xref: /linux/drivers/iommu/amd/iommu.c (revision ce5cfb0fa20dc6454da039612e34325b7b4a8243)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4  * Author: Joerg Roedel <jroedel@suse.de>
5  *         Leo Duran <leo.duran@amd.com>
6  */
7 
8 #define pr_fmt(fmt)     "AMD-Vi: " fmt
9 #define dev_fmt(fmt)    pr_fmt(fmt)
10 
11 #include <linux/ratelimit.h>
12 #include <linux/pci.h>
13 #include <linux/acpi.h>
14 #include <linux/pci-ats.h>
15 #include <linux/bitmap.h>
16 #include <linux/slab.h>
17 #include <linux/string_choices.h>
18 #include <linux/debugfs.h>
19 #include <linux/scatterlist.h>
20 #include <linux/dma-map-ops.h>
21 #include <linux/dma-direct.h>
22 #include <linux/idr.h>
23 #include <linux/iommu-helper.h>
24 #include <linux/delay.h>
25 #include <linux/amd-iommu.h>
26 #include <linux/notifier.h>
27 #include <linux/export.h>
28 #include <linux/irq.h>
29 #include <linux/irqchip/irq-msi-lib.h>
30 #include <linux/msi.h>
31 #include <linux/irqdomain.h>
32 #include <linux/percpu.h>
33 #include <linux/cc_platform.h>
34 #include <asm/irq_remapping.h>
35 #include <asm/io_apic.h>
36 #include <asm/apic.h>
37 #include <asm/hw_irq.h>
38 #include <asm/proto.h>
39 #include <asm/iommu.h>
40 #include <asm/gart.h>
41 #include <asm/dma.h>
42 #include <uapi/linux/iommufd.h>
43 #include <linux/generic_pt/iommu.h>
44 
45 #include "amd_iommu.h"
46 #include "../irq_remapping.h"
47 #include "../iommu-pages.h"
48 
49 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
50 
51 /* Reserved IOVA ranges */
52 #define MSI_RANGE_START		(0xfee00000)
53 #define MSI_RANGE_END		(0xfeefffff)
54 #define HT_RANGE_START		(0xfd00000000ULL)
55 #define HT_RANGE_END		(0xffffffffffULL)
56 
57 LIST_HEAD(ioapic_map);
58 LIST_HEAD(hpet_map);
59 LIST_HEAD(acpihid_map);
60 
61 const struct iommu_ops amd_iommu_ops;
62 
63 int amd_iommu_max_glx_val = -1;
64 
65 /*
66  * AMD IOMMU allows up to 2^16 different protection domains. This is a bitmap
67  * to know which ones are already in use.
68  */
69 DEFINE_IDA(pdom_ids);
70 
71 static int amd_iommu_attach_device(struct iommu_domain *dom, struct device *dev,
72 				   struct iommu_domain *old);
73 
74 static void set_dte_entry(struct amd_iommu *iommu,
75 			  struct iommu_dev_data *dev_data,
76 			  phys_addr_t top_paddr, unsigned int top_level);
77 
78 static void amd_iommu_change_top(struct pt_iommu *iommu_table,
79 				 phys_addr_t top_paddr, unsigned int top_level);
80 
81 static void iommu_flush_dte_sync(struct amd_iommu *iommu, u16 devid);
82 
83 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid);
84 static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain);
85 static int amd_iommu_set_dirty_tracking(struct iommu_domain *domain,
86 					bool enable);
87 
88 /****************************************************************************
89  *
90  * Helper functions
91  *
92  ****************************************************************************/
93 
amd_iommu_atomic128_set(__int128 * ptr,__int128 val)94 static __always_inline void amd_iommu_atomic128_set(__int128 *ptr, __int128 val)
95 {
96 	/*
97 	 * Note:
98 	 * We use arch_cmpxchg128_local() because:
99 	 * - Need cmpxchg16b instruction mainly for 128-bit store to DTE
100 	 *   (not necessary for cmpxchg since this function is already
101 	 *   protected by a spin_lock for this DTE).
102 	 * - Neither need LOCK_PREFIX nor try loop because of the spin_lock.
103 	 */
104 	arch_cmpxchg128_local(ptr, *ptr, val);
105 }
106 
write_dte_upper128(struct dev_table_entry * ptr,struct dev_table_entry * new)107 static void write_dte_upper128(struct dev_table_entry *ptr, struct dev_table_entry *new)
108 {
109 	struct dev_table_entry old;
110 
111 	old.data128[1] = ptr->data128[1];
112 	/*
113 	 * Preserve DTE_DATA2_INTR_MASK. This needs to be
114 	 * done here since it requires to be inside
115 	 * spin_lock(&dev_data->dte_lock) context.
116 	 */
117 	new->data[2] &= ~DTE_DATA2_INTR_MASK;
118 	new->data[2] |= old.data[2] & DTE_DATA2_INTR_MASK;
119 
120 	amd_iommu_atomic128_set(&ptr->data128[1], new->data128[1]);
121 }
122 
write_dte_lower128(struct dev_table_entry * ptr,struct dev_table_entry * new)123 static void write_dte_lower128(struct dev_table_entry *ptr, struct dev_table_entry *new)
124 {
125 	amd_iommu_atomic128_set(&ptr->data128[0], new->data128[0]);
126 }
127 
128 /*
129  * Note:
130  * IOMMU reads the entire Device Table entry in a single 256-bit transaction
131  * but the driver is programming DTE using 2 128-bit cmpxchg. So, the driver
132  * need to ensure the following:
133  *   - DTE[V|GV] bit is being written last when setting.
134  *   - DTE[V|GV] bit is being written first when clearing.
135  *
136  * This function is used only by code, which updates DMA translation part of the DTE.
137  * So, only consider control bits related to DMA when updating the entry.
138  */
update_dte256(struct amd_iommu * iommu,struct iommu_dev_data * dev_data,struct dev_table_entry * new)139 static void update_dte256(struct amd_iommu *iommu, struct iommu_dev_data *dev_data,
140 			  struct dev_table_entry *new)
141 {
142 	unsigned long flags;
143 	struct dev_table_entry *dev_table = get_dev_table(iommu);
144 	struct dev_table_entry *ptr = &dev_table[dev_data->devid];
145 
146 	spin_lock_irqsave(&dev_data->dte_lock, flags);
147 
148 	if (!(ptr->data[0] & DTE_FLAG_V)) {
149 		/* Existing DTE is not valid. */
150 		write_dte_upper128(ptr, new);
151 		write_dte_lower128(ptr, new);
152 		iommu_flush_dte_sync(iommu, dev_data->devid);
153 	} else if (!(new->data[0] & DTE_FLAG_V)) {
154 		/* Existing DTE is valid. New DTE is not valid.  */
155 		write_dte_lower128(ptr, new);
156 		write_dte_upper128(ptr, new);
157 		iommu_flush_dte_sync(iommu, dev_data->devid);
158 	} else if (!FIELD_GET(DTE_FLAG_GV, ptr->data[0])) {
159 		/*
160 		 * Both DTEs are valid.
161 		 * Existing DTE has no guest page table.
162 		 */
163 		write_dte_upper128(ptr, new);
164 		write_dte_lower128(ptr, new);
165 		iommu_flush_dte_sync(iommu, dev_data->devid);
166 	} else if (!FIELD_GET(DTE_FLAG_GV, new->data[0])) {
167 		/*
168 		 * Both DTEs are valid.
169 		 * Existing DTE has guest page table,
170 		 * new DTE has no guest page table,
171 		 */
172 		write_dte_lower128(ptr, new);
173 		write_dte_upper128(ptr, new);
174 		iommu_flush_dte_sync(iommu, dev_data->devid);
175 	} else if (FIELD_GET(DTE_GPT_LEVEL_MASK, ptr->data[2]) !=
176 		   FIELD_GET(DTE_GPT_LEVEL_MASK, new->data[2])) {
177 		/*
178 		 * Both DTEs are valid and have guest page table,
179 		 * but have different number of levels. So, we need
180 		 * to upadte both upper and lower 128-bit value, which
181 		 * require disabling and flushing.
182 		 */
183 		struct dev_table_entry clear = {};
184 
185 		/* First disable DTE */
186 		write_dte_lower128(ptr, &clear);
187 		iommu_flush_dte_sync(iommu, dev_data->devid);
188 
189 		/* Then update DTE */
190 		write_dte_upper128(ptr, new);
191 		write_dte_lower128(ptr, new);
192 		iommu_flush_dte_sync(iommu, dev_data->devid);
193 	} else {
194 		/*
195 		 * Both DTEs are valid and have guest page table,
196 		 * and same number of levels. We just need to only
197 		 * update the lower 128-bit. So no need to disable DTE.
198 		 */
199 		write_dte_lower128(ptr, new);
200 	}
201 
202 	spin_unlock_irqrestore(&dev_data->dte_lock, flags);
203 }
204 
get_dte256(struct amd_iommu * iommu,struct iommu_dev_data * dev_data,struct dev_table_entry * dte)205 static void get_dte256(struct amd_iommu *iommu, struct iommu_dev_data *dev_data,
206 		      struct dev_table_entry *dte)
207 {
208 	unsigned long flags;
209 	struct dev_table_entry *ptr;
210 	struct dev_table_entry *dev_table = get_dev_table(iommu);
211 
212 	ptr = &dev_table[dev_data->devid];
213 
214 	spin_lock_irqsave(&dev_data->dte_lock, flags);
215 	dte->data128[0] = ptr->data128[0];
216 	dte->data128[1] = ptr->data128[1];
217 	spin_unlock_irqrestore(&dev_data->dte_lock, flags);
218 }
219 
pdom_is_v2_pgtbl_mode(struct protection_domain * pdom)220 static inline bool pdom_is_v2_pgtbl_mode(struct protection_domain *pdom)
221 {
222 	return (pdom && (pdom->pd_mode == PD_MODE_V2));
223 }
224 
pdom_is_in_pt_mode(struct protection_domain * pdom)225 static inline bool pdom_is_in_pt_mode(struct protection_domain *pdom)
226 {
227 	return (pdom->domain.type == IOMMU_DOMAIN_IDENTITY);
228 }
229 
230 /*
231  * We cannot support PASID w/ existing v1 page table in the same domain
232  * since it will be nested. However, existing domain w/ v2 page table
233  * or passthrough mode can be used for PASID.
234  */
pdom_is_sva_capable(struct protection_domain * pdom)235 static inline bool pdom_is_sva_capable(struct protection_domain *pdom)
236 {
237 	return pdom_is_v2_pgtbl_mode(pdom) || pdom_is_in_pt_mode(pdom);
238 }
239 
get_acpihid_device_id(struct device * dev,struct acpihid_map_entry ** entry)240 static inline int get_acpihid_device_id(struct device *dev,
241 					struct acpihid_map_entry **entry)
242 {
243 	struct acpi_device *adev = ACPI_COMPANION(dev);
244 	struct acpihid_map_entry *p, *p1 = NULL;
245 	int hid_count = 0;
246 	bool fw_bug;
247 
248 	if (!adev)
249 		return -ENODEV;
250 
251 	list_for_each_entry(p, &acpihid_map, list) {
252 		if (acpi_dev_hid_uid_match(adev, p->hid,
253 					   p->uid[0] ? p->uid : NULL)) {
254 			p1 = p;
255 			fw_bug = false;
256 			hid_count = 1;
257 			break;
258 		}
259 
260 		/*
261 		 * Count HID matches w/o UID, raise FW_BUG but allow exactly one match
262 		 */
263 		if (acpi_dev_hid_match(adev, p->hid)) {
264 			p1 = p;
265 			hid_count++;
266 			fw_bug = true;
267 		}
268 	}
269 
270 	if (!p1)
271 		return -EINVAL;
272 	if (fw_bug)
273 		dev_err_once(dev, FW_BUG "No ACPI device matched UID, but %d device%s matched HID.\n",
274 			     hid_count, str_plural(hid_count));
275 	if (hid_count > 1)
276 		return -EINVAL;
277 	if (entry)
278 		*entry = p1;
279 
280 	return p1->devid;
281 }
282 
get_device_sbdf_id(struct device * dev)283 static inline int get_device_sbdf_id(struct device *dev)
284 {
285 	int sbdf;
286 
287 	if (dev_is_pci(dev))
288 		sbdf = get_pci_sbdf_id(to_pci_dev(dev));
289 	else
290 		sbdf = get_acpihid_device_id(dev, NULL);
291 
292 	return sbdf;
293 }
294 
get_dev_table(struct amd_iommu * iommu)295 struct dev_table_entry *get_dev_table(struct amd_iommu *iommu)
296 {
297 	struct dev_table_entry *dev_table;
298 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
299 
300 	BUG_ON(pci_seg == NULL);
301 	dev_table = pci_seg->dev_table;
302 	BUG_ON(dev_table == NULL);
303 
304 	return dev_table;
305 }
306 
get_device_segment(struct device * dev)307 static inline u16 get_device_segment(struct device *dev)
308 {
309 	u16 seg;
310 
311 	if (dev_is_pci(dev)) {
312 		struct pci_dev *pdev = to_pci_dev(dev);
313 
314 		seg = pci_domain_nr(pdev->bus);
315 	} else {
316 		u32 devid = get_acpihid_device_id(dev, NULL);
317 
318 		seg = PCI_SBDF_TO_SEGID(devid);
319 	}
320 
321 	return seg;
322 }
323 
324 /* Writes the specific IOMMU for a device into the PCI segment rlookup table */
amd_iommu_set_rlookup_table(struct amd_iommu * iommu,u16 devid)325 void amd_iommu_set_rlookup_table(struct amd_iommu *iommu, u16 devid)
326 {
327 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
328 
329 	pci_seg->rlookup_table[devid] = iommu;
330 }
331 
__rlookup_amd_iommu(u16 seg,u16 devid)332 static struct amd_iommu *__rlookup_amd_iommu(u16 seg, u16 devid)
333 {
334 	struct amd_iommu_pci_seg *pci_seg;
335 
336 	for_each_pci_segment(pci_seg) {
337 		if (pci_seg->id == seg)
338 			return pci_seg->rlookup_table[devid];
339 	}
340 	return NULL;
341 }
342 
rlookup_amd_iommu(struct device * dev)343 static struct amd_iommu *rlookup_amd_iommu(struct device *dev)
344 {
345 	u16 seg = get_device_segment(dev);
346 	int devid = get_device_sbdf_id(dev);
347 
348 	if (devid < 0)
349 		return NULL;
350 	return __rlookup_amd_iommu(seg, PCI_SBDF_TO_DEVID(devid));
351 }
352 
alloc_dev_data(struct amd_iommu * iommu,u16 devid)353 static struct iommu_dev_data *alloc_dev_data(struct amd_iommu *iommu, u16 devid)
354 {
355 	struct iommu_dev_data *dev_data;
356 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
357 
358 	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
359 	if (!dev_data)
360 		return NULL;
361 
362 	mutex_init(&dev_data->mutex);
363 	spin_lock_init(&dev_data->dte_lock);
364 	dev_data->devid = devid;
365 	ratelimit_default_init(&dev_data->rs);
366 
367 	llist_add(&dev_data->dev_data_list, &pci_seg->dev_data_list);
368 	return dev_data;
369 }
370 
search_dev_data(struct amd_iommu * iommu,u16 devid)371 struct iommu_dev_data *search_dev_data(struct amd_iommu *iommu, u16 devid)
372 {
373 	struct iommu_dev_data *dev_data;
374 	struct llist_node *node;
375 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
376 
377 	if (llist_empty(&pci_seg->dev_data_list))
378 		return NULL;
379 
380 	node = pci_seg->dev_data_list.first;
381 	llist_for_each_entry(dev_data, node, dev_data_list) {
382 		if (dev_data->devid == devid)
383 			return dev_data;
384 	}
385 
386 	return NULL;
387 }
388 
clone_alias(struct pci_dev * pdev,u16 alias,void * data)389 static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
390 {
391 	struct dev_table_entry new;
392 	struct amd_iommu *iommu;
393 	struct iommu_dev_data *dev_data, *alias_data;
394 	u16 devid = pci_dev_id(pdev);
395 	int ret = 0;
396 
397 	if (devid == alias)
398 		return 0;
399 
400 	iommu = rlookup_amd_iommu(&pdev->dev);
401 	if (!iommu)
402 		return 0;
403 
404 	/* Copy the data from pdev */
405 	dev_data = dev_iommu_priv_get(&pdev->dev);
406 	if (!dev_data) {
407 		pr_err("%s : Failed to get dev_data for 0x%x\n", __func__, devid);
408 		ret = -EINVAL;
409 		goto out;
410 	}
411 	get_dte256(iommu, dev_data, &new);
412 
413 	/* Setup alias */
414 	alias_data = find_dev_data(iommu, alias);
415 	if (!alias_data) {
416 		pr_err("%s : Failed to get alias dev_data for 0x%x\n", __func__, alias);
417 		ret = -EINVAL;
418 		goto out;
419 	}
420 	update_dte256(iommu, alias_data, &new);
421 
422 	amd_iommu_set_rlookup_table(iommu, alias);
423 out:
424 	return ret;
425 }
426 
clone_aliases(struct amd_iommu * iommu,struct device * dev)427 static void clone_aliases(struct amd_iommu *iommu, struct device *dev)
428 {
429 	struct pci_dev *pdev;
430 
431 	if (!dev_is_pci(dev))
432 		return;
433 	pdev = to_pci_dev(dev);
434 
435 	/*
436 	 * The IVRS alias stored in the alias table may not be
437 	 * part of the PCI DMA aliases if it's bus differs
438 	 * from the original device.
439 	 */
440 	clone_alias(pdev, iommu->pci_seg->alias_table[pci_dev_id(pdev)], NULL);
441 
442 	pci_for_each_dma_alias(pdev, clone_alias, NULL);
443 }
444 
setup_aliases(struct amd_iommu * iommu,struct device * dev)445 static void setup_aliases(struct amd_iommu *iommu, struct device *dev)
446 {
447 	struct pci_dev *pdev = to_pci_dev(dev);
448 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
449 	u16 ivrs_alias;
450 
451 	/* For ACPI HID devices, there are no aliases */
452 	if (!dev_is_pci(dev))
453 		return;
454 
455 	/*
456 	 * Add the IVRS alias to the pci aliases if it is on the same
457 	 * bus. The IVRS table may know about a quirk that we don't.
458 	 */
459 	ivrs_alias = pci_seg->alias_table[pci_dev_id(pdev)];
460 	if (ivrs_alias != pci_dev_id(pdev) &&
461 	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number)
462 		pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1);
463 
464 	clone_aliases(iommu, dev);
465 }
466 
find_dev_data(struct amd_iommu * iommu,u16 devid)467 static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid)
468 {
469 	struct iommu_dev_data *dev_data;
470 
471 	dev_data = search_dev_data(iommu, devid);
472 
473 	if (dev_data == NULL) {
474 		dev_data = alloc_dev_data(iommu, devid);
475 		if (!dev_data)
476 			return NULL;
477 
478 		if (translation_pre_enabled(iommu))
479 			dev_data->defer_attach = true;
480 	}
481 
482 	return dev_data;
483 }
484 
485 /*
486 * Find or create an IOMMU group for a acpihid device.
