1 /*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26 /*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30 * Dave Airlie
31 */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/dma-buf.h>
42 #include <linux/sizes.h>
43 #include <linux/module.h>
44
45 #include <drm/drm_drv.h>
46 #include <drm/ttm/ttm_bo.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 #include <drm/ttm/ttm_tt.h>
50
51 #include <drm/amdgpu_drm.h>
52
53 #include "amdgpu.h"
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_hmm.h"
60 #include "amdgpu_atomfirmware.h"
61 #include "amdgpu_res_cursor.h"
62 #include "bif/bif_4_1_d.h"
63
64 MODULE_IMPORT_NS("DMA_BUF");
65
66 #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128)
67
68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69 struct ttm_tt *ttm,
70 struct ttm_resource *bo_mem);
71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72 struct ttm_tt *ttm);
73
amdgpu_ttm_init_on_chip(struct amdgpu_device * adev,unsigned int type,uint64_t size_in_page)74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75 unsigned int type,
76 uint64_t size_in_page)
77 {
78 return ttm_range_man_init(&adev->mman.bdev, type,
79 false, size_in_page);
80 }
81
82 /**
83 * amdgpu_evict_flags - Compute placement flags
84 *
85 * @bo: The buffer object to evict
86 * @placement: Possible destination(s) for evicted BO
87 *
88 * Fill in placement data when ttm_bo_evict() is called
89 */
amdgpu_evict_flags(struct ttm_buffer_object * bo,struct ttm_placement * placement)90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 struct ttm_placement *placement)
92 {
93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94 struct amdgpu_bo *abo;
95 static const struct ttm_place placements = {
96 .fpfn = 0,
97 .lpfn = 0,
98 .mem_type = TTM_PL_SYSTEM,
99 .flags = 0
100 };
101
102 /* Don't handle scatter gather BOs */
103 if (bo->type == ttm_bo_type_sg) {
104 placement->num_placement = 0;
105 return;
106 }
107
108 /* Object isn't an AMDGPU object so ignore */
109 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
110 placement->placement = &placements;
111 placement->num_placement = 1;
112 return;
113 }
114
115 abo = ttm_to_amdgpu_bo(bo);
116 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
117 placement->num_placement = 0;
118 return;
119 }
120
121 switch (bo->resource->mem_type) {
122 case AMDGPU_PL_GDS:
123 case AMDGPU_PL_GWS:
124 case AMDGPU_PL_OA:
125 case AMDGPU_PL_DOORBELL:
126 case AMDGPU_PL_MMIO_REMAP:
127 placement->num_placement = 0;
128 return;
129
130 case TTM_PL_VRAM:
131 if (!adev->mman.buffer_funcs_enabled) {
132 /* Move to system memory */
133 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
134
135 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
136 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
137 amdgpu_res_cpu_visible(adev, bo->resource)) {
138
139 /* Try evicting to the CPU inaccessible part of VRAM
140 * first, but only set GTT as busy placement, so this
141 * BO will be evicted to GTT rather than causing other
142 * BOs to be evicted from VRAM
143 */
144 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
145 AMDGPU_GEM_DOMAIN_GTT |
146 AMDGPU_GEM_DOMAIN_CPU);
147 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
148 abo->placements[0].lpfn = 0;
149 abo->placements[0].flags |= TTM_PL_FLAG_DESIRED;
150 } else {
151 /* Move to GTT memory */
152 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
153 AMDGPU_GEM_DOMAIN_CPU);
154 }
155 break;
156 case TTM_PL_TT:
157 case AMDGPU_PL_PREEMPT:
158 default:
159 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
160 break;
161 }
162 *placement = abo->placement;
163 }
164
165 /**
166 * amdgpu_ttm_map_buffer - Map memory into the GART windows
167 * @bo: buffer object to map
168 * @mem: memory object to map
169 * @mm_cur: range to map
170 * @window: which GART window to use
171 * @ring: DMA ring to use for the copy
172 * @tmz: if we should setup a TMZ enabled mapping
173 * @size: in number of bytes to map, out number of bytes mapped
174 * @addr: resulting address inside the MC address space
175 *
176 * Setup one of the GART windows to access a specific piece of memory or return
177 * the physical address for local memory.
178 */
amdgpu_ttm_map_buffer(struct ttm_buffer_object * bo,struct ttm_resource * mem,struct amdgpu_res_cursor * mm_cur,unsigned int window,struct amdgpu_ring * ring,bool tmz,uint64_t * size,uint64_t * addr)179 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
180 struct ttm_resource *mem,
181 struct amdgpu_res_cursor *mm_cur,
182 unsigned int window, struct amdgpu_ring *ring,
183 bool tmz, uint64_t *size, uint64_t *addr)
184 {
185 struct amdgpu_device *adev = ring->adev;
186 unsigned int offset, num_pages, num_dw, num_bytes;
187 uint64_t src_addr, dst_addr;
188 struct amdgpu_job *job;
189 void *cpu_addr;
190 uint64_t flags;
191 unsigned int i;
192 int r;
193
194 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
195 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
196
197 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
198 return -EINVAL;
199
200 /* Map only what can't be accessed directly */
201 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
202 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
203 mm_cur->start;
204 return 0;
205 }
206
207
208 /*
209 * If start begins at an offset inside the page, then adjust the size
210 * and addr accordingly
211 */
212 offset = mm_cur->start & ~PAGE_MASK;
213
214 num_pages = PFN_UP(*size + offset);
215 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
216
217 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
218
219 *addr = adev->gmc.gart_start;
220 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
221 AMDGPU_GPU_PAGE_SIZE;
222 *addr += offset;
223
224 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
225 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
226
227 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
228 AMDGPU_FENCE_OWNER_UNDEFINED,
229 num_dw * 4 + num_bytes,
230 AMDGPU_IB_POOL_DELAYED, &job,
231 AMDGPU_KERNEL_JOB_ID_TTM_MAP_BUFFER);
232 if (r)
233 return r;
234
235 src_addr = num_dw * 4;
236 src_addr += job->ibs[0].gpu_addr;
237
238 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
239 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
240 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
241 dst_addr, num_bytes, 0);
242
243 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
244 WARN_ON(job->ibs[0].length_dw > num_dw);
245
246 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
247 if (tmz)
248 flags |= AMDGPU_PTE_TMZ;
249
250 cpu_addr = &job->ibs[0].ptr[num_dw];
251
252 if (mem->mem_type == TTM_PL_TT) {
253 dma_addr_t *dma_addr;
254
255 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
256 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
257 } else {
258 dma_addr_t dma_address;
259
260 dma_address = mm_cur->start;
261 dma_address += adev->vm_manager.vram_base_offset;
262
263 for (i = 0; i < num_pages; ++i) {
264 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
265 flags, cpu_addr);
266 dma_address += PAGE_SIZE;
267 }
268 }
269
270 dma_fence_put(amdgpu_job_submit(job));
271 return 0;
272 }
273
274 /**
275 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
276 * @adev: amdgpu device
277 * @src: buffer/address where to read from
278 * @dst: buffer/address where to write to
279 * @size: number of bytes to copy
280 * @tmz: if a secure copy should be used
281 * @resv: resv object to sync to
282 * @f: Returns the last fence if multiple jobs are submitted.
283 *
284 * The function copies @size bytes from {src->mem + src->offset} to
285 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
286 * move and different for a BO to BO copy.
287 *
288 */
amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device * adev,const struct amdgpu_copy_mem * src,const struct amdgpu_copy_mem * dst,uint64_t size,bool tmz,struct dma_resv * resv,struct dma_fence ** f)289 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
290 const struct amdgpu_copy_mem *src,
291 const struct amdgpu_copy_mem *dst,
292 uint64_t size, bool tmz,
293 struct dma_resv *resv,
294 struct dma_fence **f)
295 {
296 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
297 struct amdgpu_res_cursor src_mm, dst_mm;
298 struct dma_fence *fence = NULL;
299 int r = 0;
300 uint32_t copy_flags = 0;
301 struct amdgpu_bo *abo_src, *abo_dst;
302
303 if (!adev->mman.buffer_funcs_enabled) {
304 dev_err(adev->dev,
305 "Trying to move memory with ring turned off.\n");
306 return -EINVAL;
307 }
308
309 amdgpu_res_first(src->mem, src->offset, size, &src_mm);
310 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
311
312 mutex_lock(&adev->mman.gtt_window_lock);
313 while (src_mm.remaining) {
314 uint64_t from, to, cur_size, tiling_flags;
315 uint32_t num_type, data_format, max_com, write_compress_disable;
316 struct dma_fence *next;
317
318 /* Never copy more than 256MiB at once to avoid a timeout */
319 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
320
321 /* Map src to window 0 and dst to window 1. */
322 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
323 0, ring, tmz, &cur_size, &from);
324 if (r)
325 goto error;
326
327 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
328 1, ring, tmz, &cur_size, &to);
329 if (r)
330 goto error;
331
332 abo_src = ttm_to_amdgpu_bo(src->bo);
333 abo_dst = ttm_to_amdgpu_bo(dst->bo);
334 if (tmz)
335 copy_flags |= AMDGPU_COPY_FLAGS_TMZ;
336 if ((abo_src->flags & AMDGPU_GEM_CREATE_GFX12_DCC) &&
337 (abo_src->tbo.resource->mem_type == TTM_PL_VRAM))
338 copy_flags |= AMDGPU_COPY_FLAGS_READ_DECOMPRESSED;
339 if ((abo_dst->flags & AMDGPU_GEM_CREATE_GFX12_DCC) &&
340 (dst->mem->mem_type == TTM_PL_VRAM)) {
341 copy_flags |= AMDGPU_COPY_FLAGS_WRITE_COMPRESSED;
342 amdgpu_bo_get_tiling_flags(abo_dst, &tiling_flags);
343 max_com = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_MAX_COMPRESSED_BLOCK);
344 num_type = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_NUMBER_TYPE);
345 data_format = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_DATA_FORMAT);
346 write_compress_disable =
347 AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_WRITE_COMPRESS_DISABLE);
348 copy_flags |= (AMDGPU_COPY_FLAGS_SET(MAX_COMPRESSED, max_com) |
349 AMDGPU_COPY_FLAGS_SET(NUMBER_TYPE, num_type) |
350 AMDGPU_COPY_FLAGS_SET(DATA_FORMAT, data_format) |
351 AMDGPU_COPY_FLAGS_SET(WRITE_COMPRESS_DISABLE,
352 write_compress_disable));
353 }
354
355 r = amdgpu_copy_buffer(ring, from, to, cur_size, resv,
356 &next, false, true, copy_flags);
357 if (r)
358 goto error;
359
360 dma_fence_put(fence);
361 fence = next;
362
363 amdgpu_res_next(&src_mm, cur_size);
364 amdgpu_res_next(&dst_mm, cur_size);
365 }
366 error:
367 mutex_unlock(&adev->mman.gtt_window_lock);
368 if (f)
369 *f = dma_fence_get(fence);
370 dma_fence_put(fence);
371 return r;
372 }
373
374 /*
375 * amdgpu_move_blit - Copy an entire buffer to another buffer
376 *
377 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
378 * help move buffers to and from VRAM.
