
35 #include <linux/hrtimer.h>
36 #include <linux/ktime.h>
37 #include <asm/facility.h>
38 #include <linux/crypto.h>
39 #include <linux/mod_devicetable.h>
40 #include <linux/debugfs.h>
41 #include <linux/ctype.h>
42 #include <linux/module.h>
43 #include <asm/uv.h>
44 #include <asm/chsc.h>
45 #include <linux/mempool.h>
46
47 #include "ap_bus.h"
48 #include "ap_debug.h"
49
50 MODULE_AUTHOR("IBM Corporation");
51 MODULE_DESCRIPTION("Adjunct Processor Bus driver");
52 MODULE_LICENSE("GPL");
53
54 int ap_domain_index = -1; /* Adjunct Processor Domain Index */
55 static DEFINE_SPINLOCK(ap_domain_lock);
56 module_param_named(domain, ap_domain_index, int, 0440);
57 MODULE_PARM_DESC(domain, "domain index for ap devices");
58 EXPORT_SYMBOL(ap_domain_index);
59
60 static int ap_thread_flag;
61 module_param_named(poll_thread, ap_thread_flag, int, 0440);
62 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
63
64 static char *apm_str;
65 module_param_named(apmask, apm_str, charp, 0440);
66 MODULE_PARM_DESC(apmask, "AP bus adapter mask.");
67
68 static char *aqm_str;
69 module_param_named(aqmask, aqm_str, charp, 0440);
70 MODULE_PARM_DESC(aqmask, "AP bus domain mask.");
71
72 static int ap_useirq = 1;
73 module_param_named(useirq, ap_useirq, int, 0440);
74 MODULE_PARM_DESC(useirq, "Use interrupt if available, default is 1 (on).");
75
76 atomic_t ap_max_msg_size = ATOMIC_INIT(AP_DEFAULT_MAX_MSG_SIZE);
77 EXPORT_SYMBOL(ap_max_msg_size);
78
79 static struct device *ap_root_device;
80
81 /* Hashtable of all queue devices on the AP bus */
82 DEFINE_HASHTABLE(ap_queues, 8);
83 /* lock used for the ap_queues hashtable */
84 DEFINE_SPINLOCK(ap_queues_lock);
85
86 /* Default permissions (ioctl, card and domain masking) */
87 struct ap_perms ap_perms;
88 EXPORT_SYMBOL(ap_perms);
89 DEFINE_MUTEX(ap_perms_mutex);
90 EXPORT_SYMBOL(ap_perms_mutex);
91
92 /* # of bindings complete since init */
93 static atomic64_t ap_bindings_complete_count = ATOMIC64_INIT(0);
94
95 /* completion for APQN bindings complete */
96 static DECLARE_COMPLETION(ap_apqn_bindings_complete);
97
98 static struct ap_config_info qci[2];
99 static struct ap_config_info *const ap_qci_info = &qci[0];
100 static struct ap_config_info *const ap_qci_info_old = &qci[1];
101
102 /*
103 * AP bus related debug feature things.
104 */
105 debug_info_t *ap_dbf_info;
106
107 /*
108 * There is a need for a do-not-allocate-memory path through the AP bus
109 * layer. The pkey layer may be triggered via the in-kernel interface from
110 * a protected key crypto algorithm (namely PAES) to convert a secure key
111 * into a protected key. This happens in a workqueue context, so sleeping
112 * is allowed but memory allocations causing IO operations are not permitted.
113 * To accomplish this, an AP message memory pool with pre-allocated space
114 * is established. When ap_init_apmsg() with use_mempool set to true is
115 * called, instead of kmalloc() the ap message buffer is allocated from
116 * the ap_msg_pool. This pool only holds a limited amount of buffers:
117 * ap_msg_pool_min_items with the item size AP_DEFAULT_MAX_MSG_SIZE and
118 * exactly one of these items (if available) is returned if ap_init_apmsg()
119 * with the use_mempool arg set to true is called. When this pool is exhausted
120 * and use_mempool is set true, ap_init_apmsg() returns -ENOMEM without
121 * any attempt to allocate memory and the caller has to deal with that.
122 */
123 static mempool_t *ap_msg_pool;
124 static unsigned int ap_msg_pool_min_items = 8;
125 module_param_named(msgpool_min_items, ap_msg_pool_min_items, uint, 0440);
126 MODULE_PARM_DESC(msgpool_min_items, "AP message pool minimal items");
127
128 /*
129 * AP bus rescan related things.
130 */
131 static bool ap_scan_bus(void);
132 static bool ap_scan_bus_result; /* result of last ap_scan_bus() */
133 static DEFINE_MUTEX(ap_scan_bus_mutex); /* mutex ap_scan_bus() invocations */
134 static struct task_struct *ap_scan_bus_task; /* thread holding the scan mutex */
135 static atomic64_t ap_scan_bus_count; /* counter ap_scan_bus() invocations */
136 static int ap_scan_bus_time = AP_CONFIG_TIME;
137 static struct timer_list ap_scan_bus_timer;
138 static void ap_scan_bus_wq_callback(struct work_struct *);
139 static DECLARE_WORK(ap_scan_bus_work, ap_scan_bus_wq_callback);
140
141 /*
142 * Tasklet & timer for AP request polling and interrupts
143 */
144 static void ap_tasklet_fn(unsigned long);
145 static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn);
146 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
147 static struct task_struct *ap_poll_kthread;
148 static DEFINE_MUTEX(ap_poll_thread_mutex);
149 static DEFINE_SPINLOCK(ap_poll_timer_lock);
150 static struct hrtimer ap_poll_timer;
151 /*
152 * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
153 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.
154 */
155 static unsigned long poll_high_timeout = 250000UL;
156
157 /*
158 * Some state machine states only require a low frequency polling.
159 * We use 25 Hz frequency for these.
160 */
161 static unsigned long poll_low_timeout = 40000000UL;
162
163 /* Maximum domain id, if not given via qci */
164 static int ap_max_domain_id = 15;
165 /* Maximum adapter id, if not given via qci */
166 static int ap_max_adapter_id = 63;
167
168 static const struct bus_type ap_bus_type;
169
170 /* Adapter interrupt definitions */
171 static void ap_interrupt_handler(struct airq_struct *airq,
172 struct tpi_info *tpi_info);
173
174 static bool ap_irq_flag;
175
176 static struct airq_struct ap_airq = {
177 .handler = ap_interrupt_handler,
178 .isc = AP_ISC,
179 };
180
181 /**
182 * ap_airq_ptr() - Get the address of the adapter interrupt indicator
183 *
184 * Returns the address of the local-summary-indicator of the adapter
185 * interrupt handler for AP, or NULL if adapter interrupts are not
186 * available.
187 */
ap_airq_ptr(void)188 void *ap_airq_ptr(void)
189 {
190 if (ap_irq_flag)
191 return ap_airq.lsi_ptr;
192 return NULL;
193 }
194
195 /**
196 * ap_interrupts_available(): Test if AP interrupts are available.
197 *
198 * Returns 1 if AP interrupts are available.
199 */
ap_interrupts_available(void)200 static int ap_interrupts_available(void)
201 {
202 return test_facility(65);
203 }
204
205 /**
206 * ap_qci_available(): Test if AP configuration
207 * information can be queried via QCI subfunction.
208 *
209 * Returns 1 if subfunction PQAP(QCI) is available.
210 */
ap_qci_available(void)211 static int ap_qci_available(void)
212 {
213 return test_facility(12);
214 }
215
216 /**
217 * ap_apft_available(): Test if AP facilities test (APFT)
218 * facility is available.
219 *
220 * Returns 1 if APFT is available.
221 */
ap_apft_available(void)222 static int ap_apft_available(void)
223 {
224 return test_facility(15);
225 }
226
227 /*
228 * ap_qact_available(): Test if the PQAP(QACT) subfunction is available.
229 *
230 * Returns 1 if the QACT subfunction is available.
231 */
ap_qact_available(void)232 static inline int ap_qact_available(void)
233 {
234 return ap_qci_info->qact;
235 }
236
237 /*
238 * ap_sb_available(): Test if the AP secure binding facility is available.
239 *
240 * Returns 1 if secure binding facility is available.
241 */
ap_sb_available(void)242 int ap_sb_available(void)
243 {
244 return ap_qci_info->apsb;
245 }
246
247 /*
248 * ap_is_se_guest(): Check for SE guest with AP pass-through support.
249 */
ap_is_se_guest(void)250 bool ap_is_se_guest(void)
251 {
252 return is_prot_virt_guest() && ap_sb_available();
253 }
254 EXPORT_SYMBOL(ap_is_se_guest);
255
256 /**
257 * ap_init_qci_info(): Allocate and query qci config info.
258 * Does also update the static variables ap_max_domain_id
259 * and ap_max_adapter_id if this info is available.
260 */
ap_init_qci_info(void)261 static void __init ap_init_qci_info(void)
262 {
263 if (!ap_qci_available() ||
264 ap_qci(ap_qci_info)) {
265 AP_DBF_INFO("%s QCI not supported\n", __func__);
266 return;
267 }
268 memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
269 AP_DBF_INFO("%s successful fetched initial qci info\n", __func__);
270
271 if (ap_qci_info->apxa) {
272 if (ap_qci_info->na) {
273 ap_max_adapter_id = ap_qci_info->na;
274 AP_DBF_INFO("%s new ap_max_adapter_id is %d\n",
275 __func__, ap_max_adapter_id);
276 }
277 if (ap_qci_info->nd) {
278 ap_max_domain_id = ap_qci_info->nd;
279 AP_DBF_INFO("%s new ap_max_domain_id is %d\n",
280 __func__, ap_max_domain_id);
281 }
282 }
283 }
284
285 /*
286 * ap_test_config(): helper function to extract the nrth bit
287 * within the unsigned int array field.
288 */
ap_test_config(unsigned int * field,unsigned int nr)289 static inline int ap_test_config(unsigned int *field, unsigned int nr)
290 {
291 return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
292 }
293
294 /*
295 * ap_test_config_card_id(): Test, whether an AP card ID is configured.
296 *
297 * Returns 0 if the card is not configured
298 * 1 if the card is configured or
299 * if the configuration information is not available
300 */
ap_test_config_card_id(unsigned int id)301 static inline int ap_test_config_card_id(unsigned int id)
302 {
303 if (id > ap_max_adapter_id)
304 return 0;
305 if (ap_qci_info->flags)
306 return ap_test_config(ap_qci_info->apm, id);
307 return 1;
308 }
309
310 /*
311 * ap_test_config_usage_domain(): Test, whether an AP usage domain
312 * is configured.
313 *
314 * Returns 0 if the usage domain is not configured
315 * 1 if the usage domain is configured or
316 * if the configuration information is not available
317 */
ap_test_config_usage_domain(unsigned int domain)318 int ap_test_config_usage_domain(unsigned int domain)
319 {
320 if (domain > ap_max_domain_id)
321 return 0;
322 if (ap_qci_info->flags)
323 return ap_test_config(ap_qci_info->aqm, domain);
324 return 1;
325 }
326 EXPORT_SYMBOL(ap_test_config_usage_domain);
327
328 /*
329 * ap_test_config_ctrl_domain(): Test, whether an AP control domain
330 * is configured.
331 * @domain AP control domain ID
332 *
333 * Returns 1 if the control domain is configured
334 * 0 in all other cases
335 */
ap_test_config_ctrl_domain(unsigned int domain)336 int ap_test_config_ctrl_domain(unsigned int domain)
337 {
338 if (!ap_qci_info || domain > ap_max_domain_id)
339 return 0;
340 return ap_test_config(ap_qci_info->adm, domain);
341 }
342 EXPORT_SYMBOL(ap_test_config_ctrl_domain);
343
344 /*
345 * ap_queue_info(): Check and get AP queue info.
