xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_gmc.c (revision fd2ac113a5dcb0ff14a66f8b798a88b8da26fe7e)
1 /*
2  * Copyright 2018 Advanced Micro Devices, Inc.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #ifdef CONFIG_X86
29 #include <asm/hypervisor.h>
30 #endif
31 
32 #include "amdgpu.h"
33 #include "amdgpu_gmc.h"
34 #include "amdgpu_ras.h"
35 #include "amdgpu_reset.h"
36 #include "amdgpu_xgmi.h"
37 
38 #include <drm/drm_drv.h>
39 #include <drm/ttm/ttm_tt.h>
40 
41 static const u64 four_gb = 0x100000000ULL;
42 
43 bool amdgpu_gmc_is_pdb0_enabled(struct amdgpu_device *adev)
44 {
45 	return adev->gmc.xgmi.connected_to_cpu || amdgpu_virt_xgmi_migrate_enabled(adev);
46 }
47 
48 /**
49  * amdgpu_gmc_pdb0_alloc - allocate vram for pdb0
50  *
51  * @adev: amdgpu_device pointer
52  *
53  * Allocate video memory for pdb0 and map it for CPU access
54  * Returns 0 for success, error for failure.
55  */
56 int amdgpu_gmc_pdb0_alloc(struct amdgpu_device *adev)
57 {
58 	int r;
59 	struct amdgpu_bo_param bp;
60 	u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
61 	uint32_t pde0_page_shift = adev->gmc.vmid0_page_table_block_size + 21;
62 	uint32_t npdes = (vram_size + (1ULL << pde0_page_shift) - 1) >> pde0_page_shift;
63 
64 	memset(&bp, 0, sizeof(bp));
65 	bp.size = PAGE_ALIGN((npdes + 1) * 8);
66 	bp.byte_align = PAGE_SIZE;
67 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
68 	bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
69 		AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
70 	bp.type = ttm_bo_type_kernel;
71 	bp.resv = NULL;
72 	bp.bo_ptr_size = sizeof(struct amdgpu_bo);
73 
74 	r = amdgpu_bo_create(adev, &bp, &adev->gmc.pdb0_bo);
75 	if (r)
76 		return r;
77 
78 	r = amdgpu_bo_reserve(adev->gmc.pdb0_bo, false);
79 	if (unlikely(r != 0))
80 		goto bo_reserve_failure;
81 
82 	r = amdgpu_bo_pin(adev->gmc.pdb0_bo, AMDGPU_GEM_DOMAIN_VRAM);
83 	if (r)
84 		goto bo_pin_failure;
85 	r = amdgpu_bo_kmap(adev->gmc.pdb0_bo, &adev->gmc.ptr_pdb0);
86 	if (r)
87 		goto bo_kmap_failure;
88 
89 	amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
90 	return 0;
91 
92 bo_kmap_failure:
93 	amdgpu_bo_unpin(adev->gmc.pdb0_bo);
94 bo_pin_failure:
95 	amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
96 bo_reserve_failure:
97 	amdgpu_bo_unref(&adev->gmc.pdb0_bo);
98 	return r;
99 }
100 
101 /**
102  * amdgpu_gmc_get_pde_for_bo - get the PDE for a BO
103  *
104  * @bo: the BO to get the PDE for
105  * @level: the level in the PD hirarchy
106  * @addr: resulting addr
107  * @flags: resulting flags
108  *
109  * Get the address and flags to be used for a PDE (Page Directory Entry).
110  */
111 void amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo *bo, int level,
112 			       uint64_t *addr, uint64_t *flags)
113 {
114 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
115 
116 	switch (bo->tbo.resource->mem_type) {
117 	case TTM_PL_TT:
118 		*addr = bo->tbo.ttm->dma_address[0];
119 		break;
120 	case TTM_PL_VRAM:
121 		*addr = amdgpu_bo_gpu_offset(bo);
122 		break;
123 	default:
124 		*addr = 0;
125 		break;
126 	}
127 	*flags = amdgpu_ttm_tt_pde_flags(bo->tbo.ttm, bo->tbo.resource);
128 	amdgpu_gmc_get_vm_pde(adev, level, addr, flags);
129 }
130 
131 /*
132  * amdgpu_gmc_pd_addr - return the address of the root directory
133  */
134 uint64_t amdgpu_gmc_pd_addr(struct amdgpu_bo *bo)
135 {
136 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
137 	uint64_t pd_addr;
138 
139 	/* TODO: move that into ASIC specific code */
140 	if (adev->asic_type >= CHIP_VEGA10) {
141 		uint64_t flags = AMDGPU_PTE_VALID;
142 
143 		amdgpu_gmc_get_pde_for_bo(bo, -1, &pd_addr, &flags);
144 		pd_addr |= flags;
145 	} else {
146 		pd_addr = amdgpu_bo_gpu_offset(bo);
147 	}
148 	return pd_addr;
149 }
150 
151 /**
152  * amdgpu_gmc_set_pte_pde - update the page tables using CPU
153  *
154  * @adev: amdgpu_device pointer
155  * @cpu_pt_addr: cpu address of the page table
156  * @gpu_page_idx: entry in the page table to update
157  * @addr: dst addr to write into pte/pde
158  * @flags: access flags
159  *
160  * Update the page tables using CPU.
161  */
162 int amdgpu_gmc_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr,
163 				uint32_t gpu_page_idx, uint64_t addr,
164 				uint64_t flags)
165 {
166 	void __iomem *ptr = (void *)cpu_pt_addr;
167 	uint64_t value;
168 
169 	/*
170 	 * The following is for PTE only. GART does not have PDEs.
171 	*/
172 	value = addr & 0x0000FFFFFFFFF000ULL;
173 	value |= flags;
174 	writeq(value, ptr + (gpu_page_idx * 8));
175 
176 	return 0;
177 }
178 
179 /**
180  * amdgpu_gmc_agp_addr - return the address in the AGP address space
181  *
182  * @bo: TTM BO which needs the address, must be in GTT domain
183  *
184  * Tries to figure out how to access the BO through the AGP aperture. Returns
185  * AMDGPU_BO_INVALID_OFFSET if that is not possible.
186  */
187 uint64_t amdgpu_gmc_agp_addr(struct ttm_buffer_object *bo)
188 {
189 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
190 
191 	if (!bo->ttm)
192 		return AMDGPU_BO_INVALID_OFFSET;
193 
194 	if (bo->ttm->num_pages != 1 || bo->ttm->caching == ttm_cached)
195 		return AMDGPU_BO_INVALID_OFFSET;
196 
197 	if (bo->ttm->dma_address[0] + PAGE_SIZE >= adev->gmc.agp_size)
198 		return AMDGPU_BO_INVALID_OFFSET;
199 
200 	return adev->gmc.agp_start + bo->ttm->dma_address[0];
201 }
202 
203 /**
204  * amdgpu_gmc_vram_location - try to find VRAM location
205  *
206  * @adev: amdgpu device structure holding all necessary information
207  * @mc: memory controller structure holding memory information
208  * @base: base address at which to put VRAM
209  *
210  * Function will try to place VRAM at base address provided
211  * as parameter.
212  */
213 void amdgpu_gmc_vram_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
214 			      u64 base)
215 {
216 	uint64_t vis_limit = (uint64_t)amdgpu_vis_vram_limit << 20;
217 	uint64_t limit = (uint64_t)amdgpu_vram_limit << 20;
218 
219 	mc->vram_start = base;
220 	mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
221 	if (limit < mc->real_vram_size)
222 		mc->real_vram_size = limit;
223 
224 	if (vis_limit && vis_limit < mc->visible_vram_size)
225 		mc->visible_vram_size = vis_limit;
226 
227 	if (mc->real_vram_size < mc->visible_vram_size)
228 		mc->visible_vram_size = mc->real_vram_size;
229 
230 	if (mc->xgmi.num_physical_nodes == 0) {
231 		mc->fb_start = mc->vram_start;
232 		mc->fb_end = mc->vram_end;
233 	}
234 	dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
235 			mc->mc_vram_size >> 20, mc->vram_start,
236 			mc->vram_end, mc->real_vram_size >> 20);
237 }
238 
239 /** amdgpu_gmc_sysvm_location - place vram and gart in sysvm aperture
240  *
241  * @adev: amdgpu device structure holding all necessary information
242  * @mc: memory controller structure holding memory information
243  *
244  * This function is only used if use GART for FB translation. In such
245  * case, we use sysvm aperture (vmid0 page tables) for both vram
246  * and gart (aka system memory) access.
