xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_gmc.c (revision 6ce8d536c80aa1f059e82184f0d1994436b1d526)
1 /*
2  * Copyright 2018 Advanced Micro Devices, Inc.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #ifdef CONFIG_X86
29 #include <asm/hypervisor.h>
30 #endif
31 
32 #include "amdgpu.h"
33 #include "amdgpu_gmc.h"
34 #include "amdgpu_ras.h"
35 #include "amdgpu_reset.h"
36 #include "amdgpu_xgmi.h"
37 
38 #include <drm/drm_drv.h>
39 #include <drm/ttm/ttm_tt.h>
40 
41 static const u64 four_gb = 0x100000000ULL;
42 
43 bool amdgpu_gmc_is_pdb0_enabled(struct amdgpu_device *adev)
44 {
45 	return adev->gmc.xgmi.connected_to_cpu || amdgpu_virt_xgmi_migrate_enabled(adev);
46 }
47 
48 /**
49  * amdgpu_gmc_pdb0_alloc - allocate vram for pdb0
50  *
51  * @adev: amdgpu_device pointer
52  *
53  * Allocate video memory for pdb0 and map it for CPU access
54  * Returns 0 for success, error for failure.
55  */
56 int amdgpu_gmc_pdb0_alloc(struct amdgpu_device *adev)
57 {
58 	int r;
59 	struct amdgpu_bo_param bp;
60 	u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
61 	uint32_t pde0_page_shift = adev->gmc.vmid0_page_table_block_size + 21;
62 	uint32_t npdes = (vram_size + (1ULL << pde0_page_shift) - 1) >> pde0_page_shift;
63 
64 	memset(&bp, 0, sizeof(bp));
65 	bp.size = PAGE_ALIGN((npdes + 1) * 8);
66 	bp.byte_align = PAGE_SIZE;
67 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
68 	bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
69 		AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
70 	bp.type = ttm_bo_type_kernel;
71 	bp.resv = NULL;
72 	bp.bo_ptr_size = sizeof(struct amdgpu_bo);
73 
74 	r = amdgpu_bo_create(adev, &bp, &adev->gmc.pdb0_bo);
75 	if (r)
76 		return r;
77 
78 	r = amdgpu_bo_reserve(adev->gmc.pdb0_bo, false);
79 	if (unlikely(r != 0))
80 		goto bo_reserve_failure;
81 
82 	r = amdgpu_bo_pin(adev->gmc.pdb0_bo, AMDGPU_GEM_DOMAIN_VRAM);
83 	if (r)
84 		goto bo_pin_failure;
85 	r = amdgpu_bo_kmap(adev->gmc.pdb0_bo, &adev->gmc.ptr_pdb0);
86 	if (r)
87 		goto bo_kmap_failure;
88 
89 	amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
90 	return 0;
91 
92 bo_kmap_failure:
93 	amdgpu_bo_unpin(adev->gmc.pdb0_bo);
94 bo_pin_failure:
95 	amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
96 bo_reserve_failure:
97 	amdgpu_bo_unref(&adev->gmc.pdb0_bo);
98 	return r;
99 }
100 
101 /**
102  * amdgpu_gmc_get_pde_for_bo - get the PDE for a BO
103  *
104  * @bo: the BO to get the PDE for
105  * @level: the level in the PD hirarchy
106  * @addr: resulting addr
107  * @flags: resulting flags
108  *
109  * Get the address and flags to be used for a PDE (Page Directory Entry).
110  */
111 void amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo *bo, int level,
112 			       uint64_t *addr, uint64_t *flags)
113 {
114 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
115 
116 	switch (bo->tbo.resource->mem_type) {
117 	case TTM_PL_TT:
118 		*addr = bo->tbo.ttm->dma_address[0];
119 		break;
120 	case TTM_PL_VRAM:
121 		*addr = amdgpu_bo_gpu_offset(bo);
122 		break;
123 	default:
124 		*addr = 0;
125 		break;
126 	}
127 	*flags = amdgpu_ttm_tt_pde_flags(bo->tbo.ttm, bo->tbo.resource);
128 	amdgpu_gmc_get_vm_pde(adev, level, addr, flags);
129 }
130 
131 /*
132  * amdgpu_gmc_pd_addr - return the address of the root directory
133  */
134 uint64_t amdgpu_gmc_pd_addr(struct amdgpu_bo *bo)
135 {
136 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
137 	uint64_t pd_addr;
138 
139 	/* TODO: move that into ASIC specific code */
140 	if (adev->asic_type >= CHIP_VEGA10) {
141 		uint64_t flags = AMDGPU_PTE_VALID;
142 
143 		amdgpu_gmc_get_pde_for_bo(bo, -1, &pd_addr, &flags);
144 		pd_addr |= flags;
145 	} else {
146 		pd_addr = amdgpu_bo_gpu_offset(bo);
147 	}
148 	return pd_addr;
149 }
150 
151 /**
152  * amdgpu_gmc_set_pte_pde - update the page tables using CPU
153  *
154  * @adev: amdgpu_device pointer
155  * @cpu_pt_addr: cpu address of the page table
156  * @gpu_page_idx: entry in the page table to update
157  * @addr: dst addr to write into pte/pde
158  * @flags: access flags
159  *
160  * Update the page tables using CPU.
161  */
162 int amdgpu_gmc_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr,
163 				uint32_t gpu_page_idx, uint64_t addr,
164 				uint64_t flags)
165 {
166 	void __iomem *ptr = (void *)cpu_pt_addr;
167 	uint64_t value;
168 
169 	/*
170 	 * The following is for PTE only. GART does not have PDEs.
171 	*/
172 	value = addr & 0x0000FFFFFFFFF000ULL;
173 	value |= flags;
174 	writeq(value, ptr + (gpu_page_idx * 8));
175 
176 	return 0;
177 }
178 
179 /**
180  * amdgpu_gmc_agp_addr - return the address in the AGP address space
181  *
182  * @bo: TTM BO which needs the address, must be in GTT domain
183  *
184  * Tries to figure out how to access the BO through the AGP aperture. Returns
185  * AMDGPU_BO_INVALID_OFFSET if that is not possible.
186  */
187 uint64_t amdgpu_gmc_agp_addr(struct ttm_buffer_object *bo)
188 {
189 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
190 
191 	if (!bo->ttm)
192 		return AMDGPU_BO_INVALID_OFFSET;
193 
194 	if (bo->ttm->num_pages != 1 || bo->ttm->caching == ttm_cached)
195 		return AMDGPU_BO_INVALID_OFFSET;
196 
197 	if (bo->ttm->dma_address[0] + PAGE_SIZE >= adev->gmc.agp_size)
198 		return AMDGPU_BO_INVALID_OFFSET;
199 
200 	return adev->gmc.agp_start + bo->ttm->dma_address[0];
201 }
202 
203 /**
204  * amdgpu_gmc_vram_location - try to find VRAM location
205  *
206  * @adev: amdgpu device structure holding all necessary information
207  * @mc: memory controller structure holding memory information
208  * @base: base address at which to put VRAM
209  *
210  * Function will try to place VRAM at base address provided
211  * as parameter.
212  */
213 void amdgpu_gmc_vram_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
214 			      u64 base)
215 {
216 	uint64_t vis_limit = (uint64_t)amdgpu_vis_vram_limit << 20;
217 	uint64_t limit = (uint64_t)amdgpu_vram_limit << 20;
218 
219 	mc->vram_start = base;
220 	mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
221 	if (limit < mc->real_vram_size)
222 		mc->real_vram_size = limit;
223 
224 	if (vis_limit && vis_limit < mc->visible_vram_size)
225 		mc->visible_vram_size = vis_limit;
226 
227 	if (mc->real_vram_size < mc->visible_vram_size)
228 		mc->visible_vram_size = mc->real_vram_size;
229 
230 	if (mc->xgmi.num_physical_nodes == 0) {
231 		mc->fb_start = mc->vram_start;
232 		mc->fb_end = mc->vram_end;
233 	}
234 	dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
235 			mc->mc_vram_size >> 20, mc->vram_start,
236 			mc->vram_end, mc->real_vram_size >> 20);
237 }
238 
239 /** amdgpu_gmc_sysvm_location - place vram and gart in sysvm aperture
240  *
241  * @adev: amdgpu device structure holding all necessary information
242  * @mc: memory controller structure holding memory information
243  *
244  * This function is only used if use GART for FB translation. In such
245  * case, we use sysvm aperture (vmid0 page tables) for both vram
246  * and gart (aka system memory) access.
247  *
248  * GPUVM (and our organization of vmid0 page tables) require sysvm
249  * aperture to be placed at a location aligned with 8 times of native
250  * page size. For example, if vm_context0_cntl.page_table_block_size
251  * is 12, then native page size is 8G (2M*2^12), sysvm should start
252  * with a 64G aligned address. For simplicity, we just put sysvm at
253  * address 0. So vram start at address 0 and gart is right after vram.
