1 /*
2 * Copyright 2018 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #ifdef CONFIG_X86
29 #include <asm/hypervisor.h>
30 #endif
31
32 #include "amdgpu.h"
33 #include "amdgpu_gmc.h"
34 #include "amdgpu_ras.h"
35 #include "amdgpu_reset.h"
36 #include "amdgpu_xgmi.h"
37
38 #include <drm/drm_drv.h>
39 #include <drm/ttm/ttm_tt.h>
40
41 static const u64 four_gb = 0x100000000ULL;
42
amdgpu_gmc_is_pdb0_enabled(struct amdgpu_device * adev)43 bool amdgpu_gmc_is_pdb0_enabled(struct amdgpu_device *adev)
44 {
45 return adev->gmc.xgmi.connected_to_cpu || amdgpu_virt_xgmi_migrate_enabled(adev);
46 }
47
48 /**
49 * amdgpu_gmc_pdb0_alloc - allocate vram for pdb0
50 *
51 * @adev: amdgpu_device pointer
52 *
53 * Allocate video memory for pdb0 and map it for CPU access
54 * Returns 0 for success, error for failure.
55 */
amdgpu_gmc_pdb0_alloc(struct amdgpu_device * adev)56 int amdgpu_gmc_pdb0_alloc(struct amdgpu_device *adev)
57 {
58 int r;
59 struct amdgpu_bo_param bp;
60 u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
61 uint32_t pde0_page_shift = adev->gmc.vmid0_page_table_block_size + 21;
62 uint32_t npdes = (vram_size + (1ULL << pde0_page_shift) - 1) >> pde0_page_shift;
63
64 memset(&bp, 0, sizeof(bp));
65 bp.size = PAGE_ALIGN((npdes + 1) * 8);
66 bp.byte_align = PAGE_SIZE;
67 bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
68 bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
69 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
70 bp.type = ttm_bo_type_kernel;
71 bp.resv = NULL;
72 bp.bo_ptr_size = sizeof(struct amdgpu_bo);
73
74 r = amdgpu_bo_create(adev, &bp, &adev->gmc.pdb0_bo);
75 if (r)
76 return r;
77
78 r = amdgpu_bo_reserve(adev->gmc.pdb0_bo, false);
79 if (unlikely(r != 0))
80 goto bo_reserve_failure;
81
82 r = amdgpu_bo_pin(adev->gmc.pdb0_bo, AMDGPU_GEM_DOMAIN_VRAM);
83 if (r)
84 goto bo_pin_failure;
85 r = amdgpu_bo_kmap(adev->gmc.pdb0_bo, &adev->gmc.ptr_pdb0);
86 if (r)
87 goto bo_kmap_failure;
88
89 amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
90 return 0;
91
92 bo_kmap_failure:
93 amdgpu_bo_unpin(adev->gmc.pdb0_bo);
94 bo_pin_failure:
95 amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
96 bo_reserve_failure:
97 amdgpu_bo_unref(&adev->gmc.pdb0_bo);
98 return r;
99 }
100
101 /**
102 * amdgpu_gmc_get_pde_for_bo - get the PDE for a BO
103 *
104 * @bo: the BO to get the PDE for
105 * @level: the level in the PD hirarchy
106 * @addr: resulting addr
107 * @flags: resulting flags
108 *
109 * Get the address and flags to be used for a PDE (Page Directory Entry).
110 */
amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo * bo,int level,uint64_t * addr,uint64_t * flags)111 void amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo *bo, int level,
112 uint64_t *addr, uint64_t *flags)
113 {
114 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
115
116 switch (bo->tbo.resource->mem_type) {
117 case TTM_PL_TT:
118 *addr = bo->tbo.ttm->dma_address[0];
119 break;
120 case TTM_PL_VRAM:
121 *addr = amdgpu_bo_gpu_offset(bo);
122 break;
123 default:
124 *addr = 0;
125 break;
126 }
127 *flags = amdgpu_ttm_tt_pde_flags(bo->tbo.ttm, bo->tbo.resource);
128 amdgpu_gmc_get_vm_pde(adev, level, addr, flags);
129 }
130
131 /*
132 * amdgpu_gmc_pd_addr - return the address of the root directory
133 */
amdgpu_gmc_pd_addr(struct amdgpu_bo * bo)134 uint64_t amdgpu_gmc_pd_addr(struct amdgpu_bo *bo)
135 {
136 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
137 uint64_t pd_addr;
138
139 /* TODO: move that into ASIC specific code */
140 if (adev->asic_type >= CHIP_VEGA10) {
141 uint64_t flags = AMDGPU_PTE_VALID;
142
143 amdgpu_gmc_get_pde_for_bo(bo, -1, &pd_addr, &flags);
144 pd_addr |= flags;
145 } else {
146 pd_addr = amdgpu_bo_gpu_offset(bo);
147 }
148 return pd_addr;
149 }
150
151 /**
152 * amdgpu_gmc_set_pte_pde - update the page tables using CPU
153 *
154 * @adev: amdgpu_device pointer
155 * @cpu_pt_addr: cpu address of the page table
156 * @gpu_page_idx: entry in the page table to update
157 * @addr: dst addr to write into pte/pde
158 * @flags: access flags
159 *
160 * Update the page tables using CPU.
161 */
amdgpu_gmc_set_pte_pde(struct amdgpu_device * adev,void * cpu_pt_addr,uint32_t gpu_page_idx,uint64_t addr,uint64_t flags)162 int amdgpu_gmc_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr,
163 uint32_t gpu_page_idx, uint64_t addr,
164 uint64_t flags)
165 {
166 void __iomem *ptr = (void *)cpu_pt_addr;
167 uint64_t value;
168
169 /*
170 * The following is for PTE only. GART does not have PDEs.
171 */
172 value = addr & 0x0000FFFFFFFFF000ULL;
173 value |= flags;
174 writeq(value, ptr + (gpu_page_idx * 8));
175
176 return 0;
177 }
178
179 /**
180 * amdgpu_gmc_agp_addr - return the address in the AGP address space
181 *
182 * @bo: TTM BO which needs the address, must be in GTT domain
183 *
184 * Tries to figure out how to access the BO through the AGP aperture. Returns
185 * AMDGPU_BO_INVALID_OFFSET if that is not possible.
186 */
amdgpu_gmc_agp_addr(struct ttm_buffer_object * bo)187 uint64_t amdgpu_gmc_agp_addr(struct ttm_buffer_object *bo)
188 {
189 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
190
191 if (!bo->ttm)
192 return AMDGPU_BO_INVALID_OFFSET;
193
194 if (bo->ttm->num_pages != 1 || bo->ttm->caching == ttm_cached)
195 return AMDGPU_BO_INVALID_OFFSET;
196
197 if (bo->ttm->dma_address[0] + PAGE_SIZE >= adev->gmc.agp_size)
198 return AMDGPU_BO_INVALID_OFFSET;
199
200 return adev->gmc.agp_start + bo->ttm->dma_address[0];
201 }
202
203 /**
204 * amdgpu_gmc_vram_location - try to find VRAM location
205 *
206 * @adev: amdgpu device structure holding all necessary information
207 * @mc: memory controller structure holding memory information
208 * @base: base address at which to put VRAM
209 *
210 * Function will try to place VRAM at base address provided
211 * as parameter.
212 */
amdgpu_gmc_vram_location(struct amdgpu_device * adev,struct amdgpu_gmc * mc,u64 base)213 void amdgpu_gmc_vram_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
214 u64 base)
215 {
216 uint64_t vis_limit = (uint64_t)amdgpu_vis_vram_limit << 20;
217 uint64_t limit = (uint64_t)amdgpu_vram_limit << 20;
218
219 mc->vram_start = base;
220 mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
221 if (limit < mc->real_vram_size)
222 mc->real_vram_size = limit;
223
224 if (vis_limit && vis_limit < mc->visible_vram_size)
225 mc->visible_vram_size = vis_limit;
226
227 if (mc->real_vram_size < mc->visible_vram_size)
228 mc->visible_vram_size = mc->real_vram_size;
229
230 if (mc->xgmi.num_physical_nodes == 0) {
231 mc->fb_start = mc->vram_start;
232 mc->fb_end = mc->vram_end;
233 }
234 dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
235 mc->mc_vram_size >> 20, mc->vram_start,
236 mc->vram_end, mc->real_vram_size >> 20);
237 }
238
239 /** amdgpu_gmc_sysvm_location - place vram and gart in sysvm aperture
240 *
241 * @adev: amdgpu device structure holding all necessary information
242 * @mc: memory controller structure holding memory information
243 *
244 * This function is only used if use GART for FB translation. In such
245 * case, we use sysvm aperture (vmid0 page tables) for both vram
246 * and gart (aka system memory) access.
