1 /*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26 /*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30 * Dave Airlie
31 */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/dma-buf.h>
42 #include <linux/sizes.h>
43 #include <linux/module.h>
44
45 #include <drm/drm_drv.h>
46 #include <drm/ttm/ttm_bo.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 #include <drm/ttm/ttm_tt.h>
50
51 #include <drm/amdgpu_drm.h>
52
53 #include "amdgpu.h"
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_hmm.h"
60 #include "amdgpu_atomfirmware.h"
61 #include "amdgpu_res_cursor.h"
62 #include "bif/bif_4_1_d.h"
63
64 MODULE_IMPORT_NS(DMA_BUF);
65
66 #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128)
67
68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69 struct ttm_tt *ttm,
70 struct ttm_resource *bo_mem);
71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72 struct ttm_tt *ttm);
73
amdgpu_ttm_init_on_chip(struct amdgpu_device * adev,unsigned int type,uint64_t size_in_page)74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75 unsigned int type,
76 uint64_t size_in_page)
77 {
78 return ttm_range_man_init(&adev->mman.bdev, type,
79 false, size_in_page);
80 }
81
82 /**
83 * amdgpu_evict_flags - Compute placement flags
84 *
85 * @bo: The buffer object to evict
86 * @placement: Possible destination(s) for evicted BO
87 *
88 * Fill in placement data when ttm_bo_evict() is called
89 */
amdgpu_evict_flags(struct ttm_buffer_object * bo,struct ttm_placement * placement)90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 struct ttm_placement *placement)
92 {
93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94 struct amdgpu_bo *abo;
95 static const struct ttm_place placements = {
96 .fpfn = 0,
97 .lpfn = 0,
98 .mem_type = TTM_PL_SYSTEM,
99 .flags = 0
100 };
101
102 /* Don't handle scatter gather BOs */
103 if (bo->type == ttm_bo_type_sg) {
104 placement->num_placement = 0;
105 return;
106 }
107
108 /* Object isn't an AMDGPU object so ignore */
109 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
110 placement->placement = &placements;
111 placement->num_placement = 1;
112 return;
113 }
114
115 abo = ttm_to_amdgpu_bo(bo);
116 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
117 placement->num_placement = 0;
118 return;
119 }
120
121 switch (bo->resource->mem_type) {
122 case AMDGPU_PL_GDS:
123 case AMDGPU_PL_GWS:
124 case AMDGPU_PL_OA:
125 case AMDGPU_PL_DOORBELL:
126 placement->num_placement = 0;
127 return;
128
129 case TTM_PL_VRAM:
130 if (!adev->mman.buffer_funcs_enabled) {
131 /* Move to system memory */
132 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
133
134 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
135 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
136 amdgpu_res_cpu_visible(adev, bo->resource)) {
137
138 /* Try evicting to the CPU inaccessible part of VRAM
139 * first, but only set GTT as busy placement, so this
140 * BO will be evicted to GTT rather than causing other
141 * BOs to be evicted from VRAM
142 */
143 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
144 AMDGPU_GEM_DOMAIN_GTT |
145 AMDGPU_GEM_DOMAIN_CPU);
146 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
147 abo->placements[0].lpfn = 0;
148 abo->placements[0].flags |= TTM_PL_FLAG_DESIRED;
149 } else {
150 /* Move to GTT memory */
151 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
152 AMDGPU_GEM_DOMAIN_CPU);
153 }
154 break;
155 case TTM_PL_TT:
156 case AMDGPU_PL_PREEMPT:
157 default:
158 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
159 break;
160 }
161 *placement = abo->placement;
162 }
163
164 /**
165 * amdgpu_ttm_map_buffer - Map memory into the GART windows
166 * @bo: buffer object to map
167 * @mem: memory object to map
168 * @mm_cur: range to map
169 * @window: which GART window to use
170 * @ring: DMA ring to use for the copy
171 * @tmz: if we should setup a TMZ enabled mapping
172 * @size: in number of bytes to map, out number of bytes mapped
173 * @addr: resulting address inside the MC address space
174 *
175 * Setup one of the GART windows to access a specific piece of memory or return
176 * the physical address for local memory.
177 */
amdgpu_ttm_map_buffer(struct ttm_buffer_object * bo,struct ttm_resource * mem,struct amdgpu_res_cursor * mm_cur,unsigned int window,struct amdgpu_ring * ring,bool tmz,uint64_t * size,uint64_t * addr)178 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
179 struct ttm_resource *mem,
180 struct amdgpu_res_cursor *mm_cur,
181 unsigned int window, struct amdgpu_ring *ring,
182 bool tmz, uint64_t *size, uint64_t *addr)
183 {
184 struct amdgpu_device *adev = ring->adev;
185 unsigned int offset, num_pages, num_dw, num_bytes;
186 uint64_t src_addr, dst_addr;
187 struct amdgpu_job *job;
188 void *cpu_addr;
189 uint64_t flags;
190 unsigned int i;
191 int r;
192
193 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
194 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
195
196 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
197 return -EINVAL;
198
199 /* Map only what can't be accessed directly */
200 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
201 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
202 mm_cur->start;
203 return 0;
204 }
205
206
207 /*
208 * If start begins at an offset inside the page, then adjust the size
209 * and addr accordingly
210 */
211 offset = mm_cur->start & ~PAGE_MASK;
212
213 num_pages = PFN_UP(*size + offset);
214 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
215
216 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
217
218 *addr = adev->gmc.gart_start;
219 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
220 AMDGPU_GPU_PAGE_SIZE;
221 *addr += offset;
222
223 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
224 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
225
226 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
227 AMDGPU_FENCE_OWNER_UNDEFINED,
228 num_dw * 4 + num_bytes,
229 AMDGPU_IB_POOL_DELAYED, &job);
230 if (r)
231 return r;
232
233 src_addr = num_dw * 4;
234 src_addr += job->ibs[0].gpu_addr;
235
236 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
237 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
238 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
239 dst_addr, num_bytes, 0);
240
241 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
242 WARN_ON(job->ibs[0].length_dw > num_dw);
243
244 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
245 if (tmz)
246 flags |= AMDGPU_PTE_TMZ;
247
248 cpu_addr = &job->ibs[0].ptr[num_dw];
249
250 if (mem->mem_type == TTM_PL_TT) {
251 dma_addr_t *dma_addr;
252
253 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
254 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
255 } else {
256 dma_addr_t dma_address;
257
258 dma_address = mm_cur->start;
259 dma_address += adev->vm_manager.vram_base_offset;
260
261 for (i = 0; i < num_pages; ++i) {
262 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
263 flags, cpu_addr);
264 dma_address += PAGE_SIZE;
265 }
266 }
267
268 dma_fence_put(amdgpu_job_submit(job));
269 return 0;
270 }
271
272 /**
273 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
274 * @adev: amdgpu device
275 * @src: buffer/address where to read from
276 * @dst: buffer/address where to write to
277 * @size: number of bytes to copy
278 * @tmz: if a secure copy should be used
279 * @resv: resv object to sync to
280 * @f: Returns the last fence if multiple jobs are submitted.
281 *
282 * The function copies @size bytes from {src->mem + src->offset} to
283 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
284 * move and different for a BO to BO copy.
285 *
286 */
amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device * adev,const struct amdgpu_copy_mem * src,const struct amdgpu_copy_mem * dst,uint64_t size,bool tmz,struct dma_resv * resv,struct dma_fence ** f)287 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
288 const struct amdgpu_copy_mem *src,
289 const struct amdgpu_copy_mem *dst,
290 uint64_t size, bool tmz,
291 struct dma_resv *resv,
292 struct dma_fence **f)
293 {
294 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
295 struct amdgpu_res_cursor src_mm, dst_mm;
296 struct dma_fence *fence = NULL;
297 int r = 0;
298 uint32_t copy_flags = 0;
299 struct amdgpu_bo *abo_src, *abo_dst;
300
301 if (!adev->mman.buffer_funcs_enabled) {
302 DRM_ERROR("Trying to move memory with ring turned off.\n");
303 return -EINVAL;
304 }
305
306 amdgpu_res_first(src->mem, src->offset, size, &src_mm);
307 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
308
309 mutex_lock(&adev->mman.gtt_window_lock);
310 while (src_mm.remaining) {
311 uint64_t from, to, cur_size, tiling_flags;
312 uint32_t num_type, data_format, max_com;
313 struct dma_fence *next;
314
315 /* Never copy more than 256MiB at once to avoid a timeout */
316 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
317
318 /* Map src to window 0 and dst to window 1. */
319 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
320 0, ring, tmz, &cur_size, &from);
321 if (r)
322 goto error;
323
324 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
325 1, ring, tmz, &cur_size, &to);
326 if (r)
327 goto error;
328
329 abo_src = ttm_to_amdgpu_bo(src->bo);
330 abo_dst = ttm_to_amdgpu_bo(dst->bo);
331 if (tmz)
332 copy_flags |= AMDGPU_COPY_FLAGS_TMZ;
333 if ((abo_src->flags & AMDGPU_GEM_CREATE_GFX12_DCC) &&
334 (abo_src->tbo.resource->mem_type == TTM_PL_VRAM))
335 copy_flags |= AMDGPU_COPY_FLAGS_READ_DECOMPRESSED;
336 if ((abo_dst->flags & AMDGPU_GEM_CREATE_GFX12_DCC) &&
337 (dst->mem->mem_type == TTM_PL_VRAM)) {
338 copy_flags |= AMDGPU_COPY_FLAGS_WRITE_COMPRESSED;
339 amdgpu_bo_get_tiling_flags(abo_dst, &tiling_flags);
340 max_com = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_MAX_COMPRESSED_BLOCK);
341 num_type = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_NUMBER_TYPE);
342 data_format = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_DATA_FORMAT);
343 copy_flags |= (AMDGPU_COPY_FLAGS_SET(MAX_COMPRESSED, max_com) |
344 AMDGPU_COPY_FLAGS_SET(NUMBER_TYPE, num_type) |
345 AMDGPU_COPY_FLAGS_SET(DATA_FORMAT, data_format));
346 }
347
348 r = amdgpu_copy_buffer(ring, from, to, cur_size, resv,
349 &next, false, true, copy_flags);
350 if (r)
351 goto error;
352
353 dma_fence_put(fence);
354 fence = next;
355
356 amdgpu_res_next(&src_mm, cur_size);
357 amdgpu_res_next(&dst_mm, cur_size);
358 }
359 error:
360 mutex_unlock(&adev->mman.gtt_window_lock);
361 if (f)
362 *f = dma_fence_get(fence);
363 dma_fence_put(fence);
364 return r;
365 }
366
367 /*
368 * amdgpu_move_blit - Copy an entire buffer to another buffer
369 *
370 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
371 * help move buffers to and from VRAM.