247  *
248  * GPUVM (and our organization of vmid0 page tables) require sysvm
249  * aperture to be placed at a location aligned with 8 times of native
250  * page size. For example, if vm_context0_cntl.page_table_block_size
251  * is 12, then native page size is 8G (2M*2^12), sysvm should start
252  * with a 64G aligned address. For simplicity, we just put sysvm at
253  * address 0. So vram start at address 0 and gart is right after vram.
254  */
255 void amdgpu_gmc_sysvm_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
256 {
257 	u64 hive_vram_start = 0;
258 	u64 hive_vram_end = mc->xgmi.node_segment_size * mc->xgmi.num_physical_nodes - 1;
259 	mc->vram_start = mc->xgmi.node_segment_size * mc->xgmi.physical_node_id;
260 	mc->vram_end = mc->vram_start + mc->xgmi.node_segment_size - 1;
261 	/* node_segment_size may not 4GB aligned on SRIOV, align up is needed. */
262 	mc->gart_start = ALIGN(hive_vram_end + 1, four_gb);
263 	mc->gart_end = mc->gart_start + mc->gart_size - 1;
264 	if (amdgpu_virt_xgmi_migrate_enabled(adev)) {
265 		/* set mc->vram_start to 0 to switch the returned GPU address of
266 		 * amdgpu_bo_create_reserved() from FB aperture to GART aperture.
267 		 */
268 		mc->vram_start = 0;
269 		mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
270 		mc->visible_vram_size = min(mc->visible_vram_size, mc->real_vram_size);
271 	} else {
272 		mc->fb_start = hive_vram_start;
273 		mc->fb_end = hive_vram_end;
274 	}
275 	dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
276 			mc->mc_vram_size >> 20, mc->vram_start,
277 			mc->vram_end, mc->real_vram_size >> 20);
278 	dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
279 			mc->gart_size >> 20, mc->gart_start, mc->gart_end);
280 }
281 
282 /**
283  * amdgpu_gmc_gart_location - try to find GART location
284  *
285  * @adev: amdgpu device structure holding all necessary information
286  * @mc: memory controller structure holding memory information
287  * @gart_placement: GART placement policy with respect to VRAM
288  *
289  * Function will try to place GART before or after VRAM.
290  * If GART size is bigger than space left then we ajust GART size.
291  * Thus function will never fails.
292  */
293 void amdgpu_gmc_gart_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
294 			      enum amdgpu_gart_placement gart_placement)
295 {
296 	u64 size_af, size_bf;
297 	/*To avoid the hole, limit the max mc address to AMDGPU_GMC_HOLE_START*/
298 	u64 max_mc_address = min(adev->gmc.mc_mask, AMDGPU_GMC_HOLE_START - 1);
299 
300 	/* VCE doesn't like it when BOs cross a 4GB segment, so align
301 	 * the GART base on a 4GB boundary as well.
302 	 */
303 	size_bf = mc->fb_start;
304 	size_af = max_mc_address + 1 - ALIGN(mc->fb_end + 1, four_gb);
305 
306 	if (mc->gart_size > max(size_bf, size_af)) {
307 		dev_warn(adev->dev, "limiting GART\n");
308 		mc->gart_size = max(size_bf, size_af);
309 	}
310 
311 	switch (gart_placement) {
312 	case AMDGPU_GART_PLACEMENT_HIGH:
313 		mc->gart_start = max_mc_address - mc->gart_size + 1;
314 		break;
315 	case AMDGPU_GART_PLACEMENT_LOW:
316 		mc->gart_start = 0;
317 		break;
318 	case AMDGPU_GART_PLACEMENT_BEST_FIT:
319 	default:
320 		if ((size_bf >= mc->gart_size && size_bf < size_af) ||
321 		    (size_af < mc->gart_size))
322 			mc->gart_start = 0;
323 		else
324 			mc->gart_start = max_mc_address - mc->gart_size + 1;
325 		break;
326 	}
327 
328 	mc->gart_start &= ~(four_gb - 1);
329 	mc->gart_end = mc->gart_start + mc->gart_size - 1;
330 	dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
331 			mc->gart_size >> 20, mc->gart_start, mc->gart_end);
332 }
333 
334 /**
335  * amdgpu_gmc_agp_location - try to find AGP location
336  * @adev: amdgpu device structure holding all necessary information
337  * @mc: memory controller structure holding memory information
338  *
339  * Function will place try to find a place for the AGP BAR in the MC address
340  * space.
341  *
342  * AGP BAR will be assigned the largest available hole in the address space.
343  * Should be called after VRAM and GART locations are setup.
344  */
345 void amdgpu_gmc_agp_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
346 {
347 	const uint64_t sixteen_gb = 1ULL << 34;
348 	const uint64_t sixteen_gb_mask = ~(sixteen_gb - 1);
349 	u64 size_af, size_bf;
350 
351 	if (mc->fb_start > mc->gart_start) {
352 		size_bf = (mc->fb_start & sixteen_gb_mask) -
353 			ALIGN(mc->gart_end + 1, sixteen_gb);
354 		size_af = mc->mc_mask + 1 - ALIGN(mc->fb_end + 1, sixteen_gb);
355 	} else {
356 		size_bf = mc->fb_start & sixteen_gb_mask;
357 		size_af = (mc->gart_start & sixteen_gb_mask) -
358 			ALIGN(mc->fb_end + 1, sixteen_gb);
359 	}
360 
361 	if (size_bf > size_af) {
362 		mc->agp_start = (mc->fb_start - size_bf) & sixteen_gb_mask;
363 		mc->agp_size = size_bf;
364 	} else {
365 		mc->agp_start = ALIGN(mc->fb_end + 1, sixteen_gb);
366 		mc->agp_size = size_af;
367 	}
368 
369 	mc->agp_end = mc->agp_start + mc->agp_size - 1;
370 	dev_info(adev->dev, "AGP: %lluM 0x%016llX - 0x%016llX\n",
371 			mc->agp_size >> 20, mc->agp_start, mc->agp_end);
372 }
373 
374 /**
375  * amdgpu_gmc_set_agp_default - Set the default AGP aperture value.
376  * @adev: amdgpu device structure holding all necessary information
377  * @mc: memory controller structure holding memory information
378  *
379  * To disable the AGP aperture, you need to set the start to a larger
380  * value than the end.  This function sets the default value which
381  * can then be overridden using amdgpu_gmc_agp_location() if you want
382  * to enable the AGP aperture on a specific chip.
383  *
384  */
385 void amdgpu_gmc_set_agp_default(struct amdgpu_device *adev,
386 				struct amdgpu_gmc *mc)
387 {
388 	mc->agp_start = 0xffffffffffff;
389 	mc->agp_end = 0;
390 	mc->agp_size = 0;
391 }
392 
393 /**
394  * amdgpu_gmc_fault_key - get hask key from vm fault address and pasid
395  *
396  * @addr: 48 bit physical address, page aligned (36 significant bits)
397  * @pasid: 16 bit process address space identifier
398  */
399 static inline uint64_t amdgpu_gmc_fault_key(uint64_t addr, uint16_t pasid)
400 {
401 	return addr << 4 | pasid;
402 }
403 
404 /**
405  * amdgpu_gmc_filter_faults - filter VM faults
406  *
407  * @adev: amdgpu device structure
408  * @ih: interrupt ring that the fault received from
409  * @addr: address of the VM fault
410  * @pasid: PASID of the process causing the fault
411  * @timestamp: timestamp of the fault
412  *
413  * Returns:
414  * True if the fault was filtered and should not be processed further.
415  * False if the fault is a new one and needs to be handled.
416  */
417 bool amdgpu_gmc_filter_faults(struct amdgpu_device *adev,
418 			      struct amdgpu_ih_ring *ih, uint64_t addr,
419 			      uint16_t pasid, uint64_t timestamp)
420 {
421 	struct amdgpu_gmc *gmc = &adev->gmc;
422 	uint64_t stamp, key = amdgpu_gmc_fault_key(addr, pasid);
423 	struct amdgpu_gmc_fault *fault;
424 	uint32_t hash;
425 
426 	/* Stale retry fault if timestamp goes backward */
427 	if (amdgpu_ih_ts_after(timestamp, ih->processed_timestamp))
428 		return true;
429 
430 	/* If we don't have space left in the ring buffer return immediately */
431 	stamp = max(timestamp, AMDGPU_GMC_FAULT_TIMEOUT + 1) -
432 		AMDGPU_GMC_FAULT_TIMEOUT;
433 	if (gmc->fault_ring[gmc->last_fault].timestamp >= stamp)
434 		return true;
435 
436 	/* Try to find the fault in the hash */
437 	hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
438 	fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
439 	while (fault->timestamp >= stamp) {
440 		uint64_t tmp;
441 
442 		if (atomic64_read(&fault->key) == key) {
443 			/*
444 			 * if we get a fault which is already present in
445 			 * the fault_ring and the timestamp of
446 			 * the fault is after the expired timestamp,
447 			 * then this is a new fault that needs to be added
448 			 * into the fault ring.
