1 /*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26 /*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30 * Dave Airlie
31 */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/dma-buf.h>
42 #include <linux/sizes.h>
43 #include <linux/module.h>
44
45 #include <drm/drm_drv.h>
46 #include <drm/ttm/ttm_bo.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 #include <drm/ttm/ttm_tt.h>
50
51 #include <drm/amdgpu_drm.h>
52
53 #include "amdgpu.h"
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_hmm.h"
60 #include "amdgpu_atomfirmware.h"
61 #include "amdgpu_res_cursor.h"
62 #include "bif/bif_4_1_d.h"
63
64 MODULE_IMPORT_NS("DMA_BUF");
65
66 #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128)
67
68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69 struct ttm_tt *ttm,
70 struct ttm_resource *bo_mem);
71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72 struct ttm_tt *ttm);
73
amdgpu_ttm_init_on_chip(struct amdgpu_device * adev,unsigned int type,uint64_t size_in_page)74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75 unsigned int type,
76 uint64_t size_in_page)
77 {
78 return ttm_range_man_init(&adev->mman.bdev, type,
79 false, size_in_page);
80 }
81
82 /**
83 * amdgpu_evict_flags - Compute placement flags
84 *
85 * @bo: The buffer object to evict
86 * @placement: Possible destination(s) for evicted BO
87 *
88 * Fill in placement data when ttm_bo_evict() is called
89 */
amdgpu_evict_flags(struct ttm_buffer_object * bo,struct ttm_placement * placement)90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 struct ttm_placement *placement)
92 {
93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94 struct amdgpu_bo *abo;
95 static const struct ttm_place placements = {
96 .fpfn = 0,
97 .lpfn = 0,
98 .mem_type = TTM_PL_SYSTEM,
99 .flags = 0
100 };
101
102 /* Don't handle scatter gather BOs */
103 if (bo->type == ttm_bo_type_sg) {
104 placement->num_placement = 0;
105 return;
106 }
107
108 /* Object isn't an AMDGPU object so ignore */
109 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
110 placement->placement = &placements;
111 placement->num_placement = 1;
112 return;
113 }
114
115 abo = ttm_to_amdgpu_bo(bo);
116 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
117 placement->num_placement = 0;
118 return;
119 }
120
121 switch (bo->resource->mem_type) {
122 case AMDGPU_PL_GDS:
123 case AMDGPU_PL_GWS:
124 case AMDGPU_PL_OA:
125 case AMDGPU_PL_DOORBELL:
126 placement->num_placement = 0;
127 return;
128
129 case TTM_PL_VRAM:
130 if (!adev->mman.buffer_funcs_enabled) {
131 /* Move to system memory */
132 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
133
134 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
135 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
136 amdgpu_res_cpu_visible(adev, bo->resource)) {
137
138 /* Try evicting to the CPU inaccessible part of VRAM
139 * first, but only set GTT as busy placement, so this
140 * BO will be evicted to GTT rather than causing other
141 * BOs to be evicted from VRAM
142 */
143 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
144 AMDGPU_GEM_DOMAIN_GTT |
145 AMDGPU_GEM_DOMAIN_CPU);
146 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
147 abo->placements[0].lpfn = 0;
148 abo->placements[0].flags |= TTM_PL_FLAG_DESIRED;
149 } else {
150 /* Move to GTT memory */
151 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
152 AMDGPU_GEM_DOMAIN_CPU);
153 }
154 break;
155 case TTM_PL_TT:
156 case AMDGPU_PL_PREEMPT:
157 default:
158 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
159 break;
160 }
161 *placement = abo->placement;
162 }
163
164 /**
165 * amdgpu_ttm_map_buffer - Map memory into the GART windows
166 * @bo: buffer object to map
167 * @mem: memory object to map
168 * @mm_cur: range to map
169 * @window: which GART window to use
170 * @ring: DMA ring to use for the copy
171 * @tmz: if we should setup a TMZ enabled mapping
172 * @size: in number of bytes to map, out number of bytes mapped
173 * @addr: resulting address inside the MC address space
174 *
175 * Setup one of the GART windows to access a specific piece of memory or return
176 * the physical address for local memory.
177 */
amdgpu_ttm_map_buffer(struct ttm_buffer_object * bo,struct ttm_resource * mem,struct amdgpu_res_cursor * mm_cur,unsigned int window,struct amdgpu_ring * ring,bool tmz,uint64_t * size,uint64_t * addr)178 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
179 struct ttm_resource *mem,
180 struct amdgpu_res_cursor *mm_cur,
181 unsigned int window, struct amdgpu_ring *ring,
182 bool tmz, uint64_t *size, uint64_t *addr)
183 {
184 struct amdgpu_device *adev = ring->adev;
185 unsigned int offset, num_pages, num_dw, num_bytes;
186 uint64_t src_addr, dst_addr;
187 struct amdgpu_job *job;
188 void *cpu_addr;
189 uint64_t flags;
190 unsigned int i;
191 int r;
192
193 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
194 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
195
196 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
197 return -EINVAL;
198
199 /* Map only what can't be accessed directly */
200 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
201 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
202 mm_cur->start;
203 return 0;
204 }
205
206
207 /*
208 * If start begins at an offset inside the page, then adjust the size
209 * and addr accordingly
210 */
211 offset = mm_cur->start & ~PAGE_MASK;
212
213 num_pages = PFN_UP(*size + offset);
214 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
215
216 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
217
218 *addr = adev->gmc.gart_start;
219 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
220 AMDGPU_GPU_PAGE_SIZE;
221 *addr += offset;
222
223 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
224 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
225
226 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
227 AMDGPU_FENCE_OWNER_UNDEFINED,
228 num_dw * 4 + num_bytes,
229 AMDGPU_IB_POOL_DELAYED, &job);
230 if (r)
231 return r;
232
233 src_addr = num_dw * 4;
234 src_addr += job->ibs[0].gpu_addr;
235
236 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
237 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
238 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
239 dst_addr, num_bytes, 0);
240
241 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
242 WARN_ON(job->ibs[0].length_dw > num_dw);
243
244 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
245 if (tmz)
246 flags |= AMDGPU_PTE_TMZ;
247
248 cpu_addr = &job->ibs[0].ptr[num_dw];
249
250 if (mem->mem_type == TTM_PL_TT) {
251 dma_addr_t *dma_addr;
252
253 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
254 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
255 } else {
256 dma_addr_t dma_address;
257
258 dma_address = mm_cur->start;
259 dma_address += adev->vm_manager.vram_base_offset;
260
261 for (i = 0; i < num_pages; ++i) {
262 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
263 flags, cpu_addr);
264 dma_address += PAGE_SIZE;
265 }
266 }
267
268 dma_fence_put(amdgpu_job_submit(job));
269 return 0;
270 }
271
272 /**
273 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
274 * @adev: amdgpu device
275 * @src: buffer/address where to read from
276 * @dst: buffer/address where to write to
277 * @size: number of bytes to copy
278 * @tmz: if a secure copy should be used
279 * @resv: resv object to sync to
280 * @f: Returns the last fence if multiple jobs are submitted.
281 *
282 * The function copies @size bytes from {src->mem + src->offset} to
283 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
284 * move and different for a BO to BO copy.
285 *
286 */
amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device * adev,const struct amdgpu_copy_mem * src,const struct amdgpu_copy_mem * dst,uint64_t size,bool tmz,struct dma_resv * resv,struct dma_fence ** f)287 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
288 const struct amdgpu_copy_mem *src,
289 const struct amdgpu_copy_mem *dst,
290 uint64_t size, bool tmz,
291 struct dma_resv *resv,
292 struct dma_fence **f)
293 {
294 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
295 struct amdgpu_res_cursor src_mm, dst_mm;
296 struct dma_fence *fence = NULL;
297 int r = 0;
298 uint32_t copy_flags = 0;
299 struct amdgpu_bo *abo_src, *abo_dst;
300
301 if (!adev->mman.buffer_funcs_enabled) {
302 DRM_ERROR("Trying to move memory with ring turned off.\n");
303 return -EINVAL;
304 }
305
306 amdgpu_res_first(src->mem, src->offset, size, &src_mm);
307 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
308
309 mutex_lock(&adev->mman.gtt_window_lock);
310 while (src_mm.remaining) {
311 uint64_t from, to, cur_size, tiling_flags;
312 uint32_t num_type, data_format, max_com;
313 struct dma_fence *next;
314
315 /* Never copy more than 256MiB at once to avoid a timeout */
316 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
317
318 /* Map src to window 0 and dst to window 1. */
319 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
320 0, ring, tmz, &cur_size, &from);
321 if (r)
322 goto error;
323
324 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
325 1, ring, tmz, &cur_size, &to);
326 if (r)
327 goto error;
328
329 abo_src = ttm_to_amdgpu_bo(src->bo);
330 abo_dst = ttm_to_amdgpu_bo(dst->bo);
331 if (tmz)
332 copy_flags |= AMDGPU_COPY_FLAGS_TMZ;
333 if ((abo_src->flags & AMDGPU_GEM_CREATE_GFX12_DCC) &&
334 (abo_src->tbo.resource->mem_type == TTM_PL_VRAM))
335 copy_flags |= AMDGPU_COPY_FLAGS_READ_DECOMPRESSED;
336 if ((abo_dst->flags & AMDGPU_GEM_CREATE_GFX12_DCC) &&
337 (dst->mem->mem_type == TTM_PL_VRAM)) {
338 copy_flags |= AMDGPU_COPY_FLAGS_WRITE_COMPRESSED;
339 amdgpu_bo_get_tiling_flags(abo_dst, &tiling_flags);
340 max_com = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_MAX_COMPRESSED_BLOCK);
341 num_type = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_NUMBER_TYPE);
342 data_format = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_DATA_FORMAT);
343 copy_flags |= (AMDGPU_COPY_FLAGS_SET(MAX_COMPRESSED, max_com) |
344 AMDGPU_COPY_FLAGS_SET(NUMBER_TYPE, num_type) |
345 AMDGPU_COPY_FLAGS_SET(DATA_FORMAT, data_format));
346 }
347
348 r = amdgpu_copy_buffer(ring, from, to, cur_size, resv,
349 &next, false, true, copy_flags);
350 if (r)
351 goto error;
352
353 dma_fence_put(fence);
354 fence = next;
355
356 amdgpu_res_next(&src_mm, cur_size);
357 amdgpu_res_next(&dst_mm, cur_size);
358 }
359 error:
360 mutex_unlock(&adev->mman.gtt_window_lock);
361 if (f)
362 *f = dma_fence_get(fence);
363 dma_fence_put(fence);
364 return r;
365 }
366
367 /*
368 * amdgpu_move_blit - Copy an entire buffer to another buffer
369 *
370 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
371 * help move buffers to and from VRAM.
