1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 */
25
26 #include <linux/firmware.h>
27 #include <linux/pm_runtime.h>
28
29 #include "amdgpu.h"
30 #include "amdgpu_gfx.h"
31 #include "amdgpu_rlc.h"
32 #include "amdgpu_ras.h"
33 #include "amdgpu_reset.h"
34 #include "amdgpu_xcp.h"
35 #include "amdgpu_xgmi.h"
36
37 /* delay 0.1 second to enable gfx off feature */
38 #define GFX_OFF_DELAY_ENABLE msecs_to_jiffies(100)
39
40 #define GFX_OFF_NO_DELAY 0
41
42 /*
43 * GPU GFX IP block helpers function.
44 */
45
amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device * adev,int mec,int pipe,int queue)46 int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec,
47 int pipe, int queue)
48 {
49 int bit = 0;
50
51 bit += mec * adev->gfx.mec.num_pipe_per_mec
52 * adev->gfx.mec.num_queue_per_pipe;
53 bit += pipe * adev->gfx.mec.num_queue_per_pipe;
54 bit += queue;
55
56 return bit;
57 }
58
amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device * adev,int bit,int * mec,int * pipe,int * queue)59 void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit,
60 int *mec, int *pipe, int *queue)
61 {
62 *queue = bit % adev->gfx.mec.num_queue_per_pipe;
63 *pipe = (bit / adev->gfx.mec.num_queue_per_pipe)
64 % adev->gfx.mec.num_pipe_per_mec;
65 *mec = (bit / adev->gfx.mec.num_queue_per_pipe)
66 / adev->gfx.mec.num_pipe_per_mec;
67
68 }
69
amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device * adev,int xcc_id,int mec,int pipe,int queue)70 bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev,
71 int xcc_id, int mec, int pipe, int queue)
72 {
73 return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue),
74 adev->gfx.mec_bitmap[xcc_id].queue_bitmap);
75 }
76
amdgpu_gfx_me_queue_to_bit(struct amdgpu_device * adev,int me,int pipe,int queue)77 int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev,
78 int me, int pipe, int queue)
79 {
80 int bit = 0;
81
82 bit += me * adev->gfx.me.num_pipe_per_me
83 * adev->gfx.me.num_queue_per_pipe;
84 bit += pipe * adev->gfx.me.num_queue_per_pipe;
85 bit += queue;
86
87 return bit;
88 }
89
amdgpu_gfx_bit_to_me_queue(struct amdgpu_device * adev,int bit,int * me,int * pipe,int * queue)90 void amdgpu_gfx_bit_to_me_queue(struct amdgpu_device *adev, int bit,
91 int *me, int *pipe, int *queue)
92 {
93 *queue = bit % adev->gfx.me.num_queue_per_pipe;
94 *pipe = (bit / adev->gfx.me.num_queue_per_pipe)
95 % adev->gfx.me.num_pipe_per_me;
96 *me = (bit / adev->gfx.me.num_queue_per_pipe)
97 / adev->gfx.me.num_pipe_per_me;
98 }
99
amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device * adev,int me,int pipe,int queue)100 bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev,
101 int me, int pipe, int queue)
102 {
103 return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue),
104 adev->gfx.me.queue_bitmap);
105 }
106
107 /**
108 * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter
109 *
110 * @mask: array in which the per-shader array disable masks will be stored
111 * @max_se: number of SEs
112 * @max_sh: number of SHs
113 *
114 * The bitmask of CUs to be disabled in the shader array determined by se and
115 * sh is stored in mask[se * max_sh + sh].
116 */
amdgpu_gfx_parse_disable_cu(unsigned int * mask,unsigned int max_se,unsigned int max_sh)117 void amdgpu_gfx_parse_disable_cu(unsigned int *mask, unsigned int max_se, unsigned int max_sh)
118 {
119 unsigned int se, sh, cu;
120 const char *p;
121
122 memset(mask, 0, sizeof(*mask) * max_se * max_sh);
123
124 if (!amdgpu_disable_cu || !*amdgpu_disable_cu)
125 return;
126
127 p = amdgpu_disable_cu;
128 for (;;) {
129 char *next;
130 int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu);
131
132 if (ret < 3) {
133 DRM_ERROR("amdgpu: could not parse disable_cu\n");
134 return;
135 }
136
137 if (se < max_se && sh < max_sh && cu < 16) {
138 DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu);
139 mask[se * max_sh + sh] |= 1u << cu;
140 } else {
141 DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n",
142 se, sh, cu);
143 }
144
145 next = strchr(p, ',');
146 if (!next)
147 break;
148 p = next + 1;
149 }
150 }
151
amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device * adev)152 static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev)
153 {
154 return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1;
155 }
156
amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device * adev)157 static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev)
158 {
159 if (amdgpu_compute_multipipe != -1) {
160 DRM_INFO("amdgpu: forcing compute pipe policy %d\n",
161 amdgpu_compute_multipipe);
162 return amdgpu_compute_multipipe == 1;
163 }
164
165 if (amdgpu_ip_version(adev, GC_HWIP, 0) > IP_VERSION(9, 0, 0))
166 return true;
167
168 /* FIXME: spreading the queues across pipes causes perf regressions
169 * on POLARIS11 compute workloads */
170 if (adev->asic_type == CHIP_POLARIS11)
171 return false;
172
173 return adev->gfx.mec.num_mec > 1;
174 }
175
amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device * adev,struct amdgpu_ring * ring)176 bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev,
177 struct amdgpu_ring *ring)
178 {
179 int queue = ring->queue;
180 int pipe = ring->pipe;
181
182 /* Policy: use pipe1 queue0 as high priority graphics queue if we
183 * have more than one gfx pipe.
184 */
185 if (amdgpu_gfx_is_graphics_multipipe_capable(adev) &&
186 adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) {
187 int me = ring->me;
188 int bit;
189
190 bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue);
191 if (ring == &adev->gfx.gfx_ring[bit])
192 return true;
193 }
194
195 return false;
196 }
197
amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device * adev,struct amdgpu_ring * ring)198 bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev,
199 struct amdgpu_ring *ring)
200 {
201 /* Policy: use 1st queue as high priority compute queue if we
202 * have more than one compute queue.
203 */
204 if (adev->gfx.num_compute_rings > 1 &&
205 ring == &adev->gfx.compute_ring[0])
206 return true;
207
208 return false;
209 }
210
amdgpu_gfx_compute_queue_acquire(struct amdgpu_device * adev)211 void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev)
212 {
213 int i, j, queue, pipe;
214 bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev);
215 int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec *
216 adev->gfx.mec.num_queue_per_pipe,
217 adev->gfx.num_compute_rings);
218 int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
219
220 if (multipipe_policy) {
221 /* policy: make queues evenly cross all pipes on MEC1 only
222 * for multiple xcc, just use the original policy for simplicity */
223 for (j = 0; j < num_xcc; j++) {
224 for (i = 0; i < max_queues_per_mec; i++) {
225 pipe = i % adev->gfx.mec.num_pipe_per_mec;
226 queue = (i / adev->gfx.mec.num_pipe_per_mec) %
227 adev->gfx.mec.num_queue_per_pipe;
228
229 set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue,
230 adev->gfx.mec_bitmap[j].queue_bitmap);
231 }
232 }
233 } else {
234 /* policy: amdgpu owns all queues in the given pipe */
235 for (j = 0; j < num_xcc; j++) {
236 for (i = 0; i < max_queues_per_mec; ++i)
237 set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap);
238 }
239 }
240
241 for (j = 0; j < num_xcc; j++) {
242 dev_dbg(adev->dev, "mec queue bitmap weight=%d\n",
243 bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES));
244 }
245 }
246
amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device * adev)247 void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev)
248 {
249 int i, queue, pipe;
250 bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev);
251 int max_queues_per_me = adev->gfx.me.num_pipe_per_me *
252 adev->gfx.me.num_queue_per_pipe;
253
254 if (multipipe_policy) {
255 /* policy: amdgpu owns the first queue per pipe at this stage
256 * will extend to mulitple queues per pipe later */
257 for (i = 0; i < max_queues_per_me; i++) {
258 pipe = i % adev->gfx.me.num_pipe_per_me;
259 queue = (i / adev->gfx.me.num_pipe_per_me) %
260 adev->gfx.me.num_queue_per_pipe;
261
262 set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue,
263 adev->gfx.me.queue_bitmap);
264 }
265 } else {
266 for (i = 0; i < max_queues_per_me; ++i)
267 set_bit(i, adev->gfx.me.queue_bitmap);
268 }
269
270 /* update the number of active graphics rings */
271 adev->gfx.num_gfx_rings =
272 bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES);
273 }
274
amdgpu_gfx_kiq_acquire(struct amdgpu_device * adev,struct amdgpu_ring * ring,int xcc_id)275 static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev,
276 struct amdgpu_ring *ring, int xcc_id)
277 {
278 int queue_bit;
279 int mec, pipe, queue;
280
281 queue_bit = adev->gfx.mec.num_mec
282 * adev->gfx.mec.num_pipe_per_mec
283 * adev->gfx.mec.num_queue_per_pipe;
284
285 while (--queue_bit >= 0) {
286 if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
287 continue;
288
289 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
290
291 /*
292 * 1. Using pipes 2/3 from MEC 2 seems cause problems.
