1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Driver for AMBA serial ports
4 *
5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6 *
7 * Copyright 1999 ARM Limited
8 * Copyright (C) 2000 Deep Blue Solutions Ltd.
9 * Copyright (C) 2010 ST-Ericsson SA
10 *
11 * This is a generic driver for ARM AMBA-type serial ports. They
12 * have a lot of 16550-like features, but are not register compatible.
13 * Note that although they do have CTS, DCD and DSR inputs, they do
14 * not have an RI input, nor do they have DTR or RTS outputs. If
15 * required, these have to be supplied via some other means (eg, GPIO)
16 * and hooked into this driver.
17 */
18
19 #include <linux/module.h>
20 #include <linux/ioport.h>
21 #include <linux/init.h>
22 #include <linux/console.h>
23 #include <linux/platform_device.h>
24 #include <linux/sysrq.h>
25 #include <linux/device.h>
26 #include <linux/tty.h>
27 #include <linux/tty_flip.h>
28 #include <linux/serial_core.h>
29 #include <linux/serial.h>
30 #include <linux/amba/bus.h>
31 #include <linux/amba/serial.h>
32 #include <linux/clk.h>
33 #include <linux/slab.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/scatterlist.h>
37 #include <linux/delay.h>
38 #include <linux/types.h>
39 #include <linux/of.h>
40 #include <linux/pinctrl/consumer.h>
41 #include <linux/sizes.h>
42 #include <linux/io.h>
43 #include <linux/acpi.h>
44
45 #define UART_NR 14
46
47 #define SERIAL_AMBA_MAJOR 204
48 #define SERIAL_AMBA_MINOR 64
49 #define SERIAL_AMBA_NR UART_NR
50
51 #define AMBA_ISR_PASS_LIMIT 256
52
53 #define UART_DR_ERROR (UART011_DR_OE | UART011_DR_BE | UART011_DR_PE | UART011_DR_FE)
54 #define UART_DUMMY_DR_RX BIT(16)
55
56 enum {
57 REG_DR,
58 REG_ST_DMAWM,
59 REG_ST_TIMEOUT,
60 REG_FR,
61 REG_LCRH_RX,
62 REG_LCRH_TX,
63 REG_IBRD,
64 REG_FBRD,
65 REG_CR,
66 REG_IFLS,
67 REG_IMSC,
68 REG_RIS,
69 REG_MIS,
70 REG_ICR,
71 REG_DMACR,
72 REG_ST_XFCR,
73 REG_ST_XON1,
74 REG_ST_XON2,
75 REG_ST_XOFF1,
76 REG_ST_XOFF2,
77 REG_ST_ITCR,
78 REG_ST_ITIP,
79 REG_ST_ABCR,
80 REG_ST_ABIMSC,
81
82 /* The size of the array - must be last */
83 REG_ARRAY_SIZE,
84 };
85
86 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
87 [REG_DR] = UART01x_DR,
88 [REG_FR] = UART01x_FR,
89 [REG_LCRH_RX] = UART011_LCRH,
90 [REG_LCRH_TX] = UART011_LCRH,
91 [REG_IBRD] = UART011_IBRD,
92 [REG_FBRD] = UART011_FBRD,
93 [REG_CR] = UART011_CR,
94 [REG_IFLS] = UART011_IFLS,
95 [REG_IMSC] = UART011_IMSC,
96 [REG_RIS] = UART011_RIS,
97 [REG_MIS] = UART011_MIS,
98 [REG_ICR] = UART011_ICR,
99 [REG_DMACR] = UART011_DMACR,
100 };
101
102 /* There is by now at least one vendor with differing details, so handle it */
103 struct vendor_data {
104 const u16 *reg_offset;
105 unsigned int ifls;
106 unsigned int fr_busy;
107 unsigned int fr_dsr;
108 unsigned int fr_cts;
109 unsigned int fr_ri;
110 unsigned int inv_fr;
111 bool access_32b;
112 bool oversampling;
113 bool dma_threshold;
114 bool cts_event_workaround;
115 bool always_enabled;
116 bool fixed_options;
117
118 unsigned int (*get_fifosize)(struct amba_device *dev);
119 };
120
get_fifosize_arm(struct amba_device * dev)121 static unsigned int get_fifosize_arm(struct amba_device *dev)
122 {
123 return amba_rev(dev) < 3 ? 16 : 32;
124 }
125
126 static struct vendor_data vendor_arm = {
127 .reg_offset = pl011_std_offsets,
128 .ifls = UART011_IFLS_RX4_8 | UART011_IFLS_TX4_8,
129 .fr_busy = UART01x_FR_BUSY,
130 .fr_dsr = UART01x_FR_DSR,
131 .fr_cts = UART01x_FR_CTS,
132 .fr_ri = UART011_FR_RI,
133 .oversampling = false,
134 .dma_threshold = false,
135 .cts_event_workaround = false,
136 .always_enabled = false,
137 .fixed_options = false,
138 .get_fifosize = get_fifosize_arm,
139 };
140
141 static const struct vendor_data vendor_sbsa = {
142 .reg_offset = pl011_std_offsets,
143 .fr_busy = UART01x_FR_BUSY,
144 .fr_dsr = UART01x_FR_DSR,
145 .fr_cts = UART01x_FR_CTS,
146 .fr_ri = UART011_FR_RI,
147 .access_32b = true,
148 .oversampling = false,
149 .dma_threshold = false,
150 .cts_event_workaround = false,
151 .always_enabled = true,
152 .fixed_options = true,
153 };
154
155 #ifdef CONFIG_ACPI_SPCR_TABLE
156 static const struct vendor_data vendor_qdt_qdf2400_e44 = {
157 .reg_offset = pl011_std_offsets,
158 .fr_busy = UART011_FR_TXFE,
159 .fr_dsr = UART01x_FR_DSR,
160 .fr_cts = UART01x_FR_CTS,
161 .fr_ri = UART011_FR_RI,
162 .inv_fr = UART011_FR_TXFE,
163 .access_32b = true,
164 .oversampling = false,
165 .dma_threshold = false,
166 .cts_event_workaround = false,
167 .always_enabled = true,
168 .fixed_options = true,
169 };
170 #endif
171
172 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
173 [REG_DR] = UART01x_DR,
174 [REG_ST_DMAWM] = ST_UART011_DMAWM,
175 [REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
176 [REG_FR] = UART01x_FR,
177 [REG_LCRH_RX] = ST_UART011_LCRH_RX,
178 [REG_LCRH_TX] = ST_UART011_LCRH_TX,
179 [REG_IBRD] = UART011_IBRD,
180 [REG_FBRD] = UART011_FBRD,
181 [REG_CR] = UART011_CR,
182 [REG_IFLS] = UART011_IFLS,
183 [REG_IMSC] = UART011_IMSC,
184 [REG_RIS] = UART011_RIS,
185 [REG_MIS] = UART011_MIS,
186 [REG_ICR] = UART011_ICR,
187 [REG_DMACR] = UART011_DMACR,
188 [REG_ST_XFCR] = ST_UART011_XFCR,
