1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 */
25
26 #include <linux/firmware.h>
27 #include <linux/pm_runtime.h>
28
29 #include "amdgpu.h"
30 #include "amdgpu_gfx.h"
31 #include "amdgpu_rlc.h"
32 #include "amdgpu_ras.h"
33 #include "amdgpu_reset.h"
34 #include "amdgpu_xcp.h"
35 #include "amdgpu_xgmi.h"
36 #include "nvd.h"
37
38 /* delay 0.1 second to enable gfx off feature */
39 #define GFX_OFF_DELAY_ENABLE msecs_to_jiffies(100)
40
41 #define GFX_OFF_NO_DELAY 0
42
43 /*
44 * GPU GFX IP block helpers function.
45 */
46
amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device * adev,int mec,int pipe,int queue)47 int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec,
48 int pipe, int queue)
49 {
50 int bit = 0;
51
52 bit += mec * adev->gfx.mec.num_pipe_per_mec
53 * adev->gfx.mec.num_queue_per_pipe;
54 bit += pipe * adev->gfx.mec.num_queue_per_pipe;
55 bit += queue;
56
57 return bit;
58 }
59
amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device * adev,int bit,int * mec,int * pipe,int * queue)60 void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit,
61 int *mec, int *pipe, int *queue)
62 {
63 *queue = bit % adev->gfx.mec.num_queue_per_pipe;
64 *pipe = (bit / adev->gfx.mec.num_queue_per_pipe)
65 % adev->gfx.mec.num_pipe_per_mec;
66 *mec = (bit / adev->gfx.mec.num_queue_per_pipe)
67 / adev->gfx.mec.num_pipe_per_mec;
68
69 }
70
amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device * adev,int xcc_id,int mec,int pipe,int queue)71 bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev,
72 int xcc_id, int mec, int pipe, int queue)
73 {
74 return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue),
75 adev->gfx.mec_bitmap[xcc_id].queue_bitmap);
76 }
77
amdgpu_gfx_me_queue_to_bit(struct amdgpu_device * adev,int me,int pipe,int queue)78 static int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev,
79 int me, int pipe, int queue)
80 {
81 int num_queue_per_pipe = 1; /* we only enable 1 KGQ per pipe */
82 int bit = 0;
83
84 bit += me * adev->gfx.me.num_pipe_per_me
85 * num_queue_per_pipe;
86 bit += pipe * num_queue_per_pipe;
87 bit += queue;
88
89 return bit;
90 }
91
amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device * adev,int me,int pipe,int queue)92 bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev,
93 int me, int pipe, int queue)
94 {
95 return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue),
96 adev->gfx.me.queue_bitmap);
97 }
98
99 /**
100 * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter
101 *
102 * @mask: array in which the per-shader array disable masks will be stored
103 * @max_se: number of SEs
104 * @max_sh: number of SHs
105 *
106 * The bitmask of CUs to be disabled in the shader array determined by se and
107 * sh is stored in mask[se * max_sh + sh].
108 */
amdgpu_gfx_parse_disable_cu(unsigned int * mask,unsigned int max_se,unsigned int max_sh)109 void amdgpu_gfx_parse_disable_cu(unsigned int *mask, unsigned int max_se, unsigned int max_sh)
110 {
111 unsigned int se, sh, cu;
112 const char *p;
113
114 memset(mask, 0, sizeof(*mask) * max_se * max_sh);
115
116 if (!amdgpu_disable_cu || !*amdgpu_disable_cu)
117 return;
118
119 p = amdgpu_disable_cu;
120 for (;;) {
121 char *next;
122 int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu);
123
124 if (ret < 3) {
125 DRM_ERROR("amdgpu: could not parse disable_cu\n");
126 return;
127 }
128
129 if (se < max_se && sh < max_sh && cu < 16) {
130 DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu);
131 mask[se * max_sh + sh] |= 1u << cu;
132 } else {
133 DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n",
134 se, sh, cu);
135 }
136
137 next = strchr(p, ',');
138 if (!next)
139 break;
140 p = next + 1;
141 }
142 }
143
amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device * adev)144 static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev)
145 {
146 return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1;
147 }
148
amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device * adev)149 static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev)
150 {
151 if (amdgpu_compute_multipipe != -1) {
152 DRM_INFO("amdgpu: forcing compute pipe policy %d\n",
153 amdgpu_compute_multipipe);
154 return amdgpu_compute_multipipe == 1;
155 }
156
157 if (amdgpu_ip_version(adev, GC_HWIP, 0) > IP_VERSION(9, 0, 0))
158 return true;
159
160 /* FIXME: spreading the queues across pipes causes perf regressions
161 * on POLARIS11 compute workloads */
162 if (adev->asic_type == CHIP_POLARIS11)
163 return false;
164
165 return adev->gfx.mec.num_mec > 1;
166 }
167
amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device * adev,struct amdgpu_ring * ring)168 bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev,
169 struct amdgpu_ring *ring)
170 {
171 int queue = ring->queue;
172 int pipe = ring->pipe;
173
174 /* Policy: use pipe1 queue0 as high priority graphics queue if we
175 * have more than one gfx pipe.
176 */
177 if (amdgpu_gfx_is_graphics_multipipe_capable(adev) &&
178 adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) {
179 int me = ring->me;
180 int bit;
181
182 bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue);
183 if (ring == &adev->gfx.gfx_ring[bit])
184 return true;
185 }
186
187 return false;
188 }
189
amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device * adev,struct amdgpu_ring * ring)190 bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev,
191 struct amdgpu_ring *ring)
192 {
193 /* Policy: use 1st queue as high priority compute queue if we
194 * have more than one compute queue.
195 */
196 if (adev->gfx.num_compute_rings > 1 &&
197 ring == &adev->gfx.compute_ring[0])
198 return true;
199
200 return false;
201 }
202
amdgpu_gfx_compute_queue_acquire(struct amdgpu_device * adev)203 void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev)
204 {
205 int i, j, queue, pipe;
206 bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev);
207 int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec *
208 adev->gfx.mec.num_queue_per_pipe,
209 adev->gfx.num_compute_rings);
210 int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
211
212 if (multipipe_policy) {
213 /* policy: make queues evenly cross all pipes on MEC1 only
214 * for multiple xcc, just use the original policy for simplicity */
215 for (j = 0; j < num_xcc; j++) {
216 for (i = 0; i < max_queues_per_mec; i++) {
217 pipe = i % adev->gfx.mec.num_pipe_per_mec;
218 queue = (i / adev->gfx.mec.num_pipe_per_mec) %
219 adev->gfx.mec.num_queue_per_pipe;
220
221 set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue,
222 adev->gfx.mec_bitmap[j].queue_bitmap);
223 }
224 }
225 } else {
226 /* policy: amdgpu owns all queues in the given pipe */
227 for (j = 0; j < num_xcc; j++) {
228 for (i = 0; i < max_queues_per_mec; ++i)
229 set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap);
230 }
231 }
232
233 for (j = 0; j < num_xcc; j++) {
234 dev_dbg(adev->dev, "mec queue bitmap weight=%d\n",
235 bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES));
236 }
237 }
238
amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device * adev)239 void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev)
240 {
241 int i, queue, pipe;
242 bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev);
243 int num_queue_per_pipe = 1; /* we only enable 1 KGQ per pipe */
244 int max_queues_per_me = adev->gfx.me.num_pipe_per_me * num_queue_per_pipe;
245
246 if (multipipe_policy) {
247 /* policy: amdgpu owns the first queue per pipe at this stage
248 * will extend to mulitple queues per pipe later */
249 for (i = 0; i < max_queues_per_me; i++) {
250 pipe = i % adev->gfx.me.num_pipe_per_me;
251 queue = (i / adev->gfx.me.num_pipe_per_me) %
252 num_queue_per_pipe;
253
254 set_bit(pipe * num_queue_per_pipe + queue,
255 adev->gfx.me.queue_bitmap);
256 }
257 } else {
258 for (i = 0; i < max_queues_per_me; ++i)
259 set_bit(i, adev->gfx.me.queue_bitmap);
260 }
261
262 /* update the number of active graphics rings */
263 if (adev->gfx.num_gfx_rings)
264 adev->gfx.num_gfx_rings =
265 bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES);
266 }
267
amdgpu_gfx_kiq_acquire(struct amdgpu_device * adev,struct amdgpu_ring * ring,int xcc_id)268 static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev,
269 struct amdgpu_ring *ring, int xcc_id)
270 {
271 int queue_bit;
272 int mec, pipe, queue;
273
274 queue_bit = adev->gfx.mec.num_mec
275 * adev->gfx.mec.num_pipe_per_mec
276 * adev->gfx.mec.num_queue_per_pipe;
277
278 while (--queue_bit >= 0) {
279 if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
280 continue;
281
282 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
283
284 /*
285 * 1. Using pipes 2/3 from MEC 2 seems cause problems.
286 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN
287 * only can be issued on queue 0.