379 */
amdgpu_move_blit(struct ttm_buffer_object * bo,bool evict,struct ttm_resource * new_mem,struct ttm_resource * old_mem)380 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
381 bool evict,
382 struct ttm_resource *new_mem,
383 struct ttm_resource *old_mem)
384 {
385 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
386 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
387 struct amdgpu_copy_mem src, dst;
388 struct dma_fence *fence = NULL;
389 int r;
390
391 src.bo = bo;
392 dst.bo = bo;
393 src.mem = old_mem;
394 dst.mem = new_mem;
395 src.offset = 0;
396 dst.offset = 0;
397
398 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
399 new_mem->size,
400 amdgpu_bo_encrypted(abo),
401 bo->base.resv, &fence);
402 if (r)
403 goto error;
404
405 /* clear the space being freed */
406 if (old_mem->mem_type == TTM_PL_VRAM &&
407 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
408 struct dma_fence *wipe_fence = NULL;
409
410 r = amdgpu_fill_buffer(abo, 0, NULL, &wipe_fence,
411 false, AMDGPU_KERNEL_JOB_ID_MOVE_BLIT);
412 if (r) {
413 goto error;
414 } else if (wipe_fence) {
415 amdgpu_vram_mgr_set_cleared(bo->resource);
416 dma_fence_put(fence);
417 fence = wipe_fence;
418 }
419 }
420
421 /* Always block for VM page tables before committing the new location */
422 if (bo->type == ttm_bo_type_kernel)
423 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
424 else
425 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
426 dma_fence_put(fence);
427 return r;
428
429 error:
430 if (fence)
431 dma_fence_wait(fence, false);
432 dma_fence_put(fence);
433 return r;
434 }
435
436 /**
437 * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU
438 * @adev: amdgpu device
439 * @res: the resource to check
440 *
441 * Returns: true if the full resource is CPU visible, false otherwise.
442 */
amdgpu_res_cpu_visible(struct amdgpu_device * adev,struct ttm_resource * res)443 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev,
444 struct ttm_resource *res)
445 {
446 struct amdgpu_res_cursor cursor;
447
448 if (!res)
449 return false;
450
451 if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT ||
452 res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL ||
453 res->mem_type == AMDGPU_PL_MMIO_REMAP)
454 return true;
455
456 if (res->mem_type != TTM_PL_VRAM)
457 return false;
458
459 amdgpu_res_first(res, 0, res->size, &cursor);
460 while (cursor.remaining) {
461 if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size)
462 return false;
463 amdgpu_res_next(&cursor, cursor.size);
464 }
465
466 return true;
467 }
468
469 /*
470 * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy
471 *
472 * Called by amdgpu_bo_move()
473 */
amdgpu_res_copyable(struct amdgpu_device * adev,struct ttm_resource * mem)474 static bool amdgpu_res_copyable(struct amdgpu_device *adev,
475 struct ttm_resource *mem)
476 {
477 if (!amdgpu_res_cpu_visible(adev, mem))
478 return false;
479
480 /* ttm_resource_ioremap only supports contiguous memory */
481 if (mem->mem_type == TTM_PL_VRAM &&
482 !(mem->placement & TTM_PL_FLAG_CONTIGUOUS))
483 return false;
484
485 return true;
486 }
487
488 /*
489 * amdgpu_bo_move - Move a buffer object to a new memory location
490 *
491 * Called by ttm_bo_handle_move_mem()
492 */
amdgpu_bo_move(struct ttm_buffer_object * bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_resource * new_mem,struct ttm_place * hop)493 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
494 struct ttm_operation_ctx *ctx,
495 struct ttm_resource *new_mem,
496 struct ttm_place *hop)
497 {
498 struct amdgpu_device *adev;
499 struct amdgpu_bo *abo;
500 struct ttm_resource *old_mem = bo->resource;
501 int r;
502
503 if (new_mem->mem_type == TTM_PL_TT ||
504 new_mem->mem_type == AMDGPU_PL_PREEMPT) {
505 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
506 if (r)
507 return r;
508 }
509
510 abo = ttm_to_amdgpu_bo(bo);
511 adev = amdgpu_ttm_adev(bo->bdev);
512
513 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
514 bo->ttm == NULL)) {
515 amdgpu_bo_move_notify(bo, evict, new_mem);
516 ttm_bo_move_null(bo, new_mem);
517 return 0;
518 }
519 if (old_mem->mem_type == TTM_PL_SYSTEM &&
520 (new_mem->mem_type == TTM_PL_TT ||
521 new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
522 amdgpu_bo_move_notify(bo, evict, new_mem);
523 ttm_bo_move_null(bo, new_mem);
524 return 0;
525 }
526 if ((old_mem->mem_type == TTM_PL_TT ||
527 old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
528 new_mem->mem_type == TTM_PL_SYSTEM) {
529 r = ttm_bo_wait_ctx(bo, ctx);
530 if (r)
531 return r;
532
533 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
534 amdgpu_bo_move_notify(bo, evict, new_mem);
535 ttm_resource_free(bo, &bo->resource);
536 ttm_bo_assign_mem(bo, new_mem);
537 return 0;
538 }
539
540 if (old_mem->mem_type == AMDGPU_PL_GDS ||
541 old_mem->mem_type == AMDGPU_PL_GWS ||
542 old_mem->mem_type == AMDGPU_PL_OA ||
543 old_mem->mem_type == AMDGPU_PL_DOORBELL ||
544 old_mem->mem_type == AMDGPU_PL_MMIO_REMAP ||
545 new_mem->mem_type == AMDGPU_PL_GDS ||
546 new_mem->mem_type == AMDGPU_PL_GWS ||
547 new_mem->mem_type == AMDGPU_PL_OA ||
548 new_mem->mem_type == AMDGPU_PL_DOORBELL ||
549 new_mem->mem_type == AMDGPU_PL_MMIO_REMAP) {
550 /* Nothing to save here */
551 amdgpu_bo_move_notify(bo, evict, new_mem);
552 ttm_bo_move_null(bo, new_mem);
553 return 0;
554 }
555
556 if (bo->type == ttm_bo_type_device &&
557 new_mem->mem_type == TTM_PL_VRAM &&
558 old_mem->mem_type != TTM_PL_VRAM) {
559 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
560 * accesses the BO after it's moved.
561 */
562 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
563 }
564
565 if (adev->mman.buffer_funcs_enabled &&
566 ((old_mem->mem_type == TTM_PL_SYSTEM &&
567 new_mem->mem_type == TTM_PL_VRAM) ||
568 (old_mem->mem_type == TTM_PL_VRAM &&
569 new_mem->mem_type == TTM_PL_SYSTEM))) {
570 hop->fpfn = 0;
571 hop->lpfn = 0;
572 hop->mem_type = TTM_PL_TT;
573 hop->flags = TTM_PL_FLAG_TEMPORARY;
574 return -EMULTIHOP;
575 }
576
577 amdgpu_bo_move_notify(bo, evict, new_mem);
578 if (adev->mman.buffer_funcs_enabled)
579 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
580 else
581 r = -ENODEV;
582
583 if (r) {
584 /* Check that all memory is CPU accessible */
585 if (!amdgpu_res_copyable(adev, old_mem) ||
586 !amdgpu_res_copyable(adev, new_mem)) {
587 pr_err("Move buffer fallback to memcpy unavailable\n");
588 return r;
589 }
590
591 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
592 if (r)
593 return r;
594 }
595
596 /* update statistics after the move */
597 if (evict)
598 atomic64_inc(&adev->num_evictions);
599 atomic64_add(bo->base.size, &adev->num_bytes_moved);
600 return 0;
601 }
602
603 /*
604 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
605 *
606 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
607 */
amdgpu_ttm_io_mem_reserve(struct ttm_device * bdev,struct ttm_resource * mem)608 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
609 struct ttm_resource *mem)
610 {
611 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
612
613 switch (mem->mem_type) {
614 case TTM_PL_SYSTEM:
615 /* system memory */
616 return 0;
617 case TTM_PL_TT:
618 case AMDGPU_PL_PREEMPT:
619 break;
620 case TTM_PL_VRAM:
621 mem->bus.offset = mem->start << PAGE_SHIFT;
622
623 if (adev->mman.aper_base_kaddr &&
624 mem->placement & TTM_PL_FLAG_CONTIGUOUS)
625 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
626 mem->bus.offset;
627
628 mem->bus.offset += adev->gmc.aper_base;
629 mem->bus.is_iomem = true;
630 break;
631 case AMDGPU_PL_DOORBELL:
632 mem->bus.offset = mem->start << PAGE_SHIFT;
633 mem->bus.offset += adev->doorbell.base;
634 mem->bus.is_iomem = true;
635 mem->bus.caching = ttm_uncached;
636 break;
637 case AMDGPU_PL_MMIO_REMAP:
638 mem->bus.offset = mem->start << PAGE_SHIFT;
639 mem->bus.offset += adev->rmmio_remap.bus_addr;
640 mem->bus.is_iomem = true;
641 mem->bus.caching = ttm_uncached;
642 break;
643 default:
644 return -EINVAL;
645 }
646 return 0;
647 }
648
amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object * bo,unsigned long page_offset)649 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
650 unsigned long page_offset)
651 {
652 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
653 struct amdgpu_res_cursor cursor;
654
655 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
656 &cursor);
657
658 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
659 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
660 else if (bo->resource->mem_type == AMDGPU_PL_MMIO_REMAP)
661 return ((uint64_t)(adev->rmmio_remap.bus_addr + cursor.start)) >> PAGE_SHIFT;
662
663 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
664 }
665
666 /**
667 * amdgpu_ttm_domain_start - Returns GPU start address
668 * @adev: amdgpu device object
669 * @type: type of the memory
670 *
671 * Returns:
672 * GPU start address of a memory domain
673 */
674
amdgpu_ttm_domain_start(struct amdgpu_device * adev,uint32_t type)675 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
676 {
677 switch (type) {
678 case TTM_PL_TT:
679 return adev->gmc.gart_start;
680 case TTM_PL_VRAM:
681 return adev->gmc.vram_start;
682 }
683
684 return 0;
685 }
686
687 /*
688 * TTM backend functions.
