1 /* 2 * Copyright 2008 Jerome Glisse. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 22 * DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: 25 * Jerome Glisse <glisse@freedesktop.org> 26 */ 27 28 #include <linux/file.h> 29 #include <linux/pagemap.h> 30 #include <linux/sync_file.h> 31 #include <linux/dma-buf.h> 32 33 #include <drm/amdgpu_drm.h> 34 #include <drm/drm_syncobj.h> 35 #include <drm/ttm/ttm_tt.h> 36 37 #include "amdgpu_cs.h" 38 #include "amdgpu.h" 39 #include "amdgpu_trace.h" 40 #include "amdgpu_gmc.h" 41 #include "amdgpu_gem.h" 42 #include "amdgpu_ras.h" 43 #include "amdgpu_hmm.h" 44 45 static int amdgpu_cs_parser_init(struct amdgpu_cs_parser *p, 46 struct amdgpu_device *adev, 47 struct drm_file *filp, 48 union drm_amdgpu_cs *cs) 49 { 50 struct amdgpu_fpriv *fpriv = filp->driver_priv; 51 52 if (cs->in.num_chunks == 0) 53 return -EINVAL; 54 55 memset(p, 0, sizeof(*p)); 56 p->adev = adev; 57 p->filp = filp; 58 59 p->ctx = amdgpu_ctx_get(fpriv, cs->in.ctx_id); 60 if (!p->ctx) 61 return -EINVAL; 62 63 if (atomic_read(&p->ctx->guilty)) { 64 amdgpu_ctx_put(p->ctx); 65 return -ECANCELED; 66 } 67 68 amdgpu_sync_create(&p->sync); 69 drm_exec_init(&p->exec, DRM_EXEC_INTERRUPTIBLE_WAIT | 70 DRM_EXEC_IGNORE_DUPLICATES, 0); 71 return 0; 72 } 73 74 static int amdgpu_cs_job_idx(struct amdgpu_cs_parser *p, 75 struct drm_amdgpu_cs_chunk_ib *chunk_ib) 76 { 77 struct drm_sched_entity *entity; 78 unsigned int i; 79 int r; 80 81 r = amdgpu_ctx_get_entity(p->ctx, chunk_ib->ip_type, 82 chunk_ib->ip_instance, 83 chunk_ib->ring, &entity); 84 if (r) 85 return r; 86 87 /* 88 * Abort if there is no run queue associated with this entity. 89 * Possibly because of disabled HW IP. 90 */ 91 if (entity->rq == NULL) 92 return -EINVAL; 93 94 /* Check if we can add this IB to some existing job */ 95 for (i = 0; i < p->gang_size; ++i) 96 if (p->entities[i] == entity) 97 return i; 98 99 /* If not increase the gang size if possible */ 100 if (i == AMDGPU_CS_GANG_SIZE) 101 return -EINVAL; 102 103 p->entities[i] = entity; 104 p->gang_size = i + 1; 105 return i; 106 } 107 108 static int amdgpu_cs_p1_ib(struct amdgpu_cs_parser *p, 109 struct drm_amdgpu_cs_chunk_ib *chunk_ib, 110 unsigned int *num_ibs) 111 { 112 int r; 113 114 r = amdgpu_cs_job_idx(p, chunk_ib); 115 if (r < 0) 116 return r; 117 118 if (num_ibs[r] >= amdgpu_ring_max_ibs(chunk_ib->ip_type)) 119 return -EINVAL; 120 121 ++(num_ibs[r]); 122 p->gang_leader_idx = r; 123 return 0; 124 } 125 126 static int amdgpu_cs_p1_user_fence(struct amdgpu_cs_parser *p, 127 struct drm_amdgpu_cs_chunk_fence *data, 128 uint32_t *offset) 129 { 130 struct drm_gem_object *gobj; 131 unsigned long size; 132 133 gobj = drm_gem_object_lookup(p->filp, data->handle); 134 if (gobj == NULL) 135 return -EINVAL; 136 137 p->uf_bo = amdgpu_bo_ref(gem_to_amdgpu_bo(gobj)); 138 drm_gem_object_put(gobj); 139 140 size = amdgpu_bo_size(p->uf_bo); 141 if (size != PAGE_SIZE || data->offset > (size - 8)) 142 return -EINVAL; 143 144 if (amdgpu_ttm_tt_get_usermm(p->uf_bo->tbo.ttm)) 145 return -EINVAL; 146 147 *offset = data->offset; 148 return 0; 149 } 150 151 static int amdgpu_cs_p1_bo_handles(struct amdgpu_cs_parser *p, 152 struct drm_amdgpu_bo_list_in *data) 153 { 154 struct drm_amdgpu_bo_list_entry *info; 155 int r; 156 157 r = amdgpu_bo_create_list_entry_array(data, &info); 158 if (r) 159 return r; 160 161 r = amdgpu_bo_list_create(p->adev, p->filp, info, data->bo_number, 162 &p->bo_list); 163 if (r) 164 goto error_free; 165 166 kvfree(info); 167 return 0; 168 169 error_free: 170 kvfree(info); 171 172 return r; 173 } 174 175 /* Copy the data from userspace and go over it the first time */ 176 static int amdgpu_cs_pass1(struct amdgpu_cs_parser *p, 177 union drm_amdgpu_cs *cs) 178 { 179 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 180 unsigned int num_ibs[AMDGPU_CS_GANG_SIZE] = { }; 181 struct amdgpu_vm *vm = &fpriv->vm; 182 uint64_t *chunk_array; 183 uint32_t uf_offset = 0; 184 size_t size; 185 int ret; 186 int i; 187 188 chunk_array = memdup_array_user(u64_to_user_ptr(cs->in.chunks), 189 cs->in.num_chunks, 190 sizeof(uint64_t)); 191 if (IS_ERR(chunk_array)) 192 return PTR_ERR(chunk_array); 193 194 p->nchunks = cs->in.num_chunks; 195 p->chunks = kvmalloc_array(p->nchunks, sizeof(struct amdgpu_cs_chunk), 196 GFP_KERNEL); 197 if (!p->chunks) { 198 ret = -ENOMEM; 199 goto free_chunk; 200 } 201 202 for (i = 0; i < p->nchunks; i++) { 203 struct drm_amdgpu_cs_chunk __user *chunk_ptr = NULL; 204 struct drm_amdgpu_cs_chunk user_chunk; 205 206 chunk_ptr = u64_to_user_ptr(chunk_array[i]); 207 if (copy_from_user(&user_chunk, chunk_ptr, 208 sizeof(struct drm_amdgpu_cs_chunk))) { 209 ret = -EFAULT; 210 i--; 211 goto free_partial_kdata; 212 } 213 p->chunks[i].chunk_id = user_chunk.chunk_id; 214 p->chunks[i].length_dw = user_chunk.length_dw; 215 216 size = p->chunks[i].length_dw; 217 218 p->chunks[i].kdata = vmemdup_array_user(u64_to_user_ptr(user_chunk.chunk_data), 219 size, 220 sizeof(uint32_t)); 221 if (IS_ERR(p->chunks[i].kdata)) { 222 ret = PTR_ERR(p->chunks[i].kdata); 223 i--; 224 goto free_partial_kdata; 225 } 226 size *= sizeof(uint32_t); 227 228 /* Assume the worst on the following checks */ 229 ret = -EINVAL; 230 switch (p->chunks[i].chunk_id) { 231 case AMDGPU_CHUNK_ID_IB: 232 if (size < sizeof(struct drm_amdgpu_cs_chunk_ib)) 233 goto free_partial_kdata; 234 235 ret = amdgpu_cs_p1_ib(p, p->chunks[i].kdata, num_ibs); 236 if (ret) 237 goto free_partial_kdata; 238 break; 239 240 case AMDGPU_CHUNK_ID_FENCE: 241 if (size < sizeof(struct drm_amdgpu_cs_chunk_fence)) 242 goto free_partial_kdata; 243 244 ret = amdgpu_cs_p1_user_fence(p, p->chunks[i].kdata, 245 &uf_offset); 246 if (ret) 247 goto free_partial_kdata; 248 break; 249 250 case AMDGPU_CHUNK_ID_BO_HANDLES: 251 if (size < sizeof(struct drm_amdgpu_bo_list_in)) 252 goto free_partial_kdata; 253 254 /* Only a single BO list is allowed to simplify handling. */ 255 if (p->bo_list) 256 goto free_partial_kdata; 257 258 ret = amdgpu_cs_p1_bo_handles(p, p->chunks[i].kdata); 259 if (ret) 260 goto free_partial_kdata; 261 break; 262 263 case AMDGPU_CHUNK_ID_DEPENDENCIES: 264 case AMDGPU_CHUNK_ID_SYNCOBJ_IN: 