254  */
255 void amdgpu_gmc_sysvm_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
256 {
257 	u64 hive_vram_start = 0;
258 	u64 hive_vram_end = mc->xgmi.node_segment_size * mc->xgmi.num_physical_nodes - 1;
259 	mc->vram_start = mc->xgmi.node_segment_size * mc->xgmi.physical_node_id;
260 	mc->vram_end = mc->vram_start + mc->xgmi.node_segment_size - 1;
261 	/* node_segment_size may not 4GB aligned on SRIOV, align up is needed. */
262 	mc->gart_start = ALIGN(hive_vram_end + 1, four_gb);
263 	mc->gart_end = mc->gart_start + mc->gart_size - 1;
264 	if (amdgpu_virt_xgmi_migrate_enabled(adev)) {
265 		/* set mc->vram_start to 0 to switch the returned GPU address of
266 		 * amdgpu_bo_create_reserved() from FB aperture to GART aperture.
267 		 */
268 		mc->vram_start = 0;
269 		mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
270 		mc->visible_vram_size = min(mc->visible_vram_size, mc->real_vram_size);
271 	} else {
272 		mc->fb_start = hive_vram_start;
273 		mc->fb_end = hive_vram_end;
274 	}
275 	dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
276 			mc->mc_vram_size >> 20, mc->vram_start,
277 			mc->vram_end, mc->real_vram_size >> 20);
278 	dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
279 			mc->gart_size >> 20, mc->gart_start, mc->gart_end);
280 }
281 
282 /**
283  * amdgpu_gmc_gart_location - try to find GART location
284  *
285  * @adev: amdgpu device structure holding all necessary information
286  * @mc: memory controller structure holding memory information
287  * @gart_placement: GART placement policy with respect to VRAM
288  *
289  * Function will try to place GART before or after VRAM.
290  * If GART size is bigger than space left then we ajust GART size.
291  * Thus function will never fails.
292  */
293 void amdgpu_gmc_gart_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
294 			      enum amdgpu_gart_placement gart_placement)
295 {
296 	u64 size_af, size_bf;
297 	/*To avoid the hole, limit the max mc address to AMDGPU_GMC_HOLE_START*/
298 	u64 max_mc_address = min(adev->gmc.mc_mask, AMDGPU_GMC_HOLE_START - 1);
299 
300 	/* VCE doesn't like it when BOs cross a 4GB segment, so align
301 	 * the GART base on a 4GB boundary as well.
302 	 */
303 	size_bf = mc->fb_start;
304 	size_af = max_mc_address + 1 - ALIGN(mc->fb_end + 1, four_gb);
305 
306 	if (mc->gart_size > max(size_bf, size_af)) {
307 		dev_warn(adev->dev, "limiting GART\n");
308 		mc->gart_size = max(size_bf, size_af);
309 	}
310 
311 	switch (gart_placement) {
312 	case AMDGPU_GART_PLACEMENT_HIGH:
313 		mc->gart_start = max_mc_address - mc->gart_size + 1;
314 		break;
315 	case AMDGPU_GART_PLACEMENT_LOW:
316 		mc->gart_start = 0;
317 		break;
318 	case AMDGPU_GART_PLACEMENT_BEST_FIT:
319 	default:
320 		if ((size_bf >= mc->gart_size && size_bf < size_af) ||
321 		    (size_af < mc->gart_size))
322 			mc->gart_start = 0;
323 		else
324 			mc->gart_start = max_mc_address - mc->gart_size + 1;
325 		break;
326 	}
327 
328 	mc->gart_start &= ~(four_gb - 1);
329 	mc->gart_end = mc->gart_start + mc->gart_size - 1;
330 	dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
331 			mc->gart_size >> 20, mc->gart_start, mc->gart_end);
332 }
333 
334 /**
335  * amdgpu_gmc_agp_location - try to find AGP location
336  * @adev: amdgpu device structure holding all necessary information
337  * @mc: memory controller structure holding memory information
338  *
339  * Function will place try to find a place for the AGP BAR in the MC address
340  * space.
341  *
342  * AGP BAR will be assigned the largest available hole in the address space.
343  * Should be called after VRAM and GART locations are setup.
344  */
345 void amdgpu_gmc_agp_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
346 {
347 	const uint64_t sixteen_gb = 1ULL << 34;
348 	const uint64_t sixteen_gb_mask = ~(sixteen_gb - 1);
349 	u64 size_af, size_bf;
350 
351 	if (mc->fb_start > mc->gart_start) {
352 		size_bf = (mc->fb_start & sixteen_gb_mask) -
353 			ALIGN(mc->gart_end + 1, sixteen_gb);
354 		size_af = mc->mc_mask + 1 - ALIGN(mc->fb_end + 1, sixteen_gb);
355 	} else {
356 		size_bf = mc->fb_start & sixteen_gb_mask;
357 		size_af = (mc->gart_start & sixteen_gb_mask) -
358 			ALIGN(mc->fb_end + 1, sixteen_gb);
359 	}
360 
361 	if (size_bf > size_af) {
362 		mc->agp_start = (mc->fb_start - size_bf) & sixteen_gb_mask;
363 		mc->agp_size = size_bf;
364 	} else {
365 		mc->agp_start = ALIGN(mc->fb_end + 1, sixteen_gb);
366 		mc->agp_size = size_af;
367 	}
368 
369 	mc->agp_end = mc->agp_start + mc->agp_size - 1;
370 	dev_info(adev->dev, "AGP: %lluM 0x%016llX - 0x%016llX\n",
371 			mc->agp_size >> 20, mc->agp_start, mc->agp_end);
372 }
373 
374 /**
375  * amdgpu_gmc_set_agp_default - Set the default AGP aperture value.
376  * @adev: amdgpu device structure holding all necessary information
377  * @mc: memory controller structure holding memory information
378  *
379  * To disable the AGP aperture, you need to set the start to a larger
380  * value than the end.  This function sets the default value which
381  * can then be overridden using amdgpu_gmc_agp_location() if you want
382  * to enable the AGP aperture on a specific chip.
383  *
384  */
385 void amdgpu_gmc_set_agp_default(struct amdgpu_device *adev,
386 				struct amdgpu_gmc *mc)
387 {
388 	mc->agp_start = 0xffffffffffff;
389 	mc->agp_end = 0;
390 	mc->agp_size = 0;
391 }
392 
393 /**
394  * amdgpu_gmc_fault_key - get hask key from vm fault address and pasid
395  *
396  * @addr: 48 bit physical address, page aligned (36 significant bits)
397  * @pasid: 16 bit process address space identifier
398  */
399 static inline uint64_t amdgpu_gmc_fault_key(uint64_t addr, uint16_t pasid)
400 {
401 	return addr << 4 | pasid;
402 }
403 
404 /**
405  * amdgpu_gmc_filter_faults - filter VM faults
406  *
407  * @adev: amdgpu device structure
408  * @ih: interrupt ring that the fault received from
409  * @addr: address of the VM fault
410  * @pasid: PASID of the process causing the fault
411  * @timestamp: timestamp of the fault
412  *
413  * Returns:
414  * True if the fault was filtered and should not be processed further.
415  * False if the fault is a new one and needs to be handled.
416  */
417 bool amdgpu_gmc_filter_faults(struct amdgpu_device *adev,
418 			      struct amdgpu_ih_ring *ih, uint64_t addr,
419 			      uint16_t pasid, uint64_t timestamp)
420 {
421 	struct amdgpu_gmc *gmc = &adev->gmc;
422 	uint64_t stamp, key = amdgpu_gmc_fault_key(addr, pasid);
423 	struct amdgpu_gmc_fault *fault;
424 	uint32_t hash;
425 
426 	/* Stale retry fault if timestamp goes backward */
427 	if (amdgpu_ih_ts_after(timestamp, ih->processed_timestamp))
428 		return true;
429 
430 	/* If we don't have space left in the ring buffer return immediately */
431 	stamp = max(timestamp, AMDGPU_GMC_FAULT_TIMEOUT + 1) -
432 		AMDGPU_GMC_FAULT_TIMEOUT;
433 	if (gmc->fault_ring[gmc->last_fault].timestamp >= stamp)
434 		return true;
435 
436 	/* Try to find the fault in the hash */
437 	hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
438 	fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
439 	while (fault->timestamp >= stamp) {
440 		uint64_t tmp;
441 
442 		if (atomic64_read(&fault->key) == key) {
443 			/*
444 			 * if we get a fault which is already present in
445 			 * the fault_ring and the timestamp of
446 			 * the fault is after the expired timestamp,
447 			 * then this is a new fault that needs to be added
448 			 * into the fault ring.