689 */
690 struct amdgpu_ttm_tt {
691 struct ttm_tt ttm;
692 struct drm_gem_object *gobj;
693 u64 offset;
694 uint64_t userptr;
695 struct task_struct *usertask;
696 uint32_t userflags;
697 bool bound;
698 int32_t pool_id;
699 };
700
701 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm)
702
703 #ifdef CONFIG_DRM_AMDGPU_USERPTR
704 /*
705 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
706 * memory and start HMM tracking CPU page table update
707 *
708 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
709 * once afterwards to stop HMM tracking
710 */
amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo * bo,struct hmm_range ** range)711 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo,
712 struct hmm_range **range)
713 {
714 struct ttm_tt *ttm = bo->tbo.ttm;
715 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
716 unsigned long start = gtt->userptr;
717 struct vm_area_struct *vma;
718 struct mm_struct *mm;
719 bool readonly;
720 int r = 0;
721
722 /* Make sure get_user_pages_done() can cleanup gracefully */
723 *range = NULL;
724
725 mm = bo->notifier.mm;
726 if (unlikely(!mm)) {
727 DRM_DEBUG_DRIVER("BO is not registered?\n");
728 return -EFAULT;
729 }
730
731 if (!mmget_not_zero(mm)) /* Happens during process shutdown */
732 return -ESRCH;
733
734 mmap_read_lock(mm);
735 vma = vma_lookup(mm, start);
736 if (unlikely(!vma)) {
737 r = -EFAULT;
738 goto out_unlock;
739 }
740 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
741 vma->vm_file)) {
742 r = -EPERM;
743 goto out_unlock;
744 }
745
746 readonly = amdgpu_ttm_tt_is_readonly(ttm);
747 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
748 readonly, NULL, range);
749 out_unlock:
750 mmap_read_unlock(mm);
751 if (r)
752 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
753
754 mmput(mm);
755
756 return r;
757 }
758
759 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
760 */
amdgpu_ttm_tt_discard_user_pages(struct ttm_tt * ttm,struct hmm_range * range)761 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
762 struct hmm_range *range)
763 {
764 struct amdgpu_ttm_tt *gtt = (void *)ttm;
765
766 if (gtt && gtt->userptr && range)
767 amdgpu_hmm_range_get_pages_done(range);
768 }
769
770 /*
771 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
772 * Check if the pages backing this ttm range have been invalidated
773 *
774 * Returns: true if pages are still valid
775 */
amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt * ttm,struct hmm_range * range)776 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
777 struct hmm_range *range)
778 {
779 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
780
781 if (!gtt || !gtt->userptr || !range)
782 return false;
783
784 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
785 gtt->userptr, ttm->num_pages);
786
787 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
788
789 return !amdgpu_hmm_range_get_pages_done(range);
790 }
791 #endif
792
793 /*
794 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
795 *
796 * Called by amdgpu_cs_list_validate(). This creates the page list
797 * that backs user memory and will ultimately be mapped into the device
798 * address space.
799 */
amdgpu_ttm_tt_set_user_pages(struct ttm_tt * ttm,struct hmm_range * range)800 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct hmm_range *range)
801 {
802 unsigned long i;
803
804 for (i = 0; i < ttm->num_pages; ++i)
805 ttm->pages[i] = range ? hmm_pfn_to_page(range->hmm_pfns[i]) : NULL;
806 }
807
808 /*
809 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
810 *
811 * Called by amdgpu_ttm_backend_bind()
812 **/
amdgpu_ttm_tt_pin_userptr(struct ttm_device * bdev,struct ttm_tt * ttm)813 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
814 struct ttm_tt *ttm)
815 {
816 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
817 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
818 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
819 enum dma_data_direction direction = write ?
820 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
821 int r;
822
823 /* Allocate an SG array and squash pages into it */
824 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
825 (u64)ttm->num_pages << PAGE_SHIFT,
826 GFP_KERNEL);
827 if (r)
828 goto release_sg;
829
830 /* Map SG to device */
831 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
832 if (r)
833 goto release_sg_table;
834
835 /* convert SG to linear array of pages and dma addresses */
836 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
837 ttm->num_pages);
838
839 return 0;
840
841 release_sg_table:
842 sg_free_table(ttm->sg);
843 release_sg:
844 kfree(ttm->sg);
845 ttm->sg = NULL;
846 return r;
847 }
848
849 /*
850 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
851 */
amdgpu_ttm_tt_unpin_userptr(struct ttm_device * bdev,struct ttm_tt * ttm)852 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
853 struct ttm_tt *ttm)
854 {
855 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
856 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
857 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
858 enum dma_data_direction direction = write ?
859 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
860
861 /* double check that we don't free the table twice */
862 if (!ttm->sg || !ttm->sg->sgl)
863 return;
864
865 /* unmap the pages mapped to the device */
866 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
867 sg_free_table(ttm->sg);
868 }
869
870 /*
871 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
872 * MQDn+CtrlStackn where n is the number of XCCs per partition.
873 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
874 * and uses memory type default, UC. The rest of pages_per_xcc are
875 * Ctrl stack and modify their memory type to NC.
876 */
amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device * adev,struct ttm_tt * ttm,uint64_t flags)877 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
878 struct ttm_tt *ttm, uint64_t flags)
879 {
880 struct amdgpu_ttm_tt *gtt = (void *)ttm;
881 uint64_t total_pages = ttm->num_pages;
882 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
883 uint64_t page_idx, pages_per_xcc;
884 int i;
885 uint64_t ctrl_flags = AMDGPU_PTE_MTYPE_VG10(flags, AMDGPU_MTYPE_NC);
886
887 pages_per_xcc = total_pages;
888 do_div(pages_per_xcc, num_xcc);
889
890 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
891 /* MQD page: use default flags */
892 amdgpu_gart_bind(adev,
893 gtt->offset + (page_idx << PAGE_SHIFT),
894 1, >t->ttm.dma_address[page_idx], flags);
895 /*
896 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
897 * the second page of the BO onward.
898 */
899 amdgpu_gart_bind(adev,
900 gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
901 pages_per_xcc - 1,
902 >t->ttm.dma_address[page_idx + 1],
903 ctrl_flags);
904 }
905 }
906
amdgpu_ttm_gart_bind(struct amdgpu_device * adev,struct ttm_buffer_object * tbo,uint64_t flags)907 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
908 struct ttm_buffer_object *tbo,
909 uint64_t flags)
910 {
911 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
912 struct ttm_tt *ttm = tbo->ttm;
913 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
914
915 if (amdgpu_bo_encrypted(abo))
916 flags |= AMDGPU_PTE_TMZ;
917
918 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
919 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
920 } else {
921 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
922 gtt->ttm.dma_address, flags);
923 }
924 gtt->bound = true;
925 }
926
927 /*
928 * amdgpu_ttm_backend_bind - Bind GTT memory
929 *
930 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
931 * This handles binding GTT memory to the device address space.
932 */
amdgpu_ttm_backend_bind(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_resource * bo_mem)933 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
934 struct ttm_tt *ttm,
935 struct ttm_resource *bo_mem)
936 {
937 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
938 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
939 uint64_t flags;
940 int r;
941
942 if (!bo_mem)
943 return -EINVAL;
944
945 if (gtt->bound)
946 return 0;
947
948 if (gtt->userptr) {
949 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
950 if (r) {
951 dev_err(adev->dev, "failed to pin userptr\n");
952 return r;
953 }
954 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
955 if (!ttm->sg) {
956 struct dma_buf_attachment *attach;
957 struct sg_table *sgt;
958
959 attach = gtt->gobj->import_attach;
960 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
961 if (IS_ERR(sgt))
962 return PTR_ERR(sgt);
963
964 ttm->sg = sgt;
965 }
966
967 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
968 ttm->num_pages);
969 }
970
971 if (!ttm->num_pages) {
972 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
973 ttm->num_pages, bo_mem, ttm);
974 }
975
976 if (bo_mem->mem_type != TTM_PL_TT ||
977 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
978 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
979 return 0;
980 }
981
982 /* compute PTE flags relevant to this BO memory */
983 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
984
985 /* bind pages into GART page tables */
986 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
987 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
988 gtt->ttm.dma_address, flags);
989 gtt->bound = true;
990 return 0;
991 }
992
993 /*
994 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
995 * through AGP or GART aperture.
996 *
997 * If bo is accessible through AGP aperture, then use AGP aperture
998 * to access bo; otherwise allocate logical space in GART aperture
999 * and map bo to GART aperture.
1000 */
amdgpu_ttm_alloc_gart(struct ttm_buffer_object * bo)1001 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1002 {
1003 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1004 struct ttm_operation_ctx ctx = { false, false };
1005 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1006 struct ttm_placement placement;
1007 struct ttm_place placements;
1008 struct ttm_resource *tmp;
1009 uint64_t addr, flags;
1010 int r;
1011
1012 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
1013 return 0;
1014
1015 addr = amdgpu_gmc_agp_addr(bo);
1016 if (addr != AMDGPU_BO_INVALID_OFFSET)
1017 return 0;
1018
1019 /* allocate GART space */
1020 placement.num_placement = 1;
1021 placement.placement = &placements;
1022 placements.fpfn = 0;
1023 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1024 placements.mem_type = TTM_PL_TT;
1025 placements.flags = bo->resource->placement;
1026
1027 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1028 if (unlikely(r))
1029 return r;
1030
1031 /* compute PTE flags for this buffer object */
1032 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
1033
1034 /* Bind pages */
1035 gtt->offset = (u64)tmp->start << PAGE_SHIFT;
1036 amdgpu_ttm_gart_bind(adev, bo, flags);
1037 amdgpu_gart_invalidate_tlb(adev);
1038 ttm_resource_free(bo, &bo->resource);
1039 ttm_bo_assign_mem(bo, tmp);
1040
1041 return 0;
1042 }
1043
1044 /*
1045 * amdgpu_ttm_recover_gart - Rebind GTT pages
1046 *
1047 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1048 * rebind GTT pages during a GPU reset.
1049 */
amdgpu_ttm_recover_gart(struct ttm_buffer_object * tbo)1050 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1051 {
1052 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1053 uint64_t flags;
1054
1055 if (!tbo->ttm)
1056 return;
1057
1058 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1059 amdgpu_ttm_gart_bind(adev, tbo, flags);
1060 }
1061
1062 /*
1063 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1064 *
1065 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1066 * ttm_tt_destroy().