449 			 */
450 			if (fault->timestamp_expiry != 0 &&
451 			    amdgpu_ih_ts_after(fault->timestamp_expiry,
452 					       timestamp))
453 				break;
454 			else
455 				return true;
456 		}
457 
458 		tmp = fault->timestamp;
459 		fault = &gmc->fault_ring[fault->next];
460 
461 		/* Check if the entry was reused */
462 		if (fault->timestamp >= tmp)
463 			break;
464 	}
465 
466 	/* Add the fault to the ring */
467 	fault = &gmc->fault_ring[gmc->last_fault];
468 	atomic64_set(&fault->key, key);
469 	fault->timestamp = timestamp;
470 
471 	/* And update the hash */
472 	fault->next = gmc->fault_hash[hash].idx;
473 	gmc->fault_hash[hash].idx = gmc->last_fault++;
474 	return false;
475 }
476 
477 /**
478  * amdgpu_gmc_filter_faults_remove - remove address from VM faults filter
479  *
480  * @adev: amdgpu device structure
481  * @addr: address of the VM fault
482  * @pasid: PASID of the process causing the fault
483  *
484  * Remove the address from fault filter, then future vm fault on this address
485  * will pass to retry fault handler to recover.
486  */
487 void amdgpu_gmc_filter_faults_remove(struct amdgpu_device *adev, uint64_t addr,
488 				     uint16_t pasid)
489 {
490 	struct amdgpu_gmc *gmc = &adev->gmc;
491 	uint64_t key = amdgpu_gmc_fault_key(addr, pasid);
492 	struct amdgpu_ih_ring *ih;
493 	struct amdgpu_gmc_fault *fault;
494 	uint32_t last_wptr;
495 	uint64_t last_ts;
496 	uint32_t hash;
497 	uint64_t tmp;
498 
499 	if (adev->irq.retry_cam_enabled)
500 		return;
501 
502 	ih = &adev->irq.ih1;
503 	/* Get the WPTR of the last entry in IH ring */
504 	last_wptr = amdgpu_ih_get_wptr(adev, ih);
505 	/* Order wptr with ring data. */
506 	rmb();
507 	/* Get the timetamp of the last entry in IH ring */
508 	last_ts = amdgpu_ih_decode_iv_ts(adev, ih, last_wptr, -1);
509 
510 	hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
511 	fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
512 	do {
513 		if (atomic64_read(&fault->key) == key) {
514 			/*
515 			 * Update the timestamp when this fault
516 			 * expired.
517 			 */
518 			fault->timestamp_expiry = last_ts;
519 			break;
520 		}
521 
522 		tmp = fault->timestamp;
523 		fault = &gmc->fault_ring[fault->next];
524 	} while (fault->timestamp < tmp);
525 }
526 
527 int amdgpu_gmc_ras_sw_init(struct amdgpu_device *adev)
528 {
529 	int r;
530 
531 	/* umc ras block */
532 	r = amdgpu_umc_ras_sw_init(adev);
533 	if (r)
534 		return r;
535 
536 	/* mmhub ras block */
537 	r = amdgpu_mmhub_ras_sw_init(adev);
538 	if (r)
539 		return r;
540 
541 	/* hdp ras block */
542 	r = amdgpu_hdp_ras_sw_init(adev);
543 	if (r)
544 		return r;
545 
546 	/* mca.x ras block */
547 	r = amdgpu_mca_mp0_ras_sw_init(adev);
548 	if (r)
549 		return r;
550 
551 	r = amdgpu_mca_mp1_ras_sw_init(adev);
552 	if (r)
553 		return r;
554 
555 	r = amdgpu_mca_mpio_ras_sw_init(adev);
556 	if (r)
557 		return r;
558 
559 	/* xgmi ras block */
560 	r = amdgpu_xgmi_ras_sw_init(adev);
561 	if (r)
562 		return r;
563 
564 	return 0;
565 }
566 
567 int amdgpu_gmc_ras_late_init(struct amdgpu_device *adev)
568 {
569 	return 0;
570 }
571 
572 void amdgpu_gmc_ras_fini(struct amdgpu_device *adev)
573 {
574 
575 }
576 
577 	/*
578 	 * The latest engine allocation on gfx9/10 is:
579 	 * Engine 2, 3: firmware
580 	 * Engine 0, 1, 4~16: amdgpu ring,
581 	 *                    subject to change when ring number changes
582 	 * Engine 17: Gart flushes
583 	 */
584 #define AMDGPU_VMHUB_INV_ENG_BITMAP		0x1FFF3
585 
586 int amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device *adev)
587 {
588 	struct amdgpu_ring *ring;
589 	unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] = {0};
590 	unsigned i;
591 	unsigned vmhub, inv_eng;
592 	struct amdgpu_ring *shared_ring;
593 
594 	/* init the vm inv eng for all vmhubs */
595 	for_each_set_bit(i, adev->vmhubs_mask, AMDGPU_MAX_VMHUBS) {
596 		vm_inv_engs[i] = AMDGPU_VMHUB_INV_ENG_BITMAP;
597 		/* reserve engine 5 for firmware */
598 		if (adev->enable_mes)
599 			vm_inv_engs[i] &= ~(1 << 5);
600 		/* reserve engine 6 for uni mes */
601 		if (adev->enable_uni_mes)
602 			vm_inv_engs[i] &= ~(1 << 6);
603 		/* reserve mmhub engine 3 for firmware */
604 		if (adev->enable_umsch_mm)
605 			vm_inv_engs[i] &= ~(1 << 3);
606 	}
607 
608 	for (i = 0; i < adev->num_rings; ++i) {
609 		ring = adev->rings[i];
610 		vmhub = ring->vm_hub;
611 
612 		if (ring == &adev->mes.ring[0] ||
613 		    ring == &adev->mes.ring[1] ||
614 		    ring == &adev->umsch_mm.ring ||
615 		    ring == &adev->cper.ring_buf)
616 			continue;
617 
618 		/* Skip if the ring is a shared ring */
619 		if (amdgpu_sdma_is_shared_inv_eng(adev, ring))
620 			continue;
621 
622 		inv_eng = ffs(vm_inv_engs[vmhub]);
623 		if (!inv_eng) {
624 			dev_err(adev->dev, "no VM inv eng for ring %s\n",
625 				ring->name);
626 			return -EINVAL;
627 		}
628 
629 		ring->vm_inv_eng = inv_eng - 1;
630 		vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng);
631 
632 		dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n",
633 			 ring->name, ring->vm_inv_eng, ring->vm_hub);
634 		/* SDMA has a special packet which allows it to use the same
635 		 * invalidation engine for all the rings in one instance.
636 		 * Therefore, we do not allocate a separate VM invalidation engine
637 		 * for SDMA page rings. Instead, they share the VM invalidation
638 		 * engine with the SDMA gfx ring. This change ensures efficient
639 		 * resource management and avoids the issue of insufficient VM
640 		 * invalidation engines.
641 		 */
642 		shared_ring = amdgpu_sdma_get_shared_ring(adev, ring);
643 		if (shared_ring) {
644 			shared_ring->vm_inv_eng = ring->vm_inv_eng;
645 			dev_info(adev->dev, "ring %s shares VM invalidation engine %u with ring %s on hub %u\n",
646 					ring->name, ring->vm_inv_eng, shared_ring->name, ring->vm_hub);
647 			continue;
648 		}
649 	}
650 
651 	return 0;
652 }
653 
654 void amdgpu_gmc_flush_gpu_tlb(struct amdgpu_device *adev, uint32_t vmid,
655 			      uint32_t vmhub, uint32_t flush_type)
656 {
657 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
658 	struct amdgpu_vmhub *hub = &adev->vmhub[vmhub];
659 	struct dma_fence *fence;
660 	struct amdgpu_job *job;
661 	int r;
662 
663 	if (!hub->sdma_invalidation_workaround || vmid ||
664 	    !adev->mman.buffer_funcs_enabled || !adev->ib_pool_ready ||
665 	    !ring->sched.ready) {
666 		/*
667 		 * A GPU reset should flush all TLBs anyway, so no need to do
668 		 * this while one is ongoing.