189 [REG_ST_XON1] = ST_UART011_XON1,
190 [REG_ST_XON2] = ST_UART011_XON2,
191 [REG_ST_XOFF1] = ST_UART011_XOFF1,
192 [REG_ST_XOFF2] = ST_UART011_XOFF2,
193 [REG_ST_ITCR] = ST_UART011_ITCR,
194 [REG_ST_ITIP] = ST_UART011_ITIP,
195 [REG_ST_ABCR] = ST_UART011_ABCR,
196 [REG_ST_ABIMSC] = ST_UART011_ABIMSC,
197 };
198
get_fifosize_st(struct amba_device * dev)199 static unsigned int get_fifosize_st(struct amba_device *dev)
200 {
201 return 64;
202 }
203
204 static struct vendor_data vendor_st = {
205 .reg_offset = pl011_st_offsets,
206 .ifls = UART011_IFLS_RX_HALF | UART011_IFLS_TX_HALF,
207 .fr_busy = UART01x_FR_BUSY,
208 .fr_dsr = UART01x_FR_DSR,
209 .fr_cts = UART01x_FR_CTS,
210 .fr_ri = UART011_FR_RI,
211 .oversampling = true,
212 .dma_threshold = true,
213 .cts_event_workaround = true,
214 .always_enabled = false,
215 .fixed_options = false,
216 .get_fifosize = get_fifosize_st,
217 };
218
219 /* Deals with DMA transactions */
220
221 struct pl011_dmabuf {
222 dma_addr_t dma;
223 size_t len;
224 char *buf;
225 };
226
227 struct pl011_dmarx_data {
228 struct dma_chan *chan;
229 struct completion complete;
230 bool use_buf_b;
231 struct pl011_dmabuf dbuf_a;
232 struct pl011_dmabuf dbuf_b;
233 dma_cookie_t cookie;
234 bool running;
235 struct timer_list timer;
236 unsigned int last_residue;
237 unsigned long last_jiffies;
238 bool auto_poll_rate;
239 unsigned int poll_rate;
240 unsigned int poll_timeout;
241 };
242
243 struct pl011_dmatx_data {
244 struct dma_chan *chan;
245 dma_addr_t dma;
246 size_t len;
247 char *buf;
248 bool queued;
249 };
250
251 enum pl011_rs485_tx_state {
252 OFF,
253 WAIT_AFTER_RTS,
254 SEND,
255 WAIT_AFTER_SEND,
256 };
257
258 /*
259 * We wrap our port structure around the generic uart_port.
260 */
261 struct uart_amba_port {
262 struct uart_port port;
263 const u16 *reg_offset;
264 struct clk *clk;
265 const struct vendor_data *vendor;
266 unsigned int im; /* interrupt mask */
267 unsigned int old_status;
268 unsigned int fifosize; /* vendor-specific */
269 unsigned int fixed_baud; /* vendor-set fixed baud rate */
270 char type[12];
271 ktime_t rs485_tx_drain_interval; /* nano */
272 enum pl011_rs485_tx_state rs485_tx_state;
273 struct hrtimer trigger_start_tx;
274 struct hrtimer trigger_stop_tx;
275 bool console_line_ended;
276 #ifdef CONFIG_DMA_ENGINE
277 /* DMA stuff */
278 unsigned int dmacr; /* dma control reg */
279 bool using_tx_dma;
280 bool using_rx_dma;
281 struct pl011_dmarx_data dmarx;
282 struct pl011_dmatx_data dmatx;
283 bool dma_probed;
284 #endif
285 };
286
287 static unsigned int pl011_tx_empty(struct uart_port *port);
288
pl011_reg_to_offset(const struct uart_amba_port * uap,unsigned int reg)289 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
290 unsigned int reg)
291 {
292 return uap->reg_offset[reg];
293 }
294
pl011_read(const struct uart_amba_port * uap,unsigned int reg)295 static unsigned int pl011_read(const struct uart_amba_port *uap,
296 unsigned int reg)
297 {
298 void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
299
300 return (uap->port.iotype == UPIO_MEM32) ?
301 readl_relaxed(addr) : readw_relaxed(addr);
302 }
303
pl011_write(unsigned int val,const struct uart_amba_port * uap,unsigned int reg)304 static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
305 unsigned int reg)
306 {
307 void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
308
309 if (uap->port.iotype == UPIO_MEM32)
310 writel_relaxed(val, addr);
311 else
312 writew_relaxed(val, addr);
313 }
314
315 /*
316 * Reads up to 256 characters from the FIFO or until it's empty and
317 * inserts them into the TTY layer. Returns the number of characters
318 * read from the FIFO.
319 */
pl011_fifo_to_tty(struct uart_amba_port * uap)320 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
321 {
322 unsigned int ch, fifotaken;
323 int sysrq;
324 u16 status;
325 u8 flag;
326
327 for (fifotaken = 0; fifotaken != 256; fifotaken++) {
328 status = pl011_read(uap, REG_FR);
329 if (status & UART01x_FR_RXFE)
330 break;
331
332 /* Take chars from the FIFO and update status */
333 ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
334 flag = TTY_NORMAL;
335 uap->port.icount.rx++;
336
337 if (unlikely(ch & UART_DR_ERROR)) {
338 if (ch & UART011_DR_BE) {
339 ch &= ~(UART011_DR_FE | UART011_DR_PE);
340 uap->port.icount.brk++;
341 if (uart_handle_break(&uap->port))
342 continue;
343 } else if (ch & UART011_DR_PE) {
344 uap->port.icount.parity++;
345 } else if (ch & UART011_DR_FE) {
346 uap->port.icount.frame++;
347 }
348 if (ch & UART011_DR_OE)
349 uap->port.icount.overrun++;
350
351 ch &= uap->port.read_status_mask;
352
353 if (ch & UART011_DR_BE)
354 flag = TTY_BREAK;
355 else if (ch & UART011_DR_PE)
356 flag = TTY_PARITY;
357 else if (ch & UART011_DR_FE)
358 flag = TTY_FRAME;
359 }
360
361 sysrq = uart_prepare_sysrq_char(&uap->port, ch & 255);
362 if (!sysrq)
363 uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
364 }
365
366 return fifotaken;
367 }
368
369 /*
370 * All the DMA operation mode stuff goes inside this ifdef.
371 * This assumes that you have a generic DMA device interface,
372 * no custom DMA interfaces are supported.