288 */
289 if ((mec == 1 && pipe > 1) || queue != 0)
290 continue;
291
292 ring->me = mec + 1;
293 ring->pipe = pipe;
294 ring->queue = queue;
295
296 return 0;
297 }
298
299 dev_err(adev->dev, "Failed to find a queue for KIQ\n");
300 return -EINVAL;
301 }
302
amdgpu_gfx_kiq_init_ring(struct amdgpu_device * adev,int xcc_id)303 int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev, int xcc_id)
304 {
305 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
306 struct amdgpu_irq_src *irq = &kiq->irq;
307 struct amdgpu_ring *ring = &kiq->ring;
308 int r = 0;
309
310 spin_lock_init(&kiq->ring_lock);
311
312 ring->adev = NULL;
313 ring->ring_obj = NULL;
314 ring->use_doorbell = true;
315 ring->xcc_id = xcc_id;
316 ring->vm_hub = AMDGPU_GFXHUB(xcc_id);
317 ring->doorbell_index =
318 (adev->doorbell_index.kiq +
319 xcc_id * adev->doorbell_index.xcc_doorbell_range)
320 << 1;
321
322 r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id);
323 if (r)
324 return r;
325
326 ring->eop_gpu_addr = kiq->eop_gpu_addr;
327 ring->no_scheduler = true;
328 snprintf(ring->name, sizeof(ring->name), "kiq_%hhu.%hhu.%hhu.%hhu",
329 (unsigned char)xcc_id, (unsigned char)ring->me,
330 (unsigned char)ring->pipe, (unsigned char)ring->queue);
331 r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0,
332 AMDGPU_RING_PRIO_DEFAULT, NULL);
333 if (r)
334 dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r);
335
336 return r;
337 }
338
amdgpu_gfx_kiq_free_ring(struct amdgpu_ring * ring)339 void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring)
340 {
341 amdgpu_ring_fini(ring);
342 }
343
amdgpu_gfx_kiq_fini(struct amdgpu_device * adev,int xcc_id)344 void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id)
345 {
346 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
347
348 amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL);
349 }
350
amdgpu_gfx_kiq_init(struct amdgpu_device * adev,unsigned int hpd_size,int xcc_id)351 int amdgpu_gfx_kiq_init(struct amdgpu_device *adev,
352 unsigned int hpd_size, int xcc_id)
353 {
354 int r;
355 u32 *hpd;
356 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
357
358 r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE,
359 AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj,
360 &kiq->eop_gpu_addr, (void **)&hpd);
361 if (r) {
362 dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r);
363 return r;
364 }
365
366 memset(hpd, 0, hpd_size);
367
368 r = amdgpu_bo_reserve(kiq->eop_obj, true);
369 if (unlikely(r != 0))
370 dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r);
371 amdgpu_bo_kunmap(kiq->eop_obj);
372 amdgpu_bo_unreserve(kiq->eop_obj);
373
374 return 0;
375 }
376
377 /* create MQD for each compute/gfx queue */
amdgpu_gfx_mqd_sw_init(struct amdgpu_device * adev,unsigned int mqd_size,int xcc_id)378 int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev,
379 unsigned int mqd_size, int xcc_id)
380 {
381 int r, i, j;
382 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
383 struct amdgpu_ring *ring = &kiq->ring;
384 u32 domain = AMDGPU_GEM_DOMAIN_GTT;
385
386 #if !defined(CONFIG_ARM) && !defined(CONFIG_ARM64)
387 /* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */
388 if (amdgpu_ip_version(adev, GC_HWIP, 0) >= IP_VERSION(10, 0, 0))
389 domain |= AMDGPU_GEM_DOMAIN_VRAM;
390 #endif
391
392 /* create MQD for KIQ */
393 if (!adev->enable_mes_kiq && !ring->mqd_obj) {
394 /* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must
395 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD
396 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for
397 * KIQ MQD no matter SRIOV or Bare-metal
398 */
399 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
400 AMDGPU_GEM_DOMAIN_VRAM |
401 AMDGPU_GEM_DOMAIN_GTT,
402 &ring->mqd_obj,
403 &ring->mqd_gpu_addr,
404 &ring->mqd_ptr);
405 if (r) {
406 dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r);
407 return r;
408 }
409
410 /* prepare MQD backup */
411 kiq->mqd_backup = kzalloc(mqd_size, GFP_KERNEL);
412 if (!kiq->mqd_backup) {
413 dev_warn(adev->dev,
414 "no memory to create MQD backup for ring %s\n", ring->name);
415 return -ENOMEM;
416 }
417 }
418
419 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
420 /* create MQD for each KGQ */
421 for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
422 ring = &adev->gfx.gfx_ring[i];
423 if (!ring->mqd_obj) {
424 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
425 domain, &ring->mqd_obj,
426 &ring->mqd_gpu_addr, &ring->mqd_ptr);
427 if (r) {
428 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
429 return r;
430 }
431
432 ring->mqd_size = mqd_size;
433 /* prepare MQD backup */
434 adev->gfx.me.mqd_backup[i] = kzalloc(mqd_size, GFP_KERNEL);
435 if (!adev->gfx.me.mqd_backup[i]) {
436 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
437 return -ENOMEM;
438 }
439 }
440 }
441 }
442
443 /* create MQD for each KCQ */
444 for (i = 0; i < adev->gfx.num_compute_rings; i++) {
445 j = i + xcc_id * adev->gfx.num_compute_rings;
446 ring = &adev->gfx.compute_ring[j];
447 if (!ring->mqd_obj) {
448 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
449 domain, &ring->mqd_obj,
450 &ring->mqd_gpu_addr, &ring->mqd_ptr);
451 if (r) {
452 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
453 return r;
454 }
455
456 ring->mqd_size = mqd_size;
457 /* prepare MQD backup */
458 adev->gfx.mec.mqd_backup[j] = kzalloc(mqd_size, GFP_KERNEL);
459 if (!adev->gfx.mec.mqd_backup[j]) {
460 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
461 return -ENOMEM;
462 }
463 }
464 }
465
466 return 0;
467 }
468
amdgpu_gfx_mqd_sw_fini(struct amdgpu_device * adev,int xcc_id)469 void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id)
470 {
471 struct amdgpu_ring *ring = NULL;
472 int i, j;
473 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
474
475 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
476 for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
477 ring = &adev->gfx.gfx_ring[i];
478 kfree(adev->gfx.me.mqd_backup[i]);
479 amdgpu_bo_free_kernel(&ring->mqd_obj,
480 &ring->mqd_gpu_addr,
481 &ring->mqd_ptr);
482 }
483 }
484
485 for (i = 0; i < adev->gfx.num_compute_rings; i++) {
486 j = i + xcc_id * adev->gfx.num_compute_rings;
487 ring = &adev->gfx.compute_ring[j];
488 kfree(adev->gfx.mec.mqd_backup[j]);
489 amdgpu_bo_free_kernel(&ring->mqd_obj,
490 &ring->mqd_gpu_addr,
491 &ring->mqd_ptr);
492 }
493
494 ring = &kiq->ring;
495 kfree(kiq->mqd_backup);
496 amdgpu_bo_free_kernel(&ring->mqd_obj,
497 &ring->mqd_gpu_addr,
498 &ring->mqd_ptr);
499 }
500
amdgpu_gfx_disable_kcq(struct amdgpu_device * adev,int xcc_id)501 int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id)
502 {
503 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
504 struct amdgpu_ring *kiq_ring = &kiq->ring;
505 int i, r = 0;
506 int j;
507
508 if (adev->enable_mes) {
509 for (i = 0; i < adev->gfx.num_compute_rings; i++) {
510 j = i + xcc_id * adev->gfx.num_compute_rings;
511 amdgpu_mes_unmap_legacy_queue(adev,
512 &adev->gfx.compute_ring[j],
513 RESET_QUEUES, 0, 0);
514 }
515 return 0;
516 }
517
518 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
519 return -EINVAL;
520
521 if (!kiq_ring->sched.ready || amdgpu_in_reset(adev))
522 return 0;
523
524 spin_lock(&kiq->ring_lock);
525 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
526 adev->gfx.num_compute_rings)) {
527 spin_unlock(&kiq->ring_lock);
528 return -ENOMEM;
529 }
530
531 for (i = 0; i < adev->gfx.num_compute_rings; i++) {
532 j = i + xcc_id * adev->gfx.num_compute_rings;
533 kiq->pmf->kiq_unmap_queues(kiq_ring,
534 &adev->gfx.compute_ring[j],
535 RESET_QUEUES, 0, 0);
536 }
537 /* Submit unmap queue packet */
538 amdgpu_ring_commit(kiq_ring);
539 /*
540 * Ring test will do a basic scratch register change check. Just run
541 * this to ensure that unmap queues that is submitted before got
542 * processed successfully before returning.
543 */
544 r = amdgpu_ring_test_helper(kiq_ring);
545
546 spin_unlock(&kiq->ring_lock);
547
548 return r;
549 }
550
amdgpu_gfx_disable_kgq(struct amdgpu_device * adev,int xcc_id)551 int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id)
552 {
553 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
554 struct amdgpu_ring *kiq_ring = &kiq->ring;
555 int i, r = 0;
556 int j;
557
558 if (adev->enable_mes) {
559 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
560 for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
561 j = i + xcc_id * adev->gfx.num_gfx_rings;
562 amdgpu_mes_unmap_legacy_queue(adev,
563 &adev->gfx.gfx_ring[j],
564 PREEMPT_QUEUES, 0, 0);
565 }
566 }
567 return 0;
568 }
569
570 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
571 return -EINVAL;
572
573 if (!adev->gfx.kiq[0].ring.sched.ready || amdgpu_in_reset(adev))
574 return 0;
575
576 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
577 spin_lock(&kiq->ring_lock);
578 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
579 adev->gfx.num_gfx_rings)) {
580 spin_unlock(&kiq->ring_lock);
581 return -ENOMEM;
582 }
583
584 for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
585 j = i + xcc_id * adev->gfx.num_gfx_rings;
586 kiq->pmf->kiq_unmap_queues(kiq_ring,
587 &adev->gfx.gfx_ring[j],
588 PREEMPT_QUEUES, 0, 0);
589 }
590 /* Submit unmap queue packet */
591 amdgpu_ring_commit(kiq_ring);
592
593 /*
594 * Ring test will do a basic scratch register change check.
595 * Just run this to ensure that unmap queues that is submitted
596 * before got processed successfully before returning.
597 */
598 r = amdgpu_ring_test_helper(kiq_ring);
599 spin_unlock(&kiq->ring_lock);
600 }
601
602 return r;
603 }
604
amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device * adev,int queue_bit)605 int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev,
606 int queue_bit)
607 {
608 int mec, pipe, queue;
609 int set_resource_bit = 0;
610
611 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
612
613 set_resource_bit = mec * 4 * 8 + pipe * 8 + queue;
614
615 return set_resource_bit;
616 }
617
amdgpu_gfx_mes_enable_kcq(struct amdgpu_device * adev,int xcc_id)618 static int amdgpu_gfx_mes_enable_kcq(struct amdgpu_device *adev, int xcc_id)
619 {
620 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
621 struct amdgpu_ring *kiq_ring = &kiq->ring;
622 uint64_t queue_mask = ~0ULL;
623 int r, i, j;
624
625 amdgpu_device_flush_hdp(adev, NULL);
626
627 if (!adev->enable_uni_mes) {
628 spin_lock(&kiq->ring_lock);
629 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->set_resources_size);
630 if (r) {
631 dev_err(adev->dev, "Failed to lock KIQ (%d).\n", r);
632 spin_unlock(&kiq->ring_lock);
633 return r;
634 }
635
636 kiq->pmf->kiq_set_resources(kiq_ring, queue_mask);
637 r = amdgpu_ring_test_helper(kiq_ring);
638 spin_unlock(&kiq->ring_lock);
639 if (r)
640 dev_err(adev->dev, "KIQ failed to set resources\n");
641 }
642
643 for (i = 0; i < adev->gfx.num_compute_rings; i++) {
644 j = i + xcc_id * adev->gfx.num_compute_rings;
645 r = amdgpu_mes_map_legacy_queue(adev,
646 &adev->gfx.compute_ring[j]);
647 if (r) {
648 dev_err(adev->dev, "failed to map compute queue\n");
649 return r;
650 }
651 }
652
653 return 0;
654 }
655
amdgpu_gfx_enable_kcq(struct amdgpu_device * adev,int xcc_id)656 int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id)
657 {
658 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
659 struct amdgpu_ring *kiq_ring = &kiq->ring;
660 uint64_t queue_mask = 0;
661 int r, i, j;
662
663 if (adev->mes.enable_legacy_queue_map)
664 return amdgpu_gfx_mes_enable_kcq(adev, xcc_id);
665
666 if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources)
667 return -EINVAL;
668
669 for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) {
670 if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
671 continue;
672
673 /* This situation may be hit in the future if a new HW
674 * generation exposes more than 64 queues. If so, the
675 * definition of queue_mask needs updating */
676 if (WARN_ON(i > (sizeof(queue_mask)*8))) {
677 DRM_ERROR("Invalid KCQ enabled: %d\n", i);
678 break;
679 }
680
681 queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i));
682 }
683
684 amdgpu_device_flush_hdp(adev, NULL);
685
686 DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe,
687 kiq_ring->queue);
688
689 spin_lock(&kiq->ring_lock);
690 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
691 adev->gfx.num_compute_rings +
692 kiq->pmf->set_resources_size);
693 if (r) {
694 DRM_ERROR("Failed to lock KIQ (%d).\n", r);
695 spin_unlock(&kiq->ring_lock);
696 return r;
697 }
698
699 kiq->pmf->kiq_set_resources(kiq_ring, queue_mask);
700 for (i = 0; i < adev->gfx.num_compute_rings; i++) {
701 j = i + xcc_id * adev->gfx.num_compute_rings;
702 kiq->pmf->kiq_map_queues(kiq_ring,
703 &adev->gfx.compute_ring[j]);
704 }
705 /* Submit map queue packet */
706 amdgpu_ring_commit(kiq_ring);
707 /*
708 * Ring test will do a basic scratch register change check. Just run
709 * this to ensure that map queues that is submitted before got
710 * processed successfully before returning.
711 */
712 r = amdgpu_ring_test_helper(kiq_ring);
713 spin_unlock(&kiq->ring_lock);
714 if (r)
715 DRM_ERROR("KCQ enable failed\n");
716
717 return r;
718 }
719
amdgpu_gfx_enable_kgq(struct amdgpu_device * adev,int xcc_id)720 int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id)
721 {
722 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
723 struct amdgpu_ring *kiq_ring = &kiq->ring;
724 int r, i, j;
725
726 if (!kiq->pmf || !kiq->pmf->kiq_map_queues)
727 return -EINVAL;
728
729 amdgpu_device_flush_hdp(adev, NULL);
730
731 if (adev->mes.enable_legacy_queue_map) {
732 for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
733 j = i + xcc_id * adev->gfx.num_gfx_rings;
734 r = amdgpu_mes_map_legacy_queue(adev,
735 &adev->gfx.gfx_ring[j]);
736 if (r) {
737 DRM_ERROR("failed to map gfx queue\n");
738 return r;
739 }
740 }
741
742 return 0;
743 }
744
745 spin_lock(&kiq->ring_lock);
746 /* No need to map kcq on the slave */
747 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
748 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
749 adev->gfx.num_gfx_rings);
750 if (r) {
751 DRM_ERROR("Failed to lock KIQ (%d).\n", r);
752 spin_unlock(&kiq->ring_lock);
753 return r;
754 }
755
756 for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
757 j = i + xcc_id * adev->gfx.num_gfx_rings;
758 kiq->pmf->kiq_map_queues(kiq_ring,
759 &adev->gfx.gfx_ring[j]);
760 }
761 }
762 /* Submit map queue packet */
763 amdgpu_ring_commit(kiq_ring);
764 /*
765 * Ring test will do a basic scratch register change check. Just run
766 * this to ensure that map queues that is submitted before got
767 * processed successfully before returning.