293 * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN
294 * only can be issued on queue 0.
295 */
296 if ((mec == 1 && pipe > 1) || queue != 0)
297 continue;
298
299 ring->me = mec + 1;
300 ring->pipe = pipe;
301 ring->queue = queue;
302
303 return 0;
304 }
305
306 dev_err(adev->dev, "Failed to find a queue for KIQ\n");
307 return -EINVAL;
308 }
309
amdgpu_gfx_kiq_init_ring(struct amdgpu_device * adev,int xcc_id)310 int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev, int xcc_id)
311 {
312 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
313 struct amdgpu_irq_src *irq = &kiq->irq;
314 struct amdgpu_ring *ring = &kiq->ring;
315 int r = 0;
316
317 spin_lock_init(&kiq->ring_lock);
318
319 ring->adev = NULL;
320 ring->ring_obj = NULL;
321 ring->use_doorbell = true;
322 ring->xcc_id = xcc_id;
323 ring->vm_hub = AMDGPU_GFXHUB(xcc_id);
324 ring->doorbell_index =
325 (adev->doorbell_index.kiq +
326 xcc_id * adev->doorbell_index.xcc_doorbell_range)
327 << 1;
328
329 r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id);
330 if (r)
331 return r;
332
333 ring->eop_gpu_addr = kiq->eop_gpu_addr;
334 ring->no_scheduler = true;
335 snprintf(ring->name, sizeof(ring->name), "kiq_%hhu.%hhu.%hhu.%hhu",
336 (unsigned char)xcc_id, (unsigned char)ring->me,
337 (unsigned char)ring->pipe, (unsigned char)ring->queue);
338 r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0,
339 AMDGPU_RING_PRIO_DEFAULT, NULL);
340 if (r)
341 dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r);
342
343 return r;
344 }
345
amdgpu_gfx_kiq_free_ring(struct amdgpu_ring * ring)346 void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring)
347 {
348 amdgpu_ring_fini(ring);
349 }
350
amdgpu_gfx_kiq_fini(struct amdgpu_device * adev,int xcc_id)351 void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id)
352 {
353 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
354
355 amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL);
356 }
357
amdgpu_gfx_kiq_init(struct amdgpu_device * adev,unsigned int hpd_size,int xcc_id)358 int amdgpu_gfx_kiq_init(struct amdgpu_device *adev,
359 unsigned int hpd_size, int xcc_id)
360 {
361 int r;
362 u32 *hpd;
363 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
364
365 r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE,
366 AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj,
367 &kiq->eop_gpu_addr, (void **)&hpd);
368 if (r) {
369 dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r);
370 return r;
371 }
372
373 memset(hpd, 0, hpd_size);
374
375 r = amdgpu_bo_reserve(kiq->eop_obj, true);
376 if (unlikely(r != 0))
377 dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r);
378 amdgpu_bo_kunmap(kiq->eop_obj);
379 amdgpu_bo_unreserve(kiq->eop_obj);
380
381 return 0;
382 }
383
384 /* create MQD for each compute/gfx queue */
amdgpu_gfx_mqd_sw_init(struct amdgpu_device * adev,unsigned int mqd_size,int xcc_id)385 int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev,
386 unsigned int mqd_size, int xcc_id)
387 {
388 int r, i, j;
389 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
390 struct amdgpu_ring *ring = &kiq->ring;
391 u32 domain = AMDGPU_GEM_DOMAIN_GTT;
392
393 #if !defined(CONFIG_ARM) && !defined(CONFIG_ARM64)
394 /* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */
395 if (amdgpu_ip_version(adev, GC_HWIP, 0) >= IP_VERSION(10, 0, 0))
396 domain |= AMDGPU_GEM_DOMAIN_VRAM;
397 #endif
398
399 /* create MQD for KIQ */
400 if (!adev->enable_mes_kiq && !ring->mqd_obj) {
401 /* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must
402 * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD
403 * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for
404 * KIQ MQD no matter SRIOV or Bare-metal
405 */
406 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
407 AMDGPU_GEM_DOMAIN_VRAM |
408 AMDGPU_GEM_DOMAIN_GTT,
409 &ring->mqd_obj,
410 &ring->mqd_gpu_addr,
411 &ring->mqd_ptr);
412 if (r) {
413 dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r);
414 return r;
415 }
416
417 /* prepare MQD backup */
418 kiq->mqd_backup = kmalloc(mqd_size, GFP_KERNEL);
419 if (!kiq->mqd_backup) {
420 dev_warn(adev->dev,
421 "no memory to create MQD backup for ring %s\n", ring->name);
422 return -ENOMEM;
423 }
424 }
425
426 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
427 /* create MQD for each KGQ */
428 for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
429 ring = &adev->gfx.gfx_ring[i];
430 if (!ring->mqd_obj) {
431 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
432 domain, &ring->mqd_obj,
433 &ring->mqd_gpu_addr, &ring->mqd_ptr);
434 if (r) {
435 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
436 return r;
437 }
438
439 ring->mqd_size = mqd_size;
440 /* prepare MQD backup */
441 adev->gfx.me.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL);
442 if (!adev->gfx.me.mqd_backup[i]) {
443 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
444 return -ENOMEM;
445 }
446 }
447 }
448 }
449
450 /* create MQD for each KCQ */
451 for (i = 0; i < adev->gfx.num_compute_rings; i++) {
452 j = i + xcc_id * adev->gfx.num_compute_rings;
453 ring = &adev->gfx.compute_ring[j];
454 if (!ring->mqd_obj) {
455 r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
456 domain, &ring->mqd_obj,
457 &ring->mqd_gpu_addr, &ring->mqd_ptr);
458 if (r) {
459 dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
460 return r;
461 }
462
463 ring->mqd_size = mqd_size;
464 /* prepare MQD backup */
465 adev->gfx.mec.mqd_backup[j] = kmalloc(mqd_size, GFP_KERNEL);
466 if (!adev->gfx.mec.mqd_backup[j]) {
467 dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
468 return -ENOMEM;
469 }
470 }
471 }
472
473 return 0;
474 }
475
amdgpu_gfx_mqd_sw_fini(struct amdgpu_device * adev,int xcc_id)476 void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id)
477 {
478 struct amdgpu_ring *ring = NULL;
479 int i, j;
480 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
481
482 if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
483 for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
484 ring = &adev->gfx.gfx_ring[i];
485 kfree(adev->gfx.me.mqd_backup[i]);
486 amdgpu_bo_free_kernel(&ring->mqd_obj,
487 &ring->mqd_gpu_addr,
488 &ring->mqd_ptr);
489 }
490 }
491
492 for (i = 0; i < adev->gfx.num_compute_rings; i++) {
493 j = i + xcc_id * adev->gfx.num_compute_rings;
494 ring = &adev->gfx.compute_ring[j];
495 kfree(adev->gfx.mec.mqd_backup[j]);
496 amdgpu_bo_free_kernel(&ring->mqd_obj,
497 &ring->mqd_gpu_addr,
498 &ring->mqd_ptr);
499 }
500
501 ring = &kiq->ring;
502 kfree(kiq->mqd_backup);
503 amdgpu_bo_free_kernel(&ring->mqd_obj,
504 &ring->mqd_gpu_addr,
505 &ring->mqd_ptr);
506 }
507
amdgpu_gfx_disable_kcq(struct amdgpu_device * adev,int xcc_id)508 int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id)
509 {
510 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
511 struct amdgpu_ring *kiq_ring = &kiq->ring;
512 int i, r = 0;
513 int j;
514
515 if (adev->enable_mes) {
516 for (i = 0; i < adev->gfx.num_compute_rings; i++) {
517 j = i + xcc_id * adev->gfx.num_compute_rings;
518 amdgpu_mes_unmap_legacy_queue(adev,
519 &adev->gfx.compute_ring[j],
520 RESET_QUEUES, 0, 0);
521 }
522 return 0;
523 }
524
525 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
526 return -EINVAL;
527
528 spin_lock(&kiq->ring_lock);
529 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
530 adev->gfx.num_compute_rings)) {
531 spin_unlock(&kiq->ring_lock);
532 return -ENOMEM;
533 }
534
535 for (i = 0; i < adev->gfx.num_compute_rings; i++) {
536 j = i + xcc_id * adev->gfx.num_compute_rings;