372 */
amdgpu_move_blit(struct ttm_buffer_object * bo,bool evict,struct ttm_resource * new_mem,struct ttm_resource * old_mem)373 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
374 bool evict,
375 struct ttm_resource *new_mem,
376 struct ttm_resource *old_mem)
377 {
378 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
379 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
380 struct amdgpu_copy_mem src, dst;
381 struct dma_fence *fence = NULL;
382 int r;
383
384 src.bo = bo;
385 dst.bo = bo;
386 src.mem = old_mem;
387 dst.mem = new_mem;
388 src.offset = 0;
389 dst.offset = 0;
390
391 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
392 new_mem->size,
393 amdgpu_bo_encrypted(abo),
394 bo->base.resv, &fence);
395 if (r)
396 goto error;
397
398 /* clear the space being freed */
399 if (old_mem->mem_type == TTM_PL_VRAM &&
400 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
401 struct dma_fence *wipe_fence = NULL;
402
403 r = amdgpu_fill_buffer(abo, 0, NULL, &wipe_fence,
404 false);
405 if (r) {
406 goto error;
407 } else if (wipe_fence) {
408 amdgpu_vram_mgr_set_cleared(bo->resource);
409 dma_fence_put(fence);
410 fence = wipe_fence;
411 }
412 }
413
414 /* Always block for VM page tables before committing the new location */
415 if (bo->type == ttm_bo_type_kernel)
416 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
417 else
418 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
419 dma_fence_put(fence);
420 return r;
421
422 error:
423 if (fence)
424 dma_fence_wait(fence, false);
425 dma_fence_put(fence);
426 return r;
427 }
428
429 /**
430 * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU
431 * @adev: amdgpu device
432 * @res: the resource to check
433 *
434 * Returns: true if the full resource is CPU visible, false otherwise.
435 */
amdgpu_res_cpu_visible(struct amdgpu_device * adev,struct ttm_resource * res)436 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev,
437 struct ttm_resource *res)
438 {
439 struct amdgpu_res_cursor cursor;
440
441 if (!res)
442 return false;
443
444 if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT ||
445 res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL)
446 return true;
447
448 if (res->mem_type != TTM_PL_VRAM)
449 return false;
450
451 amdgpu_res_first(res, 0, res->size, &cursor);
452 while (cursor.remaining) {
453 if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size)
454 return false;
455 amdgpu_res_next(&cursor, cursor.size);
456 }
457
458 return true;
459 }
460
461 /*
462 * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy
463 *
464 * Called by amdgpu_bo_move()
465 */
amdgpu_res_copyable(struct amdgpu_device * adev,struct ttm_resource * mem)466 static bool amdgpu_res_copyable(struct amdgpu_device *adev,
467 struct ttm_resource *mem)
468 {
469 if (!amdgpu_res_cpu_visible(adev, mem))
470 return false;
471
472 /* ttm_resource_ioremap only supports contiguous memory */
473 if (mem->mem_type == TTM_PL_VRAM &&
474 !(mem->placement & TTM_PL_FLAG_CONTIGUOUS))
475 return false;
476
477 return true;
478 }
479
480 /*
481 * amdgpu_bo_move - Move a buffer object to a new memory location
482 *
483 * Called by ttm_bo_handle_move_mem()
484 */
amdgpu_bo_move(struct ttm_buffer_object * bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_resource * new_mem,struct ttm_place * hop)485 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
486 struct ttm_operation_ctx *ctx,
487 struct ttm_resource *new_mem,
488 struct ttm_place *hop)
489 {
490 struct amdgpu_device *adev;
491 struct amdgpu_bo *abo;
492 struct ttm_resource *old_mem = bo->resource;
493 int r;
494
495 if (new_mem->mem_type == TTM_PL_TT ||
496 new_mem->mem_type == AMDGPU_PL_PREEMPT) {
497 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
498 if (r)
499 return r;
500 }
501
502 abo = ttm_to_amdgpu_bo(bo);
503 adev = amdgpu_ttm_adev(bo->bdev);
504
505 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
506 bo->ttm == NULL)) {
507 amdgpu_bo_move_notify(bo, evict, new_mem);
508 ttm_bo_move_null(bo, new_mem);
509 return 0;
510 }
511 if (old_mem->mem_type == TTM_PL_SYSTEM &&
512 (new_mem->mem_type == TTM_PL_TT ||
513 new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
514 amdgpu_bo_move_notify(bo, evict, new_mem);
515 ttm_bo_move_null(bo, new_mem);
516 return 0;
517 }
518 if ((old_mem->mem_type == TTM_PL_TT ||
519 old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
520 new_mem->mem_type == TTM_PL_SYSTEM) {
521 r = ttm_bo_wait_ctx(bo, ctx);
522 if (r)
523 return r;
524
525 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
526 amdgpu_bo_move_notify(bo, evict, new_mem);
527 ttm_resource_free(bo, &bo->resource);
528 ttm_bo_assign_mem(bo, new_mem);
529 return 0;
530 }
531
532 if (old_mem->mem_type == AMDGPU_PL_GDS ||
533 old_mem->mem_type == AMDGPU_PL_GWS ||
534 old_mem->mem_type == AMDGPU_PL_OA ||
535 old_mem->mem_type == AMDGPU_PL_DOORBELL ||
536 new_mem->mem_type == AMDGPU_PL_GDS ||
537 new_mem->mem_type == AMDGPU_PL_GWS ||
538 new_mem->mem_type == AMDGPU_PL_OA ||
539 new_mem->mem_type == AMDGPU_PL_DOORBELL) {
540 /* Nothing to save here */
541 amdgpu_bo_move_notify(bo, evict, new_mem);
542 ttm_bo_move_null(bo, new_mem);
543 return 0;
544 }
545
546 if (bo->type == ttm_bo_type_device &&
547 new_mem->mem_type == TTM_PL_VRAM &&
548 old_mem->mem_type != TTM_PL_VRAM) {
549 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
550 * accesses the BO after it's moved.
551 */
552 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
553 }
554
555 if (adev->mman.buffer_funcs_enabled &&
556 ((old_mem->mem_type == TTM_PL_SYSTEM &&
557 new_mem->mem_type == TTM_PL_VRAM) ||
558 (old_mem->mem_type == TTM_PL_VRAM &&
559 new_mem->mem_type == TTM_PL_SYSTEM))) {
560 hop->fpfn = 0;
561 hop->lpfn = 0;
562 hop->mem_type = TTM_PL_TT;
563 hop->flags = TTM_PL_FLAG_TEMPORARY;
564 return -EMULTIHOP;
565 }
566
567 amdgpu_bo_move_notify(bo, evict, new_mem);
568 if (adev->mman.buffer_funcs_enabled)
569 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
570 else
571 r = -ENODEV;
572
573 if (r) {
574 /* Check that all memory is CPU accessible */
575 if (!amdgpu_res_copyable(adev, old_mem) ||
576 !amdgpu_res_copyable(adev, new_mem)) {
577 pr_err("Move buffer fallback to memcpy unavailable\n");
578 return r;
579 }
580
581 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
582 if (r)
583 return r;
584 }
585
586 /* update statistics after the move */
587 if (evict)
588 atomic64_inc(&adev->num_evictions);
589 atomic64_add(bo->base.size, &adev->num_bytes_moved);
590 return 0;
591 }
592
593 /*
594 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
595 *
596 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
597 */
amdgpu_ttm_io_mem_reserve(struct ttm_device * bdev,struct ttm_resource * mem)598 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
599 struct ttm_resource *mem)
600 {
601 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
602
603 switch (mem->mem_type) {
604 case TTM_PL_SYSTEM:
605 /* system memory */
606 return 0;
607 case TTM_PL_TT:
608 case AMDGPU_PL_PREEMPT:
609 break;
610 case TTM_PL_VRAM:
611 mem->bus.offset = mem->start << PAGE_SHIFT;
612
613 if (adev->mman.aper_base_kaddr &&
614 mem->placement & TTM_PL_FLAG_CONTIGUOUS)
615 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
616 mem->bus.offset;
617
618 mem->bus.offset += adev->gmc.aper_base;
619 mem->bus.is_iomem = true;
620 break;
621 case AMDGPU_PL_DOORBELL:
622 mem->bus.offset = mem->start << PAGE_SHIFT;
623 mem->bus.offset += adev->doorbell.base;
624 mem->bus.is_iomem = true;
625 mem->bus.caching = ttm_uncached;
626 break;
627 default:
628 return -EINVAL;
629 }
630 return 0;
631 }
632
amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object * bo,unsigned long page_offset)633 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
634 unsigned long page_offset)
635 {
636 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
637 struct amdgpu_res_cursor cursor;
638
639 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
640 &cursor);
641
642 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
643 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
644
645 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
646 }
647
648 /**
649 * amdgpu_ttm_domain_start - Returns GPU start address
650 * @adev: amdgpu device object
651 * @type: type of the memory
652 *
653 * Returns:
654 * GPU start address of a memory domain
655 */
656
amdgpu_ttm_domain_start(struct amdgpu_device * adev,uint32_t type)657 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
658 {
659 switch (type) {
660 case TTM_PL_TT:
661 return adev->gmc.gart_start;
662 case TTM_PL_VRAM:
663 return adev->gmc.vram_start;
664 }
665
666 return 0;
667 }
668
669 /*
670 * TTM backend functions.