449 			 */
450 			if (fault->timestamp_expiry != 0 &&
451 			    amdgpu_ih_ts_after(fault->timestamp_expiry,
452 					       timestamp))
453 				break;
454 			else
455 				return true;
456 		}
457 
458 		tmp = fault->timestamp;
459 		fault = &gmc->fault_ring[fault->next];
460 
461 		/* Check if the entry was reused */
462 		if (fault->timestamp >= tmp)
463 			break;
464 	}
465 
466 	/* Add the fault to the ring */
467 	fault = &gmc->fault_ring[gmc->last_fault];
468 	atomic64_set(&fault->key, key);
469 	fault->timestamp = timestamp;
470 
471 	/* And update the hash */
472 	fault->next = gmc->fault_hash[hash].idx;
473 	gmc->fault_hash[hash].idx = gmc->last_fault++;
474 	return false;
475 }
476 
477 /**
478  * amdgpu_gmc_filter_faults_remove - remove address from VM faults filter
479  *
480  * @adev: amdgpu device structure
481  * @addr: address of the VM fault
482  * @pasid: PASID of the process causing the fault
483  *
484  * Remove the address from fault filter, then future vm fault on this address
485  * will pass to retry fault handler to recover.
486  */
487 void amdgpu_gmc_filter_faults_remove(struct amdgpu_device *adev, uint64_t addr,
488 				     uint16_t pasid)
489 {
490 	struct amdgpu_gmc *gmc = &adev->gmc;
491 	uint64_t key = amdgpu_gmc_fault_key(addr, pasid);
492 	struct amdgpu_ih_ring *ih;
493 	struct amdgpu_gmc_fault *fault;
494 	uint32_t last_wptr;
495 	uint64_t last_ts;
496 	uint32_t hash;
497 	uint64_t tmp;
498 
499 	if (adev->irq.retry_cam_enabled)
500 		return;
501 	else if (adev->irq.ih1.ring_size)
502 		ih = &adev->irq.ih1;
503 	else if (adev->irq.ih_soft.enabled)
504 		ih = &adev->irq.ih_soft;
505 	else
506 		return;
507 
508 	/* Get the WPTR of the last entry in IH ring */
509 	last_wptr = amdgpu_ih_get_wptr(adev, ih);
510 	/* Order wptr with ring data. */
511 	rmb();
512 	/* Get the timetamp of the last entry in IH ring */
513 	last_ts = amdgpu_ih_decode_iv_ts(adev, ih, last_wptr, -1);
514 
515 	hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
516 	fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
517 	do {
518 		if (atomic64_read(&fault->key) == key) {
519 			/*
520 			 * Update the timestamp when this fault
521 			 * expired.
522 			 */
523 			fault->timestamp_expiry = last_ts;
524 			break;
525 		}
526 
527 		tmp = fault->timestamp;
528 		fault = &gmc->fault_ring[fault->next];
529 	} while (fault->timestamp < tmp);
530 }
531 
532 int amdgpu_gmc_handle_retry_fault(struct amdgpu_device *adev,
533 				  struct amdgpu_iv_entry *entry,
534 				  u64 addr,
535 				  u32 cam_index,
536 				  u32 node_id,
537 				  bool write_fault)
538 {
539 	int ret;
540 
541 	if (adev->irq.retry_cam_enabled) {
542 		/* Delegate it to a different ring if the hardware hasn't
543 		 * already done it.
544 		 */
545 		if (entry->ih == &adev->irq.ih) {
546 			amdgpu_irq_delegate(adev, entry, 8);
547 			return 1;
548 		}
549 
550 		ret = amdgpu_vm_handle_fault(adev, entry->pasid, entry->vmid, node_id,
551 					     addr, entry->timestamp, write_fault);
552 		WDOORBELL32(adev->irq.retry_cam_doorbell_index, cam_index);
553 		if (ret)
554 			return 1;
555 	} else {
556 		/* Process it only if it's the first fault for this address */
557 		if (entry->ih != &adev->irq.ih_soft &&
558 		    amdgpu_gmc_filter_faults(adev, entry->ih, addr, entry->pasid,
559 					     entry->timestamp))
560 			return 1;
561 
562 		/* Delegate it to a different ring if the hardware hasn't
563 		 * already done it.
564 		 */
565 		if (entry->ih == &adev->irq.ih) {
566 			amdgpu_irq_delegate(adev, entry, 8);
567 			return 1;
568 		}
569 
570 		/* Try to handle the recoverable page faults by filling page
571 		 * tables
572 		 */
573 		if (amdgpu_vm_handle_fault(adev, entry->pasid, entry->vmid, node_id,
574 					   addr, entry->timestamp, write_fault))
575 			return 1;
576 	}
577 	return 0;
578 }
579 
580 int amdgpu_gmc_ras_sw_init(struct amdgpu_device *adev)
581 {
582 	int r;
583 
584 	/* umc ras block */
585 	r = amdgpu_umc_ras_sw_init(adev);
586 	if (r)
587 		return r;
588 
589 	/* mmhub ras block */
590 	r = amdgpu_mmhub_ras_sw_init(adev);
591 	if (r)
592 		return r;
593 
594 	/* hdp ras block */
595 	r = amdgpu_hdp_ras_sw_init(adev);
596 	if (r)
597 		return r;
598 
599 	/* mca.x ras block */
600 	r = amdgpu_mca_mp0_ras_sw_init(adev);
601 	if (r)
602 		return r;
603 
604 	r = amdgpu_mca_mp1_ras_sw_init(adev);
605 	if (r)
606 		return r;
607 
608 	r = amdgpu_mca_mpio_ras_sw_init(adev);
609 	if (r)
610 		return r;
611 
612 	/* xgmi ras block */
613 	r = amdgpu_xgmi_ras_sw_init(adev);
614 	if (r)
615 		return r;
616 
617 	return 0;
618 }
619 
620 int amdgpu_gmc_ras_late_init(struct amdgpu_device *adev)
621 {
622 	return 0;
623 }
624 
625 void amdgpu_gmc_ras_fini(struct amdgpu_device *adev)
626 {
627 
628 }
629 
630 	/*
631 	 * The latest engine allocation on gfx9/10 is:
632 	 * Engine 2, 3: firmware
633 	 * Engine 0, 1, 4~16: amdgpu ring,
634 	 *                    subject to change when ring number changes
635 	 * Engine 17: Gart flushes
636 	 */
637 #define AMDGPU_VMHUB_INV_ENG_BITMAP		0x1FFF3
638 
639 int amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device *adev)
640 {
641 	struct amdgpu_ring *ring;
642 	unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] = {0};
643 	unsigned i;
644 	unsigned vmhub, inv_eng;
645 	struct amdgpu_ring *shared_ring;
646 
647 	/* init the vm inv eng for all vmhubs */
648 	for_each_set_bit(i, adev->vmhubs_mask, AMDGPU_MAX_VMHUBS) {
649 		vm_inv_engs[i] = AMDGPU_VMHUB_INV_ENG_BITMAP;
650 		/* reserve engine 5 for firmware */
651 		if (adev->enable_mes)
652 			vm_inv_engs[i] &= ~(1 << 5);
653 		/* reserve engine 6 for uni mes */
654 		if (adev->enable_uni_mes)
655 			vm_inv_engs[i] &= ~(1 << 6);
656 		/* reserve mmhub engine 3 for firmware */
657 		if (adev->enable_umsch_mm)
658 			vm_inv_engs[i] &= ~(1 << 3);
659 	}
660 
661 	for (i = 0; i < adev->num_rings; ++i) {
662 		ring = adev->rings[i];
663 		vmhub = ring->vm_hub;
664 
665 		if (ring == &adev->mes.ring[0] ||
666 		    ring == &adev->mes.ring[1] ||
667 		    ring == &adev->umsch_mm.ring ||
668 		    ring == &adev->cper.ring_buf)
669 			continue;
670 
671 		/* Skip if the ring is a shared ring */
672 		if (amdgpu_sdma_is_shared_inv_eng(adev, ring))
673 			continue;
674 
675 		inv_eng = ffs(vm_inv_engs[vmhub]);
676 		if (!inv_eng) {
677 			dev_err(adev->dev, "no VM inv eng for ring %s\n",
678 				ring->name);
679 			return -EINVAL;
680 		}
681 
682 		ring->vm_inv_eng = inv_eng - 1;
683 		vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng);
684 
685 		dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n",
686 			 ring->name, ring->vm_inv_eng, ring->vm_hub);
687 		/* SDMA has a special packet which allows it to use the same
688 		 * invalidation engine for all the rings in one instance.
689 		 * Therefore, we do not allocate a separate VM invalidation engine
690 		 * for SDMA page rings. Instead, they share the VM invalidation
691 		 * engine with the SDMA gfx ring. This change ensures efficient
692 		 * resource management and avoids the issue of insufficient VM
693 		 * invalidation engines.