487 */
acpihid_device_group(struct device * dev)488 static struct iommu_group *acpihid_device_group(struct device *dev)
489 {
490 	struct acpihid_map_entry *p, *entry = NULL;
491 	int devid;
492 
493 	devid = get_acpihid_device_id(dev, &entry);
494 	if (devid < 0)
495 		return ERR_PTR(devid);
496 
497 	list_for_each_entry(p, &acpihid_map, list) {
498 		if ((devid == p->devid) && p->group)
499 			entry->group = p->group;
500 	}
501 
502 	if (!entry->group)
503 		entry->group = generic_device_group(dev);
504 	else
505 		iommu_group_ref_get(entry->group);
506 
507 	return entry->group;
508 }
509 
pdev_pasid_supported(struct iommu_dev_data * dev_data)510 static inline bool pdev_pasid_supported(struct iommu_dev_data *dev_data)
511 {
512 	return (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP);
513 }
514 
pdev_get_caps(struct pci_dev * pdev)515 static u32 pdev_get_caps(struct pci_dev *pdev)
516 {
517 	int features;
518 	u32 flags = 0;
519 
520 	if (pci_ats_supported(pdev))
521 		flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
522 
523 	if (pci_pri_supported(pdev))
524 		flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
525 
526 	features = pci_pasid_features(pdev);
527 	if (features >= 0) {
528 		flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
529 
530 		if (features & PCI_PASID_CAP_EXEC)
531 			flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
532 
533 		if (features & PCI_PASID_CAP_PRIV)
534 			flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
535 	}
536 
537 	return flags;
538 }
539 
pdev_enable_cap_ats(struct pci_dev * pdev)540 static inline int pdev_enable_cap_ats(struct pci_dev *pdev)
541 {
542 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
543 	int ret = -EINVAL;
544 
545 	if (dev_data->ats_enabled)
546 		return 0;
547 
548 	if (amd_iommu_iotlb_sup &&
549 	    (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_ATS_SUP)) {
550 		ret = pci_enable_ats(pdev, PAGE_SHIFT);
551 		if (!ret) {
552 			dev_data->ats_enabled = 1;
553 			dev_data->ats_qdep    = pci_ats_queue_depth(pdev);
554 		}
555 	}
556 
557 	return ret;
558 }
559 
pdev_disable_cap_ats(struct pci_dev * pdev)560 static inline void pdev_disable_cap_ats(struct pci_dev *pdev)
561 {
562 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
563 
564 	if (dev_data->ats_enabled) {
565 		pci_disable_ats(pdev);
566 		dev_data->ats_enabled = 0;
567 	}
568 }
569 
pdev_enable_cap_pri(struct pci_dev * pdev)570 static inline int pdev_enable_cap_pri(struct pci_dev *pdev)
571 {
572 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
573 	int ret = -EINVAL;
574 
575 	if (dev_data->pri_enabled)
576 		return 0;
577 
578 	if (!dev_data->ats_enabled)
579 		return 0;
580 
581 	if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PRI_SUP) {
582 		/*
583 		 * First reset the PRI state of the device.
584 		 * FIXME: Hardcode number of outstanding requests for now
585 		 */
586 		if (!pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32)) {
587 			dev_data->pri_enabled = 1;
588 			dev_data->pri_tlp     = pci_prg_resp_pasid_required(pdev);
589 
590 			ret = 0;
591 		}
592 	}
593 
594 	return ret;
595 }
596 
pdev_disable_cap_pri(struct pci_dev * pdev)597 static inline void pdev_disable_cap_pri(struct pci_dev *pdev)
598 {
599 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
600 
601 	if (dev_data->pri_enabled) {
602 		pci_disable_pri(pdev);
603 		dev_data->pri_enabled = 0;
604 	}
605 }
606 
pdev_enable_cap_pasid(struct pci_dev * pdev)607 static inline int pdev_enable_cap_pasid(struct pci_dev *pdev)
608 {
609 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
610 	int ret = -EINVAL;
611 
612 	if (dev_data->pasid_enabled)
613 		return 0;
614 
615 	if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP) {
616 		/* Only allow access to user-accessible pages */
617 		ret = pci_enable_pasid(pdev, 0);
618 		if (!ret)
619 			dev_data->pasid_enabled = 1;
620 	}
621 
622 	return ret;
623 }
624 
pdev_disable_cap_pasid(struct pci_dev * pdev)625 static inline void pdev_disable_cap_pasid(struct pci_dev *pdev)
626 {
627 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
628 
629 	if (dev_data->pasid_enabled) {
630 		pci_disable_pasid(pdev);
631 		dev_data->pasid_enabled = 0;
632 	}
633 }
634 
pdev_enable_caps(struct pci_dev * pdev)635 static void pdev_enable_caps(struct pci_dev *pdev)
636 {
637 	pdev_enable_cap_pasid(pdev);
638 	pdev_enable_cap_ats(pdev);
639 	pdev_enable_cap_pri(pdev);
640 }
641 
pdev_disable_caps(struct pci_dev * pdev)642 static void pdev_disable_caps(struct pci_dev *pdev)
643 {
644 	pdev_disable_cap_ats(pdev);
645 	pdev_disable_cap_pasid(pdev);
646 	pdev_disable_cap_pri(pdev);
647 }
648 
649 /*
650  * This function checks if the driver got a valid device from the caller to
651  * avoid dereferencing invalid pointers.
652  */
check_device(struct device * dev)653 static bool check_device(struct device *dev)
654 {
655 	struct amd_iommu_pci_seg *pci_seg;
656 	struct amd_iommu *iommu;
657 	int devid, sbdf;
658 
659 	if (!dev)
660 		return false;
661 
662 	sbdf = get_device_sbdf_id(dev);
663 	if (sbdf < 0)
664 		return false;
665 	devid = PCI_SBDF_TO_DEVID(sbdf);
666 
667 	iommu = rlookup_amd_iommu(dev);
668 	if (!iommu)
669 		return false;
670 
671 	/* Out of our scope? */
672 	pci_seg = iommu->pci_seg;
673 	if (devid > pci_seg->last_bdf)
674 		return false;
675 
676 	return true;
677 }
678 
iommu_init_device(struct amd_iommu * iommu,struct device * dev)679 static int iommu_init_device(struct amd_iommu *iommu, struct device *dev)
680 {
681 	struct iommu_dev_data *dev_data;
682 	int devid, sbdf;
683 
684 	if (dev_iommu_priv_get(dev))
685 		return 0;
686 
687 	sbdf = get_device_sbdf_id(dev);
688 	if (sbdf < 0)
689 		return sbdf;
690 
691 	devid = PCI_SBDF_TO_DEVID(sbdf);
692 	dev_data = find_dev_data(iommu, devid);
693 	if (!dev_data)
694 		return -ENOMEM;
695 
696 	dev_data->dev = dev;
697 
698 	/*
699 	 * The dev_iommu_priv_set() needes to be called before setup_aliases.
700 	 * Otherwise, subsequent call to dev_iommu_priv_get() will fail.
701 	 */
702 	dev_iommu_priv_set(dev, dev_data);
703 	setup_aliases(iommu, dev);
704 
705 	/*
706 	 * By default we use passthrough mode for IOMMUv2 capable device.
707 	 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
708 	 * invalid address), we ignore the capability for the device so
709 	 * it'll be forced to go into translation mode.
710 	 */
711 	if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
712 	    dev_is_pci(dev) && amd_iommu_gt_ppr_supported()) {
713 		dev_data->flags = pdev_get_caps(to_pci_dev(dev));
714 	}
715 
716 	return 0;
717 }
718 
iommu_ignore_device(struct amd_iommu * iommu,struct device * dev)719 static void iommu_ignore_device(struct amd_iommu *iommu, struct device *dev)
720 {
721 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
722 	struct dev_table_entry *dev_table = get_dev_table(iommu);
723 	int devid, sbdf;
724 
725 	sbdf = get_device_sbdf_id(dev);
726 	if (sbdf < 0)
727 		return;
728 
729 	devid = PCI_SBDF_TO_DEVID(sbdf);
730 	pci_seg->rlookup_table[devid] = NULL;
731 	memset(&dev_table[devid], 0, sizeof(struct dev_table_entry));
732 
733 	setup_aliases(iommu, dev);
734 }
735 
736 
737 /****************************************************************************
738  *
739  * Interrupt handling functions
740  *
741  ****************************************************************************/
742 
dump_dte_entry(struct amd_iommu * iommu,u16 devid)743 static void dump_dte_entry(struct amd_iommu *iommu, u16 devid)
744 {
745 	int i;
746 	struct dev_table_entry dte;
747 	struct iommu_dev_data *dev_data = find_dev_data(iommu, devid);
748 
749 	get_dte256(iommu, dev_data, &dte);
750 
751 	for (i = 0; i < 4; ++i)
752 		pr_err("DTE[%d]: %016llx\n", i, dte.data[i]);
753 }
754 
dump_command(unsigned long phys_addr)755 static void dump_command(unsigned long phys_addr)
756 {
757 	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
758 	int i;
759 
760 	for (i = 0; i < 4; ++i)
761 		pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
762 }
763 
amd_iommu_report_rmp_hw_error(struct amd_iommu * iommu,volatile u32 * event)764 static void amd_iommu_report_rmp_hw_error(struct amd_iommu *iommu, volatile u32 *event)
765 {
766 	struct iommu_dev_data *dev_data = NULL;
767 	int devid, vmg_tag, flags;
768 	struct pci_dev *pdev;
769 	u64 spa;
770 
771 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
772 	vmg_tag = (event[1]) & 0xFFFF;
773 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
774 	spa     = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8);
775 
776 	pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
777 					   devid & 0xff);
778 	if (pdev)
779 		dev_data = dev_iommu_priv_get(&pdev->dev);
780 
781 	if (dev_data) {
782 		if (__ratelimit(&dev_data->rs)) {
783 			pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
784 				vmg_tag, spa, flags);
785 		}
786 	} else {
787 		pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
788 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
789 			vmg_tag, spa, flags);
790 	}
791 
792 	if (pdev)
793 		pci_dev_put(pdev);
794 }
795 
amd_iommu_report_rmp_fault(struct amd_iommu * iommu,volatile u32 * event)796 static void amd_iommu_report_rmp_fault(struct amd_iommu *iommu, volatile u32 *event)
797 {
798 	struct iommu_dev_data *dev_data = NULL;
799 	int devid, flags_rmp, vmg_tag, flags;
800 	struct pci_dev *pdev;
801 	u64 gpa;
802 
803 	devid     = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
804 	flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF;
805 	vmg_tag   = (event[1]) & 0xFFFF;
806 	flags     = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
807 	gpa       = ((u64)event[3] << 32) | event[2];
808 
809 	pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
810 					   devid & 0xff);
811 	if (pdev)
812 		dev_data = dev_iommu_priv_get(&pdev->dev);
813 
814 	if (dev_data) {
815 		if (__ratelimit(&dev_data->rs)) {
816 			pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
817 				vmg_tag, gpa, flags_rmp, flags);
818 		}
819 	} else {
820 		pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
821 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
822 			vmg_tag, gpa, flags_rmp, flags);
823 	}
824 
825 	if (pdev)
826 		pci_dev_put(pdev);
827 }
828 
829 #define IS_IOMMU_MEM_TRANSACTION(flags)		\
830 	(((flags) & EVENT_FLAG_I) == 0)
831 
832 #define IS_WRITE_REQUEST(flags)			\
833 	((flags) & EVENT_FLAG_RW)
834 
amd_iommu_report_page_fault(struct amd_iommu * iommu,u16 devid,u16 domain_id,u64 address,int flags)835 static void amd_iommu_report_page_fault(struct amd_iommu *iommu,
836 					u16 devid, u16 domain_id,
837 					u64 address, int flags)
838 {
839 	struct iommu_dev_data *dev_data = NULL;
840 	struct pci_dev *pdev;
841 
842 	pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
843 					   devid & 0xff);
844 	if (pdev)
845 		dev_data = dev_iommu_priv_get(&pdev->dev);
846 
847 	if (dev_data) {
848 		/*
849 		 * If this is a DMA fault (for which the I(nterrupt)
850 		 * bit will be unset), allow report_iommu_fault() to
851 		 * prevent logging it.
852 		 */
853 		if (IS_IOMMU_MEM_TRANSACTION(flags)) {
854 			/* Device not attached to domain properly */
855 			if (dev_data->domain == NULL) {
856 				pr_err_ratelimited("Event logged [Device not attached to domain properly]\n");
857 				pr_err_ratelimited("  device=%04x:%02x:%02x.%x domain=0x%04x\n",
858 						   iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid),
859 						   PCI_FUNC(devid), domain_id);
860 				goto out;
861 			}
862 
863 			if (!report_iommu_fault(&dev_data->domain->domain,
864 						&pdev->dev, address,
865 						IS_WRITE_REQUEST(flags) ?
866 							IOMMU_FAULT_WRITE :
867 							IOMMU_FAULT_READ))
868 				goto out;
869 		}
870 
871 		if (__ratelimit(&dev_data->rs)) {
872 			pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
873 				domain_id, address, flags);
874 		}
875 	} else {
876 		pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%04x:%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
877 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
878 			domain_id, address, flags);
879 	}
880 
881 out:
882 	if (pdev)
883 		pci_dev_put(pdev);
884 }
885 
iommu_print_event(struct amd_iommu * iommu,void * __evt)886 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
887 {
888 	struct device *dev = iommu->iommu.dev;
889 	int type, devid, flags, tag;
890 	volatile u32 *event = __evt;
891 	int count = 0;
892 	u64 address, ctrl;
893 	u32 pasid;
894 
895 retry:
896 	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
897 	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
898 	pasid   = (event[0] & EVENT_DOMID_MASK_HI) |
899 		  (event[1] & EVENT_DOMID_MASK_LO);
900 	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
901 	address = (u64)(((u64)event[3]) << 32) | event[2];
902 	ctrl    = readq(iommu->mmio_base + MMIO_CONTROL_OFFSET);
903 
904 	if (type == 0) {
905 		/* Did we hit the erratum? */
906 		if (++count == LOOP_TIMEOUT) {
907 			pr_err("No event written to event log\n");
908 			return;
909 		}
910 		udelay(1);
911 		goto retry;
912 	}
913 
914 	if (type == EVENT_TYPE_IO_FAULT) {
915 		amd_iommu_report_page_fault(iommu, devid, pasid, address, flags);
916 		return;
917 	}
918 
919 	switch (type) {
920 	case EVENT_TYPE_ILL_DEV:
921 		dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
922 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
923 			pasid, address, flags);
924 		dev_err(dev, "Control Reg : 0x%llx\n", ctrl);
925 		dump_dte_entry(iommu, devid);
926 		break;
927 	case EVENT_TYPE_DEV_TAB_ERR:
928 		dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x "
929 			"address=0x%llx flags=0x%04x]\n",
930 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
931 			address, flags);
932 		break;
933 	case EVENT_TYPE_PAGE_TAB_ERR:
934 		dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
935 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
936 			pasid, address, flags);
937 		break;
938 	case EVENT_TYPE_ILL_CMD:
939 		dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
940 		dump_command(address);
941 		break;
942 	case EVENT_TYPE_CMD_HARD_ERR:
943 		dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
944 			address, flags);
945 		break;
946 	case EVENT_TYPE_IOTLB_INV_TO:
947 		dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%04x:%02x:%02x.%x address=0x%llx]\n",
948 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
949 			address);
950 		break;
951 	case EVENT_TYPE_INV_DEV_REQ:
952 		dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
953 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
954 			pasid, address, flags);
955 		break;
956 	case EVENT_TYPE_RMP_FAULT:
957 		amd_iommu_report_rmp_fault(iommu, event);
958 		break;
959 	case EVENT_TYPE_RMP_HW_ERR:
960 		amd_iommu_report_rmp_hw_error(iommu, event);
961 		break;
962 	case EVENT_TYPE_INV_PPR_REQ:
963 		pasid = PPR_PASID(*((u64 *)__evt));
964 		tag = event[1] & 0x03FF;
965 		dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
966 			iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
967 			pasid, address, flags, tag);
968 		break;
969 	default:
970 		dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
971 			event[0], event[1], event[2], event[3]);
972 	}
973 
974 	/*
975 	 * To detect the hardware errata 732 we need to clear the
976 	 * entry back to zero. This issue does not exist on SNP
977 	 * enabled system. Also this buffer is not writeable on
978 	 * SNP enabled system.
979 	 */
980 	if (!amd_iommu_snp_en)
981 		memset(__evt, 0, 4 * sizeof(u32));
982 }
983 
iommu_poll_events(struct amd_iommu * iommu)984 static void iommu_poll_events(struct amd_iommu *iommu)
985 {
986 	u32 head, tail;
987 
988 	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
989 	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
990 
991 	while (head != tail) {
992 		iommu_print_event(iommu, iommu->evt_buf + head);
993 
994 		/* Update head pointer of hardware ring-buffer */
995 		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
996 		writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
997 	}
998 
999 }
1000 
1001 #ifdef CONFIG_IRQ_REMAP
1002 static int (*iommu_ga_log_notifier)(u32);
1003 
amd_iommu_register_ga_log_notifier(int (* notifier)(u32))1004 int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
1005 {
1006 	iommu_ga_log_notifier = notifier;
1007 
1008 	/*
1009 	 * Ensure all in-flight IRQ handlers run to completion before returning
1010 	 * to the caller, e.g. to ensure module code isn't unloaded while it's
1011 	 * being executed in the IRQ handler.
1012 	 */
1013 	if (!notifier)
1014 		synchronize_rcu();
1015 
1016 	return 0;
1017 }
1018 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
1019 
iommu_poll_ga_log(struct amd_iommu * iommu)1020 static void iommu_poll_ga_log(struct amd_iommu *iommu)
1021 {
1022 	u32 head, tail;
1023 
1024 	if (iommu->ga_log == NULL)
1025 		return;
1026 
1027 	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
1028 	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
1029 
1030 	while (head != tail) {
1031 		volatile u64 *raw;
1032 		u64 log_entry;
1033 
1034 		raw = (u64 *)(iommu->ga_log + head);
1035 
1036 		/* Avoid memcpy function-call overhead */
1037 		log_entry = *raw;
1038 
1039 		/* Update head pointer of hardware ring-buffer */
1040 		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
1041 		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
1042 
1043 		/* Handle GA entry */
1044 		switch (GA_REQ_TYPE(log_entry)) {
1045 		case GA_GUEST_NR:
1046 			if (!iommu_ga_log_notifier)
1047 				break;
1048 
1049 			pr_debug("%s: devid=%#x, ga_tag=%#x\n",
1050 				 __func__, GA_DEVID(log_entry),
1051 				 GA_TAG(log_entry));
1052 
1053 			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
1054 				pr_err("GA log notifier failed.\n");
1055 			break;
1056 		default:
1057 			break;
1058 		}
1059 	}
1060 }
1061 
1062 static void
amd_iommu_set_pci_msi_domain(struct device * dev,struct amd_iommu * iommu)1063 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu)
1064 {
1065 	if (!irq_remapping_enabled || !dev_is_pci(dev) ||
1066 	    !pci_dev_has_default_msi_parent_domain(to_pci_dev(dev)))
1067 		return;
1068 
1069 	dev_set_msi_domain(dev, iommu->ir_domain);
1070 }
1071 
1072 #else /* CONFIG_IRQ_REMAP */
1073 static inline void
amd_iommu_set_pci_msi_domain(struct device * dev,struct amd_iommu * iommu)1074 amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { }
1075 #endif /* !CONFIG_IRQ_REMAP */
1076 
amd_iommu_handle_irq(void * data,const char * evt_type,u32 int_mask,u32 overflow_mask,void (* int_handler)(struct amd_iommu *),void (* overflow_handler)(struct amd_iommu *))1077 static void amd_iommu_handle_irq(void *data, const char *evt_type,
1078 				 u32 int_mask, u32 overflow_mask,
1079 				 void (*int_handler)(struct amd_iommu *),
1080 				 void (*overflow_handler)(struct amd_iommu *))
1081 {
1082 	struct amd_iommu *iommu = (struct amd_iommu *) data;
1083 	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
1084 	u32 mask = int_mask | overflow_mask;
1085 
1086 	while (status & mask) {
1087 		/* Enable interrupt sources again */
1088 		writel(mask, iommu->mmio_base + MMIO_STATUS_OFFSET);
1089 
1090 		if (int_handler) {
1091 			pr_devel("Processing IOMMU (ivhd%d) %s Log\n",
1092 				 iommu->index, evt_type);
1093 			int_handler(iommu);
1094 		}
1095 
1096 		if ((status & overflow_mask) && overflow_handler)
1097 			overflow_handler(iommu);
1098 
1099 		/*
1100 		 * Hardware bug: ERBT1312
1101 		 * When re-enabling interrupt (by writing 1
1102 		 * to clear the bit), the hardware might also try to set
1103 		 * the interrupt bit in the event status register.
1104 		 * In this scenario, the bit will be set, and disable
1105 		 * subsequent interrupts.
1106 		 *
1107 		 * Workaround: The IOMMU driver should read back the
1108 		 * status register and check if the interrupt bits are cleared.