1067 */
amdgpu_ttm_backend_unbind(struct ttm_device * bdev,struct ttm_tt * ttm)1068 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1069 struct ttm_tt *ttm)
1070 {
1071 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1072 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1073
1074 /* if the pages have userptr pinning then clear that first */
1075 if (gtt->userptr) {
1076 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1077 } else if (ttm->sg && drm_gem_is_imported(gtt->gobj)) {
1078 struct dma_buf_attachment *attach;
1079
1080 attach = gtt->gobj->import_attach;
1081 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1082 ttm->sg = NULL;
1083 }
1084
1085 if (!gtt->bound)
1086 return;
1087
1088 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1089 return;
1090
1091 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1092 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1093 gtt->bound = false;
1094 }
1095
amdgpu_ttm_backend_destroy(struct ttm_device * bdev,struct ttm_tt * ttm)1096 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1097 struct ttm_tt *ttm)
1098 {
1099 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1100
1101 if (gtt->usertask)
1102 put_task_struct(gtt->usertask);
1103
1104 ttm_tt_fini(>t->ttm);
1105 kfree(gtt);
1106 }
1107
1108 /**
1109 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1110 *
1111 * @bo: The buffer object to create a GTT ttm_tt object around
1112 * @page_flags: Page flags to be added to the ttm_tt object
1113 *
1114 * Called by ttm_tt_create().
1115 */
amdgpu_ttm_tt_create(struct ttm_buffer_object * bo,uint32_t page_flags)1116 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1117 uint32_t page_flags)
1118 {
1119 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1120 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1121 struct amdgpu_ttm_tt *gtt;
1122 enum ttm_caching caching;
1123
1124 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1125 if (!gtt)
1126 return NULL;
1127
1128 gtt->gobj = &bo->base;
1129 if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1130 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1131 else
1132 gtt->pool_id = abo->xcp_id;
1133
1134 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1135 caching = ttm_write_combined;
1136 else
1137 caching = ttm_cached;
1138
1139 /* allocate space for the uninitialized page entries */
1140 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) {
1141 kfree(gtt);
1142 return NULL;
1143 }
1144 return >t->ttm;
1145 }
1146
1147 /*
1148 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1149 *
1150 * Map the pages of a ttm_tt object to an address space visible
1151 * to the underlying device.
1152 */
amdgpu_ttm_tt_populate(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_operation_ctx * ctx)1153 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1154 struct ttm_tt *ttm,
1155 struct ttm_operation_ctx *ctx)
1156 {
1157 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1158 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1159 struct ttm_pool *pool;
1160 pgoff_t i;
1161 int ret;
1162
1163 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1164 if (gtt->userptr) {
1165 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1166 if (!ttm->sg)
1167 return -ENOMEM;
1168 return 0;
1169 }
1170
1171 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1172 return 0;
1173
1174 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1175 pool = &adev->mman.ttm_pools[gtt->pool_id];
1176 else
1177 pool = &adev->mman.bdev.pool;
1178 ret = ttm_pool_alloc(pool, ttm, ctx);
1179 if (ret)
1180 return ret;
1181
1182 for (i = 0; i < ttm->num_pages; ++i)
1183 ttm->pages[i]->mapping = bdev->dev_mapping;
1184
1185 return 0;
1186 }
1187
1188 /*
1189 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1190 *
1191 * Unmaps pages of a ttm_tt object from the device address space and
1192 * unpopulates the page array backing it.
1193 */
amdgpu_ttm_tt_unpopulate(struct ttm_device * bdev,struct ttm_tt * ttm)1194 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1195 struct ttm_tt *ttm)
1196 {
1197 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1198 struct amdgpu_device *adev;
1199 struct ttm_pool *pool;
1200 pgoff_t i;
1201
1202 amdgpu_ttm_backend_unbind(bdev, ttm);
1203
1204 if (gtt->userptr) {
1205 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1206 kfree(ttm->sg);
1207 ttm->sg = NULL;
1208 return;
1209 }
1210
1211 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1212 return;
1213
1214 for (i = 0; i < ttm->num_pages; ++i)
1215 ttm->pages[i]->mapping = NULL;
1216
1217 adev = amdgpu_ttm_adev(bdev);
1218
1219 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1220 pool = &adev->mman.ttm_pools[gtt->pool_id];
1221 else
1222 pool = &adev->mman.bdev.pool;
1223
1224 return ttm_pool_free(pool, ttm);
1225 }
1226
1227 /**
1228 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1229 * task
1230 *
1231 * @tbo: The ttm_buffer_object that contains the userptr
1232 * @user_addr: The returned value
1233 */
amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object * tbo,uint64_t * user_addr)1234 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1235 uint64_t *user_addr)
1236 {
1237 struct amdgpu_ttm_tt *gtt;
1238
1239 if (!tbo->ttm)
1240 return -EINVAL;
1241
1242 gtt = (void *)tbo->ttm;
1243 *user_addr = gtt->userptr;
1244 return 0;
1245 }
1246
1247 /**
1248 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1249 * task
1250 *
1251 * @bo: The ttm_buffer_object to bind this userptr to
1252 * @addr: The address in the current tasks VM space to use
1253 * @flags: Requirements of userptr object.
1254 *
1255 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1256 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1257 * initialize GPU VM for a KFD process.
1258 */
amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object * bo,uint64_t addr,uint32_t flags)1259 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1260 uint64_t addr, uint32_t flags)
1261 {
1262 struct amdgpu_ttm_tt *gtt;
1263
1264 if (!bo->ttm) {
1265 /* TODO: We want a separate TTM object type for userptrs */
1266 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1267 if (bo->ttm == NULL)
1268 return -ENOMEM;
1269 }
1270
1271 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1272 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1273
1274 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1275 gtt->userptr = addr;
1276 gtt->userflags = flags;
1277
1278 if (gtt->usertask)
1279 put_task_struct(gtt->usertask);
1280 gtt->usertask = current->group_leader;
1281 get_task_struct(gtt->usertask);
1282
1283 return 0;
1284 }
1285
1286 /*
1287 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1288 */
amdgpu_ttm_tt_get_usermm(struct ttm_tt * ttm)1289 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1290 {
1291 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1292
1293 if (gtt == NULL)
1294 return NULL;
1295
1296 if (gtt->usertask == NULL)
1297 return NULL;
1298
1299 return gtt->usertask->mm;
1300 }
1301
1302 /*
1303 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1304 * address range for the current task.
1305 *
1306 */
amdgpu_ttm_tt_affect_userptr(struct ttm_tt * ttm,unsigned long start,unsigned long end,unsigned long * userptr)1307 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1308 unsigned long end, unsigned long *userptr)
1309 {
1310 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1311 unsigned long size;
1312
1313 if (gtt == NULL || !gtt->userptr)
1314 return false;
1315
1316 /* Return false if no part of the ttm_tt object lies within
1317 * the range
1318 */
1319 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1320 if (gtt->userptr > end || gtt->userptr + size <= start)
1321 return false;
1322
1323 if (userptr)
1324 *userptr = gtt->userptr;
1325 return true;
1326 }
1327
1328 /*
1329 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1330 */
amdgpu_ttm_tt_is_userptr(struct ttm_tt * ttm)1331 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1332 {
1333 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1334
1335 if (gtt == NULL || !gtt->userptr)
1336 return false;
1337
1338 return true;
1339 }
1340
1341 /*
1342 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1343 */
amdgpu_ttm_tt_is_readonly(struct ttm_tt * ttm)1344 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1345 {
1346 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1347
1348 if (gtt == NULL)
1349 return false;
1350
1351 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1352 }
1353
1354 /**
1355 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1356 *
1357 * @ttm: The ttm_tt object to compute the flags for
1358 * @mem: The memory registry backing this ttm_tt object
1359 *
1360 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1361 */
amdgpu_ttm_tt_pde_flags(struct ttm_tt * ttm,struct ttm_resource * mem)1362 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1363 {
1364 uint64_t flags = 0;
1365
1366 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1367 flags |= AMDGPU_PTE_VALID;
1368
1369 if (mem && (mem->mem_type == TTM_PL_TT ||
1370 mem->mem_type == AMDGPU_PL_DOORBELL ||
1371 mem->mem_type == AMDGPU_PL_PREEMPT ||
1372 mem->mem_type == AMDGPU_PL_MMIO_REMAP)) {
1373 flags |= AMDGPU_PTE_SYSTEM;
1374
1375 if (ttm && ttm->caching == ttm_cached)
1376 flags |= AMDGPU_PTE_SNOOPED;
1377 }
1378
1379 if (mem && mem->mem_type == TTM_PL_VRAM &&
1380 mem->bus.caching == ttm_cached)
1381 flags |= AMDGPU_PTE_SNOOPED;
1382
1383 return flags;
1384 }
1385
1386 /**
1387 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1388 *
1389 * @adev: amdgpu_device pointer
1390 * @ttm: The ttm_tt object to compute the flags for
1391 * @mem: The memory registry backing this ttm_tt object
1392 *
1393 * Figure out the flags to use for a VM PTE (Page Table Entry).
1394 */
amdgpu_ttm_tt_pte_flags(struct amdgpu_device * adev,struct ttm_tt * ttm,struct ttm_resource * mem)1395 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1396 struct ttm_resource *mem)
1397 {
1398 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1399
1400 flags |= adev->gart.gart_pte_flags;
1401 flags |= AMDGPU_PTE_READABLE;
1402
1403 if (!amdgpu_ttm_tt_is_readonly(ttm))
1404 flags |= AMDGPU_PTE_WRITEABLE;
1405
1406 return flags;
1407 }
1408
1409 /*
1410 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1411 * object.
1412 *
1413 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1414 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1415 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1416 * used to clean out a memory space.
1417 */
amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object * bo,const struct ttm_place * place)1418 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1419 const struct ttm_place *place)
1420 {
1421 struct dma_resv_iter resv_cursor;
1422 struct dma_fence *f;
1423
1424 if (!amdgpu_bo_is_amdgpu_bo(bo))
1425 return ttm_bo_eviction_valuable(bo, place);
1426
1427 /* Swapout? */
1428 if (bo->resource->mem_type == TTM_PL_SYSTEM)
1429 return true;
1430
1431 if (bo->type == ttm_bo_type_kernel &&
1432 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1433 return false;
1434
1435 /* If bo is a KFD BO, check if the bo belongs to the current process.
1436 * If true, then return false as any KFD process needs all its BOs to
1437 * be resident to run successfully
1438 */
1439 dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1440 DMA_RESV_USAGE_BOOKKEEP, f) {
1441 if (amdkfd_fence_check_mm(f, current->mm) &&
1442 !(place->flags & TTM_PL_FLAG_CONTIGUOUS))
1443 return false;
1444 }
1445
1446 /* Preemptible BOs don't own system resources managed by the
1447 * driver (pages, VRAM, GART space). They point to resources
1448 * owned by someone else (e.g. pageable memory in user mode
1449 * or a DMABuf). They are used in a preemptible context so we
1450 * can guarantee no deadlocks and good QoS in case of MMU
1451 * notifiers or DMABuf move notifiers from the resource owner.