537 kiq->pmf->kiq_unmap_queues(kiq_ring,
538 &adev->gfx.compute_ring[j],
539 RESET_QUEUES, 0, 0);
540 }
541
542 /**
543 * This is workaround: only skip kiq_ring test
544 * during ras recovery in suspend stage for gfx9.4.3
545 */
546 if ((amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3) ||
547 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 4)) &&
548 amdgpu_ras_in_recovery(adev)) {
549 spin_unlock(&kiq->ring_lock);
550 return 0;
551 }
552
553 if (kiq_ring->sched.ready && !adev->job_hang)
554 r = amdgpu_ring_test_helper(kiq_ring);
555 spin_unlock(&kiq->ring_lock);
556
557 return r;
558 }
559
amdgpu_gfx_disable_kgq(struct amdgpu_device * adev,int xcc_id)560 int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id)
561 {
562 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
563 struct amdgpu_ring *kiq_ring = &kiq->ring;
564 int i, r = 0;
565 int j;
566
567 if (adev->enable_mes) {
568 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
569 for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
570 j = i + xcc_id * adev->gfx.num_gfx_rings;
571 amdgpu_mes_unmap_legacy_queue(adev,
572 &adev->gfx.gfx_ring[j],
573 PREEMPT_QUEUES, 0, 0);
574 }
575 }
576 return 0;
577 }
578
579 if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
580 return -EINVAL;
581
582 spin_lock(&kiq->ring_lock);
583 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
584 if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
585 adev->gfx.num_gfx_rings)) {
586 spin_unlock(&kiq->ring_lock);
587 return -ENOMEM;
588 }
589
590 for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
591 j = i + xcc_id * adev->gfx.num_gfx_rings;
592 kiq->pmf->kiq_unmap_queues(kiq_ring,
593 &adev->gfx.gfx_ring[j],
594 PREEMPT_QUEUES, 0, 0);
595 }
596 }
597
598 if (adev->gfx.kiq[0].ring.sched.ready && !adev->job_hang)
599 r = amdgpu_ring_test_helper(kiq_ring);
600 spin_unlock(&kiq->ring_lock);
601
602 return r;
603 }
604
amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device * adev,int queue_bit)605 int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev,
606 int queue_bit)
607 {
608 int mec, pipe, queue;
609 int set_resource_bit = 0;
610
611 amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
612
613 set_resource_bit = mec * 4 * 8 + pipe * 8 + queue;
614
615 return set_resource_bit;
616 }
617
amdgpu_gfx_mes_enable_kcq(struct amdgpu_device * adev,int xcc_id)618 static int amdgpu_gfx_mes_enable_kcq(struct amdgpu_device *adev, int xcc_id)
619 {
620 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
621 struct amdgpu_ring *kiq_ring = &kiq->ring;
622 uint64_t queue_mask = ~0ULL;
623 int r, i, j;
624
625 amdgpu_device_flush_hdp(adev, NULL);
626
627 if (!adev->enable_uni_mes) {
628 spin_lock(&kiq->ring_lock);
629 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->set_resources_size);
630 if (r) {
631 dev_err(adev->dev, "Failed to lock KIQ (%d).\n", r);
632 spin_unlock(&kiq->ring_lock);
633 return r;
634 }
635
636 kiq->pmf->kiq_set_resources(kiq_ring, queue_mask);
637 r = amdgpu_ring_test_helper(kiq_ring);
638 spin_unlock(&kiq->ring_lock);
639 if (r)
640 dev_err(adev->dev, "KIQ failed to set resources\n");
641 }
642
643 for (i = 0; i < adev->gfx.num_compute_rings; i++) {
644 j = i + xcc_id * adev->gfx.num_compute_rings;
645 r = amdgpu_mes_map_legacy_queue(adev,
646 &adev->gfx.compute_ring[j]);
647 if (r) {
648 dev_err(adev->dev, "failed to map compute queue\n");
649 return r;
650 }
651 }
652
653 return 0;
654 }
655
amdgpu_gfx_enable_kcq(struct amdgpu_device * adev,int xcc_id)656 int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id)
657 {
658 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
659 struct amdgpu_ring *kiq_ring = &kiq->ring;
660 uint64_t queue_mask = 0;
661 int r, i, j;
662
663 if (adev->mes.enable_legacy_queue_map)
664 return amdgpu_gfx_mes_enable_kcq(adev, xcc_id);
665
666 if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources)
667 return -EINVAL;
668
669 for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) {
670 if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap))
671 continue;
672
673 /* This situation may be hit in the future if a new HW
674 * generation exposes more than 64 queues. If so, the
675 * definition of queue_mask needs updating */
676 if (WARN_ON(i > (sizeof(queue_mask)*8))) {
677 DRM_ERROR("Invalid KCQ enabled: %d\n", i);
678 break;
679 }
680
681 queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i));
682 }
683
684 amdgpu_device_flush_hdp(adev, NULL);
685
686 DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe,
687 kiq_ring->queue);
688
689 spin_lock(&kiq->ring_lock);
690 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
691 adev->gfx.num_compute_rings +
692 kiq->pmf->set_resources_size);
693 if (r) {
694 DRM_ERROR("Failed to lock KIQ (%d).\n", r);
695 spin_unlock(&kiq->ring_lock);
696 return r;
697 }
698
699 kiq->pmf->kiq_set_resources(kiq_ring, queue_mask);
700 for (i = 0; i < adev->gfx.num_compute_rings; i++) {
701 j = i + xcc_id * adev->gfx.num_compute_rings;
702 kiq->pmf->kiq_map_queues(kiq_ring,
703 &adev->gfx.compute_ring[j]);
704 }
705
706 r = amdgpu_ring_test_helper(kiq_ring);
707 spin_unlock(&kiq->ring_lock);
708 if (r)
709 DRM_ERROR("KCQ enable failed\n");
710
711 return r;
712 }
713
amdgpu_gfx_enable_kgq(struct amdgpu_device * adev,int xcc_id)714 int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id)
715 {
716 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
717 struct amdgpu_ring *kiq_ring = &kiq->ring;
718 int r, i, j;
719
720 if (!kiq->pmf || !kiq->pmf->kiq_map_queues)
721 return -EINVAL;
722
723 amdgpu_device_flush_hdp(adev, NULL);
724
725 if (adev->mes.enable_legacy_queue_map) {
726 for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
727 j = i + xcc_id * adev->gfx.num_gfx_rings;
728 r = amdgpu_mes_map_legacy_queue(adev,
729 &adev->gfx.gfx_ring[j]);
730 if (r) {
731 DRM_ERROR("failed to map gfx queue\n");
732 return r;
733 }
734 }
735
736 return 0;
737 }
738
739 spin_lock(&kiq->ring_lock);
740 /* No need to map kcq on the slave */
741 if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) {
742 r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
743 adev->gfx.num_gfx_rings);
744 if (r) {
745 DRM_ERROR("Failed to lock KIQ (%d).\n", r);
746 spin_unlock(&kiq->ring_lock);
747 return r;
748 }
749
750 for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
751 j = i + xcc_id * adev->gfx.num_gfx_rings;
752 kiq->pmf->kiq_map_queues(kiq_ring,
753 &adev->gfx.gfx_ring[j]);
754 }
755 }
756
757 r = amdgpu_ring_test_helper(kiq_ring);
758 spin_unlock(&kiq->ring_lock);
759 if (r)
760 DRM_ERROR("KGQ enable failed\n");
761
762 return r;
763 }
764
765 /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable
766 *
767 * @adev: amdgpu_device pointer
768 * @bool enable true: enable gfx off feature, false: disable gfx off feature
769 *
770 * 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled.
771 * 2. other client can send request to disable gfx off feature, the request should be honored.
772 * 3. other client can cancel their request of disable gfx off feature
773 * 4. other client should not send request to enable gfx off feature before disable gfx off feature.
774 */
775
amdgpu_gfx_off_ctrl(struct amdgpu_device * adev,bool enable)776 void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable)
777 {
778 unsigned long delay = GFX_OFF_DELAY_ENABLE;
779
780 if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
781 return;
782
783 mutex_lock(&adev->gfx.gfx_off_mutex);
784
785 if (enable) {
786 /* If the count is already 0, it means there's an imbalance bug somewhere.