1109 		 * If not, driver will need to go through the interrupt handler
1110 		 * again and re-clear the bits
1111 		 */
1112 		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
1113 	}
1114 }
1115 
amd_iommu_int_thread_evtlog(int irq,void * data)1116 irqreturn_t amd_iommu_int_thread_evtlog(int irq, void *data)
1117 {
1118 	amd_iommu_handle_irq(data, "Evt", MMIO_STATUS_EVT_INT_MASK,
1119 			     MMIO_STATUS_EVT_OVERFLOW_MASK,
1120 			     iommu_poll_events, amd_iommu_restart_event_logging);
1121 
1122 	return IRQ_HANDLED;
1123 }
1124 
amd_iommu_int_thread_pprlog(int irq,void * data)1125 irqreturn_t amd_iommu_int_thread_pprlog(int irq, void *data)
1126 {
1127 	amd_iommu_handle_irq(data, "PPR", MMIO_STATUS_PPR_INT_MASK,
1128 			     MMIO_STATUS_PPR_OVERFLOW_MASK,
1129 			     amd_iommu_poll_ppr_log, amd_iommu_restart_ppr_log);
1130 
1131 	return IRQ_HANDLED;
1132 }
1133 
amd_iommu_int_thread_galog(int irq,void * data)1134 irqreturn_t amd_iommu_int_thread_galog(int irq, void *data)
1135 {
1136 #ifdef CONFIG_IRQ_REMAP
1137 	amd_iommu_handle_irq(data, "GA", MMIO_STATUS_GALOG_INT_MASK,
1138 			     MMIO_STATUS_GALOG_OVERFLOW_MASK,
1139 			     iommu_poll_ga_log, amd_iommu_restart_ga_log);
1140 #endif
1141 
1142 	return IRQ_HANDLED;
1143 }
1144 
amd_iommu_int_thread(int irq,void * data)1145 irqreturn_t amd_iommu_int_thread(int irq, void *data)
1146 {
1147 	amd_iommu_int_thread_evtlog(irq, data);
1148 	amd_iommu_int_thread_pprlog(irq, data);
1149 	amd_iommu_int_thread_galog(irq, data);
1150 
1151 	return IRQ_HANDLED;
1152 }
1153 
amd_iommu_int_handler(int irq,void * data)1154 irqreturn_t amd_iommu_int_handler(int irq, void *data)
1155 {
1156 	return IRQ_WAKE_THREAD;
1157 }
1158 
1159 /****************************************************************************
1160  *
1161  * IOMMU command queuing functions
1162  *
1163  ****************************************************************************/
1164 
dump_command_buffer(struct amd_iommu * iommu)1165 static void dump_command_buffer(struct amd_iommu *iommu)
1166 {
1167 	struct iommu_cmd *cmd;
1168 	u32 head, tail;
1169 	int i;
1170 
1171 	head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
1172 	tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
1173 
1174 	pr_err("CMD Buffer head=%llu tail=%llu\n", MMIO_CMD_BUFFER_HEAD(head),
1175 	       MMIO_CMD_BUFFER_TAIL(tail));
1176 
1177 	for (i = 0; i < CMD_BUFFER_ENTRIES; i++) {
1178 		cmd = (struct iommu_cmd *)(iommu->cmd_buf + i * sizeof(*cmd));
1179 		pr_err("%3d: %08x %08x %08x %08x\n", i, cmd->data[0], cmd->data[1], cmd->data[2],
1180 		       cmd->data[3]);
1181 	}
1182 }
1183 
wait_on_sem(struct amd_iommu * iommu,u64 data)1184 static int wait_on_sem(struct amd_iommu *iommu, u64 data)
1185 {
1186 	int i = 0;
1187 
1188 	while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) {
1189 		udelay(1);
1190 		i += 1;
1191 	}
1192 
1193 	if (i == LOOP_TIMEOUT) {
1194 
1195 		pr_alert("IOMMU %04x:%02x:%02x.%01x: Completion-Wait loop timed out\n",
1196 			 iommu->pci_seg->id, PCI_BUS_NUM(iommu->devid),
1197 			 PCI_SLOT(iommu->devid), PCI_FUNC(iommu->devid));
1198 
1199 		if (amd_iommu_dump)
1200 			DO_ONCE_LITE(dump_command_buffer, iommu);
1201 
1202 		return -EIO;
1203 	}
1204 
1205 	return 0;
1206 }
1207 
copy_cmd_to_buffer(struct amd_iommu * iommu,struct iommu_cmd * cmd)1208 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
1209 			       struct iommu_cmd *cmd)
1210 {
1211 	u8 *target;
1212 	u32 tail;
1213 
1214 	/* Copy command to buffer */
1215 	tail = iommu->cmd_buf_tail;
1216 	target = iommu->cmd_buf + tail;
1217 	memcpy(target, cmd, sizeof(*cmd));
1218 
1219 	tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1220 	iommu->cmd_buf_tail = tail;
1221 
1222 	/* Tell the IOMMU about it */
1223 	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
1224 }
1225 
build_completion_wait(struct iommu_cmd * cmd,struct amd_iommu * iommu,u64 data)1226 static void build_completion_wait(struct iommu_cmd *cmd,
1227 				  struct amd_iommu *iommu,
1228 				  u64 data)
1229 {
1230 	u64 paddr = iommu->cmd_sem_paddr;
1231 
1232 	memset(cmd, 0, sizeof(*cmd));
1233 	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
1234 	cmd->data[1] = upper_32_bits(paddr);
1235 	cmd->data[2] = lower_32_bits(data);
1236 	cmd->data[3] = upper_32_bits(data);
1237 	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
1238 }
1239 
build_inv_dte(struct iommu_cmd * cmd,u16 devid)1240 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
1241 {
1242 	memset(cmd, 0, sizeof(*cmd));
1243 	cmd->data[0] = devid;
1244 	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
1245 }
1246 
1247 /*
1248  * Builds an invalidation address which is suitable for one page or multiple
1249  * pages. Sets the size bit (S) as needed is more than one page is flushed.
1250  */
build_inv_address(u64 address,size_t size)1251 static inline u64 build_inv_address(u64 address, size_t size)
1252 {
1253 	u64 pages, end, msb_diff;
1254 
1255 	pages = iommu_num_pages(address, size, PAGE_SIZE);
1256 
1257 	if (pages == 1)
1258 		return address & PAGE_MASK;
1259 
1260 	end = address + size - 1;
1261 
1262 	/*
1263 	 * msb_diff would hold the index of the most significant bit that
1264 	 * flipped between the start and end.
1265 	 */
1266 	msb_diff = fls64(end ^ address) - 1;
1267 
1268 	/*
1269 	 * Bits 63:52 are sign extended. If for some reason bit 51 is different
1270 	 * between the start and the end, invalidate everything.
1271 	 */
1272 	if (unlikely(msb_diff > 51)) {
1273 		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
1274 	} else {
1275 		/*
1276 		 * The msb-bit must be clear on the address. Just set all the
1277 		 * lower bits.
1278 		 */
1279 		address |= (1ull << msb_diff) - 1;
1280 	}
1281 
1282 	/* Clear bits 11:0 */
1283 	address &= PAGE_MASK;
1284 
1285 	/* Set the size bit - we flush more than one 4kb page */
1286 	return address | CMD_INV_IOMMU_PAGES_SIZE_MASK;
1287 }
1288 
build_inv_iommu_pages(struct iommu_cmd * cmd,u64 address,size_t size,u16 domid,ioasid_t pasid,bool gn)1289 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
1290 				  size_t size, u16 domid,
1291 				  ioasid_t pasid, bool gn)
1292 {
1293 	u64 inv_address = build_inv_address(address, size);
1294 
1295 	memset(cmd, 0, sizeof(*cmd));
1296 
1297 	cmd->data[1] |= domid;
1298 	cmd->data[2]  = lower_32_bits(inv_address);
1299 	cmd->data[3]  = upper_32_bits(inv_address);
1300 	/* PDE bit - we want to flush everything, not only the PTEs */
1301 	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1302 	if (gn) {
1303 		cmd->data[0] |= pasid;
1304 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1305 	}
1306 	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1307 }
1308 
build_inv_iotlb_pages(struct iommu_cmd * cmd,u16 devid,int qdep,u64 address,size_t size,ioasid_t pasid,bool gn)1309 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
1310 				  u64 address, size_t size,
1311 				  ioasid_t pasid, bool gn)
1312 {
1313 	u64 inv_address = build_inv_address(address, size);
1314 
1315 	memset(cmd, 0, sizeof(*cmd));
1316 
1317 	cmd->data[0]  = devid;
1318 	cmd->data[0] |= (qdep & 0xff) << 24;
1319 	cmd->data[1]  = devid;
1320 	cmd->data[2]  = lower_32_bits(inv_address);
1321 	cmd->data[3]  = upper_32_bits(inv_address);
1322 	if (gn) {
1323 		cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
1324 		cmd->data[1] |= (pasid & 0xff) << 16;
1325 		cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1326 	}
1327 
1328 	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1329 }
1330 
build_complete_ppr(struct iommu_cmd * cmd,u16 devid,u32 pasid,int status,int tag,u8 gn)1331 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1332 			       int status, int tag, u8 gn)
1333 {
1334 	memset(cmd, 0, sizeof(*cmd));
1335 
1336 	cmd->data[0]  = devid;
1337 	if (gn) {
1338 		cmd->data[1]  = pasid;
1339 		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
1340 	}
1341 	cmd->data[3]  = tag & 0x1ff;
1342 	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1343 
1344 	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1345 }
1346 
build_inv_all(struct iommu_cmd * cmd)1347 static void build_inv_all(struct iommu_cmd *cmd)
1348 {
1349 	memset(cmd, 0, sizeof(*cmd));
1350 	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1351 }
1352 
build_inv_irt(struct iommu_cmd * cmd,u16 devid)1353 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1354 {
1355 	memset(cmd, 0, sizeof(*cmd));
1356 	cmd->data[0] = devid;
1357 	CMD_SET_TYPE(cmd, CMD_INV_IRT);
1358 }
1359 
1360 /*
1361  * Writes the command to the IOMMUs command buffer and informs the
1362  * hardware about the new command.
1363  */
__iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1364 static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1365 				      struct iommu_cmd *cmd,
1366 				      bool sync)
1367 {
1368 	unsigned int count = 0;
1369 	u32 left, next_tail;
1370 
1371 	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1372 again:
1373 	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1374 
1375 	if (left <= 0x20) {
1376 		/* Skip udelay() the first time around */
1377 		if (count++) {
1378 			if (count == LOOP_TIMEOUT) {
1379 				pr_err("Command buffer timeout\n");
1380 				return -EIO;
1381 			}
1382 
1383 			udelay(1);
1384 		}
1385 
1386 		/* Update head and recheck remaining space */
1387 		iommu->cmd_buf_head = readl(iommu->mmio_base +
1388 					    MMIO_CMD_HEAD_OFFSET);
1389 
1390 		goto again;
1391 	}
1392 
1393 	copy_cmd_to_buffer(iommu, cmd);
1394 
1395 	/* Do we need to make sure all commands are processed? */
1396 	iommu->need_sync = sync;
1397 
1398 	return 0;
1399 }
1400 
iommu_queue_command_sync(struct amd_iommu * iommu,struct iommu_cmd * cmd,bool sync)1401 static int iommu_queue_command_sync(struct amd_iommu *iommu,
1402 				    struct iommu_cmd *cmd,
1403 				    bool sync)
1404 {
1405 	unsigned long flags;
1406 	int ret;
1407 
1408 	raw_spin_lock_irqsave(&iommu->lock, flags);
1409 	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1410 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1411 
1412 	return ret;
1413 }
1414 
iommu_queue_command(struct amd_iommu * iommu,struct iommu_cmd * cmd)1415 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1416 {
1417 	return iommu_queue_command_sync(iommu, cmd, true);
1418 }
1419 
1420 /*
1421  * This function queues a completion wait command into the command
1422  * buffer of an IOMMU
1423  */
iommu_completion_wait(struct amd_iommu * iommu)1424 static int iommu_completion_wait(struct amd_iommu *iommu)
1425 {
1426 	struct iommu_cmd cmd;
1427 	unsigned long flags;
1428 	int ret;
1429 	u64 data;
1430 
1431 	if (!iommu->need_sync)
1432 		return 0;
1433 
1434 	data = atomic64_inc_return(&iommu->cmd_sem_val);
1435 	build_completion_wait(&cmd, iommu, data);
1436 
1437 	raw_spin_lock_irqsave(&iommu->lock, flags);
1438 
1439 	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1440 	if (ret)
1441 		goto out_unlock;
1442 
1443 	ret = wait_on_sem(iommu, data);
1444 
1445 out_unlock:
1446 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1447 
1448 	return ret;
1449 }
1450 
domain_flush_complete(struct protection_domain * domain)1451 static void domain_flush_complete(struct protection_domain *domain)
1452 {
1453 	struct pdom_iommu_info *pdom_iommu_info;
1454 	unsigned long i;
1455 
1456 	lockdep_assert_held(&domain->lock);
1457 
1458 	/*
1459 	 * Devices of this domain are behind this IOMMU
1460 	 * We need to wait for completion of all commands.
1461 	 */
1462 	 xa_for_each(&domain->iommu_array, i, pdom_iommu_info)
1463 		iommu_completion_wait(pdom_iommu_info->iommu);
1464 }
1465 
iommu_flush_dte(struct amd_iommu * iommu,u16 devid)1466 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1467 {
1468 	struct iommu_cmd cmd;
1469 
1470 	build_inv_dte(&cmd, devid);
1471 
1472 	return iommu_queue_command(iommu, &cmd);
1473 }
1474 
iommu_flush_dte_sync(struct amd_iommu * iommu,u16 devid)1475 static void iommu_flush_dte_sync(struct amd_iommu *iommu, u16 devid)
1476 {
1477 	int ret;
1478 
1479 	ret = iommu_flush_dte(iommu, devid);
1480 	if (!ret)
1481 		iommu_completion_wait(iommu);
1482 }
1483 
amd_iommu_flush_dte_all(struct amd_iommu * iommu)1484 static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1485 {
1486 	u32 devid;
1487 	u16 last_bdf = iommu->pci_seg->last_bdf;
1488 
1489 	for (devid = 0; devid <= last_bdf; ++devid)
1490 		iommu_flush_dte(iommu, devid);
1491 
1492 	iommu_completion_wait(iommu);
1493 }
1494 
1495 /*
1496  * This function uses heavy locking and may disable irqs for some time. But
1497  * this is no issue because it is only called during resume.
1498  */
amd_iommu_flush_tlb_all(struct amd_iommu * iommu)1499 static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1500 {
1501 	u32 dom_id;
1502 	u16 last_bdf = iommu->pci_seg->last_bdf;
1503 
1504 	for (dom_id = 0; dom_id <= last_bdf; ++dom_id) {
1505 		struct iommu_cmd cmd;
1506 		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1507 				      dom_id, IOMMU_NO_PASID, false);
1508 		iommu_queue_command(iommu, &cmd);
1509 	}
1510 
1511 	iommu_completion_wait(iommu);
1512 }
1513 
amd_iommu_flush_tlb_domid(struct amd_iommu * iommu,u32 dom_id)1514 static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1515 {
1516 	struct iommu_cmd cmd;
1517 
1518 	build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1519 			      dom_id, IOMMU_NO_PASID, false);
1520 	iommu_queue_command(iommu, &cmd);
1521 
1522 	iommu_completion_wait(iommu);
1523 }
1524 
amd_iommu_flush_all(struct amd_iommu * iommu)1525 static void amd_iommu_flush_all(struct amd_iommu *iommu)
1526 {
1527 	struct iommu_cmd cmd;
1528 
1529 	build_inv_all(&cmd);
1530 
1531 	iommu_queue_command(iommu, &cmd);
1532 	iommu_completion_wait(iommu);
1533 }
1534 
iommu_flush_irt(struct amd_iommu * iommu,u16 devid)1535 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1536 {
1537 	struct iommu_cmd cmd;
1538 
1539 	build_inv_irt(&cmd, devid);
1540 
1541 	iommu_queue_command(iommu, &cmd);
1542 }
1543 
amd_iommu_flush_irt_all(struct amd_iommu * iommu)1544 static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1545 {
1546 	u32 devid;
1547 	u16 last_bdf = iommu->pci_seg->last_bdf;
1548 
1549 	if (iommu->irtcachedis_enabled)
1550 		return;
1551 
1552 	for (devid = 0; devid <= last_bdf; devid++)
1553 		iommu_flush_irt(iommu, devid);
1554 
1555 	iommu_completion_wait(iommu);
1556 }
1557 
amd_iommu_flush_all_caches(struct amd_iommu * iommu)1558 void amd_iommu_flush_all_caches(struct amd_iommu *iommu)
1559 {
1560 	if (check_feature(FEATURE_IA)) {
1561 		amd_iommu_flush_all(iommu);
1562 	} else {
1563 		amd_iommu_flush_dte_all(iommu);
1564 		amd_iommu_flush_irt_all(iommu);
1565 		amd_iommu_flush_tlb_all(iommu);
1566 	}
1567 }
1568 
1569 /*
1570  * Command send function for flushing on-device TLB
1571  */
device_flush_iotlb(struct iommu_dev_data * dev_data,u64 address,size_t size,ioasid_t pasid,bool gn)1572 static int device_flush_iotlb(struct iommu_dev_data *dev_data, u64 address,
1573 			      size_t size, ioasid_t pasid, bool gn)
1574 {
1575 	struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
1576 	struct iommu_cmd cmd;
1577 	int qdep = dev_data->ats_qdep;
1578 
1579 	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address,
1580 			      size, pasid, gn);
1581 
1582 	return iommu_queue_command(iommu, &cmd);
1583 }
1584 
device_flush_dte_alias(struct pci_dev * pdev,u16 alias,void * data)1585 static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
1586 {
1587 	struct amd_iommu *iommu = data;
1588 
1589 	return iommu_flush_dte(iommu, alias);
1590 }
1591 
1592 /*
1593  * Command send function for invalidating a device table entry
1594  */
device_flush_dte(struct iommu_dev_data * dev_data)1595 static int device_flush_dte(struct iommu_dev_data *dev_data)
1596 {
1597 	struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
1598 	struct pci_dev *pdev = NULL;
1599 	struct amd_iommu_pci_seg *pci_seg;
1600 	u16 alias;
1601 	int ret;
1602 
1603 	if (dev_is_pci(dev_data->dev))
1604 		pdev = to_pci_dev(dev_data->dev);
1605 
1606 	if (pdev)
1607 		ret = pci_for_each_dma_alias(pdev,
1608 					     device_flush_dte_alias, iommu);
1609 	else
1610 		ret = iommu_flush_dte(iommu, dev_data->devid);
1611 	if (ret)
1612 		return ret;
1613 
1614 	pci_seg = iommu->pci_seg;
1615 	alias = pci_seg->alias_table[dev_data->devid];
1616 	if (alias != dev_data->devid) {
1617 		ret = iommu_flush_dte(iommu, alias);
1618 		if (ret)
1619 			return ret;
1620 	}
1621 
1622 	if (dev_data->ats_enabled) {
1623 		/* Invalidate the entire contents of an IOTLB */
1624 		ret = device_flush_iotlb(dev_data, 0, ~0UL,
1625 					 IOMMU_NO_PASID, false);
1626 	}
1627 
1628 	return ret;
1629 }
1630 
domain_flush_pages_v2(struct protection_domain * pdom,u64 address,size_t size)1631 static int domain_flush_pages_v2(struct protection_domain *pdom,
1632 				 u64 address, size_t size)
1633 {
1634 	struct iommu_dev_data *dev_data;
1635 	struct iommu_cmd cmd;
1636 	int ret = 0;
1637 
1638 	lockdep_assert_held(&pdom->lock);
1639 	list_for_each_entry(dev_data, &pdom->dev_list, list) {
1640 		struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
1641 		u16 domid = dev_data->gcr3_info.domid;
1642 
1643 		build_inv_iommu_pages(&cmd, address, size,
1644 				      domid, IOMMU_NO_PASID, true);
1645 
1646 		ret |= iommu_queue_command(iommu, &cmd);
1647 	}
1648 
1649 	return ret;
1650 }
1651 
domain_flush_pages_v1(struct protection_domain * pdom,u64 address,size_t size)1652 static int domain_flush_pages_v1(struct protection_domain *pdom,
1653 				 u64 address, size_t size)
1654 {
1655 	struct pdom_iommu_info *pdom_iommu_info;
1656 	struct iommu_cmd cmd;
1657 	int ret = 0;
1658 	unsigned long i;
1659 
1660 	lockdep_assert_held(&pdom->lock);
1661 
1662 	build_inv_iommu_pages(&cmd, address, size,
1663 			      pdom->id, IOMMU_NO_PASID, false);
1664 
1665 	xa_for_each(&pdom->iommu_array, i, pdom_iommu_info) {
1666 		/*
1667 		 * Devices of this domain are behind this IOMMU
1668 		 * We need a TLB flush
1669 		 */
1670 		ret |= iommu_queue_command(pdom_iommu_info->iommu, &cmd);
1671 	}
1672 
1673 	return ret;
1674 }
1675 
1676 /*
1677  * TLB invalidation function which is called from the mapping functions.