346 * Returns: 1 if APQN exists and info is filled,
347 * 0 if APQN seems to exist but there is no info
348 * available (eg. caused by an asynch pending error)
349 * -1 invalid APQN, TAPQ error or AP queue status which
350 * indicates there is no APQN.
351 */
ap_queue_info(ap_qid_t qid,struct ap_tapq_hwinfo * hwinfo,bool * decfg,bool * cstop)352 static int ap_queue_info(ap_qid_t qid, struct ap_tapq_hwinfo *hwinfo,
353 bool *decfg, bool *cstop)
354 {
355 struct ap_queue_status status;
356
357 hwinfo->value = 0;
358
359 /* make sure we don't run into a specifiation exception */
360 if (AP_QID_CARD(qid) > ap_max_adapter_id ||
361 AP_QID_QUEUE(qid) > ap_max_domain_id)
362 return -1;
363
364 /* call TAPQ on this APQN */
365 status = ap_test_queue(qid, ap_apft_available(), hwinfo);
366
367 switch (status.response_code) {
368 case AP_RESPONSE_NORMAL:
369 case AP_RESPONSE_RESET_IN_PROGRESS:
370 case AP_RESPONSE_DECONFIGURED:
371 case AP_RESPONSE_CHECKSTOPPED:
372 case AP_RESPONSE_BUSY:
373 /* For all these RCs the tapq info should be available */
374 break;
375 default:
376 /* On a pending async error the info should be available */
377 if (!status.async)
378 return -1;
379 break;
380 }
381
382 /* There should be at least one of the mode bits set */
383 if (WARN_ON_ONCE(!hwinfo->value))
384 return 0;
385
386 *decfg = status.response_code == AP_RESPONSE_DECONFIGURED;
387 *cstop = status.response_code == AP_RESPONSE_CHECKSTOPPED;
388
389 return 1;
390 }
391
ap_wait(enum ap_sm_wait wait)392 void ap_wait(enum ap_sm_wait wait)
393 {
394 ktime_t hr_time;
395
396 switch (wait) {
397 case AP_SM_WAIT_AGAIN:
398 case AP_SM_WAIT_INTERRUPT:
399 if (ap_irq_flag)
400 break;
401 if (ap_poll_kthread) {
402 wake_up(&ap_poll_wait);
403 break;
404 }
405 fallthrough;
406 case AP_SM_WAIT_LOW_TIMEOUT:
407 case AP_SM_WAIT_HIGH_TIMEOUT:
408 spin_lock_bh(&ap_poll_timer_lock);
409 if (!hrtimer_is_queued(&ap_poll_timer)) {
410 hr_time =
411 wait == AP_SM_WAIT_LOW_TIMEOUT ?
412 poll_low_timeout : poll_high_timeout;
413 hrtimer_forward_now(&ap_poll_timer, hr_time);
414 hrtimer_restart(&ap_poll_timer);
415 }
416 spin_unlock_bh(&ap_poll_timer_lock);
417 break;
418 case AP_SM_WAIT_NONE:
419 default:
420 break;
421 }
422 }
423
424 /**
425 * ap_request_timeout(): Handling of request timeouts
426 * @t: timer making this callback
427 *
428 * Handles request timeouts.
429 */
ap_request_timeout(struct timer_list * t)430 void ap_request_timeout(struct timer_list *t)
431 {
432 struct ap_queue *aq = timer_container_of(aq, t, timeout);
433
434 spin_lock_bh(&aq->lock);
435 ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT));
436 spin_unlock_bh(&aq->lock);
437 }
438
439 /**
440 * ap_poll_timeout(): AP receive polling for finished AP requests.
441 * @unused: Unused pointer.
442 *
443 * Schedules the AP tasklet using a high resolution timer.
444 */
ap_poll_timeout(struct hrtimer * unused)445 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
446 {
447 tasklet_schedule(&ap_tasklet);
448 return HRTIMER_NORESTART;
449 }
450
451 /**
452 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
453 * @airq: pointer to adapter interrupt descriptor
454 * @tpi_info: ignored
455 */
ap_interrupt_handler(struct airq_struct * airq,struct tpi_info * tpi_info)456 static void ap_interrupt_handler(struct airq_struct *airq,
457 struct tpi_info *tpi_info)
458 {
459 inc_irq_stat(IRQIO_APB);
460 tasklet_schedule(&ap_tasklet);
461 }
462
463 /**
464 * ap_tasklet_fn(): Tasklet to poll all AP devices.
465 * @dummy: Unused variable
466 *
467 * Poll all AP devices on the bus.
468 */
ap_tasklet_fn(unsigned long dummy)469 static void ap_tasklet_fn(unsigned long dummy)
470 {
471 int bkt;
472 struct ap_queue *aq;
473 enum ap_sm_wait wait = AP_SM_WAIT_NONE;
474
475 /* Reset the indicator if interrupts are used. Thus new interrupts can
476 * be received. Doing it in the beginning of the tasklet is therefore
477 * important that no requests on any AP get lost.
478 */
479 if (ap_irq_flag)
480 WRITE_ONCE(*ap_airq.lsi_ptr, 0);
481
482 spin_lock_bh(&ap_queues_lock);
483 hash_for_each(ap_queues, bkt, aq, hnode) {
484 spin_lock_bh(&aq->lock);
485 wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL));
486 spin_unlock_bh(&aq->lock);
487 }
488 spin_unlock_bh(&ap_queues_lock);
489
490 ap_wait(wait);
491 }
492
ap_pending_requests(void)493 static int ap_pending_requests(void)
494 {
495 int bkt;
496 struct ap_queue *aq;
497
498 spin_lock_bh(&ap_queues_lock);
499 hash_for_each(ap_queues, bkt, aq, hnode) {
500 if (aq->queue_count == 0)
501 continue;
502 spin_unlock_bh(&ap_queues_lock);
503 return 1;
504 }
505 spin_unlock_bh(&ap_queues_lock);
506 return 0;
507 }
508
509 /**
510 * ap_poll_thread(): Thread that polls for finished requests.
511 * @data: Unused pointer
512 *
513 * AP bus poll thread. The purpose of this thread is to poll for
514 * finished requests in a loop if there is a "free" cpu - that is
515 * a cpu that doesn't have anything better to do. The polling stops
516 * as soon as there is another task or if all messages have been
517 * delivered.
518 */
ap_poll_thread(void * data)519 static int ap_poll_thread(void *data)
520 {
521 DECLARE_WAITQUEUE(wait, current);
522
523 set_user_nice(current, MAX_NICE);
524 set_freezable();
525 while (!kthread_should_stop()) {
526 add_wait_queue(&ap_poll_wait, &wait);
527 set_current_state(TASK_INTERRUPTIBLE);
528 if (!ap_pending_requests()) {
529 schedule();
530 try_to_freeze();
531 }
532 set_current_state(TASK_RUNNING);
533 remove_wait_queue(&ap_poll_wait, &wait);
534 if (need_resched()) {
535 schedule();
536 try_to_freeze();
537 continue;
538 }
539 ap_tasklet_fn(0);
540 }
541
542 return 0;
543 }
544
ap_poll_thread_start(void)545 static int ap_poll_thread_start(void)
546 {
547 int rc;
548
549 if (ap_irq_flag || ap_poll_kthread)
550 return 0;
551 mutex_lock(&ap_poll_thread_mutex);
552 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
553 rc = PTR_ERR_OR_ZERO(ap_poll_kthread);
554 if (rc)
555 ap_poll_kthread = NULL;
556 mutex_unlock(&ap_poll_thread_mutex);
557 return rc;
558 }
559
ap_poll_thread_stop(void)560 static void ap_poll_thread_stop(void)
561 {
562 if (!ap_poll_kthread)
563 return;
564 mutex_lock(&ap_poll_thread_mutex);
565 kthread_stop(ap_poll_kthread);
566 ap_poll_kthread = NULL;
567 mutex_unlock(&ap_poll_thread_mutex);
568 }
569
570 #define is_card_dev(x) ((x)->parent == ap_root_device)
571 #define is_queue_dev(x) ((x)->parent != ap_root_device)
572
573 /*
574 * ap_init_apmsg() - Initialize ap_message.
575 */
ap_init_apmsg(struct ap_message * ap_msg,u32 flags)576 int ap_init_apmsg(struct ap_message *ap_msg, u32 flags)
577 {
578 unsigned int maxmsgsize;
579
580 memset(ap_msg, 0, sizeof(*ap_msg));
581 ap_msg->flags = flags;
582
583 if (flags & AP_MSG_FLAG_MEMPOOL) {
584 ap_msg->msg = mempool_alloc_preallocated(ap_msg_pool);
585 if (!ap_msg->msg)
586 return -ENOMEM;
587 ap_msg->bufsize = AP_DEFAULT_MAX_MSG_SIZE;
588 return 0;
589 }
590
591 maxmsgsize = atomic_read(&ap_max_msg_size);
592 ap_msg->msg = kmalloc(maxmsgsize, GFP_KERNEL);
593 if (!ap_msg->msg)
594 return -ENOMEM;
595 ap_msg->bufsize = maxmsgsize;
596
597 return 0;
598 }
599 EXPORT_SYMBOL(ap_init_apmsg);
600
601 /*
602 * ap_release_apmsg() - Release ap_message.
603 */
ap_release_apmsg(struct ap_message * ap_msg)604 void ap_release_apmsg(struct ap_message *ap_msg)
605 {
606 if (ap_msg->flags & AP_MSG_FLAG_MEMPOOL) {
607 memzero_explicit(ap_msg->msg, ap_msg->bufsize);
608 mempool_free(ap_msg->msg, ap_msg_pool);
609 } else {
610 kfree_sensitive(ap_msg->msg);
611 }
612 }
613 EXPORT_SYMBOL(ap_release_apmsg);
614
615 /**
616 * ap_bus_match()
617 * @dev: Pointer to device
618 * @drv: Pointer to device_driver
619 *
620 * AP bus driver registration/unregistration.
621 */
ap_bus_match(struct device * dev,const struct device_driver * drv)622 static int ap_bus_match(struct device *dev, const struct device_driver *drv)
623 {
624 const struct ap_driver *ap_drv = to_ap_drv(drv);
625 struct ap_device_id *id;
626
627 /*
628 * Compare device type of the device with the list of
629 * supported types of the device_driver.
630 */
631 for (id = ap_drv->ids; id->match_flags; id++) {
632 if (is_card_dev(dev) &&
633 id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE &&
634 id->dev_type == to_ap_dev(dev)->device_type)
635 return 1;
636 if (is_queue_dev(dev) &&
637 id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE &&
638 id->dev_type == to_ap_dev(dev)->device_type)
639 return 1;
640 }
641 return 0;
642 }
643
644 /**
645 * ap_uevent(): Uevent function for AP devices.
646 * @dev: Pointer to device
647 * @env: Pointer to kobj_uevent_env
648 *
649 * It sets up a single environment variable DEV_TYPE which contains the
650 * hardware device type.