787 * Note that the bug may be in a different caller than the one which triggers the
788 * WARN_ON_ONCE.
789 */
790 if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0))
791 goto unlock;
792
793 adev->gfx.gfx_off_req_count--;
794
795 if (adev->gfx.gfx_off_req_count == 0 &&
796 !adev->gfx.gfx_off_state) {
797 /* If going to s2idle, no need to wait */
798 if (adev->in_s0ix) {
799 if (!amdgpu_dpm_set_powergating_by_smu(adev,
800 AMD_IP_BLOCK_TYPE_GFX, true))
801 adev->gfx.gfx_off_state = true;
802 } else {
803 schedule_delayed_work(&adev->gfx.gfx_off_delay_work,
804 delay);
805 }
806 }
807 } else {
808 if (adev->gfx.gfx_off_req_count == 0) {
809 cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work);
810
811 if (adev->gfx.gfx_off_state &&
812 !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false)) {
813 adev->gfx.gfx_off_state = false;
814
815 if (adev->gfx.funcs->init_spm_golden) {
816 dev_dbg(adev->dev,
817 "GFXOFF is disabled, re-init SPM golden settings\n");
818 amdgpu_gfx_init_spm_golden(adev);
819 }
820 }
821 }
822
823 adev->gfx.gfx_off_req_count++;
824 }
825
826 unlock:
827 mutex_unlock(&adev->gfx.gfx_off_mutex);
828 }
829
amdgpu_set_gfx_off_residency(struct amdgpu_device * adev,bool value)830 int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value)
831 {
832 int r = 0;
833
834 mutex_lock(&adev->gfx.gfx_off_mutex);
835
836 r = amdgpu_dpm_set_residency_gfxoff(adev, value);
837
838 mutex_unlock(&adev->gfx.gfx_off_mutex);
839
840 return r;
841 }
842
amdgpu_get_gfx_off_residency(struct amdgpu_device * adev,u32 * value)843 int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value)
844 {
845 int r = 0;
846
847 mutex_lock(&adev->gfx.gfx_off_mutex);
848
849 r = amdgpu_dpm_get_residency_gfxoff(adev, value);
850
851 mutex_unlock(&adev->gfx.gfx_off_mutex);
852
853 return r;
854 }
855
amdgpu_get_gfx_off_entrycount(struct amdgpu_device * adev,u64 * value)856 int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value)
857 {
858 int r = 0;
859
860 mutex_lock(&adev->gfx.gfx_off_mutex);
861
862 r = amdgpu_dpm_get_entrycount_gfxoff(adev, value);
863
864 mutex_unlock(&adev->gfx.gfx_off_mutex);
865
866 return r;
867 }
868
amdgpu_get_gfx_off_status(struct amdgpu_device * adev,uint32_t * value)869 int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value)
870 {
871
872 int r = 0;
873
874 mutex_lock(&adev->gfx.gfx_off_mutex);
875
876 r = amdgpu_dpm_get_status_gfxoff(adev, value);
877
878 mutex_unlock(&adev->gfx.gfx_off_mutex);
879
880 return r;
881 }
882
amdgpu_gfx_ras_late_init(struct amdgpu_device * adev,struct ras_common_if * ras_block)883 int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block)
884 {
885 int r;
886
887 if (amdgpu_ras_is_supported(adev, ras_block->block)) {
888 if (!amdgpu_persistent_edc_harvesting_supported(adev)) {
889 r = amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX);
890 if (r)
891 return r;
892 }
893
894 r = amdgpu_ras_block_late_init(adev, ras_block);
895 if (r)
896 return r;
897
898 if (adev->gfx.cp_ecc_error_irq.funcs) {
899 r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0);
900 if (r)
901 goto late_fini;
902 }
903 } else {
904 amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0);
905 }
906
907 return 0;
908 late_fini:
909 amdgpu_ras_block_late_fini(adev, ras_block);
910 return r;
911 }
912
amdgpu_gfx_ras_sw_init(struct amdgpu_device * adev)913 int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev)
914 {
915 int err = 0;
916 struct amdgpu_gfx_ras *ras = NULL;
917
918 /* adev->gfx.ras is NULL, which means gfx does not
919 * support ras function, then do nothing here.
920 */
921 if (!adev->gfx.ras)
922 return 0;
923
924 ras = adev->gfx.ras;
925
926 err = amdgpu_ras_register_ras_block(adev, &ras->ras_block);
927 if (err) {
928 dev_err(adev->dev, "Failed to register gfx ras block!\n");
929 return err;
930 }
931
932 strcpy(ras->ras_block.ras_comm.name, "gfx");
933 ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX;
934 ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE;
935 adev->gfx.ras_if = &ras->ras_block.ras_comm;
936
937 /* If not define special ras_late_init function, use gfx default ras_late_init */
938 if (!ras->ras_block.ras_late_init)
939 ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init;
940
941 /* If not defined special ras_cb function, use default ras_cb */
942 if (!ras->ras_block.ras_cb)
943 ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb;
944
945 return 0;
946 }
947
amdgpu_gfx_poison_consumption_handler(struct amdgpu_device * adev,struct amdgpu_iv_entry * entry)948 int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev,
949 struct amdgpu_iv_entry *entry)
950 {
951 if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler)
952 return adev->gfx.ras->poison_consumption_handler(adev, entry);
953
954 return 0;
955 }
956
amdgpu_gfx_process_ras_data_cb(struct amdgpu_device * adev,void * err_data,struct amdgpu_iv_entry * entry)957 int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev,
958 void *err_data,
959 struct amdgpu_iv_entry *entry)
960 {
961 /* TODO ue will trigger an interrupt.
962 *
963 * When “Full RAS” is enabled, the per-IP interrupt sources should
964 * be disabled and the driver should only look for the aggregated
965 * interrupt via sync flood
966 */
967 if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) {
968 kgd2kfd_set_sram_ecc_flag(adev->kfd.dev);
969 if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops &&
970 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count)
971 adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data);
972 amdgpu_ras_reset_gpu(adev);
973 }
974 return AMDGPU_RAS_SUCCESS;
975 }
976
amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device * adev,struct amdgpu_irq_src * source,struct amdgpu_iv_entry * entry)977 int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev,
978 struct amdgpu_irq_src *source,
979 struct amdgpu_iv_entry *entry)
980 {
981 struct ras_common_if *ras_if = adev->gfx.ras_if;
982 struct ras_dispatch_if ih_data = {
983 .entry = entry,
984 };
985
986 if (!ras_if)
987 return 0;
988
989 ih_data.head = *ras_if;
990
991 DRM_ERROR("CP ECC ERROR IRQ\n");
992 amdgpu_ras_interrupt_dispatch(adev, &ih_data);
993 return 0;
994 }
995
amdgpu_gfx_ras_error_func(struct amdgpu_device * adev,void * ras_error_status,void (* func)(struct amdgpu_device * adev,void * ras_error_status,int xcc_id))996 void amdgpu_gfx_ras_error_func(struct amdgpu_device *adev,
997 void *ras_error_status,
998 void (*func)(struct amdgpu_device *adev, void *ras_error_status,
999 int xcc_id))
1000 {
1001 int i;
1002 int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1;
1003 uint32_t xcc_mask = GENMASK(num_xcc - 1, 0);
1004 struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
1005
1006 if (err_data) {
1007 err_data->ue_count = 0;
1008 err_data->ce_count = 0;
1009 }
1010
1011 for_each_inst(i, xcc_mask)
1012 func(adev, ras_error_status, i);
1013 }
1014
amdgpu_kiq_rreg(struct amdgpu_device * adev,uint32_t reg,uint32_t xcc_id)1015 uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg, uint32_t xcc_id)
1016 {
1017 signed long r, cnt = 0;
1018 unsigned long flags;
1019 uint32_t seq, reg_val_offs = 0, value = 0;
1020 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
1021 struct amdgpu_ring *ring = &kiq->ring;
1022
1023 if (amdgpu_device_skip_hw_access(adev))
1024 return 0;
1025
1026 if (adev->mes.ring[0].sched.ready)
1027 return amdgpu_mes_rreg(adev, reg);
1028
1029 BUG_ON(!ring->funcs->emit_rreg);
1030
1031 spin_lock_irqsave(&kiq->ring_lock, flags);
1032 if (amdgpu_device_wb_get(adev, ®_val_offs)) {
1033 pr_err("critical bug! too many kiq readers\n");
1034 goto failed_unlock;
1035 }
1036 r = amdgpu_ring_alloc(ring, 32);
1037 if (r)
1038 goto failed_unlock;
1039
1040 amdgpu_ring_emit_rreg(ring, reg, reg_val_offs);
1041 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
1042 if (r)
1043 goto failed_undo;
1044
1045 amdgpu_ring_commit(ring);
1046 spin_unlock_irqrestore(&kiq->ring_lock, flags);
1047
1048 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1049
1050 /* don't wait anymore for gpu reset case because this way may
1051 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
1052 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
1053 * never return if we keep waiting in virt_kiq_rreg, which cause
1054 * gpu_recover() hang there.