265 case AMDGPU_CHUNK_ID_SYNCOBJ_OUT: 266 case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES: 267 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT: 268 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL: 269 case AMDGPU_CHUNK_ID_CP_GFX_SHADOW: 270 break; 271 272 default: 273 goto free_partial_kdata; 274 } 275 } 276 277 if (!p->gang_size || (amdgpu_sriov_vf(p->adev) && p->gang_size > 1)) { 278 ret = -EINVAL; 279 goto free_all_kdata; 280 } 281 282 for (i = 0; i < p->gang_size; ++i) { 283 ret = amdgpu_job_alloc(p->adev, vm, p->entities[i], vm, 284 num_ibs[i], &p->jobs[i], 285 p->filp->client_id); 286 if (ret) 287 goto free_all_kdata; 288 switch (p->adev->enforce_isolation[fpriv->xcp_id]) { 289 case AMDGPU_ENFORCE_ISOLATION_DISABLE: 290 default: 291 p->jobs[i]->enforce_isolation = false; 292 p->jobs[i]->run_cleaner_shader = false; 293 break; 294 case AMDGPU_ENFORCE_ISOLATION_ENABLE: 295 p->jobs[i]->enforce_isolation = true; 296 p->jobs[i]->run_cleaner_shader = true; 297 break; 298 case AMDGPU_ENFORCE_ISOLATION_ENABLE_LEGACY: 299 p->jobs[i]->enforce_isolation = true; 300 p->jobs[i]->run_cleaner_shader = false; 301 break; 302 case AMDGPU_ENFORCE_ISOLATION_NO_CLEANER_SHADER: 303 p->jobs[i]->enforce_isolation = true; 304 p->jobs[i]->run_cleaner_shader = false; 305 break; 306 } 307 } 308 p->gang_leader = p->jobs[p->gang_leader_idx]; 309 310 if (p->ctx->generation != p->gang_leader->generation) { 311 ret = -ECANCELED; 312 goto free_all_kdata; 313 } 314 315 if (p->uf_bo) 316 p->gang_leader->uf_addr = uf_offset; 317 kvfree(chunk_array); 318 319 /* Use this opportunity to fill in task info for the vm */ 320 amdgpu_vm_set_task_info(vm); 321 322 return 0; 323 324 free_all_kdata: 325 i = p->nchunks - 1; 326 free_partial_kdata: 327 for (; i >= 0; i--) 328 kvfree(p->chunks[i].kdata); 329 kvfree(p->chunks); 330 p->chunks = NULL; 331 p->nchunks = 0; 332 free_chunk: 333 kvfree(chunk_array); 334 335 return ret; 336 } 337 338 static int amdgpu_cs_p2_ib(struct amdgpu_cs_parser *p, 339 struct amdgpu_cs_chunk *chunk, 340 unsigned int *ce_preempt, 341 unsigned int *de_preempt) 342 { 343 struct drm_amdgpu_cs_chunk_ib *chunk_ib = chunk->kdata; 344 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 345 struct amdgpu_vm *vm = &fpriv->vm; 346 struct amdgpu_ring *ring; 347 struct amdgpu_job *job; 348 struct amdgpu_ib *ib; 349 int r; 350 351 r = amdgpu_cs_job_idx(p, chunk_ib); 352 if (r < 0) 353 return r; 354 355 job = p->jobs[r]; 356 ring = amdgpu_job_ring(job); 357 ib = &job->ibs[job->num_ibs++]; 358 359 /* submissions to kernel queues are disabled */ 360 if (ring->no_user_submission) 361 return -EINVAL; 362 363 /* MM engine doesn't support user fences */ 364 if (p->uf_bo && ring->funcs->no_user_fence) 365 return -EINVAL; 366 367 if (!p->adev->debug_enable_ce_cs && 368 chunk_ib->flags & AMDGPU_IB_FLAG_CE) { 369 dev_err_ratelimited(p->adev->dev, "CE CS is blocked, use debug=0x400 to override\n"); 370 return -EINVAL; 371 } 372 373 if (chunk_ib->ip_type == AMDGPU_HW_IP_GFX && 374 chunk_ib->flags & AMDGPU_IB_FLAG_PREEMPT) { 375 if (chunk_ib->flags & AMDGPU_IB_FLAG_CE) 376 (*ce_preempt)++; 377 else 378 (*de_preempt)++; 379 380 /* Each GFX command submit allows only 1 IB max 381 * preemptible for CE & DE */ 382 if (*ce_preempt > 1 || *de_preempt > 1) 383 return -EINVAL; 384 } 385 386 if (chunk_ib->flags & AMDGPU_IB_FLAG_PREAMBLE) 387 job->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT; 388 389 r = amdgpu_ib_get(p->adev, vm, ring->funcs->parse_cs ? 390 chunk_ib->ib_bytes : 0, 391 AMDGPU_IB_POOL_DELAYED, ib); 392 if (r) { 393 drm_err(adev_to_drm(p->adev), "Failed to get ib !\n"); 394 return r; 395 } 396 397 ib->gpu_addr = chunk_ib->va_start; 398 ib->length_dw = chunk_ib->ib_bytes / 4; 399 ib->flags = chunk_ib->flags; 400 return 0; 401 } 402 403 static int amdgpu_cs_p2_dependencies(struct amdgpu_cs_parser *p, 404 struct amdgpu_cs_chunk *chunk) 405 { 406 struct drm_amdgpu_cs_chunk_dep *deps = chunk->kdata; 407 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 408 unsigned int num_deps; 409 int i, r; 410 411 num_deps = chunk->length_dw * 4 / 412 sizeof(struct drm_amdgpu_cs_chunk_dep); 413 414 for (i = 0; i < num_deps; ++i) { 415 struct amdgpu_ctx *ctx; 416 struct drm_sched_entity *entity; 417 struct dma_fence *fence; 418 419 ctx = amdgpu_ctx_get(fpriv, deps[i].ctx_id); 420 if (ctx == NULL) 421 return -EINVAL; 422 423 r = amdgpu_ctx_get_entity(ctx, deps[i].ip_type, 424 deps[i].ip_instance, 425 deps[i].ring, &entity); 426 if (r) { 427 amdgpu_ctx_put(ctx); 428 return r; 429 } 430 431 fence = amdgpu_ctx_get_fence(ctx, entity, deps[i].handle); 432 amdgpu_ctx_put(ctx); 433 434 if (IS_ERR(fence)) 435 return PTR_ERR(fence); 436 else if (!fence) 437 continue; 438 439 if (chunk->chunk_id == AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES) { 440 struct drm_sched_fence *s_fence; 441 struct dma_fence *old = fence; 442 443 s_fence = to_drm_sched_fence(fence); 444 fence = dma_fence_get(&s_fence->scheduled); 445 dma_fence_put(old); 446 } 447 448 r = amdgpu_sync_fence(&p->sync, fence, GFP_KERNEL); 449 dma_fence_put(fence); 450 if (r) 451 return r; 452 } 453 return 0; 454 } 455 456 static int amdgpu_syncobj_lookup_and_add(struct amdgpu_cs_parser *p, 457 uint32_t handle, u64 point, 458 u64 flags) 459 { 460 struct dma_fence *fence; 461 int r; 462 463 r = drm_syncobj_find_fence(p->filp, handle, point, flags, &fence); 464 if (r) { 465 drm_err(adev_to_drm(p->adev), "syncobj %u failed to find fence @ %llu (%d)!