651 */
ap_uevent(const struct device * dev,struct kobj_uevent_env * env)652 static int ap_uevent(const struct device *dev, struct kobj_uevent_env *env)
653 {
654 int rc = 0;
655 const struct ap_device *ap_dev = to_ap_dev(dev);
656
657 /* Uevents from ap bus core don't need extensions to the env */
658 if (dev == ap_root_device)
659 return 0;
660
661 if (is_card_dev(dev)) {
662 struct ap_card *ac = to_ap_card(&ap_dev->device);
663
664 /* Set up DEV_TYPE environment variable. */
665 rc = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
666 if (rc)
667 return rc;
668 /* Add MODALIAS= */
669 rc = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
670 if (rc)
671 return rc;
672
673 /* Add MODE=<accel|cca|ep11> */
674 if (ac->hwinfo.accel)
675 rc = add_uevent_var(env, "MODE=accel");
676 else if (ac->hwinfo.cca)
677 rc = add_uevent_var(env, "MODE=cca");
678 else if (ac->hwinfo.ep11)
679 rc = add_uevent_var(env, "MODE=ep11");
680 if (rc)
681 return rc;
682 } else {
683 struct ap_queue *aq = to_ap_queue(&ap_dev->device);
684
685 /* Add MODE=<accel|cca|ep11> */
686 if (aq->card->hwinfo.accel)
687 rc = add_uevent_var(env, "MODE=accel");
688 else if (aq->card->hwinfo.cca)
689 rc = add_uevent_var(env, "MODE=cca");
690 else if (aq->card->hwinfo.ep11)
691 rc = add_uevent_var(env, "MODE=ep11");
692 if (rc)
693 return rc;
694 }
695
696 return 0;
697 }
698
ap_send_init_scan_done_uevent(void)699 static void ap_send_init_scan_done_uevent(void)
700 {
701 char *envp[] = { "INITSCAN=done", NULL };
702
703 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
704 }
705
ap_send_bindings_complete_uevent(void)706 static void ap_send_bindings_complete_uevent(void)
707 {
708 char buf[32];
709 char *envp[] = { "BINDINGS=complete", buf, NULL };
710
711 snprintf(buf, sizeof(buf), "COMPLETECOUNT=%llu",
712 atomic64_inc_return(&ap_bindings_complete_count));
713 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
714 }
715
ap_send_config_uevent(struct ap_device * ap_dev,bool cfg)716 void ap_send_config_uevent(struct ap_device *ap_dev, bool cfg)
717 {
718 char buf[16];
719 char *envp[] = { buf, NULL };
720
721 snprintf(buf, sizeof(buf), "CONFIG=%d", cfg ? 1 : 0);
722
723 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
724 }
725 EXPORT_SYMBOL(ap_send_config_uevent);
726
ap_send_online_uevent(struct ap_device * ap_dev,int online)727 void ap_send_online_uevent(struct ap_device *ap_dev, int online)
728 {
729 char buf[16];
730 char *envp[] = { buf, NULL };
731
732 snprintf(buf, sizeof(buf), "ONLINE=%d", online ? 1 : 0);
733
734 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
735 }
736 EXPORT_SYMBOL(ap_send_online_uevent);
737
ap_send_mask_changed_uevent(unsigned long * newapm,unsigned long * newaqm)738 static void ap_send_mask_changed_uevent(unsigned long *newapm,
739 unsigned long *newaqm)
740 {
741 char buf[100];
742 char *envp[] = { buf, NULL };
743
744 if (newapm)
745 snprintf(buf, sizeof(buf),
746 "APMASK=0x%016lx%016lx%016lx%016lx\n",
747 newapm[0], newapm[1], newapm[2], newapm[3]);
748 else
749 snprintf(buf, sizeof(buf),
750 "AQMASK=0x%016lx%016lx%016lx%016lx\n",
751 newaqm[0], newaqm[1], newaqm[2], newaqm[3]);
752
753 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
754 }
755
756 /*
757 * calc # of bound APQNs
758 */
759
760 struct __ap_calc_ctrs {
761 unsigned int apqns;
762 unsigned int bound;
763 };
764
__ap_calc_helper(struct device * dev,void * arg)765 static int __ap_calc_helper(struct device *dev, void *arg)
766 {
767 struct __ap_calc_ctrs *pctrs = (struct __ap_calc_ctrs *)arg;
768
769 if (is_queue_dev(dev)) {
770 pctrs->apqns++;
771 if (dev->driver)
772 pctrs->bound++;
773 }
774
775 return 0;
776 }
777
ap_calc_bound_apqns(unsigned int * apqns,unsigned int * bound)778 static void ap_calc_bound_apqns(unsigned int *apqns, unsigned int *bound)
779 {
780 struct __ap_calc_ctrs ctrs;
781
782 memset(&ctrs, 0, sizeof(ctrs));
783 bus_for_each_dev(&ap_bus_type, NULL, (void *)&ctrs, __ap_calc_helper);
784
785 *apqns = ctrs.apqns;
786 *bound = ctrs.bound;
787 }
788
789 /*
790 * After ap bus scan do check if all existing APQNs are
791 * bound to device drivers.
792 */
ap_check_bindings_complete(void)793 static void ap_check_bindings_complete(void)
794 {
795 unsigned int apqns, bound;
796
797 if (atomic64_read(&ap_scan_bus_count) >= 1) {
798 ap_calc_bound_apqns(&apqns, &bound);
799 if (bound == apqns) {
800 if (!completion_done(&ap_apqn_bindings_complete)) {
801 complete_all(&ap_apqn_bindings_complete);
802 ap_send_bindings_complete_uevent();
803 pr_debug("all apqn bindings complete\n");
804 }
805 }
806 }
807 }
808
809 /*
810 * Interface to wait for the AP bus to have done one initial ap bus
811 * scan and all detected APQNs have been bound to device drivers.
812 * If these both conditions are not fulfilled, this function blocks
813 * on a condition with wait_for_completion_interruptible_timeout().
814 * If these both conditions are fulfilled (before the timeout hits)
815 * the return value is 0. If the timeout (in jiffies) hits instead
816 * -ETIME is returned. On failures negative return values are
817 * returned to the caller.
818 */
ap_wait_apqn_bindings_complete(unsigned long timeout)819 int ap_wait_apqn_bindings_complete(unsigned long timeout)
820 {
821 int rc = 0;
822 long l;
823
824 if (completion_done(&ap_apqn_bindings_complete))
825 return 0;
826
827 if (timeout)
828 l = wait_for_completion_interruptible_timeout(
829 &ap_apqn_bindings_complete, timeout);
830 else
831 l = wait_for_completion_interruptible(
832 &ap_apqn_bindings_complete);
833 if (l < 0)
834 rc = l == -ERESTARTSYS ? -EINTR : l;
835 else if (l == 0 && timeout)
836 rc = -ETIME;
837
838 pr_debug("rc=%d\n", rc);
839 return rc;
840 }
841 EXPORT_SYMBOL(ap_wait_apqn_bindings_complete);
842
__ap_queue_devices_with_id_unregister(struct device * dev,void * data)843 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data)
844 {
845 if (is_queue_dev(dev) &&
846 AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long)data)
847 device_unregister(dev);
848 return 0;
849 }
850
__ap_revise_reserved(struct device * dev,void * dummy)851 static int __ap_revise_reserved(struct device *dev, void *dummy)
852 {
853 int rc, card, queue, devres, drvres;
854
855 if (is_queue_dev(dev)) {
856 card = AP_QID_CARD(to_ap_queue(dev)->qid);
857 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
858 mutex_lock(&ap_perms_mutex);
859 devres = test_bit_inv(card, ap_perms.apm) &&
860 test_bit_inv(queue, ap_perms.aqm);
861 mutex_unlock(&ap_perms_mutex);
862 drvres = to_ap_drv(dev->driver)->flags
863 & AP_DRIVER_FLAG_DEFAULT;
864 if (!!devres != !!drvres) {
865 pr_debug("reprobing queue=%02x.%04x\n", card, queue);
866 rc = device_reprobe(dev);
867 if (rc)
868 AP_DBF_WARN("%s reprobing queue=%02x.%04x failed\n",
869 __func__, card, queue);
870 }
871 }
872
873 return 0;
874 }
875
ap_bus_revise_bindings(void)876 static void ap_bus_revise_bindings(void)
877 {
878 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved);
879 }
880
881 /**
882 * ap_owned_by_def_drv: indicates whether an AP adapter is reserved for the
883 * default host driver or not.
884 * @card: the APID of the adapter card to check
885 * @queue: the APQI of the queue to check
886 *
887 * Note: the ap_perms_mutex must be locked by the caller of this function.
888 *
889 * Return: an int specifying whether the AP adapter is reserved for the host (1)
890 * or not (0).
891 */
ap_owned_by_def_drv(int card,int queue)892 int ap_owned_by_def_drv(int card, int queue)
893 {
894 int rc = 0;
895
896 if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS)
897 return -EINVAL;
898
899 if (test_bit_inv(card, ap_perms.apm) &&
900 test_bit_inv(queue, ap_perms.aqm))
901 rc = 1;
902
903 return rc;
904 }
905 EXPORT_SYMBOL(ap_owned_by_def_drv);
906
907 /**
908 * ap_apqn_in_matrix_owned_by_def_drv: indicates whether every APQN contained in
909 * a set is reserved for the host drivers
910 * or not.
911 * @apm: a bitmap specifying a set of APIDs comprising the APQNs to check
912 * @aqm: a bitmap specifying a set of APQIs comprising the APQNs to check
913 *
914 * Note: the ap_perms_mutex must be locked by the caller of this function.
915 *
916 * Return: an int specifying whether each APQN is reserved for the host (1) or
917 * not (0)
918 */
ap_apqn_in_matrix_owned_by_def_drv(unsigned long * apm,unsigned long * aqm)919 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm,
920 unsigned long *aqm)
921 {
922 int card, queue, rc = 0;
923
924 for (card = 0; !rc && card < AP_DEVICES; card++)
925 if (test_bit_inv(card, apm) &&
926 test_bit_inv(card, ap_perms.apm))
927 for (queue = 0; !rc && queue < AP_DOMAINS; queue++)
928 if (test_bit_inv(queue, aqm) &&
929 test_bit_inv(queue, ap_perms.aqm))
930 rc = 1;
931
932 return rc;
933 }
934 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv);
935
ap_device_probe(struct device * dev)936 static int ap_device_probe(struct device *dev)
937 {
938 struct ap_device *ap_dev = to_ap_dev(dev);
939 struct ap_driver *ap_drv = to_ap_drv(dev->driver);
940 int card, queue, devres, drvres, rc = -ENODEV;
941
942 if (!get_device(dev))
943 return rc;
944
945 if (is_queue_dev(dev)) {
946 /*
947 * If the apqn is marked as reserved/used by ap bus and
948 * default drivers, only probe with drivers with the default
949 * flag set. If it is not marked, only probe with drivers
950 * with the default flag not set.