372 */
amdgpu_move_blit(struct ttm_buffer_object * bo,bool evict,struct ttm_resource * new_mem,struct ttm_resource * old_mem)373 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
374 bool evict,
375 struct ttm_resource *new_mem,
376 struct ttm_resource *old_mem)
377 {
378 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
379 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
380 struct amdgpu_copy_mem src, dst;
381 struct dma_fence *fence = NULL;
382 int r;
383
384 src.bo = bo;
385 dst.bo = bo;
386 src.mem = old_mem;
387 dst.mem = new_mem;
388 src.offset = 0;
389 dst.offset = 0;
390
391 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
392 new_mem->size,
393 amdgpu_bo_encrypted(abo),
394 bo->base.resv, &fence);
395 if (r)
396 goto error;
397
398 /* clear the space being freed */
399 if (old_mem->mem_type == TTM_PL_VRAM &&
400 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
401 struct dma_fence *wipe_fence = NULL;
402
403 r = amdgpu_fill_buffer(abo, 0, NULL, &wipe_fence,
404 false);
405 if (r) {
406 goto error;
407 } else if (wipe_fence) {
408 amdgpu_vram_mgr_set_cleared(bo->resource);
409 dma_fence_put(fence);
410 fence = wipe_fence;
411 }
412 }
413
414 /* Always block for VM page tables before committing the new location */
415 if (bo->type == ttm_bo_type_kernel)
416 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
417 else
418 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
419 dma_fence_put(fence);
420 return r;
421
422 error:
423 if (fence)
424 dma_fence_wait(fence, false);
425 dma_fence_put(fence);
426 return r;
427 }
428
429 /**
430 * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU
431 * @adev: amdgpu device
432 * @res: the resource to check
433 *
434 * Returns: true if the full resource is CPU visible, false otherwise.
435 */
amdgpu_res_cpu_visible(struct amdgpu_device * adev,struct ttm_resource * res)436 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev,
437 struct ttm_resource *res)
438 {
439 struct amdgpu_res_cursor cursor;
440
441 if (!res)
442 return false;
443
444 if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT ||
445 res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL)
446 return true;
447
448 if (res->mem_type != TTM_PL_VRAM)
449 return false;
450
451 amdgpu_res_first(res, 0, res->size, &cursor);
452 while (cursor.remaining) {
453 if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size)
454 return false;
455 amdgpu_res_next(&cursor, cursor.size);
456 }
457
458 return true;
459 }
460
461 /*
462 * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy
463 *
464 * Called by amdgpu_bo_move()
465 */
amdgpu_res_copyable(struct amdgpu_device * adev,struct ttm_resource * mem)466 static bool amdgpu_res_copyable(struct amdgpu_device *adev,
467 struct ttm_resource *mem)
468 {
469 if (!amdgpu_res_cpu_visible(adev, mem))
470 return false;
471
472 /* ttm_resource_ioremap only supports contiguous memory */
473 if (mem->mem_type == TTM_PL_VRAM &&
474 !(mem->placement & TTM_PL_FLAG_CONTIGUOUS))
475 return false;
476
477 return true;
478 }
479
480 /*
481 * amdgpu_bo_move - Move a buffer object to a new memory location
482 *
483 * Called by ttm_bo_handle_move_mem()
484 */
amdgpu_bo_move(struct ttm_buffer_object * bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_resource * new_mem,struct ttm_place * hop)485 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
486 struct ttm_operation_ctx *ctx,
487 struct ttm_resource *new_mem,
488 struct ttm_place *hop)
489 {
490 struct amdgpu_device *adev;
491 struct amdgpu_bo *abo;
492 struct ttm_resource *old_mem = bo->resource;
493 int r;
494
495 if (new_mem->mem_type == TTM_PL_TT ||
496 new_mem->mem_type == AMDGPU_PL_PREEMPT) {
497 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
498 if (r)
499 return r;
500 }
501
502 abo = ttm_to_amdgpu_bo(bo);
503 adev = amdgpu_ttm_adev(bo->bdev);
504
505 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
506 bo->ttm == NULL)) {
507 amdgpu_bo_move_notify(bo, evict, new_mem);
508 ttm_bo_move_null(bo, new_mem);
509 return 0;
510 }
511 if (old_mem->mem_type == TTM_PL_SYSTEM &&
512 (new_mem->mem_type == TTM_PL_TT ||
513 new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
514 amdgpu_bo_move_notify(bo, evict, new_mem);
515 ttm_bo_move_null(bo, new_mem);
516 return 0;
517 }
518 if ((old_mem->mem_type == TTM_PL_TT ||
519 old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
520 new_mem->mem_type == TTM_PL_SYSTEM) {
521 r = ttm_bo_wait_ctx(bo, ctx);
522 if (r)
523 return r;
524
525 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
526 amdgpu_bo_move_notify(bo, evict, new_mem);
527 ttm_resource_free(bo, &bo->resource);
528 ttm_bo_assign_mem(bo, new_mem);
529 return 0;
530 }
531
532 if (old_mem->mem_type == AMDGPU_PL_GDS ||
533 old_mem->mem_type == AMDGPU_PL_GWS ||
534 old_mem->mem_type == AMDGPU_PL_OA ||
535 old_mem->mem_type == AMDGPU_PL_DOORBELL ||
536 new_mem->mem_type == AMDGPU_PL_GDS ||
537 new_mem->mem_type == AMDGPU_PL_GWS ||
538 new_mem->mem_type == AMDGPU_PL_OA ||
539 new_mem->mem_type == AMDGPU_PL_DOORBELL) {
540 /* Nothing to save here */
541 amdgpu_bo_move_notify(bo, evict, new_mem);
542 ttm_bo_move_null(bo, new_mem);
543 return 0;
544 }
545
546 if (bo->type == ttm_bo_type_device &&
547 new_mem->mem_type == TTM_PL_VRAM &&
548 old_mem->mem_type != TTM_PL_VRAM) {
549 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
550 * accesses the BO after it's moved.
551 */
552 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
553 }
554
555 if (adev->mman.buffer_funcs_enabled &&
556 ((old_mem->mem_type == TTM_PL_SYSTEM &&
557 new_mem->mem_type == TTM_PL_VRAM) ||
558 (old_mem->mem_type == TTM_PL_VRAM &&
559 new_mem->mem_type == TTM_PL_SYSTEM))) {
560 hop->fpfn = 0;
561 hop->lpfn = 0;
562 hop->mem_type = TTM_PL_TT;
563 hop->flags = TTM_PL_FLAG_TEMPORARY;
564 return -EMULTIHOP;
565 }
566
567 amdgpu_bo_move_notify(bo, evict, new_mem);
568 if (adev->mman.buffer_funcs_enabled)
569 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
570 else
571 r = -ENODEV;
572
573 if (r) {
574 /* Check that all memory is CPU accessible */
575 if (!amdgpu_res_copyable(adev, old_mem) ||
576 !amdgpu_res_copyable(adev, new_mem)) {
577 pr_err("Move buffer fallback to memcpy unavailable\n");
578 return r;
579 }
580
581 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
582 if (r)
583 return r;
584 }
585
586 /* update statistics after the move */
587 if (evict)
588 atomic64_inc(&adev->num_evictions);
589 atomic64_add(bo->base.size, &adev->num_bytes_moved);
590 return 0;
591 }
592
593 /*
594 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
595 *
596 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
597 */
amdgpu_ttm_io_mem_reserve(struct ttm_device * bdev,struct ttm_resource * mem)598 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
599 struct ttm_resource *mem)
600 {
601 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
602
603 switch (mem->mem_type) {
604 case TTM_PL_SYSTEM:
605 /* system memory */
606 return 0;
607 case TTM_PL_TT:
608 case AMDGPU_PL_PREEMPT:
609 break;
610 case TTM_PL_VRAM:
611 mem->bus.offset = mem->start << PAGE_SHIFT;
612
613 if (adev->mman.aper_base_kaddr &&
614 mem->placement & TTM_PL_FLAG_CONTIGUOUS)
615 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
616 mem->bus.offset;
617
618 mem->bus.offset += adev->gmc.aper_base;
619 mem->bus.is_iomem = true;
620 break;
621 case AMDGPU_PL_DOORBELL:
622 mem->bus.offset = mem->start << PAGE_SHIFT;
623 mem->bus.offset += adev->doorbell.base;
624 mem->bus.is_iomem = true;
625 mem->bus.caching = ttm_uncached;
626 break;
627 default:
628 return -EINVAL;
629 }
630 return 0;
631 }
632
amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object * bo,unsigned long page_offset)633 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
634 unsigned long page_offset)
635 {
636 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
637 struct amdgpu_res_cursor cursor;
638
639 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
640 &cursor);
641
642 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
643 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
644
645 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
646 }
647
648 /**
649 * amdgpu_ttm_domain_start - Returns GPU start address
650 * @adev: amdgpu device object
651 * @type: type of the memory
652 *
653 * Returns:
654 * GPU start address of a memory domain
655 */
656
amdgpu_ttm_domain_start(struct amdgpu_device * adev,uint32_t type)657 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
658 {
659 switch (type) {
660 case TTM_PL_TT:
661 return adev->gmc.gart_start;
662 case TTM_PL_VRAM:
663 return adev->gmc.vram_start;
664 }
665
666 return 0;
667 }
668
669 /*
670 * TTM backend functions.
