xref: /linux/include/linux/rmap.h (revision f73a058be5d70dd81a43f16b2bbff4b1576a7af8)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_RMAP_H
3 #define _LINUX_RMAP_H
4 /*
5  * Declarations for Reverse Mapping functions in mm/rmap.c
6  */
7 
8 #include <linux/list.h>
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/rwsem.h>
12 #include <linux/memcontrol.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/memremap.h>
16 
17 /*
18  * The anon_vma heads a list of private "related" vmas, to scan if
19  * an anonymous page pointing to this anon_vma needs to be unmapped:
20  * the vmas on the list will be related by forking, or by splitting.
21  *
22  * Since vmas come and go as they are split and merged (particularly
23  * in mprotect), the mapping field of an anonymous page cannot point
24  * directly to a vma: instead it points to an anon_vma, on whose list
25  * the related vmas can be easily linked or unlinked.
26  *
27  * After unlinking the last vma on the list, we must garbage collect
28  * the anon_vma object itself: we're guaranteed no page can be
29  * pointing to this anon_vma once its vma list is empty.
30  */
31 struct anon_vma {
32 	struct anon_vma *root;		/* Root of this anon_vma tree */
33 	struct rw_semaphore rwsem;	/* W: modification, R: walking the list */
34 	/*
35 	 * The refcount is taken on an anon_vma when there is no
36 	 * guarantee that the vma of page tables will exist for
37 	 * the duration of the operation. A caller that takes
38 	 * the reference is responsible for clearing up the
39 	 * anon_vma if they are the last user on release
40 	 */
41 	atomic_t refcount;
42 
43 	/*
44 	 * Count of child anon_vmas. Equals to the count of all anon_vmas that
45 	 * have ->parent pointing to this one, including itself.
46 	 *
47 	 * This counter is used for making decision about reusing anon_vma
48 	 * instead of forking new one. See comments in function anon_vma_clone.
49 	 */
50 	unsigned long num_children;
51 	/* Count of VMAs whose ->anon_vma pointer points to this object. */
52 	unsigned long num_active_vmas;
53 
54 	struct anon_vma *parent;	/* Parent of this anon_vma */
55 
56 	/*
57 	 * NOTE: the LSB of the rb_root.rb_node is set by
58 	 * mm_take_all_locks() _after_ taking the above lock. So the
59 	 * rb_root must only be read/written after taking the above lock
60 	 * to be sure to see a valid next pointer. The LSB bit itself
61 	 * is serialized by a system wide lock only visible to
62 	 * mm_take_all_locks() (mm_all_locks_mutex).
63 	 */
64 
65 	/* Interval tree of private "related" vmas */
66 	struct rb_root_cached rb_root;
67 };
68 
69 /*
70  * The copy-on-write semantics of fork mean that an anon_vma
71  * can become associated with multiple processes. Furthermore,
72  * each child process will have its own anon_vma, where new
73  * pages for that process are instantiated.
74  *
75  * This structure allows us to find the anon_vmas associated
76  * with a VMA, or the VMAs associated with an anon_vma.
77  * The "same_vma" list contains the anon_vma_chains linking
78  * all the anon_vmas associated with this VMA.
79  * The "rb" field indexes on an interval tree the anon_vma_chains
80  * which link all the VMAs associated with this anon_vma.