373 */
374 #ifdef CONFIG_DMA_ENGINE
375
376 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
377
pl011_dmabuf_init(struct dma_chan * chan,struct pl011_dmabuf * db,enum dma_data_direction dir)378 static int pl011_dmabuf_init(struct dma_chan *chan, struct pl011_dmabuf *db,
379 enum dma_data_direction dir)
380 {
381 db->buf = dma_alloc_coherent(chan->device->dev, PL011_DMA_BUFFER_SIZE,
382 &db->dma, GFP_KERNEL);
383 if (!db->buf)
384 return -ENOMEM;
385 db->len = PL011_DMA_BUFFER_SIZE;
386
387 return 0;
388 }
389
pl011_dmabuf_free(struct dma_chan * chan,struct pl011_dmabuf * db,enum dma_data_direction dir)390 static void pl011_dmabuf_free(struct dma_chan *chan, struct pl011_dmabuf *db,
391 enum dma_data_direction dir)
392 {
393 if (db->buf) {
394 dma_free_coherent(chan->device->dev,
395 PL011_DMA_BUFFER_SIZE, db->buf, db->dma);
396 }
397 }
398
pl011_dma_probe(struct uart_amba_port * uap)399 static void pl011_dma_probe(struct uart_amba_port *uap)
400 {
401 /* DMA is the sole user of the platform data right now */
402 struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
403 struct device *dev = uap->port.dev;
404 struct dma_slave_config tx_conf = {
405 .dst_addr = uap->port.mapbase +
406 pl011_reg_to_offset(uap, REG_DR),
407 .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
408 .direction = DMA_MEM_TO_DEV,
409 .dst_maxburst = uap->fifosize >> 1,
410 .device_fc = false,
411 };
412 struct dma_chan *chan;
413 dma_cap_mask_t mask;
414
415 uap->dma_probed = true;
416 chan = dma_request_chan(dev, "tx");
417 if (IS_ERR(chan)) {
418 if (PTR_ERR(chan) == -EPROBE_DEFER) {
419 uap->dma_probed = false;
420 return;
421 }
422
423 /* We need platform data */
424 if (!plat || !plat->dma_filter) {
425 dev_dbg(uap->port.dev, "no DMA platform data\n");
426 return;
427 }
428
429 /* Try to acquire a generic DMA engine slave TX channel */
430 dma_cap_zero(mask);
431 dma_cap_set(DMA_SLAVE, mask);
432
433 chan = dma_request_channel(mask, plat->dma_filter,
434 plat->dma_tx_param);
435 if (!chan) {
436 dev_err(uap->port.dev, "no TX DMA channel!\n");
437 return;
438 }
439 }
440
441 dmaengine_slave_config(chan, &tx_conf);
442 uap->dmatx.chan = chan;
443
444 dev_info(uap->port.dev, "DMA channel TX %s\n",
445 dma_chan_name(uap->dmatx.chan));
446
447 /* Optionally make use of an RX channel as well */
448 chan = dma_request_chan(dev, "rx");
449
450 if (IS_ERR(chan) && plat && plat->dma_rx_param) {
451 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
452
453 if (!chan) {
454 dev_err(uap->port.dev, "no RX DMA channel!\n");
455 return;
456 }
457 }
458
459 if (!IS_ERR(chan)) {
460 struct dma_slave_config rx_conf = {
461 .src_addr = uap->port.mapbase +
462 pl011_reg_to_offset(uap, REG_DR),
463 .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
464 .direction = DMA_DEV_TO_MEM,
465 .src_maxburst = uap->fifosize >> 2,
466 .device_fc = false,
467 };
468 struct dma_slave_caps caps;
469
470 /*
471 * Some DMA controllers provide information on their capabilities.
472 * If the controller does, check for suitable residue processing
473 * otherwise assime all is well.
474 */
475 if (dma_get_slave_caps(chan, &caps) == 0) {
476 if (caps.residue_granularity ==
477 DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
478 dma_release_channel(chan);
479 dev_info(uap->port.dev,
480 "RX DMA disabled - no residue processing\n");
481 return;
482 }
483 }
484 dmaengine_slave_config(chan, &rx_conf);
485 uap->dmarx.chan = chan;
486
487 uap->dmarx.auto_poll_rate = false;
488 if (plat && plat->dma_rx_poll_enable) {
489 /* Set poll rate if specified. */
490 if (plat->dma_rx_poll_rate) {
491 uap->dmarx.auto_poll_rate = false;
492 uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
493 } else {
494 /*
495 * 100 ms defaults to poll rate if not
496 * specified. This will be adjusted with
497 * the baud rate at set_termios.
498 */
499 uap->dmarx.auto_poll_rate = true;
500 uap->dmarx.poll_rate = 100;
501 }
502 /* 3 secs defaults poll_timeout if not specified. */
503 if (plat->dma_rx_poll_timeout)
504 uap->dmarx.poll_timeout =
505 plat->dma_rx_poll_timeout;
506 else
507 uap->dmarx.poll_timeout = 3000;
508 } else if (!plat && dev->of_node) {
509 uap->dmarx.auto_poll_rate =
510 of_property_read_bool(dev->of_node, "auto-poll");
511 if (uap->dmarx.auto_poll_rate) {
512 u32 x;
513
514 if (of_property_read_u32(dev->of_node, "poll-rate-ms", &x) == 0)
515 uap->dmarx.poll_rate = x;
516 else
517 uap->dmarx.poll_rate = 100;
518 if (of_property_read_u32(dev->of_node, "poll-timeout-ms", &x) == 0)
519 uap->dmarx.poll_timeout = x;
520 else
521 uap->dmarx.poll_timeout = 3000;
522 }
523 }
524 dev_info(uap->port.dev, "DMA channel RX %s\n",
525 dma_chan_name(uap->dmarx.chan));
526 }
527 }
528
pl011_dma_remove(struct uart_amba_port * uap)529 static void pl011_dma_remove(struct uart_amba_port *uap)
530 {
531 if (uap->dmatx.chan)
532 dma_release_channel(uap->dmatx.chan);
533 if (uap->dmarx.chan)
534 dma_release_channel(uap->dmarx.chan);
535 }
536
537 /* Forward declare these for the refill routine */
538 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
539 static void pl011_start_tx_pio(struct uart_amba_port *uap);
540
541 /*
542 * The current DMA TX buffer has been sent.
543 * Try to queue up another DMA buffer.
544 */
pl011_dma_tx_callback(void * data)545 static void pl011_dma_tx_callback(void *data)
546 {
547 struct uart_amba_port *uap = data;
548 struct tty_port *tport = &uap->port.state->port;
549 struct pl011_dmatx_data *dmatx = &uap->dmatx;
550 unsigned long flags;
551 u16 dmacr;
552
553 uart_port_lock_irqsave(&uap->port, &flags);
554 if (uap->dmatx.queued)
555 dma_unmap_single(dmatx->chan->device->dev, dmatx->dma,
556 dmatx->len, DMA_TO_DEVICE);
557
558 dmacr = uap->dmacr;
559 uap->dmacr = dmacr & ~UART011_TXDMAE;
560 pl011_write(uap->dmacr, uap, REG_DMACR);
561
562 /*
563 * If TX DMA was disabled, it means that we've stopped the DMA for
564 * some reason (eg, XOFF received, or we want to send an X-char.)
565 *
566 * Note: we need to be careful here of a potential race between DMA
567 * and the rest of the driver - if the driver disables TX DMA while
568 * a TX buffer completing, we must update the tx queued status to
569 * get further refills (hence we check dmacr).