768 */
769 r = amdgpu_ring_test_helper(kiq_ring);
770 spin_unlock(&kiq->ring_lock);
771 if (r)
772 DRM_ERROR("KGQ enable failed\n");
773
774 return r;
775 }
776
amdgpu_gfx_do_off_ctrl(struct amdgpu_device * adev,bool enable,bool no_delay)777 static void amdgpu_gfx_do_off_ctrl(struct amdgpu_device *adev, bool enable,
778 bool no_delay)
779 {
780 unsigned long delay = GFX_OFF_DELAY_ENABLE;
781
782 if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
783 return;
784
785 mutex_lock(&adev->gfx.gfx_off_mutex);
786
787 if (enable) {
788 /* If the count is already 0, it means there's an imbalance bug somewhere.
789 * Note that the bug may be in a different caller than the one which triggers the
790 * WARN_ON_ONCE.
791 */
792 if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0))
793 goto unlock;
794
795 adev->gfx.gfx_off_req_count--;
796
797 if (adev->gfx.gfx_off_req_count == 0 &&
798 !adev->gfx.gfx_off_state) {
799 /* If going to s2idle, no need to wait */
800 if (no_delay) {
801 if (!amdgpu_dpm_set_powergating_by_smu(adev,
802 AMD_IP_BLOCK_TYPE_GFX, true, 0))
803 adev->gfx.gfx_off_state = true;
804 } else {
805 schedule_delayed_work(&adev->gfx.gfx_off_delay_work,
806 delay);
807 }
808 }
809 } else {
810 if (adev->gfx.gfx_off_req_count == 0) {
811 cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work);
812
813 if (adev->gfx.gfx_off_state &&
814 !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false, 0)) {
815 adev->gfx.gfx_off_state = false;
816
817 if (adev->gfx.funcs->init_spm_golden) {
818 dev_dbg(adev->dev,
819 "GFXOFF is disabled, re-init SPM golden settings\n");
820 amdgpu_gfx_init_spm_golden(adev);
821 }
822 }
823 }
824
825 adev->gfx.gfx_off_req_count++;
826 }
827
828 unlock:
829 mutex_unlock(&adev->gfx.gfx_off_mutex);
830 }
831
832 /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable
833 *
834 * @adev: amdgpu_device pointer
835 * @bool enable true: enable gfx off feature, false: disable gfx off feature
836 *
837 * 1. gfx off feature will be enabled by gfx ip after gfx cg pg enabled.
838 * 2. other client can send request to disable gfx off feature, the request should be honored.
839 * 3. other client can cancel their request of disable gfx off feature
840 * 4. other client should not send request to enable gfx off feature before disable gfx off feature.
841 *
842 * gfx off allow will be delayed by GFX_OFF_DELAY_ENABLE ms.
843 */
amdgpu_gfx_off_ctrl(struct amdgpu_device * adev,bool enable)844 void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable)
845 {
846 /* If going to s2idle, no need to wait */
847 bool no_delay = adev->in_s0ix ? true : false;
848
849 amdgpu_gfx_do_off_ctrl(adev, enable, no_delay);
850 }
851
852 /* amdgpu_gfx_off_ctrl_immediate - Handle gfx off feature enable/disable
853 *
854 * @adev: amdgpu_device pointer
855 * @bool enable true: enable gfx off feature, false: disable gfx off feature
856 *
857 * 1. gfx off feature will be enabled by gfx ip after gfx cg pg enabled.
858 * 2. other client can send request to disable gfx off feature, the request should be honored.
859 * 3. other client can cancel their request of disable gfx off feature
860 * 4. other client should not send request to enable gfx off feature before disable gfx off feature.
861 *
862 * gfx off allow will be issued immediately.
863 */
amdgpu_gfx_off_ctrl_immediate(struct amdgpu_device * adev,bool enable)864 void amdgpu_gfx_off_ctrl_immediate(struct amdgpu_device *adev, bool enable)
865 {
866 amdgpu_gfx_do_off_ctrl(adev, enable, true);
867 }
868
amdgpu_set_gfx_off_residency(struct amdgpu_device * adev,bool value)869 int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value)
870 {
871 int r = 0;
872
873 mutex_lock(&adev->gfx.gfx_off_mutex);
874
875 r = amdgpu_dpm_set_residency_gfxoff(adev, value);
876
877 mutex_unlock(&adev->gfx.gfx_off_mutex);
878
879 return r;
880 }
881
amdgpu_get_gfx_off_residency(struct amdgpu_device * adev,u32 * value)882 int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value)
883 {
884 int r = 0;
885
886 mutex_lock(&adev->gfx.gfx_off_mutex);
887
888 r = amdgpu_dpm_get_residency_gfxoff(adev, value);
889
890 mutex_unlock(&adev->gfx.gfx_off_mutex);
891
892 return r;
893 }
894
amdgpu_get_gfx_off_entrycount(struct amdgpu_device * adev,u64 * value)895 int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value)
896 {
897 int r = 0;
898
899 mutex_lock(&adev->gfx.gfx_off_mutex);
900
901 r = amdgpu_dpm_get_entrycount_gfxoff(adev, value);
902
903 mutex_unlock(&adev->gfx.gfx_off_mutex);
904
905 return r;
906 }
907
amdgpu_get_gfx_off_status(struct amdgpu_device * adev,uint32_t * value)908 int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value)
909 {
910
911 int r = 0;
912
913 mutex_lock(&adev->gfx.gfx_off_mutex);
914
915 r = amdgpu_dpm_get_status_gfxoff(adev, value);
916
917 mutex_unlock(&adev->gfx.gfx_off_mutex);
918
919 return r;
920 }
921
amdgpu_gfx_ras_late_init(struct amdgpu_device * adev,struct ras_common_if * ras_block)922 int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block)
923 {
924 int r;
925
926 if (amdgpu_ras_is_supported(adev, ras_block->block)) {
927 if (!amdgpu_persistent_edc_harvesting_supported(adev)) {
928 r = amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX);
929 if (r)
930 return r;
931 }
932
933 r = amdgpu_ras_block_late_init(adev, ras_block);
934 if (r)
935 return r;
936
937 if (amdgpu_sriov_vf(adev))
938 return r;
939
940 if (adev->gfx.cp_ecc_error_irq.funcs) {
941 r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0);
942 if (r)
943 goto late_fini;
944 }
945 } else {
946 amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0);
947 }
948
949 return 0;
950 late_fini:
951 amdgpu_ras_block_late_fini(adev, ras_block);
952 return r;
953 }
954
amdgpu_gfx_ras_sw_init(struct amdgpu_device * adev)955 int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev)
956 {
957 int err = 0;
958 struct amdgpu_gfx_ras *ras = NULL;
959
960 /* adev->gfx.ras is NULL, which means gfx does not
961 * support ras function, then do nothing here.
962 */
963 if (!adev->gfx.ras)
964 return 0;
965
966 ras = adev->gfx.ras;
967
968 err = amdgpu_ras_register_ras_block(adev, &ras->ras_block);
969 if (err) {
970 dev_err(adev->dev, "Failed to register gfx ras block!\n");
971 return err;
972 }
973
974 strcpy(ras->ras_block.ras_comm.name, "gfx");
975 ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX;
976 ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE;
977 adev->gfx.ras_if = &ras->ras_block.ras_comm;
978
979 /* If not define special ras_late_init function, use gfx default ras_late_init */
980 if (!ras->ras_block.ras_late_init)
981 ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init;
982
983 /* If not defined special ras_cb function, use default ras_cb */
984 if (!ras->ras_block.ras_cb)
985 ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb;
986
987 return 0;
988 }
989
amdgpu_gfx_poison_consumption_handler(struct amdgpu_device * adev,struct amdgpu_iv_entry * entry)990 int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev,
991 struct amdgpu_iv_entry *entry)
992 {
993 if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler)
994 return adev->gfx.ras->poison_consumption_handler(adev, entry);
995
996 return 0;
997 }
998
amdgpu_gfx_process_ras_data_cb(struct amdgpu_device * adev,void * err_data,struct amdgpu_iv_entry * entry)999 int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev,
1000 void *err_data,
1001 struct amdgpu_iv_entry *entry)
1002 {
1003 /* TODO ue will trigger an interrupt.
1004 *
1005 * When “Full RAS” is enabled, the per-IP interrupt sources should
1006 * be disabled and the driver should only look for the aggregated
1007 * interrupt via sync flood
1008 */
1009 if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) {
1010 kgd2kfd_set_sram_ecc_flag(adev->kfd.dev);
1011 if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops &&
1012 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count)
1013 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data);
1014 amdgpu_ras_reset_gpu(adev);
1015 }
1016 return AMDGPU_RAS_SUCCESS;
1017 }
1018
amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device * adev,struct amdgpu_irq_src * source,struct amdgpu_iv_entry * entry)1019 int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev,
1020 struct amdgpu_irq_src *source,
1021 struct amdgpu_iv_entry *entry)
1022 {
1023 struct ras_common_if *ras_if = adev->gfx.ras_if;
1024 struct ras_dispatch_if ih_data = {
1025 .entry = entry,
1026 };
1027
1028 if (!ras_if)
1029 return 0;
1030
1031 ih_data.head = *ras_if;
1032
1033 DRM_ERROR("CP ECC ERROR IRQ\n");
1034 amdgpu_ras_interrupt_dispatch(adev, &ih_data);
1035 return 0;
1036 }
1037
amdgpu_gfx_ras_error_func(struct amdgpu_device * adev,void * ras_error_status,void (* func)(struct amdgpu_device * adev,void * ras_error_status,int xcc_id))1038 void amdgpu_gfx_ras_error_func(struct amdgpu_device *adev,
1039 void *ras_error_status,
1040 void (*func)(struct amdgpu_device *adev, void *ras_error_status,
1041 int xcc_id))
1042 {
1043 int i;
1044 int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
1045 uint32_t xcc_mask = GENMASK(num_xcc - 1, 0);
1046 struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
1047
1048 if (err_data) {
1049 err_data->ue_count = 0;
1050 err_data->ce_count = 0;
1051 }
1052
1053 for_each_inst(i, xcc_mask)
1054 func(adev, ras_error_status, i);
1055 }
1056
amdgpu_kiq_rreg(struct amdgpu_device * adev,uint32_t reg,uint32_t xcc_id)1057 uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg, uint32_t xcc_id)
1058 {
1059 signed long r, cnt = 0;
1060 unsigned long flags;
1061 uint32_t seq, reg_val_offs = 0, value = 0;
1062 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
1063 struct amdgpu_ring *ring = &kiq->ring;
1064
1065 if (amdgpu_device_skip_hw_access(adev))
1066 return 0;
1067
1068 if (adev->mes.ring[0].sched.ready)
1069 return amdgpu_mes_rreg(adev, reg);
1070
1071 BUG_ON(!ring->funcs->emit_rreg);
1072
1073 spin_lock_irqsave(&kiq->ring_lock, flags);
1074 if (amdgpu_device_wb_get(adev, ®_val_offs)) {
1075 pr_err("critical bug! too many kiq readers\n");
1076 goto failed_unlock;
1077 }
1078 r = amdgpu_ring_alloc(ring, 32);
1079 if (r)
1080 goto failed_unlock;
1081
1082 amdgpu_ring_emit_rreg(ring, reg, reg_val_offs);
1083 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
1084 if (r)
1085 goto failed_undo;
1086
1087 amdgpu_ring_commit(ring);
1088 spin_unlock_irqrestore(&kiq->ring_lock, flags);
1089
1090 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1091
1092 /* don't wait anymore for gpu reset case because this way may
1093 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
1094 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
1095 * never return if we keep waiting in virt_kiq_rreg, which cause
1096 * gpu_recover() hang there.