671 */
672 struct amdgpu_ttm_tt {
673 struct ttm_tt ttm;
674 struct drm_gem_object *gobj;
675 u64 offset;
676 uint64_t userptr;
677 struct task_struct *usertask;
678 uint32_t userflags;
679 bool bound;
680 int32_t pool_id;
681 };
682
683 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm)
684
685 #ifdef CONFIG_DRM_AMDGPU_USERPTR
686 /*
687 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
688 * memory and start HMM tracking CPU page table update
689 *
690 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
691 * once afterwards to stop HMM tracking
692 */
amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo * bo,struct page ** pages,struct hmm_range ** range)693 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
694 struct hmm_range **range)
695 {
696 struct ttm_tt *ttm = bo->tbo.ttm;
697 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
698 unsigned long start = gtt->userptr;
699 struct vm_area_struct *vma;
700 struct mm_struct *mm;
701 bool readonly;
702 int r = 0;
703
704 /* Make sure get_user_pages_done() can cleanup gracefully */
705 *range = NULL;
706
707 mm = bo->notifier.mm;
708 if (unlikely(!mm)) {
709 DRM_DEBUG_DRIVER("BO is not registered?\n");
710 return -EFAULT;
711 }
712
713 if (!mmget_not_zero(mm)) /* Happens during process shutdown */
714 return -ESRCH;
715
716 mmap_read_lock(mm);
717 vma = vma_lookup(mm, start);
718 if (unlikely(!vma)) {
719 r = -EFAULT;
720 goto out_unlock;
721 }
722 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
723 vma->vm_file)) {
724 r = -EPERM;
725 goto out_unlock;
726 }
727
728 readonly = amdgpu_ttm_tt_is_readonly(ttm);
729 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
730 readonly, NULL, pages, range);
731 out_unlock:
732 mmap_read_unlock(mm);
733 if (r)
734 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
735
736 mmput(mm);
737
738 return r;
739 }
740
741 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
742 */
amdgpu_ttm_tt_discard_user_pages(struct ttm_tt * ttm,struct hmm_range * range)743 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
744 struct hmm_range *range)
745 {
746 struct amdgpu_ttm_tt *gtt = (void *)ttm;
747
748 if (gtt && gtt->userptr && range)
749 amdgpu_hmm_range_get_pages_done(range);
750 }
751
752 /*
753 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
754 * Check if the pages backing this ttm range have been invalidated
755 *
756 * Returns: true if pages are still valid
757 */
amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt * ttm,struct hmm_range * range)758 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
759 struct hmm_range *range)
760 {
761 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
762
763 if (!gtt || !gtt->userptr || !range)
764 return false;
765
766 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
767 gtt->userptr, ttm->num_pages);
768
769 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
770
771 return !amdgpu_hmm_range_get_pages_done(range);
772 }
773 #endif
774
775 /*
776 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
777 *
778 * Called by amdgpu_cs_list_validate(). This creates the page list
779 * that backs user memory and will ultimately be mapped into the device
780 * address space.
781 */
amdgpu_ttm_tt_set_user_pages(struct ttm_tt * ttm,struct page ** pages)782 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
783 {
784 unsigned long i;
785
786 for (i = 0; i < ttm->num_pages; ++i)
787 ttm->pages[i] = pages ? pages[i] : NULL;
788 }
789
790 /*
791 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
792 *
793 * Called by amdgpu_ttm_backend_bind()
794 **/
amdgpu_ttm_tt_pin_userptr(struct ttm_device * bdev,struct ttm_tt * ttm)795 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
796 struct ttm_tt *ttm)
797 {
798 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
799 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
800 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
801 enum dma_data_direction direction = write ?
802 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
803 int r;
804
805 /* Allocate an SG array and squash pages into it */
806 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
807 (u64)ttm->num_pages << PAGE_SHIFT,
808 GFP_KERNEL);
809 if (r)
810 goto release_sg;
811
812 /* Map SG to device */
813 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
814 if (r)
815 goto release_sg_table;
816
817 /* convert SG to linear array of pages and dma addresses */
818 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
819 ttm->num_pages);
820
821 return 0;
822
823 release_sg_table:
824 sg_free_table(ttm->sg);
825 release_sg:
826 kfree(ttm->sg);
827 ttm->sg = NULL;
828 return r;
829 }
830
831 /*
832 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
833 */
amdgpu_ttm_tt_unpin_userptr(struct ttm_device * bdev,struct ttm_tt * ttm)834 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
835 struct ttm_tt *ttm)
836 {
837 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
838 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
839 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
840 enum dma_data_direction direction = write ?
841 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
842
843 /* double check that we don't free the table twice */
844 if (!ttm->sg || !ttm->sg->sgl)
845 return;
846
847 /* unmap the pages mapped to the device */
848 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
849 sg_free_table(ttm->sg);
850 }
851
852 /*
853 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
854 * MQDn+CtrlStackn where n is the number of XCCs per partition.
855 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
856 * and uses memory type default, UC. The rest of pages_per_xcc are
857 * Ctrl stack and modify their memory type to NC.
858 */
amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device * adev,struct ttm_tt * ttm,uint64_t flags)859 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
860 struct ttm_tt *ttm, uint64_t flags)
861 {
862 struct amdgpu_ttm_tt *gtt = (void *)ttm;
863 uint64_t total_pages = ttm->num_pages;
864 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
865 uint64_t page_idx, pages_per_xcc;
866 int i;
867 uint64_t ctrl_flags = AMDGPU_PTE_MTYPE_VG10(flags, AMDGPU_MTYPE_NC);
868
869 pages_per_xcc = total_pages;
870 do_div(pages_per_xcc, num_xcc);
871
872 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
873 /* MQD page: use default flags */
874 amdgpu_gart_bind(adev,
875 gtt->offset + (page_idx << PAGE_SHIFT),
876 1, >t->ttm.dma_address[page_idx], flags);
877 /*
878 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
879 * the second page of the BO onward.
880 */
881 amdgpu_gart_bind(adev,
882 gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
883 pages_per_xcc - 1,
884 >t->ttm.dma_address[page_idx + 1],
885 ctrl_flags);
886 }
887 }
888
amdgpu_ttm_gart_bind(struct amdgpu_device * adev,struct ttm_buffer_object * tbo,uint64_t flags)889 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
890 struct ttm_buffer_object *tbo,
891 uint64_t flags)
892 {
893 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
894 struct ttm_tt *ttm = tbo->ttm;
895 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
896
897 if (amdgpu_bo_encrypted(abo))
898 flags |= AMDGPU_PTE_TMZ;
899
900 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
901 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
902 } else {
903 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
904 gtt->ttm.dma_address, flags);
905 }
906 gtt->bound = true;
907 }
908
909 /*
910 * amdgpu_ttm_backend_bind - Bind GTT memory
911 *
912 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
913 * This handles binding GTT memory to the device address space.
914 */
amdgpu_ttm_backend_bind(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_resource * bo_mem)915 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
916 struct ttm_tt *ttm,
917 struct ttm_resource *bo_mem)
918 {
919 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
920 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
921 uint64_t flags;
922 int r;
923
924 if (!bo_mem)
925 return -EINVAL;
926
927 if (gtt->bound)
928 return 0;
929
930 if (gtt->userptr) {
931 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
932 if (r) {
933 DRM_ERROR("failed to pin userptr\n");
934 return r;
935 }
936 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
937 if (!ttm->sg) {
938 struct dma_buf_attachment *attach;
939 struct sg_table *sgt;
940
941 attach = gtt->gobj->import_attach;
942 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
943 if (IS_ERR(sgt))
944 return PTR_ERR(sgt);
945
946 ttm->sg = sgt;
947 }
948
949 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
950 ttm->num_pages);
951 }
952
953 if (!ttm->num_pages) {
954 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
955 ttm->num_pages, bo_mem, ttm);
956 }
957
958 if (bo_mem->mem_type != TTM_PL_TT ||
959 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
960 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
961 return 0;
962 }
963
964 /* compute PTE flags relevant to this BO memory */
965 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
966
967 /* bind pages into GART page tables */
968 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
969 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
970 gtt->ttm.dma_address, flags);
971 gtt->bound = true;
972 return 0;
973 }
974
975 /*
976 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
977 * through AGP or GART aperture.
978 *
979 * If bo is accessible through AGP aperture, then use AGP aperture
980 * to access bo; otherwise allocate logical space in GART aperture
981 * and map bo to GART aperture.
982 */
amdgpu_ttm_alloc_gart(struct ttm_buffer_object * bo)983 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
984 {
985 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
986 struct ttm_operation_ctx ctx = { false, false };
987 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
988 struct ttm_placement placement;
989 struct ttm_place placements;
990 struct ttm_resource *tmp;
991 uint64_t addr, flags;
992 int r;
993
994 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
995 return 0;
996
997 addr = amdgpu_gmc_agp_addr(bo);
998 if (addr != AMDGPU_BO_INVALID_OFFSET)
999 return 0;
1000
1001 /* allocate GART space */
1002 placement.num_placement = 1;
1003 placement.placement = &placements;
1004 placements.fpfn = 0;
1005 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1006 placements.mem_type = TTM_PL_TT;
1007 placements.flags = bo->resource->placement;
1008
1009 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1010 if (unlikely(r))
1011 return r;
1012
1013 /* compute PTE flags for this buffer object */
1014 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
1015
1016 /* Bind pages */
1017 gtt->offset = (u64)tmp->start << PAGE_SHIFT;
1018 amdgpu_ttm_gart_bind(adev, bo, flags);
1019 amdgpu_gart_invalidate_tlb(adev);
1020 ttm_resource_free(bo, &bo->resource);
1021 ttm_bo_assign_mem(bo, tmp);
1022
1023 return 0;
1024 }
1025
1026 /*
1027 * amdgpu_ttm_recover_gart - Rebind GTT pages
1028 *
1029 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1030 * rebind GTT pages during a GPU reset.