669 		 */
670 		if (!down_read_trylock(&adev->reset_domain->sem))
671 			return;
672 
673 		if (adev->gmc.flush_tlb_needs_extra_type_2)
674 			adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid,
675 							   vmhub, 2);
676 
677 		if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2)
678 			adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid,
679 							   vmhub, 0);
680 
681 		adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, vmhub,
682 						   flush_type);
683 		up_read(&adev->reset_domain->sem);
684 		return;
685 	}
686 
687 	/* The SDMA on Navi 1x has a bug which can theoretically result in memory
688 	 * corruption if an invalidation happens at the same time as an VA
689 	 * translation. Avoid this by doing the invalidation from the SDMA
690 	 * itself at least for GART.
691 	 */
692 	mutex_lock(&adev->mman.gtt_window_lock);
693 	r = amdgpu_job_alloc_with_ib(ring->adev, &adev->mman.high_pr,
694 				     AMDGPU_FENCE_OWNER_UNDEFINED,
695 				     16 * 4, AMDGPU_IB_POOL_IMMEDIATE,
696 				     &job, AMDGPU_KERNEL_JOB_ID_FLUSH_GPU_TLB);
697 	if (r)
698 		goto error_alloc;
699 
700 	job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
701 	job->vm_needs_flush = true;
702 	job->ibs->ptr[job->ibs->length_dw++] = ring->funcs->nop;
703 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
704 	fence = amdgpu_job_submit(job);
705 	mutex_unlock(&adev->mman.gtt_window_lock);
706 
707 	dma_fence_wait(fence, false);
708 	dma_fence_put(fence);
709 
710 	return;
711 
712 error_alloc:
713 	mutex_unlock(&adev->mman.gtt_window_lock);
714 	dev_err(adev->dev, "Error flushing GPU TLB using the SDMA (%d)!\n", r);
715 }
716 
717 int amdgpu_gmc_flush_gpu_tlb_pasid(struct amdgpu_device *adev, uint16_t pasid,
718 				   uint32_t flush_type, bool all_hub,
719 				   uint32_t inst)
720 {
721 	struct amdgpu_ring *ring = &adev->gfx.kiq[inst].ring;
722 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[inst];
723 	unsigned int ndw;
724 	int r, cnt = 0;
725 	uint32_t seq;
726 
727 	/*
728 	 * A GPU reset should flush all TLBs anyway, so no need to do
729 	 * this while one is ongoing.
730 	 */
731 	if (!down_read_trylock(&adev->reset_domain->sem))
732 		return 0;
733 
734 	if (!adev->gmc.flush_pasid_uses_kiq || !ring->sched.ready) {
735 
736 		if (!adev->gmc.gmc_funcs->flush_gpu_tlb_pasid) {
737 			r = 0;
738 			goto error_unlock_reset;
739 		}
740 
741 		if (adev->gmc.flush_tlb_needs_extra_type_2)
742 			adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
743 								 2, all_hub,
744 								 inst);
745 
746 		if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2)
747 			adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
748 								 0, all_hub,
749 								 inst);
750 
751 		adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
752 							 flush_type, all_hub,
753 							 inst);
754 		r = 0;
755 	} else {
756 		/* 2 dwords flush + 8 dwords fence */
757 		ndw = kiq->pmf->invalidate_tlbs_size + 8;
758 
759 		if (adev->gmc.flush_tlb_needs_extra_type_2)
760 			ndw += kiq->pmf->invalidate_tlbs_size;
761 
762 		if (adev->gmc.flush_tlb_needs_extra_type_0)
763 			ndw += kiq->pmf->invalidate_tlbs_size;
764 
765 		spin_lock(&adev->gfx.kiq[inst].ring_lock);
766 		r = amdgpu_ring_alloc(ring, ndw);
767 		if (r) {
768 			spin_unlock(&adev->gfx.kiq[inst].ring_lock);
769 			goto error_unlock_reset;
770 		}
771 		if (adev->gmc.flush_tlb_needs_extra_type_2)
772 			kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 2, all_hub);
773 
774 		if (flush_type == 2 && adev->gmc.flush_tlb_needs_extra_type_0)
775 			kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 0, all_hub);
776 
777 		kiq->pmf->kiq_invalidate_tlbs(ring, pasid, flush_type, all_hub);
778 		r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
779 		if (r) {
780 			amdgpu_ring_undo(ring);
781 			spin_unlock(&adev->gfx.kiq[inst].ring_lock);
782 			goto error_unlock_reset;
783 		}
784 
785 		amdgpu_ring_commit(ring);
786 		spin_unlock(&adev->gfx.kiq[inst].ring_lock);
787 
788 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
789 
790 		might_sleep();
791 		while (r < 1 && cnt++ < MAX_KIQ_REG_TRY &&
792 		       !amdgpu_reset_pending(adev->reset_domain)) {
793 			msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
794 			r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
795 		}
796 
797 		if (cnt > MAX_KIQ_REG_TRY) {
798 			dev_err(adev->dev, "timeout waiting for kiq fence\n");
799 			r = -ETIME;
800 		} else
801 			r = 0;
802 	}
803 
804 error_unlock_reset:
805 	up_read(&adev->reset_domain->sem);
806 	return r;
807 }
808 
809 void amdgpu_gmc_fw_reg_write_reg_wait(struct amdgpu_device *adev,
810 				      uint32_t reg0, uint32_t reg1,
811 				      uint32_t ref, uint32_t mask,
812 				      uint32_t xcc_inst)
813 {
814 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_inst];
815 	struct amdgpu_ring *ring = &kiq->ring;
816 	signed long r, cnt = 0;
817 	unsigned long flags;
818 	uint32_t seq;
819 
820 	if (adev->mes.ring[0].sched.ready) {
821 		amdgpu_mes_reg_write_reg_wait(adev, reg0, reg1,
822 					      ref, mask);
823 		return;
824 	}
825 
826 	spin_lock_irqsave(&kiq->ring_lock, flags);
827 	amdgpu_ring_alloc(ring, 32);
828 	amdgpu_ring_emit_reg_write_reg_wait(ring, reg0, reg1,
829 					    ref, mask);
830 	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
831 	if (r)
832 		goto failed_undo;
833 
834 	amdgpu_ring_commit(ring);
835 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
836 
837 	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
838 
839 	/* don't wait anymore for IRQ context */
840 	if (r < 1 && in_interrupt())
841 		goto failed_kiq;
842 
843 	might_sleep();
844 	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY &&
845 	       !amdgpu_reset_pending(adev->reset_domain)) {
846 
847 		msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
848 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
849 	}
850 
851 	if (cnt > MAX_KIQ_REG_TRY)
852 		goto failed_kiq;
853 
854 	return;
855 
856 failed_undo:
857 	amdgpu_ring_undo(ring);
858 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
859 failed_kiq:
860 	dev_err(adev->dev, "failed to write reg %x wait reg %x\n", reg0, reg1);
861 }
862 
863 /**
864  * amdgpu_gmc_tmz_set -- check and set if a device supports TMZ
865  * @adev: amdgpu_device pointer
866  *
867  * Check and set if an the device @adev supports Trusted Memory
868  * Zones (TMZ).
869  */
870 void amdgpu_gmc_tmz_set(struct amdgpu_device *adev)
871 {
872 	switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
873 	/* RAVEN */
874 	case IP_VERSION(9, 2, 2):
875 	case IP_VERSION(9, 1, 0):
876 	/* RENOIR looks like RAVEN */
877 	case IP_VERSION(9, 3, 0):
878 	/* GC 10.3.7 */
879 	case IP_VERSION(10, 3, 7):
880 	/* GC 11.0.1 */
881 	case IP_VERSION(11, 0, 1):
882 		if (amdgpu_tmz == 0) {
883 			adev->gmc.tmz_enabled = false;
884 			dev_info(adev->dev,
885 				 "Trusted Memory Zone (TMZ) feature disabled (cmd line)\n");
886 		} else {
887 			adev->gmc.tmz_enabled = true;
888 			dev_info(adev->dev,
889 				 "Trusted Memory Zone (TMZ) feature enabled\n");
890 		}
891 		break;
892 	case IP_VERSION(10, 1, 10):
893 	case IP_VERSION(10, 1, 1):
894 	case IP_VERSION(10, 1, 2):
895 	case IP_VERSION(10, 1, 3):
896 	case IP_VERSION(10, 3, 0):
897 	case IP_VERSION(10, 3, 2):
898 	case IP_VERSION(10, 3, 4):
899 	case IP_VERSION(10, 3, 5):
900 	case IP_VERSION(10, 3, 6):
901 	/* VANGOGH */
902 	case IP_VERSION(10, 3, 1):
903 	/* YELLOW_CARP*/
904 	case IP_VERSION(10, 3, 3):
905 	case IP_VERSION(11, 0, 4):
906 	case IP_VERSION(11, 5, 0):
907 	case IP_VERSION(11, 5, 1):
908 	case IP_VERSION(11, 5, 2):
909 	case IP_VERSION(11, 5, 3):
910 		/* Don't enable it by default yet.