951 */
952 card = AP_QID_CARD(to_ap_queue(dev)->qid);
953 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
954 mutex_lock(&ap_perms_mutex);
955 devres = test_bit_inv(card, ap_perms.apm) &&
956 test_bit_inv(queue, ap_perms.aqm);
957 mutex_unlock(&ap_perms_mutex);
958 drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT;
959 if (!!devres != !!drvres)
960 goto out;
961 }
962
963 /*
964 * Rearm the bindings complete completion to trigger
965 * bindings complete when all devices are bound again
966 */
967 reinit_completion(&ap_apqn_bindings_complete);
968
969 /* Add queue/card to list of active queues/cards */
970 spin_lock_bh(&ap_queues_lock);
971 if (is_queue_dev(dev))
972 hash_add(ap_queues, &to_ap_queue(dev)->hnode,
973 to_ap_queue(dev)->qid);
974 spin_unlock_bh(&ap_queues_lock);
975
976 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
977
978 if (rc) {
979 spin_lock_bh(&ap_queues_lock);
980 if (is_queue_dev(dev))
981 hash_del(&to_ap_queue(dev)->hnode);
982 spin_unlock_bh(&ap_queues_lock);
983 }
984
985 out:
986 if (rc)
987 put_device(dev);
988 return rc;
989 }
990
ap_device_remove(struct device * dev)991 static void ap_device_remove(struct device *dev)
992 {
993 struct ap_device *ap_dev = to_ap_dev(dev);
994 struct ap_driver *ap_drv = to_ap_drv(dev->driver);
995
996 /* prepare ap queue device removal */
997 if (is_queue_dev(dev))
998 ap_queue_prepare_remove(to_ap_queue(dev));
999
1000 /* driver's chance to clean up gracefully */
1001 if (ap_drv->remove)
1002 ap_drv->remove(ap_dev);
1003
1004 /* now do the ap queue device remove */
1005 if (is_queue_dev(dev))
1006 ap_queue_remove(to_ap_queue(dev));
1007
1008 /* Remove queue/card from list of active queues/cards */
1009 spin_lock_bh(&ap_queues_lock);
1010 if (is_queue_dev(dev))
1011 hash_del(&to_ap_queue(dev)->hnode);
1012 spin_unlock_bh(&ap_queues_lock);
1013
1014 put_device(dev);
1015 }
1016
ap_get_qdev(ap_qid_t qid)1017 struct ap_queue *ap_get_qdev(ap_qid_t qid)
1018 {
1019 int bkt;
1020 struct ap_queue *aq;
1021
1022 spin_lock_bh(&ap_queues_lock);
1023 hash_for_each(ap_queues, bkt, aq, hnode) {
1024 if (aq->qid == qid) {
1025 get_device(&aq->ap_dev.device);
1026 spin_unlock_bh(&ap_queues_lock);
1027 return aq;
1028 }
1029 }
1030 spin_unlock_bh(&ap_queues_lock);
1031
1032 return NULL;
1033 }
1034 EXPORT_SYMBOL(ap_get_qdev);
1035
ap_driver_register(struct ap_driver * ap_drv,struct module * owner,char * name)1036 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
1037 char *name)
1038 {
1039 struct device_driver *drv = &ap_drv->driver;
1040 int rc;
1041
1042 drv->bus = &ap_bus_type;
1043 drv->owner = owner;
1044 drv->name = name;
1045 rc = driver_register(drv);
1046
1047 ap_check_bindings_complete();
1048
1049 return rc;
1050 }
1051 EXPORT_SYMBOL(ap_driver_register);
1052
ap_driver_unregister(struct ap_driver * ap_drv)1053 void ap_driver_unregister(struct ap_driver *ap_drv)
1054 {
1055 driver_unregister(&ap_drv->driver);
1056 }
1057 EXPORT_SYMBOL(ap_driver_unregister);
1058
1059 /*
1060 * Enforce a synchronous AP bus rescan.
1061 * Returns true if the bus scan finds a change in the AP configuration
1062 * and AP devices have been added or deleted when this function returns.
1063 */
ap_bus_force_rescan(void)1064 bool ap_bus_force_rescan(void)
1065 {
1066 unsigned long scan_counter = atomic64_read(&ap_scan_bus_count);
1067 bool rc = false;
1068
1069 pr_debug("> scan counter=%lu\n", scan_counter);
1070
1071 /* Only trigger AP bus scans after the initial scan is done */
1072 if (scan_counter <= 0)
1073 goto out;
1074
1075 /*
1076 * There is one unlikely but nevertheless valid scenario where the
1077 * thread holding the mutex may try to send some crypto load but
1078 * all cards are offline so a rescan is triggered which causes
1079 * a recursive call of ap_bus_force_rescan(). A simple return if
1080 * the mutex is already locked by this thread solves this.
1081 */
1082 if (mutex_is_locked(&ap_scan_bus_mutex)) {
1083 if (ap_scan_bus_task == current)
1084 goto out;
1085 }
1086
1087 /* Try to acquire the AP scan bus mutex */
1088 if (mutex_trylock(&ap_scan_bus_mutex)) {
1089 /* mutex acquired, run the AP bus scan */
1090 ap_scan_bus_task = current;
1091 ap_scan_bus_result = ap_scan_bus();
1092 rc = ap_scan_bus_result;
1093 ap_scan_bus_task = NULL;
1094 mutex_unlock(&ap_scan_bus_mutex);
1095 goto out;
1096 }
1097
1098 /*
1099 * Mutex acquire failed. So there is currently another task
1100 * already running the AP bus scan. Then let's simple wait
1101 * for the lock which means the other task has finished and
1102 * stored the result in ap_scan_bus_result.
1103 */
1104 if (mutex_lock_interruptible(&ap_scan_bus_mutex)) {
1105 /* some error occurred, ignore and go out */
1106 goto out;
1107 }
1108 rc = ap_scan_bus_result;
1109 mutex_unlock(&ap_scan_bus_mutex);
1110
1111 out:
1112 pr_debug("rc=%d\n", rc);
1113 return rc;
1114 }
1115 EXPORT_SYMBOL(ap_bus_force_rescan);
1116
1117 /*
1118 * A config change has happened, force an ap bus rescan.
1119 */
ap_bus_cfg_chg(struct notifier_block * nb,unsigned long action,void * data)1120 static int ap_bus_cfg_chg(struct notifier_block *nb,
1121 unsigned long action, void *data)
1122 {
1123 if (action != CHSC_NOTIFY_AP_CFG)
1124 return NOTIFY_DONE;
1125
1126 pr_debug("config change, forcing bus rescan\n");
1127
1128 ap_bus_force_rescan();
1129
1130 return NOTIFY_OK;
1131 }
1132
1133 static struct notifier_block ap_bus_nb = {
1134 .notifier_call = ap_bus_cfg_chg,
1135 };
1136
ap_hex2bitmap(const char * str,unsigned long * bitmap,int bits)1137 int ap_hex2bitmap(const char *str, unsigned long *bitmap, int bits)
1138 {
1139 int i, n, b;
1140
1141 /* bits needs to be a multiple of 8 */
1142 if (bits & 0x07)
1143 return -EINVAL;
1144
1145 if (str[0] == '0' && str[1] == 'x')
1146 str++;
1147 if (*str == 'x')
1148 str++;
1149
1150 for (i = 0; isxdigit(*str) && i < bits; str++) {
1151 b = hex_to_bin(*str);
1152 for (n = 0; n < 4; n++)
1153 if (b & (0x08 >> n))
1154 set_bit_inv(i + n, bitmap);
1155 i += 4;
1156 }
1157
1158 if (*str == '\n')
1159 str++;
1160 if (*str)
1161 return -EINVAL;
1162 return 0;
1163 }
1164 EXPORT_SYMBOL(ap_hex2bitmap);
1165
1166 /*
1167 * modify_bitmap() - parse bitmask argument and modify an existing
1168 * bit mask accordingly. A concatenation (done with ',') of these
1169 * terms is recognized:
1170 * +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>]
1171 * <bitnr> may be any valid number (hex, decimal or octal) in the range
1172 * 0...bits-1; the leading + or - is required. Here are some examples:
1173 * +0-15,+32,-128,-0xFF
1174 * -0-255,+1-16,+0x128
1175 * +1,+2,+3,+4,-5,-7-10
1176 * Returns the new bitmap after all changes have been applied. Every
1177 * positive value in the string will set a bit and every negative value
1178 * in the string will clear a bit. As a bit may be touched more than once,
1179 * the last 'operation' wins:
1180 * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be
1181 * cleared again. All other bits are unmodified.
1182 */
modify_bitmap(const char * str,unsigned long * bitmap,int bits)1183 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits)
1184 {
1185 unsigned long a, i, z;
1186 char *np, sign;
1187
1188 /* bits needs to be a multiple of 8 */
1189 if (bits & 0x07)
1190 return -EINVAL;
1191
1192 while (*str) {
1193 sign = *str++;
1194 if (sign != '+' && sign != '-')
1195 return -EINVAL;
1196 a = z = simple_strtoul(str, &np, 0);
1197 if (str == np || a >= bits)
1198 return -EINVAL;
1199 str = np;
1200 if (*str == '-') {
1201 z = simple_strtoul(++str, &np, 0);
1202 if (str == np || a > z || z >= bits)
1203 return -EINVAL;
1204 str = np;
1205 }
1206 for (i = a; i <= z; i++)
1207 if (sign == '+')
1208 set_bit_inv(i, bitmap);
1209 else
1210 clear_bit_inv(i, bitmap);
1211 while (*str == ',' || *str == '\n')
1212 str++;
1213 }
1214
1215 return 0;
1216 }
1217
ap_parse_bitmap_str(const char * str,unsigned long * bitmap,int bits,unsigned long * newmap)1218 static int ap_parse_bitmap_str(const char *str, unsigned long *bitmap, int bits,
1219 unsigned long *newmap)
1220 {
1221 unsigned long size;
1222 int rc;
1223
1224 size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1225 if (*str == '+' || *str == '-') {
1226 memcpy(newmap, bitmap, size);
1227 rc = modify_bitmap(str, newmap, bits);
1228 } else {
1229 memset(newmap, 0, size);
1230 rc = ap_hex2bitmap(str, newmap, bits);
1231 }
1232 return rc;
1233 }
1234
ap_parse_mask_str(const char * str,unsigned long * bitmap,int bits,struct mutex * lock)1235 int ap_parse_mask_str(const char *str,
1236 unsigned long *bitmap, int bits,
1237 struct mutex *lock)
1238 {
1239 unsigned long *newmap, size;
1240 int rc;
1241
1242 /* bits needs to be a multiple of 8 */
1243 if (bits & 0x07)
1244 return -EINVAL;
1245
1246 size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1247 newmap = kmalloc(size, GFP_KERNEL);
1248 if (!newmap)
1249 return -ENOMEM;
1250 if (mutex_lock_interruptible(lock)) {
1251 kfree(newmap);
1252 return -ERESTARTSYS;
1253 }
1254 rc = ap_parse_bitmap_str(str, bitmap, bits, newmap);
1255 if (rc == 0)
1256 memcpy(bitmap, newmap, size);
1257 mutex_unlock(lock);
1258 kfree(newmap);
1259 return rc;
1260 }
1261 EXPORT_SYMBOL(ap_parse_mask_str);
1262
1263 /*
1264 * AP bus attributes.