694 		 */
695 		shared_ring = amdgpu_sdma_get_shared_ring(adev, ring);
696 		if (shared_ring) {
697 			shared_ring->vm_inv_eng = ring->vm_inv_eng;
698 			dev_info(adev->dev, "ring %s shares VM invalidation engine %u with ring %s on hub %u\n",
699 					ring->name, ring->vm_inv_eng, shared_ring->name, ring->vm_hub);
700 			continue;
701 		}
702 	}
703 
704 	return 0;
705 }
706 
707 void amdgpu_gmc_flush_gpu_tlb(struct amdgpu_device *adev, uint32_t vmid,
708 			      uint32_t vmhub, uint32_t flush_type)
709 {
710 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
711 	struct amdgpu_vmhub *hub = &adev->vmhub[vmhub];
712 	struct dma_fence *fence;
713 	struct amdgpu_job *job;
714 	int r;
715 
716 	if (!hub->sdma_invalidation_workaround || vmid ||
717 	    !adev->mman.buffer_funcs_enabled || !adev->ib_pool_ready ||
718 	    !ring->sched.ready) {
719 		/*
720 		 * A GPU reset should flush all TLBs anyway, so no need to do
721 		 * this while one is ongoing.
722 		 */
723 		if (!down_read_trylock(&adev->reset_domain->sem))
724 			return;
725 
726 		if (adev->gmc.flush_tlb_needs_extra_type_2)
727 			adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid,
728 							   vmhub, 2);
729 
730 		if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2)
731 			adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid,
732 							   vmhub, 0);
733 
734 		adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, vmhub,
735 						   flush_type);
736 		up_read(&adev->reset_domain->sem);
737 		return;
738 	}
739 
740 	/* The SDMA on Navi 1x has a bug which can theoretically result in memory
741 	 * corruption if an invalidation happens at the same time as an VA
742 	 * translation. Avoid this by doing the invalidation from the SDMA
743 	 * itself at least for GART.
744 	 */
745 	mutex_lock(&adev->mman.gtt_window_lock);
746 	r = amdgpu_job_alloc_with_ib(ring->adev, &adev->mman.default_entity.base,
747 				     AMDGPU_FENCE_OWNER_UNDEFINED,
748 				     16 * 4, AMDGPU_IB_POOL_IMMEDIATE,
749 				     &job, AMDGPU_KERNEL_JOB_ID_FLUSH_GPU_TLB);
750 	if (r)
751 		goto error_alloc;
752 
753 	job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
754 	job->vm_needs_flush = true;
755 	job->ibs->ptr[job->ibs->length_dw++] = ring->funcs->nop;
756 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
757 	fence = amdgpu_job_submit(job);
758 	mutex_unlock(&adev->mman.gtt_window_lock);
759 
760 	dma_fence_wait(fence, false);
761 	dma_fence_put(fence);
762 
763 	return;
764 
765 error_alloc:
766 	mutex_unlock(&adev->mman.gtt_window_lock);
767 	dev_err(adev->dev, "Error flushing GPU TLB using the SDMA (%d)!\n", r);
768 }
769 
770 int amdgpu_gmc_flush_gpu_tlb_pasid(struct amdgpu_device *adev, uint16_t pasid,
771 				   uint32_t flush_type, bool all_hub,
772 				   uint32_t inst)
773 {
774 	struct amdgpu_ring *ring = &adev->gfx.kiq[inst].ring;
775 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[inst];
776 	unsigned int ndw;
777 	int r, cnt = 0;
778 	uint32_t seq;
779 
780 	/*
781 	 * A GPU reset should flush all TLBs anyway, so no need to do
782 	 * this while one is ongoing.
783 	 */
784 	if (!down_read_trylock(&adev->reset_domain->sem))
785 		return 0;
786 
787 	if (!adev->gmc.flush_pasid_uses_kiq || !ring->sched.ready) {
788 
789 		if (!adev->gmc.gmc_funcs->flush_gpu_tlb_pasid) {
790 			r = 0;
791 			goto error_unlock_reset;
792 		}
793 
794 		if (adev->gmc.flush_tlb_needs_extra_type_2)
795 			adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
796 								 2, all_hub,
797 								 inst);
798 
799 		if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2)
800 			adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
801 								 0, all_hub,
802 								 inst);
803 
804 		adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
805 							 flush_type, all_hub,
806 							 inst);
807 		r = 0;
808 	} else {
809 		/* 2 dwords flush + 8 dwords fence */
810 		ndw = kiq->pmf->invalidate_tlbs_size + 8;
811 
812 		if (adev->gmc.flush_tlb_needs_extra_type_2)
813 			ndw += kiq->pmf->invalidate_tlbs_size;
814 
815 		if (adev->gmc.flush_tlb_needs_extra_type_0)
816 			ndw += kiq->pmf->invalidate_tlbs_size;
817 
818 		spin_lock(&adev->gfx.kiq[inst].ring_lock);
819 		r = amdgpu_ring_alloc(ring, ndw);
820 		if (r) {
821 			spin_unlock(&adev->gfx.kiq[inst].ring_lock);
822 			goto error_unlock_reset;
823 		}
824 		if (adev->gmc.flush_tlb_needs_extra_type_2)
825 			kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 2, all_hub);
826 
827 		if (flush_type == 2 && adev->gmc.flush_tlb_needs_extra_type_0)
828 			kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 0, all_hub);
829 
830 		kiq->pmf->kiq_invalidate_tlbs(ring, pasid, flush_type, all_hub);
831 		r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
832 		if (r) {
833 			amdgpu_ring_undo(ring);
834 			spin_unlock(&adev->gfx.kiq[inst].ring_lock);
835 			goto error_unlock_reset;
836 		}
837 
838 		amdgpu_ring_commit(ring);
839 		spin_unlock(&adev->gfx.kiq[inst].ring_lock);
840 
841 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
842 
843 		might_sleep();
844 		while (r < 1 && cnt++ < MAX_KIQ_REG_TRY &&
845 		       !amdgpu_reset_pending(adev->reset_domain)) {
846 			msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
847 			r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
848 		}
849 
850 		if (cnt > MAX_KIQ_REG_TRY) {
851 			dev_err(adev->dev, "timeout waiting for kiq fence\n");
852 			r = -ETIME;
853 		} else
854 			r = 0;
855 	}
856 
857 error_unlock_reset:
858 	up_read(&adev->reset_domain->sem);
859 	return r;
860 }
861 
862 void amdgpu_gmc_fw_reg_write_reg_wait(struct amdgpu_device *adev,
863 				      uint32_t reg0, uint32_t reg1,
864 				      uint32_t ref, uint32_t mask,
865 				      uint32_t xcc_inst)
866 {
867 	struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_inst];
868 	struct amdgpu_ring *ring = &kiq->ring;
869 	signed long r, cnt = 0;
870 	unsigned long flags;
871 	uint32_t seq;
872 
873 	if (adev->mes.ring[MES_PIPE_INST(xcc_inst, 0)].sched.ready) {
874 		amdgpu_mes_reg_write_reg_wait(adev, reg0, reg1,
875 					      ref, mask, xcc_inst);
876 		return;
877 	}
878 
879 	spin_lock_irqsave(&kiq->ring_lock, flags);
880 	amdgpu_ring_alloc(ring, 32);
881 	amdgpu_ring_emit_reg_write_reg_wait(ring, reg0, reg1,
882 					    ref, mask);
883 	r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
884 	if (r)
885 		goto failed_undo;
886 
887 	amdgpu_ring_commit(ring);
888 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
889 
890 	r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
891 
892 	/* don't wait anymore for IRQ context */
893 	if (r < 1 && in_interrupt())
894 		goto failed_kiq;
895 
896 	might_sleep();
897 	while (r < 1 && cnt++ < MAX_KIQ_REG_TRY &&
898 	       !amdgpu_reset_pending(adev->reset_domain)) {
899 
900 		msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
901 		r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
902 	}
903 
904 	if (cnt > MAX_KIQ_REG_TRY)
905 		goto failed_kiq;
906 
907 	return;
908 
909 failed_undo:
910 	amdgpu_ring_undo(ring);
911 	spin_unlock_irqrestore(&kiq->ring_lock, flags);
912 failed_kiq:
913 	dev_err(adev->dev, "failed to write reg %x wait reg %x\n", reg0, reg1);
914 }
915 
916 /**
917  * amdgpu_gmc_tmz_set -- check and set if a device supports TMZ
918  * @adev: amdgpu_device pointer
919  *
920  * Check and set if an the device @adev supports Trusted Memory
921  * Zones (TMZ).