570 */
571 if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
572 kfifo_is_empty(&tport->xmit_fifo)) {
573 uap->dmatx.queued = false;
574 uart_port_unlock_irqrestore(&uap->port, flags);
575 return;
576 }
577
578 if (pl011_dma_tx_refill(uap) <= 0)
579 /*
580 * We didn't queue a DMA buffer for some reason, but we
581 * have data pending to be sent. Re-enable the TX IRQ.
582 */
583 pl011_start_tx_pio(uap);
584
585 uart_port_unlock_irqrestore(&uap->port, flags);
586 }
587
588 /*
589 * Try to refill the TX DMA buffer.
590 * Locking: called with port lock held and IRQs disabled.
591 * Returns:
592 * 1 if we queued up a TX DMA buffer.
593 * 0 if we didn't want to handle this by DMA
594 * <0 on error
595 */
pl011_dma_tx_refill(struct uart_amba_port * uap)596 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
597 {
598 struct pl011_dmatx_data *dmatx = &uap->dmatx;
599 struct dma_chan *chan = dmatx->chan;
600 struct dma_device *dma_dev = chan->device;
601 struct dma_async_tx_descriptor *desc;
602 struct tty_port *tport = &uap->port.state->port;
603 unsigned int count;
604
605 /*
606 * Try to avoid the overhead involved in using DMA if the
607 * transaction fits in the first half of the FIFO, by using
608 * the standard interrupt handling. This ensures that we
609 * issue a uart_write_wakeup() at the appropriate time.
610 */
611 count = kfifo_len(&tport->xmit_fifo);
612 if (count < (uap->fifosize >> 1)) {
613 uap->dmatx.queued = false;
614 return 0;
615 }
616
617 /*
618 * Bodge: don't send the last character by DMA, as this
619 * will prevent XON from notifying us to restart DMA.
620 */
621 count -= 1;
622
623 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
624 if (count > PL011_DMA_BUFFER_SIZE)
625 count = PL011_DMA_BUFFER_SIZE;
626
627 count = kfifo_out_peek(&tport->xmit_fifo, dmatx->buf, count);
628 dmatx->len = count;
629 dmatx->dma = dma_map_single(dma_dev->dev, dmatx->buf, count,
630 DMA_TO_DEVICE);
631 if (dmatx->dma == DMA_MAPPING_ERROR) {
632 uap->dmatx.queued = false;
633 dev_dbg(uap->port.dev, "unable to map TX DMA\n");
634 return -EBUSY;
635 }
636
637 desc = dmaengine_prep_slave_single(chan, dmatx->dma, dmatx->len, DMA_MEM_TO_DEV,
638 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
639 if (!desc) {
640 dma_unmap_single(dma_dev->dev, dmatx->dma, dmatx->len, DMA_TO_DEVICE);
641 uap->dmatx.queued = false;
642 /*
643 * If DMA cannot be used right now, we complete this
644 * transaction via IRQ and let the TTY layer retry.
645 */
646 dev_dbg(uap->port.dev, "TX DMA busy\n");
647 return -EBUSY;
648 }
649
650 /* Some data to go along to the callback */
651 desc->callback = pl011_dma_tx_callback;
652 desc->callback_param = uap;
653
654 /* All errors should happen at prepare time */
655 dmaengine_submit(desc);
656
657 /* Fire the DMA transaction */
658 dma_dev->device_issue_pending(chan);
659
660 uap->dmacr |= UART011_TXDMAE;
661 pl011_write(uap->dmacr, uap, REG_DMACR);
662 uap->dmatx.queued = true;
663
664 /*
665 * Now we know that DMA will fire, so advance the ring buffer
666 * with the stuff we just dispatched.
667 */
668 uart_xmit_advance(&uap->port, count);
669
670 if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
671 uart_write_wakeup(&uap->port);
672
673 return 1;
674 }
675
676 /*
677 * We received a transmit interrupt without a pending X-char but with
678 * pending characters.
679 * Locking: called with port lock held and IRQs disabled.
680 * Returns:
681 * false if we want to use PIO to transmit
682 * true if we queued a DMA buffer
683 */
pl011_dma_tx_irq(struct uart_amba_port * uap)684 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
685 {
686 if (!uap->using_tx_dma)
687 return false;
688
689 /*
690 * If we already have a TX buffer queued, but received a
691 * TX interrupt, it will be because we've just sent an X-char.
692 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
693 */
694 if (uap->dmatx.queued) {
695 uap->dmacr |= UART011_TXDMAE;
696 pl011_write(uap->dmacr, uap, REG_DMACR);
697 uap->im &= ~UART011_TXIM;
698 pl011_write(uap->im, uap, REG_IMSC);
699 return true;
700 }
701
702 /*
703 * We don't have a TX buffer queued, so try to queue one.
704 * If we successfully queued a buffer, mask the TX IRQ.
705 */
706 if (pl011_dma_tx_refill(uap) > 0) {
707 uap->im &= ~UART011_TXIM;
708 pl011_write(uap->im, uap, REG_IMSC);
709 return true;
710 }
711 return false;
712 }
713
714 /*
715 * Stop the DMA transmit (eg, due to received XOFF).
716 * Locking: called with port lock held and IRQs disabled.
717 */
pl011_dma_tx_stop(struct uart_amba_port * uap)718 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
719 {
720 if (uap->dmatx.queued) {
721 uap->dmacr &= ~UART011_TXDMAE;
722 pl011_write(uap->dmacr, uap, REG_DMACR);
723 }
724 }
725
726 /*
727 * Try to start a DMA transmit, or in the case of an XON/OFF
728 * character queued for send, try to get that character out ASAP.
729 * Locking: called with port lock held and IRQs disabled.
730 * Returns:
731 * false if we want the TX IRQ to be enabled
732 * true if we have a buffer queued
733 */
pl011_dma_tx_start(struct uart_amba_port * uap)734 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
735 {
736 u16 dmacr;
737
738 if (!uap->using_tx_dma)
739 return false;
740
741 if (!uap->port.x_char) {
742 /* no X-char, try to push chars out in DMA mode */
743 bool ret = true;
744
745 if (!uap->dmatx.queued) {
746 if (pl011_dma_tx_refill(uap) > 0) {
747 uap->im &= ~UART011_TXIM;
748 pl011_write(uap->im, uap, REG_IMSC);
749 } else {
750 ret = false;
751 }
752 } else if (!(uap->dmacr & UART011_TXDMAE)) {
753 uap->dmacr |= UART011_TXDMAE;
754 pl011_write(uap->dmacr, uap, REG_DMACR);
755 }
756 return ret;
757 }
758
759 /*
760 * We have an X-char to send. Disable DMA to prevent it loading
761 * the TX fifo, and then see if we can stuff it into the FIFO.
762 */
763 dmacr = uap->dmacr;
764 uap->dmacr &= ~UART011_TXDMAE;
765 pl011_write(uap->dmacr, uap, REG_DMACR);
766
767 if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
768 /*
769 * No space in the FIFO, so enable the transmit interrupt
770 * so we know when there is space. Note that once we've
771 * loaded the character, we should just re-enable DMA.