1265 */
1266
ap_domain_show(const struct bus_type * bus,char * buf)1267 static ssize_t ap_domain_show(const struct bus_type *bus, char *buf)
1268 {
1269 return sysfs_emit(buf, "%d\n", ap_domain_index);
1270 }
1271
ap_domain_store(const struct bus_type * bus,const char * buf,size_t count)1272 static ssize_t ap_domain_store(const struct bus_type *bus,
1273 const char *buf, size_t count)
1274 {
1275 int domain;
1276
1277 if (sscanf(buf, "%i\n", &domain) != 1 ||
1278 domain < 0 || domain > ap_max_domain_id ||
1279 !test_bit_inv(domain, ap_perms.aqm))
1280 return -EINVAL;
1281
1282 spin_lock_bh(&ap_domain_lock);
1283 ap_domain_index = domain;
1284 spin_unlock_bh(&ap_domain_lock);
1285
1286 AP_DBF_INFO("%s stored new default domain=%d\n",
1287 __func__, domain);
1288
1289 return count;
1290 }
1291
1292 static BUS_ATTR_RW(ap_domain);
1293
ap_control_domain_mask_show(const struct bus_type * bus,char * buf)1294 static ssize_t ap_control_domain_mask_show(const struct bus_type *bus, char *buf)
1295 {
1296 if (!ap_qci_info->flags) /* QCI not supported */
1297 return sysfs_emit(buf, "not supported\n");
1298
1299 return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1300 ap_qci_info->adm[0], ap_qci_info->adm[1],
1301 ap_qci_info->adm[2], ap_qci_info->adm[3],
1302 ap_qci_info->adm[4], ap_qci_info->adm[5],
1303 ap_qci_info->adm[6], ap_qci_info->adm[7]);
1304 }
1305
1306 static BUS_ATTR_RO(ap_control_domain_mask);
1307
ap_usage_domain_mask_show(const struct bus_type * bus,char * buf)1308 static ssize_t ap_usage_domain_mask_show(const struct bus_type *bus, char *buf)
1309 {
1310 if (!ap_qci_info->flags) /* QCI not supported */
1311 return sysfs_emit(buf, "not supported\n");
1312
1313 return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1314 ap_qci_info->aqm[0], ap_qci_info->aqm[1],
1315 ap_qci_info->aqm[2], ap_qci_info->aqm[3],
1316 ap_qci_info->aqm[4], ap_qci_info->aqm[5],
1317 ap_qci_info->aqm[6], ap_qci_info->aqm[7]);
1318 }
1319
1320 static BUS_ATTR_RO(ap_usage_domain_mask);
1321
ap_adapter_mask_show(const struct bus_type * bus,char * buf)1322 static ssize_t ap_adapter_mask_show(const struct bus_type *bus, char *buf)
1323 {
1324 if (!ap_qci_info->flags) /* QCI not supported */
1325 return sysfs_emit(buf, "not supported\n");
1326
1327 return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1328 ap_qci_info->apm[0], ap_qci_info->apm[1],
1329 ap_qci_info->apm[2], ap_qci_info->apm[3],
1330 ap_qci_info->apm[4], ap_qci_info->apm[5],
1331 ap_qci_info->apm[6], ap_qci_info->apm[7]);
1332 }
1333
1334 static BUS_ATTR_RO(ap_adapter_mask);
1335
ap_interrupts_show(const struct bus_type * bus,char * buf)1336 static ssize_t ap_interrupts_show(const struct bus_type *bus, char *buf)
1337 {
1338 return sysfs_emit(buf, "%d\n", ap_irq_flag ? 1 : 0);
1339 }
1340
1341 static BUS_ATTR_RO(ap_interrupts);
1342
config_time_show(const struct bus_type * bus,char * buf)1343 static ssize_t config_time_show(const struct bus_type *bus, char *buf)
1344 {
1345 return sysfs_emit(buf, "%d\n", ap_scan_bus_time);
1346 }
1347
config_time_store(const struct bus_type * bus,const char * buf,size_t count)1348 static ssize_t config_time_store(const struct bus_type *bus,
1349 const char *buf, size_t count)
1350 {
1351 int time;
1352
1353 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1354 return -EINVAL;
1355 ap_scan_bus_time = time;
1356 mod_timer(&ap_scan_bus_timer, jiffies + ap_scan_bus_time * HZ);
1357 return count;
1358 }
1359
1360 static BUS_ATTR_RW(config_time);
1361
poll_thread_show(const struct bus_type * bus,char * buf)1362 static ssize_t poll_thread_show(const struct bus_type *bus, char *buf)
1363 {
1364 return sysfs_emit(buf, "%d\n", ap_poll_kthread ? 1 : 0);
1365 }
1366
poll_thread_store(const struct bus_type * bus,const char * buf,size_t count)1367 static ssize_t poll_thread_store(const struct bus_type *bus,
1368 const char *buf, size_t count)
1369 {
1370 bool value;
1371 int rc;
1372
1373 rc = kstrtobool(buf, &value);
1374 if (rc)
1375 return rc;
1376
1377 if (value) {
1378 rc = ap_poll_thread_start();
1379 if (rc)
1380 count = rc;
1381 } else {
1382 ap_poll_thread_stop();
1383 }
1384 return count;
1385 }
1386
1387 static BUS_ATTR_RW(poll_thread);
1388
poll_timeout_show(const struct bus_type * bus,char * buf)1389 static ssize_t poll_timeout_show(const struct bus_type *bus, char *buf)
1390 {
1391 return sysfs_emit(buf, "%lu\n", poll_high_timeout);
1392 }
1393
poll_timeout_store(const struct bus_type * bus,const char * buf,size_t count)1394 static ssize_t poll_timeout_store(const struct bus_type *bus, const char *buf,
1395 size_t count)
1396 {
1397 unsigned long value;
1398 ktime_t hr_time;
1399 int rc;
1400
1401 rc = kstrtoul(buf, 0, &value);
1402 if (rc)
1403 return rc;
1404
1405 /* 120 seconds = maximum poll interval */
1406 if (value > 120000000000UL)
1407 return -EINVAL;
1408 poll_high_timeout = value;
1409 hr_time = poll_high_timeout;
1410
1411 spin_lock_bh(&ap_poll_timer_lock);
1412 hrtimer_cancel(&ap_poll_timer);
1413 hrtimer_set_expires(&ap_poll_timer, hr_time);
1414 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1415 spin_unlock_bh(&ap_poll_timer_lock);
1416
1417 return count;
1418 }
1419
1420 static BUS_ATTR_RW(poll_timeout);
1421
ap_max_domain_id_show(const struct bus_type * bus,char * buf)1422 static ssize_t ap_max_domain_id_show(const struct bus_type *bus, char *buf)
1423 {
1424 return sysfs_emit(buf, "%d\n", ap_max_domain_id);
1425 }
1426
1427 static BUS_ATTR_RO(ap_max_domain_id);
1428
ap_max_adapter_id_show(const struct bus_type * bus,char * buf)1429 static ssize_t ap_max_adapter_id_show(const struct bus_type *bus, char *buf)
1430 {
1431 return sysfs_emit(buf, "%d\n", ap_max_adapter_id);
1432 }
1433
1434 static BUS_ATTR_RO(ap_max_adapter_id);
1435
apmask_show(const struct bus_type * bus,char * buf)1436 static ssize_t apmask_show(const struct bus_type *bus, char *buf)
1437 {
1438 int rc;
1439
1440 if (mutex_lock_interruptible(&ap_perms_mutex))
1441 return -ERESTARTSYS;
1442 rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n",
1443 ap_perms.apm[0], ap_perms.apm[1],
1444 ap_perms.apm[2], ap_perms.apm[3]);
1445 mutex_unlock(&ap_perms_mutex);
1446
1447 return rc;
1448 }
1449
__verify_card_reservations(struct device_driver * drv,void * data)1450 static int __verify_card_reservations(struct device_driver *drv, void *data)
1451 {
1452 int rc = 0;
1453 struct ap_driver *ap_drv = to_ap_drv(drv);
1454 unsigned long *newapm = (unsigned long *)data;
1455
1456 /*
1457 * increase the driver's module refcounter to be sure it is not
1458 * going away when we invoke the callback function.
1459 */
1460 if (!try_module_get(drv->owner))
1461 return 0;
1462
1463 if (ap_drv->in_use) {
1464 rc = ap_drv->in_use(newapm, ap_perms.aqm);
1465 if (rc)
1466 rc = -EBUSY;
1467 }
1468
1469 /* release the driver's module */
1470 module_put(drv->owner);
1471
1472 return rc;
1473 }
1474
apmask_commit(unsigned long * newapm)1475 static int apmask_commit(unsigned long *newapm)
1476 {
1477 int rc;
1478 unsigned long reserved[BITS_TO_LONGS(AP_DEVICES)];
1479
1480 /*
1481 * Check if any bits in the apmask have been set which will
1482 * result in queues being removed from non-default drivers
1483 */
1484 if (bitmap_andnot(reserved, newapm, ap_perms.apm, AP_DEVICES)) {
1485 rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1486 __verify_card_reservations);
1487 if (rc)
1488 return rc;
1489 }
1490
1491 memcpy(ap_perms.apm, newapm, APMASKSIZE);
1492
1493 return 0;
1494 }
1495
apmask_store(const struct bus_type * bus,const char * buf,size_t count)1496 static ssize_t apmask_store(const struct bus_type *bus, const char *buf,
1497 size_t count)
1498 {
1499 int rc, changes = 0;
1500 DECLARE_BITMAP(newapm, AP_DEVICES);
1501
1502 if (mutex_lock_interruptible(&ap_perms_mutex))
1503 return -ERESTARTSYS;
1504
1505 rc = ap_parse_bitmap_str(buf, ap_perms.apm, AP_DEVICES, newapm);
1506 if (rc)
1507 goto done;
1508
1509 changes = memcmp(ap_perms.apm, newapm, APMASKSIZE);
1510 if (changes)
1511 rc = apmask_commit(newapm);
1512
1513 done:
1514 mutex_unlock(&ap_perms_mutex);
1515 if (rc)
1516 return rc;
1517
1518 if (changes) {
1519 ap_bus_revise_bindings();
1520 ap_send_mask_changed_uevent(newapm, NULL);
1521 }
1522
1523 return count;
1524 }
1525
1526 static BUS_ATTR_RW(apmask);
1527
aqmask_show(const struct bus_type * bus,char * buf)1528 static ssize_t aqmask_show(const struct bus_type *bus, char *buf)
1529 {
1530 int rc;
1531
1532 if (mutex_lock_interruptible(&ap_perms_mutex))
1533 return -ERESTARTSYS;
1534 rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n",
1535 ap_perms.aqm[0], ap_perms.aqm[1],
1536 ap_perms.aqm[2], ap_perms.aqm[3]);
1537 mutex_unlock(&ap_perms_mutex);
1538
1539 return rc;
1540 }
1541
__verify_queue_reservations(struct device_driver * drv,void * data)1542 static int __verify_queue_reservations(struct device_driver *drv, void *data)
1543 {
1544 int rc = 0;
1545 struct ap_driver *ap_drv = to_ap_drv(drv);
1546 unsigned long *newaqm = (unsigned long *)data;
1547
1548 /*
1549 * increase the driver's module refcounter to be sure it is not
1550 * going away when we invoke the callback function.