922  */
923 void amdgpu_gmc_tmz_set(struct amdgpu_device *adev)
924 {
925 	switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
926 	/* RAVEN */
927 	case IP_VERSION(9, 2, 2):
928 	case IP_VERSION(9, 1, 0):
929 	/* RENOIR looks like RAVEN */
930 	case IP_VERSION(9, 3, 0):
931 	/* GC 10.3.7 */
932 	case IP_VERSION(10, 3, 7):
933 	/* GC 11.0.1 */
934 	case IP_VERSION(11, 0, 1):
935 		if (amdgpu_tmz == 0) {
936 			adev->gmc.tmz_enabled = false;
937 			dev_info(adev->dev,
938 				 "Trusted Memory Zone (TMZ) feature disabled (cmd line)\n");
939 		} else {
940 			adev->gmc.tmz_enabled = true;
941 			dev_info(adev->dev,
942 				 "Trusted Memory Zone (TMZ) feature enabled\n");
943 		}
944 		break;
945 	case IP_VERSION(10, 1, 10):
946 	case IP_VERSION(10, 1, 1):
947 	case IP_VERSION(10, 1, 2):
948 	case IP_VERSION(10, 1, 3):
949 	case IP_VERSION(10, 3, 0):
950 	case IP_VERSION(10, 3, 2):
951 	case IP_VERSION(10, 3, 4):
952 	case IP_VERSION(10, 3, 5):
953 	case IP_VERSION(10, 3, 6):
954 	/* VANGOGH */
955 	case IP_VERSION(10, 3, 1):
956 	/* YELLOW_CARP*/
957 	case IP_VERSION(10, 3, 3):
958 	case IP_VERSION(11, 0, 4):
959 	case IP_VERSION(11, 5, 0):
960 	case IP_VERSION(11, 5, 1):
961 	case IP_VERSION(11, 5, 2):
962 	case IP_VERSION(11, 5, 3):
963 	case IP_VERSION(11, 5, 4):
964 		/* Don't enable it by default yet.
965 		 */
966 		if (amdgpu_tmz < 1) {
967 			adev->gmc.tmz_enabled = false;
968 			dev_info(adev->dev,
969 				 "Trusted Memory Zone (TMZ) feature disabled as experimental (default)\n");
970 		} else {
971 			adev->gmc.tmz_enabled = true;
972 			dev_info(adev->dev,
973 				 "Trusted Memory Zone (TMZ) feature enabled as experimental (cmd line)\n");
974 		}
975 		break;
976 	default:
977 		adev->gmc.tmz_enabled = false;
978 		dev_info(adev->dev,
979 			 "Trusted Memory Zone (TMZ) feature not supported\n");
980 		break;
981 	}
982 }
983 
984 /**
985  * amdgpu_gmc_noretry_set -- set per asic noretry defaults
986  * @adev: amdgpu_device pointer
987  *
988  * Set a per asic default for the no-retry parameter.
989  *
990  */
991 void amdgpu_gmc_noretry_set(struct amdgpu_device *adev)
992 {
993 	struct amdgpu_gmc *gmc = &adev->gmc;
994 	uint32_t gc_ver = amdgpu_ip_version(adev, GC_HWIP, 0);
995 	bool noretry_default = (gc_ver == IP_VERSION(9, 0, 1) ||
996 				gc_ver == IP_VERSION(9, 4, 0) ||
997 				gc_ver == IP_VERSION(9, 4, 1) ||
998 				gc_ver == IP_VERSION(9, 4, 2) ||
999 				gc_ver == IP_VERSION(9, 4, 3) ||
1000 				gc_ver == IP_VERSION(9, 4, 4) ||
1001 				gc_ver == IP_VERSION(9, 5, 0) ||
1002 				gc_ver >= IP_VERSION(10, 3, 0));
1003 
1004 	if (!amdgpu_sriov_xnack_support(adev))
1005 		gmc->noretry = 1;
1006 	else
1007 		gmc->noretry = (amdgpu_noretry == -1) ? noretry_default : amdgpu_noretry;
1008 }
1009 
1010 void amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device *adev, int hub_type,
1011 				   bool enable)
1012 {
1013 	struct amdgpu_vmhub *hub;
1014 	u32 tmp, reg, i;
1015 
1016 	hub = &adev->vmhub[hub_type];
1017 	for (i = 0; i < 16; i++) {
1018 		reg = hub->vm_context0_cntl + hub->ctx_distance * i;
1019 
1020 		tmp = (hub_type == AMDGPU_GFXHUB(0)) ?
1021 			RREG32_SOC15_IP(GC, reg) :
1022 			RREG32_SOC15_IP(MMHUB, reg);
1023 
1024 		if (enable)
1025 			tmp |= hub->vm_cntx_cntl_vm_fault;
1026 		else
1027 			tmp &= ~hub->vm_cntx_cntl_vm_fault;
1028 
1029 		(hub_type == AMDGPU_GFXHUB(0)) ?
1030 			WREG32_SOC15_IP(GC, reg, tmp) :
1031 			WREG32_SOC15_IP(MMHUB, reg, tmp);
1032 	}
1033 }
1034 
1035 void amdgpu_gmc_get_vbios_allocations(struct amdgpu_device *adev)
1036 {
1037 	unsigned size;
1038 
1039 	/*
1040 	 * Some ASICs need to reserve a region of video memory to avoid access
1041 	 * from driver
1042 	 */
1043 	adev->mman.stolen_reserved_offset = 0;
1044 	adev->mman.stolen_reserved_size = 0;
1045 
1046 	/*
1047 	 * TODO:
1048 	 * Currently there is a bug where some memory client outside
1049 	 * of the driver writes to first 8M of VRAM on S3 resume,
1050 	 * this overrides GART which by default gets placed in first 8M and
1051 	 * causes VM_FAULTS once GTT is accessed.
1052 	 * Keep the stolen memory reservation until the while this is not solved.
1053 	 */
1054 	switch (adev->asic_type) {
1055 	case CHIP_VEGA10:
1056 		adev->mman.keep_stolen_vga_memory = true;
1057 		/*
1058 		 * VEGA10 SRIOV VF with MS_HYPERV host needs some firmware reserved area.
1059 		 */
1060 #ifdef CONFIG_X86
1061 		if (amdgpu_sriov_vf(adev) && hypervisor_is_type(X86_HYPER_MS_HYPERV)) {
1062 			adev->mman.stolen_reserved_offset = 0x500000;
1063 			adev->mman.stolen_reserved_size = 0x200000;
1064 		}
1065 #endif
1066 		break;
1067 	case CHIP_RAVEN:
1068 	case CHIP_RENOIR:
1069 		adev->mman.keep_stolen_vga_memory = true;
1070 		break;
1071 	default:
1072 		adev->mman.keep_stolen_vga_memory = false;
1073 		break;
1074 	}
1075 
1076 	if (amdgpu_sriov_vf(adev) ||
1077 	    !amdgpu_device_has_display_hardware(adev)) {
1078 		size = 0;
1079 	} else {
1080 		size = amdgpu_gmc_get_vbios_fb_size(adev);
1081 
1082 		if (adev->mman.keep_stolen_vga_memory)
1083 			size = max(size, (unsigned)AMDGPU_VBIOS_VGA_ALLOCATION);
1084 	}
1085 
1086 	/* set to 0 if the pre-OS buffer uses up most of vram */
1087 	if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024))
1088 		size = 0;
1089 
1090 	if (size > AMDGPU_VBIOS_VGA_ALLOCATION) {
1091 		adev->mman.stolen_vga_size = AMDGPU_VBIOS_VGA_ALLOCATION;
1092 		adev->mman.stolen_extended_size = size - adev->mman.stolen_vga_size;
1093 	} else {
1094 		adev->mman.stolen_vga_size = size;
1095 		adev->mman.stolen_extended_size = 0;
1096 	}
1097 }
1098 
1099 /**
1100  * amdgpu_gmc_init_pdb0 - initialize PDB0
1101  *
1102  * @adev: amdgpu_device pointer
1103  *
1104  * This function is only used when GART page table is used
1105  * for FB address translatioin. In such a case, we construct
1106  * a 2-level system VM page table: PDB0->PTB, to cover both
1107  * VRAM of the hive and system memory.
1108  *
1109  * PDB0 is static, initialized once on driver initialization.
1110  * The first n entries of PDB0 are used as PTE by setting
1111  * P bit to 1, pointing to VRAM. The n+1'th entry points
1112  * to a big PTB covering system memory.
1113  *
1114  */
1115 void amdgpu_gmc_init_pdb0(struct amdgpu_device *adev)
1116 {
1117 	int i;
1118 	uint64_t flags = adev->gart.gart_pte_flags; //TODO it is UC. explore NC/RW?