671 */
672 struct amdgpu_ttm_tt {
673 struct ttm_tt ttm;
674 struct drm_gem_object *gobj;
675 u64 offset;
676 uint64_t userptr;
677 struct task_struct *usertask;
678 uint32_t userflags;
679 bool bound;
680 int32_t pool_id;
681 };
682
683 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm)
684
685 #ifdef CONFIG_DRM_AMDGPU_USERPTR
686 /*
687 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
688 * memory and start HMM tracking CPU page table update
689 *
690 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
691 * once afterwards to stop HMM tracking
692 */
amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo * bo,struct page ** pages,struct hmm_range ** range)693 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
694 struct hmm_range **range)
695 {
696 struct ttm_tt *ttm = bo->tbo.ttm;
697 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
698 unsigned long start = gtt->userptr;
699 struct vm_area_struct *vma;
700 struct mm_struct *mm;
701 bool readonly;
702 int r = 0;
703
704 /* Make sure get_user_pages_done() can cleanup gracefully */
705 *range = NULL;
706
707 mm = bo->notifier.mm;
708 if (unlikely(!mm)) {
709 DRM_DEBUG_DRIVER("BO is not registered?\n");
710 return -EFAULT;
711 }
712
713 if (!mmget_not_zero(mm)) /* Happens during process shutdown */
714 return -ESRCH;
715
716 mmap_read_lock(mm);
717 vma = vma_lookup(mm, start);
718 if (unlikely(!vma)) {
719 r = -EFAULT;
720 goto out_unlock;
721 }
722 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
723 vma->vm_file)) {
724 r = -EPERM;
725 goto out_unlock;
726 }
727
728 readonly = amdgpu_ttm_tt_is_readonly(ttm);
729 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
730 readonly, NULL, pages, range);
731 out_unlock:
732 mmap_read_unlock(mm);
733 if (r)
734 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
735
736 mmput(mm);
737
738 return r;
739 }
740
741 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
742 */
amdgpu_ttm_tt_discard_user_pages(struct ttm_tt * ttm,struct hmm_range * range)743 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
744 struct hmm_range *range)
745 {
746 struct amdgpu_ttm_tt *gtt = (void *)ttm;
747
748 if (gtt && gtt->userptr && range)
749 amdgpu_hmm_range_get_pages_done(range);
750 }
751
752 /*
753 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
754 * Check if the pages backing this ttm range have been invalidated
755 *
756 * Returns: true if pages are still valid
757 */
amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt * ttm,struct hmm_range * range)758 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
759 struct hmm_range *range)
760 {
761 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
762
763 if (!gtt || !gtt->userptr || !range)
764 return false;
765
766 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
767 gtt->userptr, ttm->num_pages);
768
769 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
770
771 return !amdgpu_hmm_range_get_pages_done(range);
772 }
773 #endif
774
775 /*
776 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
777 *
778 * Called by amdgpu_cs_list_validate(). This creates the page list
779 * that backs user memory and will ultimately be mapped into the device
780 * address space.
781 */
amdgpu_ttm_tt_set_user_pages(struct ttm_tt * ttm,struct page ** pages)782 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
783 {
784 unsigned long i;
785
786 for (i = 0; i < ttm->num_pages; ++i)
787 ttm->pages[i] = pages ? pages[i] : NULL;
788 }
789
790 /*
791 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
792 *
793 * Called by amdgpu_ttm_backend_bind()
794 **/
amdgpu_ttm_tt_pin_userptr(struct ttm_device * bdev,struct ttm_tt * ttm)795 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
796 struct ttm_tt *ttm)
797 {
798 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
799 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
800 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
801 enum dma_data_direction direction = write ?
802 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
803 int r;
804
805 /* Allocate an SG array and squash pages into it */
806 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
807 (u64)ttm->num_pages << PAGE_SHIFT,
808 GFP_KERNEL);
809 if (r)
810 goto release_sg;
811
812 /* Map SG to device */
813 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
814 if (r)
815 goto release_sg;
816
817 /* convert SG to linear array of pages and dma addresses */
818 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
819 ttm->num_pages);
820
821 return 0;
822
823 release_sg:
824 kfree(ttm->sg);
825 ttm->sg = NULL;
826 return r;
827 }
828
829 /*
830 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
831 */
amdgpu_ttm_tt_unpin_userptr(struct ttm_device * bdev,struct ttm_tt * ttm)832 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
833 struct ttm_tt *ttm)
834 {
835 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
836 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
837 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
838 enum dma_data_direction direction = write ?
839 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
840
841 /* double check that we don't free the table twice */
842 if (!ttm->sg || !ttm->sg->sgl)
843 return;
844
845 /* unmap the pages mapped to the device */
846 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
847 sg_free_table(ttm->sg);
848 }
849
850 /*
851 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
852 * MQDn+CtrlStackn where n is the number of XCCs per partition.
853 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
854 * and uses memory type default, UC. The rest of pages_per_xcc are
855 * Ctrl stack and modify their memory type to NC.
856 */
amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device * adev,struct ttm_tt * ttm,uint64_t flags)857 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
858 struct ttm_tt *ttm, uint64_t flags)
859 {
860 struct amdgpu_ttm_tt *gtt = (void *)ttm;
861 uint64_t total_pages = ttm->num_pages;
862 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
863 uint64_t page_idx, pages_per_xcc;
864 int i;
865 uint64_t ctrl_flags = AMDGPU_PTE_MTYPE_VG10(flags, AMDGPU_MTYPE_NC);
866
867 pages_per_xcc = total_pages;
868 do_div(pages_per_xcc, num_xcc);
869
870 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
871 /* MQD page: use default flags */
872 amdgpu_gart_bind(adev,
873 gtt->offset + (page_idx << PAGE_SHIFT),
874 1, >t->ttm.dma_address[page_idx], flags);
875 /*
876 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
877 * the second page of the BO onward.
878 */
879 amdgpu_gart_bind(adev,
880 gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
881 pages_per_xcc - 1,
882 >t->ttm.dma_address[page_idx + 1],
883 ctrl_flags);
884 }
885 }
886
amdgpu_ttm_gart_bind(struct amdgpu_device * adev,struct ttm_buffer_object * tbo,uint64_t flags)887 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
888 struct ttm_buffer_object *tbo,
889 uint64_t flags)
890 {
891 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
892 struct ttm_tt *ttm = tbo->ttm;
893 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
894
895 if (amdgpu_bo_encrypted(abo))
896 flags |= AMDGPU_PTE_TMZ;
897
898 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
899 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
900 } else {
901 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
902 gtt->ttm.dma_address, flags);
903 }
904 gtt->bound = true;
905 }
906
907 /*
908 * amdgpu_ttm_backend_bind - Bind GTT memory
909 *
910 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
911 * This handles binding GTT memory to the device address space.
912 */
amdgpu_ttm_backend_bind(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_resource * bo_mem)913 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
914 struct ttm_tt *ttm,
915 struct ttm_resource *bo_mem)
916 {
917 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
918 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
919 uint64_t flags;
920 int r;
921
922 if (!bo_mem)
923 return -EINVAL;
924
925 if (gtt->bound)
926 return 0;
927
928 if (gtt->userptr) {
929 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
930 if (r) {
931 DRM_ERROR("failed to pin userptr\n");
932 return r;
933 }
934 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
935 if (!ttm->sg) {
936 struct dma_buf_attachment *attach;
937 struct sg_table *sgt;
938
939 attach = gtt->gobj->import_attach;
940 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
941 if (IS_ERR(sgt))
942 return PTR_ERR(sgt);
943
944 ttm->sg = sgt;
945 }
946
947 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
948 ttm->num_pages);
949 }
950
951 if (!ttm->num_pages) {
952 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
953 ttm->num_pages, bo_mem, ttm);
954 }
955
956 if (bo_mem->mem_type != TTM_PL_TT ||
957 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
958 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
959 return 0;
960 }
961
962 /* compute PTE flags relevant to this BO memory */
963 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
964
965 /* bind pages into GART page tables */
966 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
967 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
968 gtt->ttm.dma_address, flags);
969 gtt->bound = true;
970 return 0;
971 }
972
973 /*
974 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
975 * through AGP or GART aperture.
976 *
977 * If bo is accessible through AGP aperture, then use AGP aperture
978 * to access bo; otherwise allocate logical space in GART aperture
979 * and map bo to GART aperture.
980 */
amdgpu_ttm_alloc_gart(struct ttm_buffer_object * bo)981 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
982 {
983 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
984 struct ttm_operation_ctx ctx = { false, false };
985 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
986 struct ttm_placement placement;
987 struct ttm_place placements;
988 struct ttm_resource *tmp;
989 uint64_t addr, flags;
990 int r;
991
992 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
993 return 0;
994
995 addr = amdgpu_gmc_agp_addr(bo);
996 if (addr != AMDGPU_BO_INVALID_OFFSET)
997 return 0;
998
999 /* allocate GART space */
1000 placement.num_placement = 1;
1001 placement.placement = &placements;
1002 placements.fpfn = 0;
1003 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1004 placements.mem_type = TTM_PL_TT;
1005 placements.flags = bo->resource->placement;
1006
1007 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1008 if (unlikely(r))
1009 return r;
1010
1011 /* compute PTE flags for this buffer object */
1012 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
1013
1014 /* Bind pages */
1015 gtt->offset = (u64)tmp->start << PAGE_SHIFT;
1016 amdgpu_ttm_gart_bind(adev, bo, flags);
1017 amdgpu_gart_invalidate_tlb(adev);
1018 ttm_resource_free(bo, &bo->resource);
1019 ttm_bo_assign_mem(bo, tmp);
1020
1021 return 0;
1022 }
1023
1024 /*
1025 * amdgpu_ttm_recover_gart - Rebind GTT pages
1026 *
1027 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1028 * rebind GTT pages during a GPU reset.