1678  * It flushes range of PTEs of the domain.
1679  */
__domain_flush_pages(struct protection_domain * domain,u64 address,size_t size)1680 static void __domain_flush_pages(struct protection_domain *domain,
1681 				 u64 address, size_t size)
1682 {
1683 	struct iommu_dev_data *dev_data;
1684 	int ret = 0;
1685 	ioasid_t pasid = IOMMU_NO_PASID;
1686 	bool gn = false;
1687 
1688 	lockdep_assert_held(&domain->lock);
1689 
1690 	if (pdom_is_v2_pgtbl_mode(domain)) {
1691 		gn = true;
1692 		ret = domain_flush_pages_v2(domain, address, size);
1693 	} else {
1694 		ret = domain_flush_pages_v1(domain, address, size);
1695 	}
1696 
1697 	list_for_each_entry(dev_data, &domain->dev_list, list) {
1698 
1699 		if (!dev_data->ats_enabled)
1700 			continue;
1701 
1702 		ret |= device_flush_iotlb(dev_data, address, size, pasid, gn);
1703 	}
1704 
1705 	WARN_ON(ret);
1706 }
1707 
amd_iommu_domain_flush_pages(struct protection_domain * domain,u64 address,size_t size)1708 void amd_iommu_domain_flush_pages(struct protection_domain *domain,
1709 				  u64 address, size_t size)
1710 {
1711 	lockdep_assert_held(&domain->lock);
1712 
1713 	if (likely(!amd_iommu_np_cache)) {
1714 		__domain_flush_pages(domain, address, size);
1715 
1716 		/* Wait until IOMMU TLB and all device IOTLB flushes are complete */
1717 		domain_flush_complete(domain);
1718 
1719 		return;
1720 	}
1721 
1722 	/*
1723 	 * When NpCache is on, we infer that we run in a VM and use a vIOMMU.
1724 	 * In such setups it is best to avoid flushes of ranges which are not
1725 	 * naturally aligned, since it would lead to flushes of unmodified
1726 	 * PTEs. Such flushes would require the hypervisor to do more work than
1727 	 * necessary. Therefore, perform repeated flushes of aligned ranges
1728 	 * until you cover the range. Each iteration flushes the smaller
1729 	 * between the natural alignment of the address that we flush and the
1730 	 * greatest naturally aligned region that fits in the range.
1731 	 */
1732 	while (size != 0) {
1733 		int addr_alignment = __ffs(address);
1734 		int size_alignment = __fls(size);
1735 		int min_alignment;
1736 		size_t flush_size;
1737 
1738 		/*
1739 		 * size is always non-zero, but address might be zero, causing
1740 		 * addr_alignment to be negative. As the casting of the
1741 		 * argument in __ffs(address) to long might trim the high bits
1742 		 * of the address on x86-32, cast to long when doing the check.
1743 		 */
1744 		if (likely((unsigned long)address != 0))
1745 			min_alignment = min(addr_alignment, size_alignment);
1746 		else
1747 			min_alignment = size_alignment;
1748 
1749 		flush_size = 1ul << min_alignment;
1750 
1751 		__domain_flush_pages(domain, address, flush_size);
1752 		address += flush_size;
1753 		size -= flush_size;
1754 	}
1755 
1756 	/* Wait until IOMMU TLB and all device IOTLB flushes are complete */
1757 	domain_flush_complete(domain);
1758 }
1759 
1760 /* Flush the whole IO/TLB for a given protection domain - including PDE */
amd_iommu_domain_flush_all(struct protection_domain * domain)1761 static void amd_iommu_domain_flush_all(struct protection_domain *domain)
1762 {
1763 	amd_iommu_domain_flush_pages(domain, 0,
1764 				     CMD_INV_IOMMU_ALL_PAGES_ADDRESS);
1765 }
1766 
amd_iommu_dev_flush_pasid_pages(struct iommu_dev_data * dev_data,ioasid_t pasid,u64 address,size_t size)1767 void amd_iommu_dev_flush_pasid_pages(struct iommu_dev_data *dev_data,
1768 				     ioasid_t pasid, u64 address, size_t size)
1769 {
1770 	struct iommu_cmd cmd;
1771 	struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
1772 
1773 	build_inv_iommu_pages(&cmd, address, size,
1774 			      dev_data->gcr3_info.domid, pasid, true);
1775 	iommu_queue_command(iommu, &cmd);
1776 
1777 	if (dev_data->ats_enabled)
1778 		device_flush_iotlb(dev_data, address, size, pasid, true);
1779 
1780 	iommu_completion_wait(iommu);
1781 }
1782 
dev_flush_pasid_all(struct iommu_dev_data * dev_data,ioasid_t pasid)1783 static void dev_flush_pasid_all(struct iommu_dev_data *dev_data,
1784 				ioasid_t pasid)
1785 {
1786 	amd_iommu_dev_flush_pasid_pages(dev_data, pasid, 0,
1787 					CMD_INV_IOMMU_ALL_PAGES_ADDRESS);
1788 }
1789 
amd_iommu_complete_ppr(struct device * dev,u32 pasid,int status,int tag)1790 int amd_iommu_complete_ppr(struct device *dev, u32 pasid, int status, int tag)
1791 {
1792 	struct iommu_dev_data *dev_data;
1793 	struct amd_iommu *iommu;
1794 	struct iommu_cmd cmd;
1795 
1796 	dev_data = dev_iommu_priv_get(dev);
1797 	iommu    = get_amd_iommu_from_dev(dev);
1798 
1799 	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
1800 			   tag, dev_data->pri_tlp);
1801 
1802 	return iommu_queue_command(iommu, &cmd);
1803 }
1804 
1805 /****************************************************************************
1806  *
1807  * The next functions belong to the domain allocation. A domain is
1808  * allocated for every IOMMU as the default domain. If device isolation
1809  * is enabled, every device get its own domain. The most important thing
1810  * about domains is the page table mapping the DMA address space they
1811  * contain.
1812  *
1813  ****************************************************************************/
1814 
pdom_id_alloc(void)1815 static int pdom_id_alloc(void)
1816 {
1817 	return ida_alloc_range(&pdom_ids, 1, MAX_DOMAIN_ID - 1, GFP_ATOMIC);
1818 }
1819 
pdom_id_free(int id)1820 static void pdom_id_free(int id)
1821 {
1822 	ida_free(&pdom_ids, id);
1823 }
1824 
free_gcr3_tbl_level1(u64 * tbl)1825 static void free_gcr3_tbl_level1(u64 *tbl)
1826 {
1827 	u64 *ptr;
1828 	int i;
1829 
1830 	for (i = 0; i < 512; ++i) {
1831 		if (!(tbl[i] & GCR3_VALID))
1832 			continue;
1833 
1834 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1835 
1836 		iommu_free_pages(ptr);
1837 	}
1838 }
1839 
free_gcr3_tbl_level2(u64 * tbl)1840 static void free_gcr3_tbl_level2(u64 *tbl)
1841 {
1842 	u64 *ptr;
1843 	int i;
1844 
1845 	for (i = 0; i < 512; ++i) {
1846 		if (!(tbl[i] & GCR3_VALID))
1847 			continue;
1848 
1849 		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1850 
1851 		free_gcr3_tbl_level1(ptr);
1852 	}
1853 }
1854 
free_gcr3_table(struct gcr3_tbl_info * gcr3_info)1855 static void free_gcr3_table(struct gcr3_tbl_info *gcr3_info)
1856 {
1857 	if (gcr3_info->glx == 2)
1858 		free_gcr3_tbl_level2(gcr3_info->gcr3_tbl);
1859 	else if (gcr3_info->glx == 1)
1860 		free_gcr3_tbl_level1(gcr3_info->gcr3_tbl);
1861 	else
1862 		WARN_ON_ONCE(gcr3_info->glx != 0);
1863 
1864 	gcr3_info->glx = 0;
1865 
1866 	/* Free per device domain ID */
1867 	pdom_id_free(gcr3_info->domid);
1868 
1869 	iommu_free_pages(gcr3_info->gcr3_tbl);
1870 	gcr3_info->gcr3_tbl = NULL;
1871 }
1872 
1873 /*
1874  * Number of GCR3 table levels required. Level must be 4-Kbyte
1875  * page and can contain up to 512 entries.
1876  */
get_gcr3_levels(int pasids)1877 static int get_gcr3_levels(int pasids)
1878 {
1879 	int levels;
1880 
1881 	if (pasids == -1)
1882 		return amd_iommu_max_glx_val;
1883 
1884 	levels = get_count_order(pasids);
1885 
1886 	return levels ? (DIV_ROUND_UP(levels, 9) - 1) : levels;
1887 }
1888 
setup_gcr3_table(struct gcr3_tbl_info * gcr3_info,struct amd_iommu * iommu,int pasids)1889 static int setup_gcr3_table(struct gcr3_tbl_info *gcr3_info,
1890 			    struct amd_iommu *iommu, int pasids)
1891 {
1892 	int levels = get_gcr3_levels(pasids);
1893 	int nid = iommu ? dev_to_node(&iommu->dev->dev) : NUMA_NO_NODE;
1894 	int domid;
1895 
1896 	if (levels > amd_iommu_max_glx_val)
1897 		return -EINVAL;
1898 
1899 	if (gcr3_info->gcr3_tbl)
1900 		return -EBUSY;
1901 
1902 	/* Allocate per device domain ID */
1903 	domid = pdom_id_alloc();
1904 	if (domid <= 0)
1905 		return -ENOSPC;
1906 	gcr3_info->domid = domid;
1907 
1908 	gcr3_info->gcr3_tbl = iommu_alloc_pages_node_sz(nid, GFP_ATOMIC, SZ_4K);
1909 	if (gcr3_info->gcr3_tbl == NULL) {
1910 		pdom_id_free(domid);
1911 		return -ENOMEM;
1912 	}
1913 
1914 	gcr3_info->glx = levels;
1915 
1916 	return 0;
1917 }
1918 
__get_gcr3_pte(struct gcr3_tbl_info * gcr3_info,ioasid_t pasid,bool alloc)1919 static u64 *__get_gcr3_pte(struct gcr3_tbl_info *gcr3_info,
1920 			   ioasid_t pasid, bool alloc)
1921 {
1922 	int index;
1923 	u64 *pte;
1924 	u64 *root = gcr3_info->gcr3_tbl;
1925 	int level = gcr3_info->glx;
1926 
1927 	while (true) {
1928 
1929 		index = (pasid >> (9 * level)) & 0x1ff;
1930 		pte   = &root[index];
1931 
1932 		if (level == 0)
1933 			break;
1934 
1935 		if (!(*pte & GCR3_VALID)) {
1936 			if (!alloc)
1937 				return NULL;
1938 
1939 			root = (void *)get_zeroed_page(GFP_ATOMIC);
1940 			if (root == NULL)
1941 				return NULL;
1942 
1943 			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
1944 		}
1945 
1946 		root = iommu_phys_to_virt(*pte & PAGE_MASK);
1947 
1948 		level -= 1;
1949 	}
1950 
1951 	return pte;
1952 }
1953 
update_gcr3(struct iommu_dev_data * dev_data,ioasid_t pasid,unsigned long gcr3,bool set)1954 static int update_gcr3(struct iommu_dev_data *dev_data,
1955 		       ioasid_t pasid, unsigned long gcr3, bool set)
1956 {
1957 	struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1958 	u64 *pte;
1959 
1960 	pte = __get_gcr3_pte(gcr3_info, pasid, true);
1961 	if (pte == NULL)
1962 		return -ENOMEM;
1963 
1964 	if (set)
1965 		*pte = (gcr3 & PAGE_MASK) | GCR3_VALID;
1966 	else
1967 		*pte = 0;
1968 
1969 	dev_flush_pasid_all(dev_data, pasid);
1970 	return 0;
1971 }
1972 
amd_iommu_set_gcr3(struct iommu_dev_data * dev_data,ioasid_t pasid,unsigned long gcr3)1973 int amd_iommu_set_gcr3(struct iommu_dev_data *dev_data, ioasid_t pasid,
1974 		       unsigned long gcr3)
1975 {
1976 	struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1977 	int ret;
1978 
1979 	iommu_group_mutex_assert(dev_data->dev);
1980 
1981 	ret = update_gcr3(dev_data, pasid, gcr3, true);
1982 	if (ret)
1983 		return ret;
1984 
1985 	gcr3_info->pasid_cnt++;
1986 	return ret;
1987 }
1988 
amd_iommu_clear_gcr3(struct iommu_dev_data * dev_data,ioasid_t pasid)1989 int amd_iommu_clear_gcr3(struct iommu_dev_data *dev_data, ioasid_t pasid)
1990 {
1991 	struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1992 	int ret;
1993 
1994 	iommu_group_mutex_assert(dev_data->dev);
1995 
1996 	ret = update_gcr3(dev_data, pasid, 0, false);
1997 	if (ret)
1998 		return ret;
1999 
2000 	gcr3_info->pasid_cnt--;
2001 	return ret;
2002 }
2003 
make_clear_dte(struct iommu_dev_data * dev_data,struct dev_table_entry * ptr,struct dev_table_entry * new)2004 static void make_clear_dte(struct iommu_dev_data *dev_data, struct dev_table_entry *ptr,
2005 			   struct dev_table_entry *new)
2006 {
2007 	/* All existing DTE must have V bit set */
2008 	new->data128[0] = DTE_FLAG_V;
2009 	new->data128[1] = 0;
2010 }
2011 
2012 /*
2013  * Note:
2014  * The old value for GCR3 table and GPT have been cleared from caller.
2015  */
set_dte_gcr3_table(struct amd_iommu * iommu,struct iommu_dev_data * dev_data,struct dev_table_entry * target)2016 static void set_dte_gcr3_table(struct amd_iommu *iommu,
2017 			       struct iommu_dev_data *dev_data,
2018 			       struct dev_table_entry *target)
2019 {
2020 	struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
2021 	u64 gcr3;
2022 
2023 	if (!gcr3_info->gcr3_tbl)
2024 		return;
2025 
2026 	pr_debug("%s: devid=%#x, glx=%#x, gcr3_tbl=%#llx\n",
2027 		 __func__, dev_data->devid, gcr3_info->glx,
2028 		 (unsigned long long)gcr3_info->gcr3_tbl);
2029 
2030 	gcr3 = iommu_virt_to_phys(gcr3_info->gcr3_tbl);
2031 
2032 	target->data[0] |= DTE_FLAG_GV |
2033 			   FIELD_PREP(DTE_GLX, gcr3_info->glx) |
2034 			   FIELD_PREP(DTE_GCR3_14_12, gcr3 >> 12);
2035 	if (pdom_is_v2_pgtbl_mode(dev_data->domain))
2036 		target->data[0] |= DTE_FLAG_GIOV;
2037 
2038 	target->data[1] |= FIELD_PREP(DTE_GCR3_30_15, gcr3 >> 15) |
2039 			   FIELD_PREP(DTE_GCR3_51_31, gcr3 >> 31);
2040 
2041 	/* Guest page table can only support 4 and 5 levels  */
2042 	if (amd_iommu_gpt_level == PAGE_MODE_5_LEVEL)
2043 		target->data[2] |= FIELD_PREP(DTE_GPT_LEVEL_MASK, GUEST_PGTABLE_5_LEVEL);
2044 	else
2045 		target->data[2] |= FIELD_PREP(DTE_GPT_LEVEL_MASK, GUEST_PGTABLE_4_LEVEL);
2046 }
2047 
set_dte_entry(struct amd_iommu * iommu,struct iommu_dev_data * dev_data,phys_addr_t top_paddr,unsigned int top_level)2048 static void set_dte_entry(struct amd_iommu *iommu,
2049 			  struct iommu_dev_data *dev_data,
2050 			  phys_addr_t top_paddr, unsigned int top_level)
2051 {
2052 	u16 domid;
2053 	u32 old_domid;
2054 	struct dev_table_entry *initial_dte;
2055 	struct dev_table_entry new = {};
2056 	struct protection_domain *domain = dev_data->domain;
2057 	struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
2058 	struct dev_table_entry *dte = &get_dev_table(iommu)[dev_data->devid];
2059 	struct pt_iommu_amdv1_hw_info pt_info;
2060 
2061 	make_clear_dte(dev_data, dte, &new);
2062 
2063 	if (gcr3_info && gcr3_info->gcr3_tbl)
2064 		domid = dev_data->gcr3_info.domid;
2065 	else {
2066 		domid = domain->id;
2067 
2068 		if (domain->domain.type & __IOMMU_DOMAIN_PAGING) {
2069 			/*
2070 			 * When updating the IO pagetable, the new top and level
2071 			 * are provided as parameters. For other operations i.e.
2072 			 * device attach, retrieve the current pagetable info
2073 			 * via the IOMMU PT API.
2074 			 */
2075 			if (top_paddr) {
2076 				pt_info.host_pt_root = top_paddr;
2077 				pt_info.mode = top_level + 1;
2078 			} else {
2079 				WARN_ON(top_paddr || top_level);
2080 				pt_iommu_amdv1_hw_info(&domain->amdv1,
2081 						       &pt_info);
2082 			}
2083 
2084 			new.data[0] |= __sme_set(pt_info.host_pt_root) |
2085 				       (pt_info.mode & DEV_ENTRY_MODE_MASK)
2086 					       << DEV_ENTRY_MODE_SHIFT;
2087 		}
2088 	}
2089 
2090 	new.data[0] |= DTE_FLAG_IR | DTE_FLAG_IW;
2091 
2092 	/*
2093 	 * When SNP is enabled, we can only support TV=1 with non-zero domain ID.
2094 	 * This is prevented by the SNP-enable and IOMMU_DOMAIN_IDENTITY check in
2095 	 * do_iommu_domain_alloc().
2096 	 */
2097 	WARN_ON(amd_iommu_snp_en && (domid == 0));
2098 	new.data[0] |= DTE_FLAG_TV;
2099 
2100 	if (dev_data->ppr)
2101 		new.data[0] |= 1ULL << DEV_ENTRY_PPR;
2102 
2103 	if (domain->dirty_tracking)
2104 		new.data[0] |= DTE_FLAG_HAD;
2105 
2106 	if (dev_data->ats_enabled)
2107 		new.data[1] |= DTE_FLAG_IOTLB;
2108 
2109 	old_domid = READ_ONCE(dte->data[1]) & DEV_DOMID_MASK;
2110 	new.data[1] |= domid;
2111 
2112 	/*
2113 	 * Restore cached persistent DTE bits, which can be set by information
2114 	 * in IVRS table. See set_dev_entry_from_acpi().