1031 */
amdgpu_ttm_recover_gart(struct ttm_buffer_object * tbo)1032 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1033 {
1034 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1035 uint64_t flags;
1036
1037 if (!tbo->ttm)
1038 return;
1039
1040 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1041 amdgpu_ttm_gart_bind(adev, tbo, flags);
1042 }
1043
1044 /*
1045 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1046 *
1047 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1048 * ttm_tt_destroy().
1049 */
amdgpu_ttm_backend_unbind(struct ttm_device * bdev,struct ttm_tt * ttm)1050 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1051 struct ttm_tt *ttm)
1052 {
1053 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1054 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1055
1056 /* if the pages have userptr pinning then clear that first */
1057 if (gtt->userptr) {
1058 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1059 } else if (ttm->sg && gtt->gobj->import_attach) {
1060 struct dma_buf_attachment *attach;
1061
1062 attach = gtt->gobj->import_attach;
1063 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1064 ttm->sg = NULL;
1065 }
1066
1067 if (!gtt->bound)
1068 return;
1069
1070 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1071 return;
1072
1073 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1074 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1075 gtt->bound = false;
1076 }
1077
amdgpu_ttm_backend_destroy(struct ttm_device * bdev,struct ttm_tt * ttm)1078 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1079 struct ttm_tt *ttm)
1080 {
1081 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1082
1083 if (gtt->usertask)
1084 put_task_struct(gtt->usertask);
1085
1086 ttm_tt_fini(>t->ttm);
1087 kfree(gtt);
1088 }
1089
1090 /**
1091 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1092 *
1093 * @bo: The buffer object to create a GTT ttm_tt object around
1094 * @page_flags: Page flags to be added to the ttm_tt object
1095 *
1096 * Called by ttm_tt_create().
1097 */
amdgpu_ttm_tt_create(struct ttm_buffer_object * bo,uint32_t page_flags)1098 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1099 uint32_t page_flags)
1100 {
1101 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1102 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1103 struct amdgpu_ttm_tt *gtt;
1104 enum ttm_caching caching;
1105
1106 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1107 if (!gtt)
1108 return NULL;
1109
1110 gtt->gobj = &bo->base;
1111 if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1112 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1113 else
1114 gtt->pool_id = abo->xcp_id;
1115
1116 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1117 caching = ttm_write_combined;
1118 else
1119 caching = ttm_cached;
1120
1121 /* allocate space for the uninitialized page entries */
1122 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) {
1123 kfree(gtt);
1124 return NULL;
1125 }
1126 return >t->ttm;
1127 }
1128
1129 /*
1130 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1131 *
1132 * Map the pages of a ttm_tt object to an address space visible
1133 * to the underlying device.
1134 */
amdgpu_ttm_tt_populate(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_operation_ctx * ctx)1135 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1136 struct ttm_tt *ttm,
1137 struct ttm_operation_ctx *ctx)
1138 {
1139 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1140 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1141 struct ttm_pool *pool;
1142 pgoff_t i;
1143 int ret;
1144
1145 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1146 if (gtt->userptr) {
1147 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1148 if (!ttm->sg)
1149 return -ENOMEM;
1150 return 0;
1151 }
1152
1153 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1154 return 0;
1155
1156 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1157 pool = &adev->mman.ttm_pools[gtt->pool_id];
1158 else
1159 pool = &adev->mman.bdev.pool;
1160 ret = ttm_pool_alloc(pool, ttm, ctx);
1161 if (ret)
1162 return ret;
1163
1164 for (i = 0; i < ttm->num_pages; ++i)
1165 ttm->pages[i]->mapping = bdev->dev_mapping;
1166
1167 return 0;
1168 }
1169
1170 /*
1171 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1172 *
1173 * Unmaps pages of a ttm_tt object from the device address space and
1174 * unpopulates the page array backing it.
1175 */
amdgpu_ttm_tt_unpopulate(struct ttm_device * bdev,struct ttm_tt * ttm)1176 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1177 struct ttm_tt *ttm)
1178 {
1179 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1180 struct amdgpu_device *adev;
1181 struct ttm_pool *pool;
1182 pgoff_t i;
1183
1184 amdgpu_ttm_backend_unbind(bdev, ttm);
1185
1186 if (gtt->userptr) {
1187 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1188 kfree(ttm->sg);
1189 ttm->sg = NULL;
1190 return;
1191 }
1192
1193 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1194 return;
1195
1196 for (i = 0; i < ttm->num_pages; ++i)
1197 ttm->pages[i]->mapping = NULL;
1198
1199 adev = amdgpu_ttm_adev(bdev);
1200
1201 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1202 pool = &adev->mman.ttm_pools[gtt->pool_id];
1203 else
1204 pool = &adev->mman.bdev.pool;
1205
1206 return ttm_pool_free(pool, ttm);
1207 }
1208
1209 /**
1210 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1211 * task
1212 *
1213 * @tbo: The ttm_buffer_object that contains the userptr
1214 * @user_addr: The returned value
1215 */
amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object * tbo,uint64_t * user_addr)1216 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1217 uint64_t *user_addr)
1218 {
1219 struct amdgpu_ttm_tt *gtt;
1220
1221 if (!tbo->ttm)
1222 return -EINVAL;
1223
1224 gtt = (void *)tbo->ttm;
1225 *user_addr = gtt->userptr;
1226 return 0;
1227 }
1228
1229 /**
1230 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1231 * task
1232 *
1233 * @bo: The ttm_buffer_object to bind this userptr to
1234 * @addr: The address in the current tasks VM space to use
1235 * @flags: Requirements of userptr object.
1236 *
1237 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1238 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1239 * initialize GPU VM for a KFD process.
1240 */
amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object * bo,uint64_t addr,uint32_t flags)1241 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1242 uint64_t addr, uint32_t flags)
1243 {
1244 struct amdgpu_ttm_tt *gtt;
1245
1246 if (!bo->ttm) {
1247 /* TODO: We want a separate TTM object type for userptrs */
1248 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1249 if (bo->ttm == NULL)
1250 return -ENOMEM;
1251 }
1252
1253 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1254 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1255
1256 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1257 gtt->userptr = addr;
1258 gtt->userflags = flags;
1259
1260 if (gtt->usertask)
1261 put_task_struct(gtt->usertask);
1262 gtt->usertask = current->group_leader;
1263 get_task_struct(gtt->usertask);
1264
1265 return 0;
1266 }
1267
1268 /*
1269 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1270 */
amdgpu_ttm_tt_get_usermm(struct ttm_tt * ttm)1271 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1272 {
1273 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1274
1275 if (gtt == NULL)
1276 return NULL;
1277
1278 if (gtt->usertask == NULL)
1279 return NULL;
1280
1281 return gtt->usertask->mm;
1282 }
1283
1284 /*
1285 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1286 * address range for the current task.
1287 *
1288 */
amdgpu_ttm_tt_affect_userptr(struct ttm_tt * ttm,unsigned long start,unsigned long end,unsigned long * userptr)1289 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1290 unsigned long end, unsigned long *userptr)
1291 {
1292 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1293 unsigned long size;
1294
1295 if (gtt == NULL || !gtt->userptr)
1296 return false;
1297
1298 /* Return false if no part of the ttm_tt object lies within
1299 * the range
1300 */
1301 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1302 if (gtt->userptr > end || gtt->userptr + size <= start)
1303 return false;
1304
1305 if (userptr)
1306 *userptr = gtt->userptr;
1307 return true;
1308 }
1309
1310 /*
1311 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1312 */
amdgpu_ttm_tt_is_userptr(struct ttm_tt * ttm)1313 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1314 {
1315 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1316
1317 if (gtt == NULL || !gtt->userptr)
1318 return false;
1319
1320 return true;
1321 }
1322
1323 /*
1324 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1325 */
amdgpu_ttm_tt_is_readonly(struct ttm_tt * ttm)1326 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1327 {
1328 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1329
1330 if (gtt == NULL)
1331 return false;
1332
1333 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1334 }
1335
1336 /**
1337 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1338 *
1339 * @ttm: The ttm_tt object to compute the flags for
1340 * @mem: The memory registry backing this ttm_tt object
1341 *
1342 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1343 */
amdgpu_ttm_tt_pde_flags(struct ttm_tt * ttm,struct ttm_resource * mem)1344 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1345 {
1346 uint64_t flags = 0;
1347
1348 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1349 flags |= AMDGPU_PTE_VALID;
1350
1351 if (mem && (mem->mem_type == TTM_PL_TT ||
1352 mem->mem_type == AMDGPU_PL_DOORBELL ||
1353 mem->mem_type == AMDGPU_PL_PREEMPT)) {
1354 flags |= AMDGPU_PTE_SYSTEM;
1355
1356 if (ttm->caching == ttm_cached)
1357 flags |= AMDGPU_PTE_SNOOPED;
1358 }
1359
1360 if (mem && mem->mem_type == TTM_PL_VRAM &&
1361 mem->bus.caching == ttm_cached)
1362 flags |= AMDGPU_PTE_SNOOPED;
1363
1364 return flags;
1365 }
1366
1367 /**
1368 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1369 *
1370 * @adev: amdgpu_device pointer
1371 * @ttm: The ttm_tt object to compute the flags for
1372 * @mem: The memory registry backing this ttm_tt object
1373 *
1374 * Figure out the flags to use for a VM PTE (Page Table Entry).