1097 *
1098 * also don't wait anymore for IRQ context
1099 * */
1100 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
1101 goto failed_kiq_read;
1102
1103 might_sleep();
1104 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
1105 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
1106 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1107 }
1108
1109 if (cnt > MAX_KIQ_REG_TRY)
1110 goto failed_kiq_read;
1111
1112 mb();
1113 value = adev->wb.wb[reg_val_offs];
1114 amdgpu_device_wb_free(adev, reg_val_offs);
1115 return value;
1116
1117 failed_undo:
1118 amdgpu_ring_undo(ring);
1119 failed_unlock:
1120 spin_unlock_irqrestore(&kiq->ring_lock, flags);
1121 failed_kiq_read:
1122 if (reg_val_offs)
1123 amdgpu_device_wb_free(adev, reg_val_offs);
1124 dev_err(adev->dev, "failed to read reg:%x\n", reg);
1125 return ~0;
1126 }
1127
amdgpu_kiq_wreg(struct amdgpu_device * adev,uint32_t reg,uint32_t v,uint32_t xcc_id)1128 void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v, uint32_t xcc_id)
1129 {
1130 signed long r, cnt = 0;
1131 unsigned long flags;
1132 uint32_t seq;
1133 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
1134 struct amdgpu_ring *ring = &kiq->ring;
1135
1136 BUG_ON(!ring->funcs->emit_wreg);
1137
1138 if (amdgpu_device_skip_hw_access(adev))
1139 return;
1140
1141 if (adev->mes.ring[0].sched.ready) {
1142 amdgpu_mes_wreg(adev, reg, v);
1143 return;
1144 }
1145
1146 spin_lock_irqsave(&kiq->ring_lock, flags);
1147 r = amdgpu_ring_alloc(ring, 32);
1148 if (r)
1149 goto failed_unlock;
1150
1151 amdgpu_ring_emit_wreg(ring, reg, v);
1152 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
1153 if (r)
1154 goto failed_undo;
1155
1156 amdgpu_ring_commit(ring);
1157 spin_unlock_irqrestore(&kiq->ring_lock, flags);
1158
1159 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1160
1161 /* don't wait anymore for gpu reset case because this way may
1162 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
1163 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
1164 * never return if we keep waiting in virt_kiq_rreg, which cause
1165 * gpu_recover() hang there.
1166 *
1167 * also don't wait anymore for IRQ context
1168 * */
1169 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
1170 goto failed_kiq_write;
1171
1172 might_sleep();
1173 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
1174
1175 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
1176 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1177 }
1178
1179 if (cnt > MAX_KIQ_REG_TRY)
1180 goto failed_kiq_write;
1181
1182 return;
1183
1184 failed_undo:
1185 amdgpu_ring_undo(ring);
1186 failed_unlock:
1187 spin_unlock_irqrestore(&kiq->ring_lock, flags);
1188 failed_kiq_write:
1189 dev_err(adev->dev, "failed to write reg:%x\n", reg);
1190 }
1191
amdgpu_gfx_get_num_kcq(struct amdgpu_device * adev)1192 int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev)
1193 {
1194 if (amdgpu_num_kcq == -1) {
1195 return 8;
1196 } else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) {
1197 dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n");
1198 return 8;
1199 }
1200 return amdgpu_num_kcq;
1201 }
1202
amdgpu_gfx_cp_init_microcode(struct amdgpu_device * adev,uint32_t ucode_id)1203 void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev,
1204 uint32_t ucode_id)
1205 {
1206 const struct gfx_firmware_header_v1_0 *cp_hdr;
1207 const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0;
1208 struct amdgpu_firmware_info *info = NULL;
1209 const struct firmware *ucode_fw;
1210 unsigned int fw_size;
1211
1212 switch (ucode_id) {
1213 case AMDGPU_UCODE_ID_CP_PFP:
1214 cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1215 adev->gfx.pfp_fw->data;
1216 adev->gfx.pfp_fw_version =
1217 le32_to_cpu(cp_hdr->header.ucode_version);
1218 adev->gfx.pfp_feature_version =
1219 le32_to_cpu(cp_hdr->ucode_feature_version);
1220 ucode_fw = adev->gfx.pfp_fw;
1221 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1222 break;
1223 case AMDGPU_UCODE_ID_CP_RS64_PFP:
1224 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1225 adev->gfx.pfp_fw->data;
1226 adev->gfx.pfp_fw_version =
1227 le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1228 adev->gfx.pfp_feature_version =
1229 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1230 ucode_fw = adev->gfx.pfp_fw;
1231 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1232 break;
1233 case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK:
1234 case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK:
1235 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1236 adev->gfx.pfp_fw->data;
1237 ucode_fw = adev->gfx.pfp_fw;
1238 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1239 break;
1240 case AMDGPU_UCODE_ID_CP_ME:
1241 cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1242 adev->gfx.me_fw->data;
1243 adev->gfx.me_fw_version =
1244 le32_to_cpu(cp_hdr->header.ucode_version);
1245 adev->gfx.me_feature_version =
1246 le32_to_cpu(cp_hdr->ucode_feature_version);
1247 ucode_fw = adev->gfx.me_fw;
1248 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1249 break;
1250 case AMDGPU_UCODE_ID_CP_RS64_ME:
1251 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1252 adev->gfx.me_fw->data;
1253 adev->gfx.me_fw_version =
1254 le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1255 adev->gfx.me_feature_version =
1256 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1257 ucode_fw = adev->gfx.me_fw;
1258 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1259 break;
1260 case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK:
1261 case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK:
1262 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1263 adev->gfx.me_fw->data;
1264 ucode_fw = adev->gfx.me_fw;
1265 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1266 break;
1267 case AMDGPU_UCODE_ID_CP_CE:
1268 cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1269 adev->gfx.ce_fw->data;
1270 adev->gfx.ce_fw_version =
1271 le32_to_cpu(cp_hdr->header.ucode_version);
1272 adev->gfx.ce_feature_version =
1273 le32_to_cpu(cp_hdr->ucode_feature_version);
1274 ucode_fw = adev->gfx.ce_fw;
1275 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1276 break;
1277 case AMDGPU_UCODE_ID_CP_MEC1:
1278 cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1279 adev->gfx.mec_fw->data;
1280 adev->gfx.mec_fw_version =
1281 le32_to_cpu(cp_hdr->header.ucode_version);
1282 adev->gfx.mec_feature_version =
1283 le32_to_cpu(cp_hdr->ucode_feature_version);
1284 ucode_fw = adev->gfx.mec_fw;
1285 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1286 le32_to_cpu(cp_hdr->jt_size) * 4;
1287 break;
1288 case AMDGPU_UCODE_ID_CP_MEC1_JT:
1289 cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1290 adev->gfx.mec_fw->data;
1291 ucode_fw = adev->gfx.mec_fw;
1292 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1293 break;
1294 case AMDGPU_UCODE_ID_CP_MEC2:
1295 cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1296 adev->gfx.mec2_fw->data;
1297 adev->gfx.mec2_fw_version =
1298 le32_to_cpu(cp_hdr->header.ucode_version);
1299 adev->gfx.mec2_feature_version =
1300 le32_to_cpu(cp_hdr->ucode_feature_version);
1301 ucode_fw = adev->gfx.mec2_fw;
1302 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1303 le32_to_cpu(cp_hdr->jt_size) * 4;
1304 break;
1305 case AMDGPU_UCODE_ID_CP_MEC2_JT:
1306 cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1307 adev->gfx.mec2_fw->data;
1308 ucode_fw = adev->gfx.mec2_fw;
1309 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1310 break;
1311 case AMDGPU_UCODE_ID_CP_RS64_MEC:
1312 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1313 adev->gfx.mec_fw->data;
1314 adev->gfx.mec_fw_version =
1315 le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1316 adev->gfx.mec_feature_version =
1317 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1318 ucode_fw = adev->gfx.mec_fw;
1319 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1320 break;
1321 case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK:
1322 case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK:
1323 case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK:
1324 case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK:
1325 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1326 adev->gfx.mec_fw->data;
1327 ucode_fw = adev->gfx.mec_fw;
1328 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1329 break;
1330 default:
1331 dev_err(adev->dev, "Invalid ucode id %u\n", ucode_id);
1332 return;
1333 }
1334
1335 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
1336 info = &adev->firmware.ucode[ucode_id];
1337 info->ucode_id = ucode_id;
1338 info->fw = ucode_fw;
1339 adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE);
1340 }
1341 }
1342
amdgpu_gfx_is_master_xcc(struct amdgpu_device * adev,int xcc_id)1343 bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id)
1344 {
1345 return !(xcc_id % (adev->gfx.num_xcc_per_xcp ?
1346 adev->gfx.num_xcc_per_xcp : 1));
1347 }
1348
amdgpu_gfx_get_current_compute_partition(struct device * dev,struct device_attribute * addr,char * buf)1349 static ssize_t amdgpu_gfx_get_current_compute_partition(struct device *dev,
1350 struct device_attribute *addr,
1351 char *buf)
1352 {
1353 struct drm_device *ddev = dev_get_drvdata(dev);
1354 struct amdgpu_device *adev = drm_to_adev(ddev);
1355 int mode;
1356
1357 /* Only minimal precaution taken to reject requests while in reset.*/
1358 if (amdgpu_in_reset(adev))
1359 return -EPERM;
1360
1361 mode = amdgpu_xcp_query_partition_mode(adev->xcp_mgr,
1362 AMDGPU_XCP_FL_NONE);
1363
1364 return sysfs_emit(buf, "%s\n", amdgpu_gfx_compute_mode_desc(mode));
1365 }
1366
amdgpu_gfx_set_compute_partition(struct device * dev,struct device_attribute * addr,const char * buf,size_t count)1367 static ssize_t amdgpu_gfx_set_compute_partition(struct device *dev,
1368 struct device_attribute *addr,
1369 const char *buf, size_t count)
1370 {
1371 struct drm_device *ddev = dev_get_drvdata(dev);
1372 struct amdgpu_device *adev = drm_to_adev(ddev);
1373 enum amdgpu_gfx_partition mode;
1374 int ret = 0, num_xcc;
1375
1376 num_xcc = NUM_XCC(adev->gfx.xcc_mask);
1377 if (num_xcc % 2 != 0)
1378 return -EINVAL;
1379
1380 if (!strncasecmp("SPX", buf, strlen("SPX"))) {
1381 mode = AMDGPU_SPX_PARTITION_MODE;
1382 } else if (!strncasecmp("DPX", buf, strlen("DPX"))) {
1383 /*
1384 * DPX mode needs AIDs to be in multiple of 2.
1385 * Each AID connects 2 XCCs.