247 *
248 * GPUVM (and our organization of vmid0 page tables) require sysvm
249 * aperture to be placed at a location aligned with 8 times of native
250 * page size. For example, if vm_context0_cntl.page_table_block_size
251 * is 12, then native page size is 8G (2M*2^12), sysvm should start
252 * with a 64G aligned address. For simplicity, we just put sysvm at
253 * address 0. So vram start at address 0 and gart is right after vram.
254 */
amdgpu_gmc_sysvm_location(struct amdgpu_device * adev,struct amdgpu_gmc * mc)255 void amdgpu_gmc_sysvm_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
256 {
257 u64 hive_vram_start = 0;
258 u64 hive_vram_end = mc->xgmi.node_segment_size * mc->xgmi.num_physical_nodes - 1;
259 mc->vram_start = mc->xgmi.node_segment_size * mc->xgmi.physical_node_id;
260 mc->vram_end = mc->vram_start + mc->xgmi.node_segment_size - 1;
261 /* node_segment_size may not 4GB aligned on SRIOV, align up is needed. */
262 mc->gart_start = ALIGN(hive_vram_end + 1, four_gb);
263 mc->gart_end = mc->gart_start + mc->gart_size - 1;
264 if (amdgpu_virt_xgmi_migrate_enabled(adev)) {
265 /* set mc->vram_start to 0 to switch the returned GPU address of
266 * amdgpu_bo_create_reserved() from FB aperture to GART aperture.
267 */
268 mc->vram_start = 0;
269 mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
270 mc->visible_vram_size = min(mc->visible_vram_size, mc->real_vram_size);
271 } else {
272 mc->fb_start = hive_vram_start;
273 mc->fb_end = hive_vram_end;
274 }
275 dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
276 mc->mc_vram_size >> 20, mc->vram_start,
277 mc->vram_end, mc->real_vram_size >> 20);
278 dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
279 mc->gart_size >> 20, mc->gart_start, mc->gart_end);
280 }
281
282 /**
283 * amdgpu_gmc_gart_location - try to find GART location
284 *
285 * @adev: amdgpu device structure holding all necessary information
286 * @mc: memory controller structure holding memory information
287 * @gart_placement: GART placement policy with respect to VRAM
288 *
289 * Function will try to place GART before or after VRAM.
290 * If GART size is bigger than space left then we ajust GART size.
291 * Thus function will never fails.
292 */
amdgpu_gmc_gart_location(struct amdgpu_device * adev,struct amdgpu_gmc * mc,enum amdgpu_gart_placement gart_placement)293 void amdgpu_gmc_gart_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
294 enum amdgpu_gart_placement gart_placement)
295 {
296 u64 size_af, size_bf;
297 /*To avoid the hole, limit the max mc address to AMDGPU_GMC_HOLE_START*/
298 u64 max_mc_address = min(adev->gmc.mc_mask, AMDGPU_GMC_HOLE_START - 1);
299
300 /* VCE doesn't like it when BOs cross a 4GB segment, so align
301 * the GART base on a 4GB boundary as well.
302 */
303 size_bf = mc->fb_start;
304 size_af = max_mc_address + 1 - ALIGN(mc->fb_end + 1, four_gb);
305
306 if (mc->gart_size > max(size_bf, size_af)) {
307 dev_warn(adev->dev, "limiting GART\n");
308 mc->gart_size = max(size_bf, size_af);
309 }
310
311 switch (gart_placement) {
312 case AMDGPU_GART_PLACEMENT_HIGH:
313 mc->gart_start = max_mc_address - mc->gart_size + 1;
314 break;
315 case AMDGPU_GART_PLACEMENT_LOW:
316 mc->gart_start = 0;
317 break;
318 case AMDGPU_GART_PLACEMENT_BEST_FIT:
319 default:
320 if ((size_bf >= mc->gart_size && size_bf < size_af) ||
321 (size_af < mc->gart_size))
322 mc->gart_start = 0;
323 else
324 mc->gart_start = max_mc_address - mc->gart_size + 1;
325 break;
326 }
327
328 mc->gart_start &= ~(four_gb - 1);
329 mc->gart_end = mc->gart_start + mc->gart_size - 1;
330 dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
331 mc->gart_size >> 20, mc->gart_start, mc->gart_end);
332 }
333
334 /**
335 * amdgpu_gmc_agp_location - try to find AGP location
336 * @adev: amdgpu device structure holding all necessary information
337 * @mc: memory controller structure holding memory information
338 *
339 * Function will place try to find a place for the AGP BAR in the MC address
340 * space.
341 *
342 * AGP BAR will be assigned the largest available hole in the address space.
343 * Should be called after VRAM and GART locations are setup.
344 */
amdgpu_gmc_agp_location(struct amdgpu_device * adev,struct amdgpu_gmc * mc)345 void amdgpu_gmc_agp_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
346 {
347 const uint64_t sixteen_gb = 1ULL << 34;
348 const uint64_t sixteen_gb_mask = ~(sixteen_gb - 1);
349 u64 size_af, size_bf;
350
351 if (mc->fb_start > mc->gart_start) {
352 size_bf = (mc->fb_start & sixteen_gb_mask) -
353 ALIGN(mc->gart_end + 1, sixteen_gb);
354 size_af = mc->mc_mask + 1 - ALIGN(mc->fb_end + 1, sixteen_gb);
355 } else {
356 size_bf = mc->fb_start & sixteen_gb_mask;
357 size_af = (mc->gart_start & sixteen_gb_mask) -
358 ALIGN(mc->fb_end + 1, sixteen_gb);
359 }
360
361 if (size_bf > size_af) {
362 mc->agp_start = (mc->fb_start - size_bf) & sixteen_gb_mask;
363 mc->agp_size = size_bf;
364 } else {
365 mc->agp_start = ALIGN(mc->fb_end + 1, sixteen_gb);
366 mc->agp_size = size_af;
367 }
368
369 mc->agp_end = mc->agp_start + mc->agp_size - 1;
370 dev_info(adev->dev, "AGP: %lluM 0x%016llX - 0x%016llX\n",
371 mc->agp_size >> 20, mc->agp_start, mc->agp_end);
372 }
373
374 /**
375 * amdgpu_gmc_set_agp_default - Set the default AGP aperture value.
376 * @adev: amdgpu device structure holding all necessary information
377 * @mc: memory controller structure holding memory information
378 *
379 * To disable the AGP aperture, you need to set the start to a larger
380 * value than the end. This function sets the default value which
381 * can then be overridden using amdgpu_gmc_agp_location() if you want
382 * to enable the AGP aperture on a specific chip.
383 *
384 */
amdgpu_gmc_set_agp_default(struct amdgpu_device * adev,struct amdgpu_gmc * mc)385 void amdgpu_gmc_set_agp_default(struct amdgpu_device *adev,
386 struct amdgpu_gmc *mc)
387 {
388 mc->agp_start = 0xffffffffffff;
389 mc->agp_end = 0;
390 mc->agp_size = 0;
391 }
392
393 /**
394 * amdgpu_gmc_fault_key - get hask key from vm fault address and pasid
395 *
396 * @addr: 48 bit physical address, page aligned (36 significant bits)
397 * @pasid: 16 bit process address space identifier
398 */
amdgpu_gmc_fault_key(uint64_t addr,uint16_t pasid)399 static inline uint64_t amdgpu_gmc_fault_key(uint64_t addr, uint16_t pasid)
400 {
401 return addr << 4 | pasid;
402 }
403
404 /**
405 * amdgpu_gmc_filter_faults - filter VM faults
406 *
407 * @adev: amdgpu device structure
408 * @ih: interrupt ring that the fault received from
409 * @addr: address of the VM fault
410 * @pasid: PASID of the process causing the fault
411 * @timestamp: timestamp of the fault
412 *
413 * Returns:
414 * True if the fault was filtered and should not be processed further.
415 * False if the fault is a new one and needs to be handled.