1551 */
1552 if (!try_module_get(drv->owner))
1553 return 0;
1554
1555 if (ap_drv->in_use) {
1556 rc = ap_drv->in_use(ap_perms.apm, newaqm);
1557 if (rc)
1558 rc = -EBUSY;
1559 }
1560
1561 /* release the driver's module */
1562 module_put(drv->owner);
1563
1564 return rc;
1565 }
1566
aqmask_commit(unsigned long * newaqm)1567 static int aqmask_commit(unsigned long *newaqm)
1568 {
1569 int rc;
1570 unsigned long reserved[BITS_TO_LONGS(AP_DOMAINS)];
1571
1572 /*
1573 * Check if any bits in the aqmask have been set which will
1574 * result in queues being removed from non-default drivers
1575 */
1576 if (bitmap_andnot(reserved, newaqm, ap_perms.aqm, AP_DOMAINS)) {
1577 rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1578 __verify_queue_reservations);
1579 if (rc)
1580 return rc;
1581 }
1582
1583 memcpy(ap_perms.aqm, newaqm, AQMASKSIZE);
1584
1585 return 0;
1586 }
1587
aqmask_store(const struct bus_type * bus,const char * buf,size_t count)1588 static ssize_t aqmask_store(const struct bus_type *bus, const char *buf,
1589 size_t count)
1590 {
1591 int rc, changes = 0;
1592 DECLARE_BITMAP(newaqm, AP_DOMAINS);
1593
1594 if (mutex_lock_interruptible(&ap_perms_mutex))
1595 return -ERESTARTSYS;
1596
1597 rc = ap_parse_bitmap_str(buf, ap_perms.aqm, AP_DOMAINS, newaqm);
1598 if (rc)
1599 goto done;
1600
1601 changes = memcmp(ap_perms.aqm, newaqm, APMASKSIZE);
1602 if (changes)
1603 rc = aqmask_commit(newaqm);
1604
1605 done:
1606 mutex_unlock(&ap_perms_mutex);
1607 if (rc)
1608 return rc;
1609
1610 if (changes) {
1611 ap_bus_revise_bindings();
1612 ap_send_mask_changed_uevent(NULL, newaqm);
1613 }
1614
1615 return count;
1616 }
1617
1618 static BUS_ATTR_RW(aqmask);
1619
scans_show(const struct bus_type * bus,char * buf)1620 static ssize_t scans_show(const struct bus_type *bus, char *buf)
1621 {
1622 return sysfs_emit(buf, "%llu\n", atomic64_read(&ap_scan_bus_count));
1623 }
1624
scans_store(const struct bus_type * bus,const char * buf,size_t count)1625 static ssize_t scans_store(const struct bus_type *bus, const char *buf,
1626 size_t count)
1627 {
1628 AP_DBF_INFO("%s force AP bus rescan\n", __func__);
1629
1630 ap_bus_force_rescan();
1631
1632 return count;
1633 }
1634
1635 static BUS_ATTR_RW(scans);
1636
bindings_show(const struct bus_type * bus,char * buf)1637 static ssize_t bindings_show(const struct bus_type *bus, char *buf)
1638 {
1639 int rc;
1640 unsigned int apqns, n;
1641
1642 ap_calc_bound_apqns(&apqns, &n);
1643 if (atomic64_read(&ap_scan_bus_count) >= 1 && n == apqns)
1644 rc = sysfs_emit(buf, "%u/%u (complete)\n", n, apqns);
1645 else
1646 rc = sysfs_emit(buf, "%u/%u\n", n, apqns);
1647
1648 return rc;
1649 }
1650
1651 static BUS_ATTR_RO(bindings);
1652
features_show(const struct bus_type * bus,char * buf)1653 static ssize_t features_show(const struct bus_type *bus, char *buf)
1654 {
1655 int n = 0;
1656
1657 if (!ap_qci_info->flags) /* QCI not supported */
1658 return sysfs_emit(buf, "-\n");
1659
1660 if (ap_qci_info->apsc)
1661 n += sysfs_emit_at(buf, n, "APSC ");
1662 if (ap_qci_info->apxa)
1663 n += sysfs_emit_at(buf, n, "APXA ");
1664 if (ap_qci_info->qact)
1665 n += sysfs_emit_at(buf, n, "QACT ");
1666 if (ap_qci_info->rc8a)
1667 n += sysfs_emit_at(buf, n, "RC8A ");
1668 if (ap_qci_info->apsb)
1669 n += sysfs_emit_at(buf, n, "APSB ");
1670
1671 sysfs_emit_at(buf, n == 0 ? 0 : n - 1, "\n");
1672
1673 return n;
1674 }
1675
1676 static BUS_ATTR_RO(features);
1677
1678 static struct attribute *ap_bus_attrs[] = {
1679 &bus_attr_ap_domain.attr,
1680 &bus_attr_ap_control_domain_mask.attr,
1681 &bus_attr_ap_usage_domain_mask.attr,
1682 &bus_attr_ap_adapter_mask.attr,
1683 &bus_attr_config_time.attr,
1684 &bus_attr_poll_thread.attr,
1685 &bus_attr_ap_interrupts.attr,
1686 &bus_attr_poll_timeout.attr,
1687 &bus_attr_ap_max_domain_id.attr,
1688 &bus_attr_ap_max_adapter_id.attr,
1689 &bus_attr_apmask.attr,
1690 &bus_attr_aqmask.attr,
1691 &bus_attr_scans.attr,
1692 &bus_attr_bindings.attr,
1693 &bus_attr_features.attr,
1694 NULL,
1695 };
1696 ATTRIBUTE_GROUPS(ap_bus);
1697
1698 static const struct bus_type ap_bus_type = {
1699 .name = "ap",
1700 .bus_groups = ap_bus_groups,
1701 .match = &ap_bus_match,
1702 .uevent = &ap_uevent,
1703 .probe = ap_device_probe,
1704 .remove = ap_device_remove,
1705 };
1706
1707 /**
1708 * ap_select_domain(): Select an AP domain if possible and we haven't
1709 * already done so before.
1710 */
ap_select_domain(void)1711 static void ap_select_domain(void)
1712 {
1713 struct ap_queue_status status;
1714 int card, dom;
1715
1716 /*
1717 * Choose the default domain. Either the one specified with
1718 * the "domain=" parameter or the first domain with at least
1719 * one valid APQN.
1720 */
1721 spin_lock_bh(&ap_domain_lock);
1722 if (ap_domain_index >= 0) {
1723 /* Domain has already been selected. */
1724 goto out;
1725 }
1726 for (dom = 0; dom <= ap_max_domain_id; dom++) {
1727 if (!ap_test_config_usage_domain(dom) ||
1728 !test_bit_inv(dom, ap_perms.aqm))
1729 continue;
1730 for (card = 0; card <= ap_max_adapter_id; card++) {
1731 if (!ap_test_config_card_id(card) ||
1732 !test_bit_inv(card, ap_perms.apm))
1733 continue;
1734 status = ap_test_queue(AP_MKQID(card, dom),
1735 ap_apft_available(),
1736 NULL);
1737 if (status.response_code == AP_RESPONSE_NORMAL)
1738 break;
1739 }
1740 if (card <= ap_max_adapter_id)
1741 break;
1742 }
1743 if (dom <= ap_max_domain_id) {
1744 ap_domain_index = dom;
1745 AP_DBF_INFO("%s new default domain is %d\n",
1746 __func__, ap_domain_index);
1747 }
1748 out:
1749 spin_unlock_bh(&ap_domain_lock);
1750 }
1751
1752 /*
1753 * This function checks the type and returns either 0 for not
1754 * supported or the highest compatible type value (which may
1755 * include the input type value).
1756 */
ap_get_compatible_type(ap_qid_t qid,int rawtype,unsigned int func)1757 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func)
1758 {
1759 int comp_type = 0;
1760
1761 /* < CEX4 is not supported */
1762 if (rawtype < AP_DEVICE_TYPE_CEX4) {
1763 AP_DBF_WARN("%s queue=%02x.%04x unsupported type %d\n",
1764 __func__, AP_QID_CARD(qid),
1765 AP_QID_QUEUE(qid), rawtype);
1766 return 0;
1767 }
1768 /* up to CEX8 known and fully supported */
1769 if (rawtype <= AP_DEVICE_TYPE_CEX8)
1770 return rawtype;
1771 /*
1772 * unknown new type > CEX8, check for compatibility
1773 * to the highest known and supported type which is
1774 * currently CEX8 with the help of the QACT function.
1775 */
1776 if (ap_qact_available()) {
1777 struct ap_queue_status status;
1778 union ap_qact_ap_info apinfo = {0};
1779
1780 apinfo.mode = (func >> 26) & 0x07;
1781 apinfo.cat = AP_DEVICE_TYPE_CEX8;
1782 status = ap_qact(qid, 0, &apinfo);
1783 if (status.response_code == AP_RESPONSE_NORMAL &&
1784 apinfo.cat >= AP_DEVICE_TYPE_CEX4 &&
1785 apinfo.cat <= AP_DEVICE_TYPE_CEX8)
1786 comp_type = apinfo.cat;
1787 }
1788 if (!comp_type)
1789 AP_DBF_WARN("%s queue=%02x.%04x unable to map type %d\n",
1790 __func__, AP_QID_CARD(qid),
1791 AP_QID_QUEUE(qid), rawtype);
1792 else if (comp_type != rawtype)
1793 AP_DBF_INFO("%s queue=%02x.%04x map type %d to %d\n",
1794 __func__, AP_QID_CARD(qid), AP_QID_QUEUE(qid),
1795 rawtype, comp_type);
1796 return comp_type;
1797 }
1798
1799 /*
1800 * Helper function to be used with bus_find_dev
1801 * matches for the card device with the given id
1802 */
__match_card_device_with_id(struct device * dev,const void * data)1803 static int __match_card_device_with_id(struct device *dev, const void *data)
1804 {
1805 return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *)data;
1806 }
1807
1808 /*
1809 * Helper function to be used with bus_find_dev
1810 * matches for the queue device with a given qid
1811 */
__match_queue_device_with_qid(struct device * dev,const void * data)1812 static int __match_queue_device_with_qid(struct device *dev, const void *data)
1813 {
1814 return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long)data;
1815 }
1816
1817 /*
1818 * Helper function to be used with bus_find_dev
1819 * matches any queue device with given queue id
1820 */
__match_queue_device_with_queue_id(struct device * dev,const void * data)1821 static int __match_queue_device_with_queue_id(struct device *dev, const void *data)
1822 {
1823 return is_queue_dev(dev) &&
1824 AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long)data;
1825 }
1826
1827 /* Helper function for notify_config_changed */
__drv_notify_config_changed(struct device_driver * drv,void * data)1828 static int __drv_notify_config_changed(struct device_driver *drv, void *data)
1829 {
1830 struct ap_driver *ap_drv = to_ap_drv(drv);
1831
1832 if (try_module_get(drv->owner)) {
1833 if (ap_drv->on_config_changed)
1834 ap_drv->on_config_changed(ap_qci_info, ap_qci_info_old);
1835 module_put(drv->owner);
1836 }
1837
1838 return 0;
1839 }
1840
1841 /* Notify all drivers about an qci config change */
notify_config_changed(void)1842 static inline void notify_config_changed(void)
1843 {
1844 bus_for_each_drv(&ap_bus_type, NULL, NULL,
1845 __drv_notify_config_changed);
1846 }
1847
1848 /* Helper function for notify_scan_complete */
__drv_notify_scan_complete(struct device_driver * drv,void * data)1849 static int __drv_notify_scan_complete(struct device_driver *drv, void *data)
1850 {
1851 struct ap_driver *ap_drv = to_ap_drv(drv);
1852
1853 if (try_module_get(drv->owner)) {
1854 if (ap_drv->on_scan_complete)
1855 ap_drv->on_scan_complete(ap_qci_info,
1856 ap_qci_info_old);
1857 module_put(drv->owner);
1858 }
1859
1860 return 0;
1861 }
1862
1863 /* Notify all drivers about bus scan complete */
notify_scan_complete(void)1864 static inline void notify_scan_complete(void)
1865 {
1866 bus_for_each_drv(&ap_bus_type, NULL, NULL,
1867 __drv_notify_scan_complete);
1868 }
1869
1870 /*
1871 * Helper function for ap_scan_bus().
1872 * Remove card device and associated queue devices.
1873 */
ap_scan_rm_card_dev_and_queue_devs(struct ap_card * ac)1874 static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac)
1875 {
1876 bus_for_each_dev(&ap_bus_type, NULL,
1877 (void *)(long)ac->id,
1878 __ap_queue_devices_with_id_unregister);
1879 device_unregister(&ac->ap_dev.device);
1880 }
1881
1882 /*
1883 * Helper function for ap_scan_bus().
1884 * Does the scan bus job for all the domains within
1885 * a valid adapter given by an ap_card ptr.
1886 */
ap_scan_domains(struct ap_card * ac)1887 static inline void ap_scan_domains(struct ap_card *ac)
1888 {
1889 struct ap_tapq_hwinfo hwinfo;
1890 bool decfg, chkstop;
1891 struct ap_queue *aq;
1892 struct device *dev;
1893 ap_qid_t qid;
1894 int rc, dom;
1895
1896 /*
1897 * Go through the configuration for the domains and compare them
1898 * to the existing queue devices. Also take care of the config
1899 * and error state for the queue devices.