2115 	 */
2116 	initial_dte = amd_iommu_get_ivhd_dte_flags(iommu->pci_seg->id, dev_data->devid);
2117 	if (initial_dte) {
2118 		new.data128[0] |= initial_dte->data128[0];
2119 		new.data128[1] |= initial_dte->data128[1];
2120 	}
2121 
2122 	set_dte_gcr3_table(iommu, dev_data, &new);
2123 
2124 	update_dte256(iommu, dev_data, &new);
2125 
2126 	/*
2127 	 * A kdump kernel might be replacing a domain ID that was copied from
2128 	 * the previous kernel--if so, it needs to flush the translation cache
2129 	 * entries for the old domain ID that is being overwritten
2130 	 */
2131 	if (old_domid) {
2132 		amd_iommu_flush_tlb_domid(iommu, old_domid);
2133 	}
2134 }
2135 
2136 /*
2137  * Clear DMA-remap related flags to block all DMA (blockeded domain)
2138  */
clear_dte_entry(struct amd_iommu * iommu,struct iommu_dev_data * dev_data)2139 static void clear_dte_entry(struct amd_iommu *iommu, struct iommu_dev_data *dev_data)
2140 {
2141 	struct dev_table_entry new = {};
2142 	struct dev_table_entry *dte = &get_dev_table(iommu)[dev_data->devid];
2143 
2144 	make_clear_dte(dev_data, dte, &new);
2145 	update_dte256(iommu, dev_data, &new);
2146 }
2147 
2148 /* Update and flush DTE for the given device */
dev_update_dte(struct iommu_dev_data * dev_data,bool set)2149 static void dev_update_dte(struct iommu_dev_data *dev_data, bool set)
2150 {
2151 	struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
2152 
2153 	if (set)
2154 		set_dte_entry(iommu, dev_data, 0, 0);
2155 	else
2156 		clear_dte_entry(iommu, dev_data);
2157 
2158 	clone_aliases(iommu, dev_data->dev);
2159 	device_flush_dte(dev_data);
2160 	iommu_completion_wait(iommu);
2161 }
2162 
2163 /*
2164  * If domain is SVA capable then initialize GCR3 table. Also if domain is
2165  * in v2 page table mode then update GCR3[0].
2166  */
init_gcr3_table(struct iommu_dev_data * dev_data,struct protection_domain * pdom)2167 static int init_gcr3_table(struct iommu_dev_data *dev_data,
2168 			   struct protection_domain *pdom)
2169 {
2170 	struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
2171 	int max_pasids = dev_data->max_pasids;
2172 	struct pt_iommu_x86_64_hw_info pt_info;
2173 	int ret = 0;
2174 
2175 	 /*
2176 	  * If domain is in pt mode then setup GCR3 table only if device
2177 	  * is PASID capable
2178 	  */
2179 	if (pdom_is_in_pt_mode(pdom) && !pdev_pasid_supported(dev_data))
2180 		return ret;
2181 
2182 	/*
2183 	 * By default, setup GCR3 table to support MAX PASIDs
2184 	 * supported by the device/IOMMU.
2185 	 */
2186 	ret = setup_gcr3_table(&dev_data->gcr3_info, iommu,
2187 			       max_pasids > 0 ?  max_pasids : 1);
2188 	if (ret)
2189 		return ret;
2190 
2191 	/* Setup GCR3[0] only if domain is setup with v2 page table mode */
2192 	if (!pdom_is_v2_pgtbl_mode(pdom))
2193 		return ret;
2194 
2195 	pt_iommu_x86_64_hw_info(&pdom->amdv2, &pt_info);
2196 	ret = update_gcr3(dev_data, 0, __sme_set(pt_info.gcr3_pt), true);
2197 	if (ret)
2198 		free_gcr3_table(&dev_data->gcr3_info);
2199 
2200 	return ret;
2201 }
2202 
destroy_gcr3_table(struct iommu_dev_data * dev_data,struct protection_domain * pdom)2203 static void destroy_gcr3_table(struct iommu_dev_data *dev_data,
2204 			       struct protection_domain *pdom)
2205 {
2206 	struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
2207 
2208 	if (pdom_is_v2_pgtbl_mode(pdom))
2209 		update_gcr3(dev_data, 0, 0, false);
2210 
2211 	if (gcr3_info->gcr3_tbl == NULL)
2212 		return;
2213 
2214 	free_gcr3_table(gcr3_info);
2215 }
2216 
pdom_attach_iommu(struct amd_iommu * iommu,struct protection_domain * pdom)2217 static int pdom_attach_iommu(struct amd_iommu *iommu,
2218 			     struct protection_domain *pdom)
2219 {
2220 	struct pdom_iommu_info *pdom_iommu_info, *curr;
2221 	unsigned long flags;
2222 	int ret = 0;
2223 
2224 	spin_lock_irqsave(&pdom->lock, flags);
2225 
2226 	pdom_iommu_info = xa_load(&pdom->iommu_array, iommu->index);
2227 	if (pdom_iommu_info) {
2228 		pdom_iommu_info->refcnt++;
2229 		goto out_unlock;
2230 	}
2231 
2232 	pdom_iommu_info = kzalloc(sizeof(*pdom_iommu_info), GFP_ATOMIC);
2233 	if (!pdom_iommu_info) {
2234 		ret = -ENOMEM;
2235 		goto out_unlock;
2236 	}
2237 
2238 	pdom_iommu_info->iommu = iommu;
2239 	pdom_iommu_info->refcnt = 1;
2240 
2241 	curr = xa_cmpxchg(&pdom->iommu_array, iommu->index,
2242 			  NULL, pdom_iommu_info, GFP_ATOMIC);
2243 	if (curr) {
2244 		kfree(pdom_iommu_info);
2245 		ret = -ENOSPC;
2246 		goto out_unlock;
2247 	}
2248 
2249 out_unlock:
2250 	spin_unlock_irqrestore(&pdom->lock, flags);
2251 	return ret;
2252 }
2253 
pdom_detach_iommu(struct amd_iommu * iommu,struct protection_domain * pdom)2254 static void pdom_detach_iommu(struct amd_iommu *iommu,
2255 			      struct protection_domain *pdom)
2256 {
2257 	struct pdom_iommu_info *pdom_iommu_info;
2258 	unsigned long flags;
2259 
2260 	spin_lock_irqsave(&pdom->lock, flags);
2261 
2262 	pdom_iommu_info = xa_load(&pdom->iommu_array, iommu->index);
2263 	if (!pdom_iommu_info) {
2264 		spin_unlock_irqrestore(&pdom->lock, flags);
2265 		return;
2266 	}
2267 
2268 	pdom_iommu_info->refcnt--;
2269 	if (pdom_iommu_info->refcnt == 0) {
2270 		xa_erase(&pdom->iommu_array, iommu->index);
2271 		kfree(pdom_iommu_info);
2272 	}
2273 
2274 	spin_unlock_irqrestore(&pdom->lock, flags);
2275 }
2276 
2277 /*
2278  * If a device is not yet associated with a domain, this function makes the
2279  * device visible in the domain
2280  */
attach_device(struct device * dev,struct protection_domain * domain)2281 static int attach_device(struct device *dev,
2282 			 struct protection_domain *domain)
2283 {
2284 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2285 	struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
2286 	struct pci_dev *pdev;
2287 	unsigned long flags;
2288 	int ret = 0;
2289 
2290 	mutex_lock(&dev_data->mutex);
2291 
2292 	if (dev_data->domain != NULL) {
2293 		ret = -EBUSY;
2294 		goto out;
2295 	}
2296 
2297 	/* Do reference counting */
2298 	ret = pdom_attach_iommu(iommu, domain);
2299 	if (ret)
2300 		goto out;
2301 
2302 	/* Setup GCR3 table */
2303 	if (pdom_is_sva_capable(domain)) {
2304 		ret = init_gcr3_table(dev_data, domain);
2305 		if (ret) {
2306 			pdom_detach_iommu(iommu, domain);
2307 			goto out;
2308 		}
2309 	}
2310 
2311 	pdev = dev_is_pci(dev_data->dev) ? to_pci_dev(dev_data->dev) : NULL;
2312 	if (pdev && pdom_is_sva_capable(domain)) {
2313 		pdev_enable_caps(pdev);
2314 
2315 		/*
2316 		 * Device can continue to function even if IOPF
2317 		 * enablement failed. Hence in error path just
2318 		 * disable device PRI support.
2319 		 */
2320 		if (amd_iommu_iopf_add_device(iommu, dev_data))
2321 			pdev_disable_cap_pri(pdev);
2322 	} else if (pdev) {
2323 		pdev_enable_cap_ats(pdev);
2324 	}
2325 
2326 	/* Update data structures */
2327 	dev_data->domain = domain;
2328 	spin_lock_irqsave(&domain->lock, flags);
2329 	list_add(&dev_data->list, &domain->dev_list);
2330 	spin_unlock_irqrestore(&domain->lock, flags);
2331 
2332 	/* Update device table */
2333 	dev_update_dte(dev_data, true);
2334 
2335 out:
2336 	mutex_unlock(&dev_data->mutex);
2337 
2338 	return ret;
2339 }
2340 
2341 /*
2342  * Removes a device from a protection domain (with devtable_lock held)
2343  */
detach_device(struct device * dev)2344 static void detach_device(struct device *dev)
2345 {
2346 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2347 	struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
2348 	struct protection_domain *domain = dev_data->domain;
2349 	unsigned long flags;
2350 
2351 	mutex_lock(&dev_data->mutex);
2352 
2353 	/*
2354 	 * First check if the device is still attached. It might already
2355 	 * be detached from its domain because the generic
2356 	 * iommu_detach_group code detached it and we try again here in
2357 	 * our alias handling.
2358 	 */
2359 	if (WARN_ON(!dev_data->domain))
2360 		goto out;
2361 
2362 	/* Remove IOPF handler */
2363 	if (dev_data->ppr) {
2364 		iopf_queue_flush_dev(dev);
2365 		amd_iommu_iopf_remove_device(iommu, dev_data);
2366 	}
2367 
2368 	if (dev_is_pci(dev))
2369 		pdev_disable_caps(to_pci_dev(dev));
2370 
2371 	/* Clear DTE and flush the entry */
2372 	dev_update_dte(dev_data, false);
2373 
2374 	/* Flush IOTLB and wait for the flushes to finish */
2375 	spin_lock_irqsave(&domain->lock, flags);
2376 	amd_iommu_domain_flush_all(domain);
2377 	list_del(&dev_data->list);
2378 	spin_unlock_irqrestore(&domain->lock, flags);
2379 
2380 	/* Clear GCR3 table */
2381 	if (pdom_is_sva_capable(domain))
2382 		destroy_gcr3_table(dev_data, domain);
2383 
2384 	/* Update data structures */
2385 	dev_data->domain = NULL;
2386 
2387 	/* decrease reference counters - needs to happen after the flushes */
2388 	pdom_detach_iommu(iommu, domain);
2389 
2390 out:
2391 	mutex_unlock(&dev_data->mutex);
2392 }
2393 
amd_iommu_probe_device(struct device * dev)2394 static struct iommu_device *amd_iommu_probe_device(struct device *dev)
2395 {
2396 	struct iommu_device *iommu_dev;
2397 	struct amd_iommu *iommu;
2398 	struct iommu_dev_data *dev_data;
2399 	int ret;
2400 
2401 	if (!check_device(dev))
2402 		return ERR_PTR(-ENODEV);
2403 
2404 	iommu = rlookup_amd_iommu(dev);
2405 	if (!iommu)
2406 		return ERR_PTR(-ENODEV);
2407 
2408 	/* Not registered yet? */
2409 	if (!iommu->iommu.ops)
2410 		return ERR_PTR(-ENODEV);
2411 
2412 	if (dev_iommu_priv_get(dev))
2413 		return &iommu->iommu;
2414 
2415 	ret = iommu_init_device(iommu, dev);
2416 	if (ret) {
2417 		dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
2418 		iommu_dev = ERR_PTR(ret);
2419 		iommu_ignore_device(iommu, dev);
2420 		goto out_err;
2421 	}
2422 
2423 	amd_iommu_set_pci_msi_domain(dev, iommu);
2424 	iommu_dev = &iommu->iommu;
2425 
2426 	/*
2427 	 * If IOMMU and device supports PASID then it will contain max
2428 	 * supported PASIDs, else it will be zero.
2429 	 */
2430 	dev_data = dev_iommu_priv_get(dev);
2431 	if (amd_iommu_pasid_supported() && dev_is_pci(dev) &&
2432 	    pdev_pasid_supported(dev_data)) {
2433 		dev_data->max_pasids = min_t(u32, iommu->iommu.max_pasids,
2434 					     pci_max_pasids(to_pci_dev(dev)));
2435 	}
2436 
2437 	if (amd_iommu_pgtable == PD_MODE_NONE) {
2438 		pr_warn_once("%s: DMA translation not supported by iommu.\n",
2439 			     __func__);
2440 		iommu_dev = ERR_PTR(-ENODEV);
2441 		goto out_err;
2442 	}
2443 
2444 out_err:
2445 
2446 	iommu_completion_wait(iommu);
2447 
2448 	if (FEATURE_NUM_INT_REMAP_SUP_2K(amd_iommu_efr2))
2449 		dev_data->max_irqs = MAX_IRQS_PER_TABLE_2K;
2450 	else
2451 		dev_data->max_irqs = MAX_IRQS_PER_TABLE_512;
2452 
2453 	if (dev_is_pci(dev))
2454 		pci_prepare_ats(to_pci_dev(dev), PAGE_SHIFT);
2455 
2456 	return iommu_dev;
2457 }
2458 
amd_iommu_release_device(struct device * dev)2459 static void amd_iommu_release_device(struct device *dev)
2460 {
2461 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2462 
2463 	WARN_ON(dev_data->domain);
2464 
2465 	/*
2466 	 * We keep dev_data around for unplugged devices and reuse it when the
2467 	 * device is re-plugged - not doing so would introduce a ton of races.
2468 	 */
2469 }
2470 
amd_iommu_device_group(struct device * dev)2471 static struct iommu_group *amd_iommu_device_group(struct device *dev)
2472 {
2473 	if (dev_is_pci(dev))
2474 		return pci_device_group(dev);
2475 
2476 	return acpihid_device_group(dev);
2477 }
2478 
2479 /*****************************************************************************
2480  *
2481  * The following functions belong to the exported interface of AMD IOMMU
2482  *
2483  * This interface allows access to lower level functions of the IOMMU
2484  * like protection domain handling and assignement of devices to domains
2485  * which is not possible with the dma_ops interface.
2486  *
2487  *****************************************************************************/
2488 
protection_domain_init(struct protection_domain * domain)2489 static void protection_domain_init(struct protection_domain *domain)
2490 {
2491 	spin_lock_init(&domain->lock);
2492 	INIT_LIST_HEAD(&domain->dev_list);
2493 	INIT_LIST_HEAD(&domain->dev_data_list);
2494 	xa_init(&domain->iommu_array);
2495 }
2496 
protection_domain_alloc(void)2497 struct protection_domain *protection_domain_alloc(void)
2498 {
2499 	struct protection_domain *domain;
2500 	int domid;
2501 
2502 	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2503 	if (!domain)
2504 		return NULL;
2505 
2506 	domid = pdom_id_alloc();
2507 	if (domid <= 0) {
2508 		kfree(domain);
2509 		return NULL;
2510 	}
2511 	domain->id = domid;
2512 
2513 	protection_domain_init(domain);
2514 
2515 	return domain;
2516 }
2517 
amd_iommu_hd_support(struct amd_iommu * iommu)2518 static bool amd_iommu_hd_support(struct amd_iommu *iommu)
2519 {
2520 	if (amd_iommu_hatdis)
2521 		return false;
2522 
2523 	return iommu && (iommu->features & FEATURE_HDSUP);
2524 }
2525 
amd_iommu_get_top_lock(struct pt_iommu * iommupt)2526 static spinlock_t *amd_iommu_get_top_lock(struct pt_iommu *iommupt)
2527 {
2528 	struct protection_domain *pdom =
2529 		container_of(iommupt, struct protection_domain, iommu);
2530 
2531 	return &pdom->lock;
2532 }
2533 
2534 /*
2535  * Update all HW references to the domain with a new pgtable configuration.
2536  */
amd_iommu_change_top(struct pt_iommu * iommu_table,phys_addr_t top_paddr,unsigned int top_level)2537 static void amd_iommu_change_top(struct pt_iommu *iommu_table,
2538 				 phys_addr_t top_paddr, unsigned int top_level)
2539 {
2540 	struct protection_domain *pdom =
2541 		container_of(iommu_table, struct protection_domain, iommu);
2542 	struct iommu_dev_data *dev_data;
2543 
2544 	lockdep_assert_held(&pdom->lock);
2545 
2546 	/* Update the DTE for all devices attached to this domain */
2547 	list_for_each_entry(dev_data, &pdom->dev_list, list) {
2548 		struct amd_iommu *iommu = rlookup_amd_iommu(dev_data->dev);
2549 
2550 		/* Update the HW references with the new level and top ptr */
2551 		set_dte_entry(iommu, dev_data, top_paddr, top_level);
2552 		clone_aliases(iommu, dev_data->dev);
2553 	}
2554 
2555 	list_for_each_entry(dev_data, &pdom->dev_list, list)
2556 		device_flush_dte(dev_data);
2557 
2558 	domain_flush_complete(pdom);
2559 }
2560 
2561 /*
2562  * amd_iommu_iotlb_sync_map() is used to generate flushes for non-present to
2563  * present (ie mapping) operations. It is a NOP if the IOMMU doesn't have non
2564  * present caching (like hypervisor shadowing).
2565  */
amd_iommu_iotlb_sync_map(struct iommu_domain * dom,unsigned long iova,size_t size)2566 static int amd_iommu_iotlb_sync_map(struct iommu_domain *dom,
2567 				    unsigned long iova, size_t size)
2568 {
2569 	struct protection_domain *domain = to_pdomain(dom);
2570 	unsigned long flags;
2571 
2572 	if (likely(!amd_iommu_np_cache))
2573 		return 0;
2574 
2575 	spin_lock_irqsave(&domain->lock, flags);
2576 	amd_iommu_domain_flush_pages(domain, iova, size);
2577 	spin_unlock_irqrestore(&domain->lock, flags);
2578 	return 0;
2579 }
2580 
amd_iommu_flush_iotlb_all(struct iommu_domain * domain)2581 static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
2582 {
2583 	struct protection_domain *dom = to_pdomain(domain);
2584 	unsigned long flags;
2585 
2586 	spin_lock_irqsave(&dom->lock, flags);
2587 	amd_iommu_domain_flush_all(dom);
2588 	spin_unlock_irqrestore(&dom->lock, flags);
2589 }
2590 
amd_iommu_iotlb_sync(struct iommu_domain * domain,struct iommu_iotlb_gather * gather)2591 static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
2592 				 struct iommu_iotlb_gather *gather)
2593 {
2594 	struct protection_domain *dom = to_pdomain(domain);
2595 	unsigned long flags;
2596 
2597 	spin_lock_irqsave(&dom->lock, flags);
2598 	amd_iommu_domain_flush_pages(dom, gather->start,
2599 				     gather->end - gather->start + 1);
2600 	spin_unlock_irqrestore(&dom->lock, flags);
2601 	iommu_put_pages_list(&gather->freelist);
2602 }
2603 
2604 static const struct pt_iommu_driver_ops amd_hw_driver_ops_v1 = {
2605 	.get_top_lock = amd_iommu_get_top_lock,
2606 	.change_top = amd_iommu_change_top,
2607 };
2608 
2609 static const struct iommu_domain_ops amdv1_ops = {
2610 	IOMMU_PT_DOMAIN_OPS(amdv1),
2611 	.iotlb_sync_map = amd_iommu_iotlb_sync_map,
2612 	.flush_iotlb_all = amd_iommu_flush_iotlb_all,
2613 	.iotlb_sync = amd_iommu_iotlb_sync,
2614 	.attach_dev = amd_iommu_attach_device,
2615 	.free = amd_iommu_domain_free,
2616 	.enforce_cache_coherency = amd_iommu_enforce_cache_coherency,
2617 };
2618 
2619 static const struct iommu_dirty_ops amdv1_dirty_ops = {
2620 	IOMMU_PT_DIRTY_OPS(amdv1),
2621 	.set_dirty_tracking = amd_iommu_set_dirty_tracking,
2622 };
2623 
amd_iommu_domain_alloc_paging_v1(struct device * dev,u32 flags)2624 static struct iommu_domain *amd_iommu_domain_alloc_paging_v1(struct device *dev,
2625 							     u32 flags)
2626 {
2627 	struct pt_iommu_amdv1_cfg cfg = {};
2628 	struct protection_domain *domain;
2629 	int ret;
2630 
2631 	if (amd_iommu_hatdis)
2632 		return ERR_PTR(-EOPNOTSUPP);
2633 
2634 	domain = protection_domain_alloc();
2635 	if (!domain)
2636 		return ERR_PTR(-ENOMEM);
2637 
2638 	domain->pd_mode = PD_MODE_V1;
2639 	domain->iommu.driver_ops = &amd_hw_driver_ops_v1;
2640 	domain->iommu.nid = dev_to_node(dev);
2641 	if (flags & IOMMU_HWPT_ALLOC_DIRTY_TRACKING)
2642 		domain->domain.dirty_ops = &amdv1_dirty_ops;
2643 
2644 	/*
2645 	 * Someday FORCE_COHERENCE should be set by
2646 	 * amd_iommu_enforce_cache_coherency() like VT-d does.