416 */
amdgpu_gmc_filter_faults(struct amdgpu_device * adev,struct amdgpu_ih_ring * ih,uint64_t addr,uint16_t pasid,uint64_t timestamp)417 bool amdgpu_gmc_filter_faults(struct amdgpu_device *adev,
418 struct amdgpu_ih_ring *ih, uint64_t addr,
419 uint16_t pasid, uint64_t timestamp)
420 {
421 struct amdgpu_gmc *gmc = &adev->gmc;
422 uint64_t stamp, key = amdgpu_gmc_fault_key(addr, pasid);
423 struct amdgpu_gmc_fault *fault;
424 uint32_t hash;
425
426 /* Stale retry fault if timestamp goes backward */
427 if (amdgpu_ih_ts_after(timestamp, ih->processed_timestamp))
428 return true;
429
430 /* If we don't have space left in the ring buffer return immediately */
431 stamp = max(timestamp, AMDGPU_GMC_FAULT_TIMEOUT + 1) -
432 AMDGPU_GMC_FAULT_TIMEOUT;
433 if (gmc->fault_ring[gmc->last_fault].timestamp >= stamp)
434 return true;
435
436 /* Try to find the fault in the hash */
437 hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
438 fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
439 while (fault->timestamp >= stamp) {
440 uint64_t tmp;
441
442 if (atomic64_read(&fault->key) == key) {
443 /*
444 * if we get a fault which is already present in
445 * the fault_ring and the timestamp of
446 * the fault is after the expired timestamp,
447 * then this is a new fault that needs to be added
448 * into the fault ring.
449 */
450 if (fault->timestamp_expiry != 0 &&
451 amdgpu_ih_ts_after(fault->timestamp_expiry,
452 timestamp))
453 break;
454 else
455 return true;
456 }
457
458 tmp = fault->timestamp;
459 fault = &gmc->fault_ring[fault->next];
460
461 /* Check if the entry was reused */
462 if (fault->timestamp >= tmp)
463 break;
464 }
465
466 /* Add the fault to the ring */
467 fault = &gmc->fault_ring[gmc->last_fault];
468 atomic64_set(&fault->key, key);
469 fault->timestamp = timestamp;
470
471 /* And update the hash */
472 fault->next = gmc->fault_hash[hash].idx;
473 gmc->fault_hash[hash].idx = gmc->last_fault++;
474 return false;
475 }
476
477 /**
478 * amdgpu_gmc_filter_faults_remove - remove address from VM faults filter
479 *
480 * @adev: amdgpu device structure
481 * @addr: address of the VM fault
482 * @pasid: PASID of the process causing the fault
483 *
484 * Remove the address from fault filter, then future vm fault on this address
485 * will pass to retry fault handler to recover.
486 */
amdgpu_gmc_filter_faults_remove(struct amdgpu_device * adev,uint64_t addr,uint16_t pasid)487 void amdgpu_gmc_filter_faults_remove(struct amdgpu_device *adev, uint64_t addr,
488 uint16_t pasid)
489 {
490 struct amdgpu_gmc *gmc = &adev->gmc;
491 uint64_t key = amdgpu_gmc_fault_key(addr, pasid);
492 struct amdgpu_ih_ring *ih;
493 struct amdgpu_gmc_fault *fault;
494 uint32_t last_wptr;
495 uint64_t last_ts;
496 uint32_t hash;
497 uint64_t tmp;
498
499 if (adev->irq.retry_cam_enabled)
500 return;
501
502 ih = &adev->irq.ih1;
503 /* Get the WPTR of the last entry in IH ring */
504 last_wptr = amdgpu_ih_get_wptr(adev, ih);
505 /* Order wptr with ring data. */
506 rmb();
507 /* Get the timetamp of the last entry in IH ring */
508 last_ts = amdgpu_ih_decode_iv_ts(adev, ih, last_wptr, -1);
509
510 hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
511 fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
512 do {
513 if (atomic64_read(&fault->key) == key) {
514 /*
515 * Update the timestamp when this fault
516 * expired.
517 */
518 fault->timestamp_expiry = last_ts;
519 break;
520 }
521
522 tmp = fault->timestamp;
523 fault = &gmc->fault_ring[fault->next];
524 } while (fault->timestamp < tmp);
525 }
526
amdgpu_gmc_ras_sw_init(struct amdgpu_device * adev)527 int amdgpu_gmc_ras_sw_init(struct amdgpu_device *adev)
528 {
529 int r;
530
531 /* umc ras block */
532 r = amdgpu_umc_ras_sw_init(adev);
533 if (r)
534 return r;
535
536 /* mmhub ras block */
537 r = amdgpu_mmhub_ras_sw_init(adev);
538 if (r)
539 return r;
540
541 /* hdp ras block */
542 r = amdgpu_hdp_ras_sw_init(adev);
543 if (r)
544 return r;
545
546 /* mca.x ras block */
547 r = amdgpu_mca_mp0_ras_sw_init(adev);
548 if (r)
549 return r;
550
551 r = amdgpu_mca_mp1_ras_sw_init(adev);
552 if (r)
553 return r;
554
555 r = amdgpu_mca_mpio_ras_sw_init(adev);
556 if (r)
557 return r;
558
559 /* xgmi ras block */
560 r = amdgpu_xgmi_ras_sw_init(adev);
561 if (r)
562 return r;
563
564 return 0;
565 }
566
amdgpu_gmc_ras_late_init(struct amdgpu_device * adev)567 int amdgpu_gmc_ras_late_init(struct amdgpu_device *adev)
568 {
569 return 0;
570 }
571
amdgpu_gmc_ras_fini(struct amdgpu_device * adev)572 void amdgpu_gmc_ras_fini(struct amdgpu_device *adev)
573 {
574
575 }
576
577 /*
578 * The latest engine allocation on gfx9/10 is:
579 * Engine 2, 3: firmware
580 * Engine 0, 1, 4~16: amdgpu ring,
581 * subject to change when ring number changes
582 * Engine 17: Gart flushes
583 */
584 #define AMDGPU_VMHUB_INV_ENG_BITMAP 0x1FFF3
585
amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device * adev)586 int amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device *adev)
587 {
588 struct amdgpu_ring *ring;
589 unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] = {0};
590 unsigned i;
591 unsigned vmhub, inv_eng;
592 struct amdgpu_ring *shared_ring;
593
594 /* init the vm inv eng for all vmhubs */
595 for_each_set_bit(i, adev->vmhubs_mask, AMDGPU_MAX_VMHUBS) {
596 vm_inv_engs[i] = AMDGPU_VMHUB_INV_ENG_BITMAP;
597 /* reserve engine 5 for firmware */
598 if (adev->enable_mes)
599 vm_inv_engs[i] &= ~(1 << 5);
600 /* reserve engine 6 for uni mes */
601 if (adev->enable_uni_mes)
602 vm_inv_engs[i] &= ~(1 << 6);
603 /* reserve mmhub engine 3 for firmware */
604 if (adev->enable_umsch_mm)
605 vm_inv_engs[i] &= ~(1 << 3);
606 }
607
608 for (i = 0; i < adev->num_rings; ++i) {
609 ring = adev->rings[i];
610 vmhub = ring->vm_hub;
611
612 if (ring == &adev->mes.ring[0] ||
613 ring == &adev->mes.ring[1] ||
614 ring == &adev->umsch_mm.ring ||
615 ring == &adev->cper.ring_buf)
616 continue;
617
618 /* Skip if the ring is a shared ring */
619 if (amdgpu_sdma_is_shared_inv_eng(adev, ring))
620 continue;
621
622 inv_eng = ffs(vm_inv_engs[vmhub]);
623 if (!inv_eng) {
624 dev_err(adev->dev, "no VM inv eng for ring %s\n",
625 ring->name);
626 return -EINVAL;
627 }
628
629 ring->vm_inv_eng = inv_eng - 1;
630 vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng);
631
632 dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n",
633 ring->name, ring->vm_inv_eng, ring->vm_hub);
634 /* SDMA has a special packet which allows it to use the same
635 * invalidation engine for all the rings in one instance.
636 * Therefore, we do not allocate a separate VM invalidation engine
637 * for SDMA page rings. Instead, they share the VM invalidation
638 * engine with the SDMA gfx ring. This change ensures efficient
639 * resource management and avoids the issue of insufficient VM
640 * invalidation engines.
641 */
642 shared_ring = amdgpu_sdma_get_shared_ring(adev, ring);
643 if (shared_ring) {
644 shared_ring->vm_inv_eng = ring->vm_inv_eng;
645 dev_info(adev->dev, "ring %s shares VM invalidation engine %u with ring %s on hub %u\n",
646 ring->name, ring->vm_inv_eng, shared_ring->name, ring->vm_hub);
647 continue;
648 }
649 }
650
651 return 0;
652 }
653
amdgpu_gmc_flush_gpu_tlb(struct amdgpu_device * adev,uint32_t vmid,uint32_t vmhub,uint32_t flush_type)654 void amdgpu_gmc_flush_gpu_tlb(struct amdgpu_device *adev, uint32_t vmid,
655 uint32_t vmhub, uint32_t flush_type)
656 {
657 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
658 struct amdgpu_vmhub *hub = &adev->vmhub[vmhub];
659 struct dma_fence *fence;
660 struct amdgpu_job *job;
661 int r;
662
663 if (!hub->sdma_invalidation_workaround || vmid ||
664 !adev->mman.buffer_funcs_enabled || !adev->ib_pool_ready ||
665 !ring->sched.ready) {
666 /*
667 * A GPU reset should flush all TLBs anyway, so no need to do
668 * this while one is ongoing.