772 */
773 return false;
774 }
775
776 pl011_write(uap->port.x_char, uap, REG_DR);
777 uap->port.icount.tx++;
778 uap->port.x_char = 0;
779
780 /* Success - restore the DMA state */
781 uap->dmacr = dmacr;
782 pl011_write(dmacr, uap, REG_DMACR);
783
784 return true;
785 }
786
787 /*
788 * Flush the transmit buffer.
789 * Locking: called with port lock held and IRQs disabled.
790 */
pl011_dma_flush_buffer(struct uart_port * port)791 static void pl011_dma_flush_buffer(struct uart_port *port)
792 __releases(&uap->port.lock)
793 __acquires(&uap->port.lock)
794 {
795 struct uart_amba_port *uap =
796 container_of(port, struct uart_amba_port, port);
797
798 if (!uap->using_tx_dma)
799 return;
800
801 dmaengine_terminate_async(uap->dmatx.chan);
802
803 if (uap->dmatx.queued) {
804 dma_unmap_single(uap->dmatx.chan->device->dev, uap->dmatx.dma,
805 uap->dmatx.len, DMA_TO_DEVICE);
806 uap->dmatx.queued = false;
807 uap->dmacr &= ~UART011_TXDMAE;
808 pl011_write(uap->dmacr, uap, REG_DMACR);
809 }
810 }
811
812 static void pl011_dma_rx_callback(void *data);
813
pl011_dma_rx_trigger_dma(struct uart_amba_port * uap)814 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
815 {
816 struct dma_chan *rxchan = uap->dmarx.chan;
817 struct pl011_dmarx_data *dmarx = &uap->dmarx;
818 struct dma_async_tx_descriptor *desc;
819 struct pl011_dmabuf *dbuf;
820
821 if (!rxchan)
822 return -EIO;
823
824 /* Start the RX DMA job */
825 dbuf = uap->dmarx.use_buf_b ?
826 &uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
827 desc = dmaengine_prep_slave_single(rxchan, dbuf->dma, dbuf->len,
828 DMA_DEV_TO_MEM,
829 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
830 /*
831 * If the DMA engine is busy and cannot prepare a
832 * channel, no big deal, the driver will fall back
833 * to interrupt mode as a result of this error code.
834 */
835 if (!desc) {
836 uap->dmarx.running = false;
837 dmaengine_terminate_all(rxchan);
838 return -EBUSY;
839 }
840
841 /* Some data to go along to the callback */
842 desc->callback = pl011_dma_rx_callback;
843 desc->callback_param = uap;
844 dmarx->cookie = dmaengine_submit(desc);
845 dma_async_issue_pending(rxchan);
846
847 uap->dmacr |= UART011_RXDMAE;
848 pl011_write(uap->dmacr, uap, REG_DMACR);
849 uap->dmarx.running = true;
850
851 uap->im &= ~UART011_RXIM;
852 pl011_write(uap->im, uap, REG_IMSC);
853
854 return 0;
855 }
856
857 /*
858 * This is called when either the DMA job is complete, or
859 * the FIFO timeout interrupt occurred. This must be called
860 * with the port spinlock uap->port.lock held.
861 */
pl011_dma_rx_chars(struct uart_amba_port * uap,u32 pending,bool use_buf_b,bool readfifo)862 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
863 u32 pending, bool use_buf_b,
864 bool readfifo)
865 {
866 struct tty_port *port = &uap->port.state->port;
867 struct pl011_dmabuf *dbuf = use_buf_b ?
868 &uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
869 int dma_count = 0;
870 u32 fifotaken = 0; /* only used for vdbg() */
871
872 struct pl011_dmarx_data *dmarx = &uap->dmarx;
873 int dmataken = 0;
874
875 if (uap->dmarx.poll_rate) {
876 /* The data can be taken by polling */
877 dmataken = dbuf->len - dmarx->last_residue;
878 /* Recalculate the pending size */
879 if (pending >= dmataken)
880 pending -= dmataken;
881 }
882
883 /* Pick the remain data from the DMA */
884 if (pending) {
885 /*
886 * First take all chars in the DMA pipe, then look in the FIFO.
887 * Note that tty_insert_flip_buf() tries to take as many chars
888 * as it can.
889 */
890 dma_count = tty_insert_flip_string(port, dbuf->buf + dmataken, pending);
891
892 uap->port.icount.rx += dma_count;
893 if (dma_count < pending)
894 dev_warn(uap->port.dev,
895 "couldn't insert all characters (TTY is full?)\n");
896 }
897
898 /* Reset the last_residue for Rx DMA poll */
899 if (uap->dmarx.poll_rate)
900 dmarx->last_residue = dbuf->len;
901
902 /*
903 * Only continue with trying to read the FIFO if all DMA chars have
904 * been taken first.
905 */
906 if (dma_count == pending && readfifo) {
907 /* Clear any error flags */
908 pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
909 UART011_FEIS, uap, REG_ICR);
910
911 /*
912 * If we read all the DMA'd characters, and we had an
913 * incomplete buffer, that could be due to an rx error, or
914 * maybe we just timed out. Read any pending chars and check
915 * the error status.
916 *
917 * Error conditions will only occur in the FIFO, these will
918 * trigger an immediate interrupt and stop the DMA job, so we
919 * will always find the error in the FIFO, never in the DMA
920 * buffer.
921 */
922 fifotaken = pl011_fifo_to_tty(uap);
923 }
924
925 dev_vdbg(uap->port.dev,
926 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
927 dma_count, fifotaken);
928 tty_flip_buffer_push(port);
929 }
930
pl011_dma_rx_irq(struct uart_amba_port * uap)931 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
932 {
933 struct pl011_dmarx_data *dmarx = &uap->dmarx;
934 struct dma_chan *rxchan = dmarx->chan;
935 struct pl011_dmabuf *dbuf = dmarx->use_buf_b ?
936 &dmarx->dbuf_b : &dmarx->dbuf_a;
937 size_t pending;
938 struct dma_tx_state state;
939 enum dma_status dmastat;
940
941 /*
942 * Pause the transfer so we can trust the current counter,
943 * do this before we pause the PL011 block, else we may
944 * overflow the FIFO.
945 */
946 if (dmaengine_pause(rxchan))
947 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
948 dmastat = rxchan->device->device_tx_status(rxchan,
949 dmarx->cookie, &state);
950 if (dmastat != DMA_PAUSED)
951 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
952
953 /* Disable RX DMA - incoming data will wait in the FIFO */
954 uap->dmacr &= ~UART011_RXDMAE;
955 pl011_write(uap->dmacr, uap, REG_DMACR);
956 uap->dmarx.running = false;
957
958 pending = dbuf->len - state.residue;
959 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
960 /* Then we terminate the transfer - we now know our residue */
961 dmaengine_terminate_all(rxchan);
962
963 /*
964 * This will take the chars we have so far and insert
965 * into the framework.