81  */
82 struct anon_vma_chain {
83 	struct vm_area_struct *vma;
84 	struct anon_vma *anon_vma;
85 	struct list_head same_vma;   /* locked by mmap_lock & page_table_lock */
86 	struct rb_node rb;			/* locked by anon_vma->rwsem */
87 	unsigned long rb_subtree_last;
88 #ifdef CONFIG_DEBUG_VM_RB
89 	unsigned long cached_vma_start, cached_vma_last;
90 #endif
91 };
92 
93 enum ttu_flags {
94 	TTU_SPLIT_HUGE_PMD	= 0x4,	/* split huge PMD if any */
95 	TTU_IGNORE_MLOCK	= 0x8,	/* ignore mlock */
96 	TTU_SYNC		= 0x10,	/* avoid racy checks with PVMW_SYNC */
97 	TTU_HWPOISON		= 0x20,	/* do convert pte to hwpoison entry */
98 	TTU_BATCH_FLUSH		= 0x40,	/* Batch TLB flushes where possible
99 					 * and caller guarantees they will
100 					 * do a final flush if necessary */
101 	TTU_RMAP_LOCKED		= 0x80,	/* do not grab rmap lock:
102 					 * caller holds it */
103 };
104 
105 #ifdef CONFIG_MMU
106 static inline void get_anon_vma(struct anon_vma *anon_vma)
107 {
108 	atomic_inc(&anon_vma->refcount);
109 }
110 
111 void __put_anon_vma(struct anon_vma *anon_vma);
112 
113 static inline void put_anon_vma(struct anon_vma *anon_vma)
114 {
115 	if (atomic_dec_and_test(&anon_vma->refcount))
116 		__put_anon_vma(anon_vma);
117 }
118 
119 static inline void anon_vma_lock_write(struct anon_vma *anon_vma)
120 {
121 	down_write(&anon_vma->root->rwsem);
122 }
123 
124 static inline int anon_vma_trylock_write(struct anon_vma *anon_vma)
125 {
126 	return down_write_trylock(&anon_vma->root->rwsem);
127 }
128 
129 static inline void anon_vma_unlock_write(struct anon_vma *anon_vma)
130 {
131 	up_write(&anon_vma->root->rwsem);
132 }
133 
134 static inline void anon_vma_lock_read(struct anon_vma *anon_vma)
135 {
136 	down_read(&anon_vma->root->rwsem);
137 }
138 
139 static inline int anon_vma_trylock_read(struct anon_vma *anon_vma)
140 {
141 	return down_read_trylock(&anon_vma->root->rwsem);
142 }
143 
144 static inline void anon_vma_unlock_read(struct anon_vma *anon_vma)
145 {
146 	up_read(&anon_vma->root->rwsem);
147 }
148 
149 
150 /*
151  * anon_vma helper functions.
152  */
153 void anon_vma_init(void);	/* create anon_vma_cachep */
154 int  __anon_vma_prepare(struct vm_area_struct *);
155 void unlink_anon_vmas(struct vm_area_struct *);
156 int anon_vma_clone(struct vm_area_struct *, struct vm_area_struct *);
157 int anon_vma_fork(struct vm_area_struct *, struct vm_area_struct *);
158 
159 static inline int anon_vma_prepare(struct vm_area_struct *vma)
160 {
161 	if (likely(vma->anon_vma))
162 		return 0;
163 
164 	return __anon_vma_prepare(vma);
165 }
166 
167 static inline void anon_vma_merge(struct vm_area_struct *vma,
168 				  struct vm_area_struct *next)
169 {
170 	VM_BUG_ON_VMA(vma->anon_vma != next->anon_vma, vma);
171 	unlink_anon_vmas(next);
172 }
173 
174 struct anon_vma *folio_get_anon_vma(struct folio *folio);
175 
176 /* RMAP flags, currently only relevant for some anon rmap operations. */
177 typedef int __bitwise rmap_t;
178 
179 /*
180  * No special request: A mapped anonymous (sub)page is possibly shared between
181  * processes.
182  */
183 #define RMAP_NONE		((__force rmap_t)0)
184 
185 /* The anonymous (sub)page is exclusive to a single process. */
186 #define RMAP_EXCLUSIVE		((__force rmap_t)BIT(0))
187 
188 /*
189  * Internally, we're using an enum to specify the granularity. We make the
190  * compiler emit specialized code for each granularity.
191  */
192 enum rmap_level {
193 	RMAP_LEVEL_PTE = 0,
194 	RMAP_LEVEL_PMD,
195 };
196 
197 static inline void __folio_rmap_sanity_checks(struct folio *folio,
198 		struct page *page, int nr_pages, enum rmap_level level)
199 {
200 	/* hugetlb folios are handled separately. */
201 	VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
202 
203 	/*
204 	 * TODO: we get driver-allocated folios that have nothing to do with
205 	 * the rmap using vm_insert_page(); therefore, we cannot assume that
206 	 * folio_test_large_rmappable() holds for large folios. We should
207 	 * handle any desired mapcount+stats accounting for these folios in
208 	 * VM_MIXEDMAP VMAs separately, and then sanity-check here that
209 	 * we really only get rmappable folios.