1119 	/* Each PDE0 (used as PTE) covers (2^vmid0_page_table_block_size)*2M
1120 	 */
1121 	u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
1122 	u64 pde0_page_size = (1ULL<<adev->gmc.vmid0_page_table_block_size)<<21;
1123 	u64 vram_addr, vram_end;
1124 	u64 gart_ptb_gpu_pa = amdgpu_gmc_vram_pa(adev, adev->gart.bo);
1125 	int idx;
1126 
1127 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1128 		return;
1129 
1130 	flags |= AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE;
1131 	flags |= AMDGPU_PTE_WRITEABLE;
1132 	flags |= AMDGPU_PTE_SNOOPED;
1133 	flags |= AMDGPU_PTE_FRAG((adev->gmc.vmid0_page_table_block_size + 9*1));
1134 	flags |= AMDGPU_PDE_PTE_FLAG(adev);
1135 
1136 	vram_addr = adev->vm_manager.vram_base_offset;
1137 	if (!amdgpu_virt_xgmi_migrate_enabled(adev))
1138 		vram_addr -= adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size;
1139 	vram_end = vram_addr + vram_size;
1140 
1141 	/* The first n PDE0 entries are used as PTE,
1142 	 * pointing to vram
1143 	 */
1144 	for (i = 0; vram_addr < vram_end; i++, vram_addr += pde0_page_size)
1145 		amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, vram_addr, flags);
1146 
1147 	/* The n+1'th PDE0 entry points to a huge
1148 	 * PTB who has more than 512 entries each
1149 	 * pointing to a 4K system page
1150 	 */
1151 	flags = AMDGPU_PTE_VALID;
1152 	flags |= AMDGPU_PTE_SNOOPED | AMDGPU_PDE_BFS_FLAG(adev, 0);
1153 	/* Requires gart_ptb_gpu_pa to be 4K aligned */
1154 	amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, gart_ptb_gpu_pa, flags);
1155 	drm_dev_exit(idx);
1156 }
1157 
1158 /**
1159  * amdgpu_gmc_vram_mc2pa - calculate vram buffer's physical address from MC
1160  * address
1161  *
1162  * @adev: amdgpu_device pointer
1163  * @mc_addr: MC address of buffer
1164  */
1165 uint64_t amdgpu_gmc_vram_mc2pa(struct amdgpu_device *adev, uint64_t mc_addr)
1166 {
1167 	return mc_addr - adev->gmc.vram_start + adev->vm_manager.vram_base_offset;
1168 }
1169 
1170 /**
1171  * amdgpu_gmc_vram_pa - calculate vram buffer object's physical address from
1172  * GPU's view
1173  *
1174  * @adev: amdgpu_device pointer
1175  * @bo: amdgpu buffer object
1176  */
1177 uint64_t amdgpu_gmc_vram_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
1178 {
1179 	return amdgpu_gmc_vram_mc2pa(adev, amdgpu_bo_gpu_offset(bo));
1180 }
1181 
1182 int amdgpu_gmc_vram_checking(struct amdgpu_device *adev)
1183 {
1184 	struct amdgpu_bo *vram_bo = NULL;
1185 	uint64_t vram_gpu = 0;
1186 	void *vram_ptr = NULL;
1187 
1188 	int ret, size = 0x100000;
1189 	uint8_t cptr[10];
1190 
1191 	ret = amdgpu_bo_create_kernel(adev, size, PAGE_SIZE,
1192 				AMDGPU_GEM_DOMAIN_VRAM,
1193 				&vram_bo,
1194 				&vram_gpu,
1195 				&vram_ptr);
1196 	if (ret)
1197 		return ret;
1198 
1199 	memset(vram_ptr, 0x86, size);
1200 	memset(cptr, 0x86, 10);
1201 
1202 	/**
1203 	 * Check the start, the mid, and the end of the memory if the content of
1204 	 * each byte is the pattern "0x86". If yes, we suppose the vram bo is
1205 	 * workable.
1206 	 *
1207 	 * Note: If check the each byte of whole 1M bo, it will cost too many
1208 	 * seconds, so here, we just pick up three parts for emulation.
1209 	 */
1210 	ret = memcmp(vram_ptr, cptr, 10);
1211 	if (ret) {
1212 		ret = -EIO;
1213 		goto release_buffer;
1214 	}
1215 
1216 	ret = memcmp(vram_ptr + (size / 2), cptr, 10);
1217 	if (ret) {
1218 		ret = -EIO;
1219 		goto release_buffer;
1220 	}
1221 
1222 	ret = memcmp(vram_ptr + size - 10, cptr, 10);
1223 	if (ret) {
1224 		ret = -EIO;
1225 		goto release_buffer;
1226 	}
1227 
1228 release_buffer:
1229 	amdgpu_bo_free_kernel(&vram_bo, &vram_gpu,
1230 			&vram_ptr);
1231 
1232 	return ret;
1233 }
1234 
1235 static const char *nps_desc[] = {
1236 	[AMDGPU_NPS1_PARTITION_MODE] = "NPS1",
1237 	[AMDGPU_NPS2_PARTITION_MODE] = "NPS2",
1238 	[AMDGPU_NPS3_PARTITION_MODE] = "NPS3",
1239 	[AMDGPU_NPS4_PARTITION_MODE] = "NPS4",
1240 	[AMDGPU_NPS6_PARTITION_MODE] = "NPS6",
1241 	[AMDGPU_NPS8_PARTITION_MODE] = "NPS8",
1242 };
1243 
1244 static ssize_t available_memory_partition_show(struct device *dev,
1245 					       struct device_attribute *addr,
1246 					       char *buf)
1247 {
1248 	struct drm_device *ddev = dev_get_drvdata(dev);
1249 	struct amdgpu_device *adev = drm_to_adev(ddev);
1250 	int size = 0, mode;
1251 	char *sep = "";
1252 
1253 	for_each_inst(mode, adev->gmc.supported_nps_modes) {
1254 		size += sysfs_emit_at(buf, size, "%s%s", sep, nps_desc[mode]);
1255 		sep = ", ";
1256 	}
1257 	size += sysfs_emit_at(buf, size, "\n");
1258 
1259 	return size;
1260 }
1261 
1262 static ssize_t current_memory_partition_store(struct device *dev,
1263 					      struct device_attribute *attr,
1264 					      const char *buf, size_t count)
1265 {
1266 	struct drm_device *ddev = dev_get_drvdata(dev);
1267 	struct amdgpu_device *adev = drm_to_adev(ddev);
1268 	enum amdgpu_memory_partition mode;
1269 	struct amdgpu_hive_info *hive;
1270 	int i;
1271 
1272 	mode = UNKNOWN_MEMORY_PARTITION_MODE;
1273 	for_each_inst(i, adev->gmc.supported_nps_modes) {
1274 		if (!strncasecmp(nps_desc[i], buf, strlen(nps_desc[i]))) {
1275 			mode = i;
1276 			break;
1277 		}
1278 	}
1279 
1280 	if (mode == UNKNOWN_MEMORY_PARTITION_MODE)
1281 		return -EINVAL;
1282 
1283 	if (mode == adev->gmc.gmc_funcs->query_mem_partition_mode(adev)) {
1284 		dev_info(
1285 			adev->dev,
1286 			"requested NPS mode is same as current NPS mode, skipping\n");
1287 		return count;
1288 	}
1289 
1290 	/* If device is part of hive, all devices in the hive should request the
1291 	 * same mode. Hence store the requested mode in hive.