1055 *
1056 * also don't wait anymore for IRQ context
1057 * */
1058 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
1059 goto failed_kiq_read;
1060
1061 might_sleep();
1062 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
1063 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
1064 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1065 }
1066
1067 if (cnt > MAX_KIQ_REG_TRY)
1068 goto failed_kiq_read;
1069
1070 mb();
1071 value = adev->wb.wb[reg_val_offs];
1072 amdgpu_device_wb_free(adev, reg_val_offs);
1073 return value;
1074
1075 failed_undo:
1076 amdgpu_ring_undo(ring);
1077 failed_unlock:
1078 spin_unlock_irqrestore(&kiq->ring_lock, flags);
1079 failed_kiq_read:
1080 if (reg_val_offs)
1081 amdgpu_device_wb_free(adev, reg_val_offs);
1082 dev_err(adev->dev, "failed to read reg:%x\n", reg);
1083 return ~0;
1084 }
1085
amdgpu_kiq_wreg(struct amdgpu_device * adev,uint32_t reg,uint32_t v,uint32_t xcc_id)1086 void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v, uint32_t xcc_id)
1087 {
1088 signed long r, cnt = 0;
1089 unsigned long flags;
1090 uint32_t seq;
1091 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id];
1092 struct amdgpu_ring *ring = &kiq->ring;
1093
1094 BUG_ON(!ring->funcs->emit_wreg);
1095
1096 if (amdgpu_device_skip_hw_access(adev))
1097 return;
1098
1099 if (adev->mes.ring[0].sched.ready) {
1100 amdgpu_mes_wreg(adev, reg, v);
1101 return;
1102 }
1103
1104 spin_lock_irqsave(&kiq->ring_lock, flags);
1105 r = amdgpu_ring_alloc(ring, 32);
1106 if (r)
1107 goto failed_unlock;
1108
1109 amdgpu_ring_emit_wreg(ring, reg, v);
1110 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
1111 if (r)
1112 goto failed_undo;
1113
1114 amdgpu_ring_commit(ring);
1115 spin_unlock_irqrestore(&kiq->ring_lock, flags);
1116
1117 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1118
1119 /* don't wait anymore for gpu reset case because this way may
1120 * block gpu_recover() routine forever, e.g. this virt_kiq_rreg
1121 * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
1122 * never return if we keep waiting in virt_kiq_rreg, which cause
1123 * gpu_recover() hang there.
1124 *
1125 * also don't wait anymore for IRQ context
1126 * */
1127 if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt()))
1128 goto failed_kiq_write;
1129
1130 might_sleep();
1131 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
1132
1133 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
1134 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
1135 }
1136
1137 if (cnt > MAX_KIQ_REG_TRY)
1138 goto failed_kiq_write;
1139
1140 return;
1141
1142 failed_undo:
1143 amdgpu_ring_undo(ring);
1144 failed_unlock:
1145 spin_unlock_irqrestore(&kiq->ring_lock, flags);
1146 failed_kiq_write:
1147 dev_err(adev->dev, "failed to write reg:%x\n", reg);
1148 }
1149
amdgpu_gfx_get_num_kcq(struct amdgpu_device * adev)1150 int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev)
1151 {
1152 if (amdgpu_num_kcq == -1) {
1153 return 8;
1154 } else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) {
1155 dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n");
1156 return 8;
1157 }
1158 return amdgpu_num_kcq;
1159 }
1160
amdgpu_gfx_cp_init_microcode(struct amdgpu_device * adev,uint32_t ucode_id)1161 void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev,
1162 uint32_t ucode_id)
1163 {
1164 const struct gfx_firmware_header_v1_0 *cp_hdr;
1165 const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0;
1166 struct amdgpu_firmware_info *info = NULL;
1167 const struct firmware *ucode_fw;
1168 unsigned int fw_size;
1169
1170 switch (ucode_id) {
1171 case AMDGPU_UCODE_ID_CP_PFP:
1172 cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1173 adev->gfx.pfp_fw->data;
1174 adev->gfx.pfp_fw_version =
1175 le32_to_cpu(cp_hdr->header.ucode_version);
1176 adev->gfx.pfp_feature_version =
1177 le32_to_cpu(cp_hdr->ucode_feature_version);
1178 ucode_fw = adev->gfx.pfp_fw;
1179 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1180 break;
1181 case AMDGPU_UCODE_ID_CP_RS64_PFP:
1182 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1183 adev->gfx.pfp_fw->data;
1184 adev->gfx.pfp_fw_version =
1185 le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1186 adev->gfx.pfp_feature_version =
1187 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1188 ucode_fw = adev->gfx.pfp_fw;
1189 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1190 break;
1191 case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK:
1192 case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK:
1193 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1194 adev->gfx.pfp_fw->data;
1195 ucode_fw = adev->gfx.pfp_fw;
1196 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1197 break;
1198 case AMDGPU_UCODE_ID_CP_ME:
1199 cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1200 adev->gfx.me_fw->data;
1201 adev->gfx.me_fw_version =
1202 le32_to_cpu(cp_hdr->header.ucode_version);
1203 adev->gfx.me_feature_version =
1204 le32_to_cpu(cp_hdr->ucode_feature_version);
1205 ucode_fw = adev->gfx.me_fw;
1206 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1207 break;
1208 case AMDGPU_UCODE_ID_CP_RS64_ME:
1209 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1210 adev->gfx.me_fw->data;
1211 adev->gfx.me_fw_version =
1212 le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1213 adev->gfx.me_feature_version =
1214 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1215 ucode_fw = adev->gfx.me_fw;
1216 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1217 break;
1218 case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK:
1219 case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK:
1220 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1221 adev->gfx.me_fw->data;
1222 ucode_fw = adev->gfx.me_fw;
1223 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1224 break;
1225 case AMDGPU_UCODE_ID_CP_CE:
1226 cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1227 adev->gfx.ce_fw->data;
1228 adev->gfx.ce_fw_version =
1229 le32_to_cpu(cp_hdr->header.ucode_version);
1230 adev->gfx.ce_feature_version =
1231 le32_to_cpu(cp_hdr->ucode_feature_version);
1232 ucode_fw = adev->gfx.ce_fw;
1233 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes);
1234 break;
1235 case AMDGPU_UCODE_ID_CP_MEC1:
1236 cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1237 adev->gfx.mec_fw->data;
1238 adev->gfx.mec_fw_version =
1239 le32_to_cpu(cp_hdr->header.ucode_version);
1240 adev->gfx.mec_feature_version =
1241 le32_to_cpu(cp_hdr->ucode_feature_version);
1242 ucode_fw = adev->gfx.mec_fw;
1243 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1244 le32_to_cpu(cp_hdr->jt_size) * 4;
1245 break;
1246 case AMDGPU_UCODE_ID_CP_MEC1_JT:
1247 cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1248 adev->gfx.mec_fw->data;
1249 ucode_fw = adev->gfx.mec_fw;
1250 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1251 break;
1252 case AMDGPU_UCODE_ID_CP_MEC2:
1253 cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1254 adev->gfx.mec2_fw->data;
1255 adev->gfx.mec2_fw_version =
1256 le32_to_cpu(cp_hdr->header.ucode_version);
1257 adev->gfx.mec2_feature_version =
1258 le32_to_cpu(cp_hdr->ucode_feature_version);
1259 ucode_fw = adev->gfx.mec2_fw;
1260 fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) -
1261 le32_to_cpu(cp_hdr->jt_size) * 4;
1262 break;
1263 case AMDGPU_UCODE_ID_CP_MEC2_JT:
1264 cp_hdr = (const struct gfx_firmware_header_v1_0 *)
1265 adev->gfx.mec2_fw->data;
1266 ucode_fw = adev->gfx.mec2_fw;
1267 fw_size = le32_to_cpu(cp_hdr->jt_size) * 4;
1268 break;
1269 case AMDGPU_UCODE_ID_CP_RS64_MEC:
1270 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1271 adev->gfx.mec_fw->data;
1272 adev->gfx.mec_fw_version =
1273 le32_to_cpu(cp_hdr_v2_0->header.ucode_version);
1274 adev->gfx.mec_feature_version =
1275 le32_to_cpu(cp_hdr_v2_0->ucode_feature_version);
1276 ucode_fw = adev->gfx.mec_fw;
1277 fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes);
1278 break;
1279 case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK:
1280 case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK:
1281 case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK:
1282 case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK:
1283 cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *)
1284 adev->gfx.mec_fw->data;
1285 ucode_fw = adev->gfx.mec_fw;
1286 fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes);
1287 break;
1288 default:
1289 dev_err(adev->dev, "Invalid ucode id %u\n", ucode_id);
1290 return;
1291 }
1292
1293 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
1294 info = &adev->firmware.ucode[ucode_id];
1295 info->ucode_id = ucode_id;
1296 info->fw = ucode_fw;
1297 adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE);
1298 }
1299 }
1300
amdgpu_gfx_is_master_xcc(struct amdgpu_device * adev,int xcc_id)1301 bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id)
1302 {
1303 return !(xcc_id % (adev->gfx.num_xcc_per_xcp ?