210 	 */
211 
212 	VM_WARN_ON_ONCE(nr_pages <= 0);
213 	VM_WARN_ON_FOLIO(page_folio(page) != folio, folio);
214 	VM_WARN_ON_FOLIO(page_folio(page + nr_pages - 1) != folio, folio);
215 
216 	switch (level) {
217 	case RMAP_LEVEL_PTE:
218 		break;
219 	case RMAP_LEVEL_PMD:
220 		/*
221 		 * We don't support folios larger than a single PMD yet. So
222 		 * when RMAP_LEVEL_PMD is set, we assume that we are creating
223 		 * a single "entire" mapping of the folio.
224 		 */
225 		VM_WARN_ON_FOLIO(folio_nr_pages(folio) != HPAGE_PMD_NR, folio);
226 		VM_WARN_ON_FOLIO(nr_pages != HPAGE_PMD_NR, folio);
227 		break;
228 	default:
229 		VM_WARN_ON_ONCE(true);
230 	}
231 }
232 
233 /*
234  * rmap interfaces called when adding or removing pte of page
235  */
236 void folio_move_anon_rmap(struct folio *, struct vm_area_struct *);
237 void folio_add_anon_rmap_ptes(struct folio *, struct page *, int nr_pages,
238 		struct vm_area_struct *, unsigned long address, rmap_t flags);
239 #define folio_add_anon_rmap_pte(folio, page, vma, address, flags) \
240 	folio_add_anon_rmap_ptes(folio, page, 1, vma, address, flags)
241 void folio_add_anon_rmap_pmd(struct folio *, struct page *,
242 		struct vm_area_struct *, unsigned long address, rmap_t flags);
243 void folio_add_new_anon_rmap(struct folio *, struct vm_area_struct *,
244 		unsigned long address);
245 void folio_add_file_rmap_ptes(struct folio *, struct page *, int nr_pages,
246 		struct vm_area_struct *);
247 #define folio_add_file_rmap_pte(folio, page, vma) \
248 	folio_add_file_rmap_ptes(folio, page, 1, vma)
249 void folio_add_file_rmap_pmd(struct folio *, struct page *,
250 		struct vm_area_struct *);
251 void folio_remove_rmap_ptes(struct folio *, struct page *, int nr_pages,
252 		struct vm_area_struct *);
253 #define folio_remove_rmap_pte(folio, page, vma) \
254 	folio_remove_rmap_ptes(folio, page, 1, vma)
255 void folio_remove_rmap_pmd(struct folio *, struct page *,
256 		struct vm_area_struct *);
257 
258 void hugetlb_add_anon_rmap(struct folio *, struct vm_area_struct *,
259 		unsigned long address, rmap_t flags);
260 void hugetlb_add_new_anon_rmap(struct folio *, struct vm_area_struct *,
261 		unsigned long address);
262 
263 /* See folio_try_dup_anon_rmap_*() */
264 static inline int hugetlb_try_dup_anon_rmap(struct folio *folio,
265 		struct vm_area_struct *vma)
266 {
267 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
268 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
269 
270 	if (PageAnonExclusive(&folio->page)) {
271 		if (unlikely(folio_needs_cow_for_dma(vma, folio)))
272 			return -EBUSY;
273 		ClearPageAnonExclusive(&folio->page);
274 	}
275 	atomic_inc(&folio->_entire_mapcount);
276 	atomic_inc(&folio->_large_mapcount);
277 	return 0;
278 }
279 
280 /* See folio_try_share_anon_rmap_*() */
281 static inline int hugetlb_try_share_anon_rmap(struct folio *folio)
282 {
283 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
284 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
285 	VM_WARN_ON_FOLIO(!PageAnonExclusive(&folio->page), folio);
286 
287 	/* Paired with the memory barrier in try_grab_folio(). */
288 	if (IS_ENABLED(CONFIG_HAVE_GUP_FAST))
289 		smp_mb();
290 
291 	if (unlikely(folio_maybe_dma_pinned(folio)))
292 		return -EBUSY;
293 	ClearPageAnonExclusive(&folio->page);
294 
295 	/*
296 	 * This is conceptually a smp_wmb() paired with the smp_rmb() in
297 	 * gup_must_unshare().