911 		 */
912 		if (amdgpu_tmz < 1) {
913 			adev->gmc.tmz_enabled = false;
914 			dev_info(adev->dev,
915 				 "Trusted Memory Zone (TMZ) feature disabled as experimental (default)\n");
916 		} else {
917 			adev->gmc.tmz_enabled = true;
918 			dev_info(adev->dev,
919 				 "Trusted Memory Zone (TMZ) feature enabled as experimental (cmd line)\n");
920 		}
921 		break;
922 	default:
923 		adev->gmc.tmz_enabled = false;
924 		dev_info(adev->dev,
925 			 "Trusted Memory Zone (TMZ) feature not supported\n");
926 		break;
927 	}
928 }
929 
930 /**
931  * amdgpu_gmc_noretry_set -- set per asic noretry defaults
932  * @adev: amdgpu_device pointer
933  *
934  * Set a per asic default for the no-retry parameter.
935  *
936  */
937 void amdgpu_gmc_noretry_set(struct amdgpu_device *adev)
938 {
939 	struct amdgpu_gmc *gmc = &adev->gmc;
940 	uint32_t gc_ver = amdgpu_ip_version(adev, GC_HWIP, 0);
941 	bool noretry_default = (gc_ver == IP_VERSION(9, 0, 1) ||
942 				gc_ver == IP_VERSION(9, 4, 0) ||
943 				gc_ver == IP_VERSION(9, 4, 1) ||
944 				gc_ver == IP_VERSION(9, 4, 2) ||
945 				gc_ver == IP_VERSION(9, 4, 3) ||
946 				gc_ver == IP_VERSION(9, 4, 4) ||
947 				gc_ver == IP_VERSION(9, 5, 0) ||
948 				gc_ver >= IP_VERSION(10, 3, 0));
949 
950 	if (!amdgpu_sriov_xnack_support(adev))
951 		gmc->noretry = 1;
952 	else
953 		gmc->noretry = (amdgpu_noretry == -1) ? noretry_default : amdgpu_noretry;
954 }
955 
956 void amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device *adev, int hub_type,
957 				   bool enable)
958 {
959 	struct amdgpu_vmhub *hub;
960 	u32 tmp, reg, i;
961 
962 	hub = &adev->vmhub[hub_type];
963 	for (i = 0; i < 16; i++) {
964 		reg = hub->vm_context0_cntl + hub->ctx_distance * i;
965 
966 		tmp = (hub_type == AMDGPU_GFXHUB(0)) ?
967 			RREG32_SOC15_IP(GC, reg) :
968 			RREG32_SOC15_IP(MMHUB, reg);
969 
970 		if (enable)
971 			tmp |= hub->vm_cntx_cntl_vm_fault;
972 		else
973 			tmp &= ~hub->vm_cntx_cntl_vm_fault;
974 
975 		(hub_type == AMDGPU_GFXHUB(0)) ?
976 			WREG32_SOC15_IP(GC, reg, tmp) :
977 			WREG32_SOC15_IP(MMHUB, reg, tmp);
978 	}
979 }
980 
981 void amdgpu_gmc_get_vbios_allocations(struct amdgpu_device *adev)
982 {
983 	unsigned size;
984 
985 	/*
986 	 * Some ASICs need to reserve a region of video memory to avoid access
987 	 * from driver
988 	 */
989 	adev->mman.stolen_reserved_offset = 0;
990 	adev->mman.stolen_reserved_size = 0;
991 
992 	/*
993 	 * TODO:
994 	 * Currently there is a bug where some memory client outside
995 	 * of the driver writes to first 8M of VRAM on S3 resume,
996 	 * this overrides GART which by default gets placed in first 8M and
997 	 * causes VM_FAULTS once GTT is accessed.
998 	 * Keep the stolen memory reservation until the while this is not solved.
999 	 */
1000 	switch (adev->asic_type) {
1001 	case CHIP_VEGA10:
1002 		adev->mman.keep_stolen_vga_memory = true;
1003 		/*
1004 		 * VEGA10 SRIOV VF with MS_HYPERV host needs some firmware reserved area.
1005 		 */
1006 #ifdef CONFIG_X86
1007 		if (amdgpu_sriov_vf(adev) && hypervisor_is_type(X86_HYPER_MS_HYPERV)) {
1008 			adev->mman.stolen_reserved_offset = 0x500000;
1009 			adev->mman.stolen_reserved_size = 0x200000;
1010 		}
1011 #endif
1012 		break;
1013 	case CHIP_RAVEN:
1014 	case CHIP_RENOIR:
1015 		adev->mman.keep_stolen_vga_memory = true;
1016 		break;
1017 	default:
1018 		adev->mman.keep_stolen_vga_memory = false;
1019 		break;
1020 	}
1021 
1022 	if (amdgpu_sriov_vf(adev) ||
1023 	    !amdgpu_device_has_display_hardware(adev)) {
1024 		size = 0;
1025 	} else {
1026 		size = amdgpu_gmc_get_vbios_fb_size(adev);
1027 
1028 		if (adev->mman.keep_stolen_vga_memory)
1029 			size = max(size, (unsigned)AMDGPU_VBIOS_VGA_ALLOCATION);
1030 	}
1031 
1032 	/* set to 0 if the pre-OS buffer uses up most of vram */
1033 	if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024))
1034 		size = 0;
1035 
1036 	if (size > AMDGPU_VBIOS_VGA_ALLOCATION) {
1037 		adev->mman.stolen_vga_size = AMDGPU_VBIOS_VGA_ALLOCATION;
1038 		adev->mman.stolen_extended_size = size - adev->mman.stolen_vga_size;
1039 	} else {
1040 		adev->mman.stolen_vga_size = size;
1041 		adev->mman.stolen_extended_size = 0;
1042 	}
1043 }
1044 
1045 /**
1046  * amdgpu_gmc_init_pdb0 - initialize PDB0
1047  *
1048  * @adev: amdgpu_device pointer
1049  *
1050  * This function is only used when GART page table is used
1051  * for FB address translatioin. In such a case, we construct
1052  * a 2-level system VM page table: PDB0->PTB, to cover both
1053  * VRAM of the hive and system memory.
1054  *
1055  * PDB0 is static, initialized once on driver initialization.
1056  * The first n entries of PDB0 are used as PTE by setting
1057  * P bit to 1, pointing to VRAM. The n+1'th entry points
1058  * to a big PTB covering system memory.
1059  *
1060  */
1061 void amdgpu_gmc_init_pdb0(struct amdgpu_device *adev)
1062 {
1063 	int i;
1064 	uint64_t flags = adev->gart.gart_pte_flags; //TODO it is UC. explore NC/RW?