1386 */
1387 if (num_xcc%4)
1388 return -EINVAL;
1389 mode = AMDGPU_DPX_PARTITION_MODE;
1390 } else if (!strncasecmp("TPX", buf, strlen("TPX"))) {
1391 if (num_xcc != 6)
1392 return -EINVAL;
1393 mode = AMDGPU_TPX_PARTITION_MODE;
1394 } else if (!strncasecmp("QPX", buf, strlen("QPX"))) {
1395 if (num_xcc != 8)
1396 return -EINVAL;
1397 mode = AMDGPU_QPX_PARTITION_MODE;
1398 } else if (!strncasecmp("CPX", buf, strlen("CPX"))) {
1399 mode = AMDGPU_CPX_PARTITION_MODE;
1400 } else {
1401 return -EINVAL;
1402 }
1403
1404 /* Don't allow a switch while under reset */
1405 if (!down_read_trylock(&adev->reset_domain->sem))
1406 return -EPERM;
1407
1408 ret = amdgpu_xcp_switch_partition_mode(adev->xcp_mgr, mode);
1409
1410 up_read(&adev->reset_domain->sem);
1411
1412 if (ret)
1413 return ret;
1414
1415 return count;
1416 }
1417
1418 static const char *xcp_desc[] = {
1419 [AMDGPU_SPX_PARTITION_MODE] = "SPX",
1420 [AMDGPU_DPX_PARTITION_MODE] = "DPX",
1421 [AMDGPU_TPX_PARTITION_MODE] = "TPX",
1422 [AMDGPU_QPX_PARTITION_MODE] = "QPX",
1423 [AMDGPU_CPX_PARTITION_MODE] = "CPX",
1424 };
1425
amdgpu_gfx_get_available_compute_partition(struct device * dev,struct device_attribute * addr,char * buf)1426 static ssize_t amdgpu_gfx_get_available_compute_partition(struct device *dev,
1427 struct device_attribute *addr,
1428 char *buf)
1429 {
1430 struct drm_device *ddev = dev_get_drvdata(dev);
1431 struct amdgpu_device *adev = drm_to_adev(ddev);
1432 struct amdgpu_xcp_mgr *xcp_mgr = adev->xcp_mgr;
1433 int size = 0, mode;
1434 char *sep = "";
1435
1436 if (!xcp_mgr || !xcp_mgr->avail_xcp_modes)
1437 return sysfs_emit(buf, "Not supported\n");
1438
1439 for_each_inst(mode, xcp_mgr->avail_xcp_modes) {
1440 size += sysfs_emit_at(buf, size, "%s%s", sep, xcp_desc[mode]);
1441 sep = ", ";
1442 }
1443
1444 size += sysfs_emit_at(buf, size, "\n");
1445
1446 return size;
1447 }
1448
amdgpu_gfx_run_cleaner_shader_job(struct amdgpu_ring * ring)1449 static int amdgpu_gfx_run_cleaner_shader_job(struct amdgpu_ring *ring)
1450 {
1451 struct amdgpu_device *adev = ring->adev;
1452 struct drm_gpu_scheduler *sched = &ring->sched;
1453 struct drm_sched_entity entity;
1454 static atomic_t counter;
1455 struct dma_fence *f;
1456 struct amdgpu_job *job;
1457 struct amdgpu_ib *ib;
1458 void *owner;
1459 int i, r;
1460
1461 /* Initialize the scheduler entity */
1462 r = drm_sched_entity_init(&entity, DRM_SCHED_PRIORITY_NORMAL,
1463 &sched, 1, NULL);
1464 if (r) {
1465 dev_err(adev->dev, "Failed setting up GFX kernel entity.\n");
1466 goto err;
1467 }
1468
1469 /*
1470 * Use some unique dummy value as the owner to make sure we execute
1471 * the cleaner shader on each submission. The value just need to change
1472 * for each submission and is otherwise meaningless.
1473 */
1474 owner = (void *)(unsigned long)atomic_inc_return(&counter);
1475
1476 r = amdgpu_job_alloc_with_ib(ring->adev, &entity, owner,
1477 64, 0, &job);
1478 if (r)
1479 goto err;
1480
1481 job->enforce_isolation = true;
1482 /* always run the cleaner shader */
1483 job->run_cleaner_shader = true;
1484
1485 ib = &job->ibs[0];
1486 for (i = 0; i <= ring->funcs->align_mask; ++i)
1487 ib->ptr[i] = ring->funcs->nop;
1488 ib->length_dw = ring->funcs->align_mask + 1;
1489
1490 f = amdgpu_job_submit(job);
1491
1492 r = dma_fence_wait(f, false);
1493 if (r)
1494 goto err;
1495
1496 dma_fence_put(f);
1497
1498 /* Clean up the scheduler entity */
1499 drm_sched_entity_destroy(&entity);
1500 return 0;
1501
1502 err:
1503 return r;
1504 }
1505
amdgpu_gfx_run_cleaner_shader(struct amdgpu_device * adev,int xcp_id)1506 static int amdgpu_gfx_run_cleaner_shader(struct amdgpu_device *adev, int xcp_id)
1507 {
1508 int num_xcc = NUM_XCC(adev->gfx.xcc_mask);
1509 struct amdgpu_ring *ring;
1510 int num_xcc_to_clear;
1511 int i, r, xcc_id;
1512
1513 if (adev->gfx.num_xcc_per_xcp)
1514 num_xcc_to_clear = adev->gfx.num_xcc_per_xcp;
1515 else
1516 num_xcc_to_clear = 1;
1517
1518 for (xcc_id = 0; xcc_id < num_xcc; xcc_id++) {
1519 for (i = 0; i < adev->gfx.num_compute_rings; i++) {
1520 ring = &adev->gfx.compute_ring[i + xcc_id * adev->gfx.num_compute_rings];
1521 if ((ring->xcp_id == xcp_id) && ring->sched.ready) {
1522 r = amdgpu_gfx_run_cleaner_shader_job(ring);
1523 if (r)
1524 return r;
1525 num_xcc_to_clear--;
1526 break;
1527 }
1528 }
1529 }
1530
1531 if (num_xcc_to_clear)
1532 return -ENOENT;
1533
1534 return 0;
1535 }
1536
1537 /**
1538 * amdgpu_gfx_set_run_cleaner_shader - Execute the AMDGPU GFX Cleaner Shader
1539 * @dev: The device structure
1540 * @attr: The device attribute structure
1541 * @buf: The buffer containing the input data
1542 * @count: The size of the input data
1543 *
1544 * Provides the sysfs interface to manually run a cleaner shader, which is
1545 * used to clear the GPU state between different tasks. Writing a value to the
1546 * 'run_cleaner_shader' sysfs file triggers the cleaner shader execution.
1547 * The value written corresponds to the partition index on multi-partition
1548 * devices. On single-partition devices, the value should be '0'.
1549 *
1550 * The cleaner shader clears the Local Data Store (LDS) and General Purpose
1551 * Registers (GPRs) to ensure data isolation between GPU workloads.
1552 *
1553 * Return: The number of bytes written to the sysfs file.
1554 */
amdgpu_gfx_set_run_cleaner_shader(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1555 static ssize_t amdgpu_gfx_set_run_cleaner_shader(struct device *dev,
1556 struct device_attribute *attr,
1557 const char *buf,
1558 size_t count)
1559 {
1560 struct drm_device *ddev = dev_get_drvdata(dev);
1561 struct amdgpu_device *adev = drm_to_adev(ddev);
1562 int ret;
1563 long value;
1564
1565 if (amdgpu_in_reset(adev))
1566 return -EPERM;
1567 if (adev->in_suspend && !adev->in_runpm)
1568 return -EPERM;
1569
1570 if (adev->gfx.disable_kq)
1571 return -EPERM;
1572
1573 ret = kstrtol(buf, 0, &value);
1574
1575 if (ret)
1576 return -EINVAL;
1577
1578 if (value < 0)
1579 return -EINVAL;
1580
1581 if (adev->xcp_mgr) {
1582 if (value >= adev->xcp_mgr->num_xcps)
1583 return -EINVAL;
1584 } else {
1585 if (value > 1)
1586 return -EINVAL;
1587 }
1588
1589 ret = pm_runtime_get_sync(ddev->dev);
1590 if (ret < 0) {
1591 pm_runtime_put_autosuspend(ddev->dev);
1592 return ret;
1593 }
1594
1595 ret = amdgpu_gfx_run_cleaner_shader(adev, value);
1596
1597 pm_runtime_mark_last_busy(ddev->dev);
1598 pm_runtime_put_autosuspend(ddev->dev);
1599
1600 if (ret)
1601 return ret;
1602
1603 return count;
1604 }
1605
1606 /**
1607 * amdgpu_gfx_get_enforce_isolation - Query AMDGPU GFX Enforce Isolation Settings
1608 * @dev: The device structure
1609 * @attr: The device attribute structure
1610 * @buf: The buffer to store the output data
1611 *
1612 * Provides the sysfs read interface to get the current settings of the 'enforce_isolation'
1613 * feature for each GPU partition. Reading from the 'enforce_isolation'
1614 * sysfs file returns the isolation settings for all partitions, where '0'
1615 * indicates disabled, '1' indicates enabled, and '2' indicates enabled in legacy mode,
1616 * and '3' indicates enabled without cleaner shader.
1617 *
1618 * Return: The number of bytes read from the sysfs file.
1619 */
amdgpu_gfx_get_enforce_isolation(struct device * dev,struct device_attribute * attr,char * buf)1620 static ssize_t amdgpu_gfx_get_enforce_isolation(struct device *dev,
1621 struct device_attribute *attr,
1622 char *buf)
1623 {
1624 struct drm_device *ddev = dev_get_drvdata(dev);
1625 struct amdgpu_device *adev = drm_to_adev(ddev);
1626 int i;
1627 ssize_t size = 0;
1628
1629 if (adev->xcp_mgr) {
1630 for (i = 0; i < adev->xcp_mgr->num_xcps; i++) {
1631 size += sysfs_emit_at(buf, size, "%u", adev->enforce_isolation[i]);
1632 if (i < (adev->xcp_mgr->num_xcps - 1))
1633 size += sysfs_emit_at(buf, size, " ");
1634 }
1635 buf[size++] = '\n';
1636 } else {
1637 size = sysfs_emit_at(buf, 0, "%u\n", adev->enforce_isolation[0]);
1638 }
1639
1640 return size;
1641 }
1642
1643 /**
1644 * amdgpu_gfx_set_enforce_isolation - Control AMDGPU GFX Enforce Isolation
1645 * @dev: The device structure
1646 * @attr: The device attribute structure
1647 * @buf: The buffer containing the input data
1648 * @count: The size of the input data
1649 *
1650 * This function allows control over the 'enforce_isolation' feature, which
1651 * serializes access to the graphics engine. Writing '0' to disable, '1' to
1652 * enable isolation with cleaner shader, '2' to enable legacy isolation without
1653 * cleaner shader, or '3' to enable process isolation without submitting the
1654 * cleaner shader to the 'enforce_isolation' sysfs file sets the isolation mode
1655 * for each partition. The input should specify the setting for all
1656 * partitions.
1657 *
1658 * Return: The number of bytes written to the sysfs file.
