1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4 * Author: Joerg Roedel <jroedel@suse.de>
5 * Leo Duran <leo.duran@amd.com>
6 */
7
8 #define pr_fmt(fmt) "AMD-Vi: " fmt
9 #define dev_fmt(fmt) pr_fmt(fmt)
10
11 #include <linux/ratelimit.h>
12 #include <linux/pci.h>
13 #include <linux/acpi.h>
14 #include <linux/pci-ats.h>
15 #include <linux/bitmap.h>
16 #include <linux/slab.h>
17 #include <linux/string_choices.h>
18 #include <linux/debugfs.h>
19 #include <linux/scatterlist.h>
20 #include <linux/dma-map-ops.h>
21 #include <linux/dma-direct.h>
22 #include <linux/idr.h>
23 #include <linux/iommu-helper.h>
24 #include <linux/delay.h>
25 #include <linux/amd-iommu.h>
26 #include <linux/notifier.h>
27 #include <linux/export.h>
28 #include <linux/irq.h>
29 #include <linux/irqchip/irq-msi-lib.h>
30 #include <linux/msi.h>
31 #include <linux/irqdomain.h>
32 #include <linux/percpu.h>
33 #include <linux/cc_platform.h>
34 #include <asm/irq_remapping.h>
35 #include <asm/io_apic.h>
36 #include <asm/apic.h>
37 #include <asm/hw_irq.h>
38 #include <asm/proto.h>
39 #include <asm/iommu.h>
40 #include <asm/gart.h>
41 #include <asm/dma.h>
42 #include <uapi/linux/iommufd.h>
43 #include <linux/generic_pt/iommu.h>
44
45 #include "amd_iommu.h"
46 #include "../irq_remapping.h"
47 #include "../iommu-pages.h"
48
49 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
50
51 /* Reserved IOVA ranges */
52 #define MSI_RANGE_START (0xfee00000)
53 #define MSI_RANGE_END (0xfeefffff)
54 #define HT_RANGE_START (0xfd00000000ULL)
55 #define HT_RANGE_END (0xffffffffffULL)
56
57 LIST_HEAD(ioapic_map);
58 LIST_HEAD(hpet_map);
59 LIST_HEAD(acpihid_map);
60
61 const struct iommu_ops amd_iommu_ops;
62
63 int amd_iommu_max_glx_val = -1;
64
65 /*
66 * AMD IOMMU allows up to 2^16 different protection domains. This is a bitmap
67 * to know which ones are already in use.
68 */
69 DEFINE_IDA(pdom_ids);
70
71 static int amd_iommu_attach_device(struct iommu_domain *dom, struct device *dev,
72 struct iommu_domain *old);
73
74 static void set_dte_entry(struct amd_iommu *iommu,
75 struct iommu_dev_data *dev_data,
76 phys_addr_t top_paddr, unsigned int top_level);
77
78 static void amd_iommu_change_top(struct pt_iommu *iommu_table,
79 phys_addr_t top_paddr, unsigned int top_level);
80
81 static void iommu_flush_dte_sync(struct amd_iommu *iommu, u16 devid);
82
83 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid);
84 static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain);
85 static int amd_iommu_set_dirty_tracking(struct iommu_domain *domain,
86 bool enable);
87
88 /****************************************************************************
89 *
90 * Helper functions
91 *
92 ****************************************************************************/
93
amd_iommu_atomic128_set(__int128 * ptr,__int128 val)94 static __always_inline void amd_iommu_atomic128_set(__int128 *ptr, __int128 val)
95 {
96 /*
97 * Note:
98 * We use arch_cmpxchg128_local() because:
99 * - Need cmpxchg16b instruction mainly for 128-bit store to DTE
100 * (not necessary for cmpxchg since this function is already
101 * protected by a spin_lock for this DTE).
102 * - Neither need LOCK_PREFIX nor try loop because of the spin_lock.
103 */
104 arch_cmpxchg128_local(ptr, *ptr, val);
105 }
106
write_dte_upper128(struct dev_table_entry * ptr,struct dev_table_entry * new)107 static void write_dte_upper128(struct dev_table_entry *ptr, struct dev_table_entry *new)
108 {
109 struct dev_table_entry old;
110
111 old.data128[1] = ptr->data128[1];
112 /*
113 * Preserve DTE_DATA2_INTR_MASK. This needs to be
114 * done here since it requires to be inside
115 * spin_lock(&dev_data->dte_lock) context.
116 */
117 new->data[2] &= ~DTE_DATA2_INTR_MASK;
118 new->data[2] |= old.data[2] & DTE_DATA2_INTR_MASK;
119
120 amd_iommu_atomic128_set(&ptr->data128[1], new->data128[1]);
121 }
122
write_dte_lower128(struct dev_table_entry * ptr,struct dev_table_entry * new)123 static void write_dte_lower128(struct dev_table_entry *ptr, struct dev_table_entry *new)
124 {
125 amd_iommu_atomic128_set(&ptr->data128[0], new->data128[0]);
126 }
127
128 /*
129 * Note:
130 * IOMMU reads the entire Device Table entry in a single 256-bit transaction
131 * but the driver is programming DTE using 2 128-bit cmpxchg. So, the driver
132 * need to ensure the following:
133 * - DTE[V|GV] bit is being written last when setting.
134 * - DTE[V|GV] bit is being written first when clearing.
135 *
136 * This function is used only by code, which updates DMA translation part of the DTE.
137 * So, only consider control bits related to DMA when updating the entry.
138 */
update_dte256(struct amd_iommu * iommu,struct iommu_dev_data * dev_data,struct dev_table_entry * new)139 static void update_dte256(struct amd_iommu *iommu, struct iommu_dev_data *dev_data,
140 struct dev_table_entry *new)
141 {
142 unsigned long flags;
143 struct dev_table_entry *dev_table = get_dev_table(iommu);
144 struct dev_table_entry *ptr = &dev_table[dev_data->devid];
145
146 spin_lock_irqsave(&dev_data->dte_lock, flags);
147
148 if (!(ptr->data[0] & DTE_FLAG_V)) {
149 /* Existing DTE is not valid. */
150 write_dte_upper128(ptr, new);
151 write_dte_lower128(ptr, new);
152 iommu_flush_dte_sync(iommu, dev_data->devid);
153 } else if (!(new->data[0] & DTE_FLAG_V)) {
154 /* Existing DTE is valid. New DTE is not valid. */
155 write_dte_lower128(ptr, new);
156 write_dte_upper128(ptr, new);
157 iommu_flush_dte_sync(iommu, dev_data->devid);
158 } else if (!FIELD_GET(DTE_FLAG_GV, ptr->data[0])) {
159 /*
160 * Both DTEs are valid.
161 * Existing DTE has no guest page table.
162 */
163 write_dte_upper128(ptr, new);
164 write_dte_lower128(ptr, new);
165 iommu_flush_dte_sync(iommu, dev_data->devid);
166 } else if (!FIELD_GET(DTE_FLAG_GV, new->data[0])) {
167 /*
168 * Both DTEs are valid.
169 * Existing DTE has guest page table,
170 * new DTE has no guest page table,
171 */
172 write_dte_lower128(ptr, new);
173 write_dte_upper128(ptr, new);
174 iommu_flush_dte_sync(iommu, dev_data->devid);
175 } else if (FIELD_GET(DTE_GPT_LEVEL_MASK, ptr->data[2]) !=
176 FIELD_GET(DTE_GPT_LEVEL_MASK, new->data[2])) {
177 /*
178 * Both DTEs are valid and have guest page table,
179 * but have different number of levels. So, we need
180 * to upadte both upper and lower 128-bit value, which
181 * require disabling and flushing.
182 */
183 struct dev_table_entry clear = {};
184
185 /* First disable DTE */
186 write_dte_lower128(ptr, &clear);
187 iommu_flush_dte_sync(iommu, dev_data->devid);
188
189 /* Then update DTE */
190 write_dte_upper128(ptr, new);
191 write_dte_lower128(ptr, new);
192 iommu_flush_dte_sync(iommu, dev_data->devid);
193 } else {
194 /*
195 * Both DTEs are valid and have guest page table,
196 * and same number of levels. We just need to only
197 * update the lower 128-bit. So no need to disable DTE.
198 */
199 write_dte_lower128(ptr, new);
200 }
201
202 spin_unlock_irqrestore(&dev_data->dte_lock, flags);
203 }
204
get_dte256(struct amd_iommu * iommu,struct iommu_dev_data * dev_data,struct dev_table_entry * dte)205 static void get_dte256(struct amd_iommu *iommu, struct iommu_dev_data *dev_data,
206 struct dev_table_entry *dte)
207 {
208 unsigned long flags;
209 struct dev_table_entry *ptr;
210 struct dev_table_entry *dev_table = get_dev_table(iommu);
211
212 ptr = &dev_table[dev_data->devid];
213
214 spin_lock_irqsave(&dev_data->dte_lock, flags);
215 dte->data128[0] = ptr->data128[0];
216 dte->data128[1] = ptr->data128[1];
217 spin_unlock_irqrestore(&dev_data->dte_lock, flags);
218 }
219
pdom_is_v2_pgtbl_mode(struct protection_domain * pdom)220 static inline bool pdom_is_v2_pgtbl_mode(struct protection_domain *pdom)
221 {
222 return (pdom && (pdom->pd_mode == PD_MODE_V2));
223 }
224
pdom_is_in_pt_mode(struct protection_domain * pdom)225 static inline bool pdom_is_in_pt_mode(struct protection_domain *pdom)
226 {
227 return (pdom->domain.type == IOMMU_DOMAIN_IDENTITY);
228 }
229
230 /*
231 * We cannot support PASID w/ existing v1 page table in the same domain
232 * since it will be nested. However, existing domain w/ v2 page table
233 * or passthrough mode can be used for PASID.
234 */
pdom_is_sva_capable(struct protection_domain * pdom)235 static inline bool pdom_is_sva_capable(struct protection_domain *pdom)
236 {
237 return pdom_is_v2_pgtbl_mode(pdom) || pdom_is_in_pt_mode(pdom);
238 }
239
get_acpihid_device_id(struct device * dev,struct acpihid_map_entry ** entry)240 static inline int get_acpihid_device_id(struct device *dev,
241 struct acpihid_map_entry **entry)
242 {
243 struct acpi_device *adev = ACPI_COMPANION(dev);
244 struct acpihid_map_entry *p, *p1 = NULL;
245 int hid_count = 0;
246 bool fw_bug;
247
248 if (!adev)
249 return -ENODEV;
250
251 list_for_each_entry(p, &acpihid_map, list) {
252 if (acpi_dev_hid_uid_match(adev, p->hid,
253 p->uid[0] ? p->uid : NULL)) {
254 p1 = p;
255 fw_bug = false;
256 hid_count = 1;
257 break;
258 }
259
260 /*
261 * Count HID matches w/o UID, raise FW_BUG but allow exactly one match
262 */
263 if (acpi_dev_hid_match(adev, p->hid)) {
264 p1 = p;
265 hid_count++;
266 fw_bug = true;
267 }
268 }
269
270 if (!p1)
271 return -EINVAL;
272 if (fw_bug)
273 dev_err_once(dev, FW_BUG "No ACPI device matched UID, but %d device%s matched HID.\n",
274 hid_count, str_plural(hid_count));
275 if (hid_count > 1)
276 return -EINVAL;
277 if (entry)
278 *entry = p1;
279
280 return p1->devid;
281 }
282
get_device_sbdf_id(struct device * dev)283 static inline int get_device_sbdf_id(struct device *dev)
284 {
285 int sbdf;
286
287 if (dev_is_pci(dev))
288 sbdf = get_pci_sbdf_id(to_pci_dev(dev));
289 else
290 sbdf = get_acpihid_device_id(dev, NULL);
291
292 return sbdf;
293 }
294
get_dev_table(struct amd_iommu * iommu)295 struct dev_table_entry *get_dev_table(struct amd_iommu *iommu)
296 {
297 struct dev_table_entry *dev_table;
298 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
299
300 BUG_ON(pci_seg == NULL);
301 dev_table = pci_seg->dev_table;
302 BUG_ON(dev_table == NULL);
303
304 return dev_table;
305 }
306
get_device_segment(struct device * dev)307 static inline u16 get_device_segment(struct device *dev)
308 {
309 u16 seg;
310
311 if (dev_is_pci(dev)) {
312 struct pci_dev *pdev = to_pci_dev(dev);
313
314 seg = pci_domain_nr(pdev->bus);
315 } else {
316 u32 devid = get_acpihid_device_id(dev, NULL);
317
318 seg = PCI_SBDF_TO_SEGID(devid);
319 }
320
321 return seg;
322 }
323
324 /* Writes the specific IOMMU for a device into the PCI segment rlookup table */
amd_iommu_set_rlookup_table(struct amd_iommu * iommu,u16 devid)325 void amd_iommu_set_rlookup_table(struct amd_iommu *iommu, u16 devid)
326 {
327 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
328
329 pci_seg->rlookup_table[devid] = iommu;
330 }
331
__rlookup_amd_iommu(u16 seg,u16 devid)332 static struct amd_iommu *__rlookup_amd_iommu(u16 seg, u16 devid)
333 {
334 struct amd_iommu_pci_seg *pci_seg;
335
336 for_each_pci_segment(pci_seg) {
337 if (pci_seg->id == seg)
338 return pci_seg->rlookup_table[devid];
339 }
340 return NULL;
341 }
342
rlookup_amd_iommu(struct device * dev)343 static struct amd_iommu *rlookup_amd_iommu(struct device *dev)
344 {
345 u16 seg = get_device_segment(dev);
346 int devid = get_device_sbdf_id(dev);
347
348 if (devid < 0)
349 return NULL;
350 return __rlookup_amd_iommu(seg, PCI_SBDF_TO_DEVID(devid));
351 }
352
alloc_dev_data(struct amd_iommu * iommu,u16 devid)353 static struct iommu_dev_data *alloc_dev_data(struct amd_iommu *iommu, u16 devid)
354 {
355 struct iommu_dev_data *dev_data;
356 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
357
358 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
359 if (!dev_data)
360 return NULL;
361
362 mutex_init(&dev_data->mutex);
363 spin_lock_init(&dev_data->dte_lock);
364 dev_data->devid = devid;
365 ratelimit_default_init(&dev_data->rs);
366
367 llist_add(&dev_data->dev_data_list, &pci_seg->dev_data_list);
368 return dev_data;
369 }
370
search_dev_data(struct amd_iommu * iommu,u16 devid)371 struct iommu_dev_data *search_dev_data(struct amd_iommu *iommu, u16 devid)
372 {
373 struct iommu_dev_data *dev_data;
374 struct llist_node *node;
375 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
376
377 if (llist_empty(&pci_seg->dev_data_list))
378 return NULL;
379
380 node = pci_seg->dev_data_list.first;
381 llist_for_each_entry(dev_data, node, dev_data_list) {
382 if (dev_data->devid == devid)
383 return dev_data;
384 }
385
386 return NULL;
387 }
388
clone_alias(struct pci_dev * pdev,u16 alias,void * data)389 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
390 {
391 struct dev_table_entry new;
392 struct amd_iommu *iommu;
393 struct iommu_dev_data *dev_data, *alias_data;
394 u16 devid = pci_dev_id(pdev);
395 int ret = 0;
396
397 if (devid == alias)
398 return 0;
399
400 iommu = rlookup_amd_iommu(&pdev->dev);
401 if (!iommu)
402 return 0;
403
404 /* Copy the data from pdev */
405 dev_data = dev_iommu_priv_get(&pdev->dev);
406 if (!dev_data) {
407 pr_err("%s : Failed to get dev_data for 0x%x\n", __func__, devid);
408 ret = -EINVAL;
409 goto out;
410 }
411 get_dte256(iommu, dev_data, &new);
412
413 /* Setup alias */
414 alias_data = find_dev_data(iommu, alias);
415 if (!alias_data) {
416 pr_err("%s : Failed to get alias dev_data for 0x%x\n", __func__, alias);
417 ret = -EINVAL;
418 goto out;
419 }
420 update_dte256(iommu, alias_data, &new);
421
422 amd_iommu_set_rlookup_table(iommu, alias);
423 out:
424 return ret;
425 }
426
clone_aliases(struct amd_iommu * iommu,struct device * dev)427 static void clone_aliases(struct amd_iommu *iommu, struct device *dev)
428 {
429 struct pci_dev *pdev;
430
431 if (!dev_is_pci(dev))
432 return;
433 pdev = to_pci_dev(dev);
434
435 /*
436 * The IVRS alias stored in the alias table may not be
437 * part of the PCI DMA aliases if it's bus differs
438 * from the original device.
439 */
440 clone_alias(pdev, iommu->pci_seg->alias_table[pci_dev_id(pdev)], NULL);
441
442 pci_for_each_dma_alias(pdev, clone_alias, NULL);
443 }
444
setup_aliases(struct amd_iommu * iommu,struct device * dev)445 static void setup_aliases(struct amd_iommu *iommu, struct device *dev)
446 {
447 struct pci_dev *pdev = to_pci_dev(dev);
448 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
449 u16 ivrs_alias;
450
451 /* For ACPI HID devices, there are no aliases */
452 if (!dev_is_pci(dev))
453 return;
454
455 /*
456 * Add the IVRS alias to the pci aliases if it is on the same
457 * bus. The IVRS table may know about a quirk that we don't.
458 */
459 ivrs_alias = pci_seg->alias_table[pci_dev_id(pdev)];
460 if (ivrs_alias != pci_dev_id(pdev) &&
461 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number)
462 pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1);
463
464 clone_aliases(iommu, dev);
465 }
466
find_dev_data(struct amd_iommu * iommu,u16 devid)467 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid)
468 {
469 struct iommu_dev_data *dev_data;
470
471 dev_data = search_dev_data(iommu, devid);
472
473 if (dev_data == NULL) {
474 dev_data = alloc_dev_data(iommu, devid);
475 if (!dev_data)
476 return NULL;
477
478 if (translation_pre_enabled(iommu))
479 dev_data->defer_attach = true;
480 }
481
482 return dev_data;
483 }
484
485 /*
486 * Find or create an IOMMU group for a acpihid device.