1029 */
amdgpu_ttm_recover_gart(struct ttm_buffer_object * tbo)1030 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1031 {
1032 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1033 uint64_t flags;
1034
1035 if (!tbo->ttm)
1036 return;
1037
1038 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1039 amdgpu_ttm_gart_bind(adev, tbo, flags);
1040 }
1041
1042 /*
1043 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1044 *
1045 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1046 * ttm_tt_destroy().
1047 */
amdgpu_ttm_backend_unbind(struct ttm_device * bdev,struct ttm_tt * ttm)1048 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1049 struct ttm_tt *ttm)
1050 {
1051 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1052 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1053
1054 /* if the pages have userptr pinning then clear that first */
1055 if (gtt->userptr) {
1056 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1057 } else if (ttm->sg && gtt->gobj->import_attach) {
1058 struct dma_buf_attachment *attach;
1059
1060 attach = gtt->gobj->import_attach;
1061 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1062 ttm->sg = NULL;
1063 }
1064
1065 if (!gtt->bound)
1066 return;
1067
1068 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1069 return;
1070
1071 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1072 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1073 gtt->bound = false;
1074 }
1075
amdgpu_ttm_backend_destroy(struct ttm_device * bdev,struct ttm_tt * ttm)1076 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1077 struct ttm_tt *ttm)
1078 {
1079 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1080
1081 if (gtt->usertask)
1082 put_task_struct(gtt->usertask);
1083
1084 ttm_tt_fini(>t->ttm);
1085 kfree(gtt);
1086 }
1087
1088 /**
1089 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1090 *
1091 * @bo: The buffer object to create a GTT ttm_tt object around
1092 * @page_flags: Page flags to be added to the ttm_tt object
1093 *
1094 * Called by ttm_tt_create().
1095 */
amdgpu_ttm_tt_create(struct ttm_buffer_object * bo,uint32_t page_flags)1096 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1097 uint32_t page_flags)
1098 {
1099 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1100 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1101 struct amdgpu_ttm_tt *gtt;
1102 enum ttm_caching caching;
1103
1104 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1105 if (!gtt)
1106 return NULL;
1107
1108 gtt->gobj = &bo->base;
1109 if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1110 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1111 else
1112 gtt->pool_id = abo->xcp_id;
1113
1114 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1115 caching = ttm_write_combined;
1116 else
1117 caching = ttm_cached;
1118
1119 /* allocate space for the uninitialized page entries */
1120 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) {
1121 kfree(gtt);
1122 return NULL;
1123 }
1124 return >t->ttm;
1125 }
1126
1127 /*
1128 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1129 *
1130 * Map the pages of a ttm_tt object to an address space visible
1131 * to the underlying device.
1132 */
amdgpu_ttm_tt_populate(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_operation_ctx * ctx)1133 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1134 struct ttm_tt *ttm,
1135 struct ttm_operation_ctx *ctx)
1136 {
1137 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1138 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1139 struct ttm_pool *pool;
1140 pgoff_t i;
1141 int ret;
1142
1143 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1144 if (gtt->userptr) {
1145 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1146 if (!ttm->sg)
1147 return -ENOMEM;
1148 return 0;
1149 }
1150
1151 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1152 return 0;
1153
1154 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1155 pool = &adev->mman.ttm_pools[gtt->pool_id];
1156 else
1157 pool = &adev->mman.bdev.pool;
1158 ret = ttm_pool_alloc(pool, ttm, ctx);
1159 if (ret)
1160 return ret;
1161
1162 for (i = 0; i < ttm->num_pages; ++i)
1163 ttm->pages[i]->mapping = bdev->dev_mapping;
1164
1165 return 0;
1166 }
1167
1168 /*
1169 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1170 *
1171 * Unmaps pages of a ttm_tt object from the device address space and
1172 * unpopulates the page array backing it.
1173 */
amdgpu_ttm_tt_unpopulate(struct ttm_device * bdev,struct ttm_tt * ttm)1174 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1175 struct ttm_tt *ttm)
1176 {
1177 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1178 struct amdgpu_device *adev;
1179 struct ttm_pool *pool;
1180 pgoff_t i;
1181
1182 amdgpu_ttm_backend_unbind(bdev, ttm);
1183
1184 if (gtt->userptr) {
1185 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1186 kfree(ttm->sg);
1187 ttm->sg = NULL;
1188 return;
1189 }
1190
1191 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1192 return;
1193
1194 for (i = 0; i < ttm->num_pages; ++i)
1195 ttm->pages[i]->mapping = NULL;
1196
1197 adev = amdgpu_ttm_adev(bdev);
1198
1199 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1200 pool = &adev->mman.ttm_pools[gtt->pool_id];
1201 else
1202 pool = &adev->mman.bdev.pool;
1203
1204 return ttm_pool_free(pool, ttm);
1205 }
1206
1207 /**
1208 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1209 * task
1210 *
1211 * @tbo: The ttm_buffer_object that contains the userptr
1212 * @user_addr: The returned value
1213 */
amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object * tbo,uint64_t * user_addr)1214 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1215 uint64_t *user_addr)
1216 {
1217 struct amdgpu_ttm_tt *gtt;
1218
1219 if (!tbo->ttm)
1220 return -EINVAL;
1221
1222 gtt = (void *)tbo->ttm;
1223 *user_addr = gtt->userptr;
1224 return 0;
1225 }
1226
1227 /**
1228 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1229 * task
1230 *
1231 * @bo: The ttm_buffer_object to bind this userptr to
1232 * @addr: The address in the current tasks VM space to use
1233 * @flags: Requirements of userptr object.
1234 *
1235 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1236 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1237 * initialize GPU VM for a KFD process.
1238 */
amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object * bo,uint64_t addr,uint32_t flags)1239 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1240 uint64_t addr, uint32_t flags)
1241 {
1242 struct amdgpu_ttm_tt *gtt;
1243
1244 if (!bo->ttm) {
1245 /* TODO: We want a separate TTM object type for userptrs */
1246 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1247 if (bo->ttm == NULL)
1248 return -ENOMEM;
1249 }
1250
1251 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1252 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1253
1254 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1255 gtt->userptr = addr;
1256 gtt->userflags = flags;
1257
1258 if (gtt->usertask)
1259 put_task_struct(gtt->usertask);
1260 gtt->usertask = current->group_leader;
1261 get_task_struct(gtt->usertask);
1262
1263 return 0;
1264 }
1265
1266 /*
1267 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1268 */
amdgpu_ttm_tt_get_usermm(struct ttm_tt * ttm)1269 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1270 {
1271 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1272
1273 if (gtt == NULL)
1274 return NULL;
1275
1276 if (gtt->usertask == NULL)
1277 return NULL;
1278
1279 return gtt->usertask->mm;
1280 }
1281
1282 /*
1283 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1284 * address range for the current task.
1285 *
1286 */
amdgpu_ttm_tt_affect_userptr(struct ttm_tt * ttm,unsigned long start,unsigned long end,unsigned long * userptr)1287 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1288 unsigned long end, unsigned long *userptr)
1289 {
1290 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1291 unsigned long size;
1292
1293 if (gtt == NULL || !gtt->userptr)
1294 return false;
1295
1296 /* Return false if no part of the ttm_tt object lies within
1297 * the range
1298 */
1299 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1300 if (gtt->userptr > end || gtt->userptr + size <= start)
1301 return false;
1302
1303 if (userptr)
1304 *userptr = gtt->userptr;
1305 return true;
1306 }
1307
1308 /*
1309 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1310 */
amdgpu_ttm_tt_is_userptr(struct ttm_tt * ttm)1311 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1312 {
1313 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1314
1315 if (gtt == NULL || !gtt->userptr)
1316 return false;
1317
1318 return true;
1319 }
1320
1321 /*
1322 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1323 */
amdgpu_ttm_tt_is_readonly(struct ttm_tt * ttm)1324 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1325 {
1326 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1327
1328 if (gtt == NULL)
1329 return false;
1330
1331 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1332 }
1333
1334 /**
1335 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1336 *
1337 * @ttm: The ttm_tt object to compute the flags for
1338 * @mem: The memory registry backing this ttm_tt object
1339 *
1340 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1341 */
amdgpu_ttm_tt_pde_flags(struct ttm_tt * ttm,struct ttm_resource * mem)1342 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1343 {
1344 uint64_t flags = 0;
1345
1346 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1347 flags |= AMDGPU_PTE_VALID;
1348
1349 if (mem && (mem->mem_type == TTM_PL_TT ||
1350 mem->mem_type == AMDGPU_PL_DOORBELL ||
1351 mem->mem_type == AMDGPU_PL_PREEMPT)) {
1352 flags |= AMDGPU_PTE_SYSTEM;
1353
1354 if (ttm->caching == ttm_cached)
1355 flags |= AMDGPU_PTE_SNOOPED;
1356 }
1357
1358 if (mem && mem->mem_type == TTM_PL_VRAM &&
1359 mem->bus.caching == ttm_cached)
1360 flags |= AMDGPU_PTE_SNOOPED;
1361
1362 return flags;
1363 }
1364
1365 /**
1366 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1367 *
1368 * @adev: amdgpu_device pointer
1369 * @ttm: The ttm_tt object to compute the flags for
1370 * @mem: The memory registry backing this ttm_tt object
1371 *
1372 * Figure out the flags to use for a VM PTE (Page Table Entry).