298 	 */
299 	if (IS_ENABLED(CONFIG_HAVE_GUP_FAST))
300 		smp_mb__after_atomic();
301 	return 0;
302 }
303 
304 static inline void hugetlb_add_file_rmap(struct folio *folio)
305 {
306 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
307 	VM_WARN_ON_FOLIO(folio_test_anon(folio), folio);
308 
309 	atomic_inc(&folio->_entire_mapcount);
310 	atomic_inc(&folio->_large_mapcount);
311 }
312 
313 static inline void hugetlb_remove_rmap(struct folio *folio)
314 {
315 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
316 
317 	atomic_dec(&folio->_entire_mapcount);
318 	atomic_dec(&folio->_large_mapcount);
319 }
320 
321 static __always_inline void __folio_dup_file_rmap(struct folio *folio,
322 		struct page *page, int nr_pages, enum rmap_level level)
323 {
324 	const int orig_nr_pages = nr_pages;
325 
326 	__folio_rmap_sanity_checks(folio, page, nr_pages, level);
327 
328 	switch (level) {
329 	case RMAP_LEVEL_PTE:
330 		if (!folio_test_large(folio)) {
331 			atomic_inc(&page->_mapcount);
332 			break;
333 		}
334 
335 		do {
336 			atomic_inc(&page->_mapcount);
337 		} while (page++, --nr_pages > 0);
338 		atomic_add(orig_nr_pages, &folio->_large_mapcount);
339 		break;
340 	case RMAP_LEVEL_PMD:
341 		atomic_inc(&folio->_entire_mapcount);
342 		atomic_inc(&folio->_large_mapcount);
343 		break;
344 	}
345 }
346 
347 /**
348  * folio_dup_file_rmap_ptes - duplicate PTE mappings of a page range of a folio
349  * @folio:	The folio to duplicate the mappings of
350  * @page:	The first page to duplicate the mappings of
351  * @nr_pages:	The number of pages of which the mapping will be duplicated
352  *
353  * The page range of the folio is defined by [page, page + nr_pages)
354  *
355  * The caller needs to hold the page table lock.
356  */
357 static inline void folio_dup_file_rmap_ptes(struct folio *folio,
358 		struct page *page, int nr_pages)
359 {
360 	__folio_dup_file_rmap(folio, page, nr_pages, RMAP_LEVEL_PTE);
361 }
362 
363 static __always_inline void folio_dup_file_rmap_pte(struct folio *folio,
364 		struct page *page)
365 {
366 	__folio_dup_file_rmap(folio, page, 1, RMAP_LEVEL_PTE);
367 }
368 
369 /**
370  * folio_dup_file_rmap_pmd - duplicate a PMD mapping of a page range of a folio
371  * @folio:	The folio to duplicate the mapping of
372  * @page:	The first page to duplicate the mapping of
373  *
374  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
375  *
376  * The caller needs to hold the page table lock.
377  */
378 static inline void folio_dup_file_rmap_pmd(struct folio *folio,
379 		struct page *page)
380 {
381 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
382 	__folio_dup_file_rmap(folio, page, HPAGE_PMD_NR, RMAP_LEVEL_PTE);
383 #else
384 	WARN_ON_ONCE(true);
385 #endif
386 }
387 
388 static __always_inline int __folio_try_dup_anon_rmap(struct folio *folio,
389 		struct page *page, int nr_pages, struct vm_area_struct *src_vma,
390 		enum rmap_level level)
391 {
392 	const int orig_nr_pages = nr_pages;
393 	bool maybe_pinned;
394 	int i;
395 
396 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
397 	__folio_rmap_sanity_checks(folio, page, nr_pages, level);
398 
399 	/*
400 	 * If this folio may have been pinned by the parent process,
401 	 * don't allow to duplicate the mappings but instead require to e.g.,
402 	 * copy the subpage immediately for the child so that we'll always
403 	 * guarantee the pinned folio won't be randomly replaced in the
404 	 * future on write faults.