1900 */
1901
1902 for (dom = 0; dom <= ap_max_domain_id; dom++) {
1903 qid = AP_MKQID(ac->id, dom);
1904 dev = bus_find_device(&ap_bus_type, NULL,
1905 (void *)(long)qid,
1906 __match_queue_device_with_qid);
1907 aq = dev ? to_ap_queue(dev) : NULL;
1908 if (!ap_test_config_usage_domain(dom)) {
1909 if (dev) {
1910 AP_DBF_INFO("%s(%d,%d) not in config anymore, rm queue dev\n",
1911 __func__, ac->id, dom);
1912 device_unregister(dev);
1913 }
1914 goto put_dev_and_continue;
1915 }
1916 /* domain is valid, get info from this APQN */
1917 rc = ap_queue_info(qid, &hwinfo, &decfg, &chkstop);
1918 switch (rc) {
1919 case -1:
1920 if (dev) {
1921 AP_DBF_INFO("%s(%d,%d) queue_info() failed, rm queue dev\n",
1922 __func__, ac->id, dom);
1923 device_unregister(dev);
1924 }
1925 fallthrough;
1926 case 0:
1927 goto put_dev_and_continue;
1928 default:
1929 break;
1930 }
1931 /* if no queue device exists, create a new one */
1932 if (!aq) {
1933 aq = ap_queue_create(qid, ac);
1934 if (!aq) {
1935 AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n",
1936 __func__, ac->id, dom);
1937 continue;
1938 }
1939 aq->config = !decfg;
1940 aq->chkstop = chkstop;
1941 aq->se_bstate = hwinfo.bs;
1942 dev = &aq->ap_dev.device;
1943 dev->bus = &ap_bus_type;
1944 dev->parent = &ac->ap_dev.device;
1945 dev_set_name(dev, "%02x.%04x", ac->id, dom);
1946 /* register queue device */
1947 rc = device_register(dev);
1948 if (rc) {
1949 AP_DBF_WARN("%s(%d,%d) device_register() failed\n",
1950 __func__, ac->id, dom);
1951 goto put_dev_and_continue;
1952 }
1953 /* get it and thus adjust reference counter */
1954 get_device(dev);
1955 if (decfg) {
1956 AP_DBF_INFO("%s(%d,%d) new (decfg) queue dev created\n",
1957 __func__, ac->id, dom);
1958 } else if (chkstop) {
1959 AP_DBF_INFO("%s(%d,%d) new (chkstop) queue dev created\n",
1960 __func__, ac->id, dom);
1961 } else {
1962 /* nudge the queue's state machine */
1963 ap_queue_init_state(aq);
1964 AP_DBF_INFO("%s(%d,%d) new queue dev created\n",
1965 __func__, ac->id, dom);
1966 }
1967 goto put_dev_and_continue;
1968 }
1969 /* handle state changes on already existing queue device */
1970 spin_lock_bh(&aq->lock);
1971 /* SE bind state */
1972 aq->se_bstate = hwinfo.bs;
1973 /* checkstop state */
1974 if (chkstop && !aq->chkstop) {
1975 /* checkstop on */
1976 aq->chkstop = true;
1977 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1978 aq->dev_state = AP_DEV_STATE_ERROR;
1979 aq->last_err_rc = AP_RESPONSE_CHECKSTOPPED;
1980 }
1981 spin_unlock_bh(&aq->lock);
1982 pr_debug("(%d,%d) queue dev checkstop on\n",
1983 ac->id, dom);
1984 /* 'receive' pending messages with -EAGAIN */
1985 ap_flush_queue(aq);
1986 goto put_dev_and_continue;
1987 } else if (!chkstop && aq->chkstop) {
1988 /* checkstop off */
1989 aq->chkstop = false;
1990 if (aq->dev_state > AP_DEV_STATE_UNINITIATED)
1991 _ap_queue_init_state(aq);
1992 spin_unlock_bh(&aq->lock);
1993 pr_debug("(%d,%d) queue dev checkstop off\n",
1994 ac->id, dom);
1995 goto put_dev_and_continue;
1996 }
1997 /* config state change */
1998 if (decfg && aq->config) {
1999 /* config off this queue device */
2000 aq->config = false;
2001 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
2002 aq->dev_state = AP_DEV_STATE_ERROR;
2003 aq->last_err_rc = AP_RESPONSE_DECONFIGURED;
2004 }
2005 spin_unlock_bh(&aq->lock);
2006 pr_debug("(%d,%d) queue dev config off\n",
2007 ac->id, dom);
2008 ap_send_config_uevent(&aq->ap_dev, aq->config);
2009 /* 'receive' pending messages with -EAGAIN */
2010 ap_flush_queue(aq);
2011 goto put_dev_and_continue;
2012 } else if (!decfg && !aq->config) {
2013 /* config on this queue device */
2014 aq->config = true;
2015 if (aq->dev_state > AP_DEV_STATE_UNINITIATED)
2016 _ap_queue_init_state(aq);
2017 spin_unlock_bh(&aq->lock);
2018 pr_debug("(%d,%d) queue dev config on\n",
2019 ac->id, dom);
2020 ap_send_config_uevent(&aq->ap_dev, aq->config);
2021 goto put_dev_and_continue;
2022 }
2023 /* handle other error states */
2024 if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) {
2025 spin_unlock_bh(&aq->lock);
2026 /* 'receive' pending messages with -EAGAIN */
2027 ap_flush_queue(aq);
2028 /* re-init (with reset) the queue device */
2029 ap_queue_init_state(aq);
2030 AP_DBF_INFO("%s(%d,%d) queue dev reinit enforced\n",
2031 __func__, ac->id, dom);
2032 goto put_dev_and_continue;
2033 }
2034 spin_unlock_bh(&aq->lock);
2035 put_dev_and_continue:
2036 put_device(dev);
2037 }
2038 }
2039
2040 /*
2041 * Helper function for ap_scan_bus().
2042 * Does the scan bus job for the given adapter id.
2043 */
ap_scan_adapter(int ap)2044 static inline void ap_scan_adapter(int ap)
2045 {
2046 struct ap_tapq_hwinfo hwinfo;
2047 int rc, dom, comp_type;
2048 bool decfg, chkstop;
2049 struct ap_card *ac;
2050 struct device *dev;
2051 ap_qid_t qid;
2052
2053 /* Is there currently a card device for this adapter ? */
2054 dev = bus_find_device(&ap_bus_type, NULL,
2055 (void *)(long)ap,
2056 __match_card_device_with_id);
2057 ac = dev ? to_ap_card(dev) : NULL;
2058
2059 /* Adapter not in configuration ? */
2060 if (!ap_test_config_card_id(ap)) {
2061 if (ac) {
2062 AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devs\n",
2063 __func__, ap);
2064 ap_scan_rm_card_dev_and_queue_devs(ac);
2065 put_device(dev);
2066 }
2067 return;
2068 }
2069
2070 /*
2071 * Adapter ap is valid in the current configuration. So do some checks:
2072 * If no card device exists, build one. If a card device exists, check
2073 * for type and functions changed. For all this we need to find a valid
2074 * APQN first.
2075 */
2076
2077 for (dom = 0; dom <= ap_max_domain_id; dom++)
2078 if (ap_test_config_usage_domain(dom)) {
2079 qid = AP_MKQID(ap, dom);
2080 if (ap_queue_info(qid, &hwinfo, &decfg, &chkstop) > 0)
2081 break;
2082 }
2083 if (dom > ap_max_domain_id) {
2084 /* Could not find one valid APQN for this adapter */
2085 if (ac) {
2086 AP_DBF_INFO("%s(%d) no type info (no APQN found), rm card and queue devs\n",
2087 __func__, ap);
2088 ap_scan_rm_card_dev_and_queue_devs(ac);
2089 put_device(dev);
2090 } else {
2091 pr_debug("(%d) no type info (no APQN found), ignored\n",
2092 ap);
2093 }
2094 return;
2095 }
2096 if (!hwinfo.at) {
2097 /* No apdater type info available, an unusable adapter */
2098 if (ac) {
2099 AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devs\n",
2100 __func__, ap);
2101 ap_scan_rm_card_dev_and_queue_devs(ac);
2102 put_device(dev);
2103 } else {
2104 pr_debug("(%d) no valid type (0) info, ignored\n", ap);
2105 }
2106 return;
2107 }
2108 hwinfo.value &= TAPQ_CARD_HWINFO_MASK; /* filter card specific hwinfo */
2109 if (ac) {
2110 /* Check APQN against existing card device for changes */
2111 if (ac->hwinfo.at != hwinfo.at) {
2112 AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devs\n",
2113 __func__, ap, hwinfo.at);
2114 ap_scan_rm_card_dev_and_queue_devs(ac);
2115 put_device(dev);
2116 ac = NULL;
2117 } else if (ac->hwinfo.fac != hwinfo.fac) {
2118 AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devs\n",
2119 __func__, ap, hwinfo.fac);
2120 ap_scan_rm_card_dev_and_queue_devs(ac);
2121 put_device(dev);
2122 ac = NULL;
2123 } else {
2124 /* handle checkstop state change */
2125 if (chkstop && !ac->chkstop) {
2126 /* checkstop on */
2127 ac->chkstop = true;
2128 AP_DBF_INFO("%s(%d) card dev checkstop on\n",
2129 __func__, ap);
2130 } else if (!chkstop && ac->chkstop) {
2131 /* checkstop off */
2132 ac->chkstop = false;
2133 AP_DBF_INFO("%s(%d) card dev checkstop off\n",
2134 __func__, ap);
2135 }
2136 /* handle config state change */
2137 if (decfg && ac->config) {
2138 ac->config = false;
2139 AP_DBF_INFO("%s(%d) card dev config off\n",
2140 __func__, ap);
2141 ap_send_config_uevent(&ac->ap_dev, ac->config);
2142 } else if (!decfg && !ac->config) {
2143 ac->config = true;
2144 AP_DBF_INFO("%s(%d) card dev config on\n",
2145 __func__, ap);
2146 ap_send_config_uevent(&ac->ap_dev, ac->config);
2147 }
2148 }
2149 }
2150
2151 if (!ac) {
2152 /* Build a new card device */
2153 comp_type = ap_get_compatible_type(qid, hwinfo.at, hwinfo.fac);
2154 if (!comp_type) {
2155 AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n",
2156 __func__, ap, hwinfo.at);
2157 return;
2158 }
2159 ac = ap_card_create(ap, hwinfo, comp_type);
2160 if (!ac) {
2161 AP_DBF_WARN("%s(%d) ap_card_create() failed\n",
2162 __func__, ap);
2163 return;
2164 }
2165 ac->config = !decfg;
2166 ac->chkstop = chkstop;
2167 dev = &ac->ap_dev.device;
2168 dev->bus = &ap_bus_type;
2169 dev->parent = ap_root_device;
2170 dev_set_name(dev, "card%02x", ap);
2171 /* maybe enlarge ap_max_msg_size to support this card */
2172 if (ac->maxmsgsize > atomic_read(&ap_max_msg_size)) {
2173 atomic_set(&ap_max_msg_size, ac->maxmsgsize);
2174 AP_DBF_INFO("%s(%d) ap_max_msg_size update to %d byte\n",
2175 __func__, ap,
2176 atomic_read(&ap_max_msg_size));
2177 }
2178 /* Register the new card device with AP bus */
2179 rc = device_register(dev);
2180 if (rc) {
2181 AP_DBF_WARN("%s(%d) device_register() failed\n",
2182 __func__, ap);
2183 put_device(dev);
2184 return;
2185 }
2186 /* get it and thus adjust reference counter */
2187 get_device(dev);
2188 if (decfg)
2189 AP_DBF_INFO("%s(%d) new (decfg) card dev type=%d func=0x%08x created\n",
2190 __func__, ap, hwinfo.at, hwinfo.fac);
2191 else if (chkstop)
2192 AP_DBF_INFO("%s(%d) new (chkstop) card dev type=%d func=0x%08x created\n",
2193 __func__, ap, hwinfo.at, hwinfo.fac);
2194 else
2195 AP_DBF_INFO("%s(%d) new card dev type=%d func=0x%08x created\n",
2196 __func__, ap, hwinfo.at, hwinfo.fac);
2197 }
2198
2199 /* Verify the domains and the queue devices for this card */
2200 ap_scan_domains(ac);
2201
2202 /* release the card device */
2203 put_device(&ac->ap_dev.device);
2204 }
2205
2206 /**
2207 * ap_get_configuration - get the host AP configuration
2208 *
2209 * Stores the host AP configuration information returned from the previous call
2210 * to Query Configuration Information (QCI), then retrieves and stores the
2211 * current AP configuration returned from QCI.
2212 *
2213 * Return: true if the host AP configuration changed between calls to QCI;
2214 * otherwise, return false.
2215 */
ap_get_configuration(void)2216 static bool ap_get_configuration(void)
2217 {
2218 if (!ap_qci_info->flags) /* QCI not supported */
2219 return false;
2220
2221 memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
2222 ap_qci(ap_qci_info);
2223
2224 return memcmp(ap_qci_info, ap_qci_info_old,
2225 sizeof(struct ap_config_info)) != 0;
2226 }
2227
2228 /*
2229 * ap_config_has_new_aps - Check current against old qci info if
2230 * new adapters have appeared. Returns true if at least one new
2231 * adapter in the apm mask is showing up. Existing adapters or
2232 * receding adapters are not counted.