1065 	/* Each PDE0 (used as PTE) covers (2^vmid0_page_table_block_size)*2M
1066 	 */
1067 	u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
1068 	u64 pde0_page_size = (1ULL<<adev->gmc.vmid0_page_table_block_size)<<21;
1069 	u64 vram_addr, vram_end;
1070 	u64 gart_ptb_gpu_pa = amdgpu_gmc_vram_pa(adev, adev->gart.bo);
1071 	int idx;
1072 
1073 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1074 		return;
1075 
1076 	flags |= AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE;
1077 	flags |= AMDGPU_PTE_WRITEABLE;
1078 	flags |= AMDGPU_PTE_SNOOPED;
1079 	flags |= AMDGPU_PTE_FRAG((adev->gmc.vmid0_page_table_block_size + 9*1));
1080 	flags |= AMDGPU_PDE_PTE_FLAG(adev);
1081 
1082 	vram_addr = adev->vm_manager.vram_base_offset;
1083 	if (!amdgpu_virt_xgmi_migrate_enabled(adev))
1084 		vram_addr -= adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size;
1085 	vram_end = vram_addr + vram_size;
1086 
1087 	/* The first n PDE0 entries are used as PTE,
1088 	 * pointing to vram
1089 	 */
1090 	for (i = 0; vram_addr < vram_end; i++, vram_addr += pde0_page_size)
1091 		amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, vram_addr, flags);
1092 
1093 	/* The n+1'th PDE0 entry points to a huge
1094 	 * PTB who has more than 512 entries each
1095 	 * pointing to a 4K system page
1096 	 */
1097 	flags = AMDGPU_PTE_VALID;
1098 	flags |= AMDGPU_PTE_SNOOPED | AMDGPU_PDE_BFS_FLAG(adev, 0);
1099 	/* Requires gart_ptb_gpu_pa to be 4K aligned */
1100 	amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, gart_ptb_gpu_pa, flags);
1101 	drm_dev_exit(idx);
1102 }
1103 
1104 /**
1105  * amdgpu_gmc_vram_mc2pa - calculate vram buffer's physical address from MC
1106  * address
1107  *
1108  * @adev: amdgpu_device pointer
1109  * @mc_addr: MC address of buffer
1110  */
1111 uint64_t amdgpu_gmc_vram_mc2pa(struct amdgpu_device *adev, uint64_t mc_addr)
1112 {
1113 	return mc_addr - adev->gmc.vram_start + adev->vm_manager.vram_base_offset;
1114 }
1115 
1116 /**
1117  * amdgpu_gmc_vram_pa - calculate vram buffer object's physical address from
1118  * GPU's view
1119  *
1120  * @adev: amdgpu_device pointer
1121  * @bo: amdgpu buffer object
1122  */
1123 uint64_t amdgpu_gmc_vram_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
1124 {
1125 	return amdgpu_gmc_vram_mc2pa(adev, amdgpu_bo_gpu_offset(bo));
1126 }
1127 
1128 int amdgpu_gmc_vram_checking(struct amdgpu_device *adev)
1129 {
1130 	struct amdgpu_bo *vram_bo = NULL;
1131 	uint64_t vram_gpu = 0;
1132 	void *vram_ptr = NULL;
1133 
1134 	int ret, size = 0x100000;
1135 	uint8_t cptr[10];
1136 
1137 	ret = amdgpu_bo_create_kernel(adev, size, PAGE_SIZE,
1138 				AMDGPU_GEM_DOMAIN_VRAM,
1139 				&vram_bo,
1140 				&vram_gpu,
1141 				&vram_ptr);
1142 	if (ret)
1143 		return ret;
1144 
1145 	memset(vram_ptr, 0x86, size);
1146 	memset(cptr, 0x86, 10);
1147 
1148 	/**
1149 	 * Check the start, the mid, and the end of the memory if the content of
1150 	 * each byte is the pattern "0x86". If yes, we suppose the vram bo is
1151 	 * workable.
1152 	 *
1153 	 * Note: If check the each byte of whole 1M bo, it will cost too many
1154 	 * seconds, so here, we just pick up three parts for emulation.
1155 	 */
1156 	ret = memcmp(vram_ptr, cptr, 10);
1157 	if (ret) {
1158 		ret = -EIO;
1159 		goto release_buffer;
1160 	}
1161 
1162 	ret = memcmp(vram_ptr + (size / 2), cptr, 10);
1163 	if (ret) {
1164 		ret = -EIO;
1165 		goto release_buffer;
1166 	}
1167 
1168 	ret = memcmp(vram_ptr + size - 10, cptr, 10);
1169 	if (ret) {
1170 		ret = -EIO;
1171 		goto release_buffer;
1172 	}
1173 
1174 release_buffer:
1175 	amdgpu_bo_free_kernel(&vram_bo, &vram_gpu,
1176 			&vram_ptr);
1177 
1178 	return ret;
1179 }
1180 
1181 static const char *nps_desc[] = {
1182 	[AMDGPU_NPS1_PARTITION_MODE] = "NPS1",
1183 	[AMDGPU_NPS2_PARTITION_MODE] = "NPS2",
1184 	[AMDGPU_NPS3_PARTITION_MODE] = "NPS3",
1185 	[AMDGPU_NPS4_PARTITION_MODE] = "NPS4",
1186 	[AMDGPU_NPS6_PARTITION_MODE] = "NPS6",
1187 	[AMDGPU_NPS8_PARTITION_MODE] = "NPS8",
1188 };
1189 
1190 static ssize_t available_memory_partition_show(struct device *dev,
1191 					       struct device_attribute *addr,
1192 					       char *buf)
1193 {
1194 	struct drm_device *ddev = dev_get_drvdata(dev);
1195 	struct amdgpu_device *adev = drm_to_adev(ddev);
1196 	int size = 0, mode;
1197 	char *sep = "";
1198 
1199 	for_each_inst(mode, adev->gmc.supported_nps_modes) {
1200 		size += sysfs_emit_at(buf, size, "%s%s", sep, nps_desc[mode]);
1201 		sep = ", ";
1202 	}
1203 	size += sysfs_emit_at(buf, size, "\n");
1204 
1205 	return size;
1206 }
1207 
1208 static ssize_t current_memory_partition_store(struct device *dev,
1209 					      struct device_attribute *attr,
1210 					      const char *buf, size_t count)
1211 {
1212 	struct drm_device *ddev = dev_get_drvdata(dev);
1213 	struct amdgpu_device *adev = drm_to_adev(ddev);
1214 	enum amdgpu_memory_partition mode;
1215 	struct amdgpu_hive_info *hive;
1216 	int i;
1217 
1218 	mode = UNKNOWN_MEMORY_PARTITION_MODE;
1219 	for_each_inst(i, adev->gmc.supported_nps_modes) {
1220 		if (!strncasecmp(nps_desc[i], buf, strlen(nps_desc[i]))) {
1221 			mode = i;
1222 			break;
1223 		}
1224 	}
1225 
1226 	if (mode == UNKNOWN_MEMORY_PARTITION_MODE)
1227 		return -EINVAL;
1228 
1229 	if (mode == adev->gmc.gmc_funcs->query_mem_partition_mode(adev)) {
1230 		dev_info(
1231 			adev->dev,
1232 			"requested NPS mode is same as current NPS mode, skipping\n");
1233 		return count;
1234 	}
1235 
1236 	/* If device is part of hive, all devices in the hive should request the
1237 	 * same mode. Hence store the requested mode in hive.
1238 	 */
1239 	hive = amdgpu_get_xgmi_hive(adev);
1240 	if (hive) {
1241 		atomic_set(&hive->requested_nps_mode, mode);
1242 		amdgpu_put_xgmi_hive(hive);
1243 	} else {
1244 		adev->gmc.requested_nps_mode = mode;
1245 	}
1246 
1247 	dev_info(
1248 		adev->dev,
1249 		"NPS mode change requested, please remove and reload the driver\n");
1250 
1251 	return count;
1252 }
1253 
1254 static ssize_t current_memory_partition_show(
1255 	struct device *dev, struct device_attribute *addr, char *buf)
1256 {
1257 	struct drm_device *ddev = dev_get_drvdata(dev);
1258 	struct amdgpu_device *adev = drm_to_adev(ddev);
1259 	enum amdgpu_memory_partition mode;
1260 
1261 	/* Only minimal precaution taken to reject requests while in reset */
1262 	if (amdgpu_in_reset(adev))
1263 		return -EPERM;
1264 
1265 	mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
1266 	if ((mode >= ARRAY_SIZE(nps_desc)) ||
1267 	    (BIT(mode) & AMDGPU_ALL_NPS_MASK) != BIT(mode))
1268 		return sysfs_emit(buf, "UNKNOWN\n");
1269 
1270 	return sysfs_emit(buf, "%s\n", nps_desc[mode]);
1271 }
1272 
1273 static DEVICE_ATTR_RW(current_memory_partition);
1274 static DEVICE_ATTR_RO(available_memory_partition);
1275 
1276 int amdgpu_gmc_sysfs_init(struct amdgpu_device *adev)
1277 {
1278 	bool nps_switch_support;
1279 	int r = 0;
1280 
1281 	if (!adev->gmc.gmc_funcs->query_mem_partition_mode)
1282 		return 0;
1283 
1284 	nps_switch_support = (hweight32(adev->gmc.supported_nps_modes &
1285 					AMDGPU_ALL_NPS_MASK) > 1);
1286 	if (!nps_switch_support)
1287 		dev_attr_current_memory_partition.attr.mode &=
1288 			~(S_IWUSR | S_IWGRP | S_IWOTH);
1289 	else
1290 		r = device_create_file(adev->dev,
1291 				       &dev_attr_available_memory_partition);
1292 
1293 	if (r)
1294 		return r;
1295 
1296 	return device_create_file(adev->dev,
1297 				  &dev_attr_current_memory_partition);
1298 }
1299 
1300 void amdgpu_gmc_sysfs_fini(struct amdgpu_device *adev)
1301 {
1302 	if (!adev->gmc.gmc_funcs->query_mem_partition_mode)
1303 		return;
1304 
1305 	device_remove_file(adev->dev, &dev_attr_current_memory_partition);
1306 	device_remove_file(adev->dev, &dev_attr_available_memory_partition);
1307 }
1308 
1309 int amdgpu_gmc_get_nps_memranges(struct amdgpu_device *adev,
1310 				 struct amdgpu_mem_partition_info *mem_ranges,
1311 				 uint8_t *exp_ranges)
1312 {
1313 	struct amdgpu_gmc_memrange *ranges;
1314 	int range_cnt, ret, i, j;
1315 	uint32_t nps_type;
1316 	bool refresh;
1317 
1318 	if (!mem_ranges || !exp_ranges)
1319 		return -EINVAL;
1320 
1321 	refresh = (adev->init_lvl->level != AMDGPU_INIT_LEVEL_MINIMAL_XGMI) &&
1322 		  (adev->gmc.reset_flags & AMDGPU_GMC_INIT_RESET_NPS);
1323 	ret = amdgpu_discovery_get_nps_info(adev, &nps_type, &ranges,
1324 					    &range_cnt, refresh);
1325 
1326 	if (ret)
1327 		return ret;
1328 
1329 	/* TODO: For now, expect ranges and partition count to be the same.