487 */
acpihid_device_group(struct device * dev)488 static struct iommu_group *acpihid_device_group(struct device *dev)
489 {
490 struct acpihid_map_entry *p, *entry = NULL;
491 int devid;
492
493 devid = get_acpihid_device_id(dev, &entry);
494 if (devid < 0)
495 return ERR_PTR(devid);
496
497 list_for_each_entry(p, &acpihid_map, list) {
498 if ((devid == p->devid) && p->group)
499 entry->group = p->group;
500 }
501
502 if (!entry->group)
503 entry->group = generic_device_group(dev);
504 else
505 iommu_group_ref_get(entry->group);
506
507 return entry->group;
508 }
509
pdev_pasid_supported(struct iommu_dev_data * dev_data)510 static inline bool pdev_pasid_supported(struct iommu_dev_data *dev_data)
511 {
512 return (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP);
513 }
514
pdev_get_caps(struct pci_dev * pdev)515 static u32 pdev_get_caps(struct pci_dev *pdev)
516 {
517 int features;
518 u32 flags = 0;
519
520 if (pci_ats_supported(pdev))
521 flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
522
523 if (pci_pri_supported(pdev))
524 flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
525
526 features = pci_pasid_features(pdev);
527 if (features >= 0) {
528 flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
529
530 if (features & PCI_PASID_CAP_EXEC)
531 flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
532
533 if (features & PCI_PASID_CAP_PRIV)
534 flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
535 }
536
537 return flags;
538 }
539
pdev_enable_cap_ats(struct pci_dev * pdev)540 static inline int pdev_enable_cap_ats(struct pci_dev *pdev)
541 {
542 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
543 int ret = -EINVAL;
544
545 if (dev_data->ats_enabled)
546 return 0;
547
548 if (amd_iommu_iotlb_sup &&
549 (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_ATS_SUP)) {
550 ret = pci_enable_ats(pdev, PAGE_SHIFT);
551 if (!ret) {
552 dev_data->ats_enabled = 1;
553 dev_data->ats_qdep = pci_ats_queue_depth(pdev);
554 }
555 }
556
557 return ret;
558 }
559
pdev_disable_cap_ats(struct pci_dev * pdev)560 static inline void pdev_disable_cap_ats(struct pci_dev *pdev)
561 {
562 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
563
564 if (dev_data->ats_enabled) {
565 pci_disable_ats(pdev);
566 dev_data->ats_enabled = 0;
567 }
568 }
569
pdev_enable_cap_pri(struct pci_dev * pdev)570 static inline int pdev_enable_cap_pri(struct pci_dev *pdev)
571 {
572 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
573 int ret = -EINVAL;
574
575 if (dev_data->pri_enabled)
576 return 0;
577
578 if (!dev_data->ats_enabled)
579 return 0;
580
581 if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PRI_SUP) {
582 /*
583 * First reset the PRI state of the device.
584 * FIXME: Hardcode number of outstanding requests for now
585 */
586 if (!pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32)) {
587 dev_data->pri_enabled = 1;
588 dev_data->pri_tlp = pci_prg_resp_pasid_required(pdev);
589
590 ret = 0;
591 }
592 }
593
594 return ret;
595 }
596
pdev_disable_cap_pri(struct pci_dev * pdev)597 static inline void pdev_disable_cap_pri(struct pci_dev *pdev)
598 {
599 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
600
601 if (dev_data->pri_enabled) {
602 pci_disable_pri(pdev);
603 dev_data->pri_enabled = 0;
604 }
605 }
606
pdev_enable_cap_pasid(struct pci_dev * pdev)607 static inline int pdev_enable_cap_pasid(struct pci_dev *pdev)
608 {
609 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
610 int ret = -EINVAL;
611
612 if (dev_data->pasid_enabled)
613 return 0;
614
615 if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP) {
616 /* Only allow access to user-accessible pages */
617 ret = pci_enable_pasid(pdev, 0);
618 if (!ret)
619 dev_data->pasid_enabled = 1;
620 }
621
622 return ret;
623 }
624
pdev_disable_cap_pasid(struct pci_dev * pdev)625 static inline void pdev_disable_cap_pasid(struct pci_dev *pdev)
626 {
627 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
628
629 if (dev_data->pasid_enabled) {
630 pci_disable_pasid(pdev);
631 dev_data->pasid_enabled = 0;
632 }
633 }
634
pdev_enable_caps(struct pci_dev * pdev)635 static void pdev_enable_caps(struct pci_dev *pdev)
636 {
637 pdev_enable_cap_pasid(pdev);
638 pdev_enable_cap_ats(pdev);
639 pdev_enable_cap_pri(pdev);
640 }
641
pdev_disable_caps(struct pci_dev * pdev)642 static void pdev_disable_caps(struct pci_dev *pdev)
643 {
644 pdev_disable_cap_ats(pdev);
645 pdev_disable_cap_pasid(pdev);
646 pdev_disable_cap_pri(pdev);
647 }
648
649 /*
650 * This function checks if the driver got a valid device from the caller to
651 * avoid dereferencing invalid pointers.
652 */
check_device(struct device * dev)653 static bool check_device(struct device *dev)
654 {
655 struct amd_iommu_pci_seg *pci_seg;
656 struct amd_iommu *iommu;
657 int devid, sbdf;
658
659 if (!dev)
660 return false;
661
662 sbdf = get_device_sbdf_id(dev);
663 if (sbdf < 0)
664 return false;
665 devid = PCI_SBDF_TO_DEVID(sbdf);
666
667 iommu = rlookup_amd_iommu(dev);
668 if (!iommu)
669 return false;
670
671 /* Out of our scope? */
672 pci_seg = iommu->pci_seg;
673 if (devid > pci_seg->last_bdf)
674 return false;
675
676 return true;
677 }
678
iommu_init_device(struct amd_iommu * iommu,struct device * dev)679 static int iommu_init_device(struct amd_iommu *iommu, struct device *dev)
680 {
681 struct iommu_dev_data *dev_data;
682 int devid, sbdf;
683
684 if (dev_iommu_priv_get(dev))
685 return 0;
686
687 sbdf = get_device_sbdf_id(dev);
688 if (sbdf < 0)
689 return sbdf;
690
691 devid = PCI_SBDF_TO_DEVID(sbdf);
692 dev_data = find_dev_data(iommu, devid);
693 if (!dev_data)
694 return -ENOMEM;
695
696 dev_data->dev = dev;
697
698 /*
699 * The dev_iommu_priv_set() needes to be called before setup_aliases.
700 * Otherwise, subsequent call to dev_iommu_priv_get() will fail.
701 */
702 dev_iommu_priv_set(dev, dev_data);
703 setup_aliases(iommu, dev);
704
705 /*
706 * By default we use passthrough mode for IOMMUv2 capable device.
707 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
708 * invalid address), we ignore the capability for the device so
709 * it'll be forced to go into translation mode.
710 */
711 if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
712 dev_is_pci(dev) && amd_iommu_gt_ppr_supported()) {
713 dev_data->flags = pdev_get_caps(to_pci_dev(dev));
714 }
715
716 return 0;
717 }
718
iommu_ignore_device(struct amd_iommu * iommu,struct device * dev)719 static void iommu_ignore_device(struct amd_iommu *iommu, struct device *dev)
720 {
721 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
722 struct dev_table_entry *dev_table = get_dev_table(iommu);
723 int devid, sbdf;
724
725 sbdf = get_device_sbdf_id(dev);
726 if (sbdf < 0)
727 return;
728
729 devid = PCI_SBDF_TO_DEVID(sbdf);
730 pci_seg->rlookup_table[devid] = NULL;
731 memset(&dev_table[devid], 0, sizeof(struct dev_table_entry));
732
733 setup_aliases(iommu, dev);
734 }
735
736
737 /****************************************************************************
738 *
739 * Interrupt handling functions
740 *
741 ****************************************************************************/
742
dump_dte_entry(struct amd_iommu * iommu,u16 devid)743 static void dump_dte_entry(struct amd_iommu *iommu, u16 devid)
744 {
745 int i;
746 struct dev_table_entry dte;
747 struct iommu_dev_data *dev_data = find_dev_data(iommu, devid);
748
749 get_dte256(iommu, dev_data, &dte);
750
751 for (i = 0; i < 4; ++i)
752 pr_err("DTE[%d]: %016llx\n", i, dte.data[i]);
753 }
754
dump_command(unsigned long phys_addr)755 static void dump_command(unsigned long phys_addr)
756 {
757 struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
758 int i;
759
760 for (i = 0; i < 4; ++i)
761 pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
762 }
763
amd_iommu_report_rmp_hw_error(struct amd_iommu * iommu,volatile u32 * event)764 static void amd_iommu_report_rmp_hw_error(struct amd_iommu *iommu, volatile u32 *event)
765 {
766 struct iommu_dev_data *dev_data = NULL;
767 int devid, vmg_tag, flags;
768 struct pci_dev *pdev;
769 u64 spa;
770
771 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
772 vmg_tag = (event[1]) & 0xFFFF;
773 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
774 spa = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8);
775
776 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
777 devid & 0xff);
778 if (pdev)
779 dev_data = dev_iommu_priv_get(&pdev->dev);
780
781 if (dev_data) {
782 if (__ratelimit(&dev_data->rs)) {
783 pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
784 vmg_tag, spa, flags);
785 }
786 } else {
787 pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
788 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
789 vmg_tag, spa, flags);
790 }
791
792 if (pdev)
793 pci_dev_put(pdev);
794 }
795
amd_iommu_report_rmp_fault(struct amd_iommu * iommu,volatile u32 * event)796 static void amd_iommu_report_rmp_fault(struct amd_iommu *iommu, volatile u32 *event)
797 {
798 struct iommu_dev_data *dev_data = NULL;
799 int devid, flags_rmp, vmg_tag, flags;
800 struct pci_dev *pdev;
801 u64 gpa;
802
803 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
804 flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF;
805 vmg_tag = (event[1]) & 0xFFFF;
806 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
807 gpa = ((u64)event[3] << 32) | event[2];
808
809 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
810 devid & 0xff);
811 if (pdev)
812 dev_data = dev_iommu_priv_get(&pdev->dev);
813
814 if (dev_data) {
815 if (__ratelimit(&dev_data->rs)) {
816 pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
817 vmg_tag, gpa, flags_rmp, flags);
818 }
819 } else {
820 pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
821 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
822 vmg_tag, gpa, flags_rmp, flags);
823 }
824
825 if (pdev)
826 pci_dev_put(pdev);
827 }
828
829 #define IS_IOMMU_MEM_TRANSACTION(flags) \
830 (((flags) & EVENT_FLAG_I) == 0)
831
832 #define IS_WRITE_REQUEST(flags) \
833 ((flags) & EVENT_FLAG_RW)
834
amd_iommu_report_page_fault(struct amd_iommu * iommu,u16 devid,u16 domain_id,u64 address,int flags)835 static void amd_iommu_report_page_fault(struct amd_iommu *iommu,
836 u16 devid, u16 domain_id,
837 u64 address, int flags)
838 {
839 struct iommu_dev_data *dev_data = NULL;
840 struct pci_dev *pdev;
841
842 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
843 devid & 0xff);
844 if (pdev)
845 dev_data = dev_iommu_priv_get(&pdev->dev);
846
847 if (dev_data) {
848 /*
849 * If this is a DMA fault (for which the I(nterrupt)
850 * bit will be unset), allow report_iommu_fault() to
851 * prevent logging it.
852 */
853 if (IS_IOMMU_MEM_TRANSACTION(flags)) {
854 /* Device not attached to domain properly */
855 if (dev_data->domain == NULL) {
856 pr_err_ratelimited("Event logged [Device not attached to domain properly]\n");
857 pr_err_ratelimited(" device=%04x:%02x:%02x.%x domain=0x%04x\n",
858 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid),
859 PCI_FUNC(devid), domain_id);
860 goto out;
861 }
862
863 if (!report_iommu_fault(&dev_data->domain->domain,
864 &pdev->dev, address,
865 IS_WRITE_REQUEST(flags) ?
866 IOMMU_FAULT_WRITE :
867 IOMMU_FAULT_READ))
868 goto out;
869 }
870
871 if (__ratelimit(&dev_data->rs)) {
872 pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
873 domain_id, address, flags);
874 }
875 } else {
876 pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%04x:%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
877 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
878 domain_id, address, flags);
879 }
880
881 out:
882 if (pdev)
883 pci_dev_put(pdev);
884 }
885
iommu_print_event(struct amd_iommu * iommu,void * __evt)886 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
887 {
888 struct device *dev = iommu->iommu.dev;
889 int type, devid, flags, tag;
890 volatile u32 *event = __evt;
891 int count = 0;
892 u64 address, ctrl;
893 u32 pasid;
894
895 retry:
896 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
897 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
898 pasid = (event[0] & EVENT_DOMID_MASK_HI) |
899 (event[1] & EVENT_DOMID_MASK_LO);
900 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
901 address = (u64)(((u64)event[3]) << 32) | event[2];
902 ctrl = readq(iommu->mmio_base + MMIO_CONTROL_OFFSET);
903
904 if (type == 0) {
905 /* Did we hit the erratum? */
906 if (++count == LOOP_TIMEOUT) {
907 pr_err("No event written to event log\n");
908 return;
909 }
910 udelay(1);
911 goto retry;
912 }
913
914 if (type == EVENT_TYPE_IO_FAULT) {
915 amd_iommu_report_page_fault(iommu, devid, pasid, address, flags);
916 return;
917 }
918
919 switch (type) {
920 case EVENT_TYPE_ILL_DEV:
921 dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
922 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
923 pasid, address, flags);
924 dev_err(dev, "Control Reg : 0x%llx\n", ctrl);
925 dump_dte_entry(iommu, devid);
926 break;
927 case EVENT_TYPE_DEV_TAB_ERR:
928 dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x "
929 "address=0x%llx flags=0x%04x]\n",
930 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
931 address, flags);
932 break;
933 case EVENT_TYPE_PAGE_TAB_ERR:
934 dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
935 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
936 pasid, address, flags);
937 break;
938 case EVENT_TYPE_ILL_CMD:
939 dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
940 dump_command(address);
941 break;
942 case EVENT_TYPE_CMD_HARD_ERR:
943 dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
944 address, flags);
945 break;
946 case EVENT_TYPE_IOTLB_INV_TO:
947 dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%04x:%02x:%02x.%x address=0x%llx]\n",
948 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
949 address);
950 break;
951 case EVENT_TYPE_INV_DEV_REQ:
952 dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
953 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
954 pasid, address, flags);
955 break;
956 case EVENT_TYPE_RMP_FAULT:
957 amd_iommu_report_rmp_fault(iommu, event);
958 break;
959 case EVENT_TYPE_RMP_HW_ERR:
960 amd_iommu_report_rmp_hw_error(iommu, event);
961 break;
962 case EVENT_TYPE_INV_PPR_REQ:
963 pasid = PPR_PASID(*((u64 *)__evt));
964 tag = event[1] & 0x03FF;
965 dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
966 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
967 pasid, address, flags, tag);
968 break;
969 default:
970 dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
971 event[0], event[1], event[2], event[3]);
972 }
973
974 /*
975 * To detect the hardware errata 732 we need to clear the
976 * entry back to zero. This issue does not exist on SNP
977 * enabled system. Also this buffer is not writeable on
978 * SNP enabled system.
979 */
980 if (!amd_iommu_snp_en)
981 memset(__evt, 0, 4 * sizeof(u32));
982 }
983
iommu_poll_events(struct amd_iommu * iommu)984 static void iommu_poll_events(struct amd_iommu *iommu)
985 {
986 u32 head, tail;
987
988 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
989 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
990
991 while (head != tail) {
992 iommu_print_event(iommu, iommu->evt_buf + head);
993
994 /* Update head pointer of hardware ring-buffer */
995 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
996 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
997 }
998
999 }
1000
1001 #ifdef CONFIG_IRQ_REMAP
1002 static int (*iommu_ga_log_notifier)(u32);
1003
amd_iommu_register_ga_log_notifier(int (* notifier)(u32))1004 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
1005 {
1006 iommu_ga_log_notifier = notifier;
1007
1008 /*
1009 * Ensure all in-flight IRQ handlers run to completion before returning
1010 * to the caller, e.g. to ensure module code isn't unloaded while it's
1011 * being executed in the IRQ handler.
1012 */
1013 if (!notifier)
1014 synchronize_rcu();
1015
1016 return 0;
1017 }
1018 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
1019
iommu_poll_ga_log(struct amd_iommu * iommu)1020 static void iommu_poll_ga_log(struct amd_iommu *iommu)
1021 {
1022 u32 head, tail;
1023
1024 if (iommu->ga_log == NULL)
1025 return;
1026
1027 head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
1028 tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
1029
1030 while (head != tail) {
1031 volatile u64 *raw;
1032 u64 log_entry;
1033
1034 raw = (u64 *)(iommu->ga_log + head);
1035
1036 /* Avoid memcpy function-call overhead */
1037 log_entry = *raw;
1038
1039 /* Update head pointer of hardware ring-buffer */
1040 head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
1041 writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
1042
1043 /* Handle GA entry */
1044 switch (GA_REQ_TYPE(log_entry)) {
1045 case GA_GUEST_NR:
1046 if (!iommu_ga_log_notifier)
1047 break;
1048
1049 pr_debug("%s: devid=%#x, ga_tag=%#x\n",
1050 __func__, GA_DEVID(log_entry),
1051 GA_TAG(log_entry));
1052
1053 if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
1054 pr_err("GA log notifier failed.\n");
1055 break;
1056 default:
1057 break;
1058 }
1059 }
1060 }
1061
1062 static void
amd_iommu_set_pci_msi_domain(struct device * dev,struct amd_iommu * iommu)1063 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu)
1064 {
1065 if (!irq_remapping_enabled || !dev_is_pci(dev) ||
1066 !pci_dev_has_default_msi_parent_domain(to_pci_dev(dev)))
1067 return;
1068
1069 dev_set_msi_domain(dev, iommu->ir_domain);
1070 }
1071
1072 #else /* CONFIG_IRQ_REMAP */
1073 static inline void
amd_iommu_set_pci_msi_domain(struct device * dev,struct amd_iommu * iommu)1074 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { }
1075 #endif /* !CONFIG_IRQ_REMAP */
1076
amd_iommu_handle_irq(void * data,const char * evt_type,u32 int_mask,u32 overflow_mask,void (* int_handler)(struct amd_iommu *),void (* overflow_handler)(struct amd_iommu *))1077 static void amd_iommu_handle_irq(void *data, const char *evt_type,
1078 u32 int_mask, u32 overflow_mask,
1079 void (*int_handler)(struct amd_iommu *),
1080 void (*overflow_handler)(struct amd_iommu *))
1081 {
1082 struct amd_iommu *iommu = (struct amd_iommu *) data;
1083 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
1084 u32 mask = int_mask | overflow_mask;
1085
1086 while (status & mask) {
1087 /* Enable interrupt sources again */
1088 writel(mask, iommu->mmio_base + MMIO_STATUS_OFFSET);
1089
1090 if (int_handler) {
1091 pr_devel("Processing IOMMU (ivhd%d) %s Log\n",
1092 iommu->index, evt_type);
1093 int_handler(iommu);
1094 }
1095
1096 if ((status & overflow_mask) && overflow_handler)
1097 overflow_handler(iommu);
1098
1099 /*
1100 * Hardware bug: ERBT1312
1101 * When re-enabling interrupt (by writing 1
1102 * to clear the bit), the hardware might also try to set
1103 * the interrupt bit in the event status register.
1104 * In this scenario, the bit will be set, and disable
1105 * subsequent interrupts.
1106 *
1107 * Workaround: The IOMMU driver should read back the
1108 * status register and check if the interrupt bits are cleared.