1292 	 */
1293 	hive = amdgpu_get_xgmi_hive(adev);
1294 	if (hive) {
1295 		atomic_set(&hive->requested_nps_mode, mode);
1296 		amdgpu_put_xgmi_hive(hive);
1297 	} else {
1298 		adev->gmc.requested_nps_mode = mode;
1299 	}
1300 
1301 	dev_info(
1302 		adev->dev,
1303 		"NPS mode change requested, please remove and reload the driver\n");
1304 
1305 	return count;
1306 }
1307 
1308 static ssize_t current_memory_partition_show(
1309 	struct device *dev, struct device_attribute *addr, char *buf)
1310 {
1311 	struct drm_device *ddev = dev_get_drvdata(dev);
1312 	struct amdgpu_device *adev = drm_to_adev(ddev);
1313 	enum amdgpu_memory_partition mode;
1314 
1315 	/* Only minimal precaution taken to reject requests while in reset */
1316 	if (amdgpu_in_reset(adev))
1317 		return -EPERM;
1318 
1319 	mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
1320 	if ((mode >= ARRAY_SIZE(nps_desc)) ||
1321 	    (BIT(mode) & AMDGPU_ALL_NPS_MASK) != BIT(mode))
1322 		return sysfs_emit(buf, "UNKNOWN\n");
1323 
1324 	return sysfs_emit(buf, "%s\n", nps_desc[mode]);
1325 }
1326 
1327 static DEVICE_ATTR_RW(current_memory_partition);
1328 static DEVICE_ATTR_RO(available_memory_partition);
1329 
1330 int amdgpu_gmc_sysfs_init(struct amdgpu_device *adev)
1331 {
1332 	bool nps_switch_support;
1333 	int r = 0;
1334 
1335 	if (!adev->gmc.gmc_funcs->query_mem_partition_mode)
1336 		return 0;
1337 
1338 	nps_switch_support = (hweight32(adev->gmc.supported_nps_modes &
1339 					AMDGPU_ALL_NPS_MASK) > 1);
1340 	if (!nps_switch_support)
1341 		dev_attr_current_memory_partition.attr.mode &=
1342 			~(S_IWUSR | S_IWGRP | S_IWOTH);
1343 	else
1344 		r = device_create_file(adev->dev,
1345 				       &dev_attr_available_memory_partition);
1346 
1347 	if (r)
1348 		return r;
1349 
1350 	return device_create_file(adev->dev,
1351 				  &dev_attr_current_memory_partition);
1352 }
1353 
1354 void amdgpu_gmc_sysfs_fini(struct amdgpu_device *adev)
1355 {
1356 	if (!adev->gmc.gmc_funcs->query_mem_partition_mode)
1357 		return;
1358 
1359 	device_remove_file(adev->dev, &dev_attr_current_memory_partition);
1360 	device_remove_file(adev->dev, &dev_attr_available_memory_partition);
1361 }
1362 
1363 int amdgpu_gmc_get_nps_memranges(struct amdgpu_device *adev,
1364 				 struct amdgpu_mem_partition_info *mem_ranges,
1365 				 uint8_t *exp_ranges)
1366 {
1367 	struct amdgpu_gmc_memrange *ranges;
1368 	int range_cnt, ret, i, j;
1369 	uint32_t nps_type;
1370 	bool refresh;
1371 
1372 	if (!mem_ranges || !exp_ranges)
1373 		return -EINVAL;
1374 
1375 	refresh = (adev->init_lvl->level != AMDGPU_INIT_LEVEL_MINIMAL_XGMI) &&
1376 		  (adev->gmc.reset_flags & AMDGPU_GMC_INIT_RESET_NPS);
1377 	ret = amdgpu_discovery_get_nps_info(adev, &nps_type, &ranges,
1378 					    &range_cnt, refresh);
1379 
1380 	if (ret)
1381 		return ret;
1382 
1383 	/* TODO: For now, expect ranges and partition count to be the same.
1384 	 * Adjust if there are holes expected in any NPS domain.
1385 	 */
1386 	if (*exp_ranges && (range_cnt != *exp_ranges)) {
1387 		dev_warn(
1388 			adev->dev,
1389 			"NPS config mismatch - expected ranges: %d discovery - nps mode: %d, nps ranges: %d",
1390 			*exp_ranges, nps_type, range_cnt);
1391 		ret = -EINVAL;
1392 		goto err;
1393 	}
1394 
1395 	for (i = 0; i < range_cnt; ++i) {
1396 		if (ranges[i].base_address >= ranges[i].limit_address) {
1397 			dev_warn(
1398 				adev->dev,
1399 				"Invalid NPS range - nps mode: %d, range[%d]: base: %llx limit: %llx",
1400 				nps_type, i, ranges[i].base_address,
1401 				ranges[i].limit_address);
1402 			ret = -EINVAL;
1403 			goto err;
1404 		}
1405 
1406 		/* Check for overlaps, not expecting any now */
1407 		for (j = i - 1; j >= 0; j--) {
1408 			if (max(ranges[j].base_address,
1409 				ranges[i].base_address) <=
1410 			    min(ranges[j].limit_address,
1411 				ranges[i].limit_address)) {
1412 				dev_warn(
1413 					adev->dev,
1414 					"overlapping ranges detected [ %llx - %llx ] | [%llx - %llx]",
1415 					ranges[j].base_address,
1416 					ranges[j].limit_address,
1417 					ranges[i].base_address,
1418 					ranges[i].limit_address);
1419 				ret = -EINVAL;
1420 				goto err;
1421 			}
1422 		}
1423 
1424 		mem_ranges[i].range.fpfn =
1425 			(ranges[i].base_address -
1426 			 adev->vm_manager.vram_base_offset) >>
1427 			AMDGPU_GPU_PAGE_SHIFT;
1428 		mem_ranges[i].range.lpfn =
1429 			(ranges[i].limit_address -
1430 			 adev->vm_manager.vram_base_offset) >>
1431 			AMDGPU_GPU_PAGE_SHIFT;
1432 		mem_ranges[i].size =
1433 			ranges[i].limit_address - ranges[i].base_address + 1;
1434 	}
1435 
1436 	if (!*exp_ranges)
1437 		*exp_ranges = range_cnt;
1438 err:
1439 	kfree(ranges);
1440 
1441 	return ret;
1442 }
1443 
1444 int amdgpu_gmc_request_memory_partition(struct amdgpu_device *adev,
1445 					int nps_mode)
1446 {
1447 	/* Not supported on VF devices and APUs */
1448 	if (amdgpu_sriov_vf(adev) || (adev->flags & AMD_IS_APU))
1449 		return -EOPNOTSUPP;
1450 
1451 	if (!adev->psp.funcs) {
1452 		dev_err(adev->dev,
1453 			"PSP interface not available for nps mode change request");
1454 		return -EINVAL;
1455 	}
1456 
1457 	return psp_memory_partition(&adev->psp, nps_mode);
1458 }
1459 
1460 static inline bool amdgpu_gmc_need_nps_switch_req(struct amdgpu_device *adev,
1461 						  int req_nps_mode,
1462 						  int cur_nps_mode)
1463 {
1464 	return (((BIT(req_nps_mode) & adev->gmc.supported_nps_modes) ==
1465 			BIT(req_nps_mode)) &&
1466 		req_nps_mode != cur_nps_mode);
1467 }
1468 
1469 void amdgpu_gmc_prepare_nps_mode_change(struct amdgpu_device *adev)
1470 {
1471 	int req_nps_mode, cur_nps_mode, r;
1472 	struct amdgpu_hive_info *hive;
1473 
1474 	if (amdgpu_sriov_vf(adev) || !adev->gmc.supported_nps_modes ||
1475 	    !adev->gmc.gmc_funcs->request_mem_partition_mode)
1476 		return;
1477 
1478 	cur_nps_mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
1479 	hive = amdgpu_get_xgmi_hive(adev);
1480 	if (hive) {
1481 		req_nps_mode = atomic_read(&hive->requested_nps_mode);
1482 		if (!amdgpu_gmc_need_nps_switch_req(adev, req_nps_mode,
1483 						    cur_nps_mode)) {
1484 			amdgpu_put_xgmi_hive(hive);
1485 			return;
1486 		}
1487 		r = amdgpu_xgmi_request_nps_change(adev, hive, req_nps_mode);
1488 		amdgpu_put_xgmi_hive(hive);
1489 		goto out;
1490 	}
1491 
1492 	req_nps_mode = adev->gmc.requested_nps_mode;
1493 	if (!amdgpu_gmc_need_nps_switch_req(adev, req_nps_mode, cur_nps_mode))
1494 		return;
1495 
1496 	/* even if this fails, we should let driver unload w/o blocking */
1497 	r = adev->gmc.gmc_funcs->request_mem_partition_mode(adev, req_nps_mode);
1498 out:
1499 	if (r)
1500 		dev_err(adev->dev, "NPS mode change request failed\n");
1501 	else
1502 		dev_info(
1503 			adev->dev,
1504 			"NPS mode change request done, reload driver to complete the change\n");
1505 }
1506 
1507 bool amdgpu_gmc_need_reset_on_init(struct amdgpu_device *adev)
1508 {
1509 	if (adev->gmc.gmc_funcs->need_reset_on_init)