669 */
670 if (!down_read_trylock(&adev->reset_domain->sem))
671 return;
672
673 if (adev->gmc.flush_tlb_needs_extra_type_2)
674 adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid,
675 vmhub, 2);
676
677 if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2)
678 adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid,
679 vmhub, 0);
680
681 adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, vmhub,
682 flush_type);
683 up_read(&adev->reset_domain->sem);
684 return;
685 }
686
687 /* The SDMA on Navi 1x has a bug which can theoretically result in memory
688 * corruption if an invalidation happens at the same time as an VA
689 * translation. Avoid this by doing the invalidation from the SDMA
690 * itself at least for GART.
691 */
692 mutex_lock(&adev->mman.gtt_window_lock);
693 r = amdgpu_job_alloc_with_ib(ring->adev, &adev->mman.high_pr,
694 AMDGPU_FENCE_OWNER_UNDEFINED,
695 16 * 4, AMDGPU_IB_POOL_IMMEDIATE,
696 &job, AMDGPU_KERNEL_JOB_ID_FLUSH_GPU_TLB);
697 if (r)
698 goto error_alloc;
699
700 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
701 job->vm_needs_flush = true;
702 job->ibs->ptr[job->ibs->length_dw++] = ring->funcs->nop;
703 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
704 fence = amdgpu_job_submit(job);
705 mutex_unlock(&adev->mman.gtt_window_lock);
706
707 dma_fence_wait(fence, false);
708 dma_fence_put(fence);
709
710 return;
711
712 error_alloc:
713 mutex_unlock(&adev->mman.gtt_window_lock);
714 dev_err(adev->dev, "Error flushing GPU TLB using the SDMA (%d)!\n", r);
715 }
716
amdgpu_gmc_flush_gpu_tlb_pasid(struct amdgpu_device * adev,uint16_t pasid,uint32_t flush_type,bool all_hub,uint32_t inst)717 int amdgpu_gmc_flush_gpu_tlb_pasid(struct amdgpu_device *adev, uint16_t pasid,
718 uint32_t flush_type, bool all_hub,
719 uint32_t inst)
720 {
721 struct amdgpu_ring *ring = &adev->gfx.kiq[inst].ring;
722 struct amdgpu_kiq *kiq = &adev->gfx.kiq[inst];
723 unsigned int ndw;
724 int r, cnt = 0;
725 uint32_t seq;
726
727 /*
728 * A GPU reset should flush all TLBs anyway, so no need to do
729 * this while one is ongoing.
730 */
731 if (!down_read_trylock(&adev->reset_domain->sem))
732 return 0;
733
734 if (!adev->gmc.flush_pasid_uses_kiq || !ring->sched.ready) {
735
736 if (!adev->gmc.gmc_funcs->flush_gpu_tlb_pasid) {
737 r = 0;
738 goto error_unlock_reset;
739 }
740
741 if (adev->gmc.flush_tlb_needs_extra_type_2)
742 adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
743 2, all_hub,
744 inst);
745
746 if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2)
747 adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
748 0, all_hub,
749 inst);
750
751 adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
752 flush_type, all_hub,
753 inst);
754 r = 0;
755 } else {
756 /* 2 dwords flush + 8 dwords fence */
757 ndw = kiq->pmf->invalidate_tlbs_size + 8;
758
759 if (adev->gmc.flush_tlb_needs_extra_type_2)
760 ndw += kiq->pmf->invalidate_tlbs_size;
761
762 if (adev->gmc.flush_tlb_needs_extra_type_0)
763 ndw += kiq->pmf->invalidate_tlbs_size;
764
765 spin_lock(&adev->gfx.kiq[inst].ring_lock);
766 r = amdgpu_ring_alloc(ring, ndw);
767 if (r) {
768 spin_unlock(&adev->gfx.kiq[inst].ring_lock);
769 goto error_unlock_reset;
770 }
771 if (adev->gmc.flush_tlb_needs_extra_type_2)
772 kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 2, all_hub);
773
774 if (flush_type == 2 && adev->gmc.flush_tlb_needs_extra_type_0)
775 kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 0, all_hub);
776
777 kiq->pmf->kiq_invalidate_tlbs(ring, pasid, flush_type, all_hub);
778 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
779 if (r) {
780 amdgpu_ring_undo(ring);
781 spin_unlock(&adev->gfx.kiq[inst].ring_lock);
782 goto error_unlock_reset;
783 }
784
785 amdgpu_ring_commit(ring);
786 spin_unlock(&adev->gfx.kiq[inst].ring_lock);
787
788 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
789
790 might_sleep();
791 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY &&
792 !amdgpu_reset_pending(adev->reset_domain)) {
793 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
794 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
795 }
796
797 if (cnt > MAX_KIQ_REG_TRY) {
798 dev_err(adev->dev, "timeout waiting for kiq fence\n");
799 r = -ETIME;
800 } else
801 r = 0;
802 }
803
804 error_unlock_reset:
805 up_read(&adev->reset_domain->sem);
806 return r;
807 }
808
amdgpu_gmc_fw_reg_write_reg_wait(struct amdgpu_device * adev,uint32_t reg0,uint32_t reg1,uint32_t ref,uint32_t mask,uint32_t xcc_inst)809 void amdgpu_gmc_fw_reg_write_reg_wait(struct amdgpu_device *adev,
810 uint32_t reg0, uint32_t reg1,
811 uint32_t ref, uint32_t mask,
812 uint32_t xcc_inst)
813 {
814 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_inst];
815 struct amdgpu_ring *ring = &kiq->ring;
816 signed long r, cnt = 0;
817 unsigned long flags;
818 uint32_t seq;
819
820 if (adev->mes.ring[0].sched.ready) {
821 amdgpu_mes_reg_write_reg_wait(adev, reg0, reg1,
822 ref, mask);
823 return;
824 }
825
826 spin_lock_irqsave(&kiq->ring_lock, flags);
827 amdgpu_ring_alloc(ring, 32);
828 amdgpu_ring_emit_reg_write_reg_wait(ring, reg0, reg1,
829 ref, mask);
830 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
831 if (r)
832 goto failed_undo;
833
834 amdgpu_ring_commit(ring);
835 spin_unlock_irqrestore(&kiq->ring_lock, flags);
836
837 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
838
839 /* don't wait anymore for IRQ context */
840 if (r < 1 && in_interrupt())
841 goto failed_kiq;
842
843 might_sleep();
844 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY &&
845 !amdgpu_reset_pending(adev->reset_domain)) {
846
847 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
848 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
849 }
850
851 if (cnt > MAX_KIQ_REG_TRY)
852 goto failed_kiq;
853
854 return;
855
856 failed_undo:
857 amdgpu_ring_undo(ring);
858 spin_unlock_irqrestore(&kiq->ring_lock, flags);
859 failed_kiq:
860 dev_err(adev->dev, "failed to write reg %x wait reg %x\n", reg0, reg1);
861 }
862
863 /**
864 * amdgpu_gmc_tmz_set -- check and set if a device supports TMZ
865 * @adev: amdgpu_device pointer
866 *
867 * Check and set if an the device @adev supports Trusted Memory
868 * Zones (TMZ).
869 */
amdgpu_gmc_tmz_set(struct amdgpu_device * adev)870 void amdgpu_gmc_tmz_set(struct amdgpu_device *adev)
871 {
872 switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
873 /* RAVEN */
874 case IP_VERSION(9, 2, 2):
875 case IP_VERSION(9, 1, 0):
876 /* RENOIR looks like RAVEN */
877 case IP_VERSION(9, 3, 0):
878 /* GC 10.3.7 */
879 case IP_VERSION(10, 3, 7):
880 /* GC 11.0.1 */
881 case IP_VERSION(11, 0, 1):
882 if (amdgpu_tmz == 0) {
883 adev->gmc.tmz_enabled = false;
884 dev_info(adev->dev,
885 "Trusted Memory Zone (TMZ) feature disabled (cmd line)\n");
886 } else {
887 adev->gmc.tmz_enabled = true;
888 dev_info(adev->dev,
889 "Trusted Memory Zone (TMZ) feature enabled\n");
890 }
891 break;
892 case IP_VERSION(10, 1, 10):
893 case IP_VERSION(10, 1, 1):
894 case IP_VERSION(10, 1, 2):
895 case IP_VERSION(10, 1, 3):
896 case IP_VERSION(10, 3, 0):
897 case IP_VERSION(10, 3, 2):
898 case IP_VERSION(10, 3, 4):
899 case IP_VERSION(10, 3, 5):
900 case IP_VERSION(10, 3, 6):
901 /* VANGOGH */
902 case IP_VERSION(10, 3, 1):
903 /* YELLOW_CARP*/
904 case IP_VERSION(10, 3, 3):
905 case IP_VERSION(11, 0, 4):
906 case IP_VERSION(11, 5, 0):
907 case IP_VERSION(11, 5, 1):
908 case IP_VERSION(11, 5, 2):
909 case IP_VERSION(11, 5, 3):
910 /* Don't enable it by default yet.