\n", 466 handle, point, r); 467 return r; 468 } 469 470 r = amdgpu_sync_fence(&p->sync, fence, GFP_KERNEL); 471 dma_fence_put(fence); 472 return r; 473 } 474 475 static int amdgpu_cs_p2_syncobj_in(struct amdgpu_cs_parser *p, 476 struct amdgpu_cs_chunk *chunk) 477 { 478 struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata; 479 unsigned int num_deps; 480 int i, r; 481 482 num_deps = chunk->length_dw * 4 / 483 sizeof(struct drm_amdgpu_cs_chunk_sem); 484 for (i = 0; i < num_deps; ++i) { 485 r = amdgpu_syncobj_lookup_and_add(p, deps[i].handle, 0, 0); 486 if (r) 487 return r; 488 } 489 490 return 0; 491 } 492 493 static int amdgpu_cs_p2_syncobj_timeline_wait(struct amdgpu_cs_parser *p, 494 struct amdgpu_cs_chunk *chunk) 495 { 496 struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata; 497 unsigned int num_deps; 498 int i, r; 499 500 num_deps = chunk->length_dw * 4 / 501 sizeof(struct drm_amdgpu_cs_chunk_syncobj); 502 for (i = 0; i < num_deps; ++i) { 503 r = amdgpu_syncobj_lookup_and_add(p, syncobj_deps[i].handle, 504 syncobj_deps[i].point, 505 syncobj_deps[i].flags); 506 if (r) 507 return r; 508 } 509 510 return 0; 511 } 512 513 static int amdgpu_cs_p2_syncobj_out(struct amdgpu_cs_parser *p, 514 struct amdgpu_cs_chunk *chunk) 515 { 516 struct drm_amdgpu_cs_chunk_sem *deps = chunk->kdata; 517 unsigned int num_deps; 518 int i; 519 520 num_deps = chunk->length_dw * 4 / 521 sizeof(struct drm_amdgpu_cs_chunk_sem); 522 523 if (p->post_deps) 524 return -EINVAL; 525 526 p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps), 527 GFP_KERNEL); 528 p->num_post_deps = 0; 529 530 if (!p->post_deps) 531 return -ENOMEM; 532 533 534 for (i = 0; i < num_deps; ++i) { 535 p->post_deps[i].syncobj = 536 drm_syncobj_find(p->filp, deps[i].handle); 537 if (!p->post_deps[i].syncobj) 538 return -EINVAL; 539 p->post_deps[i].chain = NULL; 540 p->post_deps[i].point = 0; 541 p->num_post_deps++; 542 } 543 544 return 0; 545 } 546 547 static int amdgpu_cs_p2_syncobj_timeline_signal(struct amdgpu_cs_parser *p, 548 struct amdgpu_cs_chunk *chunk) 549 { 550 struct drm_amdgpu_cs_chunk_syncobj *syncobj_deps = chunk->kdata; 551 unsigned int num_deps; 552 int i; 553 554 num_deps = chunk->length_dw * 4 / 555 sizeof(struct drm_amdgpu_cs_chunk_syncobj); 556 557 if (p->post_deps) 558 return -EINVAL; 559 560 p->post_deps = kmalloc_array(num_deps, sizeof(*p->post_deps), 561 GFP_KERNEL); 562 p->num_post_deps = 0; 563 564 if (!p->post_deps) 565 return -ENOMEM; 566 567 for (i = 0; i < num_deps; ++i) { 568 struct amdgpu_cs_post_dep *dep = &p->post_deps[i]; 569 570 dep->chain = NULL; 571 if (syncobj_deps[i].point) { 572 dep->chain = dma_fence_chain_alloc(); 573 if (!dep->chain) 574 return -ENOMEM; 575 } 576 577 dep->syncobj = drm_syncobj_find(p->filp, 578 syncobj_deps[i].handle); 579 if (!dep->syncobj) { 580 dma_fence_chain_free(dep->chain); 581 return -EINVAL; 582 } 583 dep->point = syncobj_deps[i].point; 584 p->num_post_deps++; 585 } 586 587 return 0; 588 } 589 590 static int amdgpu_cs_p2_shadow(struct amdgpu_cs_parser *p, 591 struct amdgpu_cs_chunk *chunk) 592 { 593 struct drm_amdgpu_cs_chunk_cp_gfx_shadow *shadow = chunk->kdata; 594 int i; 595 596 if (shadow->flags & ~AMDGPU_CS_CHUNK_CP_GFX_SHADOW_FLAGS_INIT_SHADOW) 597 return -EINVAL; 598 599 for (i = 0; i < p->gang_size; ++i) { 600 p->jobs[i]->shadow_va = shadow->shadow_va; 601 p->jobs[i]->csa_va = shadow->csa_va; 602 p->jobs[i]->gds_va = shadow->gds_va; 603 p->jobs[i]->init_shadow = 604 shadow->flags & AMDGPU_CS_CHUNK_CP_GFX_SHADOW_FLAGS_INIT_SHADOW; 605 } 606 607 return 0; 608 } 609 610 static int amdgpu_cs_pass2(struct amdgpu_cs_parser *p) 611 { 612 unsigned int ce_preempt = 0, de_preempt = 0; 613 int i, r; 614 615 for (i = 0; i < p->nchunks; ++i) { 616 struct amdgpu_cs_chunk *chunk; 617 618 chunk = &p->chunks[i]; 619 620 switch (chunk->chunk_id) { 621 case AMDGPU_CHUNK_ID_IB: 622 r = amdgpu_cs_p2_ib(p, chunk, &ce_preempt, &de_preempt); 623 if (r) 624 return r; 625 break; 626 case AMDGPU_CHUNK_ID_DEPENDENCIES: 627 case AMDGPU_CHUNK_ID_SCHEDULED_DEPENDENCIES: 628 r = amdgpu_cs_p2_dependencies(p, chunk); 629 if (r) 630 return r; 631 break; 632 case AMDGPU_CHUNK_ID_SYNCOBJ_IN: 633 r = amdgpu_cs_p2_syncobj_in(p, chunk); 634 if (r) 635 return r; 636 break; 637 case AMDGPU_CHUNK_ID_SYNCOBJ_OUT: 638 r = amdgpu_cs_p2_syncobj_out(p, chunk); 639 if (r) 640 return r; 641 break; 642 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT: 643 r = amdgpu_cs_p2_syncobj_timeline_wait(p, chunk); 644 if (r) 645 return r; 646 break; 647 case AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL: 648 r = amdgpu_cs_p2_syncobj_timeline_signal(p, chunk); 649 if (r) 650 return r; 651 break; 652 case AMDGPU_CHUNK_ID_CP_GFX_SHADOW: 653 r = amdgpu_cs_p2_shadow(p, chunk); 654 if (r) 655 return r; 656 break; 657 } 658 } 659 660 return 0; 661 } 662 663 /* Convert microseconds to bytes. */ 664 static u64 us_to_bytes(struct amdgpu_device *adev, s64 us) 665 { 666 if (us <= 0 || !adev->mm_stats.log2_max_MBps) 667 return 0; 668 669 /* Since accum_us is incremented by a million per second, just 670 * multiply it by the number of MB/s to get the number of bytes. 671 */ 672 return us << adev->mm_stats.log2_max_MBps; 673 } 674 675 static s64 bytes_to_us(struct amdgpu_device *adev, u64 bytes) 676 { 677 if (!adev->mm_stats.log2_max_MBps) 678 return 0; 679 680 return bytes >> adev->mm_stats.log2_max_MBps; 681 } 682 683 /* Returns how many bytes TTM can move right now. If no bytes can be moved, 684 * it returns 0. If it returns non-zero, it's OK to move at least one buffer, 685 * which means it can go over the threshold once. If that happens, the driver 686 * will be in debt and no other buffer migrations can be done until that debt 687 * is repaid. 688 * 689 * This approach allows moving a buffer of any size (it's important to allow 690 * that). 691 * 692 * The currency is simply time in microseconds and it increases as the clock 693 * ticks. The accumulated microseconds (us) are converted to bytes and 694 * returned. 695 */ 696 static void amdgpu_cs_get_threshold_for_moves(struct amdgpu_device *adev, 697 u64 *max_bytes, 698 u64 *max_vis_bytes) 699 { 700 s64 time_us, increment_us; 701 u64 free_vram, total_vram, used_vram; 702 /* Allow a maximum of 200 accumulated ms. This is basically per-IB 703 * throttling. 704 * 705 * It means that in order to get full max MBps, at least 5 IBs per 706 * second must be submitted and not more than 200ms apart from each 707 * other. 708 */ 709 const s64 us_upper_bound = 200000; 710 711 if ((!adev->mm_stats.log2_max_MBps) || !ttm_resource_manager_used(&adev->mman.vram_mgr.manager)) { 712 *max_bytes = 0; 713 *max_vis_bytes = 0; 714 return; 715 } 716 717 total_vram = adev->gmc.real_vram_size - atomic64_read(&adev->vram_pin_size); 718 used_vram = ttm_resource_manager_usage(&adev->mman.vram_mgr.manager); 719 free_vram = used_vram >= total_vram ? 