1452 */
1453 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1454 return false;
1455
1456 if (bo->resource->mem_type == TTM_PL_TT &&
1457 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1458 return false;
1459
1460 return ttm_bo_eviction_valuable(bo, place);
1461 }
1462
amdgpu_ttm_vram_mm_access(struct amdgpu_device * adev,loff_t pos,void * buf,size_t size,bool write)1463 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1464 void *buf, size_t size, bool write)
1465 {
1466 while (size) {
1467 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1468 uint64_t bytes = 4 - (pos & 0x3);
1469 uint32_t shift = (pos & 0x3) * 8;
1470 uint32_t mask = 0xffffffff << shift;
1471 uint32_t value = 0;
1472
1473 if (size < bytes) {
1474 mask &= 0xffffffff >> (bytes - size) * 8;
1475 bytes = size;
1476 }
1477
1478 if (mask != 0xffffffff) {
1479 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1480 if (write) {
1481 value &= ~mask;
1482 value |= (*(uint32_t *)buf << shift) & mask;
1483 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1484 } else {
1485 value = (value & mask) >> shift;
1486 memcpy(buf, &value, bytes);
1487 }
1488 } else {
1489 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1490 }
1491
1492 pos += bytes;
1493 buf += bytes;
1494 size -= bytes;
1495 }
1496 }
1497
amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object * bo,unsigned long offset,void * buf,int len,int write)1498 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1499 unsigned long offset, void *buf,
1500 int len, int write)
1501 {
1502 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1503 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1504 struct amdgpu_res_cursor src_mm;
1505 struct amdgpu_job *job;
1506 struct dma_fence *fence;
1507 uint64_t src_addr, dst_addr;
1508 unsigned int num_dw;
1509 int r, idx;
1510
1511 if (len != PAGE_SIZE)
1512 return -EINVAL;
1513
1514 if (!adev->mman.sdma_access_ptr)
1515 return -EACCES;
1516
1517 if (!drm_dev_enter(adev_to_drm(adev), &idx))
1518 return -ENODEV;
1519
1520 if (write)
1521 memcpy(adev->mman.sdma_access_ptr, buf, len);
1522
1523 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1524 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1525 AMDGPU_FENCE_OWNER_UNDEFINED,
1526 num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1527 &job,
1528 AMDGPU_KERNEL_JOB_ID_TTM_ACCESS_MEMORY_SDMA);
1529 if (r)
1530 goto out;
1531
1532 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1533 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1534 src_mm.start;
1535 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1536 if (write)
1537 swap(src_addr, dst_addr);
1538
1539 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1540 PAGE_SIZE, 0);
1541
1542 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1543 WARN_ON(job->ibs[0].length_dw > num_dw);
1544
1545 fence = amdgpu_job_submit(job);
1546
1547 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1548 r = -ETIMEDOUT;
1549 dma_fence_put(fence);
1550
1551 if (!(r || write))
1552 memcpy(buf, adev->mman.sdma_access_ptr, len);
1553 out:
1554 drm_dev_exit(idx);
1555 return r;
1556 }
1557
1558 /**
1559 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1560 *
1561 * @bo: The buffer object to read/write
1562 * @offset: Offset into buffer object
1563 * @buf: Secondary buffer to write/read from
1564 * @len: Length in bytes of access
1565 * @write: true if writing
1566 *
1567 * This is used to access VRAM that backs a buffer object via MMIO
1568 * access for debugging purposes.
1569 */
amdgpu_ttm_access_memory(struct ttm_buffer_object * bo,unsigned long offset,void * buf,int len,int write)1570 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1571 unsigned long offset, void *buf, int len,
1572 int write)
1573 {
1574 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1575 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1576 struct amdgpu_res_cursor cursor;
1577 int ret = 0;
1578
1579 if (bo->resource->mem_type != TTM_PL_VRAM)
1580 return -EIO;
1581
1582 if (amdgpu_device_has_timeouts_enabled(adev) &&
1583 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1584 return len;
1585
1586 amdgpu_res_first(bo->resource, offset, len, &cursor);
1587 while (cursor.remaining) {
1588 size_t count, size = cursor.size;
1589 loff_t pos = cursor.start;
1590
1591 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1592 size -= count;
1593 if (size) {
1594 /* using MM to access rest vram and handle un-aligned address */
1595 pos += count;
1596 buf += count;
1597 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1598 }
1599
1600 ret += cursor.size;
1601 buf += cursor.size;
1602 amdgpu_res_next(&cursor, cursor.size);
1603 }
1604
1605 return ret;
1606 }
1607
1608 static void
amdgpu_bo_delete_mem_notify(struct ttm_buffer_object * bo)1609 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1610 {
1611 amdgpu_bo_move_notify(bo, false, NULL);
1612 }
1613
1614 static struct ttm_device_funcs amdgpu_bo_driver = {
1615 .ttm_tt_create = &amdgpu_ttm_tt_create,
1616 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1617 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1618 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1619 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1620 .evict_flags = &amdgpu_evict_flags,
1621 .move = &amdgpu_bo_move,
1622 .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1623 .release_notify = &amdgpu_bo_release_notify,
1624 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1625 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1626 .access_memory = &amdgpu_ttm_access_memory,
1627 };
1628
1629 /*
1630 * Firmware Reservation functions
1631 */
1632 /**
1633 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1634 *
1635 * @adev: amdgpu_device pointer
1636 *
1637 * free fw reserved vram if it has been reserved.
1638 */
amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device * adev)1639 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1640 {
1641 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1642 NULL, &adev->mman.fw_vram_usage_va);
1643 }
1644
1645 /*
1646 * Driver Reservation functions
1647 */
1648 /**
1649 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1650 *
1651 * @adev: amdgpu_device pointer
1652 *
1653 * free drv reserved vram if it has been reserved.
1654 */
amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device * adev)1655 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1656 {
1657 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1658 NULL,
1659 &adev->mman.drv_vram_usage_va);
1660 }
1661
1662 /**
1663 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1664 *
1665 * @adev: amdgpu_device pointer
1666 *
1667 * create bo vram reservation from fw.
1668 */
amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device * adev)1669 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1670 {
1671 uint64_t vram_size = adev->gmc.visible_vram_size;
1672
1673 adev->mman.fw_vram_usage_va = NULL;
1674 adev->mman.fw_vram_usage_reserved_bo = NULL;
1675
1676 if (adev->mman.fw_vram_usage_size == 0 ||
1677 adev->mman.fw_vram_usage_size > vram_size)
1678 return 0;
1679
1680 return amdgpu_bo_create_kernel_at(adev,
1681 adev->mman.fw_vram_usage_start_offset,
1682 adev->mman.fw_vram_usage_size,
1683 &adev->mman.fw_vram_usage_reserved_bo,
1684 &adev->mman.fw_vram_usage_va);
1685 }
1686
1687 /**
1688 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1689 *
1690 * @adev: amdgpu_device pointer
1691 *
1692 * create bo vram reservation from drv.
1693 */
amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device * adev)1694 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1695 {
1696 u64 vram_size = adev->gmc.visible_vram_size;
1697
1698 adev->mman.drv_vram_usage_va = NULL;
1699 adev->mman.drv_vram_usage_reserved_bo = NULL;
1700
1701 if (adev->mman.drv_vram_usage_size == 0 ||
1702 adev->mman.drv_vram_usage_size > vram_size)
1703 return 0;
1704
1705 return amdgpu_bo_create_kernel_at(adev,
1706 adev->mman.drv_vram_usage_start_offset,
1707 adev->mman.drv_vram_usage_size,
1708 &adev->mman.drv_vram_usage_reserved_bo,
1709 &adev->mman.drv_vram_usage_va);
1710 }
1711
1712 /*
1713 * Memoy training reservation functions
1714 */
1715
1716 /**
1717 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1718 *
1719 * @adev: amdgpu_device pointer
1720 *
1721 * free memory training reserved vram if it has been reserved.
1722 */
amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device * adev)1723 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1724 {
1725 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1726
1727 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1728 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1729 ctx->c2p_bo = NULL;
1730
1731 return 0;
1732 }
1733
amdgpu_ttm_training_data_block_init(struct amdgpu_device * adev,uint32_t reserve_size)1734 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1735 uint32_t reserve_size)
1736 {
1737 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1738
1739 memset(ctx, 0, sizeof(*ctx));
1740
1741 ctx->c2p_train_data_offset =
1742 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1743 ctx->p2c_train_data_offset =
1744 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1745 ctx->train_data_size =
1746 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1747
1748 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1749 ctx->train_data_size,
1750 ctx->p2c_train_data_offset,
1751 ctx->c2p_train_data_offset);
1752 }
1753
1754 /*
1755 * reserve TMR memory at the top of VRAM which holds
1756 * IP Discovery data and is protected by PSP.