911 */
912 if (amdgpu_tmz < 1) {
913 adev->gmc.tmz_enabled = false;
914 dev_info(adev->dev,
915 "Trusted Memory Zone (TMZ) feature disabled as experimental (default)\n");
916 } else {
917 adev->gmc.tmz_enabled = true;
918 dev_info(adev->dev,
919 "Trusted Memory Zone (TMZ) feature enabled as experimental (cmd line)\n");
920 }
921 break;
922 default:
923 adev->gmc.tmz_enabled = false;
924 dev_info(adev->dev,
925 "Trusted Memory Zone (TMZ) feature not supported\n");
926 break;
927 }
928 }
929
930 /**
931 * amdgpu_gmc_noretry_set -- set per asic noretry defaults
932 * @adev: amdgpu_device pointer
933 *
934 * Set a per asic default for the no-retry parameter.
935 *
936 */
amdgpu_gmc_noretry_set(struct amdgpu_device * adev)937 void amdgpu_gmc_noretry_set(struct amdgpu_device *adev)
938 {
939 struct amdgpu_gmc *gmc = &adev->gmc;
940 uint32_t gc_ver = amdgpu_ip_version(adev, GC_HWIP, 0);
941 bool noretry_default = (gc_ver == IP_VERSION(9, 0, 1) ||
942 gc_ver == IP_VERSION(9, 4, 0) ||
943 gc_ver == IP_VERSION(9, 4, 1) ||
944 gc_ver == IP_VERSION(9, 4, 2) ||
945 gc_ver == IP_VERSION(9, 4, 3) ||
946 gc_ver == IP_VERSION(9, 4, 4) ||
947 gc_ver == IP_VERSION(9, 5, 0) ||
948 gc_ver >= IP_VERSION(10, 3, 0));
949
950 if (!amdgpu_sriov_xnack_support(adev))
951 gmc->noretry = 1;
952 else
953 gmc->noretry = (amdgpu_noretry == -1) ? noretry_default : amdgpu_noretry;
954 }
955
amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device * adev,int hub_type,bool enable)956 void amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device *adev, int hub_type,
957 bool enable)
958 {
959 struct amdgpu_vmhub *hub;
960 u32 tmp, reg, i;
961
962 hub = &adev->vmhub[hub_type];
963 for (i = 0; i < 16; i++) {
964 reg = hub->vm_context0_cntl + hub->ctx_distance * i;
965
966 tmp = (hub_type == AMDGPU_GFXHUB(0)) ?
967 RREG32_SOC15_IP(GC, reg) :
968 RREG32_SOC15_IP(MMHUB, reg);
969
970 if (enable)
971 tmp |= hub->vm_cntx_cntl_vm_fault;
972 else
973 tmp &= ~hub->vm_cntx_cntl_vm_fault;
974
975 (hub_type == AMDGPU_GFXHUB(0)) ?
976 WREG32_SOC15_IP(GC, reg, tmp) :
977 WREG32_SOC15_IP(MMHUB, reg, tmp);
978 }
979 }
980
amdgpu_gmc_get_vbios_allocations(struct amdgpu_device * adev)981 void amdgpu_gmc_get_vbios_allocations(struct amdgpu_device *adev)
982 {
983 unsigned size;
984
985 /*
986 * Some ASICs need to reserve a region of video memory to avoid access
987 * from driver
988 */
989 adev->mman.stolen_reserved_offset = 0;
990 adev->mman.stolen_reserved_size = 0;
991
992 /*
993 * TODO:
994 * Currently there is a bug where some memory client outside
995 * of the driver writes to first 8M of VRAM on S3 resume,
996 * this overrides GART which by default gets placed in first 8M and
997 * causes VM_FAULTS once GTT is accessed.
998 * Keep the stolen memory reservation until the while this is not solved.
999 */
1000 switch (adev->asic_type) {
1001 case CHIP_VEGA10:
1002 adev->mman.keep_stolen_vga_memory = true;
1003 /*
1004 * VEGA10 SRIOV VF with MS_HYPERV host needs some firmware reserved area.
1005 */
1006 #ifdef CONFIG_X86
1007 if (amdgpu_sriov_vf(adev) && hypervisor_is_type(X86_HYPER_MS_HYPERV)) {
1008 adev->mman.stolen_reserved_offset = 0x500000;
1009 adev->mman.stolen_reserved_size = 0x200000;
1010 }
1011 #endif
1012 break;
1013 case CHIP_RAVEN:
1014 case CHIP_RENOIR:
1015 adev->mman.keep_stolen_vga_memory = true;
1016 break;
1017 default:
1018 adev->mman.keep_stolen_vga_memory = false;
1019 break;
1020 }
1021
1022 if (amdgpu_sriov_vf(adev) ||
1023 !amdgpu_device_has_display_hardware(adev)) {
1024 size = 0;
1025 } else {
1026 size = amdgpu_gmc_get_vbios_fb_size(adev);
1027
1028 if (adev->mman.keep_stolen_vga_memory)
1029 size = max(size, (unsigned)AMDGPU_VBIOS_VGA_ALLOCATION);
1030 }
1031
1032 /* set to 0 if the pre-OS buffer uses up most of vram */
1033 if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024))
1034 size = 0;
1035
1036 if (size > AMDGPU_VBIOS_VGA_ALLOCATION) {
1037 adev->mman.stolen_vga_size = AMDGPU_VBIOS_VGA_ALLOCATION;
1038 adev->mman.stolen_extended_size = size - adev->mman.stolen_vga_size;
1039 } else {
1040 adev->mman.stolen_vga_size = size;
1041 adev->mman.stolen_extended_size = 0;
1042 }
1043 }
1044
1045 /**
1046 * amdgpu_gmc_init_pdb0 - initialize PDB0
1047 *
1048 * @adev: amdgpu_device pointer
1049 *
1050 * This function is only used when GART page table is used
1051 * for FB address translatioin. In such a case, we construct
1052 * a 2-level system VM page table: PDB0->PTB, to cover both
1053 * VRAM of the hive and system memory.
1054 *
1055 * PDB0 is static, initialized once on driver initialization.
1056 * The first n entries of PDB0 are used as PTE by setting
1057 * P bit to 1, pointing to VRAM. The n+1'th entry points
1058 * to a big PTB covering system memory.
1059 *
1060 */
amdgpu_gmc_init_pdb0(struct amdgpu_device * adev)1061 void amdgpu_gmc_init_pdb0(struct amdgpu_device *adev)
1062 {
1063 int i;
1064 uint64_t flags = adev->gart.gart_pte_flags; //TODO it is UC. explore NC/RW?