405 	 */
406 	maybe_pinned = likely(!folio_is_device_private(folio)) &&
407 		       unlikely(folio_needs_cow_for_dma(src_vma, folio));
408 
409 	/*
410 	 * No need to check+clear for already shared PTEs/PMDs of the
411 	 * folio. But if any page is PageAnonExclusive, we must fallback to
412 	 * copying if the folio maybe pinned.
413 	 */
414 	switch (level) {
415 	case RMAP_LEVEL_PTE:
416 		if (unlikely(maybe_pinned)) {
417 			for (i = 0; i < nr_pages; i++)
418 				if (PageAnonExclusive(page + i))
419 					return -EBUSY;
420 		}
421 
422 		if (!folio_test_large(folio)) {
423 			if (PageAnonExclusive(page))
424 				ClearPageAnonExclusive(page);
425 			atomic_inc(&page->_mapcount);
426 			break;
427 		}
428 
429 		do {
430 			if (PageAnonExclusive(page))
431 				ClearPageAnonExclusive(page);
432 			atomic_inc(&page->_mapcount);
433 		} while (page++, --nr_pages > 0);
434 		atomic_add(orig_nr_pages, &folio->_large_mapcount);
435 		break;
436 	case RMAP_LEVEL_PMD:
437 		if (PageAnonExclusive(page)) {
438 			if (unlikely(maybe_pinned))
439 				return -EBUSY;
440 			ClearPageAnonExclusive(page);
441 		}
442 		atomic_inc(&folio->_entire_mapcount);
443 		atomic_inc(&folio->_large_mapcount);
444 		break;
445 	}
446 	return 0;
447 }
448 
449 /**
450  * folio_try_dup_anon_rmap_ptes - try duplicating PTE mappings of a page range
451  *				  of a folio
452  * @folio:	The folio to duplicate the mappings of
453  * @page:	The first page to duplicate the mappings of
454  * @nr_pages:	The number of pages of which the mapping will be duplicated
455  * @src_vma:	The vm area from which the mappings are duplicated
456  *
457  * The page range of the folio is defined by [page, page + nr_pages)
458  *
459  * The caller needs to hold the page table lock and the
460  * vma->vma_mm->write_protect_seq.
461  *
462  * Duplicating the mappings can only fail if the folio may be pinned; device
463  * private folios cannot get pinned and consequently this function cannot fail
464  * for them.
465  *
466  * If duplicating the mappings succeeded, the duplicated PTEs have to be R/O in
467  * the parent and the child. They must *not* be writable after this call
468  * succeeded.
469  *
470  * Returns 0 if duplicating the mappings succeeded. Returns -EBUSY otherwise.
471  */
472 static inline int folio_try_dup_anon_rmap_ptes(struct folio *folio,
473 		struct page *page, int nr_pages, struct vm_area_struct *src_vma)
474 {
475 	return __folio_try_dup_anon_rmap(folio, page, nr_pages, src_vma,
476 					 RMAP_LEVEL_PTE);
477 }
478 
479 static __always_inline int folio_try_dup_anon_rmap_pte(struct folio *folio,
480 		struct page *page, struct vm_area_struct *src_vma)
481 {
482 	return __folio_try_dup_anon_rmap(folio, page, 1, src_vma,
483 					 RMAP_LEVEL_PTE);
484 }
485 
486 /**
487  * folio_try_dup_anon_rmap_pmd - try duplicating a PMD mapping of a page range
488  *				 of a folio
489  * @folio:	The folio to duplicate the mapping of
490  * @page:	The first page to duplicate the mapping of
491  * @src_vma:	The vm area from which the mapping is duplicated
492  *
493  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
494  *
495  * The caller needs to hold the page table lock and the
496  * vma->vma_mm->write_protect_seq.