1304 adev->gfx.num_xcc_per_xcp : 1));
1305 }
1306
amdgpu_gfx_get_current_compute_partition(struct device * dev,struct device_attribute * addr,char * buf)1307 static ssize_t amdgpu_gfx_get_current_compute_partition(struct device *dev,
1308 struct device_attribute *addr,
1309 char *buf)
1310 {
1311 struct drm_device *ddev = dev_get_drvdata(dev);
1312 struct amdgpu_device *adev = drm_to_adev(ddev);
1313 int mode;
1314
1315 mode = amdgpu_xcp_query_partition_mode(adev->xcp_mgr,
1316 AMDGPU_XCP_FL_NONE);
1317
1318 return sysfs_emit(buf, "%s\n", amdgpu_gfx_compute_mode_desc(mode));
1319 }
1320
amdgpu_gfx_set_compute_partition(struct device * dev,struct device_attribute * addr,const char * buf,size_t count)1321 static ssize_t amdgpu_gfx_set_compute_partition(struct device *dev,
1322 struct device_attribute *addr,
1323 const char *buf, size_t count)
1324 {
1325 struct drm_device *ddev = dev_get_drvdata(dev);
1326 struct amdgpu_device *adev = drm_to_adev(ddev);
1327 enum amdgpu_gfx_partition mode;
1328 int ret = 0, num_xcc;
1329
1330 num_xcc = NUM_XCC(adev->gfx.xcc_mask);
1331 if (num_xcc % 2 != 0)
1332 return -EINVAL;
1333
1334 if (!strncasecmp("SPX", buf, strlen("SPX"))) {
1335 mode = AMDGPU_SPX_PARTITION_MODE;
1336 } else if (!strncasecmp("DPX", buf, strlen("DPX"))) {
1337 /*
1338 * DPX mode needs AIDs to be in multiple of 2.
1339 * Each AID connects 2 XCCs.
1340 */
1341 if (num_xcc%4)
1342 return -EINVAL;
1343 mode = AMDGPU_DPX_PARTITION_MODE;
1344 } else if (!strncasecmp("TPX", buf, strlen("TPX"))) {
1345 if (num_xcc != 6)
1346 return -EINVAL;
1347 mode = AMDGPU_TPX_PARTITION_MODE;
1348 } else if (!strncasecmp("QPX", buf, strlen("QPX"))) {
1349 if (num_xcc != 8)
1350 return -EINVAL;
1351 mode = AMDGPU_QPX_PARTITION_MODE;
1352 } else if (!strncasecmp("CPX", buf, strlen("CPX"))) {
1353 mode = AMDGPU_CPX_PARTITION_MODE;
1354 } else {
1355 return -EINVAL;
1356 }
1357
1358 ret = amdgpu_xcp_switch_partition_mode(adev->xcp_mgr, mode);
1359
1360 if (ret)
1361 return ret;
1362
1363 return count;
1364 }
1365
amdgpu_gfx_get_available_compute_partition(struct device * dev,struct device_attribute * addr,char * buf)1366 static ssize_t amdgpu_gfx_get_available_compute_partition(struct device *dev,
1367 struct device_attribute *addr,
1368 char *buf)
1369 {
1370 struct drm_device *ddev = dev_get_drvdata(dev);
1371 struct amdgpu_device *adev = drm_to_adev(ddev);
1372 char *supported_partition;
1373
1374 /* TBD */
1375 switch (NUM_XCC(adev->gfx.xcc_mask)) {
1376 case 8:
1377 supported_partition = "SPX, DPX, QPX, CPX";
1378 break;
1379 case 6:
1380 supported_partition = "SPX, TPX, CPX";
1381 break;
1382 case 4:
1383 supported_partition = "SPX, DPX, CPX";
1384 break;
1385 /* this seems only existing in emulation phase */
1386 case 2:
1387 supported_partition = "SPX, CPX";
1388 break;
1389 default:
1390 supported_partition = "Not supported";
1391 break;
1392 }
1393
1394 return sysfs_emit(buf, "%s\n", supported_partition);
1395 }
1396
amdgpu_gfx_run_cleaner_shader_job(struct amdgpu_ring * ring)1397 static int amdgpu_gfx_run_cleaner_shader_job(struct amdgpu_ring *ring)
1398 {
1399 struct amdgpu_device *adev = ring->adev;
1400 struct drm_gpu_scheduler *sched = &ring->sched;
1401 struct drm_sched_entity entity;
1402 struct dma_fence *f;
1403 struct amdgpu_job *job;
1404 struct amdgpu_ib *ib;
1405 int i, r;
1406
1407 /* Initialize the scheduler entity */
1408 r = drm_sched_entity_init(&entity, DRM_SCHED_PRIORITY_NORMAL,
1409 &sched, 1, NULL);
1410 if (r) {
1411 dev_err(adev->dev, "Failed setting up GFX kernel entity.\n");
1412 goto err;
1413 }
1414
1415 r = amdgpu_job_alloc_with_ib(ring->adev, &entity, NULL,
1416 64, 0,
1417 &job);
1418 if (r)
1419 goto err;
1420
1421 job->enforce_isolation = true;
1422
1423 ib = &job->ibs[0];
1424 for (i = 0; i <= ring->funcs->align_mask; ++i)
1425 ib->ptr[i] = ring->funcs->nop;
1426 ib->length_dw = ring->funcs->align_mask + 1;
1427
1428 f = amdgpu_job_submit(job);
1429
1430 r = dma_fence_wait(f, false);
1431 if (r)
1432 goto err;
1433
1434 dma_fence_put(f);
1435
1436 /* Clean up the scheduler entity */
1437 drm_sched_entity_destroy(&entity);
1438 return 0;
1439
1440 err:
1441 return r;
1442 }
1443
amdgpu_gfx_run_cleaner_shader(struct amdgpu_device * adev,int xcp_id)1444 static int amdgpu_gfx_run_cleaner_shader(struct amdgpu_device *adev, int xcp_id)
1445 {
1446 int num_xcc = NUM_XCC(adev->gfx.xcc_mask);
1447 struct amdgpu_ring *ring;
1448 int num_xcc_to_clear;
1449 int i, r, xcc_id;
1450
1451 if (adev->gfx.num_xcc_per_xcp)
1452 num_xcc_to_clear = adev->gfx.num_xcc_per_xcp;
1453 else
1454 num_xcc_to_clear = 1;
1455
1456 for (xcc_id = 0; xcc_id < num_xcc; xcc_id++) {
1457 for (i = 0; i < adev->gfx.num_compute_rings; i++) {
1458 ring = &adev->gfx.compute_ring[i + xcc_id * adev->gfx.num_compute_rings];
1459 if ((ring->xcp_id == xcp_id) && ring->sched.ready) {
1460 r = amdgpu_gfx_run_cleaner_shader_job(ring);
1461 if (r)
1462 return r;
1463 num_xcc_to_clear--;
1464 break;
1465 }
1466 }
1467 }
1468
1469 if (num_xcc_to_clear)
1470 return -ENOENT;
1471
1472 return 0;
1473 }
1474
amdgpu_gfx_set_run_cleaner_shader(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1475 static ssize_t amdgpu_gfx_set_run_cleaner_shader(struct device *dev,
1476 struct device_attribute *attr,
1477 const char *buf,
1478 size_t count)
1479 {
1480 struct drm_device *ddev = dev_get_drvdata(dev);
1481 struct amdgpu_device *adev = drm_to_adev(ddev);
1482 int ret;
1483 long value;
1484
1485 if (amdgpu_in_reset(adev))
1486 return -EPERM;
1487 if (adev->in_suspend && !adev->in_runpm)
1488 return -EPERM;
1489
1490 ret = kstrtol(buf, 0, &value);
1491
1492 if (ret)
1493 return -EINVAL;
1494
1495 if (value < 0)
1496 return -EINVAL;
1497
1498 if (adev->xcp_mgr) {
1499 if (value >= adev->xcp_mgr->num_xcps)
1500 return -EINVAL;
1501 } else {
1502 if (value > 1)
1503 return -EINVAL;
1504 }
1505
1506 ret = pm_runtime_get_sync(ddev->dev);
1507 if (ret < 0) {
1508 pm_runtime_put_autosuspend(ddev->dev);
1509 return ret;
1510 }
1511
1512 ret = amdgpu_gfx_run_cleaner_shader(adev, value);
1513
1514 pm_runtime_mark_last_busy(ddev->dev);
1515 pm_runtime_put_autosuspend(ddev->dev);
1516
1517 if (ret)
1518 return ret;
1519
1520 return count;
1521 }
1522