1109 * If not, driver will need to go through the interrupt handler
1110 * again and re-clear the bits
1111 */
1112 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
1113 }
1114 }
1115
amd_iommu_int_thread_evtlog(int irq,void * data)1116 irqreturn_t amd_iommu_int_thread_evtlog(int irq, void *data)
1117 {
1118 amd_iommu_handle_irq(data, "Evt", MMIO_STATUS_EVT_INT_MASK,
1119 MMIO_STATUS_EVT_OVERFLOW_MASK,
1120 iommu_poll_events, amd_iommu_restart_event_logging);
1121
1122 return IRQ_HANDLED;
1123 }
1124
amd_iommu_int_thread_pprlog(int irq,void * data)1125 irqreturn_t amd_iommu_int_thread_pprlog(int irq, void *data)
1126 {
1127 amd_iommu_handle_irq(data, "PPR", MMIO_STATUS_PPR_INT_MASK,
1128 MMIO_STATUS_PPR_OVERFLOW_MASK,
1129 amd_iommu_poll_ppr_log, amd_iommu_restart_ppr_log);
1130
1131 return IRQ_HANDLED;
1132 }
1133
amd_iommu_int_thread_galog(int irq,void * data)1134 irqreturn_t amd_iommu_int_thread_galog(int irq, void *data)
1135 {
1136 #ifdef CONFIG_IRQ_REMAP
1137 amd_iommu_handle_irq(data, "GA", MMIO_STATUS_GALOG_INT_MASK,
1138 MMIO_STATUS_GALOG_OVERFLOW_MASK,
1139 iommu_poll_ga_log, amd_iommu_restart_ga_log);
1140 #endif
1141
1142 return IRQ_HANDLED;
1143 }
1144
amd_iommu_int_thread(int irq,void * data)1145 irqreturn_t amd_iommu_int_thread(int irq, void *data)
1146 {
1147 amd_iommu_int_thread_evtlog(irq, data);
1148 amd_iommu_int_thread_pprlog(irq, data);
1149 amd_iommu_int_thread_galog(irq, data);
1150
1151 return IRQ_HANDLED;
1152 }
1153
amd_iommu_int_handler(int irq,void * data)1154 irqreturn_t amd_iommu_int_handler(int irq, void *data)
1155 {
1156 return IRQ_WAKE_THREAD;
1157 }
1158
1159 /****************************************************************************
1160 *
1161 * IOMMU command queuing functions
1162 *
1163 ****************************************************************************/
1164
dump_command_buffer(struct amd_iommu * iommu)1165 static void dump_command_buffer(struct amd_iommu *iommu)
1166 {
1167 struct iommu_cmd *cmd;
1168 u32 head, tail;
1169 int i;
1170
1171 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
1172 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
1173
1174 pr_err("CMD Buffer head=%llu tail=%llu\n", MMIO_CMD_BUFFER_HEAD(head),
1175 MMIO_CMD_BUFFER_TAIL(tail));
1176
1177 for (i = 0; i < CMD_BUFFER_ENTRIES; i++) {
1178 cmd = (struct iommu_cmd *)(iommu->cmd_buf + i * sizeof(*cmd));
1179 pr_err("%3d: %08x %08x %08x %08x\n", i, cmd->data[0], cmd->data[1], cmd->data[2],
1180 cmd->data[3]);
1181 }
1182 }
1183
wait_on_sem(struct amd_iommu * iommu,u64 data)1184 static int wait_on_sem(struct amd_iommu *iommu, u64 data)
1185 {
1186 int i = 0;
1187
1188 while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) {
1189 udelay(1);
1190 i += 1;
1191 }
1192
1193 if (i == LOOP_TIMEOUT) {
1194
1195 pr_alert("IOMMU %04x:%02x:%02x.%01x: Completion-Wait loop timed out\n",
1196 iommu->pci_seg->id, PCI_BUS_NUM(iommu->devid),
1197 PCI_SLOT(iommu->devid), PCI_FUNC(iommu->devid));
1198
1199 if (amd_iommu_dump)
1200 DO_ONCE_LITE(dump_command_buffer, iommu);
1201
1202 return -EIO;
1203 }
1204
1205 return 0;
1206 }
1207
copy_cmd_to_buffer(struct amd_iommu * iommu,struct iommu_cmd * cmd)1208 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
1209 struct iommu_cmd *cmd)
1210 {
1211 u8 *target;
1212 u32 tail;
1213
1214 /* Copy command to buffer */
1215 tail = iommu->cmd_buf_tail;
1216 target = iommu->cmd_buf + tail;
1217 memcpy(target, cmd, sizeof(*cmd));
1218
1219 tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1220 iommu->cmd_buf_tail = tail;
1221
1222 /* Tell the IOMMU about it */
1223 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
1224 }
1225
build_completion_wait(struct iommu_cmd * cmd,struct amd_iommu * iommu,u64 data)1226 static void build_completion_wait(struct iommu_cmd *cmd,
1227 struct amd_iommu *iommu,
1228 u64 data)
1229 {
1230 u64 paddr = iommu->cmd_sem_paddr;
1231
1232 memset(cmd, 0, sizeof(*cmd));
1233 cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
1234 cmd->data[1] = upper_32_bits(paddr);
1235 cmd->data[2] = lower_32_bits(data);
1236 cmd->data[3] = upper_32_bits(data);
1237 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
1238 }
1239
build_inv_dte(struct iommu_cmd * cmd,u16 devid)1240 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
1241 {
1242 memset(cmd, 0, sizeof(*cmd));
1243 cmd->data[0] = devid;
1244 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
1245 }
1246
1247 /*
1248 * Builds an invalidation address which is suitable for one page or multiple
1249 * pages. Sets the size bit (S) as needed is more than one page is flushed.
1250 */
build_inv_address(u64 address,size_t size)1251 static inline u64 build_inv_address(u64 address, size_t size)
1252 {
1253 u64 pages, end, msb_diff;
1254
1255 pages = iommu_num_pages(address, size, PAGE_SIZE);
1256
1257 if (pages == 1)
1258 return address & PAGE_MASK;
1259
1260 end = address + size - 1;
1261
1262 /*
1263 * msb_diff would hold the index of the most significant bit that
1264 * flipped between the start and end.
1265 */
1266 msb_diff = fls64(end ^ address) - 1;
1267
1268 /*
1269 * Bits 63:52 are sign extended. If for some reason bit 51 is different
1270 * between the start and the end, invalidate everything.
1271 */
1272 if (unlikely(msb_diff > 51)) {
1273 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
1274 } else {
1275 /*
1276 * The msb-bit must be clear on the address. Just set all the
1277 * lower bits.
1278 */
1279 address |= (1ull << msb_diff) - 1;
1280 }
1281
1282 /* Clear bits 11:0 */
1283 address &= PAGE_MASK;
1284
1285 /* Set the size bit - we flush more than one 4kb page */
1286 return address | CMD_INV_IOMMU_PAGES_SIZE_MASK;
1287 }
1288
build_inv_iommu_pages(struct iommu_cmd * cmd,u64 address,size_t size,u16 domid,ioasid_t pasid,bool gn)1289 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
1290 size_t size, u16 domid,
1291 ioasid_t pasid, bool gn)
1292 {
1293 u64 inv_address = build_inv_address(address, size);
1294
1295 memset(cmd, 0, sizeof(*cmd));
1296
1297 cmd->data[1] |= domid;
1298 cmd->data[2] = lower_32_bits(inv_address);
1299 cmd->data[3] = upper_32_bits(inv_address);
1300 /* PDE bit - we want to flush everything, not only the PTEs */
1301 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1302 if (gn) {
1303 cmd->data[0] |= pasid;
1304 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1305 }
1306 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1307 }
1308
build_inv_iotlb_pages(struct iommu_cmd * cmd,u16 devid,int qdep,u64 address,size_t size,ioasid_t pasid,bool gn)1309 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
1310 u64 address, size_t size,
1311 ioasid_t pasid, bool gn)
1312 {
1313 u64 inv_address = build_inv_address(address, size);
1314
1315 memset(cmd, 0, sizeof(*cmd));
1316
1317 cmd->data[0] = devid;
1318 cmd->data[0] |= (qdep & 0xff) << 24;
1319 cmd->data[1] = devid;
1320 cmd->data[2] = lower_32_bits(inv_address);
1321 cmd->data[3] = upper_32_bits(inv_address);
1322 if (gn) {
1323 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
1324 cmd->data[1] |= (pasid & 0xff) << 16;
1325 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1326 }
1327
1328 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1329 }
1330
build_complete_ppr(struct iommu_cmd * cmd,u16 devid,u32 pasid,int status,int tag,u8 gn)1331 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1332 int status, int tag, u8 gn)
1333 {
1334 memset(cmd, 0, sizeof(*cmd));
1335
1336 cmd->data[0] = devid;
1337 if (gn) {
1338 cmd->data[1] = pasid;
1339 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
1340 }
1341 cmd->data[3] = tag & 0x1ff;
1342 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1343
1344 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1345 }
1346
build_inv_all(struct iommu_cmd * cmd)1347 static void build_inv_all(struct iommu_cmd *cmd)
1348 {
1349 memset(cmd, 0, sizeof(*cmd));
1350 CMD_SET_TYPE(cmd, CMD_INV_ALL);
1351 }
1352
build_inv_irt(struct iommu_cmd * cmd,u16 devid)1353 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1354 {
1355 memset(cmd, 0, sizeof(*cmd));
1356 cmd->data[0] = devid;
1357 CMD_SET_TYPE(cmd, CMD_INV_IRT);
1358 }
1359
1360 /*
1361 * Writes the command to the IOMMUs command buffer and informs the
1362 * hardware about the new command.
1363 */
__iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1364 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1365 struct iommu_cmd *cmd,
1366 bool sync)
1367 {
1368 unsigned int count = 0;
1369 u32 left, next_tail;
1370
1371 next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1372 again:
1373 left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1374
1375 if (left <= 0x20) {
1376 /* Skip udelay() the first time around */
1377 if (count++) {
1378 if (count == LOOP_TIMEOUT) {
1379 pr_err("Command buffer timeout\n");
1380 return -EIO;
1381 }
1382
1383 udelay(1);
1384 }
1385
1386 /* Update head and recheck remaining space */
1387 iommu->cmd_buf_head = readl(iommu->mmio_base +
1388 MMIO_CMD_HEAD_OFFSET);
1389
1390 goto again;
1391 }
1392
1393 copy_cmd_to_buffer(iommu, cmd);
1394
1395 /* Do we need to make sure all commands are processed? */
1396 iommu->need_sync = sync;
1397
1398 return 0;
1399 }
1400
iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1401 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1402 struct iommu_cmd *cmd,
1403 bool sync)
1404 {
1405 unsigned long flags;
1406 int ret;
1407
1408 raw_spin_lock_irqsave(&iommu->lock, flags);
1409 ret = __iommu_queue_command_sync(iommu, cmd, sync);
1410 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1411
1412 return ret;
1413 }
1414
iommu_queue_command(struct amd_iommu * iommu,struct iommu_cmd * cmd)1415 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1416 {
1417 return iommu_queue_command_sync(iommu, cmd, true);
1418 }
1419
1420 /*
1421 * This function queues a completion wait command into the command
1422 * buffer of an IOMMU
1423 */
iommu_completion_wait(struct amd_iommu * iommu)1424 static int iommu_completion_wait(struct amd_iommu *iommu)
1425 {
1426 struct iommu_cmd cmd;
1427 unsigned long flags;
1428 int ret;
1429 u64 data;
1430
1431 if (!iommu->need_sync)
1432 return 0;
1433
1434 data = atomic64_inc_return(&iommu->cmd_sem_val);
1435 build_completion_wait(&cmd, iommu, data);
1436
1437 raw_spin_lock_irqsave(&iommu->lock, flags);
1438
1439 ret = __iommu_queue_command_sync(iommu, &cmd, false);
1440 if (ret)
1441 goto out_unlock;
1442
1443 ret = wait_on_sem(iommu, data);
1444
1445 out_unlock:
1446 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1447
1448 return ret;
1449 }
1450
domain_flush_complete(struct protection_domain * domain)1451 static void domain_flush_complete(struct protection_domain *domain)
1452 {
1453 struct pdom_iommu_info *pdom_iommu_info;
1454 unsigned long i;
1455
1456 lockdep_assert_held(&domain->lock);
1457
1458 /*
1459 * Devices of this domain are behind this IOMMU
1460 * We need to wait for completion of all commands.
1461 */
1462 xa_for_each(&domain->iommu_array, i, pdom_iommu_info)
1463 iommu_completion_wait(pdom_iommu_info->iommu);
1464 }
1465
iommu_flush_dte(struct amd_iommu * iommu,u16 devid)1466 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1467 {
1468 struct iommu_cmd cmd;
1469
1470 build_inv_dte(&cmd, devid);
1471
1472 return iommu_queue_command(iommu, &cmd);
1473 }
1474
iommu_flush_dte_sync(struct amd_iommu * iommu,u16 devid)1475 static void iommu_flush_dte_sync(struct amd_iommu *iommu, u16 devid)
1476 {
1477 int ret;
1478
1479 ret = iommu_flush_dte(iommu, devid);
1480 if (!ret)
1481 iommu_completion_wait(iommu);
1482 }
1483
amd_iommu_flush_dte_all(struct amd_iommu * iommu)1484 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1485 {
1486 u32 devid;
1487 u16 last_bdf = iommu->pci_seg->last_bdf;
1488
1489 for (devid = 0; devid <= last_bdf; ++devid)
1490 iommu_flush_dte(iommu, devid);
1491
1492 iommu_completion_wait(iommu);
1493 }
1494
1495 /*
1496 * This function uses heavy locking and may disable irqs for some time. But
1497 * this is no issue because it is only called during resume.
1498 */
amd_iommu_flush_tlb_all(struct amd_iommu * iommu)1499 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1500 {
1501 u32 dom_id;
1502 u16 last_bdf = iommu->pci_seg->last_bdf;
1503
1504 for (dom_id = 0; dom_id <= last_bdf; ++dom_id) {
1505 struct iommu_cmd cmd;
1506 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1507 dom_id, IOMMU_NO_PASID, false);
1508 iommu_queue_command(iommu, &cmd);
1509 }
1510
1511 iommu_completion_wait(iommu);
1512 }
1513
amd_iommu_flush_tlb_domid(struct amd_iommu * iommu,u32 dom_id)1514 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1515 {
1516 struct iommu_cmd cmd;
1517
1518 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1519 dom_id, IOMMU_NO_PASID, false);
1520 iommu_queue_command(iommu, &cmd);
1521
1522 iommu_completion_wait(iommu);
1523 }
1524
amd_iommu_flush_all(struct amd_iommu * iommu)1525 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1526 {
1527 struct iommu_cmd cmd;
1528
1529 build_inv_all(&cmd);
1530
1531 iommu_queue_command(iommu, &cmd);
1532 iommu_completion_wait(iommu);
1533 }
1534
iommu_flush_irt(struct amd_iommu * iommu,u16 devid)1535 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1536 {
1537 struct iommu_cmd cmd;
1538
1539 build_inv_irt(&cmd, devid);
1540
1541 iommu_queue_command(iommu, &cmd);
1542 }
1543
amd_iommu_flush_irt_all(struct amd_iommu * iommu)1544 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1545 {
1546 u32 devid;
1547 u16 last_bdf = iommu->pci_seg->last_bdf;
1548
1549 if (iommu->irtcachedis_enabled)
1550 return;
1551
1552 for (devid = 0; devid <= last_bdf; devid++)
1553 iommu_flush_irt(iommu, devid);
1554
1555 iommu_completion_wait(iommu);
1556 }
1557
amd_iommu_flush_all_caches(struct amd_iommu * iommu)1558 void amd_iommu_flush_all_caches(struct amd_iommu *iommu)
1559 {
1560 if (check_feature(FEATURE_IA)) {
1561 amd_iommu_flush_all(iommu);
1562 } else {
1563 amd_iommu_flush_dte_all(iommu);
1564 amd_iommu_flush_irt_all(iommu);
1565 amd_iommu_flush_tlb_all(iommu);
1566 }
1567 }
1568
1569 /*
1570 * Command send function for flushing on-device TLB
1571 */
device_flush_iotlb(struct iommu_dev_data * dev_data,u64 address,size_t size,ioasid_t pasid,bool gn)1572 static int device_flush_iotlb(struct iommu_dev_data *dev_data, u64 address,
1573 size_t size, ioasid_t pasid, bool gn)
1574 {
1575 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
1576 struct iommu_cmd cmd;
1577 int qdep = dev_data->ats_qdep;
1578
1579 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address,
1580 size, pasid, gn);
1581
1582 return iommu_queue_command(iommu, &cmd);
1583 }
1584
device_flush_dte_alias(struct pci_dev * pdev,u16 alias,void * data)1585 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
1586 {
1587 struct amd_iommu *iommu = data;
1588
1589 return iommu_flush_dte(iommu, alias);
1590 }
1591
1592 /*
1593 * Command send function for invalidating a device table entry
1594 */
device_flush_dte(struct iommu_dev_data * dev_data)1595 static int device_flush_dte(struct iommu_dev_data *dev_data)
1596 {
1597 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
1598 struct pci_dev *pdev = NULL;
1599 struct amd_iommu_pci_seg *pci_seg;
1600 u16 alias;
1601 int ret;
1602
1603 if (dev_is_pci(dev_data->dev))
1604 pdev = to_pci_dev(dev_data->dev);
1605
1606 if (pdev)
1607 ret = pci_for_each_dma_alias(pdev,
1608 device_flush_dte_alias, iommu);
1609 else
1610 ret = iommu_flush_dte(iommu, dev_data->devid);
1611 if (ret)
1612 return ret;
1613
1614 pci_seg = iommu->pci_seg;
1615 alias = pci_seg->alias_table[dev_data->devid];
1616 if (alias != dev_data->devid) {
1617 ret = iommu_flush_dte(iommu, alias);
1618 if (ret)
1619 return ret;
1620 }
1621
1622 if (dev_data->ats_enabled) {
1623 /* Invalidate the entire contents of an IOTLB */
1624 ret = device_flush_iotlb(dev_data, 0, ~0UL,
1625 IOMMU_NO_PASID, false);
1626 }
1627
1628 return ret;
1629 }
1630
domain_flush_pages_v2(struct protection_domain * pdom,u64 address,size_t size)1631 static int domain_flush_pages_v2(struct protection_domain *pdom,
1632 u64 address, size_t size)
1633 {
1634 struct iommu_dev_data *dev_data;
1635 struct iommu_cmd cmd;
1636 int ret = 0;
1637
1638 lockdep_assert_held(&pdom->lock);
1639 list_for_each_entry(dev_data, &pdom->dev_list, list) {
1640 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
1641 u16 domid = dev_data->gcr3_info.domid;
1642
1643 build_inv_iommu_pages(&cmd, address, size,
1644 domid, IOMMU_NO_PASID, true);
1645
1646 ret |= iommu_queue_command(iommu, &cmd);
1647 }
1648
1649 return ret;
1650 }
1651
domain_flush_pages_v1(struct protection_domain * pdom,u64 address,size_t size)1652 static int domain_flush_pages_v1(struct protection_domain *pdom,
1653 u64 address, size_t size)
1654 {
1655 struct pdom_iommu_info *pdom_iommu_info;
1656 struct iommu_cmd cmd;
1657 int ret = 0;
1658 unsigned long i;
1659
1660 lockdep_assert_held(&pdom->lock);
1661
1662 build_inv_iommu_pages(&cmd, address, size,
1663 pdom->id, IOMMU_NO_PASID, false);
1664
1665 xa_for_each(&pdom->iommu_array, i, pdom_iommu_info) {
1666 /*
1667 * Devices of this domain are behind this IOMMU
1668 * We need a TLB flush
1669 */
1670 ret |= iommu_queue_command(pdom_iommu_info->iommu, &cmd);
1671 }
1672
1673 return ret;
1674 }
1675
1676 /*
1677 * TLB invalidation function which is called from the mapping functions.