1375 */
amdgpu_ttm_tt_pte_flags(struct amdgpu_device * adev,struct ttm_tt * ttm,struct ttm_resource * mem)1376 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1377 struct ttm_resource *mem)
1378 {
1379 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1380
1381 flags |= adev->gart.gart_pte_flags;
1382 flags |= AMDGPU_PTE_READABLE;
1383
1384 if (!amdgpu_ttm_tt_is_readonly(ttm))
1385 flags |= AMDGPU_PTE_WRITEABLE;
1386
1387 return flags;
1388 }
1389
1390 /*
1391 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1392 * object.
1393 *
1394 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1395 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1396 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1397 * used to clean out a memory space.
1398 */
amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object * bo,const struct ttm_place * place)1399 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1400 const struct ttm_place *place)
1401 {
1402 struct dma_resv_iter resv_cursor;
1403 struct dma_fence *f;
1404
1405 if (!amdgpu_bo_is_amdgpu_bo(bo))
1406 return ttm_bo_eviction_valuable(bo, place);
1407
1408 /* Swapout? */
1409 if (bo->resource->mem_type == TTM_PL_SYSTEM)
1410 return true;
1411
1412 if (bo->type == ttm_bo_type_kernel &&
1413 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1414 return false;
1415
1416 /* If bo is a KFD BO, check if the bo belongs to the current process.
1417 * If true, then return false as any KFD process needs all its BOs to
1418 * be resident to run successfully
1419 */
1420 dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1421 DMA_RESV_USAGE_BOOKKEEP, f) {
1422 if (amdkfd_fence_check_mm(f, current->mm) &&
1423 !(place->flags & TTM_PL_FLAG_CONTIGUOUS))
1424 return false;
1425 }
1426
1427 /* Preemptible BOs don't own system resources managed by the
1428 * driver (pages, VRAM, GART space). They point to resources
1429 * owned by someone else (e.g. pageable memory in user mode
1430 * or a DMABuf). They are used in a preemptible context so we
1431 * can guarantee no deadlocks and good QoS in case of MMU
1432 * notifiers or DMABuf move notifiers from the resource owner.
1433 */
1434 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1435 return false;
1436
1437 if (bo->resource->mem_type == TTM_PL_TT &&
1438 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1439 return false;
1440
1441 return ttm_bo_eviction_valuable(bo, place);
1442 }
1443
amdgpu_ttm_vram_mm_access(struct amdgpu_device * adev,loff_t pos,void * buf,size_t size,bool write)1444 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1445 void *buf, size_t size, bool write)
1446 {
1447 while (size) {
1448 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1449 uint64_t bytes = 4 - (pos & 0x3);
1450 uint32_t shift = (pos & 0x3) * 8;
1451 uint32_t mask = 0xffffffff << shift;
1452 uint32_t value = 0;
1453
1454 if (size < bytes) {
1455 mask &= 0xffffffff >> (bytes - size) * 8;
1456 bytes = size;
1457 }
1458
1459 if (mask != 0xffffffff) {
1460 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1461 if (write) {
1462 value &= ~mask;
1463 value |= (*(uint32_t *)buf << shift) & mask;
1464 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1465 } else {
1466 value = (value & mask) >> shift;
1467 memcpy(buf, &value, bytes);
1468 }
1469 } else {
1470 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1471 }
1472
1473 pos += bytes;
1474 buf += bytes;
1475 size -= bytes;
1476 }
1477 }
1478
amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object * bo,unsigned long offset,void * buf,int len,int write)1479 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1480 unsigned long offset, void *buf,
1481 int len, int write)
1482 {
1483 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1484 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1485 struct amdgpu_res_cursor src_mm;
1486 struct amdgpu_job *job;
1487 struct dma_fence *fence;
1488 uint64_t src_addr, dst_addr;
1489 unsigned int num_dw;
1490 int r, idx;
1491
1492 if (len != PAGE_SIZE)
1493 return -EINVAL;
1494
1495 if (!adev->mman.sdma_access_ptr)
1496 return -EACCES;
1497
1498 if (!drm_dev_enter(adev_to_drm(adev), &idx))
1499 return -ENODEV;
1500
1501 if (write)
1502 memcpy(adev->mman.sdma_access_ptr, buf, len);
1503
1504 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1505 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1506 AMDGPU_FENCE_OWNER_UNDEFINED,
1507 num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1508 &job);
1509 if (r)
1510 goto out;
1511
1512 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1513 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1514 src_mm.start;
1515 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1516 if (write)
1517 swap(src_addr, dst_addr);
1518
1519 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1520 PAGE_SIZE, 0);
1521
1522 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1523 WARN_ON(job->ibs[0].length_dw > num_dw);
1524
1525 fence = amdgpu_job_submit(job);
1526
1527 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1528 r = -ETIMEDOUT;
1529 dma_fence_put(fence);
1530
1531 if (!(r || write))
1532 memcpy(buf, adev->mman.sdma_access_ptr, len);
1533 out:
1534 drm_dev_exit(idx);
1535 return r;
1536 }
1537
1538 /**
1539 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1540 *
1541 * @bo: The buffer object to read/write
1542 * @offset: Offset into buffer object
1543 * @buf: Secondary buffer to write/read from
1544 * @len: Length in bytes of access
1545 * @write: true if writing
1546 *
1547 * This is used to access VRAM that backs a buffer object via MMIO
1548 * access for debugging purposes.
1549 */
amdgpu_ttm_access_memory(struct ttm_buffer_object * bo,unsigned long offset,void * buf,int len,int write)1550 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1551 unsigned long offset, void *buf, int len,
1552 int write)
1553 {
1554 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1555 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1556 struct amdgpu_res_cursor cursor;
1557 int ret = 0;
1558
1559 if (bo->resource->mem_type != TTM_PL_VRAM)
1560 return -EIO;
1561
1562 if (amdgpu_device_has_timeouts_enabled(adev) &&
1563 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1564 return len;
1565
1566 amdgpu_res_first(bo->resource, offset, len, &cursor);
1567 while (cursor.remaining) {
1568 size_t count, size = cursor.size;
1569 loff_t pos = cursor.start;
1570
1571 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1572 size -= count;
1573 if (size) {
1574 /* using MM to access rest vram and handle un-aligned address */
1575 pos += count;
1576 buf += count;
1577 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1578 }
1579
1580 ret += cursor.size;
1581 buf += cursor.size;
1582 amdgpu_res_next(&cursor, cursor.size);
1583 }
1584
1585 return ret;
1586 }
1587
1588 static void
amdgpu_bo_delete_mem_notify(struct ttm_buffer_object * bo)1589 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1590 {
1591 amdgpu_bo_move_notify(bo, false, NULL);
1592 }
1593
1594 static struct ttm_device_funcs amdgpu_bo_driver = {
1595 .ttm_tt_create = &amdgpu_ttm_tt_create,
1596 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1597 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1598 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1599 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1600 .evict_flags = &amdgpu_evict_flags,
1601 .move = &amdgpu_bo_move,
1602 .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1603 .release_notify = &amdgpu_bo_release_notify,
1604 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1605 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1606 .access_memory = &amdgpu_ttm_access_memory,
1607 };
1608
1609 /*
1610 * Firmware Reservation functions
1611 */
1612 /**
1613 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1614 *
1615 * @adev: amdgpu_device pointer
1616 *
1617 * free fw reserved vram if it has been reserved.
1618 */
amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device * adev)1619 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1620 {
1621 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1622 NULL, &adev->mman.fw_vram_usage_va);
1623 }
1624
1625 /*
1626 * Driver Reservation functions
1627 */
1628 /**
1629 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1630 *
1631 * @adev: amdgpu_device pointer
1632 *
1633 * free drv reserved vram if it has been reserved.
1634 */
amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device * adev)1635 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1636 {
1637 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1638 NULL,
1639 &adev->mman.drv_vram_usage_va);
1640 }
1641
1642 /**
1643 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1644 *
1645 * @adev: amdgpu_device pointer
1646 *
1647 * create bo vram reservation from fw.
1648 */
amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device * adev)1649 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1650 {
1651 uint64_t vram_size = adev->gmc.visible_vram_size;
1652
1653 adev->mman.fw_vram_usage_va = NULL;
1654 adev->mman.fw_vram_usage_reserved_bo = NULL;
1655
1656 if (adev->mman.fw_vram_usage_size == 0 ||
1657 adev->mman.fw_vram_usage_size > vram_size)
1658 return 0;
1659
1660 return amdgpu_bo_create_kernel_at(adev,
1661 adev->mman.fw_vram_usage_start_offset,
1662 adev->mman.fw_vram_usage_size,
1663 &adev->mman.fw_vram_usage_reserved_bo,
1664 &adev->mman.fw_vram_usage_va);
1665 }
1666
1667 /**
1668 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1669 *
1670 * @adev: amdgpu_device pointer
1671 *
1672 * create bo vram reservation from drv.
1673 */
amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device * adev)1674 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1675 {
1676 u64 vram_size = adev->gmc.visible_vram_size;
1677
1678 adev->mman.drv_vram_usage_va = NULL;
1679 adev->mman.drv_vram_usage_reserved_bo = NULL;
1680
1681 if (adev->mman.drv_vram_usage_size == 0 ||
1682 adev->mman.drv_vram_usage_size > vram_size)
1683 return 0;
1684
1685 return amdgpu_bo_create_kernel_at(adev,
1686 adev->mman.drv_vram_usage_start_offset,
1687 adev->mman.drv_vram_usage_size,
1688 &adev->mman.drv_vram_usage_reserved_bo,
1689 &adev->mman.drv_vram_usage_va);
1690 }
1691
1692 /*
1693 * Memoy training reservation functions
1694 */
1695
1696 /**
1697 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1698 *
1699 * @adev: amdgpu_device pointer
1700 *
1701 * free memory training reserved vram if it has been reserved.