amdgpu_gfx_get_enforce_isolation(struct device * dev,struct device_attribute * attr,char * buf)1523 static ssize_t amdgpu_gfx_get_enforce_isolation(struct device *dev,
1524 struct device_attribute *attr,
1525 char *buf)
1526 {
1527 struct drm_device *ddev = dev_get_drvdata(dev);
1528 struct amdgpu_device *adev = drm_to_adev(ddev);
1529 int i;
1530 ssize_t size = 0;
1531
1532 if (adev->xcp_mgr) {
1533 for (i = 0; i < adev->xcp_mgr->num_xcps; i++) {
1534 size += sysfs_emit_at(buf, size, "%u", adev->enforce_isolation[i]);
1535 if (i < (adev->xcp_mgr->num_xcps - 1))
1536 size += sysfs_emit_at(buf, size, " ");
1537 }
1538 buf[size++] = '\n';
1539 } else {
1540 size = sysfs_emit_at(buf, 0, "%u\n", adev->enforce_isolation[0]);
1541 }
1542
1543 return size;
1544 }
1545
amdgpu_gfx_set_enforce_isolation(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1546 static ssize_t amdgpu_gfx_set_enforce_isolation(struct device *dev,
1547 struct device_attribute *attr,
1548 const char *buf, size_t count)
1549 {
1550 struct drm_device *ddev = dev_get_drvdata(dev);
1551 struct amdgpu_device *adev = drm_to_adev(ddev);
1552 long partition_values[MAX_XCP] = {0};
1553 int ret, i, num_partitions;
1554 const char *input_buf = buf;
1555
1556 for (i = 0; i < (adev->xcp_mgr ? adev->xcp_mgr->num_xcps : 1); i++) {
1557 ret = sscanf(input_buf, "%ld", &partition_values[i]);
1558 if (ret <= 0)
1559 break;
1560
1561 /* Move the pointer to the next value in the string */
1562 input_buf = strchr(input_buf, ' ');
1563 if (input_buf) {
1564 input_buf++;
1565 } else {
1566 i++;
1567 break;
1568 }
1569 }
1570 num_partitions = i;
1571
1572 if (adev->xcp_mgr && num_partitions != adev->xcp_mgr->num_xcps)
1573 return -EINVAL;
1574
1575 if (!adev->xcp_mgr && num_partitions != 1)
1576 return -EINVAL;
1577
1578 for (i = 0; i < num_partitions; i++) {
1579 if (partition_values[i] != 0 && partition_values[i] != 1)
1580 return -EINVAL;
1581 }
1582
1583 mutex_lock(&adev->enforce_isolation_mutex);
1584
1585 for (i = 0; i < num_partitions; i++) {
1586 if (adev->enforce_isolation[i] && !partition_values[i]) {
1587 /* Going from enabled to disabled */
1588 amdgpu_vmid_free_reserved(adev, AMDGPU_GFXHUB(i));
1589 } else if (!adev->enforce_isolation[i] && partition_values[i]) {
1590 /* Going from disabled to enabled */
1591 amdgpu_vmid_alloc_reserved(adev, AMDGPU_GFXHUB(i));
1592 }
1593 adev->enforce_isolation[i] = partition_values[i];
1594 }
1595
1596 mutex_unlock(&adev->enforce_isolation_mutex);
1597
1598 return count;
1599 }
1600
1601 static DEVICE_ATTR(run_cleaner_shader, 0200,
1602 NULL, amdgpu_gfx_set_run_cleaner_shader);
1603
1604 static DEVICE_ATTR(enforce_isolation, 0644,
1605 amdgpu_gfx_get_enforce_isolation,
1606 amdgpu_gfx_set_enforce_isolation);
1607
1608 static DEVICE_ATTR(current_compute_partition, 0644,
1609 amdgpu_gfx_get_current_compute_partition,
1610 amdgpu_gfx_set_compute_partition);
1611
1612 static DEVICE_ATTR(available_compute_partition, 0444,
1613 amdgpu_gfx_get_available_compute_partition, NULL);
1614
amdgpu_gfx_sysfs_init(struct amdgpu_device * adev)1615 int amdgpu_gfx_sysfs_init(struct amdgpu_device *adev)
1616 {
1617 int r;
1618
1619 r = device_create_file(adev->dev, &dev_attr_current_compute_partition);
1620 if (r)
1621 return r;
1622
1623 r = device_create_file(adev->dev, &dev_attr_available_compute_partition);
1624
1625 return r;
1626 }
1627
amdgpu_gfx_sysfs_fini(struct amdgpu_device * adev)1628 void amdgpu_gfx_sysfs_fini(struct amdgpu_device *adev)
1629 {
1630 device_remove_file(adev->dev, &dev_attr_current_compute_partition);
1631 device_remove_file(adev->dev, &dev_attr_available_compute_partition);
1632 }
1633
amdgpu_gfx_sysfs_isolation_shader_init(struct amdgpu_device * adev)1634 int amdgpu_gfx_sysfs_isolation_shader_init(struct amdgpu_device *adev)
1635 {
1636 int r;
1637
1638 r = device_create_file(adev->dev, &dev_attr_enforce_isolation);
1639 if (r)
1640 return r;
1641
1642 r = device_create_file(adev->dev, &dev_attr_run_cleaner_shader);
1643 if (r)
1644 return r;
1645
1646 return 0;
1647 }
1648
amdgpu_gfx_sysfs_isolation_shader_fini(struct amdgpu_device * adev)1649 void amdgpu_gfx_sysfs_isolation_shader_fini(struct amdgpu_device *adev)
1650 {
1651 device_remove_file(adev->dev, &dev_attr_enforce_isolation);
1652 device_remove_file(adev->dev, &dev_attr_run_cleaner_shader);
1653 }
1654
amdgpu_gfx_cleaner_shader_sw_init(struct amdgpu_device * adev,unsigned int cleaner_shader_size)1655 int amdgpu_gfx_cleaner_shader_sw_init(struct amdgpu_device *adev,
1656 unsigned int cleaner_shader_size)
1657 {
1658 if (!adev->gfx.enable_cleaner_shader)
1659 return -EOPNOTSUPP;
1660
1661 return amdgpu_bo_create_kernel(adev, cleaner_shader_size, PAGE_SIZE,
1662 AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT,
1663 &adev->gfx.cleaner_shader_obj,
1664 &adev->gfx.cleaner_shader_gpu_addr,
1665 (void **)&adev->gfx.cleaner_shader_cpu_ptr);
1666 }
1667
amdgpu_gfx_cleaner_shader_sw_fini(struct amdgpu_device * adev)1668 void amdgpu_gfx_cleaner_shader_sw_fini(struct amdgpu_device *adev)
1669 {
1670 if (!adev->gfx.enable_cleaner_shader)
1671 return;
1672
1673 amdgpu_bo_free_kernel(&adev->gfx.cleaner_shader_obj,
1674 &adev->gfx.cleaner_shader_gpu_addr,
1675 (void **)&adev->gfx.cleaner_shader_cpu_ptr);
1676 }
1677
amdgpu_gfx_cleaner_shader_init(struct amdgpu_device * adev,unsigned int cleaner_shader_size,const void * cleaner_shader_ptr)1678 void amdgpu_gfx_cleaner_shader_init(struct amdgpu_device *adev,
1679 unsigned int cleaner_shader_size,
1680 const void *cleaner_shader_ptr)
1681 {
1682 if (!adev->gfx.enable_cleaner_shader)
1683 return;
1684
1685 if (adev->gfx.cleaner_shader_cpu_ptr && cleaner_shader_ptr)
1686 memcpy_toio(adev->gfx.cleaner_shader_cpu_ptr, cleaner_shader_ptr,
1687 cleaner_shader_size);
1688 }
1689
1690 /**
1691 * amdgpu_gfx_kfd_sch_ctrl - Control the KFD scheduler from the KGD (Graphics Driver)
1692 * @adev: amdgpu_device pointer
1693 * @idx: Index of the scheduler to control
1694 * @enable: Whether to enable or disable the KFD scheduler
1695 *
1696 * This function is used to control the KFD (Kernel Fusion Driver) scheduler
1697 * from the KGD. It is part of the cleaner shader feature. This function plays
1698 * a key role in enforcing process isolation on the GPU.