1659 */
amdgpu_gfx_set_enforce_isolation(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1660 static ssize_t amdgpu_gfx_set_enforce_isolation(struct device *dev,
1661 struct device_attribute *attr,
1662 const char *buf, size_t count)
1663 {
1664 struct drm_device *ddev = dev_get_drvdata(dev);
1665 struct amdgpu_device *adev = drm_to_adev(ddev);
1666 long partition_values[MAX_XCP] = {0};
1667 int ret, i, num_partitions;
1668 const char *input_buf = buf;
1669
1670 for (i = 0; i < (adev->xcp_mgr ? adev->xcp_mgr->num_xcps : 1); i++) {
1671 ret = sscanf(input_buf, "%ld", &partition_values[i]);
1672 if (ret <= 0)
1673 break;
1674
1675 /* Move the pointer to the next value in the string */
1676 input_buf = strchr(input_buf, ' ');
1677 if (input_buf) {
1678 input_buf++;
1679 } else {
1680 i++;
1681 break;
1682 }
1683 }
1684 num_partitions = i;
1685
1686 if (adev->xcp_mgr && num_partitions != adev->xcp_mgr->num_xcps)
1687 return -EINVAL;
1688
1689 if (!adev->xcp_mgr && num_partitions != 1)
1690 return -EINVAL;
1691
1692 for (i = 0; i < num_partitions; i++) {
1693 if (partition_values[i] != 0 &&
1694 partition_values[i] != 1 &&
1695 partition_values[i] != 2 &&
1696 partition_values[i] != 3)
1697 return -EINVAL;
1698 }
1699
1700 mutex_lock(&adev->enforce_isolation_mutex);
1701 for (i = 0; i < num_partitions; i++) {
1702 switch (partition_values[i]) {
1703 case 0:
1704 default:
1705 adev->enforce_isolation[i] = AMDGPU_ENFORCE_ISOLATION_DISABLE;
1706 break;
1707 case 1:
1708 adev->enforce_isolation[i] =
1709 AMDGPU_ENFORCE_ISOLATION_ENABLE;
1710 break;
1711 case 2:
1712 adev->enforce_isolation[i] =
1713 AMDGPU_ENFORCE_ISOLATION_ENABLE_LEGACY;
1714 break;
1715 case 3:
1716 adev->enforce_isolation[i] =
1717 AMDGPU_ENFORCE_ISOLATION_NO_CLEANER_SHADER;
1718 break;
1719 }
1720 }
1721 mutex_unlock(&adev->enforce_isolation_mutex);
1722
1723 amdgpu_mes_update_enforce_isolation(adev);
1724
1725 return count;
1726 }
1727
amdgpu_gfx_get_gfx_reset_mask(struct device * dev,struct device_attribute * attr,char * buf)1728 static ssize_t amdgpu_gfx_get_gfx_reset_mask(struct device *dev,
1729 struct device_attribute *attr,
1730 char *buf)
1731 {
1732 struct drm_device *ddev = dev_get_drvdata(dev);
1733 struct amdgpu_device *adev = drm_to_adev(ddev);
1734
1735 if (!adev)
1736 return -ENODEV;
1737
1738 return amdgpu_show_reset_mask(buf, adev->gfx.gfx_supported_reset);
1739 }
1740
amdgpu_gfx_get_compute_reset_mask(struct device * dev,struct device_attribute * attr,char * buf)1741 static ssize_t amdgpu_gfx_get_compute_reset_mask(struct device *dev,
1742 struct device_attribute *attr,
1743 char *buf)
1744 {
1745 struct drm_device *ddev = dev_get_drvdata(dev);
1746 struct amdgpu_device *adev = drm_to_adev(ddev);
1747
1748 if (!adev)
1749 return -ENODEV;
1750
1751 return amdgpu_show_reset_mask(buf, adev->gfx.compute_supported_reset);
1752 }
1753
1754 static DEVICE_ATTR(run_cleaner_shader, 0200,
1755 NULL, amdgpu_gfx_set_run_cleaner_shader);
1756
1757 static DEVICE_ATTR(enforce_isolation, 0644,
1758 amdgpu_gfx_get_enforce_isolation,
1759 amdgpu_gfx_set_enforce_isolation);
1760
1761 static DEVICE_ATTR(current_compute_partition, 0644,
1762 amdgpu_gfx_get_current_compute_partition,
1763 amdgpu_gfx_set_compute_partition);
1764
1765 static DEVICE_ATTR(available_compute_partition, 0444,
1766 amdgpu_gfx_get_available_compute_partition, NULL);
1767 static DEVICE_ATTR(gfx_reset_mask, 0444,
1768 amdgpu_gfx_get_gfx_reset_mask, NULL);
1769
1770 static DEVICE_ATTR(compute_reset_mask, 0444,
1771 amdgpu_gfx_get_compute_reset_mask, NULL);
1772
amdgpu_gfx_sysfs_xcp_init(struct amdgpu_device * adev)1773 static int amdgpu_gfx_sysfs_xcp_init(struct amdgpu_device *adev)
1774 {
1775 struct amdgpu_xcp_mgr *xcp_mgr = adev->xcp_mgr;
1776 bool xcp_switch_supported;
1777 int r;
1778
1779 if (!xcp_mgr)
1780 return 0;
1781
1782 xcp_switch_supported =
1783 (xcp_mgr->funcs && xcp_mgr->funcs->switch_partition_mode);
1784
1785 if (!xcp_switch_supported)
1786 dev_attr_current_compute_partition.attr.mode &=
1787 ~(S_IWUSR | S_IWGRP | S_IWOTH);
1788
1789 r = device_create_file(adev->dev, &dev_attr_current_compute_partition);
1790 if (r)
1791 return r;
1792
1793 if (xcp_switch_supported)
1794 r = device_create_file(adev->dev,
1795 &dev_attr_available_compute_partition);
1796
1797 return r;
1798 }
1799
amdgpu_gfx_sysfs_xcp_fini(struct amdgpu_device * adev)1800 static void amdgpu_gfx_sysfs_xcp_fini(struct amdgpu_device *adev)
1801 {
1802 struct amdgpu_xcp_mgr *xcp_mgr = adev->xcp_mgr;
1803 bool xcp_switch_supported;
1804
1805 if (!xcp_mgr)
1806 return;
1807
1808 xcp_switch_supported =
1809 (xcp_mgr->funcs && xcp_mgr->funcs->switch_partition_mode);
1810 device_remove_file(adev->dev, &dev_attr_current_compute_partition);
1811
1812 if (xcp_switch_supported)
1813 device_remove_file(adev->dev,
1814 &dev_attr_available_compute_partition);
1815 }
1816
amdgpu_gfx_sysfs_isolation_shader_init(struct amdgpu_device * adev)1817 static int amdgpu_gfx_sysfs_isolation_shader_init(struct amdgpu_device *adev)
1818 {
1819 int r;
1820
1821 r = device_create_file(adev->dev, &dev_attr_enforce_isolation);
1822 if (r)
1823 return r;
1824 if (adev->gfx.enable_cleaner_shader)
1825 r = device_create_file(adev->dev, &dev_attr_run_cleaner_shader);
1826
1827 return r;
1828 }
1829
amdgpu_gfx_sysfs_isolation_shader_fini(struct amdgpu_device * adev)1830 static void amdgpu_gfx_sysfs_isolation_shader_fini(struct amdgpu_device *adev)
1831 {
1832 device_remove_file(adev->dev, &dev_attr_enforce_isolation);
1833 if (adev->gfx.enable_cleaner_shader)
1834 device_remove_file(adev->dev, &dev_attr_run_cleaner_shader);
1835 }
1836
amdgpu_gfx_sysfs_reset_mask_init(struct amdgpu_device * adev)1837 static int amdgpu_gfx_sysfs_reset_mask_init(struct amdgpu_device *adev)
1838 {
1839 int r = 0;
1840
1841 if (!amdgpu_gpu_recovery)
1842 return r;
1843
1844 if (adev->gfx.num_gfx_rings) {
1845 r = device_create_file(adev->dev, &dev_attr_gfx_reset_mask);
1846 if (r)
1847 return r;
1848 }
1849
1850 if (adev->gfx.num_compute_rings) {
1851 r = device_create_file(adev->dev, &dev_attr_compute_reset_mask);
1852 if (r)
1853 return r;
1854 }
1855
1856 return r;
1857 }
1858
amdgpu_gfx_sysfs_reset_mask_fini(struct amdgpu_device * adev)1859 static void amdgpu_gfx_sysfs_reset_mask_fini(struct amdgpu_device *adev)
1860 {
1861 if (!amdgpu_gpu_recovery)
1862 return;
1863
1864 if (adev->gfx.num_gfx_rings)
1865 device_remove_file(adev->dev, &dev_attr_gfx_reset_mask);
1866
1867 if (adev->gfx.num_compute_rings)
1868 device_remove_file(adev->dev, &dev_attr_compute_reset_mask);
1869 }
1870
amdgpu_gfx_sysfs_init(struct amdgpu_device * adev)1871 int amdgpu_gfx_sysfs_init(struct amdgpu_device *adev)
1872 {
1873 int r;
1874
1875 r = amdgpu_gfx_sysfs_xcp_init(adev);
1876 if (r) {
1877 dev_err(adev->dev, "failed to create xcp sysfs files");
1878 return r;
1879 }
1880
1881 r = amdgpu_gfx_sysfs_isolation_shader_init(adev);
1882 if (r)
1883 dev_err(adev->dev, "failed to create isolation sysfs files");
1884
1885 r = amdgpu_gfx_sysfs_reset_mask_init(adev);
1886 if (r)
1887 dev_err(adev->dev, "failed to create reset mask sysfs files");
1888
1889 return r;
1890 }
1891
amdgpu_gfx_sysfs_fini(struct amdgpu_device * adev)1892 void amdgpu_gfx_sysfs_fini(struct amdgpu_device *adev)
1893 {
1894 if (adev->dev->kobj.sd) {
1895 amdgpu_gfx_sysfs_xcp_fini(adev);
1896 amdgpu_gfx_sysfs_isolation_shader_fini(adev);
1897 amdgpu_gfx_sysfs_reset_mask_fini(adev);
1898 }
1899 }
1900
amdgpu_gfx_cleaner_shader_sw_init(struct amdgpu_device * adev,unsigned int cleaner_shader_size)1901 int amdgpu_gfx_cleaner_shader_sw_init(struct amdgpu_device *adev,
1902 unsigned int cleaner_shader_size)
1903 {
1904 if (!adev->gfx.enable_cleaner_shader)
1905 return -EOPNOTSUPP;
1906
1907 return amdgpu_bo_create_kernel(adev, cleaner_shader_size, PAGE_SIZE,
1908 AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT,
1909 &adev->gfx.cleaner_shader_obj,
1910 &adev->gfx.cleaner_shader_gpu_addr,
1911 (void **)&adev->gfx.cleaner_shader_cpu_ptr);
1912 }
1913
amdgpu_gfx_cleaner_shader_sw_fini(struct amdgpu_device * adev)1914 void amdgpu_gfx_cleaner_shader_sw_fini(struct amdgpu_device *adev)
1915 {
1916 if (!adev->gfx.enable_cleaner_shader)
1917 return;
1918
1919 amdgpu_bo_free_kernel(&adev->gfx.cleaner_shader_obj,
1920 &adev->gfx.cleaner_shader_gpu_addr,
1921 (void **)&adev->gfx.cleaner_shader_cpu_ptr);
1922 }
1923
amdgpu_gfx_cleaner_shader_init(struct amdgpu_device * adev,unsigned int cleaner_shader_size,const void * cleaner_shader_ptr)1924 void amdgpu_gfx_cleaner_shader_init(struct amdgpu_device *adev,
1925 unsigned int cleaner_shader_size,
1926 const void *cleaner_shader_ptr)
1927 {
1928 if (!adev->gfx.enable_cleaner_shader)
1929 return;
1930
1931 if (adev->gfx.cleaner_shader_cpu_ptr && cleaner_shader_ptr)
1932 memcpy_toio(adev->gfx.cleaner_shader_cpu_ptr, cleaner_shader_ptr,
1933 cleaner_shader_size);
1934 }
1935
1936 /**
1937 * amdgpu_gfx_kfd_sch_ctrl - Control the KFD scheduler from the KGD (Graphics Driver)
1938 * @adev: amdgpu_device pointer
1939 * @idx: Index of the scheduler to control
1940 * @enable: Whether to enable or disable the KFD scheduler
1941 *
1942 * This function is used to control the KFD (Kernel Fusion Driver) scheduler
1943 * from the KGD. It is part of the cleaner shader feature. This function plays
1944 * a key role in enforcing process isolation on the GPU.
1945 *
1946 * The function uses a reference count mechanism (kfd_sch_req_count) to keep
1947 * track of the number of requests to enable the KFD scheduler. When a request
1948 * to enable the KFD scheduler is made, the reference count is decremented.
1949 * When the reference count reaches zero, a delayed work is scheduled to
1950 * enforce isolation after a delay of GFX_SLICE_PERIOD.
1951 *
1952 * When a request to disable the KFD scheduler is made, the function first
1953 * checks if the reference count is zero. If it is, it cancels the delayed work
1954 * for enforcing isolation and checks if the KFD scheduler is active. If the
1955 * KFD scheduler is active, it sends a request to stop the KFD scheduler and
1956 * sets the KFD scheduler state to inactive. Then, it increments the reference
1957 * count.
1958 *
1959 * The function is synchronized using the kfd_sch_mutex to ensure that the KFD
1960 * scheduler state and reference count are updated atomically.
1961 *
1962 * Note: If the reference count is already zero when a request to enable the
1963 * KFD scheduler is made, it means there's an imbalance bug somewhere. The
1964 * function triggers a warning in this case.