1702 */
amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device * adev)1703 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1704 {
1705 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1706
1707 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1708 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1709 ctx->c2p_bo = NULL;
1710
1711 return 0;
1712 }
1713
amdgpu_ttm_training_data_block_init(struct amdgpu_device * adev,uint32_t reserve_size)1714 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1715 uint32_t reserve_size)
1716 {
1717 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1718
1719 memset(ctx, 0, sizeof(*ctx));
1720
1721 ctx->c2p_train_data_offset =
1722 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1723 ctx->p2c_train_data_offset =
1724 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1725 ctx->train_data_size =
1726 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1727
1728 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1729 ctx->train_data_size,
1730 ctx->p2c_train_data_offset,
1731 ctx->c2p_train_data_offset);
1732 }
1733
1734 /*
1735 * reserve TMR memory at the top of VRAM which holds
1736 * IP Discovery data and is protected by PSP.
1737 */
amdgpu_ttm_reserve_tmr(struct amdgpu_device * adev)1738 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1739 {
1740 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1741 bool mem_train_support = false;
1742 uint32_t reserve_size = 0;
1743 int ret;
1744
1745 if (adev->bios && !amdgpu_sriov_vf(adev)) {
1746 if (amdgpu_atomfirmware_mem_training_supported(adev))
1747 mem_train_support = true;
1748 else
1749 DRM_DEBUG("memory training does not support!\n");
1750 }
1751
1752 /*
1753 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1754 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1755 *
1756 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1757 * discovery data and G6 memory training data respectively
1758 */
1759 if (adev->bios)
1760 reserve_size =
1761 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1762
1763 if (!adev->bios &&
1764 (amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3) ||
1765 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 4)))
1766 reserve_size = max(reserve_size, (uint32_t)280 << 20);
1767 else if (!reserve_size)
1768 reserve_size = DISCOVERY_TMR_OFFSET;
1769
1770 if (mem_train_support) {
1771 /* reserve vram for mem train according to TMR location */
1772 amdgpu_ttm_training_data_block_init(adev, reserve_size);
1773 ret = amdgpu_bo_create_kernel_at(adev,
1774 ctx->c2p_train_data_offset,
1775 ctx->train_data_size,
1776 &ctx->c2p_bo,
1777 NULL);
1778 if (ret) {
1779 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1780 amdgpu_ttm_training_reserve_vram_fini(adev);
1781 return ret;
1782 }
1783 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1784 }
1785
1786 if (!adev->gmc.is_app_apu) {
1787 ret = amdgpu_bo_create_kernel_at(
1788 adev, adev->gmc.real_vram_size - reserve_size,
1789 reserve_size, &adev->mman.fw_reserved_memory, NULL);
1790 if (ret) {
1791 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1792 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1793 NULL, NULL);
1794 return ret;
1795 }
1796 } else {
1797 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1798 }
1799
1800 return 0;
1801 }
1802
amdgpu_ttm_pools_init(struct amdgpu_device * adev)1803 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1804 {
1805 int i;
1806
1807 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1808 return 0;
1809
1810 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1811 sizeof(*adev->mman.ttm_pools),
1812 GFP_KERNEL);
1813 if (!adev->mman.ttm_pools)
1814 return -ENOMEM;
1815
1816 for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1817 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1818 adev->gmc.mem_partitions[i].numa.node,
1819 false, false);
1820 }
1821 return 0;
1822 }
1823
amdgpu_ttm_pools_fini(struct amdgpu_device * adev)1824 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1825 {
1826 int i;
1827
1828 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1829 return;
1830
1831 for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1832 ttm_pool_fini(&adev->mman.ttm_pools[i]);
1833
1834 kfree(adev->mman.ttm_pools);
1835 adev->mman.ttm_pools = NULL;
1836 }
1837
1838 /*
1839 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1840 * gtt/vram related fields.
1841 *
1842 * This initializes all of the memory space pools that the TTM layer
1843 * will need such as the GTT space (system memory mapped to the device),
1844 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1845 * can be mapped per VMID.
1846 */
amdgpu_ttm_init(struct amdgpu_device * adev)1847 int amdgpu_ttm_init(struct amdgpu_device *adev)
1848 {
1849 uint64_t gtt_size;
1850 int r;
1851
1852 mutex_init(&adev->mman.gtt_window_lock);
1853
1854 dma_set_max_seg_size(adev->dev, UINT_MAX);
1855 /* No others user of address space so set it to 0 */
1856 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1857 adev_to_drm(adev)->anon_inode->i_mapping,
1858 adev_to_drm(adev)->vma_offset_manager,
1859 adev->need_swiotlb,
1860 dma_addressing_limited(adev->dev));
1861 if (r) {
1862 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1863 return r;
1864 }
1865
1866 r = amdgpu_ttm_pools_init(adev);
1867 if (r) {
1868 DRM_ERROR("failed to init ttm pools(%d).\n", r);
1869 return r;
1870 }
1871 adev->mman.initialized = true;
1872
1873 /* Initialize VRAM pool with all of VRAM divided into pages */
1874 r = amdgpu_vram_mgr_init(adev);
1875 if (r) {
1876 DRM_ERROR("Failed initializing VRAM heap.\n");
1877 return r;
1878 }
1879
1880 /* Change the size here instead of the init above so only lpfn is affected */
1881 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1882 #ifdef CONFIG_64BIT
1883 #ifdef CONFIG_X86
1884 if (adev->gmc.xgmi.connected_to_cpu)
1885 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1886 adev->gmc.visible_vram_size);
1887
1888 else if (adev->gmc.is_app_apu)
1889 DRM_DEBUG_DRIVER(
1890 "No need to ioremap when real vram size is 0\n");
1891 else
1892 #endif
1893 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1894 adev->gmc.visible_vram_size);
1895 #endif
1896
1897 /*
1898 *The reserved vram for firmware must be pinned to the specified
1899 *place on the VRAM, so reserve it early.
1900 */
1901 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1902 if (r)
1903 return r;
1904
1905 /*
1906 *The reserved vram for driver must be pinned to the specified
1907 *place on the VRAM, so reserve it early.
1908 */
1909 r = amdgpu_ttm_drv_reserve_vram_init(adev);
1910 if (r)
1911 return r;
1912
1913 /*
1914 * only NAVI10 and onwards ASIC support for IP discovery.
1915 * If IP discovery enabled, a block of memory should be
1916 * reserved for IP discovey.
1917 */
1918 if (adev->mman.discovery_bin) {
1919 r = amdgpu_ttm_reserve_tmr(adev);
1920 if (r)
1921 return r;
1922 }
1923
1924 /* allocate memory as required for VGA
1925 * This is used for VGA emulation and pre-OS scanout buffers to
1926 * avoid display artifacts while transitioning between pre-OS
1927 * and driver.
1928 */
1929 if (!adev->gmc.is_app_apu) {
1930 r = amdgpu_bo_create_kernel_at(adev, 0,
1931 adev->mman.stolen_vga_size,
1932 &adev->mman.stolen_vga_memory,
1933 NULL);
1934 if (r)
1935 return r;
1936
1937 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1938 adev->mman.stolen_extended_size,
1939 &adev->mman.stolen_extended_memory,
1940 NULL);
1941
1942 if (r)
1943 return r;
1944
1945 r = amdgpu_bo_create_kernel_at(adev,
1946 adev->mman.stolen_reserved_offset,
1947 adev->mman.stolen_reserved_size,
1948 &adev->mman.stolen_reserved_memory,
1949 NULL);
1950 if (r)
1951 return r;
1952 } else {
1953 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1954 }
1955
1956 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1957 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1958
1959 /* Compute GTT size, either based on TTM limit
1960 * or whatever the user passed on module init.