1678 * It flushes range of PTEs of the domain.
1679 */
__domain_flush_pages(struct protection_domain * domain,u64 address,size_t size)1680 static void __domain_flush_pages(struct protection_domain *domain,
1681 u64 address, size_t size)
1682 {
1683 struct iommu_dev_data *dev_data;
1684 int ret = 0;
1685 ioasid_t pasid = IOMMU_NO_PASID;
1686 bool gn = false;
1687
1688 lockdep_assert_held(&domain->lock);
1689
1690 if (pdom_is_v2_pgtbl_mode(domain)) {
1691 gn = true;
1692 ret = domain_flush_pages_v2(domain, address, size);
1693 } else {
1694 ret = domain_flush_pages_v1(domain, address, size);
1695 }
1696
1697 list_for_each_entry(dev_data, &domain->dev_list, list) {
1698
1699 if (!dev_data->ats_enabled)
1700 continue;
1701
1702 ret |= device_flush_iotlb(dev_data, address, size, pasid, gn);
1703 }
1704
1705 WARN_ON(ret);
1706 }
1707
amd_iommu_domain_flush_pages(struct protection_domain * domain,u64 address,size_t size)1708 void amd_iommu_domain_flush_pages(struct protection_domain *domain,
1709 u64 address, size_t size)
1710 {
1711 lockdep_assert_held(&domain->lock);
1712
1713 if (likely(!amd_iommu_np_cache)) {
1714 __domain_flush_pages(domain, address, size);
1715
1716 /* Wait until IOMMU TLB and all device IOTLB flushes are complete */
1717 domain_flush_complete(domain);
1718
1719 return;
1720 }
1721
1722 /*
1723 * When NpCache is on, we infer that we run in a VM and use a vIOMMU.
1724 * In such setups it is best to avoid flushes of ranges which are not
1725 * naturally aligned, since it would lead to flushes of unmodified
1726 * PTEs. Such flushes would require the hypervisor to do more work than
1727 * necessary. Therefore, perform repeated flushes of aligned ranges
1728 * until you cover the range. Each iteration flushes the smaller
1729 * between the natural alignment of the address that we flush and the
1730 * greatest naturally aligned region that fits in the range.
1731 */
1732 while (size != 0) {
1733 int addr_alignment = __ffs(address);
1734 int size_alignment = __fls(size);
1735 int min_alignment;
1736 size_t flush_size;
1737
1738 /*
1739 * size is always non-zero, but address might be zero, causing
1740 * addr_alignment to be negative. As the casting of the
1741 * argument in __ffs(address) to long might trim the high bits
1742 * of the address on x86-32, cast to long when doing the check.
1743 */
1744 if (likely((unsigned long)address != 0))
1745 min_alignment = min(addr_alignment, size_alignment);
1746 else
1747 min_alignment = size_alignment;
1748
1749 flush_size = 1ul << min_alignment;
1750
1751 __domain_flush_pages(domain, address, flush_size);
1752 address += flush_size;
1753 size -= flush_size;
1754 }
1755
1756 /* Wait until IOMMU TLB and all device IOTLB flushes are complete */
1757 domain_flush_complete(domain);
1758 }
1759
1760 /* Flush the whole IO/TLB for a given protection domain - including PDE */
amd_iommu_domain_flush_all(struct protection_domain * domain)1761 static void amd_iommu_domain_flush_all(struct protection_domain *domain)
1762 {
1763 amd_iommu_domain_flush_pages(domain, 0,
1764 CMD_INV_IOMMU_ALL_PAGES_ADDRESS);
1765 }
1766
amd_iommu_dev_flush_pasid_pages(struct iommu_dev_data * dev_data,ioasid_t pasid,u64 address,size_t size)1767 void amd_iommu_dev_flush_pasid_pages(struct iommu_dev_data *dev_data,
1768 ioasid_t pasid, u64 address, size_t size)
1769 {
1770 struct iommu_cmd cmd;
1771 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
1772
1773 build_inv_iommu_pages(&cmd, address, size,
1774 dev_data->gcr3_info.domid, pasid, true);
1775 iommu_queue_command(iommu, &cmd);
1776
1777 if (dev_data->ats_enabled)
1778 device_flush_iotlb(dev_data, address, size, pasid, true);
1779
1780 iommu_completion_wait(iommu);
1781 }
1782
dev_flush_pasid_all(struct iommu_dev_data * dev_data,ioasid_t pasid)1783 static void dev_flush_pasid_all(struct iommu_dev_data *dev_data,
1784 ioasid_t pasid)
1785 {
1786 amd_iommu_dev_flush_pasid_pages(dev_data, pasid, 0,
1787 CMD_INV_IOMMU_ALL_PAGES_ADDRESS);
1788 }
1789
amd_iommu_complete_ppr(struct device * dev,u32 pasid,int status,int tag)1790 int amd_iommu_complete_ppr(struct device *dev, u32 pasid, int status, int tag)
1791 {
1792 struct iommu_dev_data *dev_data;
1793 struct amd_iommu *iommu;
1794 struct iommu_cmd cmd;
1795
1796 dev_data = dev_iommu_priv_get(dev);
1797 iommu = get_amd_iommu_from_dev(dev);
1798
1799 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
1800 tag, dev_data->pri_tlp);
1801
1802 return iommu_queue_command(iommu, &cmd);
1803 }
1804
1805 /****************************************************************************
1806 *
1807 * The next functions belong to the domain allocation. A domain is
1808 * allocated for every IOMMU as the default domain. If device isolation
1809 * is enabled, every device get its own domain. The most important thing
1810 * about domains is the page table mapping the DMA address space they
1811 * contain.
1812 *
1813 ****************************************************************************/
1814
pdom_id_alloc(void)1815 static int pdom_id_alloc(void)
1816 {
1817 return ida_alloc_range(&pdom_ids, 1, MAX_DOMAIN_ID - 1, GFP_ATOMIC);
1818 }
1819
pdom_id_free(int id)1820 static void pdom_id_free(int id)
1821 {
1822 ida_free(&pdom_ids, id);
1823 }
1824
free_gcr3_tbl_level1(u64 * tbl)1825 static void free_gcr3_tbl_level1(u64 *tbl)
1826 {
1827 u64 *ptr;
1828 int i;
1829
1830 for (i = 0; i < 512; ++i) {
1831 if (!(tbl[i] & GCR3_VALID))
1832 continue;
1833
1834 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1835
1836 iommu_free_pages(ptr);
1837 }
1838 }
1839
free_gcr3_tbl_level2(u64 * tbl)1840 static void free_gcr3_tbl_level2(u64 *tbl)
1841 {
1842 u64 *ptr;
1843 int i;
1844
1845 for (i = 0; i < 512; ++i) {
1846 if (!(tbl[i] & GCR3_VALID))
1847 continue;
1848
1849 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1850
1851 free_gcr3_tbl_level1(ptr);
1852 }
1853 }
1854
free_gcr3_table(struct gcr3_tbl_info * gcr3_info)1855 static void free_gcr3_table(struct gcr3_tbl_info *gcr3_info)
1856 {
1857 if (gcr3_info->glx == 2)
1858 free_gcr3_tbl_level2(gcr3_info->gcr3_tbl);
1859 else if (gcr3_info->glx == 1)
1860 free_gcr3_tbl_level1(gcr3_info->gcr3_tbl);
1861 else
1862 WARN_ON_ONCE(gcr3_info->glx != 0);
1863
1864 gcr3_info->glx = 0;
1865
1866 /* Free per device domain ID */
1867 pdom_id_free(gcr3_info->domid);
1868
1869 iommu_free_pages(gcr3_info->gcr3_tbl);
1870 gcr3_info->gcr3_tbl = NULL;
1871 }
1872
1873 /*
1874 * Number of GCR3 table levels required. Level must be 4-Kbyte
1875 * page and can contain up to 512 entries.
1876 */
get_gcr3_levels(int pasids)1877 static int get_gcr3_levels(int pasids)
1878 {
1879 int levels;
1880
1881 if (pasids == -1)
1882 return amd_iommu_max_glx_val;
1883
1884 levels = get_count_order(pasids);
1885
1886 return levels ? (DIV_ROUND_UP(levels, 9) - 1) : levels;
1887 }
1888
setup_gcr3_table(struct gcr3_tbl_info * gcr3_info,struct amd_iommu * iommu,int pasids)1889 static int setup_gcr3_table(struct gcr3_tbl_info *gcr3_info,
1890 struct amd_iommu *iommu, int pasids)
1891 {
1892 int levels = get_gcr3_levels(pasids);
1893 int nid = iommu ? dev_to_node(&iommu->dev->dev) : NUMA_NO_NODE;
1894 int domid;
1895
1896 if (levels > amd_iommu_max_glx_val)
1897 return -EINVAL;
1898
1899 if (gcr3_info->gcr3_tbl)
1900 return -EBUSY;
1901
1902 /* Allocate per device domain ID */
1903 domid = pdom_id_alloc();
1904 if (domid <= 0)
1905 return -ENOSPC;
1906 gcr3_info->domid = domid;
1907
1908 gcr3_info->gcr3_tbl = iommu_alloc_pages_node_sz(nid, GFP_ATOMIC, SZ_4K);
1909 if (gcr3_info->gcr3_tbl == NULL) {
1910 pdom_id_free(domid);
1911 return -ENOMEM;
1912 }
1913
1914 gcr3_info->glx = levels;
1915
1916 return 0;
1917 }
1918
__get_gcr3_pte(struct gcr3_tbl_info * gcr3_info,ioasid_t pasid,bool alloc)1919 static u64 *__get_gcr3_pte(struct gcr3_tbl_info *gcr3_info,
1920 ioasid_t pasid, bool alloc)
1921 {
1922 int index;
1923 u64 *pte;
1924 u64 *root = gcr3_info->gcr3_tbl;
1925 int level = gcr3_info->glx;
1926
1927 while (true) {
1928
1929 index = (pasid >> (9 * level)) & 0x1ff;
1930 pte = &root[index];
1931
1932 if (level == 0)
1933 break;
1934
1935 if (!(*pte & GCR3_VALID)) {
1936 if (!alloc)
1937 return NULL;
1938
1939 root = (void *)get_zeroed_page(GFP_ATOMIC);
1940 if (root == NULL)
1941 return NULL;
1942
1943 *pte = iommu_virt_to_phys(root) | GCR3_VALID;
1944 }
1945
1946 root = iommu_phys_to_virt(*pte & PAGE_MASK);
1947
1948 level -= 1;
1949 }
1950
1951 return pte;
1952 }
1953
update_gcr3(struct iommu_dev_data * dev_data,ioasid_t pasid,unsigned long gcr3,bool set)1954 static int update_gcr3(struct iommu_dev_data *dev_data,
1955 ioasid_t pasid, unsigned long gcr3, bool set)
1956 {
1957 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1958 u64 *pte;
1959
1960 pte = __get_gcr3_pte(gcr3_info, pasid, true);
1961 if (pte == NULL)
1962 return -ENOMEM;
1963
1964 if (set)
1965 *pte = (gcr3 & PAGE_MASK) | GCR3_VALID;
1966 else
1967 *pte = 0;
1968
1969 dev_flush_pasid_all(dev_data, pasid);
1970 return 0;
1971 }
1972
amd_iommu_set_gcr3(struct iommu_dev_data * dev_data,ioasid_t pasid,unsigned long gcr3)1973 int amd_iommu_set_gcr3(struct iommu_dev_data *dev_data, ioasid_t pasid,
1974 unsigned long gcr3)
1975 {
1976 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1977 int ret;
1978
1979 iommu_group_mutex_assert(dev_data->dev);
1980
1981 ret = update_gcr3(dev_data, pasid, gcr3, true);
1982 if (ret)
1983 return ret;
1984
1985 gcr3_info->pasid_cnt++;
1986 return ret;
1987 }
1988
amd_iommu_clear_gcr3(struct iommu_dev_data * dev_data,ioasid_t pasid)1989 int amd_iommu_clear_gcr3(struct iommu_dev_data *dev_data, ioasid_t pasid)
1990 {
1991 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1992 int ret;
1993
1994 iommu_group_mutex_assert(dev_data->dev);
1995
1996 ret = update_gcr3(dev_data, pasid, 0, false);
1997 if (ret)
1998 return ret;
1999
2000 gcr3_info->pasid_cnt--;
2001 return ret;
2002 }
2003
make_clear_dte(struct iommu_dev_data * dev_data,struct dev_table_entry * ptr,struct dev_table_entry * new)2004 static void make_clear_dte(struct iommu_dev_data *dev_data, struct dev_table_entry *ptr,
2005 struct dev_table_entry *new)
2006 {
2007 /* All existing DTE must have V bit set */
2008 new->data128[0] = DTE_FLAG_V;
2009 new->data128[1] = 0;
2010 }
2011
2012 /*
2013 * Note:
2014 * The old value for GCR3 table and GPT have been cleared from caller.
2015 */
set_dte_gcr3_table(struct amd_iommu * iommu,struct iommu_dev_data * dev_data,struct dev_table_entry * target)2016 static void set_dte_gcr3_table(struct amd_iommu *iommu,
2017 struct iommu_dev_data *dev_data,
2018 struct dev_table_entry *target)
2019 {
2020 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
2021 u64 gcr3;
2022
2023 if (!gcr3_info->gcr3_tbl)
2024 return;
2025
2026 pr_debug("%s: devid=%#x, glx=%#x, gcr3_tbl=%#llx\n",
2027 __func__, dev_data->devid, gcr3_info->glx,
2028 (unsigned long long)gcr3_info->gcr3_tbl);
2029
2030 gcr3 = iommu_virt_to_phys(gcr3_info->gcr3_tbl);
2031
2032 target->data[0] |= DTE_FLAG_GV |
2033 FIELD_PREP(DTE_GLX, gcr3_info->glx) |
2034 FIELD_PREP(DTE_GCR3_14_12, gcr3 >> 12);
2035 if (pdom_is_v2_pgtbl_mode(dev_data->domain))
2036 target->data[0] |= DTE_FLAG_GIOV;
2037
2038 target->data[1] |= FIELD_PREP(DTE_GCR3_30_15, gcr3 >> 15) |
2039 FIELD_PREP(DTE_GCR3_51_31, gcr3 >> 31);
2040
2041 /* Guest page table can only support 4 and 5 levels */
2042 if (amd_iommu_gpt_level == PAGE_MODE_5_LEVEL)
2043 target->data[2] |= FIELD_PREP(DTE_GPT_LEVEL_MASK, GUEST_PGTABLE_5_LEVEL);
2044 else
2045 target->data[2] |= FIELD_PREP(DTE_GPT_LEVEL_MASK, GUEST_PGTABLE_4_LEVEL);
2046 }
2047
set_dte_entry(struct amd_iommu * iommu,struct iommu_dev_data * dev_data,phys_addr_t top_paddr,unsigned int top_level)2048 static void set_dte_entry(struct amd_iommu *iommu,
2049 struct iommu_dev_data *dev_data,
2050 phys_addr_t top_paddr, unsigned int top_level)
2051 {
2052 u16 domid;
2053 u32 old_domid;
2054 struct dev_table_entry *initial_dte;
2055 struct dev_table_entry new = {};
2056 struct protection_domain *domain = dev_data->domain;
2057 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
2058 struct dev_table_entry *dte = &get_dev_table(iommu)[dev_data->devid];
2059 struct pt_iommu_amdv1_hw_info pt_info;
2060
2061 make_clear_dte(dev_data, dte, &new);
2062
2063 if (gcr3_info && gcr3_info->gcr3_tbl)
2064 domid = dev_data->gcr3_info.domid;
2065 else {
2066 domid = domain->id;
2067
2068 if (domain->domain.type & __IOMMU_DOMAIN_PAGING) {
2069 /*
2070 * When updating the IO pagetable, the new top and level
2071 * are provided as parameters. For other operations i.e.
2072 * device attach, retrieve the current pagetable info
2073 * via the IOMMU PT API.
2074 */
2075 if (top_paddr) {
2076 pt_info.host_pt_root = top_paddr;
2077 pt_info.mode = top_level + 1;
2078 } else {
2079 WARN_ON(top_paddr || top_level);
2080 pt_iommu_amdv1_hw_info(&domain->amdv1,
2081 &pt_info);
2082 }
2083
2084 new.data[0] |= __sme_set(pt_info.host_pt_root) |
2085 (pt_info.mode & DEV_ENTRY_MODE_MASK)
2086 << DEV_ENTRY_MODE_SHIFT;
2087 }
2088 }
2089
2090 new.data[0] |= DTE_FLAG_IR | DTE_FLAG_IW;
2091
2092 /*
2093 * When SNP is enabled, we can only support TV=1 with non-zero domain ID.
2094 * This is prevented by the SNP-enable and IOMMU_DOMAIN_IDENTITY check in
2095 * do_iommu_domain_alloc().
2096 */
2097 WARN_ON(amd_iommu_snp_en && (domid == 0));
2098 new.data[0] |= DTE_FLAG_TV;
2099
2100 if (dev_data->ppr)
2101 new.data[0] |= 1ULL << DEV_ENTRY_PPR;
2102
2103 if (domain->dirty_tracking)
2104 new.data[0] |= DTE_FLAG_HAD;
2105
2106 if (dev_data->ats_enabled)
2107 new.data[1] |= DTE_FLAG_IOTLB;
2108
2109 old_domid = READ_ONCE(dte->data[1]) & DEV_DOMID_MASK;
2110 new.data[1] |= domid;
2111
2112 /*
2113 * Restore cached persistent DTE bits, which can be set by information
2114 * in IVRS table. See set_dev_entry_from_acpi().