1965 */
amdgpu_gfx_kfd_sch_ctrl(struct amdgpu_device * adev,u32 idx,bool enable)1966 static void amdgpu_gfx_kfd_sch_ctrl(struct amdgpu_device *adev, u32 idx,
1967 bool enable)
1968 {
1969 mutex_lock(&adev->gfx.userq_sch_mutex);
1970
1971 if (enable) {
1972 /* If the count is already 0, it means there's an imbalance bug somewhere.
1973 * Note that the bug may be in a different caller than the one which triggers the
1974 * WARN_ON_ONCE.
1975 */
1976 if (WARN_ON_ONCE(adev->gfx.userq_sch_req_count[idx] == 0)) {
1977 dev_err(adev->dev, "Attempted to enable KFD scheduler when reference count is already zero\n");
1978 goto unlock;
1979 }
1980
1981 adev->gfx.userq_sch_req_count[idx]--;
1982
1983 if (adev->gfx.userq_sch_req_count[idx] == 0 &&
1984 adev->gfx.userq_sch_inactive[idx]) {
1985 schedule_delayed_work(&adev->gfx.enforce_isolation[idx].work,
1986 msecs_to_jiffies(adev->gfx.enforce_isolation_time[idx]));
1987 }
1988 } else {
1989 if (adev->gfx.userq_sch_req_count[idx] == 0) {
1990 cancel_delayed_work_sync(&adev->gfx.enforce_isolation[idx].work);
1991 if (!adev->gfx.userq_sch_inactive[idx]) {
1992 amdgpu_userq_stop_sched_for_enforce_isolation(adev, idx);
1993 if (adev->kfd.init_complete)
1994 amdgpu_amdkfd_stop_sched(adev, idx);
1995 adev->gfx.userq_sch_inactive[idx] = true;
1996 }
1997 }
1998
1999 adev->gfx.userq_sch_req_count[idx]++;
2000 }
2001
2002 unlock:
2003 mutex_unlock(&adev->gfx.userq_sch_mutex);
2004 }
2005
2006 /**
2007 * amdgpu_gfx_enforce_isolation_handler - work handler for enforcing shader isolation
2008 *
2009 * @work: work_struct.
2010 *
2011 * This function is the work handler for enforcing shader isolation on AMD GPUs.
2012 * It counts the number of emitted fences for each GFX and compute ring. If there
2013 * are any fences, it schedules the `enforce_isolation_work` to be run after a
2014 * delay of `GFX_SLICE_PERIOD`. If there are no fences, it signals the Kernel Fusion
2015 * Driver (KFD) to resume the runqueue. The function is synchronized using the
2016 * `enforce_isolation_mutex`.
2017 */
amdgpu_gfx_enforce_isolation_handler(struct work_struct * work)2018 void amdgpu_gfx_enforce_isolation_handler(struct work_struct *work)
2019 {
2020 struct amdgpu_isolation_work *isolation_work =
2021 container_of(work, struct amdgpu_isolation_work, work.work);
2022 struct amdgpu_device *adev = isolation_work->adev;
2023 u32 i, idx, fences = 0;
2024
2025 if (isolation_work->xcp_id == AMDGPU_XCP_NO_PARTITION)
2026 idx = 0;
2027 else
2028 idx = isolation_work->xcp_id;
2029
2030 if (idx >= MAX_XCP)
2031 return;
2032
2033 mutex_lock(&adev->enforce_isolation_mutex);
2034 for (i = 0; i < AMDGPU_MAX_GFX_RINGS; ++i) {
2035 if (isolation_work->xcp_id == adev->gfx.gfx_ring[i].xcp_id)
2036 fences += amdgpu_fence_count_emitted(&adev->gfx.gfx_ring[i]);
2037 }
2038 for (i = 0; i < (AMDGPU_MAX_COMPUTE_RINGS * AMDGPU_MAX_GC_INSTANCES); ++i) {
2039 if (isolation_work->xcp_id == adev->gfx.compute_ring[i].xcp_id)
2040 fences += amdgpu_fence_count_emitted(&adev->gfx.compute_ring[i]);
2041 }
2042 if (fences) {
2043 /* we've already had our timeslice, so let's wrap this up */
2044 schedule_delayed_work(&adev->gfx.enforce_isolation[idx].work,
2045 msecs_to_jiffies(1));
2046 } else {
2047 /* Tell KFD to resume the runqueue */
2048 WARN_ON_ONCE(!adev->gfx.userq_sch_inactive[idx]);
2049 WARN_ON_ONCE(adev->gfx.userq_sch_req_count[idx]);
2050
2051 amdgpu_userq_start_sched_for_enforce_isolation(adev, idx);
2052 if (adev->kfd.init_complete)
2053 amdgpu_amdkfd_start_sched(adev, idx);
2054 adev->gfx.userq_sch_inactive[idx] = false;
2055 }
2056 mutex_unlock(&adev->enforce_isolation_mutex);
2057 }
2058
2059 /**
2060 * amdgpu_gfx_enforce_isolation_wait_for_kfd - Manage KFD wait period for process isolation
2061 * @adev: amdgpu_device pointer
2062 * @idx: Index of the GPU partition
2063 *
2064 * When kernel submissions come in, the jobs are given a time slice and once
2065 * that time slice is up, if there are KFD user queues active, kernel
2066 * submissions are blocked until KFD has had its time slice. Once the KFD time
2067 * slice is up, KFD user queues are preempted and kernel submissions are
2068 * unblocked and allowed to run again.
2069 */
2070 static void
amdgpu_gfx_enforce_isolation_wait_for_kfd(struct amdgpu_device * adev,u32 idx)2071 amdgpu_gfx_enforce_isolation_wait_for_kfd(struct amdgpu_device *adev,
2072 u32 idx)
2073 {
2074 unsigned long cjiffies;
2075 bool wait = false;
2076
2077 mutex_lock(&adev->enforce_isolation_mutex);
2078 if (adev->enforce_isolation[idx] == AMDGPU_ENFORCE_ISOLATION_ENABLE) {
2079 /* set the initial values if nothing is set */
2080 if (!adev->gfx.enforce_isolation_jiffies[idx]) {
2081 adev->gfx.enforce_isolation_jiffies[idx] = jiffies;
2082 adev->gfx.enforce_isolation_time[idx] = GFX_SLICE_PERIOD_MS;
2083 }
2084 /* Make sure KFD gets a chance to run */
2085 if (amdgpu_amdkfd_compute_active(adev, idx)) {
2086 cjiffies = jiffies;
2087 if (time_after(cjiffies, adev->gfx.enforce_isolation_jiffies[idx])) {
2088 cjiffies -= adev->gfx.enforce_isolation_jiffies[idx];
2089 if ((jiffies_to_msecs(cjiffies) >= GFX_SLICE_PERIOD_MS)) {
2090 /* if our time is up, let KGD work drain before scheduling more */
2091 wait = true;
2092 /* reset the timer period */
2093 adev->gfx.enforce_isolation_time[idx] = GFX_SLICE_PERIOD_MS;
2094 } else {
2095 /* set the timer period to what's left in our time slice */
2096 adev->gfx.enforce_isolation_time[idx] =
2097 GFX_SLICE_PERIOD_MS - jiffies_to_msecs(cjiffies);
2098 }
2099 } else {
2100 /* if jiffies wrap around we will just wait a little longer */
2101 adev->gfx.enforce_isolation_jiffies[idx] = jiffies;
2102 }
2103 } else {
2104 /* if there is no KFD work, then set the full slice period */
2105 adev->gfx.enforce_isolation_jiffies[idx] = jiffies;
2106 adev->gfx.enforce_isolation_time[idx] = GFX_SLICE_PERIOD_MS;
2107 }
2108 }
2109 mutex_unlock(&adev->enforce_isolation_mutex);
2110
2111 if (wait)
2112 msleep(GFX_SLICE_PERIOD_MS);
2113 }
2114
2115 /**
2116 * amdgpu_gfx_enforce_isolation_ring_begin_use - Begin use of a ring with enforced isolation
2117 * @ring: Pointer to the amdgpu_ring structure
2118 *
2119 * Ring begin_use helper implementation for gfx which serializes access to the
2120 * gfx IP between kernel submission IOCTLs and KFD user queues when isolation
2121 * enforcement is enabled. The kernel submission IOCTLs and KFD user queues
2122 * each get a time slice when both are active.
2123 */
amdgpu_gfx_enforce_isolation_ring_begin_use(struct amdgpu_ring * ring)2124 void amdgpu_gfx_enforce_isolation_ring_begin_use(struct amdgpu_ring *ring)
2125 {
2126 struct amdgpu_device *adev = ring->adev;
2127 u32 idx;
2128 bool sched_work = false;
2129
2130 if (!adev->gfx.enable_cleaner_shader)
2131 return;
2132
2133 if (ring->xcp_id == AMDGPU_XCP_NO_PARTITION)
2134 idx = 0;
2135 else
2136 idx = ring->xcp_id;
2137
2138 if (idx >= MAX_XCP)
2139 return;
2140
2141 /* Don't submit more work until KFD has had some time */
2142 amdgpu_gfx_enforce_isolation_wait_for_kfd(adev, idx);
2143
2144 mutex_lock(&adev->enforce_isolation_mutex);
2145 if (adev->enforce_isolation[idx] == AMDGPU_ENFORCE_ISOLATION_ENABLE) {
2146 if (adev->kfd.init_complete)
2147 sched_work = true;
2148 }
2149 mutex_unlock(&adev->enforce_isolation_mutex);
2150
2151 if (sched_work)
2152 amdgpu_gfx_kfd_sch_ctrl(adev, idx, false);
2153 }
2154
2155 /**
2156 * amdgpu_gfx_enforce_isolation_ring_end_use - End use of a ring with enforced isolation
2157 * @ring: Pointer to the amdgpu_ring structure
2158 *
2159 * Ring end_use helper implementation for gfx which serializes access to the
2160 * gfx IP between kernel submission IOCTLs and KFD user queues when isolation
2161 * enforcement is enabled. The kernel submission IOCTLs and KFD user queues
2162 * each get a time slice when both are active.
2163 */
amdgpu_gfx_enforce_isolation_ring_end_use(struct amdgpu_ring * ring)2164 void amdgpu_gfx_enforce_isolation_ring_end_use(struct amdgpu_ring *ring)
2165 {
2166 struct amdgpu_device *adev = ring->adev;
2167 u32 idx;
2168 bool sched_work = false;
2169
2170 if (!adev->gfx.enable_cleaner_shader)
2171 return;
2172
2173 if (ring->xcp_id == AMDGPU_XCP_NO_PARTITION)
2174 idx = 0;
2175 else
2176 idx = ring->xcp_id;
2177
2178 if (idx >= MAX_XCP)
2179 return;
2180
2181 mutex_lock(&adev->enforce_isolation_mutex);
2182 if (adev->enforce_isolation[idx] == AMDGPU_ENFORCE_ISOLATION_ENABLE) {
2183 if (adev->kfd.init_complete)
2184 sched_work = true;
2185 }
2186 mutex_unlock(&adev->enforce_isolation_mutex);
2187
2188 if (sched_work)
2189 amdgpu_gfx_kfd_sch_ctrl(adev, idx, true);
2190 }
2191
amdgpu_gfx_profile_idle_work_handler(struct work_struct * work)2192 void amdgpu_gfx_profile_idle_work_handler(struct work_struct *work)
2193 {
2194 struct amdgpu_device *adev =
2195 container_of(work, struct amdgpu_device, gfx.idle_work.work);
2196 enum PP_SMC_POWER_PROFILE profile;
2197 u32 i, fences = 0;
2198 int r;
2199
2200 if (adev->gfx.num_gfx_rings)
2201 profile = PP_SMC_POWER_PROFILE_FULLSCREEN3D;
2202 else
2203 profile = PP_SMC_POWER_PROFILE_COMPUTE;
2204
2205 for (i = 0; i < AMDGPU_MAX_GFX_RINGS; ++i)
2206 fences += amdgpu_fence_count_emitted(&adev->gfx.gfx_ring[i]);
2207 for (i = 0; i < (AMDGPU_MAX_COMPUTE_RINGS * AMDGPU_MAX_GC_INSTANCES); ++i)
2208 fences += amdgpu_fence_count_emitted(&adev->gfx.compute_ring[i]);
2209 if (!fences && !atomic_read(&adev->gfx.total_submission_cnt)) {
2210 mutex_lock(&adev->gfx.workload_profile_mutex);
2211 if (adev->gfx.workload_profile_active) {
2212 r = amdgpu_dpm_switch_power_profile(adev, profile, false);
2213 if (r)
2214 dev_warn(adev->dev, "(%d) failed to disable %s power profile mode\n", r,
2215 profile == PP_SMC_POWER_PROFILE_FULLSCREEN3D ?