1757 */
amdgpu_ttm_reserve_tmr(struct amdgpu_device * adev)1758 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1759 {
1760 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1761 bool mem_train_support = false;
1762 uint32_t reserve_size = 0;
1763 int ret;
1764
1765 if (adev->bios && !amdgpu_sriov_vf(adev)) {
1766 if (amdgpu_atomfirmware_mem_training_supported(adev))
1767 mem_train_support = true;
1768 else
1769 DRM_DEBUG("memory training does not support!\n");
1770 }
1771
1772 /*
1773 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1774 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1775 *
1776 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1777 * discovery data and G6 memory training data respectively
1778 */
1779 if (adev->bios)
1780 reserve_size =
1781 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1782
1783 if (!adev->bios &&
1784 (amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3) ||
1785 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 4) ||
1786 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 5, 0)))
1787 reserve_size = max(reserve_size, (uint32_t)280 << 20);
1788 else if (!reserve_size)
1789 reserve_size = DISCOVERY_TMR_OFFSET;
1790
1791 if (mem_train_support) {
1792 /* reserve vram for mem train according to TMR location */
1793 amdgpu_ttm_training_data_block_init(adev, reserve_size);
1794 ret = amdgpu_bo_create_kernel_at(adev,
1795 ctx->c2p_train_data_offset,
1796 ctx->train_data_size,
1797 &ctx->c2p_bo,
1798 NULL);
1799 if (ret) {
1800 dev_err(adev->dev, "alloc c2p_bo failed(%d)!\n", ret);
1801 amdgpu_ttm_training_reserve_vram_fini(adev);
1802 return ret;
1803 }
1804 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1805 }
1806
1807 if (!adev->gmc.is_app_apu) {
1808 ret = amdgpu_bo_create_kernel_at(
1809 adev, adev->gmc.real_vram_size - reserve_size,
1810 reserve_size, &adev->mman.fw_reserved_memory, NULL);
1811 if (ret) {
1812 dev_err(adev->dev, "alloc tmr failed(%d)!\n", ret);
1813 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1814 NULL, NULL);
1815 return ret;
1816 }
1817 } else {
1818 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1819 }
1820
1821 return 0;
1822 }
1823
amdgpu_ttm_pools_init(struct amdgpu_device * adev)1824 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1825 {
1826 int i;
1827
1828 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1829 return 0;
1830
1831 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1832 sizeof(*adev->mman.ttm_pools),
1833 GFP_KERNEL);
1834 if (!adev->mman.ttm_pools)
1835 return -ENOMEM;
1836
1837 for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1838 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1839 adev->gmc.mem_partitions[i].numa.node,
1840 false, false);
1841 }
1842 return 0;
1843 }
1844
amdgpu_ttm_pools_fini(struct amdgpu_device * adev)1845 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1846 {
1847 int i;
1848
1849 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1850 return;
1851
1852 for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1853 ttm_pool_fini(&adev->mman.ttm_pools[i]);
1854
1855 kfree(adev->mman.ttm_pools);
1856 adev->mman.ttm_pools = NULL;
1857 }
1858
1859 /**
1860 * amdgpu_ttm_mmio_remap_bo_init - Allocate the singleton 4K MMIO_REMAP BO
1861 * @adev: amdgpu device
1862 *
1863 * Allocates a one-page (4K) GEM BO in AMDGPU_GEM_DOMAIN_MMIO_REMAP when the
1864 * hardware exposes a remap base (adev->rmmio_remap.bus_addr) and the host
1865 * PAGE_SIZE is <= AMDGPU_GPU_PAGE_SIZE (4K). The BO is created as a regular
1866 * GEM object (amdgpu_bo_create).
1867 *
1868 * Return:
1869 * * 0 on success or intentional skip (feature not present/unsupported)
1870 * * negative errno on allocation failure
1871 */
amdgpu_ttm_mmio_remap_bo_init(struct amdgpu_device * adev)1872 static int amdgpu_ttm_mmio_remap_bo_init(struct amdgpu_device *adev)
1873 {
1874 struct amdgpu_bo_param bp;
1875 int r;
1876
1877 /* Skip if HW doesn't expose remap, or if PAGE_SIZE > AMDGPU_GPU_PAGE_SIZE (4K). */
1878 if (!adev->rmmio_remap.bus_addr || PAGE_SIZE > AMDGPU_GPU_PAGE_SIZE)
1879 return 0;
1880
1881 memset(&bp, 0, sizeof(bp));
1882
1883 /* Create exactly one GEM BO in the MMIO_REMAP domain. */
1884 bp.type = ttm_bo_type_device; /* userspace-mappable GEM */
1885 bp.size = AMDGPU_GPU_PAGE_SIZE; /* 4K */
1886 bp.byte_align = AMDGPU_GPU_PAGE_SIZE;
1887 bp.domain = AMDGPU_GEM_DOMAIN_MMIO_REMAP;
1888 bp.flags = 0;
1889 bp.resv = NULL;
1890 bp.bo_ptr_size = sizeof(struct amdgpu_bo);
1891
1892 r = amdgpu_bo_create(adev, &bp, &adev->rmmio_remap.bo);
1893 if (r)
1894 return r;
1895
1896 return 0;
1897 }
1898
1899 /**
1900 * amdgpu_ttm_mmio_remap_bo_fini - Free the singleton MMIO_REMAP BO
1901 * @adev: amdgpu device
1902 *
1903 * Frees the kernel-owned MMIO_REMAP BO if it was allocated by
1904 * amdgpu_ttm_mmio_remap_bo_init().
1905 */
amdgpu_ttm_mmio_remap_bo_fini(struct amdgpu_device * adev)1906 static void amdgpu_ttm_mmio_remap_bo_fini(struct amdgpu_device *adev)
1907 {
1908 amdgpu_bo_unref(&adev->rmmio_remap.bo);
1909 adev->rmmio_remap.bo = NULL;
1910 }
1911
1912 /*
1913 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1914 * gtt/vram related fields.
1915 *
1916 * This initializes all of the memory space pools that the TTM layer
1917 * will need such as the GTT space (system memory mapped to the device),
1918 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1919 * can be mapped per VMID.
1920 */
amdgpu_ttm_init(struct amdgpu_device * adev)1921 int amdgpu_ttm_init(struct amdgpu_device *adev)
1922 {
1923 uint64_t gtt_size;
1924 int r;
1925
1926 mutex_init(&adev->mman.gtt_window_lock);
1927
1928 dma_set_max_seg_size(adev->dev, UINT_MAX);
1929 /* No others user of address space so set it to 0 */
1930 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1931 adev_to_drm(adev)->anon_inode->i_mapping,
1932 adev_to_drm(adev)->vma_offset_manager,
1933 adev->need_swiotlb,
1934 dma_addressing_limited(adev->dev));
1935 if (r) {
1936 dev_err(adev->dev,
1937 "failed initializing buffer object driver(%d).\n", r);
1938 return r;
1939 }
1940
1941 r = amdgpu_ttm_pools_init(adev);
1942 if (r) {
1943 dev_err(adev->dev, "failed to init ttm pools(%d).\n", r);
1944 return r;
1945 }
1946 adev->mman.initialized = true;
1947
1948 if (!adev->gmc.is_app_apu) {
1949 /* Initialize VRAM pool with all of VRAM divided into pages */
1950 r = amdgpu_vram_mgr_init(adev);
1951 if (r) {
1952 dev_err(adev->dev, "Failed initializing VRAM heap.\n");
1953 return r;
1954 }
1955 }
1956
1957 /* Change the size here instead of the init above so only lpfn is affected */
1958 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1959 #ifdef CONFIG_64BIT
1960 #ifdef CONFIG_X86
1961 if (adev->gmc.xgmi.connected_to_cpu)
1962 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1963 adev->gmc.visible_vram_size);
1964
1965 else if (adev->gmc.is_app_apu)
1966 DRM_DEBUG_DRIVER(
1967 "No need to ioremap when real vram size is 0\n");
1968 else
1969 #endif
1970 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1971 adev->gmc.visible_vram_size);
1972 #endif
1973
1974 /*
1975 *The reserved vram for firmware must be pinned to the specified
1976 *place on the VRAM, so reserve it early.
1977 */
1978 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1979 if (r)
1980 return r;
1981
1982 /*
1983 *The reserved vram for driver must be pinned to the specified
1984 *place on the VRAM, so reserve it early.
1985 */
1986 r = amdgpu_ttm_drv_reserve_vram_init(adev);
1987 if (r)
1988 return r;
1989
1990 /*
1991 * only NAVI10 and onwards ASIC support for IP discovery.
1992 * If IP discovery enabled, a block of memory should be
1993 * reserved for IP discovey.
1994 */
1995 if (adev->mman.discovery_bin) {
1996 r = amdgpu_ttm_reserve_tmr(adev);
1997 if (r)
1998 return r;
1999 }
2000
2001 /* allocate memory as required for VGA
2002 * This is used for VGA emulation and pre-OS scanout buffers to
2003 * avoid display artifacts while transitioning between pre-OS
2004 * and driver.
2005 */
2006 if (!adev->gmc.is_app_apu) {
2007 r = amdgpu_bo_create_kernel_at(adev, 0,
2008 adev->mman.stolen_vga_size,
2009 &adev->mman.stolen_vga_memory,
2010 NULL);
2011 if (r)
2012 return r;
2013
2014 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
2015 adev->mman.stolen_extended_size,
2016 &adev->mman.stolen_extended_memory,
2017 NULL);
2018
2019 if (r)
2020 return r;
2021
2022 r = amdgpu_bo_create_kernel_at(adev,
2023 adev->mman.stolen_reserved_offset,
2024 adev->mman.stolen_reserved_size,
2025 &adev->mman.stolen_reserved_memory,
2026 NULL);
2027 if (r)
2028 return r;
2029 } else {
2030 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
2031 }
2032
2033 dev_info(adev->dev, "amdgpu: %uM of VRAM memory ready\n",
2034 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
2035
2036 /* Compute GTT size, either based on TTM limit
2037 * or whatever the user passed on module init.