497  *
498  * Duplicating the mapping can only fail if the folio may be pinned; device
499  * private folios cannot get pinned and consequently this function cannot fail
500  * for them.
501  *
502  * If duplicating the mapping succeeds, the duplicated PMD has to be R/O in
503  * the parent and the child. They must *not* be writable after this call
504  * succeeded.
505  *
506  * Returns 0 if duplicating the mapping succeeded. Returns -EBUSY otherwise.
507  */
508 static inline int folio_try_dup_anon_rmap_pmd(struct folio *folio,
509 		struct page *page, struct vm_area_struct *src_vma)
510 {
511 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
512 	return __folio_try_dup_anon_rmap(folio, page, HPAGE_PMD_NR, src_vma,
513 					 RMAP_LEVEL_PMD);
514 #else
515 	WARN_ON_ONCE(true);
516 	return -EBUSY;
517 #endif
518 }
519 
520 static __always_inline int __folio_try_share_anon_rmap(struct folio *folio,
521 		struct page *page, int nr_pages, enum rmap_level level)
522 {
523 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
524 	VM_WARN_ON_FOLIO(!PageAnonExclusive(page), folio);
525 	__folio_rmap_sanity_checks(folio, page, nr_pages, level);
526 
527 	/* device private folios cannot get pinned via GUP. */
528 	if (unlikely(folio_is_device_private(folio))) {
529 		ClearPageAnonExclusive(page);
530 		return 0;
531 	}
532 
533 	/*
534 	 * We have to make sure that when we clear PageAnonExclusive, that
535 	 * the page is not pinned and that concurrent GUP-fast won't succeed in
536 	 * concurrently pinning the page.
537 	 *
538 	 * Conceptually, PageAnonExclusive clearing consists of:
539 	 * (A1) Clear PTE
540 	 * (A2) Check if the page is pinned; back off if so.
541 	 * (A3) Clear PageAnonExclusive
542 	 * (A4) Restore PTE (optional, but certainly not writable)
543 	 *
544 	 * When clearing PageAnonExclusive, we cannot possibly map the page
545 	 * writable again, because anon pages that may be shared must never
546 	 * be writable. So in any case, if the PTE was writable it cannot
547 	 * be writable anymore afterwards and there would be a PTE change. Only
548 	 * if the PTE wasn't writable, there might not be a PTE change.
549 	 *
550 	 * Conceptually, GUP-fast pinning of an anon page consists of:
551 	 * (B1) Read the PTE
552 	 * (B2) FOLL_WRITE: check if the PTE is not writable; back off if so.
553 	 * (B3) Pin the mapped page
554 	 * (B4) Check if the PTE changed by re-reading it; back off if so.
555 	 * (B5) If the original PTE is not writable, check if
556 	 *	PageAnonExclusive is not set; back off if so.
557 	 *
558 	 * If the PTE was writable, we only have to make sure that GUP-fast
559 	 * observes a PTE change and properly backs off.
560 	 *
561 	 * If the PTE was not writable, we have to make sure that GUP-fast either
562 	 * detects a (temporary) PTE change or that PageAnonExclusive is cleared
563 	 * and properly backs off.
564 	 *
565 	 * Consequently, when clearing PageAnonExclusive(), we have to make
566 	 * sure that (A1), (A2)/(A3) and (A4) happen in the right memory
567 	 * order. In GUP-fast pinning code, we have to make sure that (B3),(B4)
568 	 * and (B5) happen in the right memory order.
569 	 *
570 	 * We assume that there might not be a memory barrier after
571 	 * clearing/invalidating the PTE (A1) and before restoring the PTE (A4),
572 	 * so we use explicit ones here.
573 	 */
574 
575 	/* Paired with the memory barrier in try_grab_folio(). */
576 	if (IS_ENABLED(CONFIG_HAVE_GUP_FAST))
577 		smp_mb();
578 
579 	if (unlikely(folio_maybe_dma_pinned(folio)))
580 		return -EBUSY;
581 	ClearPageAnonExclusive(page);
582 
583 	/*
584 	 * This is conceptually a smp_wmb() paired with the smp_rmb() in
585 	 * gup_must_unshare().