0 : total_vram - used_vram; 720 721 spin_lock(&adev->mm_stats.lock); 722 723 /* Increase the amount of accumulated us. */ 724 time_us = ktime_to_us(ktime_get()); 725 increment_us = time_us - adev->mm_stats.last_update_us; 726 adev->mm_stats.last_update_us = time_us; 727 adev->mm_stats.accum_us = min(adev->mm_stats.accum_us + increment_us, 728 us_upper_bound); 729 730 /* This prevents the short period of low performance when the VRAM 731 * usage is low and the driver is in debt or doesn't have enough 732 * accumulated us to fill VRAM quickly. 733 * 734 * The situation can occur in these cases: 735 * - a lot of VRAM is freed by userspace 736 * - the presence of a big buffer causes a lot of evictions 737 * (solution: split buffers into smaller ones) 738 * 739 * If 128 MB or 1/8th of VRAM is free, start filling it now by setting 740 * accum_us to a positive number. 741 */ 742 if (free_vram >= 128 * 1024 * 1024 || free_vram >= total_vram / 8) { 743 s64 min_us; 744 745 /* Be more aggressive on dGPUs. Try to fill a portion of free 746 * VRAM now. 747 */ 748 if (!(adev->flags & AMD_IS_APU)) 749 min_us = bytes_to_us(adev, free_vram / 4); 750 else 751 min_us = 0; /* Reset accum_us on APUs. */ 752 753 adev->mm_stats.accum_us = max(min_us, adev->mm_stats.accum_us); 754 } 755 756 /* This is set to 0 if the driver is in debt to disallow (optional) 757 * buffer moves. 758 */ 759 *max_bytes = us_to_bytes(adev, adev->mm_stats.accum_us); 760 761 /* Do the same for visible VRAM if half of it is free */ 762 if (!amdgpu_gmc_vram_full_visible(&adev->gmc)) { 763 u64 total_vis_vram = adev->gmc.visible_vram_size; 764 u64 used_vis_vram = 765 amdgpu_vram_mgr_vis_usage(&adev->mman.vram_mgr); 766 767 if (used_vis_vram < total_vis_vram) { 768 u64 free_vis_vram = total_vis_vram - used_vis_vram; 769 770 adev->mm_stats.accum_us_vis = min(adev->mm_stats.accum_us_vis + 771 increment_us, us_upper_bound); 772 773 if (free_vis_vram >= total_vis_vram / 2) 774 adev->mm_stats.accum_us_vis = 775 max(bytes_to_us(adev, free_vis_vram / 2), 776 adev->mm_stats.accum_us_vis); 777 } 778 779 *max_vis_bytes = us_to_bytes(adev, adev->mm_stats.accum_us_vis); 780 } else { 781 *max_vis_bytes = 0; 782 } 783 784 spin_unlock(&adev->mm_stats.lock); 785 } 786 787 /* Report how many bytes have really been moved for the last command 788 * submission. This can result in a debt that can stop buffer migrations 789 * temporarily. 790 */ 791 void amdgpu_cs_report_moved_bytes(struct amdgpu_device *adev, u64 num_bytes, 792 u64 num_vis_bytes) 793 { 794 spin_lock(&adev->mm_stats.lock); 795 adev->mm_stats.accum_us -= bytes_to_us(adev, num_bytes); 796 adev->mm_stats.accum_us_vis -= bytes_to_us(adev, num_vis_bytes); 797 spin_unlock(&adev->mm_stats.lock); 798 } 799 800 static int amdgpu_cs_bo_validate(void *param, struct amdgpu_bo *bo) 801 { 802 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); 803 struct amdgpu_cs_parser *p = param; 804 struct ttm_operation_ctx ctx = { 805 .interruptible = true, 806 .no_wait_gpu = false, 807 .resv = bo->tbo.base.resv 808 }; 809 uint32_t domain; 810 int r; 811 812 if (bo->tbo.pin_count) 813 return 0; 814 815 /* Don't move this buffer if we have depleted our allowance 816 * to move it. Don't move anything if the threshold is zero. 817 */ 818 if (p->bytes_moved < p->bytes_moved_threshold && 819 (!bo->tbo.base.dma_buf || 820 list_empty(&bo->tbo.base.dma_buf->attachments))) { 821 if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 822 (bo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED)) { 823 /* And don't move a CPU_ACCESS_REQUIRED BO to limited 824 * visible VRAM if we've depleted our allowance to do 825 * that. 826 */ 827 if (p->bytes_moved_vis < p->bytes_moved_vis_threshold) 828 domain = bo->preferred_domains; 829 else 830 domain = bo->allowed_domains; 831 } else { 832 domain = bo->preferred_domains; 833 } 834 } else { 835 domain = bo->allowed_domains; 836 } 837 838 retry: 839 amdgpu_bo_placement_from_domain(bo, domain); 840 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); 841 842 p->bytes_moved += ctx.bytes_moved; 843 if (!amdgpu_gmc_vram_full_visible(&adev->gmc) && 844 amdgpu_res_cpu_visible(adev, bo->tbo.resource)) 845 p->bytes_moved_vis += ctx.bytes_moved; 846 847 if (unlikely(r == -ENOMEM) && domain != bo->allowed_domains) { 848 domain = bo->allowed_domains; 849 goto retry; 850 } 851 852 return r; 853 } 854 855 static int amdgpu_cs_parser_bos(struct amdgpu_cs_parser *p, 856 union drm_amdgpu_cs *cs) 857 { 858 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 859 struct ttm_operation_ctx ctx = { true, false }; 860 struct amdgpu_vm *vm = &fpriv->vm; 861 struct amdgpu_bo_list_entry *e; 862 struct drm_gem_object *obj; 863 unsigned long index; 864 unsigned int i; 865 int r; 866 867 /* p->bo_list could already be assigned if AMDGPU_CHUNK_ID_BO_HANDLES is present */ 868 if (cs->in.bo_list_handle) { 869 if (p->bo_list) 870 return -EINVAL; 871 872 r = amdgpu_bo_list_get(fpriv, cs->in.bo_list_handle, 873 &p->bo_list); 874 if (r) 875 return r; 876 } else if (!p->bo_list) { 877 /* Create a empty bo_list when no handle is provided */ 878 r = amdgpu_bo_list_create(p->adev, p->filp, NULL, 0, 879 &p->bo_list); 880 if (r) 881 return r; 882 } 883 884 mutex_lock(&p->bo_list->bo_list_mutex); 885 886 /* Get userptr backing pages. If pages are updated after registered 887 * in amdgpu_gem_userptr_ioctl(), amdgpu_cs_list_validate() will do 888 * amdgpu_ttm_backend_bind() to flush and invalidate new pages 889 */ 890 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 891 bool userpage_invalidated = false; 892 struct amdgpu_bo *bo = e->bo; 893 894 e->range = amdgpu_hmm_range_alloc(NULL); 895 if (unlikely(!e->range)) 896 return -ENOMEM; 897 898 r = amdgpu_ttm_tt_get_user_pages(bo, e->range); 899 if (r) 900 goto out_free_user_pages; 901 902 for (i = 0; i < bo->tbo.ttm->num_pages; i++) { 903 if (bo->tbo.ttm->pages[i] != 904 hmm_pfn_to_page(e->range->hmm_range.hmm_pfns[i])) { 905 userpage_invalidated = true; 906 break; 907 } 908 } 909 e->user_invalidated = userpage_invalidated; 910 } 911 912 drm_exec_until_all_locked(&p->exec) { 913 