2647 	 */
2648 	cfg.common.features = BIT(PT_FEAT_DYNAMIC_TOP) |
2649 			      BIT(PT_FEAT_AMDV1_ENCRYPT_TABLES) |
2650 			      BIT(PT_FEAT_AMDV1_FORCE_COHERENCE);
2651 
2652 	/*
2653 	 * AMD's IOMMU can flush as many pages as necessary in a single flush.
2654 	 * Unless we run in a virtual machine, which can be inferred according
2655 	 * to whether "non-present cache" is on, it is probably best to prefer
2656 	 * (potentially) too extensive TLB flushing (i.e., more misses) over
2657 	 * multiple TLB flushes (i.e., more flushes). For virtual machines the
2658 	 * hypervisor needs to synchronize the host IOMMU PTEs with those of
2659 	 * the guest, and the trade-off is different: unnecessary TLB flushes
2660 	 * should be avoided.
2661 	 */
2662 	if (amd_iommu_np_cache)
2663 		cfg.common.features |= BIT(PT_FEAT_FLUSH_RANGE_NO_GAPS);
2664 	else
2665 		cfg.common.features |= BIT(PT_FEAT_FLUSH_RANGE);
2666 
2667 	cfg.common.hw_max_vasz_lg2 =
2668 		min(64, (amd_iommu_hpt_level - 1) * 9 + 21);
2669 	cfg.common.hw_max_oasz_lg2 = 52;
2670 	cfg.starting_level = 2;
2671 	domain->domain.ops = &amdv1_ops;
2672 
2673 	ret = pt_iommu_amdv1_init(&domain->amdv1, &cfg, GFP_KERNEL);
2674 	if (ret) {
2675 		amd_iommu_domain_free(&domain->domain);
2676 		return ERR_PTR(ret);
2677 	}
2678 
2679 	/*
2680 	 * Narrow the supported page sizes to those selected by the kernel
2681 	 * command line.
2682 	 */
2683 	domain->domain.pgsize_bitmap &= amd_iommu_pgsize_bitmap;
2684 	return &domain->domain;
2685 }
2686 
2687 static const struct iommu_domain_ops amdv2_ops = {
2688 	IOMMU_PT_DOMAIN_OPS(x86_64),
2689 	.iotlb_sync_map = amd_iommu_iotlb_sync_map,
2690 	.flush_iotlb_all = amd_iommu_flush_iotlb_all,
2691 	.iotlb_sync = amd_iommu_iotlb_sync,
2692 	.attach_dev = amd_iommu_attach_device,
2693 	.free = amd_iommu_domain_free,
2694 	/*
2695 	 * Note the AMDv2 page table format does not support a Force Coherency
2696 	 * bit, so enforce_cache_coherency should not be set. However VFIO is
2697 	 * not prepared to handle a case where some domains will support
2698 	 * enforcement and others do not. VFIO and iommufd will have to be fixed
2699 	 * before it can fully use the V2 page table. See the comment in
2700 	 * iommufd_hwpt_paging_alloc(). For now leave things as they have
2701 	 * historically been and lie about enforce_cache_coherencey.
2702 	 */
2703 	.enforce_cache_coherency = amd_iommu_enforce_cache_coherency,
2704 };
2705 
amd_iommu_domain_alloc_paging_v2(struct device * dev,u32 flags)2706 static struct iommu_domain *amd_iommu_domain_alloc_paging_v2(struct device *dev,
2707 							     u32 flags)
2708 {
2709 	struct pt_iommu_x86_64_cfg cfg = {};
2710 	struct protection_domain *domain;
2711 	int ret;
2712 
2713 	if (!amd_iommu_v2_pgtbl_supported())
2714 		return ERR_PTR(-EOPNOTSUPP);
2715 
2716 	domain = protection_domain_alloc();
2717 	if (!domain)
2718 		return ERR_PTR(-ENOMEM);
2719 
2720 	domain->pd_mode = PD_MODE_V2;
2721 	domain->iommu.nid = dev_to_node(dev);
2722 
2723 	cfg.common.features = BIT(PT_FEAT_X86_64_AMD_ENCRYPT_TABLES);
2724 	if (amd_iommu_np_cache)
2725 		cfg.common.features |= BIT(PT_FEAT_FLUSH_RANGE_NO_GAPS);
2726 	else
2727 		cfg.common.features |= BIT(PT_FEAT_FLUSH_RANGE);
2728 
2729 	/*
2730 	 * The v2 table behaves differently if it is attached to PASID 0 vs a
2731 	 * non-zero PASID. On PASID 0 it has no sign extension and the full
2732 	 * 57/48 bits decode the lower addresses. Otherwise it behaves like a
2733 	 * normal sign extended x86 page table. Since we want the domain to work
2734 	 * in both modes the top bit is removed and PT_FEAT_SIGN_EXTEND is not
2735 	 * set which creates a table that is compatible in both modes.
2736 	 */
2737 	if (amd_iommu_gpt_level == PAGE_MODE_5_LEVEL) {
2738 		cfg.common.hw_max_vasz_lg2 = 56;
2739 		cfg.top_level = 4;
2740 	} else {
2741 		cfg.common.hw_max_vasz_lg2 = 47;
2742 		cfg.top_level = 3;
2743 	}
2744 	cfg.common.hw_max_oasz_lg2 = 52;
2745 	domain->domain.ops = &amdv2_ops;
2746 
2747 	ret = pt_iommu_x86_64_init(&domain->amdv2, &cfg, GFP_KERNEL);
2748 	if (ret) {
2749 		amd_iommu_domain_free(&domain->domain);
2750 		return ERR_PTR(ret);
2751 	}
2752 	return &domain->domain;
2753 }
2754 
2755 static struct iommu_domain *
amd_iommu_domain_alloc_paging_flags(struct device * dev,u32 flags,const struct iommu_user_data * user_data)2756 amd_iommu_domain_alloc_paging_flags(struct device *dev, u32 flags,
2757 				    const struct iommu_user_data *user_data)
2758 
2759 {
2760 	struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
2761 	const u32 supported_flags = IOMMU_HWPT_ALLOC_DIRTY_TRACKING |
2762 						IOMMU_HWPT_ALLOC_PASID;
2763 
2764 	if ((flags & ~supported_flags) || user_data)
2765 		return ERR_PTR(-EOPNOTSUPP);
2766 
2767 	switch (flags & supported_flags) {
2768 	case IOMMU_HWPT_ALLOC_DIRTY_TRACKING:
2769 		/* Allocate domain with v1 page table for dirty tracking */
2770 		if (!amd_iommu_hd_support(iommu))
2771 			break;
2772 		return amd_iommu_domain_alloc_paging_v1(dev, flags);
2773 	case IOMMU_HWPT_ALLOC_PASID:
2774 		/* Allocate domain with v2 page table if IOMMU supports PASID. */
2775 		if (!amd_iommu_pasid_supported())
2776 			break;
2777 		return amd_iommu_domain_alloc_paging_v2(dev, flags);
2778 	case 0: {
2779 		struct iommu_domain *ret;
2780 
2781 		/* If nothing specific is required use the kernel commandline default */
2782 		if (amd_iommu_pgtable == PD_MODE_V1) {
2783 			ret = amd_iommu_domain_alloc_paging_v1(dev, flags);
2784 			if (ret != ERR_PTR(-EOPNOTSUPP))
2785 				return ret;
2786 			return amd_iommu_domain_alloc_paging_v2(dev, flags);
2787 		}
2788 		ret = amd_iommu_domain_alloc_paging_v2(dev, flags);
2789 		if (ret != ERR_PTR(-EOPNOTSUPP))
2790 			return ret;
2791 		return amd_iommu_domain_alloc_paging_v1(dev, flags);
2792 	}
2793 	default:
2794 		break;
2795 	}
2796 	return ERR_PTR(-EOPNOTSUPP);
2797 }
2798 
amd_iommu_domain_free(struct iommu_domain * dom)2799 void amd_iommu_domain_free(struct iommu_domain *dom)
2800 {
2801 	struct protection_domain *domain = to_pdomain(dom);
2802 
2803 	WARN_ON(!list_empty(&domain->dev_list));
2804 	pt_iommu_deinit(&domain->iommu);
2805 	pdom_id_free(domain->id);
2806 	kfree(domain);
2807 }
2808 
blocked_domain_attach_device(struct iommu_domain * domain,struct device * dev,struct iommu_domain * old)2809 static int blocked_domain_attach_device(struct iommu_domain *domain,
2810 					struct device *dev,
2811 					struct iommu_domain *old)
2812 {
2813 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2814 
2815 	if (dev_data->domain)
2816 		detach_device(dev);
2817 
2818 	/* Clear DTE and flush the entry */
2819 	mutex_lock(&dev_data->mutex);
2820 	dev_update_dte(dev_data, false);
2821 	mutex_unlock(&dev_data->mutex);
2822 
2823 	return 0;
2824 }
2825 
blocked_domain_set_dev_pasid(struct iommu_domain * domain,struct device * dev,ioasid_t pasid,struct iommu_domain * old)2826 static int blocked_domain_set_dev_pasid(struct iommu_domain *domain,
2827 					struct device *dev, ioasid_t pasid,
2828 					struct iommu_domain *old)
2829 {
2830 	amd_iommu_remove_dev_pasid(dev, pasid, old);
2831 	return 0;
2832 }
2833 
2834 static struct iommu_domain blocked_domain = {
2835 	.type = IOMMU_DOMAIN_BLOCKED,
2836 	.ops = &(const struct iommu_domain_ops) {
2837 		.attach_dev     = blocked_domain_attach_device,
2838 		.set_dev_pasid  = blocked_domain_set_dev_pasid,
2839 	}
2840 };
2841 
2842 static struct protection_domain identity_domain;
2843 
2844 static const struct iommu_domain_ops identity_domain_ops = {
2845 	.attach_dev = amd_iommu_attach_device,
2846 };
2847 
amd_iommu_init_identity_domain(void)2848 void amd_iommu_init_identity_domain(void)
2849 {
2850 	struct iommu_domain *domain = &identity_domain.domain;
2851 
2852 	domain->type = IOMMU_DOMAIN_IDENTITY;
2853 	domain->ops = &identity_domain_ops;
2854 	domain->owner = &amd_iommu_ops;
2855 
2856 	identity_domain.id = pdom_id_alloc();
2857 
2858 	protection_domain_init(&identity_domain);
2859 }
2860 
amd_iommu_attach_device(struct iommu_domain * dom,struct device * dev,struct iommu_domain * old)2861 static int amd_iommu_attach_device(struct iommu_domain *dom, struct device *dev,
2862 				   struct iommu_domain *old)
2863 {
2864 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2865 	struct protection_domain *domain = to_pdomain(dom);
2866 	struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
2867 	int ret;
2868 
2869 	/*
2870 	 * Skip attach device to domain if new domain is same as
2871 	 * devices current domain
2872 	 */
2873 	if (dev_data->domain == domain)
2874 		return 0;
2875 
2876 	dev_data->defer_attach = false;
2877 
2878 	/*
2879 	 * Restrict to devices with compatible IOMMU hardware support
2880 	 * when enforcement of dirty tracking is enabled.
2881 	 */
2882 	if (dom->dirty_ops && !amd_iommu_hd_support(iommu))
2883 		return -EINVAL;
2884 
2885 	if (dev_data->domain)
2886 		detach_device(dev);
2887 
2888 	ret = attach_device(dev, domain);
2889 
2890 #ifdef CONFIG_IRQ_REMAP
2891 	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
2892 		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
2893 			dev_data->use_vapic = 1;
2894 		else
2895 			dev_data->use_vapic = 0;
2896 	}
2897 #endif
2898 
2899 	return ret;
2900 }
2901 
amd_iommu_capable(struct device * dev,enum iommu_cap cap)2902 static bool amd_iommu_capable(struct device *dev, enum iommu_cap cap)
2903 {
2904 	switch (cap) {
2905 	case IOMMU_CAP_CACHE_COHERENCY:
2906 		return true;
2907 	case IOMMU_CAP_NOEXEC:
2908 		return false;
2909 	case IOMMU_CAP_PRE_BOOT_PROTECTION:
2910 		return amdr_ivrs_remap_support;
2911 	case IOMMU_CAP_ENFORCE_CACHE_COHERENCY:
2912 		return true;
2913 	case IOMMU_CAP_DEFERRED_FLUSH:
2914 		return true;
2915 	case IOMMU_CAP_DIRTY_TRACKING: {
2916 		struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
2917 
2918 		return amd_iommu_hd_support(iommu);
2919 	}
2920 	default:
2921 		break;
2922 	}
2923 
2924 	return false;
2925 }
2926 
amd_iommu_set_dirty_tracking(struct iommu_domain * domain,bool enable)2927 static int amd_iommu_set_dirty_tracking(struct iommu_domain *domain,
2928 					bool enable)
2929 {
2930 	struct protection_domain *pdomain = to_pdomain(domain);
2931 	struct dev_table_entry *dte;
2932 	struct iommu_dev_data *dev_data;
2933 	bool domain_flush = false;
2934 	struct amd_iommu *iommu;
2935 	unsigned long flags;
2936 	u64 new;
2937 
2938 	spin_lock_irqsave(&pdomain->lock, flags);
2939 	if (!(pdomain->dirty_tracking ^ enable)) {
2940 		spin_unlock_irqrestore(&pdomain->lock, flags);
2941 		return 0;
2942 	}
2943 
2944 	list_for_each_entry(dev_data, &pdomain->dev_list, list) {
2945 		spin_lock(&dev_data->dte_lock);
2946 		iommu = get_amd_iommu_from_dev_data(dev_data);
2947 		dte = &get_dev_table(iommu)[dev_data->devid];
2948 		new = dte->data[0];
2949 		new = (enable ? new | DTE_FLAG_HAD : new & ~DTE_FLAG_HAD);
2950 		dte->data[0] = new;
2951 		spin_unlock(&dev_data->dte_lock);
2952 
2953 		/* Flush device DTE */
2954 		device_flush_dte(dev_data);
2955 		domain_flush = true;
2956 	}
2957 
2958 	/* Flush IOTLB to mark IOPTE dirty on the next translation(s) */
2959 	if (domain_flush)
2960 		amd_iommu_domain_flush_all(pdomain);
2961 
2962 	pdomain->dirty_tracking = enable;
2963 	spin_unlock_irqrestore(&pdomain->lock, flags);
2964 
2965 	return 0;
2966 }
2967 
amd_iommu_get_resv_regions(struct device * dev,struct list_head * head)2968 static void amd_iommu_get_resv_regions(struct device *dev,
2969 				       struct list_head *head)
2970 {
2971 	struct iommu_resv_region *region;
2972 	struct unity_map_entry *entry;
2973 	struct amd_iommu *iommu;
2974 	struct amd_iommu_pci_seg *pci_seg;
2975 	int devid, sbdf;
2976 
2977 	sbdf = get_device_sbdf_id(dev);
2978 	if (sbdf < 0)
2979 		return;
2980 
2981 	devid = PCI_SBDF_TO_DEVID(sbdf);
2982 	iommu = get_amd_iommu_from_dev(dev);
2983 	pci_seg = iommu->pci_seg;
2984 
2985 	list_for_each_entry(entry, &pci_seg->unity_map, list) {
2986 		int type, prot = 0;
2987 		size_t length;
2988 
2989 		if (devid < entry->devid_start || devid > entry->devid_end)
2990 			continue;
2991 
2992 		type   = IOMMU_RESV_DIRECT;
2993 		length = entry->address_end - entry->address_start;
2994 		if (entry->prot & IOMMU_PROT_IR)
2995 			prot |= IOMMU_READ;
2996 		if (entry->prot & IOMMU_PROT_IW)
2997 			prot |= IOMMU_WRITE;
2998 		if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
2999 			/* Exclusion range */
3000 			type = IOMMU_RESV_RESERVED;
3001 
3002 		region = iommu_alloc_resv_region(entry->address_start,
3003 						 length, prot, type,
3004 						 GFP_KERNEL);
3005 		if (!region) {
3006 			dev_err(dev, "Out of memory allocating dm-regions\n");
3007 			return;
3008 		}
3009 		list_add_tail(&region->list, head);
3010 	}
3011 
3012 	region = iommu_alloc_resv_region(MSI_RANGE_START,
3013 					 MSI_RANGE_END - MSI_RANGE_START + 1,
3014 					 0, IOMMU_RESV_MSI, GFP_KERNEL);
3015 	if (!region)
3016 		return;
3017 	list_add_tail(&region->list, head);
3018 
3019 	if (amd_iommu_ht_range_ignore())
3020 		return;
3021 
3022 	region = iommu_alloc_resv_region(HT_RANGE_START,
3023 					 HT_RANGE_END - HT_RANGE_START + 1,
3024 					 0, IOMMU_RESV_RESERVED, GFP_KERNEL);
3025 	if (!region)
3026 		return;
3027 	list_add_tail(&region->list, head);
3028 }
3029 
amd_iommu_is_attach_deferred(struct device * dev)3030 static bool amd_iommu_is_attach_deferred(struct device *dev)
3031 {
3032 	struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
3033 
3034 	return dev_data->defer_attach;
3035 }
3036 
amd_iommu_def_domain_type(struct device * dev)3037 static int amd_iommu_def_domain_type(struct device *dev)
3038 {
3039 	struct iommu_dev_data *dev_data;
3040 
3041 	dev_data = dev_iommu_priv_get(dev);
3042 	if (!dev_data)
3043 		return 0;
3044 
3045 	/* Always use DMA domain for untrusted device */
3046 	if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted)
3047 		return IOMMU_DOMAIN_DMA;
3048 
3049 	/*
3050 	 * Do not identity map IOMMUv2 capable devices when:
3051 	 *  - memory encryption is active, because some of those devices
3052 	 *    (AMD GPUs) don't have the encryption bit in their DMA-mask
3053 	 *    and require remapping.
3054 	 *  - SNP is enabled, because it prohibits DTE[Mode]=0.