586 	 */
587 	if (IS_ENABLED(CONFIG_HAVE_GUP_FAST))
588 		smp_mb__after_atomic();
589 	return 0;
590 }
591 
592 /**
593  * folio_try_share_anon_rmap_pte - try marking an exclusive anonymous page
594  *				   mapped by a PTE possibly shared to prepare
595  *				   for KSM or temporary unmapping
596  * @folio:	The folio to share a mapping of
597  * @page:	The mapped exclusive page
598  *
599  * The caller needs to hold the page table lock and has to have the page table
600  * entries cleared/invalidated.
601  *
602  * This is similar to folio_try_dup_anon_rmap_pte(), however, not used during
603  * fork() to duplicate mappings, but instead to prepare for KSM or temporarily
604  * unmapping parts of a folio (swap, migration) via folio_remove_rmap_pte().
605  *
606  * Marking the mapped page shared can only fail if the folio maybe pinned;
607  * device private folios cannot get pinned and consequently this function cannot
608  * fail.
609  *
610  * Returns 0 if marking the mapped page possibly shared succeeded. Returns
611  * -EBUSY otherwise.
612  */
613 static inline int folio_try_share_anon_rmap_pte(struct folio *folio,
614 		struct page *page)
615 {
616 	return __folio_try_share_anon_rmap(folio, page, 1, RMAP_LEVEL_PTE);
617 }
618 
619 /**
620  * folio_try_share_anon_rmap_pmd - try marking an exclusive anonymous page
621  *				   range mapped by a PMD possibly shared to
622  *				   prepare for temporary unmapping
623  * @folio:	The folio to share the mapping of
624  * @page:	The first page to share the mapping of
625  *
626  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
627  *
628  * The caller needs to hold the page table lock and has to have the page table
629  * entries cleared/invalidated.
630  *
631  * This is similar to folio_try_dup_anon_rmap_pmd(), however, not used during
632  * fork() to duplicate a mapping, but instead to prepare for temporarily
633  * unmapping parts of a folio (swap, migration) via folio_remove_rmap_pmd().
634  *
635  * Marking the mapped pages shared can only fail if the folio maybe pinned;
636  * device private folios cannot get pinned and consequently this function cannot
637  * fail.
638  *
639  * Returns 0 if marking the mapped pages possibly shared succeeded. Returns
640  * -EBUSY otherwise.
641  */
642 static inline int folio_try_share_anon_rmap_pmd(struct folio *folio,
643 		struct page *page)
644 {
645 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
646 	return __folio_try_share_anon_rmap(folio, page, HPAGE_PMD_NR,
647 					   RMAP_LEVEL_PMD);
648 #else
649 	WARN_ON_ONCE(true);
650 	return -EBUSY;
651 #endif
652 }
653 
654 /*
655  * Called from mm/vmscan.c to handle paging out
656  */
657 int folio_referenced(struct folio *, int is_locked,
658 			struct mem_cgroup *memcg, unsigned long *vm_flags);
659 
660 void try_to_migrate(struct folio *folio, enum ttu_flags flags);
661 void try_to_unmap(struct folio *, enum ttu_flags flags);
662 
663 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
664 				unsigned long end, struct page **pages,
665 				void *arg);
666 
667 /* Avoid racy checks */
668 #define PVMW_SYNC		(1 << 0)
669 /* Look for migration entries rather than present PTEs */
670 #define PVMW_MIGRATION		(1 << 1)
671 
672 struct page_vma_mapped_walk {
673 	unsigned long pfn;
674 	unsigned long nr_pages;
675 	pgoff_t pgoff;
676 	struct vm_area_struct *vma;
677 	unsigned long address;
678 	pmd_t *pmd;
679 	pte_t *pte;
680 	spinlock_t *ptl;
681 	unsigned int flags;
682 };
683 
684 #define DEFINE_PAGE_VMA_WALK(name, _page, _vma, _address, _flags)	\
685 	struct page_vma_mapped_walk name = {				\