2038 */
2039 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
2040 if (amdgpu_gtt_size != -1) {
2041 uint64_t configured_size = (uint64_t)amdgpu_gtt_size << 20;
2042
2043 drm_warn(&adev->ddev,
2044 "Configuring gttsize via module parameter is deprecated, please use ttm.pages_limit\n");
2045 if (gtt_size != configured_size)
2046 drm_warn(&adev->ddev,
2047 "GTT size has been set as %llu but TTM size has been set as %llu, this is unusual\n",
2048 configured_size, gtt_size);
2049
2050 gtt_size = configured_size;
2051 }
2052
2053 /* Initialize GTT memory pool */
2054 r = amdgpu_gtt_mgr_init(adev, gtt_size);
2055 if (r) {
2056 dev_err(adev->dev, "Failed initializing GTT heap.\n");
2057 return r;
2058 }
2059 dev_info(adev->dev, "amdgpu: %uM of GTT memory ready.\n",
2060 (unsigned int)(gtt_size / (1024 * 1024)));
2061
2062 if (adev->flags & AMD_IS_APU) {
2063 if (adev->gmc.real_vram_size < gtt_size)
2064 adev->apu_prefer_gtt = true;
2065 }
2066
2067 /* Initialize doorbell pool on PCI BAR */
2068 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
2069 if (r) {
2070 dev_err(adev->dev, "Failed initializing doorbell heap.\n");
2071 return r;
2072 }
2073
2074 /* Create a boorbell page for kernel usages */
2075 r = amdgpu_doorbell_create_kernel_doorbells(adev);
2076 if (r) {
2077 dev_err(adev->dev, "Failed to initialize kernel doorbells.\n");
2078 return r;
2079 }
2080
2081 /* Initialize MMIO-remap pool (single page 4K) */
2082 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_MMIO_REMAP, 1);
2083 if (r) {
2084 dev_err(adev->dev, "Failed initializing MMIO-remap heap.\n");
2085 return r;
2086 }
2087
2088 /* Allocate the singleton MMIO_REMAP BO (4K) if supported */
2089 r = amdgpu_ttm_mmio_remap_bo_init(adev);
2090 if (r)
2091 return r;
2092
2093 /* Initialize preemptible memory pool */
2094 r = amdgpu_preempt_mgr_init(adev);
2095 if (r) {
2096 dev_err(adev->dev, "Failed initializing PREEMPT heap.\n");
2097 return r;
2098 }
2099
2100 /* Initialize various on-chip memory pools */
2101 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
2102 if (r) {
2103 dev_err(adev->dev, "Failed initializing GDS heap.\n");
2104 return r;
2105 }
2106
2107 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
2108 if (r) {
2109 dev_err(adev->dev, "Failed initializing gws heap.\n");
2110 return r;
2111 }
2112
2113 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
2114 if (r) {
2115 dev_err(adev->dev, "Failed initializing oa heap.\n");
2116 return r;
2117 }
2118 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
2119 AMDGPU_GEM_DOMAIN_GTT,
2120 &adev->mman.sdma_access_bo, NULL,
2121 &adev->mman.sdma_access_ptr))
2122 DRM_WARN("Debug VRAM access will use slowpath MM access\n");
2123
2124 return 0;
2125 }
2126
2127 /*
2128 * amdgpu_ttm_fini - De-initialize the TTM memory pools
2129 */
amdgpu_ttm_fini(struct amdgpu_device * adev)2130 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2131 {
2132 int idx;
2133
2134 if (!adev->mman.initialized)
2135 return;
2136
2137 amdgpu_ttm_pools_fini(adev);
2138
2139 amdgpu_ttm_training_reserve_vram_fini(adev);
2140 /* return the stolen vga memory back to VRAM */
2141 if (!adev->gmc.is_app_apu) {
2142 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2143 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2144 /* return the FW reserved memory back to VRAM */
2145 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2146 NULL);
2147 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory_extend, NULL,
2148 NULL);
2149 if (adev->mman.stolen_reserved_size)
2150 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2151 NULL, NULL);
2152 }
2153 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2154 &adev->mman.sdma_access_ptr);
2155
2156 amdgpu_ttm_mmio_remap_bo_fini(adev);
2157 amdgpu_ttm_fw_reserve_vram_fini(adev);
2158 amdgpu_ttm_drv_reserve_vram_fini(adev);
2159
2160 if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2161
2162 if (adev->mman.aper_base_kaddr)
2163 iounmap(adev->mman.aper_base_kaddr);
2164 adev->mman.aper_base_kaddr = NULL;
2165
2166 drm_dev_exit(idx);
2167 }
2168
2169 if (!adev->gmc.is_app_apu)
2170 amdgpu_vram_mgr_fini(adev);
2171 amdgpu_gtt_mgr_fini(adev);
2172 amdgpu_preempt_mgr_fini(adev);
2173 amdgpu_doorbell_fini(adev);
2174
2175 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2176 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2177 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2178 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_DOORBELL);
2179 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_MMIO_REMAP);
2180 ttm_device_fini(&adev->mman.bdev);
2181 adev->mman.initialized = false;
2182 dev_info(adev->dev, "amdgpu: ttm finalized\n");
2183 }
2184
2185 /**
2186 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2187 *
2188 * @adev: amdgpu_device pointer
2189 * @enable: true when we can use buffer functions.
2190 *
2191 * Enable/disable use of buffer functions during suspend/resume. This should
2192 * only be called at bootup or when userspace isn't running.
2193 */
amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device * adev,bool enable)2194 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2195 {
2196 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2197 uint64_t size;
2198 int r;
2199
2200 if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2201 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2202 return;
2203
2204 if (enable) {
2205 struct amdgpu_ring *ring;
2206 struct drm_gpu_scheduler *sched;
2207
2208 ring = adev->mman.buffer_funcs_ring;
2209 sched = &ring->sched;
2210 r = drm_sched_entity_init(&adev->mman.high_pr,
2211 DRM_SCHED_PRIORITY_KERNEL, &sched,
2212 1, NULL);
2213 if (r) {
2214 dev_err(adev->dev,
2215 "Failed setting up TTM BO move entity (%d)\n",
2216 r);
2217 return;
2218 }
2219
2220 r = drm_sched_entity_init(&adev->mman.low_pr,
2221 DRM_SCHED_PRIORITY_NORMAL, &sched,
2222 1, NULL);
2223 if (r) {
2224 dev_err(adev->dev,
2225 "Failed setting up TTM BO move entity (%d)\n",
2226 r);
2227 goto error_free_entity;
2228 }
2229 } else {
2230 drm_sched_entity_destroy(&adev->mman.high_pr);
2231 drm_sched_entity_destroy(&adev->mman.low_pr);
2232 dma_fence_put(man->move);
2233 man->move = NULL;
2234 }
2235
2236 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2237 if (enable)
2238 size = adev->gmc.real_vram_size;
2239 else
2240 size = adev->gmc.visible_vram_size;
2241 man->size = size;
2242 adev->mman.buffer_funcs_enabled = enable;
2243
2244 return;
2245
2246 error_free_entity:
2247 drm_sched_entity_destroy(&adev->mman.high_pr);
2248 }
2249
amdgpu_ttm_prepare_job(struct amdgpu_device * adev,bool direct_submit,unsigned int num_dw,struct dma_resv * resv,bool vm_needs_flush,struct amdgpu_job ** job,bool delayed,u64 k_job_id)2250 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2251 bool direct_submit,
2252 unsigned int num_dw,
2253 struct dma_resv *resv,
2254 bool vm_needs_flush,
2255 struct amdgpu_job **job,
2256 bool delayed, u64 k_job_id)
2257 {
2258 enum amdgpu_ib_pool_type pool = direct_submit ?
2259 AMDGPU_IB_POOL_DIRECT :
2260 AMDGPU_IB_POOL_DELAYED;
2261 int r;
2262 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2263 &adev->mman.high_pr;
2264 r = amdgpu_job_alloc_with_ib(adev, entity,
2265 AMDGPU_FENCE_OWNER_UNDEFINED,
2266 num_dw * 4, pool, job, k_job_id);
2267 if (r)
2268 return r;
2269
2270 if (vm_needs_flush) {
2271 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2272 adev->gmc.pdb0_bo :
2273 adev->gart.bo);
2274 (*job)->vm_needs_flush = true;
2275 }
2276 if (!resv)
2277 return 0;
2278
2279 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2280 DMA_RESV_USAGE_BOOKKEEP);
2281 }
2282
amdgpu_copy_buffer(struct amdgpu_ring * ring,uint64_t src_offset,uint64_t dst_offset,uint32_t byte_count,struct dma_resv * resv,struct dma_fence ** fence,bool direct_submit,bool vm_needs_flush,uint32_t copy_flags)2283 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2284 uint64_t dst_offset, uint32_t byte_count,
2285 struct dma_resv *resv,
2286 struct dma_fence **fence, bool direct_submit,
2287 bool vm_needs_flush, uint32_t copy_flags)
2288 {
2289 struct amdgpu_device *adev = ring->adev;
2290 unsigned int num_loops, num_dw;
2291 struct amdgpu_job *job;
2292 uint32_t max_bytes;
2293 unsigned int i;
2294 int r;
2295
2296 if (!direct_submit && !ring->sched.ready) {
2297 dev_err(adev->dev,
2298 "Trying to move memory with ring turned off.\n");
2299 return -EINVAL;
2300 }
2301
2302 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2303 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2304 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2305 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2306 resv, vm_needs_flush, &job, false,
2307 AMDGPU_KERNEL_JOB_ID_TTM_COPY_BUFFER);
2308 if (r)
2309 return r;
2310
2311 for (i = 0; i < num_loops; i++) {
2312 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2313
2314 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2315 dst_offset, cur_size_in_bytes, copy_flags);
2316 src_offset += cur_size_in_bytes;
2317 dst_offset += cur_size_in_bytes;
2318 byte_count -= cur_size_in_bytes;
2319 }
2320
2321 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2322 WARN_ON(job->ibs[0].length_dw > num_dw);
2323 if (direct_submit)
2324 r = amdgpu_job_submit_direct(job, ring, fence);
2325 else
2326 *fence = amdgpu_job_submit(job);
2327 if (r)
2328 goto error_free;
2329
2330 return r;
2331
2332 error_free:
2333 amdgpu_job_free(job);
2334 dev_err(adev->dev, "Error scheduling IBs (%d)\n", r);
2335 return r;
2336 }
2337
amdgpu_ttm_fill_mem(struct amdgpu_ring * ring,uint32_t src_data,uint64_t dst_addr,uint32_t byte_count,struct dma_resv * resv,struct dma_fence ** fence,bool vm_needs_flush,bool delayed,u64 k_job_id)2338 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2339 uint64_t dst_addr, uint32_t byte_count,
2340 struct dma_resv *resv,
2341 struct dma_fence **fence,
2342 bool vm_needs_flush, bool delayed,
2343 u64 k_job_id)
2344 {
2345 struct amdgpu_device *adev = ring->adev;
2346 unsigned int num_loops, num_dw;
2347 struct amdgpu_job *job;
2348 uint32_t max_bytes;
2349 unsigned int i;
2350 int r;
2351
2352 max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2353 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2354 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2355 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2356 &job, delayed, k_job_id);
2357 if (r)
2358 return r;
2359
2360 for (i = 0; i < num_loops; i++) {
2361 uint32_t cur_size = min(byte_count, max_bytes);
2362
2363 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2364 cur_size);
2365
2366 dst_addr += cur_size;
2367 byte_count -= cur_size;
2368 }
2369
2370 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2371 WARN_ON(job->ibs[0].length_dw > num_dw);
2372 *fence = amdgpu_job_submit(job);
2373 return 0;
2374 }
2375
2376 /**
2377 * amdgpu_ttm_clear_buffer - clear memory buffers
2378 * @bo: amdgpu buffer object
2379 * @resv: reservation object
2380 * @fence: dma_fence associated with the operation
2381 *
2382 * Clear the memory buffer resource.
2383 *
2384 * Returns:
2385 * 0 for success or a negative error code on failure.