3055 	 */
3056 	if (pdev_pasid_supported(dev_data) &&
3057 	    !cc_platform_has(CC_ATTR_MEM_ENCRYPT) &&
3058 	    !amd_iommu_snp_en) {
3059 		return IOMMU_DOMAIN_IDENTITY;
3060 	}
3061 
3062 	return 0;
3063 }
3064 
amd_iommu_enforce_cache_coherency(struct iommu_domain * domain)3065 static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain)
3066 {
3067 	/* IOMMU_PTE_FC is always set */
3068 	return true;
3069 }
3070 
3071 const struct iommu_ops amd_iommu_ops = {
3072 	.capable = amd_iommu_capable,
3073 	.blocked_domain = &blocked_domain,
3074 	.release_domain = &blocked_domain,
3075 	.identity_domain = &identity_domain.domain,
3076 	.domain_alloc_paging_flags = amd_iommu_domain_alloc_paging_flags,
3077 	.domain_alloc_sva = amd_iommu_domain_alloc_sva,
3078 	.probe_device = amd_iommu_probe_device,
3079 	.release_device = amd_iommu_release_device,
3080 	.device_group = amd_iommu_device_group,
3081 	.get_resv_regions = amd_iommu_get_resv_regions,
3082 	.is_attach_deferred = amd_iommu_is_attach_deferred,
3083 	.def_domain_type = amd_iommu_def_domain_type,
3084 	.page_response = amd_iommu_page_response,
3085 };
3086 
3087 #ifdef CONFIG_IRQ_REMAP
3088 
3089 /*****************************************************************************
3090  *
3091  * Interrupt Remapping Implementation
3092  *
3093  *****************************************************************************/
3094 
3095 static struct irq_chip amd_ir_chip;
3096 static DEFINE_SPINLOCK(iommu_table_lock);
3097 
iommu_flush_irt_and_complete(struct amd_iommu * iommu,u16 devid)3098 static void iommu_flush_irt_and_complete(struct amd_iommu *iommu, u16 devid)
3099 {
3100 	int ret;
3101 	u64 data;
3102 	unsigned long flags;
3103 	struct iommu_cmd cmd, cmd2;
3104 
3105 	if (iommu->irtcachedis_enabled)
3106 		return;
3107 
3108 	build_inv_irt(&cmd, devid);
3109 	data = atomic64_inc_return(&iommu->cmd_sem_val);
3110 	build_completion_wait(&cmd2, iommu, data);
3111 
3112 	raw_spin_lock_irqsave(&iommu->lock, flags);
3113 	ret = __iommu_queue_command_sync(iommu, &cmd, true);
3114 	if (ret)
3115 		goto out;
3116 	ret = __iommu_queue_command_sync(iommu, &cmd2, false);
3117 	if (ret)
3118 		goto out;
3119 	wait_on_sem(iommu, data);
3120 out:
3121 	raw_spin_unlock_irqrestore(&iommu->lock, flags);
3122 }
3123 
iommu_get_int_tablen(struct iommu_dev_data * dev_data)3124 static inline u8 iommu_get_int_tablen(struct iommu_dev_data *dev_data)
3125 {
3126 	if (dev_data && dev_data->max_irqs == MAX_IRQS_PER_TABLE_2K)
3127 		return DTE_INTTABLEN_2K;
3128 	return DTE_INTTABLEN_512;
3129 }
3130 
set_dte_irq_entry(struct amd_iommu * iommu,u16 devid,struct irq_remap_table * table)3131 static void set_dte_irq_entry(struct amd_iommu *iommu, u16 devid,
3132 			      struct irq_remap_table *table)
3133 {
3134 	u64 new;
3135 	struct dev_table_entry *dte = &get_dev_table(iommu)[devid];
3136 	struct iommu_dev_data *dev_data = search_dev_data(iommu, devid);
3137 
3138 	if (dev_data)
3139 		spin_lock(&dev_data->dte_lock);
3140 
3141 	new = READ_ONCE(dte->data[2]);
3142 	new &= ~DTE_IRQ_PHYS_ADDR_MASK;
3143 	new |= iommu_virt_to_phys(table->table);
3144 	new |= DTE_IRQ_REMAP_INTCTL;
3145 	new |= iommu_get_int_tablen(dev_data);
3146 	new |= DTE_IRQ_REMAP_ENABLE;
3147 	WRITE_ONCE(dte->data[2], new);
3148 
3149 	if (dev_data)
3150 		spin_unlock(&dev_data->dte_lock);
3151 }
3152 
get_irq_table(struct amd_iommu * iommu,u16 devid)3153 static struct irq_remap_table *get_irq_table(struct amd_iommu *iommu, u16 devid)
3154 {
3155 	struct irq_remap_table *table;
3156 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
3157 
3158 	if (WARN_ONCE(!pci_seg->rlookup_table[devid],
3159 		      "%s: no iommu for devid %x:%x\n",
3160 		      __func__, pci_seg->id, devid))
3161 		return NULL;
3162 
3163 	table = pci_seg->irq_lookup_table[devid];
3164 	if (WARN_ONCE(!table, "%s: no table for devid %x:%x\n",
3165 		      __func__, pci_seg->id, devid))
3166 		return NULL;
3167 
3168 	return table;
3169 }
3170 
__alloc_irq_table(int nid,size_t size)3171 static struct irq_remap_table *__alloc_irq_table(int nid, size_t size)
3172 {
3173 	struct irq_remap_table *table;
3174 
3175 	table = kzalloc(sizeof(*table), GFP_KERNEL);
3176 	if (!table)
3177 		return NULL;
3178 
3179 	table->table = iommu_alloc_pages_node_sz(
3180 		nid, GFP_KERNEL, max(DTE_INTTAB_ALIGNMENT, size));
3181 	if (!table->table) {
3182 		kfree(table);
3183 		return NULL;
3184 	}
3185 	raw_spin_lock_init(&table->lock);
3186 
3187 	return table;
3188 }
3189 
set_remap_table_entry(struct amd_iommu * iommu,u16 devid,struct irq_remap_table * table)3190 static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
3191 				  struct irq_remap_table *table)
3192 {
3193 	struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
3194 
3195 	pci_seg->irq_lookup_table[devid] = table;
3196 	set_dte_irq_entry(iommu, devid, table);
3197 	iommu_flush_dte(iommu, devid);
3198 }
3199 
set_remap_table_entry_alias(struct pci_dev * pdev,u16 alias,void * data)3200 static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
3201 				       void *data)
3202 {
3203 	struct irq_remap_table *table = data;
3204 	struct amd_iommu_pci_seg *pci_seg;
3205 	struct amd_iommu *iommu = rlookup_amd_iommu(&pdev->dev);
3206 
3207 	if (!iommu)
3208 		return -EINVAL;
3209 
3210 	pci_seg = iommu->pci_seg;
3211 	pci_seg->irq_lookup_table[alias] = table;
3212 	set_dte_irq_entry(iommu, alias, table);
3213 	iommu_flush_dte(pci_seg->rlookup_table[alias], alias);
3214 
3215 	return 0;
3216 }
3217 
get_irq_table_size(unsigned int max_irqs)3218 static inline size_t get_irq_table_size(unsigned int max_irqs)
3219 {
3220 	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3221 		return max_irqs * sizeof(u32);
3222 
3223 	return max_irqs * (sizeof(u64) * 2);
3224 }
3225 
alloc_irq_table(struct amd_iommu * iommu,u16 devid,struct pci_dev * pdev,unsigned int max_irqs)3226 static struct irq_remap_table *alloc_irq_table(struct amd_iommu *iommu,
3227 					       u16 devid, struct pci_dev *pdev,
3228 					       unsigned int max_irqs)
3229 {
3230 	struct irq_remap_table *table = NULL;
3231 	struct irq_remap_table *new_table = NULL;
3232 	struct amd_iommu_pci_seg *pci_seg;
3233 	unsigned long flags;
3234 	int nid = iommu && iommu->dev ? dev_to_node(&iommu->dev->dev) : NUMA_NO_NODE;
3235 	u16 alias;
3236 
3237 	spin_lock_irqsave(&iommu_table_lock, flags);
3238 
3239 	pci_seg = iommu->pci_seg;
3240 	table = pci_seg->irq_lookup_table[devid];
3241 	if (table)
3242 		goto out_unlock;
3243 
3244 	alias = pci_seg->alias_table[devid];
3245 	table = pci_seg->irq_lookup_table[alias];
3246 	if (table) {
3247 		set_remap_table_entry(iommu, devid, table);
3248 		goto out_wait;
3249 	}
3250 	spin_unlock_irqrestore(&iommu_table_lock, flags);
3251 
3252 	/* Nothing there yet, allocate new irq remapping table */
3253 	new_table = __alloc_irq_table(nid, get_irq_table_size(max_irqs));
3254 	if (!new_table)
3255 		return NULL;
3256 
3257 	spin_lock_irqsave(&iommu_table_lock, flags);
3258 
3259 	table = pci_seg->irq_lookup_table[devid];
3260 	if (table)
3261 		goto out_unlock;
3262 
3263 	table = pci_seg->irq_lookup_table[alias];
3264 	if (table) {
3265 		set_remap_table_entry(iommu, devid, table);
3266 		goto out_wait;
3267 	}
3268 
3269 	table = new_table;
3270 	new_table = NULL;
3271 
3272 	if (pdev)
3273 		pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
3274 				       table);
3275 	else
3276 		set_remap_table_entry(iommu, devid, table);
3277 
3278 	if (devid != alias)
3279 		set_remap_table_entry(iommu, alias, table);
3280 
3281 out_wait:
3282 	iommu_completion_wait(iommu);
3283 
3284 out_unlock:
3285 	spin_unlock_irqrestore(&iommu_table_lock, flags);
3286 
3287 	if (new_table) {
3288 		iommu_free_pages(new_table->table);
3289 		kfree(new_table);
3290 	}
3291 	return table;
3292 }
3293 
alloc_irq_index(struct amd_iommu * iommu,u16 devid,int count,bool align,struct pci_dev * pdev,unsigned long max_irqs)3294 static int alloc_irq_index(struct amd_iommu *iommu, u16 devid, int count,
3295 			   bool align, struct pci_dev *pdev,
3296 			   unsigned long max_irqs)
3297 {
3298 	struct irq_remap_table *table;
3299 	int index, c, alignment = 1;
3300 	unsigned long flags;
3301 
3302 	table = alloc_irq_table(iommu, devid, pdev, max_irqs);
3303 	if (!table)
3304 		return -ENODEV;
3305 
3306 	if (align)
3307 		alignment = roundup_pow_of_two(count);
3308 
3309 	raw_spin_lock_irqsave(&table->lock, flags);
3310 
3311 	/* Scan table for free entries */
3312 	for (index = ALIGN(table->min_index, alignment), c = 0;
3313 	     index < max_irqs;) {
3314 		if (!iommu->irte_ops->is_allocated(table, index)) {
3315 			c += 1;
3316 		} else {
3317 			c     = 0;
3318 			index = ALIGN(index + 1, alignment);
3319 			continue;
3320 		}
3321 
3322 		if (c == count)	{
3323 			for (; c != 0; --c)
3324 				iommu->irte_ops->set_allocated(table, index - c + 1);
3325 
3326 			index -= count - 1;
3327 			goto out;
3328 		}
3329 
3330 		index++;
3331 	}
3332 
3333 	index = -ENOSPC;
3334 
3335 out:
3336 	raw_spin_unlock_irqrestore(&table->lock, flags);
3337 
3338 	return index;
3339 }
3340 
__modify_irte_ga(struct amd_iommu * iommu,u16 devid,int index,struct irte_ga * irte)3341 static int __modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
3342 			    struct irte_ga *irte)
3343 {
3344 	struct irq_remap_table *table;
3345 	struct irte_ga *entry;
3346 	unsigned long flags;
3347 	u128 old;
3348 
3349 	table = get_irq_table(iommu, devid);
3350 	if (!table)
3351 		return -ENOMEM;
3352 
3353 	raw_spin_lock_irqsave(&table->lock, flags);
3354 
3355 	entry = (struct irte_ga *)table->table;
3356 	entry = &entry[index];
3357 
3358 	/*
3359 	 * We use cmpxchg16 to atomically update the 128-bit IRTE,
3360 	 * and it cannot be updated by the hardware or other processors
3361 	 * behind us, so the return value of cmpxchg16 should be the
3362 	 * same as the old value.
3363 	 */
3364 	old = entry->irte;
3365 	WARN_ON(!try_cmpxchg128(&entry->irte, &old, irte->irte));
3366 
3367 	raw_spin_unlock_irqrestore(&table->lock, flags);
3368 
3369 	return 0;
3370 }
3371 
modify_irte_ga(struct amd_iommu * iommu,u16 devid,int index,struct irte_ga * irte)3372 static int modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
3373 			  struct irte_ga *irte)
3374 {
3375 	int ret;
3376 
3377 	ret = __modify_irte_ga(iommu, devid, index, irte);
3378 	if (ret)
3379 		return ret;
3380 
3381 	iommu_flush_irt_and_complete(iommu, devid);
3382 
3383 	return 0;
3384 }
3385 
modify_irte(struct amd_iommu * iommu,u16 devid,int index,union irte * irte)3386 static int modify_irte(struct amd_iommu *iommu,
3387 		       u16 devid, int index, union irte *irte)
3388 {
3389 	struct irq_remap_table *table;
3390 	unsigned long flags;
3391 
3392 	table = get_irq_table(iommu, devid);
3393 	if (!table)
3394 		return -ENOMEM;
3395 
3396 	raw_spin_lock_irqsave(&table->lock, flags);
3397 	table->table[index] = irte->val;
3398 	raw_spin_unlock_irqrestore(&table->lock, flags);
3399 
3400 	iommu_flush_irt_and_complete(iommu, devid);
3401 
3402 	return 0;
3403 }
3404 
free_irte(struct amd_iommu * iommu,u16 devid,int index)3405 static void free_irte(struct amd_iommu *iommu, u16 devid, int index)
3406 {
3407 	struct irq_remap_table *table;
3408 	unsigned long flags;
3409 
3410 	table = get_irq_table(iommu, devid);
3411 	if (!table)
3412 		return;
3413 
3414 	raw_spin_lock_irqsave(&table->lock, flags);
3415 	iommu->irte_ops->clear_allocated(table, index);
3416 	raw_spin_unlock_irqrestore(&table->lock, flags);
3417 
3418 	iommu_flush_irt_and_complete(iommu, devid);
3419 }
3420 
irte_prepare(void * entry,u32 delivery_mode,bool dest_mode,u8 vector,u32 dest_apicid,int devid)3421 static void irte_prepare(void *entry,
3422 			 u32 delivery_mode, bool dest_mode,
3423 			 u8 vector, u32 dest_apicid, int devid)
3424 {
3425 	union irte *irte = (union irte *) entry;
3426 
3427 	irte->val                = 0;
3428 	irte->fields.vector      = vector;
3429 	irte->fields.int_type    = delivery_mode;
3430 	irte->fields.destination = dest_apicid;
3431 	irte->fields.dm          = dest_mode;
3432 	irte->fields.valid       = 1;
3433 }
3434 
irte_ga_prepare(void * entry,u32 delivery_mode,bool dest_mode,u8 vector,u32 dest_apicid,int devid)3435 static void irte_ga_prepare(void *entry,
3436 			    u32 delivery_mode, bool dest_mode,
3437 			    u8 vector, u32 dest_apicid, int devid)
3438 {
3439 	struct irte_ga *irte = (struct irte_ga *) entry;
3440 
3441 	irte->lo.val                      = 0;
3442 	irte->hi.val                      = 0;
3443 	irte->lo.fields_remap.int_type    = delivery_mode;
3444 	irte->lo.fields_remap.dm          = dest_mode;
3445 	irte->hi.fields.vector            = vector;
3446 	irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3447 	irte->hi.fields.destination       = APICID_TO_IRTE_DEST_HI(dest_apicid);
3448 	irte->lo.fields_remap.valid       = 1;
3449 }
3450 
irte_activate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3451 static void irte_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3452 {
3453 	union irte *irte = (union irte *) entry;
3454 
3455 	irte->fields.valid = 1;
3456 	modify_irte(iommu, devid, index, irte);
3457 }
3458 
irte_ga_activate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3459 static void irte_ga_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3460 {
3461 	struct irte_ga *irte = (struct irte_ga *) entry;
3462 
3463 	irte->lo.fields_remap.valid = 1;
3464 	modify_irte_ga(iommu, devid, index, irte);
3465 }
3466 
irte_deactivate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3467 static void irte_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3468 {
3469 	union irte *irte = (union irte *) entry;
3470 
3471 	irte->fields.valid = 0;
3472 	modify_irte(iommu, devid, index, irte);
3473 }
3474 
irte_ga_deactivate(struct amd_iommu * iommu,void * entry,u16 devid,u16 index)3475 static void irte_ga_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3476 {
3477 	struct irte_ga *irte = (struct irte_ga *) entry;
3478 
3479 	irte->lo.fields_remap.valid = 0;
3480 	modify_irte_ga(iommu, devid, index, irte);
3481 }
3482 
irte_set_affinity(struct amd_iommu * iommu,void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)3483 static void irte_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3484 			      u8 vector, u32 dest_apicid)
3485 {
3486 	union irte *irte = (union irte *) entry;
3487 
3488 	irte->fields.vector = vector;
3489 	irte->fields.destination = dest_apicid;
3490 	modify_irte(iommu, devid, index, irte);
3491 }
3492 
irte_ga_set_affinity(struct amd_iommu * iommu,void * entry,u16 devid,u16 index,u8 vector,u32 dest_apicid)3493 static void irte_ga_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3494 				 u8 vector, u32 dest_apicid)
3495 {
3496 	struct irte_ga *irte = (struct irte_ga *) entry;
3497 
3498 	if (!irte->lo.fields_remap.guest_mode) {
3499 		irte->hi.fields.vector = vector;
3500 		irte->lo.fields_remap.destination =
3501 					APICID_TO_IRTE_DEST_LO(dest_apicid);
3502 		irte->hi.fields.destination =
3503 					APICID_TO_IRTE_DEST_HI(dest_apicid);
3504 		modify_irte_ga(iommu, devid, index, irte);
3505 	}
3506 }
3507 
3508 #define IRTE_ALLOCATED (~1U)
irte_set_allocated(struct irq_remap_table * table,int index)3509 static void irte_set_allocated(struct irq_remap_table *table, int index)
3510 {
3511 	table->table[index] = IRTE_ALLOCATED;
3512 }
3513 
irte_ga_set_allocated(struct irq_remap_table * table,int index)3514 static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3515 {
3516 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3517 	struct irte_ga *irte = &ptr[index];
3518 
3519 	memset(&irte->lo.val, 0, sizeof(u64));
3520 	memset(&irte->hi.val, 0, sizeof(u64));
3521 	irte->hi.fields.vector = 0xff;
3522 }
3523 
irte_is_allocated(struct irq_remap_table * table,int index)3524 static bool irte_is_allocated(struct irq_remap_table *table, int index)
3525 {
3526 	union irte *ptr = (union irte *)table->table;
3527 	union irte *irte = &ptr[index];
3528 
3529 	return irte->val != 0;
3530 }
3531 
irte_ga_is_allocated(struct irq_remap_table * table,int index)3532 static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3533 {
3534 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3535 	struct irte_ga *irte = &ptr[index];
3536 
3537 	return irte->hi.fields.vector != 0;
3538 }
3539 
irte_clear_allocated(struct irq_remap_table * table,int index)3540 static void irte_clear_allocated(struct irq_remap_table *table, int index)
3541 {
3542 	table->table[index] = 0;
3543 }
3544 
irte_ga_clear_allocated(struct irq_remap_table * table,int index)3545 static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3546 {
3547 	struct irte_ga *ptr = (struct irte_ga *)table->table;
3548 	struct irte_ga *irte = &ptr[index];
3549 
3550 	memset(&irte->lo.val, 0, sizeof(u64));
3551 	memset(&irte->hi.val, 0, sizeof(u64));
3552 }
3553 
get_devid(struct irq_alloc_info * info)3554 static int get_devid(struct irq_alloc_info *info)
3555 {
3556 	switch (info->type) {
3557 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
3558 		return get_ioapic_devid(info->devid);
3559 	case X86_IRQ_ALLOC_TYPE_HPET:
3560 		return get_hpet_devid(info->devid);
3561 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3562 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3563 		return get_device_sbdf_id(msi_desc_to_dev(info->desc));
3564 	default:
3565 		WARN_ON_ONCE(1);
3566 		return -1;
3567 	}
3568 }
3569 
3570 struct irq_remap_ops amd_iommu_irq_ops = {
3571 	.prepare		= amd_iommu_prepare,
3572 	.enable			= amd_iommu_enable,
3573 	.disable		= amd_iommu_disable,
3574 	.reenable		= amd_iommu_reenable,
3575 	.enable_faulting	= amd_iommu_enable_faulting,
3576 };
3577 
fill_msi_msg(struct msi_msg * msg,u32 index)3578 static void fill_msi_msg(struct msi_msg *msg, u32 index)
3579 {
3580 	msg->data = index;
3581 	msg->address_lo = 0;
3582 	msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
3583 	/*
3584 	 * The struct msi_msg.dest_mode_logical is used to set the DM bit
3585 	 * in MSI Message Address Register. For device w/ 2K int-remap support,
3586 	 * this is bit must be set to 1 regardless of the actual destination
3587 	 * mode, which is signified by the IRTE[DM].