1373 */
amdgpu_ttm_tt_pte_flags(struct amdgpu_device * adev,struct ttm_tt * ttm,struct ttm_resource * mem)1374 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1375 struct ttm_resource *mem)
1376 {
1377 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1378
1379 flags |= adev->gart.gart_pte_flags;
1380 flags |= AMDGPU_PTE_READABLE;
1381
1382 if (!amdgpu_ttm_tt_is_readonly(ttm))
1383 flags |= AMDGPU_PTE_WRITEABLE;
1384
1385 return flags;
1386 }
1387
1388 /*
1389 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1390 * object.
1391 *
1392 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1393 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1394 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1395 * used to clean out a memory space.
1396 */
amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object * bo,const struct ttm_place * place)1397 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1398 const struct ttm_place *place)
1399 {
1400 struct dma_resv_iter resv_cursor;
1401 struct dma_fence *f;
1402
1403 if (!amdgpu_bo_is_amdgpu_bo(bo))
1404 return ttm_bo_eviction_valuable(bo, place);
1405
1406 /* Swapout? */
1407 if (bo->resource->mem_type == TTM_PL_SYSTEM)
1408 return true;
1409
1410 if (bo->type == ttm_bo_type_kernel &&
1411 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1412 return false;
1413
1414 /* If bo is a KFD BO, check if the bo belongs to the current process.
1415 * If true, then return false as any KFD process needs all its BOs to
1416 * be resident to run successfully
1417 */
1418 dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1419 DMA_RESV_USAGE_BOOKKEEP, f) {
1420 if (amdkfd_fence_check_mm(f, current->mm) &&
1421 !(place->flags & TTM_PL_FLAG_CONTIGUOUS))
1422 return false;
1423 }
1424
1425 /* Preemptible BOs don't own system resources managed by the
1426 * driver (pages, VRAM, GART space). They point to resources
1427 * owned by someone else (e.g. pageable memory in user mode
1428 * or a DMABuf). They are used in a preemptible context so we
1429 * can guarantee no deadlocks and good QoS in case of MMU
1430 * notifiers or DMABuf move notifiers from the resource owner.
1431 */
1432 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1433 return false;
1434
1435 if (bo->resource->mem_type == TTM_PL_TT &&
1436 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1437 return false;
1438
1439 return ttm_bo_eviction_valuable(bo, place);
1440 }
1441
amdgpu_ttm_vram_mm_access(struct amdgpu_device * adev,loff_t pos,void * buf,size_t size,bool write)1442 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1443 void *buf, size_t size, bool write)
1444 {
1445 while (size) {
1446 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1447 uint64_t bytes = 4 - (pos & 0x3);
1448 uint32_t shift = (pos & 0x3) * 8;
1449 uint32_t mask = 0xffffffff << shift;
1450 uint32_t value = 0;
1451
1452 if (size < bytes) {
1453 mask &= 0xffffffff >> (bytes - size) * 8;
1454 bytes = size;
1455 }
1456
1457 if (mask != 0xffffffff) {
1458 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1459 if (write) {
1460 value &= ~mask;
1461 value |= (*(uint32_t *)buf << shift) & mask;
1462 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1463 } else {
1464 value = (value & mask) >> shift;
1465 memcpy(buf, &value, bytes);
1466 }
1467 } else {
1468 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1469 }
1470
1471 pos += bytes;
1472 buf += bytes;
1473 size -= bytes;
1474 }
1475 }
1476
amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object * bo,unsigned long offset,void * buf,int len,int write)1477 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1478 unsigned long offset, void *buf,
1479 int len, int write)
1480 {
1481 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1482 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1483 struct amdgpu_res_cursor src_mm;
1484 struct amdgpu_job *job;
1485 struct dma_fence *fence;
1486 uint64_t src_addr, dst_addr;
1487 unsigned int num_dw;
1488 int r, idx;
1489
1490 if (len != PAGE_SIZE)
1491 return -EINVAL;
1492
1493 if (!adev->mman.sdma_access_ptr)
1494 return -EACCES;
1495
1496 if (!drm_dev_enter(adev_to_drm(adev), &idx))
1497 return -ENODEV;
1498
1499 if (write)
1500 memcpy(adev->mman.sdma_access_ptr, buf, len);
1501
1502 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1503 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1504 AMDGPU_FENCE_OWNER_UNDEFINED,
1505 num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1506 &job);
1507 if (r)
1508 goto out;
1509
1510 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1511 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1512 src_mm.start;
1513 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1514 if (write)
1515 swap(src_addr, dst_addr);
1516
1517 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1518 PAGE_SIZE, 0);
1519
1520 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1521 WARN_ON(job->ibs[0].length_dw > num_dw);
1522
1523 fence = amdgpu_job_submit(job);
1524
1525 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1526 r = -ETIMEDOUT;
1527 dma_fence_put(fence);
1528
1529 if (!(r || write))
1530 memcpy(buf, adev->mman.sdma_access_ptr, len);
1531 out:
1532 drm_dev_exit(idx);
1533 return r;
1534 }
1535
1536 /**
1537 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1538 *
1539 * @bo: The buffer object to read/write
1540 * @offset: Offset into buffer object
1541 * @buf: Secondary buffer to write/read from
1542 * @len: Length in bytes of access
1543 * @write: true if writing
1544 *
1545 * This is used to access VRAM that backs a buffer object via MMIO
1546 * access for debugging purposes.
1547 */
amdgpu_ttm_access_memory(struct ttm_buffer_object * bo,unsigned long offset,void * buf,int len,int write)1548 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1549 unsigned long offset, void *buf, int len,
1550 int write)
1551 {
1552 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1553 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1554 struct amdgpu_res_cursor cursor;
1555 int ret = 0;
1556
1557 if (bo->resource->mem_type != TTM_PL_VRAM)
1558 return -EIO;
1559
1560 if (amdgpu_device_has_timeouts_enabled(adev) &&
1561 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1562 return len;
1563
1564 amdgpu_res_first(bo->resource, offset, len, &cursor);
1565 while (cursor.remaining) {
1566 size_t count, size = cursor.size;
1567 loff_t pos = cursor.start;
1568
1569 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1570 size -= count;
1571 if (size) {
1572 /* using MM to access rest vram and handle un-aligned address */
1573 pos += count;
1574 buf += count;
1575 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1576 }
1577
1578 ret += cursor.size;
1579 buf += cursor.size;
1580 amdgpu_res_next(&cursor, cursor.size);
1581 }
1582
1583 return ret;
1584 }
1585
1586 static void
amdgpu_bo_delete_mem_notify(struct ttm_buffer_object * bo)1587 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1588 {
1589 amdgpu_bo_move_notify(bo, false, NULL);
1590 }
1591
1592 static struct ttm_device_funcs amdgpu_bo_driver = {
1593 .ttm_tt_create = &amdgpu_ttm_tt_create,
1594 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1595 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1596 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1597 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1598 .evict_flags = &amdgpu_evict_flags,
1599 .move = &amdgpu_bo_move,
1600 .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1601 .release_notify = &amdgpu_bo_release_notify,
1602 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1603 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1604 .access_memory = &amdgpu_ttm_access_memory,
1605 };
1606
1607 /*
1608 * Firmware Reservation functions
1609 */
1610 /**
1611 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1612 *
1613 * @adev: amdgpu_device pointer
1614 *
1615 * free fw reserved vram if it has been reserved.
1616 */
amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device * adev)1617 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1618 {
1619 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1620 NULL, &adev->mman.fw_vram_usage_va);
1621 }
1622
1623 /*
1624 * Driver Reservation functions
1625 */
1626 /**
1627 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1628 *
1629 * @adev: amdgpu_device pointer
1630 *
1631 * free drv reserved vram if it has been reserved.
1632 */
amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device * adev)1633 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1634 {
1635 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1636 NULL,
1637 &adev->mman.drv_vram_usage_va);
1638 }
1639
1640 /**
1641 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1642 *
1643 * @adev: amdgpu_device pointer
1644 *
1645 * create bo vram reservation from fw.
1646 */
amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device * adev)1647 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1648 {
1649 uint64_t vram_size = adev->gmc.visible_vram_size;
1650
1651 adev->mman.fw_vram_usage_va = NULL;
1652 adev->mman.fw_vram_usage_reserved_bo = NULL;
1653
1654 if (adev->mman.fw_vram_usage_size == 0 ||
1655 adev->mman.fw_vram_usage_size > vram_size)
1656 return 0;
1657
1658 return amdgpu_bo_create_kernel_at(adev,
1659 adev->mman.fw_vram_usage_start_offset,
1660 adev->mman.fw_vram_usage_size,
1661 &adev->mman.fw_vram_usage_reserved_bo,
1662 &adev->mman.fw_vram_usage_va);
1663 }
1664
1665 /**
1666 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1667 *
1668 * @adev: amdgpu_device pointer
1669 *
1670 * create bo vram reservation from drv.
1671 */
amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device * adev)1672 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1673 {
1674 u64 vram_size = adev->gmc.visible_vram_size;
1675
1676 adev->mman.drv_vram_usage_va = NULL;
1677 adev->mman.drv_vram_usage_reserved_bo = NULL;
1678
1679 if (adev->mman.drv_vram_usage_size == 0 ||
1680 adev->mman.drv_vram_usage_size > vram_size)
1681 return 0;
1682
1683 return amdgpu_bo_create_kernel_at(adev,
1684 adev->mman.drv_vram_usage_start_offset,
1685 adev->mman.drv_vram_usage_size,
1686 &adev->mman.drv_vram_usage_reserved_bo,
1687 &adev->mman.drv_vram_usage_va);
1688 }
1689
1690 /*
1691 * Memoy training reservation functions
1692 */
1693
1694 /**
1695 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1696 *
1697 * @adev: amdgpu_device pointer
1698 *
1699 * free memory training reserved vram if it has been reserved.