1961 */
1962 if (amdgpu_gtt_size == -1)
1963 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1964 else
1965 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1966
1967 /* Initialize GTT memory pool */
1968 r = amdgpu_gtt_mgr_init(adev, gtt_size);
1969 if (r) {
1970 DRM_ERROR("Failed initializing GTT heap.\n");
1971 return r;
1972 }
1973 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1974 (unsigned int)(gtt_size / (1024 * 1024)));
1975
1976 /* Initialize doorbell pool on PCI BAR */
1977 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1978 if (r) {
1979 DRM_ERROR("Failed initializing doorbell heap.\n");
1980 return r;
1981 }
1982
1983 /* Create a boorbell page for kernel usages */
1984 r = amdgpu_doorbell_create_kernel_doorbells(adev);
1985 if (r) {
1986 DRM_ERROR("Failed to initialize kernel doorbells.\n");
1987 return r;
1988 }
1989
1990 /* Initialize preemptible memory pool */
1991 r = amdgpu_preempt_mgr_init(adev);
1992 if (r) {
1993 DRM_ERROR("Failed initializing PREEMPT heap.\n");
1994 return r;
1995 }
1996
1997 /* Initialize various on-chip memory pools */
1998 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1999 if (r) {
2000 DRM_ERROR("Failed initializing GDS heap.\n");
2001 return r;
2002 }
2003
2004 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
2005 if (r) {
2006 DRM_ERROR("Failed initializing gws heap.\n");
2007 return r;
2008 }
2009
2010 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
2011 if (r) {
2012 DRM_ERROR("Failed initializing oa heap.\n");
2013 return r;
2014 }
2015 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
2016 AMDGPU_GEM_DOMAIN_GTT,
2017 &adev->mman.sdma_access_bo, NULL,
2018 &adev->mman.sdma_access_ptr))
2019 DRM_WARN("Debug VRAM access will use slowpath MM access\n");
2020
2021 return 0;
2022 }
2023
2024 /*
2025 * amdgpu_ttm_fini - De-initialize the TTM memory pools
2026 */
amdgpu_ttm_fini(struct amdgpu_device * adev)2027 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2028 {
2029 int idx;
2030
2031 if (!adev->mman.initialized)
2032 return;
2033
2034 amdgpu_ttm_pools_fini(adev);
2035
2036 amdgpu_ttm_training_reserve_vram_fini(adev);
2037 /* return the stolen vga memory back to VRAM */
2038 if (!adev->gmc.is_app_apu) {
2039 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2040 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2041 /* return the FW reserved memory back to VRAM */
2042 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2043 NULL);
2044 if (adev->mman.stolen_reserved_size)
2045 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2046 NULL, NULL);
2047 }
2048 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2049 &adev->mman.sdma_access_ptr);
2050 amdgpu_ttm_fw_reserve_vram_fini(adev);
2051 amdgpu_ttm_drv_reserve_vram_fini(adev);
2052
2053 if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2054
2055 if (adev->mman.aper_base_kaddr)
2056 iounmap(adev->mman.aper_base_kaddr);
2057 adev->mman.aper_base_kaddr = NULL;
2058
2059 drm_dev_exit(idx);
2060 }
2061
2062 amdgpu_vram_mgr_fini(adev);
2063 amdgpu_gtt_mgr_fini(adev);
2064 amdgpu_preempt_mgr_fini(adev);
2065 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2066 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2067 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2068 ttm_device_fini(&adev->mman.bdev);
2069 adev->mman.initialized = false;
2070 DRM_INFO("amdgpu: ttm finalized\n");
2071 }
2072
2073 /**
2074 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2075 *
2076 * @adev: amdgpu_device pointer
2077 * @enable: true when we can use buffer functions.
2078 *
2079 * Enable/disable use of buffer functions during suspend/resume. This should
2080 * only be called at bootup or when userspace isn't running.
2081 */
amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device * adev,bool enable)2082 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2083 {
2084 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2085 uint64_t size;
2086 int r;
2087
2088 if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2089 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2090 return;
2091
2092 if (enable) {
2093 struct amdgpu_ring *ring;
2094 struct drm_gpu_scheduler *sched;
2095
2096 ring = adev->mman.buffer_funcs_ring;
2097 sched = &ring->sched;
2098 r = drm_sched_entity_init(&adev->mman.high_pr,
2099 DRM_SCHED_PRIORITY_KERNEL, &sched,
2100 1, NULL);
2101 if (r) {
2102 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2103 r);
2104 return;
2105 }
2106
2107 r = drm_sched_entity_init(&adev->mman.low_pr,
2108 DRM_SCHED_PRIORITY_NORMAL, &sched,
2109 1, NULL);
2110 if (r) {
2111 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2112 r);
2113 goto error_free_entity;
2114 }
2115 } else {
2116 drm_sched_entity_destroy(&adev->mman.high_pr);
2117 drm_sched_entity_destroy(&adev->mman.low_pr);
2118 dma_fence_put(man->move);
2119 man->move = NULL;
2120 }
2121
2122 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2123 if (enable)
2124 size = adev->gmc.real_vram_size;
2125 else
2126 size = adev->gmc.visible_vram_size;
2127 man->size = size;
2128 adev->mman.buffer_funcs_enabled = enable;
2129
2130 return;
2131
2132 error_free_entity:
2133 drm_sched_entity_destroy(&adev->mman.high_pr);
2134 }
2135
amdgpu_ttm_prepare_job(struct amdgpu_device * adev,bool direct_submit,unsigned int num_dw,struct dma_resv * resv,bool vm_needs_flush,struct amdgpu_job ** job,bool delayed)2136 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2137 bool direct_submit,
2138 unsigned int num_dw,
2139 struct dma_resv *resv,
2140 bool vm_needs_flush,
2141 struct amdgpu_job **job,
2142 bool delayed)
2143 {
2144 enum amdgpu_ib_pool_type pool = direct_submit ?
2145 AMDGPU_IB_POOL_DIRECT :
2146 AMDGPU_IB_POOL_DELAYED;
2147 int r;
2148 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2149 &adev->mman.high_pr;
2150 r = amdgpu_job_alloc_with_ib(adev, entity,
2151 AMDGPU_FENCE_OWNER_UNDEFINED,
2152 num_dw * 4, pool, job);
2153 if (r)
2154 return r;
2155
2156 if (vm_needs_flush) {
2157 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2158 adev->gmc.pdb0_bo :
2159 adev->gart.bo);
2160 (*job)->vm_needs_flush = true;
2161 }
2162 if (!resv)
2163 return 0;
2164
2165 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2166 DMA_RESV_USAGE_BOOKKEEP);
2167 }
2168
amdgpu_copy_buffer(struct amdgpu_ring * ring,uint64_t src_offset,uint64_t dst_offset,uint32_t byte_count,struct dma_resv * resv,struct dma_fence ** fence,bool direct_submit,bool vm_needs_flush,uint32_t copy_flags)2169 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2170 uint64_t dst_offset, uint32_t byte_count,
2171 struct dma_resv *resv,
2172 struct dma_fence **fence, bool direct_submit,
2173 bool vm_needs_flush, uint32_t copy_flags)
2174 {
2175 struct amdgpu_device *adev = ring->adev;
2176 unsigned int num_loops, num_dw;
2177 struct amdgpu_job *job;
2178 uint32_t max_bytes;
2179 unsigned int i;
2180 int r;
2181
2182 if (!direct_submit && !ring->sched.ready) {
2183 DRM_ERROR("Trying to move memory with ring turned off.\n");
2184 return -EINVAL;
2185 }
2186
2187 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2188 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2189 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2190 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2191 resv, vm_needs_flush, &job, false);
2192 if (r)
2193 return r;
2194
2195 for (i = 0; i < num_loops; i++) {
2196 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2197
2198 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2199 dst_offset, cur_size_in_bytes, copy_flags);
2200 src_offset += cur_size_in_bytes;
2201 dst_offset += cur_size_in_bytes;
2202 byte_count -= cur_size_in_bytes;
2203 }
2204
2205 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2206 WARN_ON(job->ibs[0].length_dw > num_dw);
2207 if (direct_submit)
2208 r = amdgpu_job_submit_direct(job, ring, fence);
2209 else
2210 *fence = amdgpu_job_submit(job);
2211 if (r)
2212 goto error_free;
2213
2214 return r;
2215
2216 error_free:
2217 amdgpu_job_free(job);
2218 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2219 return r;
2220 }
2221
amdgpu_ttm_fill_mem(struct amdgpu_ring * ring,uint32_t src_data,uint64_t dst_addr,uint32_t byte_count,struct dma_resv * resv,struct dma_fence ** fence,bool vm_needs_flush,bool delayed)2222 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2223 uint64_t dst_addr, uint32_t byte_count,
2224 struct dma_resv *resv,
2225 struct dma_fence **fence,
2226 bool vm_needs_flush, bool delayed)
2227 {
2228 struct amdgpu_device *adev = ring->adev;
2229 unsigned int num_loops, num_dw;
2230 struct amdgpu_job *job;
2231 uint32_t max_bytes;
2232 unsigned int i;
2233 int r;
2234
2235 max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2236 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2237 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2238 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2239 &job, delayed);
2240 if (r)
2241 return r;
2242
2243 for (i = 0; i < num_loops; i++) {
2244 uint32_t cur_size = min(byte_count, max_bytes);
2245
2246 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2247 cur_size);
2248
2249 dst_addr += cur_size;
2250 byte_count -= cur_size;
2251 }
2252
2253 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2254 WARN_ON(job->ibs[0].length_dw > num_dw);
2255 *fence = amdgpu_job_submit(job);
2256 return 0;
2257 }
2258
2259 /**
2260 * amdgpu_ttm_clear_buffer - clear memory buffers
2261 * @bo: amdgpu buffer object
2262 * @resv: reservation object
2263 * @fence: dma_fence associated with the operation
2264 *
2265 * Clear the memory buffer resource.
2266 *
2267 * Returns:
2268 * 0 for success or a negative error code on failure.