2115 */
2116 initial_dte = amd_iommu_get_ivhd_dte_flags(iommu->pci_seg->id, dev_data->devid);
2117 if (initial_dte) {
2118 new.data128[0] |= initial_dte->data128[0];
2119 new.data128[1] |= initial_dte->data128[1];
2120 }
2121
2122 set_dte_gcr3_table(iommu, dev_data, &new);
2123
2124 update_dte256(iommu, dev_data, &new);
2125
2126 /*
2127 * A kdump kernel might be replacing a domain ID that was copied from
2128 * the previous kernel--if so, it needs to flush the translation cache
2129 * entries for the old domain ID that is being overwritten
2130 */
2131 if (old_domid) {
2132 amd_iommu_flush_tlb_domid(iommu, old_domid);
2133 }
2134 }
2135
2136 /*
2137 * Clear DMA-remap related flags to block all DMA (blockeded domain)
2138 */
clear_dte_entry(struct amd_iommu * iommu,struct iommu_dev_data * dev_data)2139 static void clear_dte_entry(struct amd_iommu *iommu, struct iommu_dev_data *dev_data)
2140 {
2141 struct dev_table_entry new = {};
2142 struct dev_table_entry *dte = &get_dev_table(iommu)[dev_data->devid];
2143
2144 make_clear_dte(dev_data, dte, &new);
2145 update_dte256(iommu, dev_data, &new);
2146 }
2147
2148 /* Update and flush DTE for the given device */
dev_update_dte(struct iommu_dev_data * dev_data,bool set)2149 static void dev_update_dte(struct iommu_dev_data *dev_data, bool set)
2150 {
2151 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
2152
2153 if (set)
2154 set_dte_entry(iommu, dev_data, 0, 0);
2155 else
2156 clear_dte_entry(iommu, dev_data);
2157
2158 clone_aliases(iommu, dev_data->dev);
2159 device_flush_dte(dev_data);
2160 iommu_completion_wait(iommu);
2161 }
2162
2163 /*
2164 * If domain is SVA capable then initialize GCR3 table. Also if domain is
2165 * in v2 page table mode then update GCR3[0].
2166 */
init_gcr3_table(struct iommu_dev_data * dev_data,struct protection_domain * pdom)2167 static int init_gcr3_table(struct iommu_dev_data *dev_data,
2168 struct protection_domain *pdom)
2169 {
2170 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
2171 int max_pasids = dev_data->max_pasids;
2172 struct pt_iommu_x86_64_hw_info pt_info;
2173 int ret = 0;
2174
2175 /*
2176 * If domain is in pt mode then setup GCR3 table only if device
2177 * is PASID capable
2178 */
2179 if (pdom_is_in_pt_mode(pdom) && !pdev_pasid_supported(dev_data))
2180 return ret;
2181
2182 /*
2183 * By default, setup GCR3 table to support MAX PASIDs
2184 * supported by the device/IOMMU.
2185 */
2186 ret = setup_gcr3_table(&dev_data->gcr3_info, iommu,
2187 max_pasids > 0 ? max_pasids : 1);
2188 if (ret)
2189 return ret;
2190
2191 /* Setup GCR3[0] only if domain is setup with v2 page table mode */
2192 if (!pdom_is_v2_pgtbl_mode(pdom))
2193 return ret;
2194
2195 pt_iommu_x86_64_hw_info(&pdom->amdv2, &pt_info);
2196 ret = update_gcr3(dev_data, 0, __sme_set(pt_info.gcr3_pt), true);
2197 if (ret)
2198 free_gcr3_table(&dev_data->gcr3_info);
2199
2200 return ret;
2201 }
2202
destroy_gcr3_table(struct iommu_dev_data * dev_data,struct protection_domain * pdom)2203 static void destroy_gcr3_table(struct iommu_dev_data *dev_data,
2204 struct protection_domain *pdom)
2205 {
2206 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
2207
2208 if (pdom_is_v2_pgtbl_mode(pdom))
2209 update_gcr3(dev_data, 0, 0, false);
2210
2211 if (gcr3_info->gcr3_tbl == NULL)
2212 return;
2213
2214 free_gcr3_table(gcr3_info);
2215 }
2216
pdom_attach_iommu(struct amd_iommu * iommu,struct protection_domain * pdom)2217 static int pdom_attach_iommu(struct amd_iommu *iommu,
2218 struct protection_domain *pdom)
2219 {
2220 struct pdom_iommu_info *pdom_iommu_info, *curr;
2221 unsigned long flags;
2222 int ret = 0;
2223
2224 spin_lock_irqsave(&pdom->lock, flags);
2225
2226 pdom_iommu_info = xa_load(&pdom->iommu_array, iommu->index);
2227 if (pdom_iommu_info) {
2228 pdom_iommu_info->refcnt++;
2229 goto out_unlock;
2230 }
2231
2232 pdom_iommu_info = kzalloc(sizeof(*pdom_iommu_info), GFP_ATOMIC);
2233 if (!pdom_iommu_info) {
2234 ret = -ENOMEM;
2235 goto out_unlock;
2236 }
2237
2238 pdom_iommu_info->iommu = iommu;
2239 pdom_iommu_info->refcnt = 1;
2240
2241 curr = xa_cmpxchg(&pdom->iommu_array, iommu->index,
2242 NULL, pdom_iommu_info, GFP_ATOMIC);
2243 if (curr) {
2244 kfree(pdom_iommu_info);
2245 ret = -ENOSPC;
2246 goto out_unlock;
2247 }
2248
2249 out_unlock:
2250 spin_unlock_irqrestore(&pdom->lock, flags);
2251 return ret;
2252 }
2253
pdom_detach_iommu(struct amd_iommu * iommu,struct protection_domain * pdom)2254 static void pdom_detach_iommu(struct amd_iommu *iommu,
2255 struct protection_domain *pdom)
2256 {
2257 struct pdom_iommu_info *pdom_iommu_info;
2258 unsigned long flags;
2259
2260 spin_lock_irqsave(&pdom->lock, flags);
2261
2262 pdom_iommu_info = xa_load(&pdom->iommu_array, iommu->index);
2263 if (!pdom_iommu_info) {
2264 spin_unlock_irqrestore(&pdom->lock, flags);
2265 return;
2266 }
2267
2268 pdom_iommu_info->refcnt--;
2269 if (pdom_iommu_info->refcnt == 0) {
2270 xa_erase(&pdom->iommu_array, iommu->index);
2271 kfree(pdom_iommu_info);
2272 }
2273
2274 spin_unlock_irqrestore(&pdom->lock, flags);
2275 }
2276
2277 /*
2278 * If a device is not yet associated with a domain, this function makes the
2279 * device visible in the domain
2280 */
attach_device(struct device * dev,struct protection_domain * domain)2281 static int attach_device(struct device *dev,
2282 struct protection_domain *domain)
2283 {
2284 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2285 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
2286 struct pci_dev *pdev;
2287 unsigned long flags;
2288 int ret = 0;
2289
2290 mutex_lock(&dev_data->mutex);
2291
2292 if (dev_data->domain != NULL) {
2293 ret = -EBUSY;
2294 goto out;
2295 }
2296
2297 /* Do reference counting */
2298 ret = pdom_attach_iommu(iommu, domain);
2299 if (ret)
2300 goto out;
2301
2302 /* Setup GCR3 table */
2303 if (pdom_is_sva_capable(domain)) {
2304 ret = init_gcr3_table(dev_data, domain);
2305 if (ret) {
2306 pdom_detach_iommu(iommu, domain);
2307 goto out;
2308 }
2309 }
2310
2311 pdev = dev_is_pci(dev_data->dev) ? to_pci_dev(dev_data->dev) : NULL;
2312 if (pdev && pdom_is_sva_capable(domain)) {
2313 pdev_enable_caps(pdev);
2314
2315 /*
2316 * Device can continue to function even if IOPF
2317 * enablement failed. Hence in error path just
2318 * disable device PRI support.
2319 */
2320 if (amd_iommu_iopf_add_device(iommu, dev_data))
2321 pdev_disable_cap_pri(pdev);
2322 } else if (pdev) {
2323 pdev_enable_cap_ats(pdev);
2324 }
2325
2326 /* Update data structures */
2327 dev_data->domain = domain;
2328 spin_lock_irqsave(&domain->lock, flags);
2329 list_add(&dev_data->list, &domain->dev_list);
2330 spin_unlock_irqrestore(&domain->lock, flags);
2331
2332 /* Update device table */
2333 dev_update_dte(dev_data, true);
2334
2335 out:
2336 mutex_unlock(&dev_data->mutex);
2337
2338 return ret;
2339 }
2340
2341 /*
2342 * Removes a device from a protection domain (with devtable_lock held)
2343 */
detach_device(struct device * dev)2344 static void detach_device(struct device *dev)
2345 {
2346 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2347 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
2348 struct protection_domain *domain = dev_data->domain;
2349 unsigned long flags;
2350
2351 mutex_lock(&dev_data->mutex);
2352
2353 /*
2354 * First check if the device is still attached. It might already
2355 * be detached from its domain because the generic
2356 * iommu_detach_group code detached it and we try again here in
2357 * our alias handling.
2358 */
2359 if (WARN_ON(!dev_data->domain))
2360 goto out;
2361
2362 /* Remove IOPF handler */
2363 if (dev_data->ppr) {
2364 iopf_queue_flush_dev(dev);
2365 amd_iommu_iopf_remove_device(iommu, dev_data);
2366 }
2367
2368 if (dev_is_pci(dev))
2369 pdev_disable_caps(to_pci_dev(dev));
2370
2371 /* Clear DTE and flush the entry */
2372 dev_update_dte(dev_data, false);
2373
2374 /* Flush IOTLB and wait for the flushes to finish */
2375 spin_lock_irqsave(&domain->lock, flags);
2376 amd_iommu_domain_flush_all(domain);
2377 list_del(&dev_data->list);
2378 spin_unlock_irqrestore(&domain->lock, flags);
2379
2380 /* Clear GCR3 table */
2381 if (pdom_is_sva_capable(domain))
2382 destroy_gcr3_table(dev_data, domain);
2383
2384 /* Update data structures */
2385 dev_data->domain = NULL;
2386
2387 /* decrease reference counters - needs to happen after the flushes */
2388 pdom_detach_iommu(iommu, domain);
2389
2390 out:
2391 mutex_unlock(&dev_data->mutex);
2392 }
2393
amd_iommu_probe_device(struct device * dev)2394 static struct iommu_device *amd_iommu_probe_device(struct device *dev)
2395 {
2396 struct iommu_device *iommu_dev;
2397 struct amd_iommu *iommu;
2398 struct iommu_dev_data *dev_data;
2399 int ret;
2400
2401 if (!check_device(dev))
2402 return ERR_PTR(-ENODEV);
2403
2404 iommu = rlookup_amd_iommu(dev);
2405 if (!iommu)
2406 return ERR_PTR(-ENODEV);
2407
2408 /* Not registered yet? */
2409 if (!iommu->iommu.ops)
2410 return ERR_PTR(-ENODEV);
2411
2412 if (dev_iommu_priv_get(dev))
2413 return &iommu->iommu;
2414
2415 ret = iommu_init_device(iommu, dev);
2416 if (ret) {
2417 dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
2418 iommu_dev = ERR_PTR(ret);
2419 iommu_ignore_device(iommu, dev);
2420 goto out_err;
2421 }
2422
2423 amd_iommu_set_pci_msi_domain(dev, iommu);
2424 iommu_dev = &iommu->iommu;
2425
2426 /*
2427 * If IOMMU and device supports PASID then it will contain max
2428 * supported PASIDs, else it will be zero.
2429 */
2430 dev_data = dev_iommu_priv_get(dev);
2431 if (amd_iommu_pasid_supported() && dev_is_pci(dev) &&
2432 pdev_pasid_supported(dev_data)) {
2433 dev_data->max_pasids = min_t(u32, iommu->iommu.max_pasids,
2434 pci_max_pasids(to_pci_dev(dev)));
2435 }
2436
2437 if (amd_iommu_pgtable == PD_MODE_NONE) {
2438 pr_warn_once("%s: DMA translation not supported by iommu.\n",
2439 __func__);
2440 iommu_dev = ERR_PTR(-ENODEV);
2441 goto out_err;
2442 }
2443
2444 out_err:
2445
2446 iommu_completion_wait(iommu);
2447
2448 if (FEATURE_NUM_INT_REMAP_SUP_2K(amd_iommu_efr2))
2449 dev_data->max_irqs = MAX_IRQS_PER_TABLE_2K;
2450 else
2451 dev_data->max_irqs = MAX_IRQS_PER_TABLE_512;
2452
2453 if (dev_is_pci(dev))
2454 pci_prepare_ats(to_pci_dev(dev), PAGE_SHIFT);
2455
2456 return iommu_dev;
2457 }
2458
amd_iommu_release_device(struct device * dev)2459 static void amd_iommu_release_device(struct device *dev)
2460 {
2461 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2462
2463 WARN_ON(dev_data->domain);
2464
2465 /*
2466 * We keep dev_data around for unplugged devices and reuse it when the
2467 * device is re-plugged - not doing so would introduce a ton of races.
2468 */
2469 }
2470
amd_iommu_device_group(struct device * dev)2471 static struct iommu_group *amd_iommu_device_group(struct device *dev)
2472 {
2473 if (dev_is_pci(dev))
2474 return pci_device_group(dev);
2475
2476 return acpihid_device_group(dev);
2477 }
2478
2479 /*****************************************************************************
2480 *
2481 * The following functions belong to the exported interface of AMD IOMMU
2482 *
2483 * This interface allows access to lower level functions of the IOMMU
2484 * like protection domain handling and assignement of devices to domains
2485 * which is not possible with the dma_ops interface.
2486 *
2487 *****************************************************************************/
2488
protection_domain_init(struct protection_domain * domain)2489 static void protection_domain_init(struct protection_domain *domain)
2490 {
2491 spin_lock_init(&domain->lock);
2492 INIT_LIST_HEAD(&domain->dev_list);
2493 INIT_LIST_HEAD(&domain->dev_data_list);
2494 xa_init(&domain->iommu_array);
2495 }
2496
protection_domain_alloc(void)2497 struct protection_domain *protection_domain_alloc(void)
2498 {
2499 struct protection_domain *domain;
2500 int domid;
2501
2502 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2503 if (!domain)
2504 return NULL;
2505
2506 domid = pdom_id_alloc();
2507 if (domid <= 0) {
2508 kfree(domain);
2509 return NULL;
2510 }
2511 domain->id = domid;
2512
2513 protection_domain_init(domain);
2514
2515 return domain;
2516 }
2517
amd_iommu_hd_support(struct amd_iommu * iommu)2518 static bool amd_iommu_hd_support(struct amd_iommu *iommu)
2519 {
2520 if (amd_iommu_hatdis)
2521 return false;
2522
2523 return iommu && (iommu->features & FEATURE_HDSUP);
2524 }
2525
amd_iommu_get_top_lock(struct pt_iommu * iommupt)2526 static spinlock_t *amd_iommu_get_top_lock(struct pt_iommu *iommupt)
2527 {
2528 struct protection_domain *pdom =
2529 container_of(iommupt, struct protection_domain, iommu);
2530
2531 return &pdom->lock;
2532 }
2533
2534 /*
2535 * Update all HW references to the domain with a new pgtable configuration.
2536 */
amd_iommu_change_top(struct pt_iommu * iommu_table,phys_addr_t top_paddr,unsigned int top_level)2537 static void amd_iommu_change_top(struct pt_iommu *iommu_table,
2538 phys_addr_t top_paddr, unsigned int top_level)
2539 {
2540 struct protection_domain *pdom =
2541 container_of(iommu_table, struct protection_domain, iommu);
2542 struct iommu_dev_data *dev_data;
2543
2544 lockdep_assert_held(&pdom->lock);
2545
2546 /* Update the DTE for all devices attached to this domain */
2547 list_for_each_entry(dev_data, &pdom->dev_list, list) {
2548 struct amd_iommu *iommu = rlookup_amd_iommu(dev_data->dev);
2549
2550 /* Update the HW references with the new level and top ptr */
2551 set_dte_entry(iommu, dev_data, top_paddr, top_level);
2552 clone_aliases(iommu, dev_data->dev);
2553 }
2554
2555 list_for_each_entry(dev_data, &pdom->dev_list, list)
2556 device_flush_dte(dev_data);
2557
2558 domain_flush_complete(pdom);
2559 }
2560
2561 /*
2562 * amd_iommu_iotlb_sync_map() is used to generate flushes for non-present to
2563 * present (ie mapping) operations. It is a NOP if the IOMMU doesn't have non
2564 * present caching (like hypervisor shadowing).
2565 */
amd_iommu_iotlb_sync_map(struct iommu_domain * dom,unsigned long iova,size_t size)2566 static int amd_iommu_iotlb_sync_map(struct iommu_domain *dom,
2567 unsigned long iova, size_t size)
2568 {
2569 struct protection_domain *domain = to_pdomain(dom);
2570 unsigned long flags;
2571
2572 if (likely(!amd_iommu_np_cache))
2573 return 0;
2574
2575 spin_lock_irqsave(&domain->lock, flags);
2576 amd_iommu_domain_flush_pages(domain, iova, size);
2577 spin_unlock_irqrestore(&domain->lock, flags);
2578 return 0;
2579 }
2580
amd_iommu_flush_iotlb_all(struct iommu_domain * domain)2581 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
2582 {
2583 struct protection_domain *dom = to_pdomain(domain);
2584 unsigned long flags;
2585
2586 spin_lock_irqsave(&dom->lock, flags);
2587 amd_iommu_domain_flush_all(dom);
2588 spin_unlock_irqrestore(&dom->lock, flags);
2589 }
2590
amd_iommu_iotlb_sync(struct iommu_domain * domain,struct iommu_iotlb_gather * gather)2591 static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
2592 struct iommu_iotlb_gather *gather)
2593 {
2594 struct protection_domain *dom = to_pdomain(domain);
2595 unsigned long flags;
2596
2597 spin_lock_irqsave(&dom->lock, flags);
2598 amd_iommu_domain_flush_pages(dom, gather->start,
2599 gather->end - gather->start + 1);
2600 spin_unlock_irqrestore(&dom->lock, flags);
2601 iommu_put_pages_list(&gather->freelist);
2602 }
2603
2604 static const struct pt_iommu_driver_ops amd_hw_driver_ops_v1 = {
2605 .get_top_lock = amd_iommu_get_top_lock,
2606 .change_top = amd_iommu_change_top,
2607 };
2608
2609 static const struct iommu_domain_ops amdv1_ops = {
2610 IOMMU_PT_DOMAIN_OPS(amdv1),
2611 .iotlb_sync_map = amd_iommu_iotlb_sync_map,
2612 .flush_iotlb_all = amd_iommu_flush_iotlb_all,
2613 .iotlb_sync = amd_iommu_iotlb_sync,
2614 .attach_dev = amd_iommu_attach_device,
2615 .free = amd_iommu_domain_free,
2616 .enforce_cache_coherency = amd_iommu_enforce_cache_coherency,
2617 };
2618
2619 static const struct iommu_dirty_ops amdv1_dirty_ops = {
2620 IOMMU_PT_DIRTY_OPS(amdv1),
2621 .set_dirty_tracking = amd_iommu_set_dirty_tracking,
2622 };
2623
amd_iommu_domain_alloc_paging_v1(struct device * dev,u32 flags)2624 static struct iommu_domain *amd_iommu_domain_alloc_paging_v1(struct device *dev,
2625 u32 flags)
2626 {
2627 struct pt_iommu_amdv1_cfg cfg = {};
2628 struct protection_domain *domain;
2629 int ret;
2630
2631 if (amd_iommu_hatdis)
2632 return ERR_PTR(-EOPNOTSUPP);
2633
2634 domain = protection_domain_alloc();
2635 if (!domain)
2636 return ERR_PTR(-ENOMEM);
2637
2638 domain->pd_mode = PD_MODE_V1;
2639 domain->iommu.driver_ops = &amd_hw_driver_ops_v1;
2640 domain->iommu.nid = dev_to_node(dev);
2641 if (flags & IOMMU_HWPT_ALLOC_DIRTY_TRACKING)
2642 domain->domain.dirty_ops = &amdv1_dirty_ops;
2643
2644 /*
2645 * Someday FORCE_COHERENCE should be set by
2646 * amd_iommu_enforce_cache_coherency() like VT-d does.