r = amdgpu_vm_lock_pd(&fpriv->vm, &p->exec, 1 + p->gang_size); 914 drm_exec_retry_on_contention(&p->exec); 915 if (unlikely(r)) 916 goto out_free_user_pages; 917 918 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 919 /* One fence for TTM and one for each CS job */ 920 r = drm_exec_prepare_obj(&p->exec, &e->bo->tbo.base, 921 1 + p->gang_size); 922 drm_exec_retry_on_contention(&p->exec); 923 if (unlikely(r)) 924 goto out_free_user_pages; 925 926 e->bo_va = amdgpu_vm_bo_find(vm, e->bo); 927 } 928 929 if (p->uf_bo) { 930 r = drm_exec_prepare_obj(&p->exec, &p->uf_bo->tbo.base, 931 1 + p->gang_size); 932 drm_exec_retry_on_contention(&p->exec); 933 if (unlikely(r)) 934 goto out_free_user_pages; 935 } 936 } 937 938 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 939 struct mm_struct *usermm; 940 941 usermm = amdgpu_ttm_tt_get_usermm(e->bo->tbo.ttm); 942 if (usermm && usermm != current->mm) { 943 r = -EPERM; 944 goto out_free_user_pages; 945 } 946 947 if (amdgpu_ttm_tt_is_userptr(e->bo->tbo.ttm) && 948 e->user_invalidated) { 949 amdgpu_bo_placement_from_domain(e->bo, 950 AMDGPU_GEM_DOMAIN_CPU); 951 r = ttm_bo_validate(&e->bo->tbo, &e->bo->placement, 952 &ctx); 953 if (r) 954 goto out_free_user_pages; 955 956 amdgpu_ttm_tt_set_user_pages(e->bo->tbo.ttm, 957 e->range); 958 } 959 } 960 961 amdgpu_cs_get_threshold_for_moves(p->adev, &p->bytes_moved_threshold, 962 &p->bytes_moved_vis_threshold); 963 p->bytes_moved = 0; 964 p->bytes_moved_vis = 0; 965 966 r = amdgpu_vm_validate(p->adev, &fpriv->vm, NULL, 967 amdgpu_cs_bo_validate, p); 968 if (r) { 969 drm_err(adev_to_drm(p->adev), "amdgpu_vm_validate() failed.\n"); 970 goto out_free_user_pages; 971 } 972 973 drm_exec_for_each_locked_object(&p->exec, index, obj) { 974 r = amdgpu_cs_bo_validate(p, gem_to_amdgpu_bo(obj)); 975 if (unlikely(r)) 976 goto out_free_user_pages; 977 } 978 979 if (p->uf_bo) { 980 r = amdgpu_ttm_alloc_gart(&p->uf_bo->tbo); 981 if (unlikely(r)) 982 goto out_free_user_pages; 983 984 p->gang_leader->uf_addr += amdgpu_bo_gpu_offset(p->uf_bo); 985 } 986 987 amdgpu_cs_report_moved_bytes(p->adev, p->bytes_moved, 988 p->bytes_moved_vis); 989 990 for (i = 0; i < p->gang_size; ++i) 991 amdgpu_job_set_resources(p->jobs[i], p->bo_list->gds_obj, 992 p->bo_list->gws_obj, 993 p->bo_list->oa_obj); 994 return 0; 995 996 out_free_user_pages: 997 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 998 amdgpu_hmm_range_free(e->range); 999 e->range = NULL; 1000 } 1001 mutex_unlock(&p->bo_list->bo_list_mutex); 1002 return r; 1003 } 1004 1005 static void trace_amdgpu_cs_ibs(struct amdgpu_cs_parser *p) 1006 { 1007 int i, j; 1008 1009 if (!trace_amdgpu_cs_enabled()) 1010 return; 1011 1012 for (i = 0; i < p->gang_size; ++i) { 1013 struct amdgpu_job *job = p->jobs[i]; 1014 1015 for (j = 0; j < job->num_ibs; ++j) 1016 trace_amdgpu_cs(p, job, &job->ibs[j]); 1017 } 1018 } 1019 1020 static int amdgpu_cs_patch_ibs(struct amdgpu_cs_parser *p, 1021 struct amdgpu_job *job) 1022 { 1023 struct amdgpu_ring *ring = amdgpu_job_ring(job); 1024 struct amdgpu_device *adev = ring->adev; 1025 unsigned int i; 1026 int r; 1027 1028 /* Only for UVD/VCE VM emulation */ 1029 if (!ring->funcs->parse_cs && !ring->funcs->patch_cs_in_place) 1030 return 0; 1031 1032 for (i = 0; i < job->num_ibs; ++i) { 1033 struct amdgpu_ib *ib = &job->ibs[i]; 1034 struct amdgpu_bo_va_mapping *m; 1035 struct amdgpu_bo *aobj; 1036 uint64_t va_start; 1037 uint8_t *kptr; 1038 1039 va_start = ib->gpu_addr & AMDGPU_GMC_HOLE_MASK; 1040 r = amdgpu_cs_find_mapping(p, va_start, &aobj, &m); 1041 if (r) { 1042 drm_err(adev_to_drm(p->adev), "IB va_start is invalid\n"); 1043 return r; 1044 } 1045 1046 if ((va_start + ib->length_dw * 4) > 1047 (m->last + 1) * AMDGPU_GPU_PAGE_SIZE) { 1048 drm_err(adev_to_drm(p->adev), "IB va_start+ib_bytes is invalid\n"); 1049 return -EINVAL; 1050 } 1051 1052 /* the IB should be reserved at this point */ 1053 r = amdgpu_bo_kmap(aobj, (void **)&kptr); 1054 if (r) 1055 return r; 1056 1057 kptr += va_start - (m->start * AMDGPU_GPU_PAGE_SIZE); 1058 1059 if (ring->funcs->parse_cs) { 1060 memcpy(ib->ptr, kptr, ib->length_dw * 4); 1061 amdgpu_bo_kunmap(aobj); 1062 1063 r = amdgpu_ring_parse_cs(ring, p, job, ib); 1064 if (r) 1065 return r; 1066 1067 if (ib->sa_bo) 1068 ib->gpu_addr = amdgpu_sa_bo_gpu_addr(ib->sa_bo); 1069 } else { 1070 ib->ptr = (uint32_t *)kptr; 1071 r = amdgpu_ring_patch_cs_in_place(ring, p, job, ib); 1072 amdgpu_bo_kunmap(aobj); 1073 if (r) 1074 return r; 1075 } 1076 } 1077 1078 return 0; 1079 } 1080 1081 static int amdgpu_cs_patch_jobs(struct amdgpu_cs_parser *p) 1082 { 1083 unsigned int i; 1084 int r; 1085 1086 for (i = 0; i < p->gang_size; ++i) { 1087 r = amdgpu_cs_patch_ibs(p, p->jobs[i]); 1088 if (r) 1089 return r; 1090 } 1091 return 0; 1092 } 1093 1094 static int amdgpu_cs_vm_handling(struct amdgpu_cs_parser *p) 1095 { 1096 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1097 struct amdgpu_job *job = p->gang_leader; 1098 struct amdgpu_device *adev = p->adev; 1099 struct amdgpu_vm *vm = &fpriv->vm; 1100 struct amdgpu_bo_list_entry *e; 1101 struct amdgpu_bo_va *bo_va; 1102 unsigned int i; 1103 int r; 1104 1105 /* 1106 * We can't use gang submit on with reserved VMIDs when the VM changes 1107 * can't be invalidated by more than one engine at the same time. 1108 */ 1109 if (p->gang_size > 1 && !adev->vm_manager.concurrent_flush) { 1110 for (i = 0; i < p->gang_size; ++i) { 1111 struct drm_sched_entity *entity = p->entities[i]; 1112 struct drm_gpu_scheduler *sched = entity->rq->sched; 1113 struct amdgpu_ring *ring = to_amdgpu_ring(sched); 1114 1115 if (amdgpu_vmid_uses_reserved(vm, ring->vm_hub)) 1116 return -EINVAL; 1117 } 1118 } 1119 1120 if (!amdgpu_vm_ready(vm)) 1121 return -EINVAL; 1122 1123 r = amdgpu_vm_clear_freed(adev, vm, NULL); 1124 if (r) 1125 return r; 1126 1127 r = amdgpu_vm_bo_update(adev, fpriv->prt_va, false); 1128 if (r) 1129 return r; 1130 1131 r = amdgpu_sync_fence(&p->sync, fpriv->prt_va->last_pt_update, 1132 GFP_KERNEL); 1133 if (r) 1134 return r; 1135 1136 if (fpriv->csa_va) { 1137 bo_va = fpriv->csa_va; 1138 BUG_ON(!bo_va); 1139 r = amdgpu_vm_bo_update(adev, bo_va, false); 1140 if (r) 