2233 */
ap_config_has_new_aps(void)2234 static bool ap_config_has_new_aps(void)
2235 {
2236
2237 unsigned long m[BITS_TO_LONGS(AP_DEVICES)];
2238
2239 if (!ap_qci_info->flags)
2240 return false;
2241
2242 bitmap_andnot(m, (unsigned long *)ap_qci_info->apm,
2243 (unsigned long *)ap_qci_info_old->apm, AP_DEVICES);
2244 if (!bitmap_empty(m, AP_DEVICES))
2245 return true;
2246
2247 return false;
2248 }
2249
2250 /*
2251 * ap_config_has_new_doms - Check current against old qci info if
2252 * new (usage) domains have appeared. Returns true if at least one
2253 * new domain in the aqm mask is showing up. Existing domains or
2254 * receding domains are not counted.
2255 */
ap_config_has_new_doms(void)2256 static bool ap_config_has_new_doms(void)
2257 {
2258 unsigned long m[BITS_TO_LONGS(AP_DOMAINS)];
2259
2260 if (!ap_qci_info->flags)
2261 return false;
2262
2263 bitmap_andnot(m, (unsigned long *)ap_qci_info->aqm,
2264 (unsigned long *)ap_qci_info_old->aqm, AP_DOMAINS);
2265 if (!bitmap_empty(m, AP_DOMAINS))
2266 return true;
2267
2268 return false;
2269 }
2270
2271 /**
2272 * ap_scan_bus(): Scan the AP bus for new devices
2273 * Always run under mutex ap_scan_bus_mutex protection
2274 * which needs to get locked/unlocked by the caller!
2275 * Returns true if any config change has been detected
2276 * during the scan, otherwise false.
2277 */
ap_scan_bus(void)2278 static bool ap_scan_bus(void)
2279 {
2280 bool config_changed;
2281 int ap;
2282
2283 pr_debug(">\n");
2284
2285 /* (re-)fetch configuration via QCI */
2286 config_changed = ap_get_configuration();
2287 if (config_changed) {
2288 if (ap_config_has_new_aps() || ap_config_has_new_doms()) {
2289 /*
2290 * Appearance of new adapters and/or domains need to
2291 * build new ap devices which need to get bound to an
2292 * device driver. Thus reset the APQN bindings complete
2293 * completion.
2294 */
2295 reinit_completion(&ap_apqn_bindings_complete);
2296 }
2297 /* post a config change notify */
2298 notify_config_changed();
2299 }
2300 ap_select_domain();
2301
2302 /* loop over all possible adapters */
2303 for (ap = 0; ap <= ap_max_adapter_id; ap++)
2304 ap_scan_adapter(ap);
2305
2306 /* scan complete notify */
2307 if (config_changed)
2308 notify_scan_complete();
2309
2310 /* check if there is at least one queue available with default domain */
2311 if (ap_domain_index >= 0) {
2312 struct device *dev =
2313 bus_find_device(&ap_bus_type, NULL,
2314 (void *)(long)ap_domain_index,
2315 __match_queue_device_with_queue_id);
2316 if (dev)
2317 put_device(dev);
2318 else
2319 AP_DBF_INFO("%s no queue device with default domain %d available\n",
2320 __func__, ap_domain_index);
2321 }
2322
2323 if (atomic64_inc_return(&ap_scan_bus_count) == 1) {
2324 pr_debug("init scan complete\n");
2325 ap_send_init_scan_done_uevent();
2326 }
2327
2328 ap_check_bindings_complete();
2329
2330 mod_timer(&ap_scan_bus_timer, jiffies + ap_scan_bus_time * HZ);
2331
2332 pr_debug("< config_changed=%d\n", config_changed);
2333
2334 return config_changed;
2335 }
2336
2337 /*
2338 * Callback for the ap_scan_bus_timer
2339 * Runs periodically, workqueue timer (ap_scan_bus_time)
2340 */
ap_scan_bus_timer_callback(struct timer_list * unused)2341 static void ap_scan_bus_timer_callback(struct timer_list *unused)
2342 {
2343 /*
2344 * schedule work into the system long wq which when
2345 * the work is finally executed, calls the AP bus scan.
2346 */
2347 queue_work(system_long_wq, &ap_scan_bus_work);
2348 }
2349
2350 /*
2351 * Callback for the ap_scan_bus_work
2352 */
ap_scan_bus_wq_callback(struct work_struct * unused)2353 static void ap_scan_bus_wq_callback(struct work_struct *unused)
2354 {
2355 /*
2356 * Try to invoke an ap_scan_bus(). If the mutex acquisition
2357 * fails there is currently another task already running the
2358 * AP scan bus and there is no need to wait and re-trigger the
2359 * scan again. Please note at the end of the scan bus function
2360 * the AP scan bus timer is re-armed which triggers then the
2361 * ap_scan_bus_timer_callback which enqueues a work into the
2362 * system_long_wq which invokes this function here again.
2363 */
2364 if (mutex_trylock(&ap_scan_bus_mutex)) {
2365 ap_scan_bus_task = current;
2366 ap_scan_bus_result = ap_scan_bus();
2367 ap_scan_bus_task = NULL;
2368 mutex_unlock(&ap_scan_bus_mutex);
2369 }
2370 }
2371
ap_async_exit(void)2372 static inline void __exit ap_async_exit(void)
2373 {
2374 if (ap_thread_flag)
2375 ap_poll_thread_stop();
2376 chsc_notifier_unregister(&ap_bus_nb);
2377 cancel_work(&ap_scan_bus_work);
2378 hrtimer_cancel(&ap_poll_timer);
2379 timer_delete(&ap_scan_bus_timer);
2380 }
2381
ap_async_init(void)2382 static inline int __init ap_async_init(void)
2383 {
2384 int rc;
2385
2386 /* Setup the AP bus rescan timer. */
2387 timer_setup(&ap_scan_bus_timer, ap_scan_bus_timer_callback, 0);
2388
2389 /*
2390 * Setup the high resolution poll timer.
2391 * If we are running under z/VM adjust polling to z/VM polling rate.
2392 */
2393 if (machine_is_vm())
2394 poll_high_timeout = 1500000;
2395 hrtimer_setup(&ap_poll_timer, ap_poll_timeout, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2396
2397 queue_work(system_long_wq, &ap_scan_bus_work);
2398
2399 rc = chsc_notifier_register(&ap_bus_nb);
2400 if (rc)
2401 goto out;
2402
2403 /* Start the low priority AP bus poll thread. */
2404 if (!ap_thread_flag)
2405 return 0;
2406
2407 rc = ap_poll_thread_start();
2408 if (rc)
2409 goto out_notifier;
2410
2411 return 0;
2412
2413 out_notifier:
2414 chsc_notifier_unregister(&ap_bus_nb);
2415 out:
2416 cancel_work(&ap_scan_bus_work);
2417 hrtimer_cancel(&ap_poll_timer);
2418 timer_delete(&ap_scan_bus_timer);
2419 return rc;
2420 }
2421
ap_irq_exit(void)2422 static inline void ap_irq_exit(void)
2423 {
2424 if (ap_irq_flag)
2425 unregister_adapter_interrupt(&ap_airq);
2426 }
2427
ap_irq_init(void)2428 static inline int __init ap_irq_init(void)
2429 {
2430 int rc;
2431
2432 if (!ap_interrupts_available() || !ap_useirq)
2433 return 0;
2434
2435 rc = register_adapter_interrupt(&ap_airq);
2436 ap_irq_flag = (rc == 0);
2437
2438 return rc;
2439 }
2440
ap_debug_exit(void)2441 static inline void ap_debug_exit(void)
2442 {
2443 debug_unregister(ap_dbf_info);
2444 }
2445
ap_debug_init(void)2446 static inline int __init ap_debug_init(void)
2447 {
2448 ap_dbf_info = debug_register("ap", 2, 1,
2449 AP_DBF_MAX_SPRINTF_ARGS * sizeof(long));
2450 debug_register_view(ap_dbf_info, &debug_sprintf_view);
2451 debug_set_level(ap_dbf_info, DBF_ERR);
2452
2453 return 0;
2454 }
2455
ap_perms_init(void)2456 static void __init ap_perms_init(void)
2457 {
2458 /* all resources usable if no kernel parameter string given */
2459 memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm));
2460 memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm));
2461 memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm));
2462
2463 /* apm kernel parameter string */
2464 if (apm_str) {
2465 memset(&ap_perms.apm, 0, sizeof(ap_perms.apm));
2466 ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES,
2467 &ap_perms_mutex);
2468 }
2469
2470 /* aqm kernel parameter string */
2471 if (aqm_str) {
2472 memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm));
2473 ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS,
2474 &ap_perms_mutex);
2475 }
2476 }
2477
2478 /**
2479 * ap_module_init(): The module initialization code.
2480 *
2481 * Initializes the module.
2482 */
ap_module_init(void)2483 static int __init ap_module_init(void)
2484 {
2485 int rc;
2486
2487 rc = ap_debug_init();
2488 if (rc)
2489 return rc;
2490
2491 if (!ap_instructions_available()) {
2492 pr_warn("The hardware system does not support AP instructions\n");
2493 return -ENODEV;
2494 }
2495
2496 /* init ap_queue hashtable */
2497 hash_init(ap_queues);
2498
2499 /* create ap msg buffer memory pool */
2500 ap_msg_pool = mempool_create_kmalloc_pool(ap_msg_pool_min_items,
2501 AP_DEFAULT_MAX_MSG_SIZE);
2502 if (!ap_msg_pool) {
2503 rc = -ENOMEM;
2504 goto out;
2505 }
2506
2507 /* set up the AP permissions (ioctls, ap and aq masks) */
2508 ap_perms_init();
2509
2510 /* Get AP configuration data if available */
2511 ap_init_qci_info();
2512
2513 /* check default domain setting */
2514 if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id ||
2515 (ap_domain_index >= 0 &&
2516 !test_bit_inv(ap_domain_index, ap_perms.aqm))) {
2517 pr_warn("%d is not a valid cryptographic domain\n",
2518 ap_domain_index);
2519 ap_domain_index = -1;
2520 }
2521
2522 /* Create /sys/bus/ap. */
2523 rc = bus_register(&ap_bus_type);
2524 if (rc)
2525 goto out;
2526
2527 /* Create /sys/devices/ap. */
2528 ap_root_device = root_device_register("ap");
2529 rc = PTR_ERR_OR_ZERO(ap_root_device);
2530 if (rc)
2531 goto out_bus;
2532 ap_root_device->bus = &ap_bus_type;
2533
2534 /* enable interrupts if available */
2535 rc = ap_irq_init();
2536 if (rc)
2537 goto out_device;
2538
2539 /* Setup asynchronous work (timers, workqueue, etc). */
2540 rc = ap_async_init();
2541 if (rc)
2542 goto out_irq;
2543
2544 return 0;
2545
2546 out_irq:
2547 ap_irq_exit();
2548 out_device:
2549 root_device_unregister(ap_root_device);
2550 out_bus:
2551 bus_unregister(&ap_bus_type);
2552 out:
2553 mempool_destroy(ap_msg_pool);
2554 ap_debug_exit();
2555 return rc;
2556 }
2557
ap_module_exit(void)2558 static void __exit ap_module_exit(void)
2559 {
2560 ap_async_exit();
2561 ap_irq_exit();
2562 root_device_unregister(ap_root_device);
2563 bus_unregister(&ap_bus_type);
2564 mempool_destroy(ap_msg_pool);
2565 ap_debug_exit();
2566 }
2567
2568 module_init(ap_module_init);
2569 module_exit(ap_module_exit);
2570