2647 */
2648 cfg.common.features = BIT(PT_FEAT_DYNAMIC_TOP) |
2649 BIT(PT_FEAT_AMDV1_ENCRYPT_TABLES) |
2650 BIT(PT_FEAT_AMDV1_FORCE_COHERENCE);
2651
2652 /*
2653 * AMD's IOMMU can flush as many pages as necessary in a single flush.
2654 * Unless we run in a virtual machine, which can be inferred according
2655 * to whether "non-present cache" is on, it is probably best to prefer
2656 * (potentially) too extensive TLB flushing (i.e., more misses) over
2657 * multiple TLB flushes (i.e., more flushes). For virtual machines the
2658 * hypervisor needs to synchronize the host IOMMU PTEs with those of
2659 * the guest, and the trade-off is different: unnecessary TLB flushes
2660 * should be avoided.
2661 */
2662 if (amd_iommu_np_cache)
2663 cfg.common.features |= BIT(PT_FEAT_FLUSH_RANGE_NO_GAPS);
2664 else
2665 cfg.common.features |= BIT(PT_FEAT_FLUSH_RANGE);
2666
2667 cfg.common.hw_max_vasz_lg2 =
2668 min(64, (amd_iommu_hpt_level - 1) * 9 + 21);
2669 cfg.common.hw_max_oasz_lg2 = 52;
2670 cfg.starting_level = 2;
2671 domain->domain.ops = &amdv1_ops;
2672
2673 ret = pt_iommu_amdv1_init(&domain->amdv1, &cfg, GFP_KERNEL);
2674 if (ret) {
2675 amd_iommu_domain_free(&domain->domain);
2676 return ERR_PTR(ret);
2677 }
2678
2679 /*
2680 * Narrow the supported page sizes to those selected by the kernel
2681 * command line.
2682 */
2683 domain->domain.pgsize_bitmap &= amd_iommu_pgsize_bitmap;
2684 return &domain->domain;
2685 }
2686
2687 static const struct iommu_domain_ops amdv2_ops = {
2688 IOMMU_PT_DOMAIN_OPS(x86_64),
2689 .iotlb_sync_map = amd_iommu_iotlb_sync_map,
2690 .flush_iotlb_all = amd_iommu_flush_iotlb_all,
2691 .iotlb_sync = amd_iommu_iotlb_sync,
2692 .attach_dev = amd_iommu_attach_device,
2693 .free = amd_iommu_domain_free,
2694 /*
2695 * Note the AMDv2 page table format does not support a Force Coherency
2696 * bit, so enforce_cache_coherency should not be set. However VFIO is
2697 * not prepared to handle a case where some domains will support
2698 * enforcement and others do not. VFIO and iommufd will have to be fixed
2699 * before it can fully use the V2 page table. See the comment in
2700 * iommufd_hwpt_paging_alloc(). For now leave things as they have
2701 * historically been and lie about enforce_cache_coherencey.
2702 */
2703 .enforce_cache_coherency = amd_iommu_enforce_cache_coherency,
2704 };
2705
amd_iommu_domain_alloc_paging_v2(struct device * dev,u32 flags)2706 static struct iommu_domain *amd_iommu_domain_alloc_paging_v2(struct device *dev,
2707 u32 flags)
2708 {
2709 struct pt_iommu_x86_64_cfg cfg = {};
2710 struct protection_domain *domain;
2711 int ret;
2712
2713 if (!amd_iommu_v2_pgtbl_supported())
2714 return ERR_PTR(-EOPNOTSUPP);
2715
2716 domain = protection_domain_alloc();
2717 if (!domain)
2718 return ERR_PTR(-ENOMEM);
2719
2720 domain->pd_mode = PD_MODE_V2;
2721 domain->iommu.nid = dev_to_node(dev);
2722
2723 cfg.common.features = BIT(PT_FEAT_X86_64_AMD_ENCRYPT_TABLES);
2724 if (amd_iommu_np_cache)
2725 cfg.common.features |= BIT(PT_FEAT_FLUSH_RANGE_NO_GAPS);
2726 else
2727 cfg.common.features |= BIT(PT_FEAT_FLUSH_RANGE);
2728
2729 /*
2730 * The v2 table behaves differently if it is attached to PASID 0 vs a
2731 * non-zero PASID. On PASID 0 it has no sign extension and the full
2732 * 57/48 bits decode the lower addresses. Otherwise it behaves like a
2733 * normal sign extended x86 page table. Since we want the domain to work
2734 * in both modes the top bit is removed and PT_FEAT_SIGN_EXTEND is not
2735 * set which creates a table that is compatible in both modes.
2736 */
2737 if (amd_iommu_gpt_level == PAGE_MODE_5_LEVEL) {
2738 cfg.common.hw_max_vasz_lg2 = 56;
2739 cfg.top_level = 4;
2740 } else {
2741 cfg.common.hw_max_vasz_lg2 = 47;
2742 cfg.top_level = 3;
2743 }
2744 cfg.common.hw_max_oasz_lg2 = 52;
2745 domain->domain.ops = &amdv2_ops;
2746
2747 ret = pt_iommu_x86_64_init(&domain->amdv2, &cfg, GFP_KERNEL);
2748 if (ret) {
2749 amd_iommu_domain_free(&domain->domain);
2750 return ERR_PTR(ret);
2751 }
2752 return &domain->domain;
2753 }
2754
2755 static struct iommu_domain *
amd_iommu_domain_alloc_paging_flags(struct device * dev,u32 flags,const struct iommu_user_data * user_data)2756 amd_iommu_domain_alloc_paging_flags(struct device *dev, u32 flags,
2757 const struct iommu_user_data *user_data)
2758
2759 {
2760 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
2761 const u32 supported_flags = IOMMU_HWPT_ALLOC_DIRTY_TRACKING |
2762 IOMMU_HWPT_ALLOC_PASID;
2763
2764 if ((flags & ~supported_flags) || user_data)
2765 return ERR_PTR(-EOPNOTSUPP);
2766
2767 switch (flags & supported_flags) {
2768 case IOMMU_HWPT_ALLOC_DIRTY_TRACKING:
2769 /* Allocate domain with v1 page table for dirty tracking */
2770 if (!amd_iommu_hd_support(iommu))
2771 break;
2772 return amd_iommu_domain_alloc_paging_v1(dev, flags);
2773 case IOMMU_HWPT_ALLOC_PASID:
2774 /* Allocate domain with v2 page table if IOMMU supports PASID. */
2775 if (!amd_iommu_pasid_supported())
2776 break;
2777 return amd_iommu_domain_alloc_paging_v2(dev, flags);
2778 case 0: {
2779 struct iommu_domain *ret;
2780
2781 /* If nothing specific is required use the kernel commandline default */
2782 if (amd_iommu_pgtable == PD_MODE_V1) {
2783 ret = amd_iommu_domain_alloc_paging_v1(dev, flags);
2784 if (ret != ERR_PTR(-EOPNOTSUPP))
2785 return ret;
2786 return amd_iommu_domain_alloc_paging_v2(dev, flags);
2787 }
2788 ret = amd_iommu_domain_alloc_paging_v2(dev, flags);
2789 if (ret != ERR_PTR(-EOPNOTSUPP))
2790 return ret;
2791 return amd_iommu_domain_alloc_paging_v1(dev, flags);
2792 }
2793 default:
2794 break;
2795 }
2796 return ERR_PTR(-EOPNOTSUPP);
2797 }
2798
amd_iommu_domain_free(struct iommu_domain * dom)2799 void amd_iommu_domain_free(struct iommu_domain *dom)
2800 {
2801 struct protection_domain *domain = to_pdomain(dom);
2802
2803 WARN_ON(!list_empty(&domain->dev_list));
2804 pt_iommu_deinit(&domain->iommu);
2805 pdom_id_free(domain->id);
2806 kfree(domain);
2807 }
2808
blocked_domain_attach_device(struct iommu_domain * domain,struct device * dev,struct iommu_domain * old)2809 static int blocked_domain_attach_device(struct iommu_domain *domain,
2810 struct device *dev,
2811 struct iommu_domain *old)
2812 {
2813 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2814
2815 if (dev_data->domain)
2816 detach_device(dev);
2817
2818 /* Clear DTE and flush the entry */
2819 mutex_lock(&dev_data->mutex);
2820 dev_update_dte(dev_data, false);
2821 mutex_unlock(&dev_data->mutex);
2822
2823 return 0;
2824 }
2825
blocked_domain_set_dev_pasid(struct iommu_domain * domain,struct device * dev,ioasid_t pasid,struct iommu_domain * old)2826 static int blocked_domain_set_dev_pasid(struct iommu_domain *domain,
2827 struct device *dev, ioasid_t pasid,
2828 struct iommu_domain *old)
2829 {
2830 amd_iommu_remove_dev_pasid(dev, pasid, old);
2831 return 0;
2832 }
2833
2834 static struct iommu_domain blocked_domain = {
2835 .type = IOMMU_DOMAIN_BLOCKED,
2836 .ops = &(const struct iommu_domain_ops) {
2837 .attach_dev = blocked_domain_attach_device,
2838 .set_dev_pasid = blocked_domain_set_dev_pasid,
2839 }
2840 };
2841
2842 static struct protection_domain identity_domain;
2843
2844 static const struct iommu_domain_ops identity_domain_ops = {
2845 .attach_dev = amd_iommu_attach_device,
2846 };
2847
amd_iommu_init_identity_domain(void)2848 void amd_iommu_init_identity_domain(void)
2849 {
2850 struct iommu_domain *domain = &identity_domain.domain;
2851
2852 domain->type = IOMMU_DOMAIN_IDENTITY;
2853 domain->ops = &identity_domain_ops;
2854 domain->owner = &amd_iommu_ops;
2855
2856 identity_domain.id = pdom_id_alloc();
2857
2858 protection_domain_init(&identity_domain);
2859 }
2860
amd_iommu_attach_device(struct iommu_domain * dom,struct device * dev,struct iommu_domain * old)2861 static int amd_iommu_attach_device(struct iommu_domain *dom, struct device *dev,
2862 struct iommu_domain *old)
2863 {
2864 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2865 struct protection_domain *domain = to_pdomain(dom);
2866 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
2867 int ret;
2868
2869 /*
2870 * Skip attach device to domain if new domain is same as
2871 * devices current domain
2872 */
2873 if (dev_data->domain == domain)
2874 return 0;
2875
2876 dev_data->defer_attach = false;
2877
2878 /*
2879 * Restrict to devices with compatible IOMMU hardware support
2880 * when enforcement of dirty tracking is enabled.
2881 */
2882 if (dom->dirty_ops && !amd_iommu_hd_support(iommu))
2883 return -EINVAL;
2884
2885 if (dev_data->domain)
2886 detach_device(dev);
2887
2888 ret = attach_device(dev, domain);
2889
2890 #ifdef CONFIG_IRQ_REMAP
2891 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
2892 if (dom->type == IOMMU_DOMAIN_UNMANAGED)
2893 dev_data->use_vapic = 1;
2894 else
2895 dev_data->use_vapic = 0;
2896 }
2897 #endif
2898
2899 return ret;
2900 }
2901
amd_iommu_capable(struct device * dev,enum iommu_cap cap)2902 static bool amd_iommu_capable(struct device *dev, enum iommu_cap cap)
2903 {
2904 switch (cap) {
2905 case IOMMU_CAP_CACHE_COHERENCY:
2906 return true;
2907 case IOMMU_CAP_NOEXEC:
2908 return false;
2909 case IOMMU_CAP_PRE_BOOT_PROTECTION:
2910 return amdr_ivrs_remap_support;
2911 case IOMMU_CAP_ENFORCE_CACHE_COHERENCY:
2912 return true;
2913 case IOMMU_CAP_DEFERRED_FLUSH:
2914 return true;
2915 case IOMMU_CAP_DIRTY_TRACKING: {
2916 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
2917
2918 return amd_iommu_hd_support(iommu);
2919 }
2920 default:
2921 break;
2922 }
2923
2924 return false;
2925 }
2926
amd_iommu_set_dirty_tracking(struct iommu_domain * domain,bool enable)2927 static int amd_iommu_set_dirty_tracking(struct iommu_domain *domain,
2928 bool enable)
2929 {
2930 struct protection_domain *pdomain = to_pdomain(domain);
2931 struct dev_table_entry *dte;
2932 struct iommu_dev_data *dev_data;
2933 bool domain_flush = false;
2934 struct amd_iommu *iommu;
2935 unsigned long flags;
2936 u64 new;
2937
2938 spin_lock_irqsave(&pdomain->lock, flags);
2939 if (!(pdomain->dirty_tracking ^ enable)) {
2940 spin_unlock_irqrestore(&pdomain->lock, flags);
2941 return 0;
2942 }
2943
2944 list_for_each_entry(dev_data, &pdomain->dev_list, list) {
2945 spin_lock(&dev_data->dte_lock);
2946 iommu = get_amd_iommu_from_dev_data(dev_data);
2947 dte = &get_dev_table(iommu)[dev_data->devid];
2948 new = dte->data[0];
2949 new = (enable ? new | DTE_FLAG_HAD : new & ~DTE_FLAG_HAD);
2950 dte->data[0] = new;
2951 spin_unlock(&dev_data->dte_lock);
2952
2953 /* Flush device DTE */
2954 device_flush_dte(dev_data);
2955 domain_flush = true;
2956 }
2957
2958 /* Flush IOTLB to mark IOPTE dirty on the next translation(s) */
2959 if (domain_flush)
2960 amd_iommu_domain_flush_all(pdomain);
2961
2962 pdomain->dirty_tracking = enable;
2963 spin_unlock_irqrestore(&pdomain->lock, flags);
2964
2965 return 0;
2966 }
2967
amd_iommu_get_resv_regions(struct device * dev,struct list_head * head)2968 static void amd_iommu_get_resv_regions(struct device *dev,
2969 struct list_head *head)
2970 {
2971 struct iommu_resv_region *region;
2972 struct unity_map_entry *entry;
2973 struct amd_iommu *iommu;
2974 struct amd_iommu_pci_seg *pci_seg;
2975 int devid, sbdf;
2976
2977 sbdf = get_device_sbdf_id(dev);
2978 if (sbdf < 0)
2979 return;
2980
2981 devid = PCI_SBDF_TO_DEVID(sbdf);
2982 iommu = get_amd_iommu_from_dev(dev);
2983 pci_seg = iommu->pci_seg;
2984
2985 list_for_each_entry(entry, &pci_seg->unity_map, list) {
2986 int type, prot = 0;
2987 size_t length;
2988
2989 if (devid < entry->devid_start || devid > entry->devid_end)
2990 continue;
2991
2992 type = IOMMU_RESV_DIRECT;
2993 length = entry->address_end - entry->address_start;
2994 if (entry->prot & IOMMU_PROT_IR)
2995 prot |= IOMMU_READ;
2996 if (entry->prot & IOMMU_PROT_IW)
2997 prot |= IOMMU_WRITE;
2998 if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
2999 /* Exclusion range */
3000 type = IOMMU_RESV_RESERVED;
3001
3002 region = iommu_alloc_resv_region(entry->address_start,
3003 length, prot, type,
3004 GFP_KERNEL);
3005 if (!region) {
3006 dev_err(dev, "Out of memory allocating dm-regions\n");
3007 return;
3008 }
3009 list_add_tail(®ion->list, head);
3010 }
3011
3012 region = iommu_alloc_resv_region(MSI_RANGE_START,
3013 MSI_RANGE_END - MSI_RANGE_START + 1,
3014 0, IOMMU_RESV_MSI, GFP_KERNEL);
3015 if (!region)
3016 return;
3017 list_add_tail(®ion->list, head);
3018
3019 if (amd_iommu_ht_range_ignore())
3020 return;
3021
3022 region = iommu_alloc_resv_region(HT_RANGE_START,
3023 HT_RANGE_END - HT_RANGE_START + 1,
3024 0, IOMMU_RESV_RESERVED, GFP_KERNEL);
3025 if (!region)
3026 return;
3027 list_add_tail(®ion->list, head);
3028 }
3029
amd_iommu_is_attach_deferred(struct device * dev)3030 static bool amd_iommu_is_attach_deferred(struct device *dev)
3031 {
3032 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
3033
3034 return dev_data->defer_attach;
3035 }
3036
amd_iommu_def_domain_type(struct device * dev)3037 static int amd_iommu_def_domain_type(struct device *dev)
3038 {
3039 struct iommu_dev_data *dev_data;
3040
3041 dev_data = dev_iommu_priv_get(dev);
3042 if (!dev_data)
3043 return 0;
3044
3045 /* Always use DMA domain for untrusted device */
3046 if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted)
3047 return IOMMU_DOMAIN_DMA;
3048
3049 /*
3050 * Do not identity map IOMMUv2 capable devices when:
3051 * - memory encryption is active, because some of those devices
3052 * (AMD GPUs) don't have the encryption bit in their DMA-mask
3053 * and require remapping.
3054 * - SNP is enabled, because it prohibits DTE[Mode]=0.