1330 	 * Adjust if there are holes expected in any NPS domain.
1331 	 */
1332 	if (*exp_ranges && (range_cnt != *exp_ranges)) {
1333 		dev_warn(
1334 			adev->dev,
1335 			"NPS config mismatch - expected ranges: %d discovery - nps mode: %d, nps ranges: %d",
1336 			*exp_ranges, nps_type, range_cnt);
1337 		ret = -EINVAL;
1338 		goto err;
1339 	}
1340 
1341 	for (i = 0; i < range_cnt; ++i) {
1342 		if (ranges[i].base_address >= ranges[i].limit_address) {
1343 			dev_warn(
1344 				adev->dev,
1345 				"Invalid NPS range - nps mode: %d, range[%d]: base: %llx limit: %llx",
1346 				nps_type, i, ranges[i].base_address,
1347 				ranges[i].limit_address);
1348 			ret = -EINVAL;
1349 			goto err;
1350 		}
1351 
1352 		/* Check for overlaps, not expecting any now */
1353 		for (j = i - 1; j >= 0; j--) {
1354 			if (max(ranges[j].base_address,
1355 				ranges[i].base_address) <=
1356 			    min(ranges[j].limit_address,
1357 				ranges[i].limit_address)) {
1358 				dev_warn(
1359 					adev->dev,
1360 					"overlapping ranges detected [ %llx - %llx ] | [%llx - %llx]",
1361 					ranges[j].base_address,
1362 					ranges[j].limit_address,
1363 					ranges[i].base_address,
1364 					ranges[i].limit_address);
1365 				ret = -EINVAL;
1366 				goto err;
1367 			}
1368 		}
1369 
1370 		mem_ranges[i].range.fpfn =
1371 			(ranges[i].base_address -
1372 			 adev->vm_manager.vram_base_offset) >>
1373 			AMDGPU_GPU_PAGE_SHIFT;
1374 		mem_ranges[i].range.lpfn =
1375 			(ranges[i].limit_address -
1376 			 adev->vm_manager.vram_base_offset) >>
1377 			AMDGPU_GPU_PAGE_SHIFT;
1378 		mem_ranges[i].size =
1379 			ranges[i].limit_address - ranges[i].base_address + 1;
1380 	}
1381 
1382 	if (!*exp_ranges)
1383 		*exp_ranges = range_cnt;
1384 err:
1385 	kfree(ranges);
1386 
1387 	return ret;
1388 }
1389 
1390 int amdgpu_gmc_request_memory_partition(struct amdgpu_device *adev,
1391 					int nps_mode)
1392 {
1393 	/* Not supported on VF devices and APUs */
1394 	if (amdgpu_sriov_vf(adev) || (adev->flags & AMD_IS_APU))
1395 		return -EOPNOTSUPP;
1396 
1397 	if (!adev->psp.funcs) {
1398 		dev_err(adev->dev,
1399 			"PSP interface not available for nps mode change request");
1400 		return -EINVAL;
1401 	}
1402 
1403 	return psp_memory_partition(&adev->psp, nps_mode);
1404 }
1405 
1406 static inline bool amdgpu_gmc_need_nps_switch_req(struct amdgpu_device *adev,
1407 						  int req_nps_mode,
1408 						  int cur_nps_mode)
1409 {
1410 	return (((BIT(req_nps_mode) & adev->gmc.supported_nps_modes) ==
1411 			BIT(req_nps_mode)) &&
1412 		req_nps_mode != cur_nps_mode);
1413 }
1414 
1415 void amdgpu_gmc_prepare_nps_mode_change(struct amdgpu_device *adev)
1416 {
1417 	int req_nps_mode, cur_nps_mode, r;
1418 	struct amdgpu_hive_info *hive;
1419 
1420 	if (amdgpu_sriov_vf(adev) || !adev->gmc.supported_nps_modes ||
1421 	    !adev->gmc.gmc_funcs->request_mem_partition_mode)
1422 		return;
1423 
1424 	cur_nps_mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
1425 	hive = amdgpu_get_xgmi_hive(adev);
1426 	if (hive) {
1427 		req_nps_mode = atomic_read(&hive->requested_nps_mode);
1428 		if (!amdgpu_gmc_need_nps_switch_req(adev, req_nps_mode,
1429 						    cur_nps_mode)) {
1430 			amdgpu_put_xgmi_hive(hive);
1431 			return;
1432 		}
1433 		r = amdgpu_xgmi_request_nps_change(adev, hive, req_nps_mode);
1434 		amdgpu_put_xgmi_hive(hive);
1435 		goto out;
1436 	}
1437 
1438 	req_nps_mode = adev->gmc.requested_nps_mode;
1439 	if (!amdgpu_gmc_need_nps_switch_req(adev, req_nps_mode, cur_nps_mode))
1440 		return;
1441 
1442 	/* even if this fails, we should let driver unload w/o blocking */
1443 	r = adev->gmc.gmc_funcs->request_mem_partition_mode(adev, req_nps_mode);
1444 out:
1445 	if (r)
1446 		dev_err(adev->dev, "NPS mode change request failed\n");
1447 	else
1448 		dev_info(
1449 			adev->dev,
1450 			"NPS mode change request done, reload driver to complete the change\n");
1451 }
1452 
1453 bool amdgpu_gmc_need_reset_on_init(struct amdgpu_device *adev)
1454 {
1455 	if (adev->gmc.gmc_funcs->need_reset_on_init)
1456 		return adev->gmc.gmc_funcs->need_reset_on_init(adev);
1457 
1458 	return false;
1459 }
1460 
1461 enum amdgpu_memory_partition
1462 amdgpu_gmc_get_vf_memory_partition(struct amdgpu_device *adev)
1463 {
1464 	switch (adev->gmc.num_mem_partitions) {
1465 	case 0:
1466 		return UNKNOWN_MEMORY_PARTITION_MODE;
1467 	case 1:
1468 		return AMDGPU_NPS1_PARTITION_MODE;
1469 	case 2:
1470 		return AMDGPU_NPS2_PARTITION_MODE;
1471 	case 4:
1472 		return AMDGPU_NPS4_PARTITION_MODE;
1473 	case 8:
1474 		return AMDGPU_NPS8_PARTITION_MODE;
1475 	default:
1476 		return AMDGPU_NPS1_PARTITION_MODE;
1477 	}
1478 }
1479 
1480 enum amdgpu_memory_partition
1481 amdgpu_gmc_get_memory_partition(struct amdgpu_device *adev, u32 *supp_modes)
1482 {
1483 	enum amdgpu_memory_partition mode = UNKNOWN_MEMORY_PARTITION_MODE;
1484 
1485 	if (adev->nbio.funcs &&
1486 	    adev->nbio.funcs->get_memory_partition_mode)
1487 		mode = adev->nbio.funcs->get_memory_partition_mode(adev,
1488 								   supp_modes);
1489 	else
1490 		dev_warn(adev->dev, "memory partition mode query is not supported\n");
1491 
1492 	return mode;
1493 }
1494 
1495 enum amdgpu_memory_partition
1496 amdgpu_gmc_query_memory_partition(struct amdgpu_device *adev)
1497 {
1498 	if (amdgpu_sriov_vf(adev))
1499 		return amdgpu_gmc_get_vf_memory_partition(adev);
1500 	else
1501 		return amdgpu_gmc_get_memory_partition(adev, NULL);
1502 }
1503 
1504 static bool amdgpu_gmc_validate_partition_info(struct amdgpu_device *adev)