1065 /* Each PDE0 (used as PTE) covers (2^vmid0_page_table_block_size)*2M
1066 */
1067 u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
1068 u64 pde0_page_size = (1ULL<<adev->gmc.vmid0_page_table_block_size)<<21;
1069 u64 vram_addr, vram_end;
1070 u64 gart_ptb_gpu_pa = amdgpu_gmc_vram_pa(adev, adev->gart.bo);
1071 int idx;
1072
1073 if (!drm_dev_enter(adev_to_drm(adev), &idx))
1074 return;
1075
1076 flags |= AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE;
1077 flags |= AMDGPU_PTE_WRITEABLE;
1078 flags |= AMDGPU_PTE_SNOOPED;
1079 flags |= AMDGPU_PTE_FRAG((adev->gmc.vmid0_page_table_block_size + 9*1));
1080 flags |= AMDGPU_PDE_PTE_FLAG(adev);
1081
1082 vram_addr = adev->vm_manager.vram_base_offset;
1083 if (!amdgpu_virt_xgmi_migrate_enabled(adev))
1084 vram_addr -= adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size;
1085 vram_end = vram_addr + vram_size;
1086
1087 /* The first n PDE0 entries are used as PTE,
1088 * pointing to vram
1089 */
1090 for (i = 0; vram_addr < vram_end; i++, vram_addr += pde0_page_size)
1091 amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, vram_addr, flags);
1092
1093 /* The n+1'th PDE0 entry points to a huge
1094 * PTB who has more than 512 entries each
1095 * pointing to a 4K system page
1096 */
1097 flags = AMDGPU_PTE_VALID;
1098 flags |= AMDGPU_PTE_SNOOPED | AMDGPU_PDE_BFS_FLAG(adev, 0);
1099 /* Requires gart_ptb_gpu_pa to be 4K aligned */
1100 amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, gart_ptb_gpu_pa, flags);
1101 drm_dev_exit(idx);
1102 }
1103
1104 /**
1105 * amdgpu_gmc_vram_mc2pa - calculate vram buffer's physical address from MC
1106 * address
1107 *
1108 * @adev: amdgpu_device pointer
1109 * @mc_addr: MC address of buffer
1110 */
amdgpu_gmc_vram_mc2pa(struct amdgpu_device * adev,uint64_t mc_addr)1111 uint64_t amdgpu_gmc_vram_mc2pa(struct amdgpu_device *adev, uint64_t mc_addr)
1112 {
1113 return mc_addr - adev->gmc.vram_start + adev->vm_manager.vram_base_offset;
1114 }
1115
1116 /**
1117 * amdgpu_gmc_vram_pa - calculate vram buffer object's physical address from
1118 * GPU's view
1119 *
1120 * @adev: amdgpu_device pointer
1121 * @bo: amdgpu buffer object
1122 */
amdgpu_gmc_vram_pa(struct amdgpu_device * adev,struct amdgpu_bo * bo)1123 uint64_t amdgpu_gmc_vram_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
1124 {
1125 return amdgpu_gmc_vram_mc2pa(adev, amdgpu_bo_gpu_offset(bo));
1126 }
1127
amdgpu_gmc_vram_checking(struct amdgpu_device * adev)1128 int amdgpu_gmc_vram_checking(struct amdgpu_device *adev)
1129 {
1130 struct amdgpu_bo *vram_bo = NULL;
1131 uint64_t vram_gpu = 0;
1132 void *vram_ptr = NULL;
1133
1134 int ret, size = 0x100000;
1135 uint8_t cptr[10];
1136
1137 ret = amdgpu_bo_create_kernel(adev, size, PAGE_SIZE,
1138 AMDGPU_GEM_DOMAIN_VRAM,
1139 &vram_bo,
1140 &vram_gpu,
1141 &vram_ptr);
1142 if (ret)
1143 return ret;
1144
1145 memset(vram_ptr, 0x86, size);
1146 memset(cptr, 0x86, 10);
1147
1148 /**
1149 * Check the start, the mid, and the end of the memory if the content of
1150 * each byte is the pattern "0x86". If yes, we suppose the vram bo is
1151 * workable.
1152 *
1153 * Note: If check the each byte of whole 1M bo, it will cost too many
1154 * seconds, so here, we just pick up three parts for emulation.
1155 */
1156 ret = memcmp(vram_ptr, cptr, 10);
1157 if (ret) {
1158 ret = -EIO;
1159 goto release_buffer;
1160 }
1161
1162 ret = memcmp(vram_ptr + (size / 2), cptr, 10);
1163 if (ret) {
1164 ret = -EIO;
1165 goto release_buffer;
1166 }
1167
1168 ret = memcmp(vram_ptr + size - 10, cptr, 10);
1169 if (ret) {
1170 ret = -EIO;
1171 goto release_buffer;
1172 }
1173
1174 release_buffer:
1175 amdgpu_bo_free_kernel(&vram_bo, &vram_gpu,
1176 &vram_ptr);
1177
1178 return ret;
1179 }
1180
1181 static const char *nps_desc[] = {
1182 [AMDGPU_NPS1_PARTITION_MODE] = "NPS1",
1183 [AMDGPU_NPS2_PARTITION_MODE] = "NPS2",
1184 [AMDGPU_NPS3_PARTITION_MODE] = "NPS3",
1185 [AMDGPU_NPS4_PARTITION_MODE] = "NPS4",
1186 [AMDGPU_NPS6_PARTITION_MODE] = "NPS6",
1187 [AMDGPU_NPS8_PARTITION_MODE] = "NPS8",
1188 };
1189
available_memory_partition_show(struct device * dev,struct device_attribute * addr,char * buf)1190 static ssize_t available_memory_partition_show(struct device *dev,
1191 struct device_attribute *addr,
1192 char *buf)
1193 {
1194 struct drm_device *ddev = dev_get_drvdata(dev);
1195 struct amdgpu_device *adev = drm_to_adev(ddev);
1196 int size = 0, mode;
1197 char *sep = "";
1198
1199 for_each_inst(mode, adev->gmc.supported_nps_modes) {
1200 size += sysfs_emit_at(buf, size, "%s%s", sep, nps_desc[mode]);
1201 sep = ", ";
1202 }
1203 size += sysfs_emit_at(buf, size, "\n");
1204
1205 return size;
1206 }
1207
current_memory_partition_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1208 static ssize_t current_memory_partition_store(struct device *dev,
1209 struct device_attribute *attr,
1210 const char *buf, size_t count)
1211 {
1212 struct drm_device *ddev = dev_get_drvdata(dev);
1213 struct amdgpu_device *adev = drm_to_adev(ddev);
1214 enum amdgpu_memory_partition mode;
1215 struct amdgpu_hive_info *hive;
1216 int i;
1217
1218 mode = UNKNOWN_MEMORY_PARTITION_MODE;
1219 for_each_inst(i, adev->gmc.supported_nps_modes) {
1220 if (!strncasecmp(nps_desc[i], buf, strlen(nps_desc[i]))) {
1221 mode = i;
1222 break;
1223 }
1224 }
1225
1226 if (mode == UNKNOWN_MEMORY_PARTITION_MODE)
1227 return -EINVAL;
1228
1229 if (mode == adev->gmc.gmc_funcs->query_mem_partition_mode(adev)) {
1230 dev_info(
1231 adev->dev,
1232 "requested NPS mode is same as current NPS mode, skipping\n");
1233 return count;
1234 }
1235
1236 /* If device is part of hive, all devices in the hive should request the
1237 * same mode. Hence store the requested mode in hive.
1238 */
1239 hive = amdgpu_get_xgmi_hive(adev);
1240 if (hive) {
1241 atomic_set(&hive->requested_nps_mode, mode);
1242 amdgpu_put_xgmi_hive(hive);
1243 } else {
1244 adev->gmc.requested_nps_mode = mode;
1245 }
1246
1247 dev_info(
1248 adev->dev,
1249 "NPS mode change requested, please remove and reload the driver\n");
1250
1251 return count;
1252 }
1253
current_memory_partition_show(struct device * dev,struct device_attribute * addr,char * buf)1254 static ssize_t current_memory_partition_show(
1255 struct device *dev, struct device_attribute *addr, char *buf)
1256 {
1257 struct drm_device *ddev = dev_get_drvdata(dev);
1258 struct amdgpu_device *adev = drm_to_adev(ddev);
1259 enum amdgpu_memory_partition mode;
1260
1261 /* Only minimal precaution taken to reject requests while in reset */
1262 if (amdgpu_in_reset(adev))
1263 return -EPERM;
1264
1265 mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
1266 if ((mode >= ARRAY_SIZE(nps_desc)) ||
1267 (BIT(mode) & AMDGPU_ALL_NPS_MASK) != BIT(mode))
1268 return sysfs_emit(buf, "UNKNOWN\n");
1269
1270 return sysfs_emit(buf, "%s\n", nps_desc[mode]);
1271 }
1272
1273 static DEVICE_ATTR_RW(current_memory_partition);
1274 static DEVICE_ATTR_RO(available_memory_partition);
1275
amdgpu_gmc_sysfs_init(struct amdgpu_device * adev)1276 int amdgpu_gmc_sysfs_init(struct amdgpu_device *adev)
1277 {
1278 bool nps_switch_support;
1279 int r = 0;
1280
1281 if (!adev->gmc.gmc_funcs->query_mem_partition_mode)
1282 return 0;
1283
1284 nps_switch_support = (hweight32(adev->gmc.supported_nps_modes &
1285 AMDGPU_ALL_NPS_MASK) > 1);
1286 if (!nps_switch_support)
1287 dev_attr_current_memory_partition.attr.mode &=
1288 ~(S_IWUSR | S_IWGRP | S_IWOTH);
1289 else
1290 r = device_create_file(adev->dev,
1291 &dev_attr_available_memory_partition);
1292
1293 if (r)
1294 return r;
1295
1296 return device_create_file(adev->dev,
1297 &dev_attr_current_memory_partition);
1298 }
1299
amdgpu_gmc_sysfs_fini(struct amdgpu_device * adev)1300 void amdgpu_gmc_sysfs_fini(struct amdgpu_device *adev)
1301 {
1302 if (!adev->gmc.gmc_funcs->query_mem_partition_mode)
1303 return;
1304
1305 device_remove_file(adev->dev, &dev_attr_current_memory_partition);
1306 device_remove_file(adev->dev, &dev_attr_available_memory_partition);
1307 }
1308
amdgpu_gmc_get_nps_memranges(struct amdgpu_device * adev,struct amdgpu_mem_partition_info * mem_ranges,uint8_t * exp_ranges)1309 int amdgpu_gmc_get_nps_memranges(struct amdgpu_device *adev,
1310 struct amdgpu_mem_partition_info *mem_ranges,
1311 uint8_t *exp_ranges)
1312 {
1313 struct amdgpu_gmc_memrange *ranges;
1314 int range_cnt, ret, i, j;
1315 uint32_t nps_type;
1316 bool refresh;
1317
1318 if (!mem_ranges || !exp_ranges)
1319 return -EINVAL;
1320
1321 refresh = (adev->init_lvl->level != AMDGPU_INIT_LEVEL_MINIMAL_XGMI) &&
1322 (adev->gmc.reset_flags & AMDGPU_GMC_INIT_RESET_NPS);
1323 ret = amdgpu_discovery_get_nps_info(adev, &nps_type, &ranges,
1324 &range_cnt, refresh);
1325
1326 if (ret)
1327 return ret;
1328
1329 /* TODO: For now, expect ranges and partition count to be the same.