2216 "fullscreen 3D" : "compute");
2217 adev->gfx.workload_profile_active = false;
2218 }
2219 mutex_unlock(&adev->gfx.workload_profile_mutex);
2220 } else {
2221 schedule_delayed_work(&adev->gfx.idle_work, GFX_PROFILE_IDLE_TIMEOUT);
2222 }
2223 }
2224
amdgpu_gfx_profile_ring_begin_use(struct amdgpu_ring * ring)2225 void amdgpu_gfx_profile_ring_begin_use(struct amdgpu_ring *ring)
2226 {
2227 struct amdgpu_device *adev = ring->adev;
2228 enum PP_SMC_POWER_PROFILE profile;
2229 int r;
2230
2231 if (amdgpu_dpm_is_overdrive_enabled(adev))
2232 return;
2233
2234 if (adev->gfx.num_gfx_rings)
2235 profile = PP_SMC_POWER_PROFILE_FULLSCREEN3D;
2236 else
2237 profile = PP_SMC_POWER_PROFILE_COMPUTE;
2238
2239 atomic_inc(&adev->gfx.total_submission_cnt);
2240
2241 cancel_delayed_work_sync(&adev->gfx.idle_work);
2242
2243 /* We can safely return early here because we've cancelled the
2244 * the delayed work so there is no one else to set it to false
2245 * and we don't care if someone else sets it to true.
2246 */
2247 if (adev->gfx.workload_profile_active)
2248 return;
2249
2250 mutex_lock(&adev->gfx.workload_profile_mutex);
2251 if (!adev->gfx.workload_profile_active) {
2252 r = amdgpu_dpm_switch_power_profile(adev, profile, true);
2253 if (r)
2254 dev_warn(adev->dev, "(%d) failed to disable %s power profile mode\n", r,
2255 profile == PP_SMC_POWER_PROFILE_FULLSCREEN3D ?
2256 "fullscreen 3D" : "compute");
2257 adev->gfx.workload_profile_active = true;
2258 }
2259 mutex_unlock(&adev->gfx.workload_profile_mutex);
2260 }
2261
amdgpu_gfx_profile_ring_end_use(struct amdgpu_ring * ring)2262 void amdgpu_gfx_profile_ring_end_use(struct amdgpu_ring *ring)
2263 {
2264 struct amdgpu_device *adev = ring->adev;
2265
2266 if (amdgpu_dpm_is_overdrive_enabled(adev))
2267 return;
2268
2269 atomic_dec(&ring->adev->gfx.total_submission_cnt);
2270
2271 schedule_delayed_work(&ring->adev->gfx.idle_work, GFX_PROFILE_IDLE_TIMEOUT);
2272 }
2273
2274 /**
2275 * amdgpu_gfx_csb_preamble_start - Set CSB preamble start
2276 *
2277 * @buffer: This is an output variable that gets the PACKET3 preamble setup.
2278 *
2279 * Return:
2280 * return the latest index.
2281 */
amdgpu_gfx_csb_preamble_start(volatile u32 * buffer)2282 u32 amdgpu_gfx_csb_preamble_start(volatile u32 *buffer)
2283 {
2284 u32 count = 0;
2285
2286 buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0));
2287 buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_BEGIN_CLEAR_STATE);
2288
2289 buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CONTEXT_CONTROL, 1));
2290 buffer[count++] = cpu_to_le32(0x80000000);
2291 buffer[count++] = cpu_to_le32(0x80000000);
2292
2293 return count;
2294 }
2295
2296 /**
2297 * amdgpu_gfx_csb_data_parser - Parser CS data
2298 *
2299 * @adev: amdgpu_device pointer used to get the CS data and other gfx info.
2300 * @buffer: This is an output variable that gets the PACKET3 preamble end.
2301 * @count: Index to start set the preemble end.
2302 *
2303 * Return:
2304 * return the latest index.
2305 */
amdgpu_gfx_csb_data_parser(struct amdgpu_device * adev,volatile u32 * buffer,u32 count)2306 u32 amdgpu_gfx_csb_data_parser(struct amdgpu_device *adev, volatile u32 *buffer, u32 count)
2307 {
2308 const struct cs_section_def *sect = NULL;
2309 const struct cs_extent_def *ext = NULL;
2310 u32 i;
2311
2312 for (sect = adev->gfx.rlc.cs_data; sect->section != NULL; ++sect) {
2313 for (ext = sect->section; ext->extent != NULL; ++ext) {
2314 if (sect->id == SECT_CONTEXT) {
2315 buffer[count++] = cpu_to_le32(PACKET3(PACKET3_SET_CONTEXT_REG, ext->reg_count));
2316 buffer[count++] = cpu_to_le32(ext->reg_index - PACKET3_SET_CONTEXT_REG_START);
2317
2318 for (i = 0; i < ext->reg_count; i++)
2319 buffer[count++] = cpu_to_le32(ext->extent[i]);
2320 }
2321 }
2322 }
2323
2324 return count;
2325 }
2326
2327 /**
2328 * amdgpu_gfx_csb_preamble_end - Set CSB preamble end
2329 *
2330 * @buffer: This is an output variable that gets the PACKET3 preamble end.
2331 * @count: Index to start set the preemble end.
2332 */
amdgpu_gfx_csb_preamble_end(volatile u32 * buffer,u32 count)2333 void amdgpu_gfx_csb_preamble_end(volatile u32 *buffer, u32 count)
2334 {
2335 buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0));
2336 buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_END_CLEAR_STATE);
2337
2338 buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CLEAR_STATE, 0));
2339 buffer[count++] = cpu_to_le32(0);
2340 }
2341
2342 /*
2343 * debugfs for to enable/disable gfx job submission to specific core.
2344 */
2345 #if defined(CONFIG_DEBUG_FS)
amdgpu_debugfs_gfx_sched_mask_set(void * data,u64 val)2346 static int amdgpu_debugfs_gfx_sched_mask_set(void *data, u64 val)
2347 {
2348 struct amdgpu_device *adev = (struct amdgpu_device *)data;
2349 u32 i;
2350 u64 mask = 0;
2351 struct amdgpu_ring *ring;
2352
2353 if (!adev)
2354 return -ENODEV;
2355
2356 mask = (1ULL << adev->gfx.num_gfx_rings) - 1;
2357 if ((val & mask) == 0)
2358 return -EINVAL;
2359
2360 for (i = 0; i < adev->gfx.num_gfx_rings; ++i) {
2361 ring = &adev->gfx.gfx_ring[i];
2362 if (val & (1 << i))
2363 ring->sched.ready = true;
2364 else
2365 ring->sched.ready = false;
2366 }
2367 /* publish sched.ready flag update effective immediately across smp */
2368 smp_rmb();
2369 return 0;
2370 }
2371
amdgpu_debugfs_gfx_sched_mask_get(void * data,u64 * val)2372 static int amdgpu_debugfs_gfx_sched_mask_get(void *data, u64 *val)
2373 {
2374 struct amdgpu_device *adev = (struct amdgpu_device *)data;
2375 u32 i;
2376 u64 mask = 0;
2377 struct amdgpu_ring *ring;
2378
2379 if (!adev)
2380 return -ENODEV;
2381 for (i = 0; i < adev->gfx.num_gfx_rings; ++i) {
2382 ring = &adev->gfx.gfx_ring[i];
2383 if (ring->sched.ready)
2384 mask |= 1ULL << i;
2385 }
2386
2387 *val = mask;
2388 return 0;
2389 }
2390
2391 DEFINE_DEBUGFS_ATTRIBUTE(amdgpu_debugfs_gfx_sched_mask_fops,
2392 amdgpu_debugfs_gfx_sched_mask_get,
2393 amdgpu_debugfs_gfx_sched_mask_set, "%llx\n");
2394
2395 #endif
2396
amdgpu_debugfs_gfx_sched_mask_init(struct amdgpu_device * adev)2397 void amdgpu_debugfs_gfx_sched_mask_init(struct amdgpu_device *adev)
2398 {
2399 #if defined(CONFIG_DEBUG_FS)
2400 struct drm_minor *minor = adev_to_drm(adev)->primary;
2401 struct dentry *root = minor->debugfs_root;
2402 char name[32];
2403
2404 if (!(adev->gfx.num_gfx_rings > 1))
2405 return;
2406 sprintf(name, "amdgpu_gfx_sched_mask");
2407 debugfs_create_file(name, 0600, root, adev,
2408 &amdgpu_debugfs_gfx_sched_mask_fops);
2409 #endif
2410 }
2411
2412 /*
2413 * debugfs for to enable/disable compute job submission to specific core.
2414 */
2415 #if defined(CONFIG_DEBUG_FS)
amdgpu_debugfs_compute_sched_mask_set(void * data,u64 val)2416 static int amdgpu_debugfs_compute_sched_mask_set(void *data, u64 val)
2417 {
2418 struct amdgpu_device *adev = (struct amdgpu_device *)data;
2419 u32 i;
2420 u64 mask = 0;
2421 struct amdgpu_ring *ring;
2422
2423 if (!adev)
2424 return -ENODEV;
2425
2426 mask = (1ULL << adev->gfx.num_compute_rings) - 1;
2427 if ((val & mask) == 0)
2428 return -EINVAL;
2429
2430 for (i = 0; i < adev->gfx.num_compute_rings; ++i) {
2431 ring = &adev->gfx.compute_ring[i];
2432 if (val & (1 << i))
2433 ring->sched.ready = true;
2434 else
2435 ring->sched.ready = false;
2436 }
2437
2438 /* publish sched.ready flag update effective immediately across smp */
2439 smp_rmb();
2440 return 0;
2441 }
2442
amdgpu_debugfs_compute_sched_mask_get(void * data,u64 * val)2443 static int amdgpu_debugfs_compute_sched_mask_get(void *data, u64 *val)
2444 {
2445 struct amdgpu_device *adev = (struct amdgpu_device *)data;
2446 u32 i;
2447 u64 mask = 0;
2448 struct amdgpu_ring *ring;
2449
2450 if (!adev)
2451 return -ENODEV;
2452 for (i = 0; i < adev->gfx.num_compute_rings; ++i) {
2453 ring = &adev->gfx.compute_ring[i];
2454 if (ring->sched.ready)
2455 mask |= 1ULL << i;
2456 }
2457
2458 *val = mask;
2459 return 0;
2460 }
2461
2462 DEFINE_DEBUGFS_ATTRIBUTE(amdgpu_debugfs_compute_sched_mask_fops,
2463 amdgpu_debugfs_compute_sched_mask_get,
2464 amdgpu_debugfs_compute_sched_mask_set, "%llx\n");
2465
2466 #endif
2467
amdgpu_debugfs_compute_sched_mask_init(struct amdgpu_device * adev)2468 void amdgpu_debugfs_compute_sched_mask_init(struct amdgpu_device *adev)
2469 {
2470 #if defined(CONFIG_DEBUG_FS)
2471 struct drm_minor *minor = adev_to_drm(adev)->primary;
2472 struct dentry *root = minor->debugfs_root;
2473 char name[32];
2474
2475 if (!(adev->gfx.num_compute_rings > 1))
2476 return;
2477 sprintf(name, "amdgpu_compute_sched_mask");
2478 debugfs_create_file(name, 0600, root, adev,
2479 &amdgpu_debugfs_compute_sched_mask_fops);
2480 #endif
2481 }
2482