3055 */
3056 if (pdev_pasid_supported(dev_data) &&
3057 !cc_platform_has(CC_ATTR_MEM_ENCRYPT) &&
3058 !amd_iommu_snp_en) {
3059 return IOMMU_DOMAIN_IDENTITY;
3060 }
3061
3062 return 0;
3063 }
3064
amd_iommu_enforce_cache_coherency(struct iommu_domain * domain)3065 static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain)
3066 {
3067 /* IOMMU_PTE_FC is always set */
3068 return true;
3069 }
3070
3071 const struct iommu_ops amd_iommu_ops = {
3072 .capable = amd_iommu_capable,
3073 .blocked_domain = &blocked_domain,
3074 .release_domain = &blocked_domain,
3075 .identity_domain = &identity_domain.domain,
3076 .domain_alloc_paging_flags = amd_iommu_domain_alloc_paging_flags,
3077 .domain_alloc_sva = amd_iommu_domain_alloc_sva,
3078 .probe_device = amd_iommu_probe_device,
3079 .release_device = amd_iommu_release_device,
3080 .device_group = amd_iommu_device_group,
3081 .get_resv_regions = amd_iommu_get_resv_regions,
3082 .is_attach_deferred = amd_iommu_is_attach_deferred,
3083 .def_domain_type = amd_iommu_def_domain_type,
3084 .page_response = amd_iommu_page_response,
3085 };
3086
3087 #ifdef CONFIG_IRQ_REMAP
3088
3089 /*****************************************************************************
3090 *
3091 * Interrupt Remapping Implementation
3092 *
3093 *****************************************************************************/
3094
3095 static struct irq_chip amd_ir_chip;
3096 static DEFINE_SPINLOCK(iommu_table_lock);
3097
iommu_flush_irt_and_complete(struct amd_iommu * iommu,u16 devid)3098 static void iommu_flush_irt_and_complete(struct amd_iommu *iommu, u16 devid)
3099 {
3100 int ret;
3101 u64 data;
3102 unsigned long flags;
3103 struct iommu_cmd cmd, cmd2;
3104
3105 if (iommu->irtcachedis_enabled)
3106 return;
3107
3108 build_inv_irt(&cmd, devid);
3109 data = atomic64_inc_return(&iommu->cmd_sem_val);
3110 build_completion_wait(&cmd2, iommu, data);
3111
3112 raw_spin_lock_irqsave(&iommu->lock, flags);
3113 ret = __iommu_queue_command_sync(iommu, &cmd, true);
3114 if (ret)
3115 goto out;
3116 ret = __iommu_queue_command_sync(iommu, &cmd2, false);
3117 if (ret)
3118 goto out;
3119 wait_on_sem(iommu, data);
3120 out:
3121 raw_spin_unlock_irqrestore(&iommu->lock, flags);
3122 }
3123
iommu_get_int_tablen(struct iommu_dev_data * dev_data)3124 static inline u8 iommu_get_int_tablen(struct iommu_dev_data *dev_data)
3125 {
3126 if (dev_data && dev_data->max_irqs == MAX_IRQS_PER_TABLE_2K)
3127 return DTE_INTTABLEN_2K;
3128 return DTE_INTTABLEN_512;
3129 }
3130
set_dte_irq_entry(struct amd_iommu * iommu,u16 devid,struct irq_remap_table * table)3131 static void set_dte_irq_entry(struct amd_iommu *iommu, u16 devid,
3132 struct irq_remap_table *table)
3133 {
3134 u64 new;
3135 struct dev_table_entry *dte = &get_dev_table(iommu)[devid];
3136 struct iommu_dev_data *dev_data = search_dev_data(iommu, devid);
3137
3138 if (dev_data)
3139 spin_lock(&dev_data->dte_lock);
3140
3141 new = READ_ONCE(dte->data[2]);
3142 new &= ~DTE_IRQ_PHYS_ADDR_MASK;
3143 new |= iommu_virt_to_phys(table->table);
3144 new |= DTE_IRQ_REMAP_INTCTL;
3145 new |= iommu_get_int_tablen(dev_data);
3146 new |= DTE_IRQ_REMAP_ENABLE;
3147 WRITE_ONCE(dte->data[2], new);
3148
3149 if (dev_data)
3150 spin_unlock(&dev_data->dte_lock);
3151 }
3152
get_irq_table(struct amd_iommu * iommu,u16 devid)3153 static struct irq_remap_table *get_irq_table(struct amd_iommu *iommu, u16 devid)
3154 {
3155 struct irq_remap_table *table;
3156 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
3157
3158 if (WARN_ONCE(!pci_seg->rlookup_table[devid],
3159 "%s: no iommu for devid %x:%x\n",
3160 __func__, pci_seg->id, devid))
3161 return NULL;
3162
3163 table = pci_seg->irq_lookup_table[devid];
3164 if (WARN_ONCE(!table, "%s: no table for devid %x:%x\n",
3165 __func__, pci_seg->id, devid))
3166 return NULL;
3167
3168 return table;
3169 }
3170
__alloc_irq_table(int nid,size_t size)3171 static struct irq_remap_table *__alloc_irq_table(int nid, size_t size)
3172 {
3173 struct irq_remap_table *table;
3174
3175 table = kzalloc(sizeof(*table), GFP_KERNEL);
3176 if (!table)
3177 return NULL;
3178
3179 table->table = iommu_alloc_pages_node_sz(
3180 nid, GFP_KERNEL, max(DTE_INTTAB_ALIGNMENT, size));
3181 if (!table->table) {
3182 kfree(table);
3183 return NULL;
3184 }
3185 raw_spin_lock_init(&table->lock);
3186
3187 return table;
3188 }
3189
set_remap_table_entry(struct amd_iommu * iommu,u16 devid,struct irq_remap_table * table)3190 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
3191 struct irq_remap_table *table)
3192 {
3193 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
3194
3195 pci_seg->irq_lookup_table[devid] = table;
3196 set_dte_irq_entry(iommu, devid, table);
3197 iommu_flush_dte(iommu, devid);
3198 }
3199
set_remap_table_entry_alias(struct pci_dev * pdev,u16 alias,void * data)3200 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
3201 void *data)
3202 {
3203 struct irq_remap_table *table = data;
3204 struct amd_iommu_pci_seg *pci_seg;
3205 struct amd_iommu *iommu = rlookup_amd_iommu(&pdev->dev);
3206
3207 if (!iommu)
3208 return -EINVAL;
3209
3210 pci_seg = iommu->pci_seg;
3211 pci_seg->irq_lookup_table[alias] = table;
3212 set_dte_irq_entry(iommu, alias, table);
3213 iommu_flush_dte(pci_seg->rlookup_table[alias], alias);
3214
3215 return 0;
3216 }
3217
get_irq_table_size(unsigned int max_irqs)3218 static inline size_t get_irq_table_size(unsigned int max_irqs)
3219 {
3220 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3221 return max_irqs * sizeof(u32);
3222
3223 return max_irqs * (sizeof(u64) * 2);
3224 }
3225
alloc_irq_table(struct amd_iommu * iommu,u16 devid,struct pci_dev * pdev,unsigned int max_irqs)3226 static struct irq_remap_table *alloc_irq_table(struct amd_iommu *iommu,
3227 u16 devid, struct pci_dev *pdev,
3228 unsigned int max_irqs)
3229 {
3230 struct irq_remap_table *table = NULL;
3231 struct irq_remap_table *new_table = NULL;
3232 struct amd_iommu_pci_seg *pci_seg;
3233 unsigned long flags;
3234 int nid = iommu && iommu->dev ? dev_to_node(&iommu->dev->dev) : NUMA_NO_NODE;
3235 u16 alias;
3236
3237 spin_lock_irqsave(&iommu_table_lock, flags);
3238
3239 pci_seg = iommu->pci_seg;
3240 table = pci_seg->irq_lookup_table[devid];
3241 if (table)
3242 goto out_unlock;
3243
3244 alias = pci_seg->alias_table[devid];
3245 table = pci_seg->irq_lookup_table[alias];
3246 if (table) {
3247 set_remap_table_entry(iommu, devid, table);
3248 goto out_wait;
3249 }
3250 spin_unlock_irqrestore(&iommu_table_lock, flags);
3251
3252 /* Nothing there yet, allocate new irq remapping table */
3253 new_table = __alloc_irq_table(nid, get_irq_table_size(max_irqs));
3254 if (!new_table)
3255 return NULL;
3256
3257 spin_lock_irqsave(&iommu_table_lock, flags);
3258
3259 table = pci_seg->irq_lookup_table[devid];
3260 if (table)
3261 goto out_unlock;
3262
3263 table = pci_seg->irq_lookup_table[alias];
3264 if (table) {
3265 set_remap_table_entry(iommu, devid, table);
3266 goto out_wait;
3267 }
3268
3269 table = new_table;
3270 new_table = NULL;
3271
3272 if (pdev)
3273 pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
3274 table);
3275 else
3276 set_remap_table_entry(iommu, devid, table);
3277
3278 if (devid != alias)
3279 set_remap_table_entry(iommu, alias, table);
3280
3281 out_wait:
3282 iommu_completion_wait(iommu);
3283
3284 out_unlock:
3285 spin_unlock_irqrestore(&iommu_table_lock, flags);
3286
3287 if (new_table) {
3288 iommu_free_pages(new_table->table);
3289 kfree(new_table);
3290 }
3291 return table;
3292 }
3293
alloc_irq_index(struct amd_iommu * iommu,u16 devid,int count,bool align,struct pci_dev * pdev,unsigned long max_irqs)3294 static int alloc_irq_index(struct amd_iommu *iommu, u16 devid, int count,
3295 bool align, struct pci_dev *pdev,
3296 unsigned long max_irqs)
3297 {
3298 struct irq_remap_table *table;
3299 int index, c, alignment = 1;
3300 unsigned long flags;
3301
3302 table = alloc_irq_table(iommu, devid, pdev, max_irqs);
3303 if (!table)
3304 return -ENODEV;
3305
3306 if (align)
3307 alignment = roundup_pow_of_two(count);
3308
3309 raw_spin_lock_irqsave(&table->lock, flags);
3310
3311 /* Scan table for free entries */
3312 for (index = ALIGN(table->min_index, alignment), c = 0;
3313 index < max_irqs;) {
3314 if (!iommu->irte_ops->is_allocated(table, index)) {
3315 c += 1;
3316 } else {
3317 c = 0;
3318 index = ALIGN(index + 1, alignment);
3319 continue;
3320 }
3321
3322 if (c == count) {
3323 for (; c != 0; --c)
3324 iommu->irte_ops->set_allocated(table, index - c + 1);
3325
3326 index -= count - 1;
3327 goto out;
3328 }
3329
3330 index++;
3331 }
3332
3333 index = -ENOSPC;
3334
3335 out:
3336 raw_spin_unlock_irqrestore(&table->lock, flags);
3337
3338 return index;
3339 }
3340
__modify_irte_ga(struct amd_iommu * iommu,u16 devid,int index,struct irte_ga * irte)3341 static int __modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
3342 struct irte_ga *irte)
3343 {
3344 struct irq_remap_table *table;
3345 struct irte_ga *entry;
3346 unsigned long flags;
3347 u128 old;
3348
3349 table = get_irq_table(iommu, devid);
3350 if (!table)
3351 return -ENOMEM;
3352
3353 raw_spin_lock_irqsave(&table->lock, flags);
3354
3355 entry = (struct irte_ga *)table->table;
3356 entry = &entry[index];
3357
3358 /*
3359 * We use cmpxchg16 to atomically update the 128-bit IRTE,
3360 * and it cannot be updated by the hardware or other processors
3361 * behind us, so the return value of cmpxchg16 should be the
3362 * same as the old value.
3363 */
3364 old = entry->irte;
3365 WARN_ON(!try_cmpxchg128(&entry->irte, &old, irte->irte));
3366
3367 raw_spin_unlock_irqrestore(&table->lock, flags);
3368
3369 return 0;
3370 }
3371
modify_irte_ga(struct amd_iommu * iommu,u16 devid,int index,struct irte_ga * irte)3372 static int modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
3373 struct irte_ga *irte)
3374 {
3375 int ret;
3376
3377 ret = __modify_irte_ga(iommu, devid, index, irte);
3378 if (ret)
3379 return ret;
3380
3381 iommu_flush_irt_and_complete(iommu, devid);
3382
3383 return 0;
3384 }
3385
modify_irte(struct amd_iommu * iommu,u16 devid,int index,union irte * irte)3386 static int modify_irte(struct amd_iommu *iommu,
3387 u16 devid, int index, union irte *irte)
3388 {
3389 struct irq_remap_table *table;
3390 unsigned long flags;
3391
3392 table = get_irq_table(iommu, devid);
3393 if (!table)
3394 return -ENOMEM;
3395
3396 raw_spin_lock_irqsave(&table->lock, flags);
3397 table->table[index] = irte->val;
3398 raw_spin_unlock_irqrestore(&table->lock, flags);
3399
3400 iommu_flush_irt_and_complete(iommu, devid);
3401
3402 return 0;
3403 }
3404
free_irte(struct amd_iommu * iommu,u16 devid,int index)3405 static void free_irte(struct amd_iommu *iommu, u16 devid, int index)
3406 {
3407 struct irq_remap_table *table;
3408 unsigned long flags;
3409
3410 table = get_irq_table(iommu, devid);
3411 if (!table)
3412 return;
3413
3414 raw_spin_lock_irqsave(&table->lock, flags);
3415 iommu->irte_ops->clear_allocated(table, index);
3416 raw_spin_unlock_irqrestore(&table->lock, flags);
3417
3418 iommu_flush_irt_and_complete(iommu, devid);
3419 }
3420
irte_prepare(void * entry,u32 delivery_mode,bool dest_mode,u8 vector,u32 dest_apicid,int devid)3421 static void irte_prepare(void *entry,
3422 u32 delivery_mode, bool dest_mode,
3423 u8 vector, u32 dest_apicid, int devid)
3424 {
3425 union irte *irte = (union irte *) entry;
3426
3427 irte->val = 0;
3428 irte->fields.vector = vector;
3429 irte->fields.int_type = delivery_mode;
3430 irte->fields.destination = dest_apicid;
3431 irte->fields.dm = dest_mode;
3432 irte->fields.valid = 1;
3433 }
3434
irte_ga_prepare(void * entry,u32 delivery_mode,bool dest_mode,u8 vector,u32 dest_apicid,int devid)3435 static void irte_ga_prepare(void *entry,
3436 u32 delivery_mode, bool dest_mode,
3437 u8 vector, u32 dest_apicid, int devid)
3438 {
3439 struct irte_ga *irte = (struct irte_ga *) entry;
3440
3441 irte->lo.val = 0;
3442 irte->hi.val = 0;
3443 irte->lo.fields_remap.int_type = delivery_mode;
3444 irte->lo.fields_remap.dm = dest_mode;
3445 irte->hi.fields.vector = vector;
3446 irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3447 irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid);
3448 irte->lo.fields_remap.valid = 1;
3449 }
3450
irte_activate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3451 static void irte_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3452 {
3453 union irte *irte = (union irte *) entry;
3454
3455 irte->fields.valid = 1;
3456 modify_irte(iommu, devid, index, irte);
3457 }
3458
irte_ga_activate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3459 static void irte_ga_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3460 {
3461 struct irte_ga *irte = (struct irte_ga *) entry;
3462
3463 irte->lo.fields_remap.valid = 1;
3464 modify_irte_ga(iommu, devid, index, irte);
3465 }
3466
irte_deactivate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3467 static void irte_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3468 {
3469 union irte *irte = (union irte *) entry;
3470
3471 irte->fields.valid = 0;
3472 modify_irte(iommu, devid, index, irte);
3473 }
3474
irte_ga_deactivate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3475 static void irte_ga_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3476 {
3477 struct irte_ga *irte = (struct irte_ga *) entry;
3478
3479 irte->lo.fields_remap.valid = 0;
3480 modify_irte_ga(iommu, devid, index, irte);
3481 }
3482
irte_set_affinity(struct amd_iommu * iommu,void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)3483 static void irte_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3484 u8 vector, u32 dest_apicid)
3485 {
3486 union irte *irte = (union irte *) entry;
3487
3488 irte->fields.vector = vector;
3489 irte->fields.destination = dest_apicid;
3490 modify_irte(iommu, devid, index, irte);
3491 }
3492
irte_ga_set_affinity(struct amd_iommu * iommu,void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)3493 static void irte_ga_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3494 u8 vector, u32 dest_apicid)
3495 {
3496 struct irte_ga *irte = (struct irte_ga *) entry;
3497
3498 if (!irte->lo.fields_remap.guest_mode) {
3499 irte->hi.fields.vector = vector;
3500 irte->lo.fields_remap.destination =
3501 APICID_TO_IRTE_DEST_LO(dest_apicid);
3502 irte->hi.fields.destination =
3503 APICID_TO_IRTE_DEST_HI(dest_apicid);
3504 modify_irte_ga(iommu, devid, index, irte);
3505 }
3506 }
3507
3508 #define IRTE_ALLOCATED (~1U)
irte_set_allocated(struct irq_remap_table * table,int index)3509 static void irte_set_allocated(struct irq_remap_table *table, int index)
3510 {
3511 table->table[index] = IRTE_ALLOCATED;
3512 }
3513
irte_ga_set_allocated(struct irq_remap_table * table,int index)3514 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3515 {
3516 struct irte_ga *ptr = (struct irte_ga *)table->table;
3517 struct irte_ga *irte = &ptr[index];
3518
3519 memset(&irte->lo.val, 0, sizeof(u64));
3520 memset(&irte->hi.val, 0, sizeof(u64));
3521 irte->hi.fields.vector = 0xff;
3522 }
3523
irte_is_allocated(struct irq_remap_table * table,int index)3524 static bool irte_is_allocated(struct irq_remap_table *table, int index)
3525 {
3526 union irte *ptr = (union irte *)table->table;
3527 union irte *irte = &ptr[index];
3528
3529 return irte->val != 0;
3530 }
3531
irte_ga_is_allocated(struct irq_remap_table * table,int index)3532 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3533 {
3534 struct irte_ga *ptr = (struct irte_ga *)table->table;
3535 struct irte_ga *irte = &ptr[index];
3536
3537 return irte->hi.fields.vector != 0;
3538 }
3539
irte_clear_allocated(struct irq_remap_table * table,int index)3540 static void irte_clear_allocated(struct irq_remap_table *table, int index)
3541 {
3542 table->table[index] = 0;
3543 }
3544
irte_ga_clear_allocated(struct irq_remap_table * table,int index)3545 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3546 {
3547 struct irte_ga *ptr = (struct irte_ga *)table->table;
3548 struct irte_ga *irte = &ptr[index];
3549
3550 memset(&irte->lo.val, 0, sizeof(u64));
3551 memset(&irte->hi.val, 0, sizeof(u64));
3552 }
3553
get_devid(struct irq_alloc_info * info)3554 static int get_devid(struct irq_alloc_info *info)
3555 {
3556 switch (info->type) {
3557 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3558 return get_ioapic_devid(info->devid);
3559 case X86_IRQ_ALLOC_TYPE_HPET:
3560 return get_hpet_devid(info->devid);
3561 case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3562 case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3563 return get_device_sbdf_id(msi_desc_to_dev(info->desc));
3564 default:
3565 WARN_ON_ONCE(1);
3566 return -1;
3567 }
3568 }
3569
3570 struct irq_remap_ops amd_iommu_irq_ops = {
3571 .prepare = amd_iommu_prepare,
3572 .enable = amd_iommu_enable,
3573 .disable = amd_iommu_disable,
3574 .reenable = amd_iommu_reenable,
3575 .enable_faulting = amd_iommu_enable_faulting,
3576 };
3577
fill_msi_msg(struct msi_msg * msg,u32 index)3578 static void fill_msi_msg(struct msi_msg *msg, u32 index)
3579 {
3580 msg->data = index;
3581 msg->address_lo = 0;
3582 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
3583 /*
3584 * The struct msi_msg.dest_mode_logical is used to set the DM bit
3585 * in MSI Message Address Register. For device w/ 2K int-remap support,
3586 * this is bit must be set to 1 regardless of the actual destination
3587 * mode, which is signified by the IRTE[DM].