966 */
967 pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
968
969 /* Switch buffer & re-trigger DMA job */
970 dmarx->use_buf_b = !dmarx->use_buf_b;
971 if (pl011_dma_rx_trigger_dma(uap)) {
972 dev_dbg(uap->port.dev,
973 "could not retrigger RX DMA job fall back to interrupt mode\n");
974 uap->im |= UART011_RXIM;
975 pl011_write(uap->im, uap, REG_IMSC);
976 }
977 }
978
pl011_dma_rx_callback(void * data)979 static void pl011_dma_rx_callback(void *data)
980 {
981 struct uart_amba_port *uap = data;
982 struct pl011_dmarx_data *dmarx = &uap->dmarx;
983 struct dma_chan *rxchan = dmarx->chan;
984 bool lastbuf = dmarx->use_buf_b;
985 struct pl011_dmabuf *dbuf = dmarx->use_buf_b ?
986 &dmarx->dbuf_b : &dmarx->dbuf_a;
987 size_t pending;
988 struct dma_tx_state state;
989 int ret;
990
991 /*
992 * This completion interrupt occurs typically when the
993 * RX buffer is totally stuffed but no timeout has yet
994 * occurred. When that happens, we just want the RX
995 * routine to flush out the secondary DMA buffer while
996 * we immediately trigger the next DMA job.
997 */
998 uart_port_lock_irq(&uap->port);
999 /*
1000 * Rx data can be taken by the UART interrupts during
1001 * the DMA irq handler. So we check the residue here.
1002 */
1003 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1004 pending = dbuf->len - state.residue;
1005 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1006 /* Then we terminate the transfer - we now know our residue */
1007 dmaengine_terminate_all(rxchan);
1008
1009 uap->dmarx.running = false;
1010 dmarx->use_buf_b = !lastbuf;
1011 ret = pl011_dma_rx_trigger_dma(uap);
1012
1013 pl011_dma_rx_chars(uap, pending, lastbuf, false);
1014 uart_unlock_and_check_sysrq(&uap->port);
1015 /*
1016 * Do this check after we picked the DMA chars so we don't
1017 * get some IRQ immediately from RX.
1018 */
1019 if (ret) {
1020 dev_dbg(uap->port.dev,
1021 "could not retrigger RX DMA job fall back to interrupt mode\n");
1022 uap->im |= UART011_RXIM;
1023 pl011_write(uap->im, uap, REG_IMSC);
1024 }
1025 }
1026
1027 /*
1028 * Stop accepting received characters, when we're shutting down or
1029 * suspending this port.
1030 * Locking: called with port lock held and IRQs disabled.
1031 */
pl011_dma_rx_stop(struct uart_amba_port * uap)1032 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1033 {
1034 if (!uap->using_rx_dma)
1035 return;
1036
1037 /* FIXME. Just disable the DMA enable */
1038 uap->dmacr &= ~UART011_RXDMAE;
1039 pl011_write(uap->dmacr, uap, REG_DMACR);
1040 }
1041
1042 /*
1043 * Timer handler for Rx DMA polling.
1044 * Every polling, It checks the residue in the dma buffer and transfer
1045 * data to the tty. Also, last_residue is updated for the next polling.
1046 */
pl011_dma_rx_poll(struct timer_list * t)1047 static void pl011_dma_rx_poll(struct timer_list *t)
1048 {
1049 struct uart_amba_port *uap = timer_container_of(uap, t, dmarx.timer);
1050 struct tty_port *port = &uap->port.state->port;
1051 struct pl011_dmarx_data *dmarx = &uap->dmarx;
1052 struct dma_chan *rxchan = uap->dmarx.chan;
1053 unsigned long flags;
1054 unsigned int dmataken = 0;
1055 unsigned int size = 0;
1056 struct pl011_dmabuf *dbuf;
1057 int dma_count;
1058 struct dma_tx_state state;
1059
1060 dbuf = dmarx->use_buf_b ? &uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
1061 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1062 if (likely(state.residue < dmarx->last_residue)) {
1063 dmataken = dbuf->len - dmarx->last_residue;
1064 size = dmarx->last_residue - state.residue;
1065 dma_count = tty_insert_flip_string(port, dbuf->buf + dmataken,
1066 size);
1067 if (dma_count == size)
1068 dmarx->last_residue = state.residue;
1069 dmarx->last_jiffies = jiffies;
1070 }
1071 tty_flip_buffer_push(port);
1072
1073 /*
1074 * If no data is received in poll_timeout, the driver will fall back
1075 * to interrupt mode. We will retrigger DMA at the first interrupt.
1076 */
1077 if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1078 > uap->dmarx.poll_timeout) {
1079 uart_port_lock_irqsave(&uap->port, &flags);
1080 pl011_dma_rx_stop(uap);
1081 uap->im |= UART011_RXIM;
1082 pl011_write(uap->im, uap, REG_IMSC);
1083 uart_port_unlock_irqrestore(&uap->port, flags);
1084
1085 uap->dmarx.running = false;
1086 dmaengine_terminate_all(rxchan);
1087 timer_delete(&uap->dmarx.timer);
1088 } else {
1089 mod_timer(&uap->dmarx.timer,
1090 jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1091 }
1092 }
1093
pl011_dma_startup(struct uart_amba_port * uap)1094 static void pl011_dma_startup(struct uart_amba_port *uap)
1095 {
1096 int ret;
1097
1098 if (!uap->dma_probed)
1099 pl011_dma_probe(uap);
1100
1101 if (!uap->dmatx.chan)
1102 return;
1103
1104 uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1105 if (!uap->dmatx.buf) {
1106 uap->port.fifosize = uap->fifosize;
1107 return;
1108 }
1109
1110 uap->dmatx.len = PL011_DMA_BUFFER_SIZE;
1111
1112 /* The DMA buffer is now the FIFO the TTY subsystem can use */
1113 uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1114 uap->using_tx_dma = true;
1115
1116 if (!uap->dmarx.chan)
1117 goto skip_rx;
1118
1119 /* Allocate and map DMA RX buffers */
1120 ret = pl011_dmabuf_init(uap->dmarx.chan, &uap->dmarx.dbuf_a,
1121 DMA_FROM_DEVICE);
1122 if (ret) {
1123 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1124 "RX buffer A", ret);
1125 goto skip_rx;
1126 }
1127
1128 ret = pl011_dmabuf_init(uap->dmarx.chan, &uap->dmarx.dbuf_b,
1129 DMA_FROM_DEVICE);
1130 if (ret) {
1131 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1132 "RX buffer B", ret);
1133 pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_a,
1134 DMA_FROM_DEVICE);
1135 goto skip_rx;
1136 }
1137
1138 uap->using_rx_dma = true;
1139
1140 skip_rx:
1141 /* Turn on DMA error (RX/TX will be enabled on demand) */
1142 uap->dmacr |= UART011_DMAONERR;
1143 pl011_write(uap->dmacr, uap, REG_DMACR);
1144
1145 /*
1146 * ST Micro variants has some specific dma burst threshold
1147 * compensation. Set this to 16 bytes, so burst will only
1148 * be issued above/below 16 bytes.