1700 */
amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device * adev)1701 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1702 {
1703 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1704
1705 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1706 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1707 ctx->c2p_bo = NULL;
1708
1709 return 0;
1710 }
1711
amdgpu_ttm_training_data_block_init(struct amdgpu_device * adev,uint32_t reserve_size)1712 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1713 uint32_t reserve_size)
1714 {
1715 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1716
1717 memset(ctx, 0, sizeof(*ctx));
1718
1719 ctx->c2p_train_data_offset =
1720 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1721 ctx->p2c_train_data_offset =
1722 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1723 ctx->train_data_size =
1724 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1725
1726 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1727 ctx->train_data_size,
1728 ctx->p2c_train_data_offset,
1729 ctx->c2p_train_data_offset);
1730 }
1731
1732 /*
1733 * reserve TMR memory at the top of VRAM which holds
1734 * IP Discovery data and is protected by PSP.
1735 */
amdgpu_ttm_reserve_tmr(struct amdgpu_device * adev)1736 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1737 {
1738 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1739 bool mem_train_support = false;
1740 uint32_t reserve_size = 0;
1741 int ret;
1742
1743 if (adev->bios && !amdgpu_sriov_vf(adev)) {
1744 if (amdgpu_atomfirmware_mem_training_supported(adev))
1745 mem_train_support = true;
1746 else
1747 DRM_DEBUG("memory training does not support!\n");
1748 }
1749
1750 /*
1751 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1752 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1753 *
1754 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1755 * discovery data and G6 memory training data respectively
1756 */
1757 if (adev->bios)
1758 reserve_size =
1759 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1760
1761 if (!adev->bios &&
1762 (amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3) ||
1763 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 4)))
1764 reserve_size = max(reserve_size, (uint32_t)280 << 20);
1765 else if (!reserve_size)
1766 reserve_size = DISCOVERY_TMR_OFFSET;
1767
1768 if (mem_train_support) {
1769 /* reserve vram for mem train according to TMR location */
1770 amdgpu_ttm_training_data_block_init(adev, reserve_size);
1771 ret = amdgpu_bo_create_kernel_at(adev,
1772 ctx->c2p_train_data_offset,
1773 ctx->train_data_size,
1774 &ctx->c2p_bo,
1775 NULL);
1776 if (ret) {
1777 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1778 amdgpu_ttm_training_reserve_vram_fini(adev);
1779 return ret;
1780 }
1781 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1782 }
1783
1784 if (!adev->gmc.is_app_apu) {
1785 ret = amdgpu_bo_create_kernel_at(
1786 adev, adev->gmc.real_vram_size - reserve_size,
1787 reserve_size, &adev->mman.fw_reserved_memory, NULL);
1788 if (ret) {
1789 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1790 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1791 NULL, NULL);
1792 return ret;
1793 }
1794 } else {
1795 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1796 }
1797
1798 return 0;
1799 }
1800
amdgpu_ttm_pools_init(struct amdgpu_device * adev)1801 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1802 {
1803 int i;
1804
1805 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1806 return 0;
1807
1808 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1809 sizeof(*adev->mman.ttm_pools),
1810 GFP_KERNEL);
1811 if (!adev->mman.ttm_pools)
1812 return -ENOMEM;
1813
1814 for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1815 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1816 adev->gmc.mem_partitions[i].numa.node,
1817 false, false);
1818 }
1819 return 0;
1820 }
1821
amdgpu_ttm_pools_fini(struct amdgpu_device * adev)1822 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1823 {
1824 int i;
1825
1826 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1827 return;
1828
1829 for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1830 ttm_pool_fini(&adev->mman.ttm_pools[i]);
1831
1832 kfree(adev->mman.ttm_pools);
1833 adev->mman.ttm_pools = NULL;
1834 }
1835
1836 /*
1837 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1838 * gtt/vram related fields.
1839 *
1840 * This initializes all of the memory space pools that the TTM layer
1841 * will need such as the GTT space (system memory mapped to the device),
1842 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1843 * can be mapped per VMID.
1844 */
amdgpu_ttm_init(struct amdgpu_device * adev)1845 int amdgpu_ttm_init(struct amdgpu_device *adev)
1846 {
1847 uint64_t gtt_size;
1848 int r;
1849
1850 mutex_init(&adev->mman.gtt_window_lock);
1851
1852 /* No others user of address space so set it to 0 */
1853 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1854 adev_to_drm(adev)->anon_inode->i_mapping,
1855 adev_to_drm(adev)->vma_offset_manager,
1856 adev->need_swiotlb,
1857 dma_addressing_limited(adev->dev));
1858 if (r) {
1859 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1860 return r;
1861 }
1862
1863 r = amdgpu_ttm_pools_init(adev);
1864 if (r) {
1865 DRM_ERROR("failed to init ttm pools(%d).\n", r);
1866 return r;
1867 }
1868 adev->mman.initialized = true;
1869
1870 /* Initialize VRAM pool with all of VRAM divided into pages */
1871 r = amdgpu_vram_mgr_init(adev);
1872 if (r) {
1873 DRM_ERROR("Failed initializing VRAM heap.\n");
1874 return r;
1875 }
1876
1877 /* Change the size here instead of the init above so only lpfn is affected */
1878 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1879 #ifdef CONFIG_64BIT
1880 #ifdef CONFIG_X86
1881 if (adev->gmc.xgmi.connected_to_cpu)
1882 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1883 adev->gmc.visible_vram_size);
1884
1885 else if (adev->gmc.is_app_apu)
1886 DRM_DEBUG_DRIVER(
1887 "No need to ioremap when real vram size is 0\n");
1888 else
1889 #endif
1890 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1891 adev->gmc.visible_vram_size);
1892 #endif
1893
1894 /*
1895 *The reserved vram for firmware must be pinned to the specified
1896 *place on the VRAM, so reserve it early.
1897 */
1898 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1899 if (r)
1900 return r;
1901
1902 /*
1903 *The reserved vram for driver must be pinned to the specified
1904 *place on the VRAM, so reserve it early.
1905 */
1906 r = amdgpu_ttm_drv_reserve_vram_init(adev);
1907 if (r)
1908 return r;
1909
1910 /*
1911 * only NAVI10 and onwards ASIC support for IP discovery.
1912 * If IP discovery enabled, a block of memory should be
1913 * reserved for IP discovey.
1914 */
1915 if (adev->mman.discovery_bin) {
1916 r = amdgpu_ttm_reserve_tmr(adev);
1917 if (r)
1918 return r;
1919 }
1920
1921 /* allocate memory as required for VGA
1922 * This is used for VGA emulation and pre-OS scanout buffers to
1923 * avoid display artifacts while transitioning between pre-OS
1924 * and driver.
1925 */
1926 if (!adev->gmc.is_app_apu) {
1927 r = amdgpu_bo_create_kernel_at(adev, 0,
1928 adev->mman.stolen_vga_size,
1929 &adev->mman.stolen_vga_memory,
1930 NULL);
1931 if (r)
1932 return r;
1933
1934 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1935 adev->mman.stolen_extended_size,
1936 &adev->mman.stolen_extended_memory,
1937 NULL);
1938
1939 if (r)
1940 return r;
1941
1942 r = amdgpu_bo_create_kernel_at(adev,
1943 adev->mman.stolen_reserved_offset,
1944 adev->mman.stolen_reserved_size,
1945 &adev->mman.stolen_reserved_memory,
1946 NULL);
1947 if (r)
1948 return r;
1949 } else {
1950 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1951 }
1952
1953 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1954 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1955
1956 /* Compute GTT size, either based on TTM limit
1957 * or whatever the user passed on module init.