1141 return r; 1142 1143 r = amdgpu_sync_fence(&p->sync, bo_va->last_pt_update, 1144 GFP_KERNEL); 1145 if (r) 1146 return r; 1147 } 1148 1149 /* FIXME: In theory this loop shouldn't be needed any more when 1150 * amdgpu_vm_handle_moved handles all moved BOs that are reserved 1151 * with p->ticket. But removing it caused test regressions, so I'm 1152 * leaving it here for now. 1153 */ 1154 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 1155 bo_va = e->bo_va; 1156 if (bo_va == NULL) 1157 continue; 1158 1159 r = amdgpu_vm_bo_update(adev, bo_va, false); 1160 if (r) 1161 return r; 1162 1163 r = amdgpu_sync_fence(&p->sync, bo_va->last_pt_update, 1164 GFP_KERNEL); 1165 if (r) 1166 return r; 1167 } 1168 1169 r = amdgpu_vm_handle_moved(adev, vm, &p->exec.ticket); 1170 if (r) 1171 return r; 1172 1173 r = amdgpu_vm_update_pdes(adev, vm, false); 1174 if (r) 1175 return r; 1176 1177 r = amdgpu_sync_fence(&p->sync, vm->last_update, GFP_KERNEL); 1178 if (r) 1179 return r; 1180 1181 for (i = 0; i < p->gang_size; ++i) { 1182 job = p->jobs[i]; 1183 1184 if (!job->vm) 1185 continue; 1186 1187 job->vm_pd_addr = amdgpu_gmc_pd_addr(vm->root.bo); 1188 } 1189 1190 if (adev->debug_vm) { 1191 /* Invalidate all BOs to test for userspace bugs */ 1192 amdgpu_bo_list_for_each_entry(e, p->bo_list) { 1193 struct amdgpu_bo *bo = e->bo; 1194 1195 /* ignore duplicates */ 1196 if (!bo) 1197 continue; 1198 1199 amdgpu_vm_bo_invalidate(bo, false); 1200 } 1201 } 1202 1203 return 0; 1204 } 1205 1206 static int amdgpu_cs_sync_rings(struct amdgpu_cs_parser *p) 1207 { 1208 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1209 struct drm_gpu_scheduler *sched; 1210 struct drm_gem_object *obj; 1211 struct dma_fence *fence; 1212 unsigned long index; 1213 unsigned int i; 1214 int r; 1215 1216 r = amdgpu_ctx_wait_prev_fence(p->ctx, p->entities[p->gang_leader_idx]); 1217 if (r) { 1218 if (r != -ERESTARTSYS) 1219 drm_err(adev_to_drm(p->adev), "amdgpu_ctx_wait_prev_fence failed.\n"); 1220 return r; 1221 } 1222 1223 drm_exec_for_each_locked_object(&p->exec, index, obj) { 1224 struct amdgpu_bo *bo = gem_to_amdgpu_bo(obj); 1225 1226 struct dma_resv *resv = bo->tbo.base.resv; 1227 enum amdgpu_sync_mode sync_mode; 1228 1229 sync_mode = amdgpu_bo_explicit_sync(bo) ? 1230 AMDGPU_SYNC_EXPLICIT : AMDGPU_SYNC_NE_OWNER; 1231 r = amdgpu_sync_resv(p->adev, &p->sync, resv, sync_mode, 1232 &fpriv->vm); 1233 if (r) 1234 return r; 1235 } 1236 1237 for (i = 0; i < p->gang_size; ++i) { 1238 r = amdgpu_sync_push_to_job(&p->sync, p->jobs[i]); 1239 if (r) 1240 return r; 1241 } 1242 1243 sched = p->gang_leader->base.entity->rq->sched; 1244 while ((fence = amdgpu_sync_get_fence(&p->sync))) { 1245 struct drm_sched_fence *s_fence = to_drm_sched_fence(fence); 1246 1247 /* 1248 * When we have an dependency it might be necessary to insert a 1249 * pipeline sync to make sure that all caches etc are flushed and the 1250 * next job actually sees the results from the previous one 1251 * before we start executing on the same scheduler ring. 1252 */ 1253 if (!s_fence || s_fence->sched != sched) { 1254 dma_fence_put(fence); 1255 continue; 1256 } 1257 1258 r = amdgpu_sync_fence(&p->gang_leader->explicit_sync, fence, 1259 GFP_KERNEL); 1260 dma_fence_put(fence); 1261 if (r) 1262 return r; 1263 } 1264 return 0; 1265 } 1266 1267 static void amdgpu_cs_post_dependencies(struct amdgpu_cs_parser *p) 1268 { 1269 int i; 1270 1271 for (i = 0; i < p->num_post_deps; ++i) { 1272 if (p->post_deps[i].chain && p->post_deps[i].point) { 1273 drm_syncobj_add_point(p->post_deps[i].syncobj, 1274 p->post_deps[i].chain, 1275 p->fence, p->post_deps[i].point); 1276 p->post_deps[i].chain = NULL; 1277 } else { 1278 drm_syncobj_replace_fence(p->post_deps[i].syncobj, 1279 p->fence); 1280 } 1281 } 1282 } 1283 1284 static int amdgpu_cs_submit(struct amdgpu_cs_parser *p, 1285 union drm_amdgpu_cs *cs) 1286 { 1287 struct amdgpu_fpriv *fpriv = p->filp->driver_priv; 1288 struct amdgpu_job *leader = p->gang_leader; 1289 struct amdgpu_bo_list_entry *e; 1290 struct drm_gem_object *gobj; 1291 unsigned long index; 1292 unsigned int i; 1293 uint64_t seq; 1294 int r; 1295 1296 for (i = 0; i < p->gang_size; ++i) 1297 drm_sched_job_arm(&p->jobs[i]->base); 1298 1299 for (i = 0; i < p->gang_size; ++i) { 1300 struct dma_fence *fence; 1301 1302 if (p->jobs[i] == leader) 1303 continue; 1304 1305 fence = &p->jobs[i]->base.s_fence->scheduled; 1306 dma_fence_get(fence); 1307 r = drm_sched_job_add_dependency(&leader->base, fence); 1308 if (r) { 1309 dma_fence_put(fence); 1310 return r; 1311 } 1312 } 1313 1314 if (p->gang_size > 1) { 1315 for (i = 0; i < p->gang_size; ++i) 1316 amdgpu_job_set_gang_leader(p->jobs[i], leader); 1317 } 1318 1319 /* No memory allocation is allowed while holding the notifier lock. 1320 * The lock is held until amdgpu_cs_submit is finished and fence is 1321 * added to BOs. 1322 */ 1323 mutex_lock(&p->adev->notifier_lock); 1324 1325 /* If userptr are invalidated after amdgpu_cs_parser_bos(), return 1326 * -EAGAIN, drmIoctl in libdrm will restart the amdgpu_cs_ioctl. 1327 */ 1328 r = 0; 1329 amdgpu_bo_list_for_each_userptr_entry(e, p->bo_list) { 1330 r |= !amdgpu_hmm_range_valid(e->range); 1331 amdgpu_hmm_range_free(e->range); 1332 e->range = NULL; 1333 } 1334 if (r) { 1335 r = -EAGAIN; 1336 mutex_unlock(&p->adev->notifier_lock); 1337 return r; 1338 } 1339 1340 p->fence = dma_fence_get(&leader->base.s_fence->finished); 1341 drm_exec_for_each_locked_object(&p->exec, index, gobj) { 1342 1343 ttm_bo_move_to_lru_tail_unlocked(&gem_to_amdgpu_bo(gobj)->tbo); 1344 1345 /* Everybody except for the gang leader uses READ */ 1346 for (i = 0; i < p->gang_size; ++i) { 1347 if (p->jobs[i] == leader) 1348 continue; 1349 1350 dma_resv_add_fence(gobj->resv, 1351 &p->jobs[i]->base.s_fence->finished, 1352 DMA_RESV_USAGE_READ); 1353 } 1354 1355 /* The gang leader as remembered as writer */ 1356 dma_resv_add_fence(gobj->resv, p->fence, DMA_RESV_USAGE_WRITE); 1357 } 1358 1359 seq = amdgpu_ctx_add_fence(p->ctx, p->entities[p->gang_leader_idx], 1360 p->fence); 1361 amdgpu_cs_post_dependencies(p); 1362 1363 if ((leader->preamble_status & AMDGPU_PREAMBLE_IB_PRESENT) && 1364 !p->ctx->preamble_presented) { 1365 leader->preamble_status |= AMDGPU_PREAMBLE_IB_PRESENT_FIRST; 1366 p->ctx->preamble_presented = true; 1367 } 1368 1369 cs->out.handle = seq; 1370 leader->uf_sequence = seq; 1371 1372 amdgpu_vm_bo_trace_cs(&fpriv->vm, &p->exec.ticket); 1373 for (i = 0; i < p->gang_size; ++i) { 1374 amdgpu_job_free_resources(p->jobs[i]); 1375 trace_amdgpu_cs_ioctl(p->jobs[i]); 1376 drm_sched_entity_push_job(&p->jobs[i]->base); 1377 p->jobs[i] = NULL; 1378 } 1379 1380 amdgpu_vm_move_to_lru_tail(p->adev, &fpriv->vm); 1381 1382 mutex_unlock(&p->adev->notifier_lock); 1383 mutex_unlock(&p->bo_list->bo_list_mutex); 1384 return 0; 1385 } 1386 1387 /* Cleanup the parser structure */ 1388 static void amdgpu_cs_parser_fini(struct amdgpu_cs_parser *parser) 1389 { 1390 unsigned int i; 1391 1392 amdgpu_sync_free(&parser->sync); 1393 drm_exec_fini(&parser->exec); 1394 1395 for (i = 0; i < parser->num_post_deps; i++) { 1396 drm_syncobj_put(parser->post_deps[i].syncobj); 1397 kfree(parser->post_deps[i].chain); 1398 } 1399 kfree(parser->post_deps); 1400 1401 dma_fence_put(parser->fence); 1402 1403 if (parser->ctx) 1404 amdgpu_ctx_put(parser->ctx); 1405 if (parser->bo_list) 1406 amdgpu_bo_list_put(parser->bo_list); 1407 1408 for (i = 0; i < parser->nchunks; i++) 1409 kvfree(parser->chunks[i].kdata); 1410 kvfree(parser->chunks); 1411 for (i = 0; i < parser->gang_size; ++i) { 1412 if (parser->jobs[i]) 1413 amdgpu_job_free(parser->jobs[i]); 1414 } 1415 amdgpu_bo_unref(&parser->uf_bo); 1416 } 1417 1418 int amdgpu_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) 1419 { 1420 struct amdgpu_device *adev = drm_to_adev(dev); 1421 struct amdgpu_cs_parser parser; 1422 int r; 1423 1424 if (amdgpu_ras_intr_triggered()) 1425 return -EHWPOISON; 1426 1427 if (!adev->accel_working) 1428 return -EBUSY; 1429 1430 r = amdgpu_cs_parser_init(&parser, adev, filp, data); 1431 if (r) { 1432 drm_err_ratelimited(dev, "Failed to initialize parser %d!\n", r); 1433 return r; 1434 } 1435 1436 r = amdgpu_cs_pass1(&parser, data); 1437 if (r) 1438 goto error_fini; 1439 1440 r = amdgpu_cs_pass2(&parser); 1441 if (r) 1442 goto error_fini; 1443 1444 r = amdgpu_cs_parser_bos(&parser, data); 1445 if (r) { 1446 if (r == -ENOMEM) 1447 drm_err(dev, "Not enough memory for command submission!\n"); 1448 else if (r != -ERESTARTSYS && r != -EAGAIN) 1449 drm_dbg(dev, "Failed to process the buffer list %d!\n", r); 1450 goto error_fini; 1451 } 1452 1453 r = amdgpu_cs_patch_jobs(&parser); 1454 if (r) 1455 goto error_backoff; 1456 1457 r = amdgpu_cs_vm_handling(&parser); 1458 if (r) 1459 goto error_backoff; 1460 1461 r = amdgpu_cs_sync_rings(&parser); 1462 if (r) 1463 goto error_backoff; 1464 1465 trace_amdgpu_cs_ibs(&parser); 1466 1467 r = amdgpu_cs_submit(&parser, data); 1468 if (r) 1469 goto error_backoff; 1470 1471 amdgpu_cs_parser_fini(&parser); 1472 return 0; 1473 1474 error_backoff: 1475 mutex_unlock(&parser.bo_list->bo_list_mutex); 1476 1477 error_fini: 1478 amdgpu_cs_parser_fini(&parser); 1479 return r; 1480 } 1481 1482 /** 1483 * amdgpu_cs_wait_ioctl - wait for a command submission to finish 1484 * 1485 * @dev: drm device 1486 * @data: data from userspace 1487 * @filp: file private 1488 * 1489 * Wait for the command submission identified by handle to finish. 1490 */ 1491 int amdgpu_cs_wait_ioctl(struct drm_device *dev, void *data, 1492 struct drm_file *filp) 1493 { 1494 union drm_amdgpu_wait_cs *wait = data; 1495 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout); 1496 struct drm_sched_entity *entity; 1497 struct amdgpu_ctx *ctx; 1498 struct dma_fence *fence; 1499 long r; 1500 1501 ctx = amdgpu_ctx_get(filp->driver_priv, wait->in.ctx_id); 1502 if (ctx == NULL) 1503 return -EINVAL; 1504 1505 r = amdgpu_ctx_get_entity(ctx, wait->in.ip_type, wait->in.ip_instance, 1506 wait->in.ring, &entity); 1507 if (r) { 1508 amdgpu_ctx_put(ctx); 1509 return r; 1510 } 1511 1512 fence = amdgpu_ctx_get_fence(ctx, entity, wait->in.handle); 1513 if (IS_ERR(fence)) 1514 r = PTR_ERR(fence); 1515 else if (fence) { 1516 r = dma_fence_wait_timeout(fence, true, timeout); 1517 if (r > 0 && fence->error) 1518 r = fence->error; 1519 dma_fence_put(fence); 1520 } else 1521 r = 1; 1522 1523 amdgpu_ctx_put(ctx); 1524 if (r < 0) 1525 return r; 1526 1527 memset(wait, 0, sizeof(*wait)); 1528 wait->out.status = (r == 0); 1529 1530 return 0; 1531 } 1532 1533 /** 1534 * amdgpu_cs_get_fence - helper to get fence from drm_amdgpu_fence 1535 * 1536 * @adev: amdgpu device 1537 * @filp: file private 1538 * @user: drm_amdgpu_fence copied from user space 1539 */ 1540 static struct dma_fence *amdgpu_cs_get_fence(struct amdgpu_device *adev, 1541 struct drm_file *filp, 1542 struct drm_amdgpu_fence *user) 1543 { 1544 struct drm_sched_entity *entity; 1545 struct amdgpu_ctx *ctx; 1546 struct dma_fence *fence; 1547 int r; 1548 1549 ctx = amdgpu_ctx_get(filp->driver_priv, user->ctx_id); 1550 if (ctx == NULL) 1551 return ERR_PTR(-EINVAL); 1552 1553 r = amdgpu_ctx_get_entity(ctx, user->ip_type, user->ip_instance, 1554 user->ring, &entity); 1555 if (r) { 1556 amdgpu_ctx_put(ctx); 1557 return ERR_PTR(r); 1558 } 1559 1560 fence = amdgpu_ctx_get_fence(ctx, entity, user->seq_no); 1561 amdgpu_ctx_put(ctx); 1562 1563 return fence; 1564 } 1565 1566 int amdgpu_cs_fence_to_handle_ioctl(struct drm_device *dev, void *data, 1567 struct drm_file *filp) 1568 { 1569 struct amdgpu_device *adev = drm_to_adev(dev); 1570 union drm_amdgpu_fence_to_handle *info = data; 1571 struct dma_fence *fence; 1572 struct drm_syncobj *syncobj; 1573 struct sync_file *sync_file; 1574 int fd, r; 1575 1576 fence = amdgpu_cs_get_fence(adev, filp, &info->in.fence); 1577 if (IS_ERR(fence)) 1578 return PTR_ERR(fence); 1579 1580 if (!fence) 1581 fence = dma_fence_get_stub(); 1582 1583 switch (info->in.what) { 1584 case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ: 1585 r = drm_syncobj_create(&syncobj, 0, fence); 1586 dma_fence_put(fence); 1587 if (r) 1588 return r; 1589 r = drm_syncobj_get_handle(filp, syncobj, &info->out.handle); 1590 drm_syncobj_put(syncobj); 1591 return r; 1592 1593 case AMDGPU_FENCE_TO_HANDLE_GET_SYNCOBJ_FD: 1594 r = drm_syncobj_create(&syncobj, 0, fence); 