1510 		return adev->gmc.gmc_funcs->need_reset_on_init(adev);
1511 
1512 	return false;
1513 }
1514 
1515 enum amdgpu_memory_partition
1516 amdgpu_gmc_get_vf_memory_partition(struct amdgpu_device *adev)
1517 {
1518 	switch (adev->gmc.num_mem_partitions) {
1519 	case 0:
1520 		return UNKNOWN_MEMORY_PARTITION_MODE;
1521 	case 1:
1522 		return AMDGPU_NPS1_PARTITION_MODE;
1523 	case 2:
1524 		return AMDGPU_NPS2_PARTITION_MODE;
1525 	case 4:
1526 		return AMDGPU_NPS4_PARTITION_MODE;
1527 	case 8:
1528 		return AMDGPU_NPS8_PARTITION_MODE;
1529 	default:
1530 		return AMDGPU_NPS1_PARTITION_MODE;
1531 	}
1532 }
1533 
1534 enum amdgpu_memory_partition
1535 amdgpu_gmc_get_memory_partition(struct amdgpu_device *adev, u32 *supp_modes)
1536 {
1537 	enum amdgpu_memory_partition mode = UNKNOWN_MEMORY_PARTITION_MODE;
1538 
1539 	if (adev->nbio.funcs &&
1540 	    adev->nbio.funcs->get_memory_partition_mode)
1541 		mode = adev->nbio.funcs->get_memory_partition_mode(adev,
1542 								   supp_modes);
1543 	else
1544 		dev_warn(adev->dev, "memory partition mode query is not supported\n");
1545 
1546 	return mode;
1547 }
1548 
1549 enum amdgpu_memory_partition
1550 amdgpu_gmc_query_memory_partition(struct amdgpu_device *adev)
1551 {
1552 	if (amdgpu_sriov_vf(adev))
1553 		return amdgpu_gmc_get_vf_memory_partition(adev);
1554 	else
1555 		return amdgpu_gmc_get_memory_partition(adev, NULL);
1556 }
1557 
1558 static bool amdgpu_gmc_validate_partition_info(struct amdgpu_device *adev)
1559 {
1560 	enum amdgpu_memory_partition mode;
1561 	u32 supp_modes;
1562 	bool valid;
1563 
1564 	mode = amdgpu_gmc_get_memory_partition(adev, &supp_modes);
1565 
1566 	/* Mode detected by hardware not present in supported modes */
1567 	if ((mode != UNKNOWN_MEMORY_PARTITION_MODE) &&
1568 	    !(BIT(mode - 1) & supp_modes))
1569 		return false;
1570 
1571 	switch (mode) {
1572 	case UNKNOWN_MEMORY_PARTITION_MODE:
1573 	case AMDGPU_NPS1_PARTITION_MODE:
1574 		valid = (adev->gmc.num_mem_partitions == 1);
1575 		break;
1576 	case AMDGPU_NPS2_PARTITION_MODE:
1577 		valid = (adev->gmc.num_mem_partitions == 2);
1578 		break;
1579 	case AMDGPU_NPS4_PARTITION_MODE:
1580 		valid = (adev->gmc.num_mem_partitions == 3 ||
1581 			 adev->gmc.num_mem_partitions == 4);
1582 		break;
1583 	case AMDGPU_NPS8_PARTITION_MODE:
1584 		valid = (adev->gmc.num_mem_partitions == 8);
1585 		break;
1586 	default:
1587 		valid = false;
1588 	}
1589 
1590 	return valid;
1591 }
1592 
1593 static bool amdgpu_gmc_is_node_present(int *node_ids, int num_ids, int nid)
1594 {
1595 	int i;
1596 
1597 	/* Check if node with id 'nid' is present in 'node_ids' array */
1598 	for (i = 0; i < num_ids; ++i)
1599 		if (node_ids[i] == nid)
1600 			return true;
1601 
1602 	return false;
1603 }
1604 
1605 static void
1606 amdgpu_gmc_init_acpi_mem_ranges(struct amdgpu_device *adev,
1607 				struct amdgpu_mem_partition_info *mem_ranges)
1608 {
1609 	struct amdgpu_numa_info numa_info;
1610 	int node_ids[AMDGPU_MAX_MEM_RANGES];
1611 	int num_ranges = 0, ret;
1612 	int num_xcc, xcc_id;
1613 	uint32_t xcc_mask;
1614 
1615 	num_xcc = NUM_XCC(adev->gfx.xcc_mask);
1616 	xcc_mask = (1U << num_xcc) - 1;
1617 
1618 	for_each_inst(xcc_id, xcc_mask)	{
1619 		ret = amdgpu_acpi_get_mem_info(adev, xcc_id, &numa_info);
1620 		if (ret)
1621 			continue;
1622 
1623 		if (numa_info.nid == NUMA_NO_NODE) {
1624 			mem_ranges[0].size = numa_info.size;
1625 			mem_ranges[0].numa.node = numa_info.nid;
1626 			num_ranges = 1;
1627 			break;
1628 		}
1629 
1630 		if (amdgpu_gmc_is_node_present(node_ids, num_ranges,
1631 					     numa_info.nid))
1632 			continue;
1633 
1634 		node_ids[num_ranges] = numa_info.nid;
1635 		mem_ranges[num_ranges].numa.node = numa_info.nid;
1636 		mem_ranges[num_ranges].size = numa_info.size;
1637 		++num_ranges;
1638 	}
1639 
1640 	adev->gmc.num_mem_partitions = num_ranges;
1641 }
1642 
1643 void amdgpu_gmc_init_sw_mem_ranges(struct amdgpu_device *adev,
1644 				   struct amdgpu_mem_partition_info *mem_ranges)
1645 {
1646 	enum amdgpu_memory_partition mode;
1647 	u32 start_addr = 0, size;
1648 	int i, r, l;
1649 
1650 	mode = amdgpu_gmc_query_memory_partition(adev);
1651 
1652 	switch (mode) {
1653 	case UNKNOWN_MEMORY_PARTITION_MODE:
1654 		adev->gmc.num_mem_partitions = 0;
1655 		break;
1656 	case AMDGPU_NPS1_PARTITION_MODE:
1657 		adev->gmc.num_mem_partitions = 1;
1658 		break;
1659 	case AMDGPU_NPS2_PARTITION_MODE:
1660 		adev->gmc.num_mem_partitions = 2;
1661 		break;
1662 	case AMDGPU_NPS4_PARTITION_MODE:
1663 		if (adev->flags & AMD_IS_APU)
1664 			adev->gmc.num_mem_partitions = 3;
1665 		else
1666 			adev->gmc.num_mem_partitions = 4;
1667 		break;
1668 	case AMDGPU_NPS8_PARTITION_MODE:
1669 		adev->gmc.num_mem_partitions = 8;
1670 		break;
1671 	default:
1672 		adev->gmc.num_mem_partitions = 1;
1673 		break;
1674 	}
1675 
1676 	/* Use NPS range info, if populated */
1677 	r = amdgpu_gmc_get_nps_memranges(adev, mem_ranges,
1678 					 &adev->gmc.num_mem_partitions);
1679 	if (!r) {
1680 		l = 0;
1681 		for (i = 1; i < adev->gmc.num_mem_partitions; ++i) {
1682 			if (mem_ranges[i].range.lpfn >
1683 			    mem_ranges[i - 1].range.lpfn)
1684 				l = i;
1685 		}
1686 
1687 	} else {
1688 		if (!adev->gmc.num_mem_partitions) {
1689 			dev_warn(adev->dev,
1690 				 "Not able to detect NPS mode, fall back to NPS1\n");
1691 			adev->gmc.num_mem_partitions = 1;
1692 		}
1693 		/* Fallback to sw based calculation */
1694 		size = (adev->gmc.real_vram_size + SZ_16M) >> AMDGPU_GPU_PAGE_SHIFT;
1695 		size /= adev->gmc.num_mem_partitions;
1696 
1697 		for (i = 0; i < adev->gmc.num_mem_partitions; ++i) {
1698 			mem_ranges[i].range.fpfn = start_addr;
1699 			mem_ranges[i].size =
1700 				((u64)size << AMDGPU_GPU_PAGE_SHIFT);
1701 			mem_ranges[i].range.lpfn = start_addr + size - 1;
1702 			start_addr += size;
1703 		}
1704 
1705 		l = adev->gmc.num_mem_partitions - 1;
1706 	}
1707 
1708 	/* Adjust the last one */
1709 	mem_ranges[l].range.lpfn =
1710 		(adev->gmc.real_vram_size >> AMDGPU_GPU_PAGE_SHIFT) - 1;
1711 	mem_ranges[l].size =
1712 		adev->gmc.real_vram_size -
1713 		((u64)mem_ranges[l].range.fpfn << AMDGPU_GPU_PAGE_SHIFT);
1714 }
1715 
1716 int amdgpu_gmc_init_mem_ranges(struct amdgpu_device *adev)
1717 {
1718 	bool valid;
1719 
1720 	adev->gmc.mem_partitions = kcalloc(AMDGPU_MAX_MEM_RANGES,
1721 					   sizeof(struct amdgpu_mem_partition_info),
1722 					   GFP_KERNEL);
1723 	if (!adev->gmc.mem_partitions)
1724 		return -ENOMEM;
1725 
1726 	if (adev->gmc.is_app_apu)
1727 		amdgpu_gmc_init_acpi_mem_ranges(adev, adev->gmc.mem_partitions);
1728 	else
1729 		amdgpu_gmc_init_sw_mem_ranges(adev, adev->gmc.mem_partitions);
1730 
1731 	if (amdgpu_sriov_vf(adev))
1732 		valid = true;
1733 	else
1734 		valid = amdgpu_gmc_validate_partition_info(adev);
1735 	if (!valid) {
1736 		/* TODO: handle invalid case */
1737 		dev_warn(adev->dev,
1738 			 "Mem ranges not matching with hardware config\n");
1739 	}
1740 
1741 	return 0;
1742 }
1743