3588 	 */
3589 	if (FEATURE_NUM_INT_REMAP_SUP_2K(amd_iommu_efr2))
3590 		msg->arch_addr_lo.dest_mode_logical = true;
3591 	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
3592 }
3593 
irq_remapping_prepare_irte(struct amd_ir_data * data,struct irq_cfg * irq_cfg,struct irq_alloc_info * info,int devid,int index,int sub_handle)3594 static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3595 				       struct irq_cfg *irq_cfg,
3596 				       struct irq_alloc_info *info,
3597 				       int devid, int index, int sub_handle)
3598 {
3599 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3600 	struct amd_iommu *iommu = data->iommu;
3601 
3602 	if (!iommu)
3603 		return;
3604 
3605 	data->irq_2_irte.devid = devid;
3606 	data->irq_2_irte.index = index + sub_handle;
3607 	iommu->irte_ops->prepare(data->entry, APIC_DELIVERY_MODE_FIXED,
3608 				 apic->dest_mode_logical, irq_cfg->vector,
3609 				 irq_cfg->dest_apicid, devid);
3610 
3611 	switch (info->type) {
3612 	case X86_IRQ_ALLOC_TYPE_IOAPIC:
3613 	case X86_IRQ_ALLOC_TYPE_HPET:
3614 	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3615 	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3616 		fill_msi_msg(&data->msi_entry, irte_info->index);
3617 		break;
3618 
3619 	default:
3620 		BUG_ON(1);
3621 		break;
3622 	}
3623 }
3624 
3625 struct amd_irte_ops irte_32_ops = {
3626 	.prepare = irte_prepare,
3627 	.activate = irte_activate,
3628 	.deactivate = irte_deactivate,
3629 	.set_affinity = irte_set_affinity,
3630 	.set_allocated = irte_set_allocated,
3631 	.is_allocated = irte_is_allocated,
3632 	.clear_allocated = irte_clear_allocated,
3633 };
3634 
3635 struct amd_irte_ops irte_128_ops = {
3636 	.prepare = irte_ga_prepare,
3637 	.activate = irte_ga_activate,
3638 	.deactivate = irte_ga_deactivate,
3639 	.set_affinity = irte_ga_set_affinity,
3640 	.set_allocated = irte_ga_set_allocated,
3641 	.is_allocated = irte_ga_is_allocated,
3642 	.clear_allocated = irte_ga_clear_allocated,
3643 };
3644 
irq_remapping_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)3645 static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3646 			       unsigned int nr_irqs, void *arg)
3647 {
3648 	struct irq_alloc_info *info = arg;
3649 	struct irq_data *irq_data;
3650 	struct amd_ir_data *data = NULL;
3651 	struct amd_iommu *iommu;
3652 	struct irq_cfg *cfg;
3653 	struct iommu_dev_data *dev_data;
3654 	unsigned long max_irqs;
3655 	int i, ret, devid, seg, sbdf;
3656 	int index;
3657 
3658 	if (!info)
3659 		return -EINVAL;
3660 	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI)
3661 		return -EINVAL;
3662 
3663 	sbdf = get_devid(info);
3664 	if (sbdf < 0)
3665 		return -EINVAL;
3666 
3667 	seg = PCI_SBDF_TO_SEGID(sbdf);
3668 	devid = PCI_SBDF_TO_DEVID(sbdf);
3669 	iommu = __rlookup_amd_iommu(seg, devid);
3670 	if (!iommu)
3671 		return -EINVAL;
3672 
3673 	dev_data = search_dev_data(iommu, devid);
3674 	max_irqs = dev_data ? dev_data->max_irqs : MAX_IRQS_PER_TABLE_512;
3675 
3676 	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3677 	if (ret < 0)
3678 		return ret;
3679 
3680 	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3681 		struct irq_remap_table *table;
3682 
3683 		table = alloc_irq_table(iommu, devid, NULL, max_irqs);
3684 		if (table) {
3685 			if (!table->min_index) {
3686 				/*
3687 				 * Keep the first 32 indexes free for IOAPIC
3688 				 * interrupts.
3689 				 */
3690 				table->min_index = 32;
3691 				for (i = 0; i < 32; ++i)
3692 					iommu->irte_ops->set_allocated(table, i);
3693 			}
3694 			WARN_ON(table->min_index != 32);
3695 			index = info->ioapic.pin;
3696 		} else {
3697 			index = -ENOMEM;
3698 		}
3699 	} else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI ||
3700 		   info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) {
3701 		bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI);
3702 
3703 		index = alloc_irq_index(iommu, devid, nr_irqs, align,
3704 					msi_desc_to_pci_dev(info->desc),
3705 					max_irqs);
3706 	} else {
3707 		index = alloc_irq_index(iommu, devid, nr_irqs, false, NULL,
3708 					max_irqs);
3709 	}
3710 
3711 	if (index < 0) {
3712 		pr_warn("Failed to allocate IRTE\n");
3713 		ret = index;
3714 		goto out_free_parent;
3715 	}
3716 
3717 	for (i = 0; i < nr_irqs; i++) {
3718 		irq_data = irq_domain_get_irq_data(domain, virq + i);
3719 		cfg = irq_data ? irqd_cfg(irq_data) : NULL;
3720 		if (!cfg) {
3721 			ret = -EINVAL;
3722 			goto out_free_data;
3723 		}
3724 
3725 		ret = -ENOMEM;
3726 		data = kzalloc(sizeof(*data), GFP_KERNEL);
3727 		if (!data)
3728 			goto out_free_data;
3729 
3730 		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3731 			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
3732 		else
3733 			data->entry = kzalloc(sizeof(struct irte_ga),
3734 						     GFP_KERNEL);
3735 		if (!data->entry) {
3736 			kfree(data);
3737 			goto out_free_data;
3738 		}
3739 
3740 		data->iommu = iommu;
3741 		irq_data->hwirq = (devid << 16) + i;
3742 		irq_data->chip_data = data;
3743 		irq_data->chip = &amd_ir_chip;
3744 		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3745 	}
3746 
3747 	return 0;
3748 
3749 out_free_data:
3750 	for (i--; i >= 0; i--) {
3751 		irq_data = irq_domain_get_irq_data(domain, virq + i);
3752 		if (irq_data)
3753 			kfree(irq_data->chip_data);
3754 	}
3755 	for (i = 0; i < nr_irqs; i++)
3756 		free_irte(iommu, devid, index + i);
3757 out_free_parent:
3758 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
3759 	return ret;
3760 }
3761 
irq_remapping_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)3762 static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
3763 			       unsigned int nr_irqs)
3764 {
3765 	struct irq_2_irte *irte_info;
3766 	struct irq_data *irq_data;
3767 	struct amd_ir_data *data;
3768 	int i;
3769 
3770 	for (i = 0; i < nr_irqs; i++) {
3771 		irq_data = irq_domain_get_irq_data(domain, virq  + i);
3772 		if (irq_data && irq_data->chip_data) {
3773 			data = irq_data->chip_data;
3774 			irte_info = &data->irq_2_irte;
3775 			free_irte(data->iommu, irte_info->devid, irte_info->index);
3776 			kfree(data->entry);
3777 			kfree(data);
3778 		}
3779 	}
3780 	irq_domain_free_irqs_common(domain, virq, nr_irqs);
3781 }
3782 
3783 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3784 			       struct amd_ir_data *ir_data,
3785 			       struct irq_2_irte *irte_info,
3786 			       struct irq_cfg *cfg);
3787 
irq_remapping_activate(struct irq_domain * domain,struct irq_data * irq_data,bool reserve)3788 static int irq_remapping_activate(struct irq_domain *domain,
3789 				  struct irq_data *irq_data, bool reserve)
3790 {
3791 	struct amd_ir_data *data = irq_data->chip_data;
3792 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3793 	struct amd_iommu *iommu = data->iommu;
3794 	struct irq_cfg *cfg = irqd_cfg(irq_data);
3795 
3796 	if (!iommu)
3797 		return 0;
3798 
3799 	iommu->irte_ops->activate(iommu, data->entry, irte_info->devid,
3800 				  irte_info->index);
3801 	amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
3802 	return 0;
3803 }
3804 
irq_remapping_deactivate(struct irq_domain * domain,struct irq_data * irq_data)3805 static void irq_remapping_deactivate(struct irq_domain *domain,
3806 				     struct irq_data *irq_data)
3807 {
3808 	struct amd_ir_data *data = irq_data->chip_data;
3809 	struct irq_2_irte *irte_info = &data->irq_2_irte;
3810 	struct amd_iommu *iommu = data->iommu;
3811 
3812 	if (iommu)
3813 		iommu->irte_ops->deactivate(iommu, data->entry, irte_info->devid,
3814 					    irte_info->index);
3815 }
3816 
irq_remapping_select(struct irq_domain * d,struct irq_fwspec * fwspec,enum irq_domain_bus_token bus_token)3817 static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec,
3818 				enum irq_domain_bus_token bus_token)
3819 {
3820 	struct amd_iommu *iommu;
3821 	int devid = -1;
3822 
3823 	if (!amd_iommu_irq_remap)
3824 		return 0;
3825 
3826 	if (x86_fwspec_is_ioapic(fwspec))
3827 		devid = get_ioapic_devid(fwspec->param[0]);
3828 	else if (x86_fwspec_is_hpet(fwspec))
3829 		devid = get_hpet_devid(fwspec->param[0]);
3830 
3831 	if (devid < 0)
3832 		return 0;
3833 	iommu = __rlookup_amd_iommu((devid >> 16), (devid & 0xffff));
3834 
3835 	return iommu && iommu->ir_domain == d;
3836 }
3837 
3838 static const struct irq_domain_ops amd_ir_domain_ops = {
3839 	.select = irq_remapping_select,
3840 	.alloc = irq_remapping_alloc,
3841 	.free = irq_remapping_free,
3842 	.activate = irq_remapping_activate,
3843 	.deactivate = irq_remapping_deactivate,
3844 };
3845 
__amd_iommu_update_ga(struct irte_ga * entry,int cpu,bool ga_log_intr)3846 static void __amd_iommu_update_ga(struct irte_ga *entry, int cpu,
3847 				  bool ga_log_intr)
3848 {
3849 	if (cpu >= 0) {
3850 		entry->lo.fields_vapic.destination =
3851 					APICID_TO_IRTE_DEST_LO(cpu);
3852 		entry->hi.fields.destination =
3853 					APICID_TO_IRTE_DEST_HI(cpu);
3854 		entry->lo.fields_vapic.is_run = true;
3855 		entry->lo.fields_vapic.ga_log_intr = false;
3856 	} else {
3857 		entry->lo.fields_vapic.is_run = false;
3858 		entry->lo.fields_vapic.ga_log_intr = ga_log_intr;
3859 	}
3860 }
3861 
3862 /*
3863  * Update the pCPU information for an IRTE that is configured to post IRQs to
3864  * a vCPU, without issuing an IOMMU invalidation for the IRTE.
3865  *
3866  * If the vCPU is associated with a pCPU (@cpu >= 0), configure the Destination
3867  * with the pCPU's APIC ID, set IsRun, and clear GALogIntr.  If the vCPU isn't
3868  * associated with a pCPU (@cpu < 0), clear IsRun and set/clear GALogIntr based
3869  * on input from the caller (e.g. KVM only requests GALogIntr when the vCPU is
3870  * blocking and requires a notification wake event).  I.e. treat vCPUs that are
3871  * associated with a pCPU as running.  This API is intended to be used when a
3872  * vCPU is scheduled in/out (or stops running for any reason), to do a fast
3873  * update of IsRun, GALogIntr, and (conditionally) Destination.
3874  *
3875  * Per the IOMMU spec, the Destination, IsRun, and GATag fields are not cached
3876  * and thus don't require an invalidation to ensure the IOMMU consumes fresh
3877  * information.
3878  */
amd_iommu_update_ga(void * data,int cpu,bool ga_log_intr)3879 int amd_iommu_update_ga(void *data, int cpu, bool ga_log_intr)
3880 {
3881 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3882 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3883 
3884 	if (WARN_ON_ONCE(!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)))
3885 		return -EINVAL;
3886 
3887 	if (!entry || !entry->lo.fields_vapic.guest_mode)
3888 		return 0;
3889 
3890 	if (!ir_data->iommu)
3891 		return -ENODEV;
3892 
3893 	__amd_iommu_update_ga(entry, cpu, ga_log_intr);
3894 
3895 	return __modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3896 				ir_data->irq_2_irte.index, entry);
3897 }
3898 EXPORT_SYMBOL(amd_iommu_update_ga);
3899 
amd_iommu_activate_guest_mode(void * data,int cpu,bool ga_log_intr)3900 int amd_iommu_activate_guest_mode(void *data, int cpu, bool ga_log_intr)
3901 {
3902 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3903 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3904 	u64 valid;
3905 
3906 	if (WARN_ON_ONCE(!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)))
3907 		return -EINVAL;
3908 
3909 	if (!entry)
3910 		return 0;
3911 
3912 	valid = entry->lo.fields_vapic.valid;
3913 
3914 	entry->lo.val = 0;
3915 	entry->hi.val = 0;
3916 
3917 	entry->lo.fields_vapic.valid       = valid;
3918 	entry->lo.fields_vapic.guest_mode  = 1;
3919 	entry->hi.fields.ga_root_ptr       = ir_data->ga_root_ptr;
3920 	entry->hi.fields.vector            = ir_data->ga_vector;
3921 	entry->lo.fields_vapic.ga_tag      = ir_data->ga_tag;
3922 
3923 	__amd_iommu_update_ga(entry, cpu, ga_log_intr);
3924 
3925 	return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3926 			      ir_data->irq_2_irte.index, entry);
3927 }
3928 EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
3929 
amd_iommu_deactivate_guest_mode(void * data)3930 int amd_iommu_deactivate_guest_mode(void *data)
3931 {
3932 	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3933 	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3934 	struct irq_cfg *cfg = ir_data->cfg;
3935 	u64 valid;
3936 
3937 	if (WARN_ON_ONCE(!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)))
3938 		return -EINVAL;
3939 
3940 	if (!entry || !entry->lo.fields_vapic.guest_mode)
3941 		return 0;
3942 
3943 	valid = entry->lo.fields_remap.valid;
3944 
3945 	entry->lo.val = 0;
3946 	entry->hi.val = 0;
3947 
3948 	entry->lo.fields_remap.valid       = valid;
3949 	entry->lo.fields_remap.dm          = apic->dest_mode_logical;
3950 	entry->lo.fields_remap.int_type    = APIC_DELIVERY_MODE_FIXED;
3951 	entry->hi.fields.vector            = cfg->vector;
3952 	entry->lo.fields_remap.destination =
3953 				APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
3954 	entry->hi.fields.destination =
3955 				APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
3956 
3957 	return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3958 			      ir_data->irq_2_irte.index, entry);
3959 }
3960 EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
3961 
amd_ir_set_vcpu_affinity(struct irq_data * data,void * info)3962 static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *info)
3963 {
3964 	int ret;
3965 	struct amd_iommu_pi_data *pi_data = info;
3966 	struct amd_ir_data *ir_data = data->chip_data;
3967 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3968 	struct iommu_dev_data *dev_data;
3969 
3970 	if (WARN_ON_ONCE(!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)))
3971 		return -EINVAL;
3972 
3973 	if (ir_data->iommu == NULL)
3974 		return -EINVAL;
3975 
3976 	dev_data = search_dev_data(ir_data->iommu, irte_info->devid);
3977 
3978 	/* Note:
3979 	 * This device has never been set up for guest mode.
3980 	 * we should not modify the IRTE
3981 	 */
3982 	if (!dev_data || !dev_data->use_vapic)
3983 		return -EINVAL;
3984 
3985 	ir_data->cfg = irqd_cfg(data);
3986 
3987 	if (pi_data) {
3988 		pi_data->ir_data = ir_data;
3989 
3990 		ir_data->ga_root_ptr = (pi_data->vapic_addr >> 12);
3991 		ir_data->ga_vector = pi_data->vector;
3992 		ir_data->ga_tag = pi_data->ga_tag;
3993 		if (pi_data->is_guest_mode)
3994 			ret = amd_iommu_activate_guest_mode(ir_data, pi_data->cpu,
3995 							    pi_data->ga_log_intr);
3996 		else
3997 			ret = amd_iommu_deactivate_guest_mode(ir_data);
3998 	} else {
3999 		ret = amd_iommu_deactivate_guest_mode(ir_data);
4000 	}
4001 
4002 	return ret;
4003 }
4004 
4005 
amd_ir_update_irte(struct irq_data * irqd,struct amd_iommu * iommu,struct amd_ir_data * ir_data,struct irq_2_irte * irte_info,struct irq_cfg * cfg)4006 static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
4007 			       struct amd_ir_data *ir_data,
4008 			       struct irq_2_irte *irte_info,
4009 			       struct irq_cfg *cfg)
4010 {
4011 
4012 	/*
4013 	 * Atomically updates the IRTE with the new destination, vector
4014 	 * and flushes the interrupt entry cache.
4015 	 */
4016 	iommu->irte_ops->set_affinity(iommu, ir_data->entry, irte_info->devid,
4017 				      irte_info->index, cfg->vector,
4018 				      cfg->dest_apicid);
4019 }
4020 
amd_ir_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)4021 static int amd_ir_set_affinity(struct irq_data *data,
4022 			       const struct cpumask *mask, bool force)
4023 {
4024 	struct amd_ir_data *ir_data = data->chip_data;
4025 	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4026 	struct irq_cfg *cfg = irqd_cfg(data);
4027 	struct irq_data *parent = data->parent_data;
4028 	struct amd_iommu *iommu = ir_data->iommu;
4029 	int ret;
4030 
4031 	if (!iommu)
4032 		return -ENODEV;
4033 
4034 	ret = parent->chip->irq_set_affinity(parent, mask, force);
4035 	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4036 		return ret;
4037 
4038 	amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4039 	/*
4040 	 * After this point, all the interrupts will start arriving
4041 	 * at the new destination. So, time to cleanup the previous
4042 	 * vector allocation.
4043 	 */
4044 	vector_schedule_cleanup(cfg);
4045 
4046 	return IRQ_SET_MASK_OK_DONE;
4047 }
4048 
ir_compose_msi_msg(struct irq_data * irq_data,struct msi_msg * msg)4049 static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4050 {
4051 	struct amd_ir_data *ir_data = irq_data->chip_data;
4052 
4053 	*msg = ir_data->msi_entry;
4054 }
4055 
4056 static struct irq_chip amd_ir_chip = {
4057 	.name			= "AMD-IR",
4058 	.irq_ack		= apic_ack_irq,
4059 	.irq_set_affinity	= amd_ir_set_affinity,
4060 	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
4061 	.irq_compose_msi_msg	= ir_compose_msi_msg,
4062 };
4063 
4064 static const struct msi_parent_ops amdvi_msi_parent_ops = {
4065 	.supported_flags	= X86_VECTOR_MSI_FLAGS_SUPPORTED | MSI_FLAG_MULTI_PCI_MSI,
4066 	.bus_select_token	= DOMAIN_BUS_AMDVI,
4067 	.bus_select_mask	= MATCH_PCI_MSI,
4068 	.prefix			= "IR-",
4069 	.init_dev_msi_info	= msi_parent_init_dev_msi_info,
4070 };
4071 
amd_iommu_create_irq_domain(struct amd_iommu * iommu)4072 int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4073 {
4074 	struct irq_domain_info info = {
4075 		.fwnode		= irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index),
4076 		.ops		= &amd_ir_domain_ops,
4077 		.domain_flags	= IRQ_DOMAIN_FLAG_ISOLATED_MSI,
4078 		.host_data	= iommu,
4079 		.parent		= arch_get_ir_parent_domain(),
4080 	};
4081 
4082 	if (!info.fwnode)
4083 		return -ENOMEM;
4084 
4085 	iommu->ir_domain = msi_create_parent_irq_domain(&info, &amdvi_msi_parent_ops);
4086 	if (!iommu->ir_domain) {
4087 		irq_domain_free_fwnode(info.fwnode);
4088 		return -ENOMEM;
4089 	}
4090 	return 0;
4091 }
4092 #endif
4093 
4094 MODULE_IMPORT_NS("GENERIC_PT_IOMMU");
4095