2269 */
amdgpu_ttm_clear_buffer(struct amdgpu_bo * bo,struct dma_resv * resv,struct dma_fence ** fence)2270 int amdgpu_ttm_clear_buffer(struct amdgpu_bo *bo,
2271 struct dma_resv *resv,
2272 struct dma_fence **fence)
2273 {
2274 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2275 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2276 struct amdgpu_res_cursor cursor;
2277 u64 addr;
2278 int r;
2279
2280 if (!adev->mman.buffer_funcs_enabled)
2281 return -EINVAL;
2282
2283 if (!fence)
2284 return -EINVAL;
2285
2286 *fence = dma_fence_get_stub();
2287
2288 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &cursor);
2289
2290 mutex_lock(&adev->mman.gtt_window_lock);
2291 while (cursor.remaining) {
2292 struct dma_fence *next = NULL;
2293 u64 size;
2294
2295 if (amdgpu_res_cleared(&cursor)) {
2296 amdgpu_res_next(&cursor, cursor.size);
2297 continue;
2298 }
2299
2300 /* Never clear more than 256MiB at once to avoid timeouts */
2301 size = min(cursor.size, 256ULL << 20);
2302
2303 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &cursor,
2304 1, ring, false, &size, &addr);
2305 if (r)
2306 goto err;
2307
2308 r = amdgpu_ttm_fill_mem(ring, 0, addr, size, resv,
2309 &next, true, true);
2310 if (r)
2311 goto err;
2312
2313 dma_fence_put(*fence);
2314 *fence = next;
2315
2316 amdgpu_res_next(&cursor, size);
2317 }
2318 err:
2319 mutex_unlock(&adev->mman.gtt_window_lock);
2320
2321 return r;
2322 }
2323
amdgpu_fill_buffer(struct amdgpu_bo * bo,uint32_t src_data,struct dma_resv * resv,struct dma_fence ** f,bool delayed)2324 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2325 uint32_t src_data,
2326 struct dma_resv *resv,
2327 struct dma_fence **f,
2328 bool delayed)
2329 {
2330 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2331 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2332 struct dma_fence *fence = NULL;
2333 struct amdgpu_res_cursor dst;
2334 int r;
2335
2336 if (!adev->mman.buffer_funcs_enabled) {
2337 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2338 return -EINVAL;
2339 }
2340
2341 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2342
2343 mutex_lock(&adev->mman.gtt_window_lock);
2344 while (dst.remaining) {
2345 struct dma_fence *next;
2346 uint64_t cur_size, to;
2347
2348 /* Never fill more than 256MiB at once to avoid timeouts */
2349 cur_size = min(dst.size, 256ULL << 20);
2350
2351 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2352 1, ring, false, &cur_size, &to);
2353 if (r)
2354 goto error;
2355
2356 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2357 &next, true, delayed);
2358 if (r)
2359 goto error;
2360
2361 dma_fence_put(fence);
2362 fence = next;
2363
2364 amdgpu_res_next(&dst, cur_size);
2365 }
2366 error:
2367 mutex_unlock(&adev->mman.gtt_window_lock);
2368 if (f)
2369 *f = dma_fence_get(fence);
2370 dma_fence_put(fence);
2371 return r;
2372 }
2373
2374 /**
2375 * amdgpu_ttm_evict_resources - evict memory buffers
2376 * @adev: amdgpu device object
2377 * @mem_type: evicted BO's memory type
2378 *
2379 * Evicts all @mem_type buffers on the lru list of the memory type.
2380 *
2381 * Returns:
2382 * 0 for success or a negative error code on failure.
2383 */
amdgpu_ttm_evict_resources(struct amdgpu_device * adev,int mem_type)2384 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2385 {
2386 struct ttm_resource_manager *man;
2387
2388 switch (mem_type) {
2389 case TTM_PL_VRAM:
2390 case TTM_PL_TT:
2391 case AMDGPU_PL_GWS:
2392 case AMDGPU_PL_GDS:
2393 case AMDGPU_PL_OA:
2394 man = ttm_manager_type(&adev->mman.bdev, mem_type);
2395 break;
2396 default:
2397 DRM_ERROR("Trying to evict invalid memory type\n");
2398 return -EINVAL;
2399 }
2400
2401 return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2402 }
2403
2404 #if defined(CONFIG_DEBUG_FS)
2405
amdgpu_ttm_page_pool_show(struct seq_file * m,void * unused)2406 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2407 {
2408 struct amdgpu_device *adev = m->private;
2409
2410 return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2411 }
2412
2413 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2414
2415 /*
2416 * amdgpu_ttm_vram_read - Linear read access to VRAM
2417 *
2418 * Accesses VRAM via MMIO for debugging purposes.
2419 */
amdgpu_ttm_vram_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2420 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2421 size_t size, loff_t *pos)
2422 {
2423 struct amdgpu_device *adev = file_inode(f)->i_private;
2424 ssize_t result = 0;
2425
2426 if (size & 0x3 || *pos & 0x3)
2427 return -EINVAL;
2428
2429 if (*pos >= adev->gmc.mc_vram_size)
2430 return -ENXIO;
2431
2432 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2433 while (size) {
2434 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2435 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2436
2437 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2438 if (copy_to_user(buf, value, bytes))
2439 return -EFAULT;
2440
2441 result += bytes;
2442 buf += bytes;
2443 *pos += bytes;
2444 size -= bytes;
2445 }
2446
2447 return result;
2448 }
2449
2450 /*
2451 * amdgpu_ttm_vram_write - Linear write access to VRAM
2452 *
2453 * Accesses VRAM via MMIO for debugging purposes.
2454 */
amdgpu_ttm_vram_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2455 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2456 size_t size, loff_t *pos)
2457 {
2458 struct amdgpu_device *adev = file_inode(f)->i_private;
2459 ssize_t result = 0;
2460 int r;
2461
2462 if (size & 0x3 || *pos & 0x3)
2463 return -EINVAL;
2464
2465 if (*pos >= adev->gmc.mc_vram_size)
2466 return -ENXIO;
2467
2468 while (size) {
2469 uint32_t value;
2470
2471 if (*pos >= adev->gmc.mc_vram_size)
2472 return result;
2473
2474 r = get_user(value, (uint32_t *)buf);
2475 if (r)
2476 return r;
2477
2478 amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2479
2480 result += 4;
2481 buf += 4;
2482 *pos += 4;
2483 size -= 4;
2484 }
2485
2486 return result;
2487 }
2488
2489 static const struct file_operations amdgpu_ttm_vram_fops = {
2490 .owner = THIS_MODULE,
2491 .read = amdgpu_ttm_vram_read,
2492 .write = amdgpu_ttm_vram_write,
2493 .llseek = default_llseek,
2494 };
2495
2496 /*
2497 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2498 *
2499 * This function is used to read memory that has been mapped to the
2500 * GPU and the known addresses are not physical addresses but instead
2501 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2502 */
amdgpu_iomem_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2503 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2504 size_t size, loff_t *pos)
2505 {
2506 struct amdgpu_device *adev = file_inode(f)->i_private;
2507 struct iommu_domain *dom;
2508 ssize_t result = 0;
2509 int r;
2510
2511 /* retrieve the IOMMU domain if any for this device */
2512 dom = iommu_get_domain_for_dev(adev->dev);
2513
2514 while (size) {
2515 phys_addr_t addr = *pos & PAGE_MASK;
2516 loff_t off = *pos & ~PAGE_MASK;
2517 size_t bytes = PAGE_SIZE - off;
2518 unsigned long pfn;
2519 struct page *p;
2520 void *ptr;
2521
2522 bytes = min(bytes, size);
2523
2524 /* Translate the bus address to a physical address. If
2525 * the domain is NULL it means there is no IOMMU active
2526 * and the address translation is the identity
2527 */
2528 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2529
2530 pfn = addr >> PAGE_SHIFT;
2531 if (!pfn_valid(pfn))
2532 return -EPERM;
2533
2534 p = pfn_to_page(pfn);
2535 if (p->mapping != adev->mman.bdev.dev_mapping)
2536 return -EPERM;
2537
2538 ptr = kmap_local_page(p);
2539 r = copy_to_user(buf, ptr + off, bytes);
2540 kunmap_local(ptr);
2541 if (r)
2542 return -EFAULT;
2543
2544 size -= bytes;
2545 *pos += bytes;
2546 result += bytes;
2547 }
2548
2549 return result;
2550 }
2551
2552 /*
2553 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2554 *
2555 * This function is used to write memory that has been mapped to the
2556 * GPU and the known addresses are not physical addresses but instead
2557 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2558 */
amdgpu_iomem_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2559 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2560 size_t size, loff_t *pos)
2561 {
2562 struct amdgpu_device *adev = file_inode(f)->i_private;
2563 struct iommu_domain *dom;
2564 ssize_t result = 0;
2565 int r;
2566
2567 dom = iommu_get_domain_for_dev(adev->dev);
2568
2569 while (size) {
2570 phys_addr_t addr = *pos & PAGE_MASK;
2571 loff_t off = *pos & ~PAGE_MASK;
2572 size_t bytes = PAGE_SIZE - off;
2573 unsigned long pfn;
2574 struct page *p;
2575 void *ptr;
2576
2577 bytes = min(bytes, size);
2578
2579 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2580
2581 pfn = addr >> PAGE_SHIFT;
2582 if (!pfn_valid(pfn))
2583 return -EPERM;
2584
2585 p = pfn_to_page(pfn);
2586 if (p->mapping != adev->mman.bdev.dev_mapping)
2587 return -EPERM;
2588
2589 ptr = kmap_local_page(p);
2590 r = copy_from_user(ptr + off, buf, bytes);
2591 kunmap_local(ptr);
2592 if (r)
2593 return -EFAULT;
2594
2595 size -= bytes;
2596 *pos += bytes;
2597 result += bytes;
2598 }
2599
2600 return result;
2601 }
2602
2603 static const struct file_operations amdgpu_ttm_iomem_fops = {
2604 .owner = THIS_MODULE,
2605 .read = amdgpu_iomem_read,
2606 .write = amdgpu_iomem_write,
2607 .llseek = default_llseek
2608 };
2609
2610 #endif
2611
amdgpu_ttm_debugfs_init(struct amdgpu_device * adev)2612 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2613 {
2614 #if defined(CONFIG_DEBUG_FS)
2615 struct drm_minor *minor = adev_to_drm(adev)->primary;
2616 struct dentry *root = minor->debugfs_root;
2617
2618 debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2619 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2620 debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2621 &amdgpu_ttm_iomem_fops);
2622 debugfs_create_file("ttm_page_pool", 0444, root, adev,
2623 &amdgpu_ttm_page_pool_fops);
2624 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2625 TTM_PL_VRAM),
2626 root, "amdgpu_vram_mm");
2627 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2628 TTM_PL_TT),
2629 root, "amdgpu_gtt_mm");
2630 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2631 AMDGPU_PL_GDS),
2632 root, "amdgpu_gds_mm");
2633 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2634 AMDGPU_PL_GWS),
2635 root, "amdgpu_gws_mm");
2636 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2637 AMDGPU_PL_OA),
2638 root, "amdgpu_oa_mm");
2639
2640 #endif
2641 }
2642