1330 * Adjust if there are holes expected in any NPS domain.
1331 */
1332 if (*exp_ranges && (range_cnt != *exp_ranges)) {
1333 dev_warn(
1334 adev->dev,
1335 "NPS config mismatch - expected ranges: %d discovery - nps mode: %d, nps ranges: %d",
1336 *exp_ranges, nps_type, range_cnt);
1337 ret = -EINVAL;
1338 goto err;
1339 }
1340
1341 for (i = 0; i < range_cnt; ++i) {
1342 if (ranges[i].base_address >= ranges[i].limit_address) {
1343 dev_warn(
1344 adev->dev,
1345 "Invalid NPS range - nps mode: %d, range[%d]: base: %llx limit: %llx",
1346 nps_type, i, ranges[i].base_address,
1347 ranges[i].limit_address);
1348 ret = -EINVAL;
1349 goto err;
1350 }
1351
1352 /* Check for overlaps, not expecting any now */
1353 for (j = i - 1; j >= 0; j--) {
1354 if (max(ranges[j].base_address,
1355 ranges[i].base_address) <=
1356 min(ranges[j].limit_address,
1357 ranges[i].limit_address)) {
1358 dev_warn(
1359 adev->dev,
1360 "overlapping ranges detected [ %llx - %llx ] | [%llx - %llx]",
1361 ranges[j].base_address,
1362 ranges[j].limit_address,
1363 ranges[i].base_address,
1364 ranges[i].limit_address);
1365 ret = -EINVAL;
1366 goto err;
1367 }
1368 }
1369
1370 mem_ranges[i].range.fpfn =
1371 (ranges[i].base_address -
1372 adev->vm_manager.vram_base_offset) >>
1373 AMDGPU_GPU_PAGE_SHIFT;
1374 mem_ranges[i].range.lpfn =
1375 (ranges[i].limit_address -
1376 adev->vm_manager.vram_base_offset) >>
1377 AMDGPU_GPU_PAGE_SHIFT;
1378 mem_ranges[i].size =
1379 ranges[i].limit_address - ranges[i].base_address + 1;
1380 }
1381
1382 if (!*exp_ranges)
1383 *exp_ranges = range_cnt;
1384 err:
1385 kfree(ranges);
1386
1387 return ret;
1388 }
1389
amdgpu_gmc_request_memory_partition(struct amdgpu_device * adev,int nps_mode)1390 int amdgpu_gmc_request_memory_partition(struct amdgpu_device *adev,
1391 int nps_mode)
1392 {
1393 /* Not supported on VF devices and APUs */
1394 if (amdgpu_sriov_vf(adev) || (adev->flags & AMD_IS_APU))
1395 return -EOPNOTSUPP;
1396
1397 if (!adev->psp.funcs) {
1398 dev_err(adev->dev,
1399 "PSP interface not available for nps mode change request");
1400 return -EINVAL;
1401 }
1402
1403 return psp_memory_partition(&adev->psp, nps_mode);
1404 }
1405
amdgpu_gmc_need_nps_switch_req(struct amdgpu_device * adev,int req_nps_mode,int cur_nps_mode)1406 static inline bool amdgpu_gmc_need_nps_switch_req(struct amdgpu_device *adev,
1407 int req_nps_mode,
1408 int cur_nps_mode)
1409 {
1410 return (((BIT(req_nps_mode) & adev->gmc.supported_nps_modes) ==
1411 BIT(req_nps_mode)) &&
1412 req_nps_mode != cur_nps_mode);
1413 }
1414
amdgpu_gmc_prepare_nps_mode_change(struct amdgpu_device * adev)1415 void amdgpu_gmc_prepare_nps_mode_change(struct amdgpu_device *adev)
1416 {
1417 int req_nps_mode, cur_nps_mode, r;
1418 struct amdgpu_hive_info *hive;
1419
1420 if (amdgpu_sriov_vf(adev) || !adev->gmc.supported_nps_modes ||
1421 !adev->gmc.gmc_funcs->request_mem_partition_mode)
1422 return;
1423
1424 cur_nps_mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
1425 hive = amdgpu_get_xgmi_hive(adev);
1426 if (hive) {
1427 req_nps_mode = atomic_read(&hive->requested_nps_mode);
1428 if (!amdgpu_gmc_need_nps_switch_req(adev, req_nps_mode,
1429 cur_nps_mode)) {
1430 amdgpu_put_xgmi_hive(hive);
1431 return;
1432 }
1433 r = amdgpu_xgmi_request_nps_change(adev, hive, req_nps_mode);
1434 amdgpu_put_xgmi_hive(hive);
1435 goto out;
1436 }
1437
1438 req_nps_mode = adev->gmc.requested_nps_mode;
1439 if (!amdgpu_gmc_need_nps_switch_req(adev, req_nps_mode, cur_nps_mode))
1440 return;
1441
1442 /* even if this fails, we should let driver unload w/o blocking */
1443 r = adev->gmc.gmc_funcs->request_mem_partition_mode(adev, req_nps_mode);
1444 out:
1445 if (r)
1446 dev_err(adev->dev, "NPS mode change request failed\n");
1447 else
1448 dev_info(
1449 adev->dev,
1450 "NPS mode change request done, reload driver to complete the change\n");
1451 }
1452
amdgpu_gmc_need_reset_on_init(struct amdgpu_device * adev)1453 bool amdgpu_gmc_need_reset_on_init(struct amdgpu_device *adev)
1454 {
1455 if (adev->gmc.gmc_funcs->need_reset_on_init)
1456 return adev->gmc.gmc_funcs->need_reset_on_init(adev);
1457
1458 return false;
1459 }
1460
1461 enum amdgpu_memory_partition
amdgpu_gmc_get_vf_memory_partition(struct amdgpu_device * adev)1462 amdgpu_gmc_get_vf_memory_partition(struct amdgpu_device *adev)
1463 {
1464 switch (adev->gmc.num_mem_partitions) {
1465 case 0:
1466 return UNKNOWN_MEMORY_PARTITION_MODE;
1467 case 1:
1468 return AMDGPU_NPS1_PARTITION_MODE;
1469 case 2:
1470 return AMDGPU_NPS2_PARTITION_MODE;
1471 case 4:
1472 return AMDGPU_NPS4_PARTITION_MODE;
1473 case 8:
1474 return AMDGPU_NPS8_PARTITION_MODE;
1475 default:
1476 return AMDGPU_NPS1_PARTITION_MODE;
1477 }
1478 }
1479
1480 enum amdgpu_memory_partition
amdgpu_gmc_get_memory_partition(struct amdgpu_device * adev,u32 * supp_modes)1481 amdgpu_gmc_get_memory_partition(struct amdgpu_device *adev, u32 *supp_modes)
1482 {
1483 enum amdgpu_memory_partition mode = UNKNOWN_MEMORY_PARTITION_MODE;
1484
1485 if (adev->nbio.funcs &&
1486 adev->nbio.funcs->get_memory_partition_mode)
1487 mode = adev->nbio.funcs->get_memory_partition_mode(adev,
1488 supp_modes);
1489 else
1490 dev_warn(adev->dev, "memory partition mode query is not supported\n");
1491
1492 return mode;
1493 }
1494
1495 enum amdgpu_memory_partition
amdgpu_gmc_query_memory_partition(struct amdgpu_device * adev)1496 amdgpu_gmc_query_memory_partition(struct amdgpu_device *adev)
1497 {
1498 if (amdgpu_sriov_vf(adev))
1499 return amdgpu_gmc_get_vf_memory_partition(adev);
1500 else
1501 return amdgpu_gmc_get_memory_partition(adev, NULL);
1502 }
1503