1699 *
1700 * The function uses a reference count mechanism (kfd_sch_req_count) to keep
1701 * track of the number of requests to enable the KFD scheduler. When a request
1702 * to enable the KFD scheduler is made, the reference count is decremented.
1703 * When the reference count reaches zero, a delayed work is scheduled to
1704 * enforce isolation after a delay of GFX_SLICE_PERIOD.
1705 *
1706 * When a request to disable the KFD scheduler is made, the function first
1707 * checks if the reference count is zero. If it is, it cancels the delayed work
1708 * for enforcing isolation and checks if the KFD scheduler is active. If the
1709 * KFD scheduler is active, it sends a request to stop the KFD scheduler and
1710 * sets the KFD scheduler state to inactive. Then, it increments the reference
1711 * count.
1712 *
1713 * The function is synchronized using the kfd_sch_mutex to ensure that the KFD
1714 * scheduler state and reference count are updated atomically.
1715 *
1716 * Note: If the reference count is already zero when a request to enable the
1717 * KFD scheduler is made, it means there's an imbalance bug somewhere. The
1718 * function triggers a warning in this case.
1719 */
amdgpu_gfx_kfd_sch_ctrl(struct amdgpu_device * adev,u32 idx,bool enable)1720 static void amdgpu_gfx_kfd_sch_ctrl(struct amdgpu_device *adev, u32 idx,
1721 bool enable)
1722 {
1723 mutex_lock(&adev->gfx.kfd_sch_mutex);
1724
1725 if (enable) {
1726 /* If the count is already 0, it means there's an imbalance bug somewhere.
1727 * Note that the bug may be in a different caller than the one which triggers the
1728 * WARN_ON_ONCE.
1729 */
1730 if (WARN_ON_ONCE(adev->gfx.kfd_sch_req_count[idx] == 0)) {
1731 dev_err(adev->dev, "Attempted to enable KFD scheduler when reference count is already zero\n");
1732 goto unlock;
1733 }
1734
1735 adev->gfx.kfd_sch_req_count[idx]--;
1736
1737 if (adev->gfx.kfd_sch_req_count[idx] == 0 &&
1738 adev->gfx.kfd_sch_inactive[idx]) {
1739 schedule_delayed_work(&adev->gfx.enforce_isolation[idx].work,
1740 GFX_SLICE_PERIOD);
1741 }
1742 } else {
1743 if (adev->gfx.kfd_sch_req_count[idx] == 0) {
1744 cancel_delayed_work_sync(&adev->gfx.enforce_isolation[idx].work);
1745 if (!adev->gfx.kfd_sch_inactive[idx]) {
1746 amdgpu_amdkfd_stop_sched(adev, idx);
1747 adev->gfx.kfd_sch_inactive[idx] = true;
1748 }
1749 }
1750
1751 adev->gfx.kfd_sch_req_count[idx]++;
1752 }
1753
1754 unlock:
1755 mutex_unlock(&adev->gfx.kfd_sch_mutex);
1756 }
1757
1758 /**
1759 * amdgpu_gfx_enforce_isolation_handler - work handler for enforcing shader isolation
1760 *
1761 * @work: work_struct.
1762 *
1763 * This function is the work handler for enforcing shader isolation on AMD GPUs.
1764 * It counts the number of emitted fences for each GFX and compute ring. If there
1765 * are any fences, it schedules the `enforce_isolation_work` to be run after a
1766 * delay of `GFX_SLICE_PERIOD`. If there are no fences, it signals the Kernel Fusion
1767 * Driver (KFD) to resume the runqueue. The function is synchronized using the
1768 * `enforce_isolation_mutex`.
1769 */
amdgpu_gfx_enforce_isolation_handler(struct work_struct * work)1770 void amdgpu_gfx_enforce_isolation_handler(struct work_struct *work)
1771 {
1772 struct amdgpu_isolation_work *isolation_work =
1773 container_of(work, struct amdgpu_isolation_work, work.work);
1774 struct amdgpu_device *adev = isolation_work->adev;
1775 u32 i, idx, fences = 0;
1776
1777 if (isolation_work->xcp_id == AMDGPU_XCP_NO_PARTITION)
1778 idx = 0;
1779 else
1780 idx = isolation_work->xcp_id;
1781
1782 if (idx >= MAX_XCP)
1783 return;
1784
1785 mutex_lock(&adev->enforce_isolation_mutex);
1786 for (i = 0; i < AMDGPU_MAX_GFX_RINGS; ++i) {
1787 if (isolation_work->xcp_id == adev->gfx.gfx_ring[i].xcp_id)
1788 fences += amdgpu_fence_count_emitted(&adev->gfx.gfx_ring[i]);
1789 }
1790 for (i = 0; i < (AMDGPU_MAX_COMPUTE_RINGS * AMDGPU_MAX_GC_INSTANCES); ++i) {
1791 if (isolation_work->xcp_id == adev->gfx.compute_ring[i].xcp_id)
1792 fences += amdgpu_fence_count_emitted(&adev->gfx.compute_ring[i]);
1793 }
1794 if (fences) {
1795 schedule_delayed_work(&adev->gfx.enforce_isolation[idx].work,
1796 GFX_SLICE_PERIOD);
1797 } else {
1798 /* Tell KFD to resume the runqueue */
1799 if (adev->kfd.init_complete) {
1800 WARN_ON_ONCE(!adev->gfx.kfd_sch_inactive[idx]);
1801 WARN_ON_ONCE(adev->gfx.kfd_sch_req_count[idx]);
1802 amdgpu_amdkfd_start_sched(adev, idx);
1803 adev->gfx.kfd_sch_inactive[idx] = false;
1804 }
1805 }
1806 mutex_unlock(&adev->enforce_isolation_mutex);
1807 }
1808
amdgpu_gfx_enforce_isolation_ring_begin_use(struct amdgpu_ring * ring)1809 void amdgpu_gfx_enforce_isolation_ring_begin_use(struct amdgpu_ring *ring)
1810 {
1811 struct amdgpu_device *adev = ring->adev;
1812 u32 idx;
1813
1814 if (!adev->gfx.enable_cleaner_shader)
1815 return;
1816
1817 if (ring->xcp_id == AMDGPU_XCP_NO_PARTITION)
1818 idx = 0;
1819 else
1820 idx = ring->xcp_id;
1821
1822 if (idx >= MAX_XCP)
1823 return;
1824
1825 mutex_lock(&adev->enforce_isolation_mutex);
1826 if (adev->enforce_isolation[idx]) {
1827 if (adev->kfd.init_complete)
1828 amdgpu_gfx_kfd_sch_ctrl(adev, idx, false);
1829 }
1830 mutex_unlock(&adev->enforce_isolation_mutex);
1831 }
1832
amdgpu_gfx_enforce_isolation_ring_end_use(struct amdgpu_ring * ring)1833 void amdgpu_gfx_enforce_isolation_ring_end_use(struct amdgpu_ring *ring)
1834 {
1835 struct amdgpu_device *adev = ring->adev;
1836 u32 idx;
1837
1838 if (!adev->gfx.enable_cleaner_shader)
1839 return;
1840
1841 if (ring->xcp_id == AMDGPU_XCP_NO_PARTITION)
1842 idx = 0;
1843 else
1844 idx = ring->xcp_id;
1845
1846 if (idx >= MAX_XCP)
1847 return;
1848
1849 mutex_lock(&adev->enforce_isolation_mutex);
1850 if (adev->enforce_isolation[idx]) {
1851 if (adev->kfd.init_complete)
1852 amdgpu_gfx_kfd_sch_ctrl(adev, idx, true);
1853 }
1854 mutex_unlock(&adev->enforce_isolation_mutex);
1855 }
1856