1505 {
1506 	enum amdgpu_memory_partition mode;
1507 	u32 supp_modes;
1508 	bool valid;
1509 
1510 	mode = amdgpu_gmc_get_memory_partition(adev, &supp_modes);
1511 
1512 	/* Mode detected by hardware not present in supported modes */
1513 	if ((mode != UNKNOWN_MEMORY_PARTITION_MODE) &&
1514 	    !(BIT(mode - 1) & supp_modes))
1515 		return false;
1516 
1517 	switch (mode) {
1518 	case UNKNOWN_MEMORY_PARTITION_MODE:
1519 	case AMDGPU_NPS1_PARTITION_MODE:
1520 		valid = (adev->gmc.num_mem_partitions == 1);
1521 		break;
1522 	case AMDGPU_NPS2_PARTITION_MODE:
1523 		valid = (adev->gmc.num_mem_partitions == 2);
1524 		break;
1525 	case AMDGPU_NPS4_PARTITION_MODE:
1526 		valid = (adev->gmc.num_mem_partitions == 3 ||
1527 			 adev->gmc.num_mem_partitions == 4);
1528 		break;
1529 	case AMDGPU_NPS8_PARTITION_MODE:
1530 		valid = (adev->gmc.num_mem_partitions == 8);
1531 		break;
1532 	default:
1533 		valid = false;
1534 	}
1535 
1536 	return valid;
1537 }
1538 
1539 static bool amdgpu_gmc_is_node_present(int *node_ids, int num_ids, int nid)
1540 {
1541 	int i;
1542 
1543 	/* Check if node with id 'nid' is present in 'node_ids' array */
1544 	for (i = 0; i < num_ids; ++i)
1545 		if (node_ids[i] == nid)
1546 			return true;
1547 
1548 	return false;
1549 }
1550 
1551 static void
1552 amdgpu_gmc_init_acpi_mem_ranges(struct amdgpu_device *adev,
1553 				struct amdgpu_mem_partition_info *mem_ranges)
1554 {
1555 	struct amdgpu_numa_info numa_info;
1556 	int node_ids[AMDGPU_MAX_MEM_RANGES];
1557 	int num_ranges = 0, ret;
1558 	int num_xcc, xcc_id;
1559 	uint32_t xcc_mask;
1560 
1561 	num_xcc = NUM_XCC(adev->gfx.xcc_mask);
1562 	xcc_mask = (1U << num_xcc) - 1;
1563 
1564 	for_each_inst(xcc_id, xcc_mask)	{
1565 		ret = amdgpu_acpi_get_mem_info(adev, xcc_id, &numa_info);
1566 		if (ret)
1567 			continue;
1568 
1569 		if (numa_info.nid == NUMA_NO_NODE) {
1570 			mem_ranges[0].size = numa_info.size;
1571 			mem_ranges[0].numa.node = numa_info.nid;
1572 			num_ranges = 1;
1573 			break;
1574 		}
1575 
1576 		if (amdgpu_gmc_is_node_present(node_ids, num_ranges,
1577 					     numa_info.nid))
1578 			continue;
1579 
1580 		node_ids[num_ranges] = numa_info.nid;
1581 		mem_ranges[num_ranges].numa.node = numa_info.nid;
1582 		mem_ranges[num_ranges].size = numa_info.size;
1583 		++num_ranges;
1584 	}
1585 
1586 	adev->gmc.num_mem_partitions = num_ranges;
1587 }
1588 
1589 void amdgpu_gmc_init_sw_mem_ranges(struct amdgpu_device *adev,
1590 				   struct amdgpu_mem_partition_info *mem_ranges)
1591 {
1592 	enum amdgpu_memory_partition mode;
1593 	u32 start_addr = 0, size;
1594 	int i, r, l;
1595 
1596 	mode = amdgpu_gmc_query_memory_partition(adev);
1597 
1598 	switch (mode) {
1599 	case UNKNOWN_MEMORY_PARTITION_MODE:
1600 		adev->gmc.num_mem_partitions = 0;
1601 		break;
1602 	case AMDGPU_NPS1_PARTITION_MODE:
1603 		adev->gmc.num_mem_partitions = 1;
1604 		break;
1605 	case AMDGPU_NPS2_PARTITION_MODE:
1606 		adev->gmc.num_mem_partitions = 2;
1607 		break;
1608 	case AMDGPU_NPS4_PARTITION_MODE:
1609 		if (adev->flags & AMD_IS_APU)
1610 			adev->gmc.num_mem_partitions = 3;
1611 		else
1612 			adev->gmc.num_mem_partitions = 4;
1613 		break;
1614 	case AMDGPU_NPS8_PARTITION_MODE:
1615 		adev->gmc.num_mem_partitions = 8;
1616 		break;
1617 	default:
1618 		adev->gmc.num_mem_partitions = 1;
1619 		break;
1620 	}
1621 
1622 	/* Use NPS range info, if populated */
1623 	r = amdgpu_gmc_get_nps_memranges(adev, mem_ranges,
1624 					 &adev->gmc.num_mem_partitions);
1625 	if (!r) {
1626 		l = 0;
1627 		for (i = 1; i < adev->gmc.num_mem_partitions; ++i) {
1628 			if (mem_ranges[i].range.lpfn >
1629 			    mem_ranges[i - 1].range.lpfn)
1630 				l = i;
1631 		}
1632 
1633 	} else {
1634 		if (!adev->gmc.num_mem_partitions) {
1635 			dev_warn(adev->dev,
1636 				 "Not able to detect NPS mode, fall back to NPS1\n");
1637 			adev->gmc.num_mem_partitions = 1;
1638 		}
1639 		/* Fallback to sw based calculation */
1640 		size = (adev->gmc.real_vram_size + SZ_16M) >> AMDGPU_GPU_PAGE_SHIFT;
1641 		size /= adev->gmc.num_mem_partitions;
1642 
1643 		for (i = 0; i < adev->gmc.num_mem_partitions; ++i) {
1644 			mem_ranges[i].range.fpfn = start_addr;
1645 			mem_ranges[i].size =
1646 				((u64)size << AMDGPU_GPU_PAGE_SHIFT);
1647 			mem_ranges[i].range.lpfn = start_addr + size - 1;
1648 			start_addr += size;
1649 		}
1650 
1651 		l = adev->gmc.num_mem_partitions - 1;
1652 	}
1653 
1654 	/* Adjust the last one */
1655 	mem_ranges[l].range.lpfn =
1656 		(adev->gmc.real_vram_size >> AMDGPU_GPU_PAGE_SHIFT) - 1;
1657 	mem_ranges[l].size =
1658 		adev->gmc.real_vram_size -
1659 		((u64)mem_ranges[l].range.fpfn << AMDGPU_GPU_PAGE_SHIFT);
1660 }
1661 
1662 int amdgpu_gmc_init_mem_ranges(struct amdgpu_device *adev)
1663 {
1664 	bool valid;
1665 
1666 	adev->gmc.mem_partitions = kcalloc(AMDGPU_MAX_MEM_RANGES,
1667 					   sizeof(struct amdgpu_mem_partition_info),
1668 					   GFP_KERNEL);
1669 	if (!adev->gmc.mem_partitions)
1670 		return -ENOMEM;
1671 
1672 	if (adev->gmc.is_app_apu)
1673 		amdgpu_gmc_init_acpi_mem_ranges(adev, adev->gmc.mem_partitions);
1674 	else
1675 		amdgpu_gmc_init_sw_mem_ranges(adev, adev->gmc.mem_partitions);
1676 
1677 	if (amdgpu_sriov_vf(adev))
1678 		valid = true;
1679 	else
1680 		valid = amdgpu_gmc_validate_partition_info(adev);
1681 	if (!valid) {
1682 		/* TODO: handle invalid case */
1683 		dev_warn(adev->dev,
1684 			 "Mem ranges not matching with hardware config\n");
1685 	}
1686 
1687 	return 0;
1688 }
1689