686 		.pfn = page_to_pfn(_page),				\
687 		.nr_pages = compound_nr(_page),				\
688 		.pgoff = page_to_pgoff(_page),				\
689 		.vma = _vma,						\
690 		.address = _address,					\
691 		.flags = _flags,					\
692 	}
693 
694 #define DEFINE_FOLIO_VMA_WALK(name, _folio, _vma, _address, _flags)	\
695 	struct page_vma_mapped_walk name = {				\
696 		.pfn = folio_pfn(_folio),				\
697 		.nr_pages = folio_nr_pages(_folio),			\
698 		.pgoff = folio_pgoff(_folio),				\
699 		.vma = _vma,						\
700 		.address = _address,					\
701 		.flags = _flags,					\
702 	}
703 
704 static inline void page_vma_mapped_walk_done(struct page_vma_mapped_walk *pvmw)
705 {
706 	/* HugeTLB pte is set to the relevant page table entry without pte_mapped. */
707 	if (pvmw->pte && !is_vm_hugetlb_page(pvmw->vma))
708 		pte_unmap(pvmw->pte);
709 	if (pvmw->ptl)
710 		spin_unlock(pvmw->ptl);
711 }
712 
713 bool page_vma_mapped_walk(struct page_vma_mapped_walk *pvmw);
714 
715 /*
716  * Used by swapoff to help locate where page is expected in vma.
717  */
718 unsigned long page_address_in_vma(struct page *, struct vm_area_struct *);
719 
720 /*
721  * Cleans the PTEs of shared mappings.
722  * (and since clean PTEs should also be readonly, write protects them too)
723  *
724  * returns the number of cleaned PTEs.
725  */
726 int folio_mkclean(struct folio *);
727 
728 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
729 		      struct vm_area_struct *vma);
730 
731 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked);
732 
733 unsigned long page_mapped_in_vma(struct page *page, struct vm_area_struct *vma);
734 
735 /*
736  * rmap_walk_control: To control rmap traversing for specific needs
737  *
738  * arg: passed to rmap_one() and invalid_vma()
739  * try_lock: bail out if the rmap lock is contended
740  * contended: indicate the rmap traversal bailed out due to lock contention
741  * rmap_one: executed on each vma where page is mapped
742  * done: for checking traversing termination condition
743  * anon_lock: for getting anon_lock by optimized way rather than default
744  * invalid_vma: for skipping uninterested vma
745  */
746 struct rmap_walk_control {
747 	void *arg;
748 	bool try_lock;
749 	bool contended;
750 	/*
751 	 * Return false if page table scanning in rmap_walk should be stopped.
752 	 * Otherwise, return true.
753 	 */
754 	bool (*rmap_one)(struct folio *folio, struct vm_area_struct *vma,
755 					unsigned long addr, void *arg);
756 	int (*done)(struct folio *folio);
757 	struct anon_vma *(*anon_lock)(struct folio *folio,
758 				      struct rmap_walk_control *rwc);
759 	bool (*invalid_vma)(struct vm_area_struct *vma, void *arg);
760 };
761 
762 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc);
763 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc);
764 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
765 					  struct rmap_walk_control *rwc);
766 
767 #else	/* !CONFIG_MMU */
768 
769 #define anon_vma_init()		do {} while (0)
770 #define anon_vma_prepare(vma)	(0)
771 
772 static inline int folio_referenced(struct folio *folio, int is_locked,
773 				  struct mem_cgroup *memcg,
774 				  unsigned long *vm_flags)
775 {
776 	*vm_flags = 0;
777 	return 0;
778 }
779 
780 static inline void try_to_unmap(struct folio *folio, enum ttu_flags flags)
781 {
782 }
783 
784 static inline int folio_mkclean(struct folio *folio)
785 {
786 	return 0;
787 }
788 #endif	/* CONFIG_MMU */
789 
790 static inline int page_mkclean(struct page *page)
791 {
792 	return folio_mkclean(page_folio(page));
793 }
794 #endif	/* _LINUX_RMAP_H */
795