1149 */
1150 if (uap->vendor->dma_threshold)
1151 pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1152 uap, REG_ST_DMAWM);
1153
1154 if (uap->using_rx_dma) {
1155 if (pl011_dma_rx_trigger_dma(uap))
1156 dev_dbg(uap->port.dev,
1157 "could not trigger initial RX DMA job, fall back to interrupt mode\n");
1158 if (uap->dmarx.poll_rate) {
1159 timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1160 mod_timer(&uap->dmarx.timer,
1161 jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1162 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1163 uap->dmarx.last_jiffies = jiffies;
1164 }
1165 }
1166 }
1167
pl011_dma_shutdown(struct uart_amba_port * uap)1168 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1169 {
1170 if (!(uap->using_tx_dma || uap->using_rx_dma))
1171 return;
1172
1173 /* Disable RX and TX DMA */
1174 while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1175 cpu_relax();
1176
1177 uart_port_lock_irq(&uap->port);
1178 uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1179 pl011_write(uap->dmacr, uap, REG_DMACR);
1180 uart_port_unlock_irq(&uap->port);
1181
1182 if (uap->using_tx_dma) {
1183 /* In theory, this should already be done by pl011_dma_flush_buffer */
1184 dmaengine_terminate_all(uap->dmatx.chan);
1185 if (uap->dmatx.queued) {
1186 dma_unmap_single(uap->dmatx.chan->device->dev,
1187 uap->dmatx.dma, uap->dmatx.len,
1188 DMA_TO_DEVICE);
1189 uap->dmatx.queued = false;
1190 }
1191
1192 kfree(uap->dmatx.buf);
1193 uap->using_tx_dma = false;
1194 }
1195
1196 if (uap->using_rx_dma) {
1197 dmaengine_terminate_all(uap->dmarx.chan);
1198 /* Clean up the RX DMA */
1199 pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_a, DMA_FROM_DEVICE);
1200 pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_b, DMA_FROM_DEVICE);
1201 if (uap->dmarx.poll_rate)
1202 timer_delete_sync(&uap->dmarx.timer);
1203 uap->using_rx_dma = false;
1204 }
1205 }
1206
pl011_dma_rx_available(struct uart_amba_port * uap)1207 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1208 {
1209 return uap->using_rx_dma;
1210 }
1211
pl011_dma_rx_running(struct uart_amba_port * uap)1212 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1213 {
1214 return uap->using_rx_dma && uap->dmarx.running;
1215 }
1216
1217 #else
1218 /* Blank functions if the DMA engine is not available */
pl011_dma_remove(struct uart_amba_port * uap)1219 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1220 {
1221 }
1222
pl011_dma_startup(struct uart_amba_port * uap)1223 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1224 {
1225 }
1226
pl011_dma_shutdown(struct uart_amba_port * uap)1227 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1228 {
1229 }
1230
pl011_dma_tx_irq(struct uart_amba_port * uap)1231 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1232 {
1233 return false;
1234 }
1235
pl011_dma_tx_stop(struct uart_amba_port * uap)1236 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1237 {
1238 }
1239
pl011_dma_tx_start(struct uart_amba_port * uap)1240 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1241 {
1242 return false;
1243 }
1244
pl011_dma_rx_irq(struct uart_amba_port * uap)1245 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1246 {
1247 }
1248
pl011_dma_rx_stop(struct uart_amba_port * uap)1249 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1250 {
1251 }
1252
pl011_dma_rx_trigger_dma(struct uart_amba_port * uap)1253 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1254 {
1255 return -EIO;
1256 }
1257
pl011_dma_rx_available(struct uart_amba_port * uap)1258 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1259 {
1260 return false;
1261 }
1262
pl011_dma_rx_running(struct uart_amba_port * uap)1263 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1264 {
1265 return false;
1266 }
1267
1268 #define pl011_dma_flush_buffer NULL
1269 #endif
1270
pl011_rs485_tx_stop(struct uart_amba_port * uap)1271 static void pl011_rs485_tx_stop(struct uart_amba_port *uap)
1272 {
1273 struct uart_port *port = &uap->port;
1274 u32 cr;
1275
1276 if (uap->rs485_tx_state == SEND)
1277 uap->rs485_tx_state = WAIT_AFTER_SEND;
1278
1279 if (uap->rs485_tx_state == WAIT_AFTER_SEND) {
1280 /* Schedule hrtimer if tx queue not empty */
1281 if (!pl011_tx_empty(port)) {
1282 hrtimer_start(&uap->trigger_stop_tx,
1283 uap->rs485_tx_drain_interval,
1284 HRTIMER_MODE_REL);
1285 return;
1286 }
1287 if (port->rs485.delay_rts_after_send > 0) {
1288 hrtimer_start(&uap->trigger_stop_tx,
1289 ms_to_ktime(port->rs485.delay_rts_after_send),
1290 HRTIMER_MODE_REL);
1291 return;
1292 }
1293 /* Continue without any delay */
1294 } else if (uap->rs485_tx_state == WAIT_AFTER_RTS) {
1295 hrtimer_try_to_cancel(&uap->trigger_start_tx);
1296 }
1297
1298 cr = pl011_read(uap, REG_CR);
1299
1300 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1301 cr &= ~UART011_CR_RTS;
1302 else
1303 cr |= UART011_CR_RTS;
1304
1305 /* Disable the transmitter and reenable the transceiver */
1306 cr &= ~UART011_CR_TXE;
1307 cr |= UART011_CR_RXE;
1308 pl011_write(cr, uap, REG_CR);
1309
1310 uap->rs485_tx_state = OFF;
1311 }
1312
pl011_stop_tx(struct uart_port * port)1313 static void pl011_stop_tx(struct uart_port *port)
1314 {
1315 struct uart_amba_port *uap =
1316 container_of(port, struct uart_amba_port, port);
1317
1318 if (port->rs485.flags & SER_RS485_ENABLED &&
1319 uap->rs485_tx_state == WAIT_AFTER_RTS) {
1320 pl011_rs485_tx_stop(uap);
1321 return;
1322 }
1323
1324 uap->im &= ~UART011_TXIM;
1325 pl011_write(uap->im, uap, REG_IMSC);
1326 pl011_dma_tx_stop(uap);
1327
1328 if (port->rs485.flags & SER_RS485_ENABLED &&
1329 uap->rs485_tx_state != OFF)
1330 pl011_rs485_tx_stop(uap);
1331 }
1332
1333 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1334
1335 /* Start TX with programmed I/O only (no DMA) */