3588 */
3589 if (FEATURE_NUM_INT_REMAP_SUP_2K(amd_iommu_efr2))
3590 msg->arch_addr_lo.dest_mode_logical = true;
3591 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
3592 }
3593
irq_remapping_prepare_irte(struct amd_ir_data * data,struct irq_cfg * irq_cfg,struct irq_alloc_info * info,int devid,int index,int sub_handle)3594 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3595 struct irq_cfg *irq_cfg,
3596 struct irq_alloc_info *info,
3597 int devid, int index, int sub_handle)
3598 {
3599 struct irq_2_irte *irte_info = &data->irq_2_irte;
3600 struct amd_iommu *iommu = data->iommu;
3601
3602 if (!iommu)
3603 return;
3604
3605 data->irq_2_irte.devid = devid;
3606 data->irq_2_irte.index = index + sub_handle;
3607 iommu->irte_ops->prepare(data->entry, APIC_DELIVERY_MODE_FIXED,
3608 apic->dest_mode_logical, irq_cfg->vector,
3609 irq_cfg->dest_apicid, devid);
3610
3611 switch (info->type) {
3612 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3613 case X86_IRQ_ALLOC_TYPE_HPET:
3614 case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3615 case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3616 fill_msi_msg(&data->msi_entry, irte_info->index);
3617 break;
3618
3619 default:
3620 BUG_ON(1);
3621 break;
3622 }
3623 }
3624
3625 struct amd_irte_ops irte_32_ops = {
3626 .prepare = irte_prepare,
3627 .activate = irte_activate,
3628 .deactivate = irte_deactivate,
3629 .set_affinity = irte_set_affinity,
3630 .set_allocated = irte_set_allocated,
3631 .is_allocated = irte_is_allocated,
3632 .clear_allocated = irte_clear_allocated,
3633 };
3634
3635 struct amd_irte_ops irte_128_ops = {
3636 .prepare = irte_ga_prepare,
3637 .activate = irte_ga_activate,
3638 .deactivate = irte_ga_deactivate,
3639 .set_affinity = irte_ga_set_affinity,
3640 .set_allocated = irte_ga_set_allocated,
3641 .is_allocated = irte_ga_is_allocated,
3642 .clear_allocated = irte_ga_clear_allocated,
3643 };
3644
irq_remapping_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)3645 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3646 unsigned int nr_irqs, void *arg)
3647 {
3648 struct irq_alloc_info *info = arg;
3649 struct irq_data *irq_data;
3650 struct amd_ir_data *data = NULL;
3651 struct amd_iommu *iommu;
3652 struct irq_cfg *cfg;
3653 struct iommu_dev_data *dev_data;
3654 unsigned long max_irqs;
3655 int i, ret, devid, seg, sbdf;
3656 int index;
3657
3658 if (!info)
3659 return -EINVAL;
3660 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI)
3661 return -EINVAL;
3662
3663 sbdf = get_devid(info);
3664 if (sbdf < 0)
3665 return -EINVAL;
3666
3667 seg = PCI_SBDF_TO_SEGID(sbdf);
3668 devid = PCI_SBDF_TO_DEVID(sbdf);
3669 iommu = __rlookup_amd_iommu(seg, devid);
3670 if (!iommu)
3671 return -EINVAL;
3672
3673 dev_data = search_dev_data(iommu, devid);
3674 max_irqs = dev_data ? dev_data->max_irqs : MAX_IRQS_PER_TABLE_512;
3675
3676 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3677 if (ret < 0)
3678 return ret;
3679
3680 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3681 struct irq_remap_table *table;
3682
3683 table = alloc_irq_table(iommu, devid, NULL, max_irqs);
3684 if (table) {
3685 if (!table->min_index) {
3686 /*
3687 * Keep the first 32 indexes free for IOAPIC
3688 * interrupts.
3689 */
3690 table->min_index = 32;
3691 for (i = 0; i < 32; ++i)
3692 iommu->irte_ops->set_allocated(table, i);
3693 }
3694 WARN_ON(table->min_index != 32);
3695 index = info->ioapic.pin;
3696 } else {
3697 index = -ENOMEM;
3698 }
3699 } else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI ||
3700 info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) {
3701 bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI);
3702
3703 index = alloc_irq_index(iommu, devid, nr_irqs, align,
3704 msi_desc_to_pci_dev(info->desc),
3705 max_irqs);
3706 } else {
3707 index = alloc_irq_index(iommu, devid, nr_irqs, false, NULL,
3708 max_irqs);
3709 }
3710
3711 if (index < 0) {
3712 pr_warn("Failed to allocate IRTE\n");
3713 ret = index;
3714 goto out_free_parent;
3715 }
3716
3717 for (i = 0; i < nr_irqs; i++) {
3718 irq_data = irq_domain_get_irq_data(domain, virq + i);
3719 cfg = irq_data ? irqd_cfg(irq_data) : NULL;
3720 if (!cfg) {
3721 ret = -EINVAL;
3722 goto out_free_data;
3723 }
3724
3725 ret = -ENOMEM;
3726 data = kzalloc(sizeof(*data), GFP_KERNEL);
3727 if (!data)
3728 goto out_free_data;
3729
3730 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3731 data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
3732 else
3733 data->entry = kzalloc(sizeof(struct irte_ga),
3734 GFP_KERNEL);
3735 if (!data->entry) {
3736 kfree(data);
3737 goto out_free_data;
3738 }
3739
3740 data->iommu = iommu;
3741 irq_data->hwirq = (devid << 16) + i;
3742 irq_data->chip_data = data;
3743 irq_data->chip = &amd_ir_chip;
3744 irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3745 }
3746
3747 return 0;
3748
3749 out_free_data:
3750 for (i--; i >= 0; i--) {
3751 irq_data = irq_domain_get_irq_data(domain, virq + i);
3752 if (irq_data)
3753 kfree(irq_data->chip_data);
3754 }
3755 for (i = 0; i < nr_irqs; i++)
3756 free_irte(iommu, devid, index + i);
3757 out_free_parent:
3758 irq_domain_free_irqs_common(domain, virq, nr_irqs);
3759 return ret;
3760 }
3761
irq_remapping_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)3762 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
3763 unsigned int nr_irqs)
3764 {
3765 struct irq_2_irte *irte_info;
3766 struct irq_data *irq_data;
3767 struct amd_ir_data *data;
3768 int i;
3769
3770 for (i = 0; i < nr_irqs; i++) {
3771 irq_data = irq_domain_get_irq_data(domain, virq + i);
3772 if (irq_data && irq_data->chip_data) {
3773 data = irq_data->chip_data;
3774 irte_info = &data->irq_2_irte;
3775 free_irte(data->iommu, irte_info->devid, irte_info->index);
3776 kfree(data->entry);
3777 kfree(data);
3778 }
3779 }
3780 irq_domain_free_irqs_common(domain, virq, nr_irqs);
3781 }
3782
3783 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3784 struct amd_ir_data *ir_data,
3785 struct irq_2_irte *irte_info,
3786 struct irq_cfg *cfg);
3787
irq_remapping_activate(struct irq_domain * domain,struct irq_data * irq_data,bool reserve)3788 static int irq_remapping_activate(struct irq_domain *domain,
3789 struct irq_data *irq_data, bool reserve)
3790 {
3791 struct amd_ir_data *data = irq_data->chip_data;
3792 struct irq_2_irte *irte_info = &data->irq_2_irte;
3793 struct amd_iommu *iommu = data->iommu;
3794 struct irq_cfg *cfg = irqd_cfg(irq_data);
3795
3796 if (!iommu)
3797 return 0;
3798
3799 iommu->irte_ops->activate(iommu, data->entry, irte_info->devid,
3800 irte_info->index);
3801 amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
3802 return 0;
3803 }
3804
irq_remapping_deactivate(struct irq_domain * domain,struct irq_data * irq_data)3805 static void irq_remapping_deactivate(struct irq_domain *domain,
3806 struct irq_data *irq_data)
3807 {
3808 struct amd_ir_data *data = irq_data->chip_data;
3809 struct irq_2_irte *irte_info = &data->irq_2_irte;
3810 struct amd_iommu *iommu = data->iommu;
3811
3812 if (iommu)
3813 iommu->irte_ops->deactivate(iommu, data->entry, irte_info->devid,
3814 irte_info->index);
3815 }
3816
irq_remapping_select(struct irq_domain * d,struct irq_fwspec * fwspec,enum irq_domain_bus_token bus_token)3817 static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec,
3818 enum irq_domain_bus_token bus_token)
3819 {
3820 struct amd_iommu *iommu;
3821 int devid = -1;
3822
3823 if (!amd_iommu_irq_remap)
3824 return 0;
3825
3826 if (x86_fwspec_is_ioapic(fwspec))
3827 devid = get_ioapic_devid(fwspec->param[0]);
3828 else if (x86_fwspec_is_hpet(fwspec))
3829 devid = get_hpet_devid(fwspec->param[0]);
3830
3831 if (devid < 0)
3832 return 0;
3833 iommu = __rlookup_amd_iommu((devid >> 16), (devid & 0xffff));
3834
3835 return iommu && iommu->ir_domain == d;
3836 }
3837
3838 static const struct irq_domain_ops amd_ir_domain_ops = {
3839 .select = irq_remapping_select,
3840 .alloc = irq_remapping_alloc,
3841 .free = irq_remapping_free,
3842 .activate = irq_remapping_activate,
3843 .deactivate = irq_remapping_deactivate,
3844 };
3845
__amd_iommu_update_ga(struct irte_ga * entry,int cpu,bool ga_log_intr)3846 static void __amd_iommu_update_ga(struct irte_ga *entry, int cpu,
3847 bool ga_log_intr)
3848 {
3849 if (cpu >= 0) {
3850 entry->lo.fields_vapic.destination =
3851 APICID_TO_IRTE_DEST_LO(cpu);
3852 entry->hi.fields.destination =
3853 APICID_TO_IRTE_DEST_HI(cpu);
3854 entry->lo.fields_vapic.is_run = true;
3855 entry->lo.fields_vapic.ga_log_intr = false;
3856 } else {
3857 entry->lo.fields_vapic.is_run = false;
3858 entry->lo.fields_vapic.ga_log_intr = ga_log_intr;
3859 }
3860 }
3861
3862 /*
3863 * Update the pCPU information for an IRTE that is configured to post IRQs to
3864 * a vCPU, without issuing an IOMMU invalidation for the IRTE.
3865 *
3866 * If the vCPU is associated with a pCPU (@cpu >= 0), configure the Destination
3867 * with the pCPU's APIC ID, set IsRun, and clear GALogIntr. If the vCPU isn't
3868 * associated with a pCPU (@cpu < 0), clear IsRun and set/clear GALogIntr based
3869 * on input from the caller (e.g. KVM only requests GALogIntr when the vCPU is
3870 * blocking and requires a notification wake event). I.e. treat vCPUs that are
3871 * associated with a pCPU as running. This API is intended to be used when a
3872 * vCPU is scheduled in/out (or stops running for any reason), to do a fast
3873 * update of IsRun, GALogIntr, and (conditionally) Destination.
3874 *
3875 * Per the IOMMU spec, the Destination, IsRun, and GATag fields are not cached
3876 * and thus don't require an invalidation to ensure the IOMMU consumes fresh
3877 * information.
3878 */
amd_iommu_update_ga(void * data,int cpu,bool ga_log_intr)3879 int amd_iommu_update_ga(void *data, int cpu, bool ga_log_intr)
3880 {
3881 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3882 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3883
3884 if (WARN_ON_ONCE(!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)))
3885 return -EINVAL;
3886
3887 if (!entry || !entry->lo.fields_vapic.guest_mode)
3888 return 0;
3889
3890 if (!ir_data->iommu)
3891 return -ENODEV;
3892
3893 __amd_iommu_update_ga(entry, cpu, ga_log_intr);
3894
3895 return __modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3896 ir_data->irq_2_irte.index, entry);
3897 }
3898 EXPORT_SYMBOL(amd_iommu_update_ga);
3899
amd_iommu_activate_guest_mode(void * data,int cpu,bool ga_log_intr)3900 int amd_iommu_activate_guest_mode(void *data, int cpu, bool ga_log_intr)
3901 {
3902 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3903 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3904 u64 valid;
3905
3906 if (WARN_ON_ONCE(!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)))
3907 return -EINVAL;
3908
3909 if (!entry)
3910 return 0;
3911
3912 valid = entry->lo.fields_vapic.valid;
3913
3914 entry->lo.val = 0;
3915 entry->hi.val = 0;
3916
3917 entry->lo.fields_vapic.valid = valid;
3918 entry->lo.fields_vapic.guest_mode = 1;
3919 entry->hi.fields.ga_root_ptr = ir_data->ga_root_ptr;
3920 entry->hi.fields.vector = ir_data->ga_vector;
3921 entry->lo.fields_vapic.ga_tag = ir_data->ga_tag;
3922
3923 __amd_iommu_update_ga(entry, cpu, ga_log_intr);
3924
3925 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3926 ir_data->irq_2_irte.index, entry);
3927 }
3928 EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
3929
amd_iommu_deactivate_guest_mode(void * data)3930 int amd_iommu_deactivate_guest_mode(void *data)
3931 {
3932 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3933 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3934 struct irq_cfg *cfg = ir_data->cfg;
3935 u64 valid;
3936
3937 if (WARN_ON_ONCE(!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)))
3938 return -EINVAL;
3939
3940 if (!entry || !entry->lo.fields_vapic.guest_mode)
3941 return 0;
3942
3943 valid = entry->lo.fields_remap.valid;
3944
3945 entry->lo.val = 0;
3946 entry->hi.val = 0;
3947
3948 entry->lo.fields_remap.valid = valid;
3949 entry->lo.fields_remap.dm = apic->dest_mode_logical;
3950 entry->lo.fields_remap.int_type = APIC_DELIVERY_MODE_FIXED;
3951 entry->hi.fields.vector = cfg->vector;
3952 entry->lo.fields_remap.destination =
3953 APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
3954 entry->hi.fields.destination =
3955 APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
3956
3957 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3958 ir_data->irq_2_irte.index, entry);
3959 }
3960 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
3961
amd_ir_set_vcpu_affinity(struct irq_data * data,void * info)3962 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *info)
3963 {
3964 int ret;
3965 struct amd_iommu_pi_data *pi_data = info;
3966 struct amd_ir_data *ir_data = data->chip_data;
3967 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3968 struct iommu_dev_data *dev_data;
3969
3970 if (WARN_ON_ONCE(!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)))
3971 return -EINVAL;
3972
3973 if (ir_data->iommu == NULL)
3974 return -EINVAL;
3975
3976 dev_data = search_dev_data(ir_data->iommu, irte_info->devid);
3977
3978 /* Note:
3979 * This device has never been set up for guest mode.
3980 * we should not modify the IRTE
3981 */
3982 if (!dev_data || !dev_data->use_vapic)
3983 return -EINVAL;
3984
3985 ir_data->cfg = irqd_cfg(data);
3986
3987 if (pi_data) {
3988 pi_data->ir_data = ir_data;
3989
3990 ir_data->ga_root_ptr = (pi_data->vapic_addr >> 12);
3991 ir_data->ga_vector = pi_data->vector;
3992 ir_data->ga_tag = pi_data->ga_tag;
3993 if (pi_data->is_guest_mode)
3994 ret = amd_iommu_activate_guest_mode(ir_data, pi_data->cpu,
3995 pi_data->ga_log_intr);
3996 else
3997 ret = amd_iommu_deactivate_guest_mode(ir_data);
3998 } else {
3999 ret = amd_iommu_deactivate_guest_mode(ir_data);
4000 }
4001
4002 return ret;
4003 }
4004
4005
amd_ir_update_irte(struct irq_data * irqd,struct amd_iommu * iommu,struct amd_ir_data * ir_data,struct irq_2_irte * irte_info,struct irq_cfg * cfg)4006 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4007 struct amd_ir_data *ir_data,
4008 struct irq_2_irte *irte_info,
4009 struct irq_cfg *cfg)
4010 {
4011
4012 /*
4013 * Atomically updates the IRTE with the new destination, vector
4014 * and flushes the interrupt entry cache.
4015 */
4016 iommu->irte_ops->set_affinity(iommu, ir_data->entry, irte_info->devid,
4017 irte_info->index, cfg->vector,
4018 cfg->dest_apicid);
4019 }
4020
amd_ir_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)4021 static int amd_ir_set_affinity(struct irq_data *data,
4022 const struct cpumask *mask, bool force)
4023 {
4024 struct amd_ir_data *ir_data = data->chip_data;
4025 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4026 struct irq_cfg *cfg = irqd_cfg(data);
4027 struct irq_data *parent = data->parent_data;
4028 struct amd_iommu *iommu = ir_data->iommu;
4029 int ret;
4030
4031 if (!iommu)
4032 return -ENODEV;
4033
4034 ret = parent->chip->irq_set_affinity(parent, mask, force);
4035 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4036 return ret;
4037
4038 amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4039 /*
4040 * After this point, all the interrupts will start arriving
4041 * at the new destination. So, time to cleanup the previous
4042 * vector allocation.
4043 */
4044 vector_schedule_cleanup(cfg);
4045
4046 return IRQ_SET_MASK_OK_DONE;
4047 }
4048
ir_compose_msi_msg(struct irq_data * irq_data,struct msi_msg * msg)4049 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4050 {
4051 struct amd_ir_data *ir_data = irq_data->chip_data;
4052
4053 *msg = ir_data->msi_entry;
4054 }
4055
4056 static struct irq_chip amd_ir_chip = {
4057 .name = "AMD-IR",
4058 .irq_ack = apic_ack_irq,
4059 .irq_set_affinity = amd_ir_set_affinity,
4060 .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
4061 .irq_compose_msi_msg = ir_compose_msi_msg,
4062 };
4063
4064 static const struct msi_parent_ops amdvi_msi_parent_ops = {
4065 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED | MSI_FLAG_MULTI_PCI_MSI,
4066 .bus_select_token = DOMAIN_BUS_AMDVI,
4067 .bus_select_mask = MATCH_PCI_MSI,
4068 .prefix = "IR-",
4069 .init_dev_msi_info = msi_parent_init_dev_msi_info,
4070 };
4071
amd_iommu_create_irq_domain(struct amd_iommu * iommu)4072 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4073 {
4074 struct irq_domain_info info = {
4075 .fwnode = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index),
4076 .ops = &amd_ir_domain_ops,
4077 .domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI,
4078 .host_data = iommu,
4079 .parent = arch_get_ir_parent_domain(),
4080 };
4081
4082 if (!info.fwnode)
4083 return -ENOMEM;
4084
4085 iommu->ir_domain = msi_create_parent_irq_domain(&info, &amdvi_msi_parent_ops);
4086 if (!iommu->ir_domain) {
4087 irq_domain_free_fwnode(info.fwnode);
4088 return -ENOMEM;
4089 }
4090 return 0;
4091 }
4092 #endif
4093
4094 MODULE_IMPORT_NS("GENERIC_PT_IOMMU");
4095