amdgpu_gmc_validate_partition_info(struct amdgpu_device * adev)1504 static bool amdgpu_gmc_validate_partition_info(struct amdgpu_device *adev)
1505 {
1506 enum amdgpu_memory_partition mode;
1507 u32 supp_modes;
1508 bool valid;
1509
1510 mode = amdgpu_gmc_get_memory_partition(adev, &supp_modes);
1511
1512 /* Mode detected by hardware not present in supported modes */
1513 if ((mode != UNKNOWN_MEMORY_PARTITION_MODE) &&
1514 !(BIT(mode - 1) & supp_modes))
1515 return false;
1516
1517 switch (mode) {
1518 case UNKNOWN_MEMORY_PARTITION_MODE:
1519 case AMDGPU_NPS1_PARTITION_MODE:
1520 valid = (adev->gmc.num_mem_partitions == 1);
1521 break;
1522 case AMDGPU_NPS2_PARTITION_MODE:
1523 valid = (adev->gmc.num_mem_partitions == 2);
1524 break;
1525 case AMDGPU_NPS4_PARTITION_MODE:
1526 valid = (adev->gmc.num_mem_partitions == 3 ||
1527 adev->gmc.num_mem_partitions == 4);
1528 break;
1529 case AMDGPU_NPS8_PARTITION_MODE:
1530 valid = (adev->gmc.num_mem_partitions == 8);
1531 break;
1532 default:
1533 valid = false;
1534 }
1535
1536 return valid;
1537 }
1538
amdgpu_gmc_is_node_present(int * node_ids,int num_ids,int nid)1539 static bool amdgpu_gmc_is_node_present(int *node_ids, int num_ids, int nid)
1540 {
1541 int i;
1542
1543 /* Check if node with id 'nid' is present in 'node_ids' array */
1544 for (i = 0; i < num_ids; ++i)
1545 if (node_ids[i] == nid)
1546 return true;
1547
1548 return false;
1549 }
1550
1551 static void
amdgpu_gmc_init_acpi_mem_ranges(struct amdgpu_device * adev,struct amdgpu_mem_partition_info * mem_ranges)1552 amdgpu_gmc_init_acpi_mem_ranges(struct amdgpu_device *adev,
1553 struct amdgpu_mem_partition_info *mem_ranges)
1554 {
1555 struct amdgpu_numa_info numa_info;
1556 int node_ids[AMDGPU_MAX_MEM_RANGES];
1557 int num_ranges = 0, ret;
1558 int num_xcc, xcc_id;
1559 uint32_t xcc_mask;
1560
1561 num_xcc = NUM_XCC(adev->gfx.xcc_mask);
1562 xcc_mask = (1U << num_xcc) - 1;
1563
1564 for_each_inst(xcc_id, xcc_mask) {
1565 ret = amdgpu_acpi_get_mem_info(adev, xcc_id, &numa_info);
1566 if (ret)
1567 continue;
1568
1569 if (numa_info.nid == NUMA_NO_NODE) {
1570 mem_ranges[0].size = numa_info.size;
1571 mem_ranges[0].numa.node = numa_info.nid;
1572 num_ranges = 1;
1573 break;
1574 }
1575
1576 if (amdgpu_gmc_is_node_present(node_ids, num_ranges,
1577 numa_info.nid))
1578 continue;
1579
1580 node_ids[num_ranges] = numa_info.nid;
1581 mem_ranges[num_ranges].numa.node = numa_info.nid;
1582 mem_ranges[num_ranges].size = numa_info.size;
1583 ++num_ranges;
1584 }
1585
1586 adev->gmc.num_mem_partitions = num_ranges;
1587 }
1588
amdgpu_gmc_init_sw_mem_ranges(struct amdgpu_device * adev,struct amdgpu_mem_partition_info * mem_ranges)1589 void amdgpu_gmc_init_sw_mem_ranges(struct amdgpu_device *adev,
1590 struct amdgpu_mem_partition_info *mem_ranges)
1591 {
1592 enum amdgpu_memory_partition mode;
1593 u32 start_addr = 0, size;
1594 int i, r, l;
1595
1596 mode = amdgpu_gmc_query_memory_partition(adev);
1597
1598 switch (mode) {
1599 case UNKNOWN_MEMORY_PARTITION_MODE:
1600 adev->gmc.num_mem_partitions = 0;
1601 break;
1602 case AMDGPU_NPS1_PARTITION_MODE:
1603 adev->gmc.num_mem_partitions = 1;
1604 break;
1605 case AMDGPU_NPS2_PARTITION_MODE:
1606 adev->gmc.num_mem_partitions = 2;
1607 break;
1608 case AMDGPU_NPS4_PARTITION_MODE:
1609 if (adev->flags & AMD_IS_APU)
1610 adev->gmc.num_mem_partitions = 3;
1611 else
1612 adev->gmc.num_mem_partitions = 4;
1613 break;
1614 case AMDGPU_NPS8_PARTITION_MODE:
1615 adev->gmc.num_mem_partitions = 8;
1616 break;
1617 default:
1618 adev->gmc.num_mem_partitions = 1;
1619 break;
1620 }
1621
1622 /* Use NPS range info, if populated */
1623 r = amdgpu_gmc_get_nps_memranges(adev, mem_ranges,
1624 &adev->gmc.num_mem_partitions);
1625 if (!r) {
1626 l = 0;
1627 for (i = 1; i < adev->gmc.num_mem_partitions; ++i) {
1628 if (mem_ranges[i].range.lpfn >
1629 mem_ranges[i - 1].range.lpfn)
1630 l = i;
1631 }
1632
1633 } else {
1634 if (!adev->gmc.num_mem_partitions) {
1635 dev_warn(adev->dev,
1636 "Not able to detect NPS mode, fall back to NPS1\n");
1637 adev->gmc.num_mem_partitions = 1;
1638 }
1639 /* Fallback to sw based calculation */
1640 size = (adev->gmc.real_vram_size + SZ_16M) >> AMDGPU_GPU_PAGE_SHIFT;
1641 size /= adev->gmc.num_mem_partitions;
1642
1643 for (i = 0; i < adev->gmc.num_mem_partitions; ++i) {
1644 mem_ranges[i].range.fpfn = start_addr;
1645 mem_ranges[i].size =
1646 ((u64)size << AMDGPU_GPU_PAGE_SHIFT);
1647 mem_ranges[i].range.lpfn = start_addr + size - 1;
1648 start_addr += size;
1649 }
1650
1651 l = adev->gmc.num_mem_partitions - 1;
1652 }
1653
1654 /* Adjust the last one */
1655 mem_ranges[l].range.lpfn =
1656 (adev->gmc.real_vram_size >> AMDGPU_GPU_PAGE_SHIFT) - 1;
1657 mem_ranges[l].size =
1658 adev->gmc.real_vram_size -
1659 ((u64)mem_ranges[l].range.fpfn << AMDGPU_GPU_PAGE_SHIFT);
1660 }
1661
amdgpu_gmc_init_mem_ranges(struct amdgpu_device * adev)1662 int amdgpu_gmc_init_mem_ranges(struct amdgpu_device *adev)
1663 {
1664 bool valid;
1665
1666 adev->gmc.mem_partitions = kcalloc(AMDGPU_MAX_MEM_RANGES,
1667 sizeof(struct amdgpu_mem_partition_info),
1668 GFP_KERNEL);
1669 if (!adev->gmc.mem_partitions)
1670 return -ENOMEM;
1671
1672 if (adev->gmc.is_app_apu)
1673 amdgpu_gmc_init_acpi_mem_ranges(adev, adev->gmc.mem_partitions);
1674 else
1675 amdgpu_gmc_init_sw_mem_ranges(adev, adev->gmc.mem_partitions);
1676
1677 if (amdgpu_sriov_vf(adev))
1678 valid = true;
1679 else
1680 valid = amdgpu_gmc_validate_partition_info(adev);
1681 if (!valid) {
1682 /* TODO: handle invalid case */
1683 dev_warn(adev->dev,
1684 "Mem ranges not matching with hardware config\n");
1685 }
1686
1687 return 0;
1688 }
1689