2386 */
amdgpu_ttm_clear_buffer(struct amdgpu_bo * bo,struct dma_resv * resv,struct dma_fence ** fence)2387 int amdgpu_ttm_clear_buffer(struct amdgpu_bo *bo,
2388 struct dma_resv *resv,
2389 struct dma_fence **fence)
2390 {
2391 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2392 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2393 struct amdgpu_res_cursor cursor;
2394 u64 addr;
2395 int r = 0;
2396
2397 if (!adev->mman.buffer_funcs_enabled)
2398 return -EINVAL;
2399
2400 if (!fence)
2401 return -EINVAL;
2402
2403 *fence = dma_fence_get_stub();
2404
2405 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &cursor);
2406
2407 mutex_lock(&adev->mman.gtt_window_lock);
2408 while (cursor.remaining) {
2409 struct dma_fence *next = NULL;
2410 u64 size;
2411
2412 if (amdgpu_res_cleared(&cursor)) {
2413 amdgpu_res_next(&cursor, cursor.size);
2414 continue;
2415 }
2416
2417 /* Never clear more than 256MiB at once to avoid timeouts */
2418 size = min(cursor.size, 256ULL << 20);
2419
2420 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &cursor,
2421 1, ring, false, &size, &addr);
2422 if (r)
2423 goto err;
2424
2425 r = amdgpu_ttm_fill_mem(ring, 0, addr, size, resv,
2426 &next, true, true,
2427 AMDGPU_KERNEL_JOB_ID_TTM_CLEAR_BUFFER);
2428 if (r)
2429 goto err;
2430
2431 dma_fence_put(*fence);
2432 *fence = next;
2433
2434 amdgpu_res_next(&cursor, size);
2435 }
2436 err:
2437 mutex_unlock(&adev->mman.gtt_window_lock);
2438
2439 return r;
2440 }
2441
amdgpu_fill_buffer(struct amdgpu_bo * bo,uint32_t src_data,struct dma_resv * resv,struct dma_fence ** f,bool delayed,u64 k_job_id)2442 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2443 uint32_t src_data,
2444 struct dma_resv *resv,
2445 struct dma_fence **f,
2446 bool delayed,
2447 u64 k_job_id)
2448 {
2449 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2450 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2451 struct dma_fence *fence = NULL;
2452 struct amdgpu_res_cursor dst;
2453 int r;
2454
2455 if (!adev->mman.buffer_funcs_enabled) {
2456 dev_err(adev->dev,
2457 "Trying to clear memory with ring turned off.\n");
2458 return -EINVAL;
2459 }
2460
2461 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2462
2463 mutex_lock(&adev->mman.gtt_window_lock);
2464 while (dst.remaining) {
2465 struct dma_fence *next;
2466 uint64_t cur_size, to;
2467
2468 /* Never fill more than 256MiB at once to avoid timeouts */
2469 cur_size = min(dst.size, 256ULL << 20);
2470
2471 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2472 1, ring, false, &cur_size, &to);
2473 if (r)
2474 goto error;
2475
2476 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2477 &next, true, delayed, k_job_id);
2478 if (r)
2479 goto error;
2480
2481 dma_fence_put(fence);
2482 fence = next;
2483
2484 amdgpu_res_next(&dst, cur_size);
2485 }
2486 error:
2487 mutex_unlock(&adev->mman.gtt_window_lock);
2488 if (f)
2489 *f = dma_fence_get(fence);
2490 dma_fence_put(fence);
2491 return r;
2492 }
2493
2494 /**
2495 * amdgpu_ttm_evict_resources - evict memory buffers
2496 * @adev: amdgpu device object
2497 * @mem_type: evicted BO's memory type
2498 *
2499 * Evicts all @mem_type buffers on the lru list of the memory type.
2500 *
2501 * Returns:
2502 * 0 for success or a negative error code on failure.
2503 */
amdgpu_ttm_evict_resources(struct amdgpu_device * adev,int mem_type)2504 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2505 {
2506 struct ttm_resource_manager *man;
2507
2508 switch (mem_type) {
2509 case TTM_PL_VRAM:
2510 case TTM_PL_TT:
2511 case AMDGPU_PL_GWS:
2512 case AMDGPU_PL_GDS:
2513 case AMDGPU_PL_OA:
2514 man = ttm_manager_type(&adev->mman.bdev, mem_type);
2515 break;
2516 default:
2517 dev_err(adev->dev, "Trying to evict invalid memory type\n");
2518 return -EINVAL;
2519 }
2520
2521 return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2522 }
2523
2524 #if defined(CONFIG_DEBUG_FS)
2525
amdgpu_ttm_page_pool_show(struct seq_file * m,void * unused)2526 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2527 {
2528 struct amdgpu_device *adev = m->private;
2529
2530 return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2531 }
2532
2533 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2534
2535 /*
2536 * amdgpu_ttm_vram_read - Linear read access to VRAM
2537 *
2538 * Accesses VRAM via MMIO for debugging purposes.
2539 */
amdgpu_ttm_vram_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2540 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2541 size_t size, loff_t *pos)
2542 {
2543 struct amdgpu_device *adev = file_inode(f)->i_private;
2544 ssize_t result = 0;
2545
2546 if (size & 0x3 || *pos & 0x3)
2547 return -EINVAL;
2548
2549 if (*pos >= adev->gmc.mc_vram_size)
2550 return -ENXIO;
2551
2552 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2553 while (size) {
2554 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2555 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2556
2557 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2558 if (copy_to_user(buf, value, bytes))
2559 return -EFAULT;
2560
2561 result += bytes;
2562 buf += bytes;
2563 *pos += bytes;
2564 size -= bytes;
2565 }
2566
2567 return result;
2568 }
2569
2570 /*
2571 * amdgpu_ttm_vram_write - Linear write access to VRAM
2572 *
2573 * Accesses VRAM via MMIO for debugging purposes.
2574 */
amdgpu_ttm_vram_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2575 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2576 size_t size, loff_t *pos)
2577 {
2578 struct amdgpu_device *adev = file_inode(f)->i_private;
2579 ssize_t result = 0;
2580 int r;
2581
2582 if (size & 0x3 || *pos & 0x3)
2583 return -EINVAL;
2584
2585 if (*pos >= adev->gmc.mc_vram_size)
2586 return -ENXIO;
2587
2588 while (size) {
2589 uint32_t value;
2590
2591 if (*pos >= adev->gmc.mc_vram_size)
2592 return result;
2593
2594 r = get_user(value, (uint32_t *)buf);
2595 if (r)
2596 return r;
2597
2598 amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2599
2600 result += 4;
2601 buf += 4;
2602 *pos += 4;
2603 size -= 4;
2604 }
2605
2606 return result;
2607 }
2608
2609 static const struct file_operations amdgpu_ttm_vram_fops = {
2610 .owner = THIS_MODULE,
2611 .read = amdgpu_ttm_vram_read,
2612 .write = amdgpu_ttm_vram_write,
2613 .llseek = default_llseek,
2614 };
2615
2616 /*
2617 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2618 *
2619 * This function is used to read memory that has been mapped to the
2620 * GPU and the known addresses are not physical addresses but instead
2621 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2622 */
amdgpu_iomem_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2623 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2624 size_t size, loff_t *pos)
2625 {
2626 struct amdgpu_device *adev = file_inode(f)->i_private;
2627 struct iommu_domain *dom;
2628 ssize_t result = 0;
2629 int r;
2630
2631 /* retrieve the IOMMU domain if any for this device */
2632 dom = iommu_get_domain_for_dev(adev->dev);
2633
2634 while (size) {
2635 phys_addr_t addr = *pos & PAGE_MASK;
2636 loff_t off = *pos & ~PAGE_MASK;
2637 size_t bytes = PAGE_SIZE - off;
2638 unsigned long pfn;
2639 struct page *p;
2640 void *ptr;
2641
2642 bytes = min(bytes, size);
2643
2644 /* Translate the bus address to a physical address. If
2645 * the domain is NULL it means there is no IOMMU active
2646 * and the address translation is the identity
2647 */
2648 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2649
2650 pfn = addr >> PAGE_SHIFT;
2651 if (!pfn_valid(pfn))
2652 return -EPERM;
2653
2654 p = pfn_to_page(pfn);
2655 if (p->mapping != adev->mman.bdev.dev_mapping)
2656 return -EPERM;
2657
2658 ptr = kmap_local_page(p);
2659 r = copy_to_user(buf, ptr + off, bytes);
2660 kunmap_local(ptr);
2661 if (r)
2662 return -EFAULT;
2663
2664 size -= bytes;
2665 *pos += bytes;
2666 result += bytes;
2667 }
2668
2669 return result;
2670 }
2671
2672 /*
2673 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2674 *
2675 * This function is used to write memory that has been mapped to the
2676 * GPU and the known addresses are not physical addresses but instead
2677 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2678 */
amdgpu_iomem_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2679 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2680 size_t size, loff_t *pos)
2681 {
2682 struct amdgpu_device *adev = file_inode(f)->i_private;
2683 struct iommu_domain *dom;
2684 ssize_t result = 0;
2685 int r;
2686
2687 dom = iommu_get_domain_for_dev(adev->dev);
2688
2689 while (size) {
2690 phys_addr_t addr = *pos & PAGE_MASK;
2691 loff_t off = *pos & ~PAGE_MASK;
2692 size_t bytes = PAGE_SIZE - off;
2693 unsigned long pfn;
2694 struct page *p;
2695 void *ptr;
2696
2697 bytes = min(bytes, size);
2698
2699 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2700
2701 pfn = addr >> PAGE_SHIFT;
2702 if (!pfn_valid(pfn))
2703 return -EPERM;
2704
2705 p = pfn_to_page(pfn);
2706 if (p->mapping != adev->mman.bdev.dev_mapping)
2707 return -EPERM;
2708
2709 ptr = kmap_local_page(p);
2710 r = copy_from_user(ptr + off, buf, bytes);
2711 kunmap_local(ptr);
2712 if (r)
2713 return -EFAULT;
2714
2715 size -= bytes;
2716 *pos += bytes;
2717 result += bytes;
2718 }
2719
2720 return result;
2721 }
2722
2723 static const struct file_operations amdgpu_ttm_iomem_fops = {
2724 .owner = THIS_MODULE,
2725 .read = amdgpu_iomem_read,
2726 .write = amdgpu_iomem_write,
2727 .llseek = default_llseek
2728 };
2729
2730 #endif
2731
amdgpu_ttm_debugfs_init(struct amdgpu_device * adev)2732 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2733 {
2734 #if defined(CONFIG_DEBUG_FS)
2735 struct drm_minor *minor = adev_to_drm(adev)->primary;
2736 struct dentry *root = minor->debugfs_root;
2737
2738 debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2739 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2740 debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2741 &amdgpu_ttm_iomem_fops);
2742 debugfs_create_file("ttm_page_pool", 0444, root, adev,
2743 &amdgpu_ttm_page_pool_fops);
2744 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2745 TTM_PL_VRAM),
2746 root, "amdgpu_vram_mm");
2747 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2748 TTM_PL_TT),
2749 root, "amdgpu_gtt_mm");
2750 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2751 AMDGPU_PL_GDS),
2752 root, "amdgpu_gds_mm");
2753 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2754 AMDGPU_PL_GWS),
2755 root, "amdgpu_gws_mm");
2756 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2757 AMDGPU_PL_OA),
2758 root, "amdgpu_oa_mm");
2759
2760 #endif
2761 }
2762