1595 dma_fence_put(fence); 1596 if (r) 1597 return r; 1598 r = drm_syncobj_get_fd(syncobj, (int *)&info->out.handle); 1599 drm_syncobj_put(syncobj); 1600 return r; 1601 1602 case AMDGPU_FENCE_TO_HANDLE_GET_SYNC_FILE_FD: 1603 fd = get_unused_fd_flags(O_CLOEXEC); 1604 if (fd < 0) { 1605 dma_fence_put(fence); 1606 return fd; 1607 } 1608 1609 sync_file = sync_file_create(fence); 1610 dma_fence_put(fence); 1611 if (!sync_file) { 1612 put_unused_fd(fd); 1613 return -ENOMEM; 1614 } 1615 1616 fd_install(fd, sync_file->file); 1617 info->out.handle = fd; 1618 return 0; 1619 1620 default: 1621 dma_fence_put(fence); 1622 return -EINVAL; 1623 } 1624 } 1625 1626 /** 1627 * amdgpu_cs_wait_all_fences - wait on all fences to signal 1628 * 1629 * @adev: amdgpu device 1630 * @filp: file private 1631 * @wait: wait parameters 1632 * @fences: array of drm_amdgpu_fence 1633 */ 1634 static int amdgpu_cs_wait_all_fences(struct amdgpu_device *adev, 1635 struct drm_file *filp, 1636 union drm_amdgpu_wait_fences *wait, 1637 struct drm_amdgpu_fence *fences) 1638 { 1639 uint32_t fence_count = wait->in.fence_count; 1640 unsigned int i; 1641 long r = 1; 1642 1643 for (i = 0; i < fence_count; i++) { 1644 struct dma_fence *fence; 1645 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns); 1646 1647 fence = amdgpu_cs_get_fence(adev, filp, &fences[i]); 1648 if (IS_ERR(fence)) 1649 return PTR_ERR(fence); 1650 else if (!fence) 1651 continue; 1652 1653 r = dma_fence_wait_timeout(fence, true, timeout); 1654 if (r > 0 && fence->error) 1655 r = fence->error; 1656 1657 dma_fence_put(fence); 1658 if (r < 0) 1659 return r; 1660 1661 if (r == 0) 1662 break; 1663 } 1664 1665 memset(wait, 0, sizeof(*wait)); 1666 wait->out.status = (r > 0); 1667 1668 return 0; 1669 } 1670 1671 /** 1672 * amdgpu_cs_wait_any_fence - wait on any fence to signal 1673 * 1674 * @adev: amdgpu device 1675 * @filp: file private 1676 * @wait: wait parameters 1677 * @fences: array of drm_amdgpu_fence 1678 */ 1679 static int amdgpu_cs_wait_any_fence(struct amdgpu_device *adev, 1680 struct drm_file *filp, 1681 union drm_amdgpu_wait_fences *wait, 1682 struct drm_amdgpu_fence *fences) 1683 { 1684 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout_ns); 1685 uint32_t fence_count = wait->in.fence_count; 1686 uint32_t first = ~0; 1687 struct dma_fence **array; 1688 unsigned int i; 1689 long r; 1690 1691 /* Prepare the fence array */ 1692 array = kcalloc(fence_count, sizeof(struct dma_fence *), GFP_KERNEL); 1693 1694 if (array == NULL) 1695 return -ENOMEM; 1696 1697 for (i = 0; i < fence_count; i++) { 1698 struct dma_fence *fence; 1699 1700 fence = amdgpu_cs_get_fence(adev, filp, &fences[i]); 1701 if (IS_ERR(fence)) { 1702 r = PTR_ERR(fence); 1703 goto err_free_fence_array; 1704 } else if (fence) { 1705 array[i] = fence; 1706 } else { /* NULL, the fence has been already signaled */ 1707 r = 1; 1708 first = i; 1709 goto out; 1710 } 1711 } 1712 1713 r = dma_fence_wait_any_timeout(array, fence_count, true, timeout, 1714 &first); 1715 if (r < 0) 1716 goto err_free_fence_array; 1717 1718 out: 1719 memset(wait, 0, sizeof(*wait)); 1720 wait->out.status = (r > 0); 1721 wait->out.first_signaled = first; 1722 1723 if (first < fence_count && array[first]) 1724 r = array[first]->error; 1725 else 1726 r = 0; 1727 1728 err_free_fence_array: 1729 for (i = 0; i < fence_count; i++) 1730 dma_fence_put(array[i]); 1731 kfree(array); 1732 1733 return r; 1734 } 1735 1736 /** 1737 * amdgpu_cs_wait_fences_ioctl - wait for multiple command submissions to finish 1738 * 1739 * @dev: drm device 1740 * @data: data from userspace 1741 * @filp: file private 1742 */ 1743 int amdgpu_cs_wait_fences_ioctl(struct drm_device *dev, void *data, 1744 struct drm_file *filp) 1745 { 1746 struct amdgpu_device *adev = drm_to_adev(dev); 1747 union drm_amdgpu_wait_fences *wait = data; 1748 struct drm_amdgpu_fence *fences; 1749 int r; 1750 1751 /* Get the fences from userspace */ 1752 fences = memdup_array_user(u64_to_user_ptr(wait->in.fences), 1753 wait->in.fence_count, 1754 sizeof(struct drm_amdgpu_fence)); 1755 if (IS_ERR(fences)) 1756 return PTR_ERR(fences); 1757 1758 if (wait->in.wait_all) 1759 r = amdgpu_cs_wait_all_fences(adev, filp, wait, fences); 1760 else 1761 r = amdgpu_cs_wait_any_fence(adev, filp, wait, fences); 1762 1763 kfree(fences); 1764 1765 return r; 1766 } 1767 1768 /** 1769 * amdgpu_cs_find_mapping - find bo_va for VM address 1770 * 1771 * @parser: command submission parser context 1772 * @addr: VM address 1773 * @bo: resulting BO of the mapping found 1774 * @map: Placeholder to return found BO mapping 1775 * 1776 * Search the buffer objects in the command submission context for a certain 1777 * virtual memory address. Returns allocation structure when found, NULL 1778 * otherwise. 1779 */ 1780 int amdgpu_cs_find_mapping(struct amdgpu_cs_parser *parser, 1781 uint64_t addr, struct amdgpu_bo **bo, 1782 struct amdgpu_bo_va_mapping **map) 1783 { 1784 struct amdgpu_fpriv *fpriv = parser->filp->driver_priv; 1785 struct ttm_operation_ctx ctx = { false, false }; 1786 struct amdgpu_vm *vm = &fpriv->vm; 1787 struct amdgpu_bo_va_mapping *mapping; 1788 int i, r; 1789 1790 addr /= AMDGPU_GPU_PAGE_SIZE; 1791 1792 mapping = amdgpu_vm_bo_lookup_mapping(vm, addr); 1793 if (!mapping || !mapping->bo_va || !mapping->bo_va->base.bo) 1794 return -EINVAL; 1795 1796 *bo = mapping->bo_va->base.bo; 1797 *map = mapping; 1798 1799 /* Double check that the BO is reserved by this CS */ 1800 if (dma_resv_locking_ctx((*bo)->tbo.base.resv) != &parser->exec.ticket) 1801 return -EINVAL; 1802 1803 /* Make sure VRAM is allocated contigiously */ 1804 (*bo)->flags |= AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; 1805 if ((*bo)->tbo.resource->mem_type == TTM_PL_VRAM && 1806 !((*bo)->tbo.resource->placement & TTM_PL_FLAG_CONTIGUOUS)) { 1807 1808 amdgpu_bo_placement_from_domain(*bo, (*bo)->allowed_domains); 1809 for (i = 0; i < (*bo)->placement.num_placement; i++) 1810 (*bo)->placements[i].flags |= TTM_PL_FLAG_CONTIGUOUS; 1811 r = ttm_bo_validate(&(*bo)->tbo, &(*bo)->placement, &ctx); 1812 if (r) 1813 return r; 1814 } 1815 1816 return amdgpu_ttm_alloc_gart(&(*bo)->tbo); 1817 } 1818