1958 */
1959 if (amdgpu_gtt_size == -1)
1960 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1961 else
1962 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1963
1964 /* Initialize GTT memory pool */
1965 r = amdgpu_gtt_mgr_init(adev, gtt_size);
1966 if (r) {
1967 DRM_ERROR("Failed initializing GTT heap.\n");
1968 return r;
1969 }
1970 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1971 (unsigned int)(gtt_size / (1024 * 1024)));
1972
1973 /* Initialize doorbell pool on PCI BAR */
1974 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1975 if (r) {
1976 DRM_ERROR("Failed initializing doorbell heap.\n");
1977 return r;
1978 }
1979
1980 /* Create a boorbell page for kernel usages */
1981 r = amdgpu_doorbell_create_kernel_doorbells(adev);
1982 if (r) {
1983 DRM_ERROR("Failed to initialize kernel doorbells.\n");
1984 return r;
1985 }
1986
1987 /* Initialize preemptible memory pool */
1988 r = amdgpu_preempt_mgr_init(adev);
1989 if (r) {
1990 DRM_ERROR("Failed initializing PREEMPT heap.\n");
1991 return r;
1992 }
1993
1994 /* Initialize various on-chip memory pools */
1995 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1996 if (r) {
1997 DRM_ERROR("Failed initializing GDS heap.\n");
1998 return r;
1999 }
2000
2001 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
2002 if (r) {
2003 DRM_ERROR("Failed initializing gws heap.\n");
2004 return r;
2005 }
2006
2007 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
2008 if (r) {
2009 DRM_ERROR("Failed initializing oa heap.\n");
2010 return r;
2011 }
2012 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
2013 AMDGPU_GEM_DOMAIN_GTT,
2014 &adev->mman.sdma_access_bo, NULL,
2015 &adev->mman.sdma_access_ptr))
2016 DRM_WARN("Debug VRAM access will use slowpath MM access\n");
2017
2018 return 0;
2019 }
2020
2021 /*
2022 * amdgpu_ttm_fini - De-initialize the TTM memory pools
2023 */
amdgpu_ttm_fini(struct amdgpu_device * adev)2024 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2025 {
2026 int idx;
2027
2028 if (!adev->mman.initialized)
2029 return;
2030
2031 amdgpu_ttm_pools_fini(adev);
2032
2033 amdgpu_ttm_training_reserve_vram_fini(adev);
2034 /* return the stolen vga memory back to VRAM */
2035 if (!adev->gmc.is_app_apu) {
2036 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2037 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2038 /* return the FW reserved memory back to VRAM */
2039 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2040 NULL);
2041 if (adev->mman.stolen_reserved_size)
2042 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2043 NULL, NULL);
2044 }
2045 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2046 &adev->mman.sdma_access_ptr);
2047 amdgpu_ttm_fw_reserve_vram_fini(adev);
2048 amdgpu_ttm_drv_reserve_vram_fini(adev);
2049
2050 if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2051
2052 if (adev->mman.aper_base_kaddr)
2053 iounmap(adev->mman.aper_base_kaddr);
2054 adev->mman.aper_base_kaddr = NULL;
2055
2056 drm_dev_exit(idx);
2057 }
2058
2059 amdgpu_vram_mgr_fini(adev);
2060 amdgpu_gtt_mgr_fini(adev);
2061 amdgpu_preempt_mgr_fini(adev);
2062 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2063 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2064 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2065 ttm_device_fini(&adev->mman.bdev);
2066 adev->mman.initialized = false;
2067 DRM_INFO("amdgpu: ttm finalized\n");
2068 }
2069
2070 /**
2071 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2072 *
2073 * @adev: amdgpu_device pointer
2074 * @enable: true when we can use buffer functions.
2075 *
2076 * Enable/disable use of buffer functions during suspend/resume. This should
2077 * only be called at bootup or when userspace isn't running.
2078 */
amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device * adev,bool enable)2079 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2080 {
2081 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2082 uint64_t size;
2083 int r;
2084
2085 if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2086 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2087 return;
2088
2089 if (enable) {
2090 struct amdgpu_ring *ring;
2091 struct drm_gpu_scheduler *sched;
2092
2093 ring = adev->mman.buffer_funcs_ring;
2094 sched = &ring->sched;
2095 r = drm_sched_entity_init(&adev->mman.high_pr,
2096 DRM_SCHED_PRIORITY_KERNEL, &sched,
2097 1, NULL);
2098 if (r) {
2099 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2100 r);
2101 return;
2102 }
2103
2104 r = drm_sched_entity_init(&adev->mman.low_pr,
2105 DRM_SCHED_PRIORITY_NORMAL, &sched,
2106 1, NULL);
2107 if (r) {
2108 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2109 r);
2110 goto error_free_entity;
2111 }
2112 } else {
2113 drm_sched_entity_destroy(&adev->mman.high_pr);
2114 drm_sched_entity_destroy(&adev->mman.low_pr);
2115 dma_fence_put(man->move);
2116 man->move = NULL;
2117 }
2118
2119 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2120 if (enable)
2121 size = adev->gmc.real_vram_size;
2122 else
2123 size = adev->gmc.visible_vram_size;
2124 man->size = size;
2125 adev->mman.buffer_funcs_enabled = enable;
2126
2127 return;
2128
2129 error_free_entity:
2130 drm_sched_entity_destroy(&adev->mman.high_pr);
2131 }
2132
amdgpu_ttm_prepare_job(struct amdgpu_device * adev,bool direct_submit,unsigned int num_dw,struct dma_resv * resv,bool vm_needs_flush,struct amdgpu_job ** job,bool delayed)2133 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2134 bool direct_submit,
2135 unsigned int num_dw,
2136 struct dma_resv *resv,
2137 bool vm_needs_flush,
2138 struct amdgpu_job **job,
2139 bool delayed)
2140 {
2141 enum amdgpu_ib_pool_type pool = direct_submit ?
2142 AMDGPU_IB_POOL_DIRECT :
2143 AMDGPU_IB_POOL_DELAYED;
2144 int r;
2145 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2146 &adev->mman.high_pr;
2147 r = amdgpu_job_alloc_with_ib(adev, entity,
2148 AMDGPU_FENCE_OWNER_UNDEFINED,
2149 num_dw * 4, pool, job);
2150 if (r)
2151 return r;
2152
2153 if (vm_needs_flush) {
2154 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2155 adev->gmc.pdb0_bo :
2156 adev->gart.bo);
2157 (*job)->vm_needs_flush = true;
2158 }
2159 if (!resv)
2160 return 0;
2161
2162 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2163 DMA_RESV_USAGE_BOOKKEEP);
2164 }
2165
amdgpu_copy_buffer(struct amdgpu_ring * ring,uint64_t src_offset,uint64_t dst_offset,uint32_t byte_count,struct dma_resv * resv,struct dma_fence ** fence,bool direct_submit,bool vm_needs_flush,uint32_t copy_flags)2166 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2167 uint64_t dst_offset, uint32_t byte_count,
2168 struct dma_resv *resv,
2169 struct dma_fence **fence, bool direct_submit,
2170 bool vm_needs_flush, uint32_t copy_flags)
2171 {
2172 struct amdgpu_device *adev = ring->adev;
2173 unsigned int num_loops, num_dw;
2174 struct amdgpu_job *job;
2175 uint32_t max_bytes;
2176 unsigned int i;
2177 int r;
2178
2179 if (!direct_submit && !ring->sched.ready) {
2180 DRM_ERROR("Trying to move memory with ring turned off.\n");
2181 return -EINVAL;
2182 }
2183
2184 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2185 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2186 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2187 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2188 resv, vm_needs_flush, &job, false);
2189 if (r)
2190 return r;
2191
2192 for (i = 0; i < num_loops; i++) {
2193 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2194
2195 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2196 dst_offset, cur_size_in_bytes, copy_flags);
2197 src_offset += cur_size_in_bytes;
2198 dst_offset += cur_size_in_bytes;
2199 byte_count -= cur_size_in_bytes;
2200 }
2201
2202 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2203 WARN_ON(job->ibs[0].length_dw > num_dw);
2204 if (direct_submit)
2205 r = amdgpu_job_submit_direct(job, ring, fence);
2206 else
2207 *fence = amdgpu_job_submit(job);
2208 if (r)
2209 goto error_free;
2210
2211 return r;
2212
2213 error_free:
2214 amdgpu_job_free(job);
2215 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2216 return r;
2217 }
2218
amdgpu_ttm_fill_mem(struct amdgpu_ring * ring,uint32_t src_data,uint64_t dst_addr,uint32_t byte_count,struct dma_resv * resv,struct dma_fence ** fence,bool vm_needs_flush,bool delayed)2219 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2220 uint64_t dst_addr, uint32_t byte_count,
2221 struct dma_resv *resv,
2222 struct dma_fence **fence,
2223 bool vm_needs_flush, bool delayed)
2224 {
2225 struct amdgpu_device *adev = ring->adev;
2226 unsigned int num_loops, num_dw;
2227 struct amdgpu_job *job;
2228 uint32_t max_bytes;
2229 unsigned int i;
2230 int r;
2231
2232 max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2233 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2234 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2235 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2236 &job, delayed);
2237 if (r)
2238 return r;
2239
2240 for (i = 0; i < num_loops; i++) {
2241 uint32_t cur_size = min(byte_count, max_bytes);
2242
2243 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2244 cur_size);
2245
2246 dst_addr += cur_size;
2247 byte_count -= cur_size;
2248 }
2249
2250 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2251 WARN_ON(job->ibs[0].length_dw > num_dw);
2252 *fence = amdgpu_job_submit(job);
2253 return 0;
2254 }
2255
2256 /**
2257 * amdgpu_ttm_clear_buffer - clear memory buffers
2258 * @bo: amdgpu buffer object
2259 * @resv: reservation object
2260 * @fence: dma_fence associated with the operation
2261 *
2262 * Clear the memory buffer resource.
2263 *
2264 * Returns:
2265 * 0 for success or a negative error code on failure.
2266 */
amdgpu_ttm_clear_buffer(struct amdgpu_bo * bo,struct dma_resv * resv,struct dma_fence ** fence)2267 int amdgpu_ttm_clear_buffer(struct amdgpu_bo *bo,
2268 struct dma_resv *resv,
2269 struct dma_fence **fence)
2270 {
2271 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2272 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2273 struct amdgpu_res_cursor cursor;
2274 u64 addr;
2275 int r;
2276
2277 if (!adev->mman.buffer_funcs_enabled)
2278 return -EINVAL;
2279
2280 if (!fence)
2281 return -EINVAL;
2282
2283 *fence = dma_fence_get_stub();
2284
2285 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &cursor);
2286
2287 mutex_lock(&adev->mman.gtt_window_lock);
2288 while (cursor.remaining) {
2289 struct dma_fence *next = NULL;
2290 u64 size;
2291
2292 if (amdgpu_res_cleared(&cursor)) {
2293 amdgpu_res_next(&cursor, cursor.size);
2294 continue;
2295 }
2296
2297 /* Never clear more than 256MiB at once to avoid timeouts */
2298 size = min(cursor.size, 256ULL << 20);
2299
2300 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &cursor,
2301 1, ring, false, &size, &addr);
2302 if (r)
2303 goto err;
2304
2305 r = amdgpu_ttm_fill_mem(ring, 0, addr, size, resv,
2306 &next, true, true);
2307 if (r)
2308 goto err;
2309
2310 dma_fence_put(*fence);
2311 *fence = next;
2312
2313 amdgpu_res_next(&cursor, size);
2314 }
2315 err:
2316 mutex_unlock(&adev->mman.gtt_window_lock);
2317
2318 return r;
2319 }
2320
amdgpu_fill_buffer(struct amdgpu_bo * bo,uint32_t src_data,struct dma_resv * resv,struct dma_fence ** f,bool delayed)2321 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2322 uint32_t src_data,
2323 struct dma_resv *resv,
2324 struct dma_fence **f,
2325 bool delayed)
2326 {
2327 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2328 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2329 struct dma_fence *fence = NULL;
2330 struct amdgpu_res_cursor dst;
2331 int r;
2332
2333 if (!adev->mman.buffer_funcs_enabled) {
2334 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2335 return -EINVAL;
2336 }
2337
2338 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2339
2340 mutex_lock(&adev->mman.gtt_window_lock);
2341 while (dst.remaining) {
2342 struct dma_fence *next;
2343 uint64_t cur_size, to;
2344
2345 /* Never fill more than 256MiB at once to avoid timeouts */
2346 cur_size = min(dst.size, 256ULL << 20);
2347
2348 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2349 1, ring, false, &cur_size, &to);
2350 if (r)
2351 goto error;
2352
2353 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2354 &next, true, delayed);
2355 if (r)
2356 goto error;
2357
2358 dma_fence_put(fence);
2359 fence = next;
2360
2361 amdgpu_res_next(&dst, cur_size);
2362 }
2363 error:
2364 mutex_unlock(&adev->mman.gtt_window_lock);
2365 if (f)
2366 *f = dma_fence_get(fence);
2367 dma_fence_put(fence);
2368 return r;
2369 }
2370
2371 /**
2372 * amdgpu_ttm_evict_resources - evict memory buffers
2373 * @adev: amdgpu device object
2374 * @mem_type: evicted BO's memory type
2375 *
2376 * Evicts all @mem_type buffers on the lru list of the memory type.
2377 *
2378 * Returns:
2379 * 0 for success or a negative error code on failure.
2380 */
amdgpu_ttm_evict_resources(struct amdgpu_device * adev,int mem_type)2381 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2382 {
2383 struct ttm_resource_manager *man;
2384
2385 switch (mem_type) {
2386 case TTM_PL_VRAM:
2387 case TTM_PL_TT:
2388 case AMDGPU_PL_GWS:
2389 case AMDGPU_PL_GDS:
2390 case AMDGPU_PL_OA:
2391 man = ttm_manager_type(&adev->mman.bdev, mem_type);
2392 break;
2393 default:
2394 DRM_ERROR("Trying to evict invalid memory type\n");
2395 return -EINVAL;
2396 }
2397
2398 return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2399 }
2400
2401 #if defined(CONFIG_DEBUG_FS)
2402
amdgpu_ttm_page_pool_show(struct seq_file * m,void * unused)2403 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2404 {
2405 struct amdgpu_device *adev = m->private;
2406
2407 return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2408 }
2409
2410 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2411
2412 /*
2413 * amdgpu_ttm_vram_read - Linear read access to VRAM
2414 *
2415 * Accesses VRAM via MMIO for debugging purposes.
2416 */
amdgpu_ttm_vram_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2417 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2418 size_t size, loff_t *pos)
2419 {
2420 struct amdgpu_device *adev = file_inode(f)->i_private;
2421 ssize_t result = 0;
2422
2423 if (size & 0x3 || *pos & 0x3)
2424 return -EINVAL;
2425
2426 if (*pos >= adev->gmc.mc_vram_size)
2427 return -ENXIO;
2428
2429 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2430 while (size) {
2431 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2432 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2433
2434 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2435 if (copy_to_user(buf, value, bytes))
2436 return -EFAULT;
2437
2438 result += bytes;
2439 buf += bytes;
2440 *pos += bytes;
2441 size -= bytes;
2442 }
2443
2444 return result;
2445 }
2446
2447 /*
2448 * amdgpu_ttm_vram_write - Linear write access to VRAM
2449 *
2450 * Accesses VRAM via MMIO for debugging purposes.
2451 */
amdgpu_ttm_vram_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2452 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2453 size_t size, loff_t *pos)
2454 {
2455 struct amdgpu_device *adev = file_inode(f)->i_private;
2456 ssize_t result = 0;
2457 int r;
2458
2459 if (size & 0x3 || *pos & 0x3)
2460 return -EINVAL;
2461
2462 if (*pos >= adev->gmc.mc_vram_size)
2463 return -ENXIO;
2464
2465 while (size) {
2466 uint32_t value;
2467
2468 if (*pos >= adev->gmc.mc_vram_size)
2469 return result;
2470
2471 r = get_user(value, (uint32_t *)buf);
2472 if (r)
2473 return r;
2474
2475 amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2476
2477 result += 4;
2478 buf += 4;
2479 *pos += 4;
2480 size -= 4;
2481 }
2482
2483 return result;
2484 }
2485
2486 static const struct file_operations amdgpu_ttm_vram_fops = {
2487 .owner = THIS_MODULE,
2488 .read = amdgpu_ttm_vram_read,
2489 .write = amdgpu_ttm_vram_write,
2490 .llseek = default_llseek,
2491 };
2492
2493 /*
2494 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2495 *
2496 * This function is used to read memory that has been mapped to the
2497 * GPU and the known addresses are not physical addresses but instead
2498 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2499 */
amdgpu_iomem_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2500 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2501 size_t size, loff_t *pos)
2502 {
2503 struct amdgpu_device *adev = file_inode(f)->i_private;
2504 struct iommu_domain *dom;
2505 ssize_t result = 0;
2506 int r;
2507
2508 /* retrieve the IOMMU domain if any for this device */
2509 dom = iommu_get_domain_for_dev(adev->dev);
2510
2511 while (size) {
2512 phys_addr_t addr = *pos & PAGE_MASK;
2513 loff_t off = *pos & ~PAGE_MASK;
2514 size_t bytes = PAGE_SIZE - off;
2515 unsigned long pfn;
2516 struct page *p;
2517 void *ptr;
2518
2519 bytes = min(bytes, size);
2520
2521 /* Translate the bus address to a physical address. If
2522 * the domain is NULL it means there is no IOMMU active
2523 * and the address translation is the identity
2524 */
2525 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2526
2527 pfn = addr >> PAGE_SHIFT;
2528 if (!pfn_valid(pfn))
2529 return -EPERM;
2530
2531 p = pfn_to_page(pfn);
2532 if (p->mapping != adev->mman.bdev.dev_mapping)
2533 return -EPERM;
2534
2535 ptr = kmap_local_page(p);
2536 r = copy_to_user(buf, ptr + off, bytes);
2537 kunmap_local(ptr);
2538 if (r)
2539 return -EFAULT;
2540
2541 size -= bytes;
2542 *pos += bytes;
2543 result += bytes;
2544 }
2545
2546 return result;
2547 }
2548
2549 /*
2550 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2551 *
2552 * This function is used to write memory that has been mapped to the
2553 * GPU and the known addresses are not physical addresses but instead
2554 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2555 */
amdgpu_iomem_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2556 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2557 size_t size, loff_t *pos)
2558 {
2559 struct amdgpu_device *adev = file_inode(f)->i_private;
2560 struct iommu_domain *dom;
2561 ssize_t result = 0;
2562 int r;
2563
2564 dom = iommu_get_domain_for_dev(adev->dev);
2565
2566 while (size) {
2567 phys_addr_t addr = *pos & PAGE_MASK;
2568 loff_t off = *pos & ~PAGE_MASK;
2569 size_t bytes = PAGE_SIZE - off;
2570 unsigned long pfn;
2571 struct page *p;
2572 void *ptr;
2573
2574 bytes = min(bytes, size);
2575
2576 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2577
2578 pfn = addr >> PAGE_SHIFT;
2579 if (!pfn_valid(pfn))
2580 return -EPERM;
2581
2582 p = pfn_to_page(pfn);
2583 if (p->mapping != adev->mman.bdev.dev_mapping)
2584 return -EPERM;
2585
2586 ptr = kmap_local_page(p);
2587 r = copy_from_user(ptr + off, buf, bytes);
2588 kunmap_local(ptr);
2589 if (r)
2590 return -EFAULT;
2591
2592 size -= bytes;
2593 *pos += bytes;
2594 result += bytes;
2595 }
2596
2597 return result;
2598 }
2599
2600 static const struct file_operations amdgpu_ttm_iomem_fops = {
2601 .owner = THIS_MODULE,
2602 .read = amdgpu_iomem_read,
2603 .write = amdgpu_iomem_write,
2604 .llseek = default_llseek
2605 };
2606
2607 #endif
2608
amdgpu_ttm_debugfs_init(struct amdgpu_device * adev)2609 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2610 {
2611 #if defined(CONFIG_DEBUG_FS)
2612 struct drm_minor *minor = adev_to_drm(adev)->primary;
2613 struct dentry *root = minor->debugfs_root;
2614
2615 debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2616 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2617 debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2618 &amdgpu_ttm_iomem_fops);
2619 debugfs_create_file("ttm_page_pool", 0444, root, adev,
2620 &amdgpu_ttm_page_pool_fops);
2621 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2622 TTM_PL_VRAM),
2623 root, "amdgpu_vram_mm");
2624 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2625 TTM_PL_TT),
2626 root, "amdgpu_gtt_mm");
2627 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2628 AMDGPU_PL_GDS),
2629 root, "amdgpu_gds_mm");
2630 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2631 AMDGPU_PL_GWS),
2632 root, "amdgpu_gws_mm");
2633 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2634 AMDGPU_PL_OA),
2635 root, "amdgpu_oa_mm");
2636
2637 #endif
2638 }
2639