pl011_start_tx_pio(struct uart_amba_port * uap)1336 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1337 {
1338 if (pl011_tx_chars(uap, false)) {
1339 uap->im |= UART011_TXIM;
1340 pl011_write(uap->im, uap, REG_IMSC);
1341 }
1342 }
1343
pl011_rs485_tx_start(struct uart_amba_port * uap)1344 static void pl011_rs485_tx_start(struct uart_amba_port *uap)
1345 {
1346 struct uart_port *port = &uap->port;
1347 u32 cr;
1348
1349 if (uap->rs485_tx_state == WAIT_AFTER_RTS) {
1350 uap->rs485_tx_state = SEND;
1351 return;
1352 }
1353 if (uap->rs485_tx_state == WAIT_AFTER_SEND) {
1354 hrtimer_try_to_cancel(&uap->trigger_stop_tx);
1355 uap->rs485_tx_state = SEND;
1356 return;
1357 }
1358 /* uap->rs485_tx_state == OFF */
1359 /* Enable transmitter */
1360 cr = pl011_read(uap, REG_CR);
1361 cr |= UART011_CR_TXE;
1362 /* Disable receiver if half-duplex */
1363 if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
1364 cr &= ~UART011_CR_RXE;
1365
1366 if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
1367 cr &= ~UART011_CR_RTS;
1368 else
1369 cr |= UART011_CR_RTS;
1370
1371 pl011_write(cr, uap, REG_CR);
1372
1373 if (port->rs485.delay_rts_before_send > 0) {
1374 uap->rs485_tx_state = WAIT_AFTER_RTS;
1375 hrtimer_start(&uap->trigger_start_tx,
1376 ms_to_ktime(port->rs485.delay_rts_before_send),
1377 HRTIMER_MODE_REL);
1378 } else {
1379 uap->rs485_tx_state = SEND;
1380 }
1381 }
1382
pl011_start_tx(struct uart_port * port)1383 static void pl011_start_tx(struct uart_port *port)
1384 {
1385 struct uart_amba_port *uap =
1386 container_of(port, struct uart_amba_port, port);
1387
1388 if ((uap->port.rs485.flags & SER_RS485_ENABLED) &&
1389 uap->rs485_tx_state != SEND) {
1390 pl011_rs485_tx_start(uap);
1391 if (uap->rs485_tx_state == WAIT_AFTER_RTS)
1392 return;
1393 }
1394
1395 if (!pl011_dma_tx_start(uap))
1396 pl011_start_tx_pio(uap);
1397 }
1398
pl011_trigger_start_tx(struct hrtimer * t)1399 static enum hrtimer_restart pl011_trigger_start_tx(struct hrtimer *t)
1400 {
1401 struct uart_amba_port *uap =
1402 container_of(t, struct uart_amba_port, trigger_start_tx);
1403 unsigned long flags;
1404
1405 uart_port_lock_irqsave(&uap->port, &flags);
1406 if (uap->rs485_tx_state == WAIT_AFTER_RTS)
1407 pl011_start_tx(&uap->port);
1408 uart_port_unlock_irqrestore(&uap->port, flags);
1409
1410 return HRTIMER_NORESTART;
1411 }
1412
pl011_trigger_stop_tx(struct hrtimer * t)1413 static enum hrtimer_restart pl011_trigger_stop_tx(struct hrtimer *t)
1414 {
1415 struct uart_amba_port *uap =
1416 container_of(t, struct uart_amba_port, trigger_stop_tx);
1417 unsigned long flags;
1418
1419 uart_port_lock_irqsave(&uap->port, &flags);
1420 if (uap->rs485_tx_state == WAIT_AFTER_SEND)
1421 pl011_rs485_tx_stop(uap);
1422 uart_port_unlock_irqrestore(&uap->port, flags);
1423
1424 return HRTIMER_NORESTART;
1425 }
1426
pl011_stop_rx(struct uart_port * port)1427 static void pl011_stop_rx(struct uart_port *port)
1428 {
1429 struct uart_amba_port *uap =
1430 container_of(port, struct uart_amba_port, port);
1431
1432 uap->im &= ~(UART011_RXIM | UART011_RTIM | UART011_FEIM |
1433 UART011_PEIM | UART011_BEIM | UART011_OEIM);
1434 pl011_write(uap->im, uap, REG_IMSC);
1435
1436 pl011_dma_rx_stop(uap);
1437 }
1438
pl011_throttle_rx(struct uart_port * port)1439 static void pl011_throttle_rx(struct uart_port *port)
1440 {
1441 unsigned long flags;
1442
1443 uart_port_lock_irqsave(port, &flags);
1444 pl011_stop_rx(port);
1445 uart_port_unlock_irqrestore(port, flags);
1446 }
1447
pl011_enable_ms(struct uart_port * port)1448 static void pl011_enable_ms(struct uart_port *port)
1449 {
1450 struct uart_amba_port *uap =
1451 container_of(port, struct uart_amba_port, port);
1452
1453 uap->im |= UART011_RIMIM | UART011_CTSMIM | UART011_DCDMIM | UART011_DSRMIM;
1454 pl011_write(uap->im, uap, REG_IMSC);
1455 }
1456
pl011_rx_chars(struct uart_amba_port * uap)1457 static void pl011_rx_chars(struct uart_amba_port *uap)
1458 __releases(&uap->port.lock)
1459 __acquires(&uap->port.lock)
1460 {
1461 pl011_fifo_to_tty(uap);
1462
1463 uart_port_unlock(&uap->port);
1464 tty_flip_buffer_push(&uap->port.state->port);
1465 /*
1466 * If we were temporarily out of DMA mode for a while,
1467 * attempt to switch back to DMA mode again.
1468 */
1469 if (pl011_dma_rx_available(uap)) {
1470 if (pl011_dma_rx_trigger_dma(uap)) {
1471 dev_dbg(uap->port.dev,
1472 "could not trigger RX DMA job fall back to interrupt mode again\n");
1473 uap->im |= UART011_RXIM;
1474 pl011_write(uap->im, uap, REG_IMSC);
1475 } else {
1476 #ifdef CONFIG_DMA_ENGINE
1477 /* Start Rx DMA poll */
1478 if (uap->dmarx.poll_rate) {
1479 uap->dmarx.last_jiffies = jiffies;
1480 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1481 mod_timer(&uap->dmarx.timer,
1482 jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1483 }
1484 #endif
1485 }
1486 }
1487 uart_port_lock(&uap->port);
1488 }
1489
pl011_tx_char(struct uart_amba_port * uap,unsigned char c,bool from_irq)1490 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1491 bool from_irq)
1492 {
1493 if (unlikely(!from_irq) &&
1494 pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1495 return false; /* unable to transmit character */
1496
1497 pl011_write(c, uap, REG_DR);
1498 uap->port.icount.tx++;
1499
1500 return true;
1501 }
1502
1503 /* Returns true if tx interrupts have to be (kept) enabled */
pl011_tx_chars(struct uart_amba_port * uap,bool from_irq)1504 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1505 {
1506 struct tty_port *tport = &uap->port.state->port;
1507 int count = uap->fifosize >> 1;
1508
1509 if (uap->port.x_char) {
1510 if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1511 return true;
1512 uap->port.x_char = 0;
1513 --count;
1514 }
1515 if (kfifo_is_empty(&tport->xmit_fifo) || uart_tx_stopped(&uap->port)) {
1516 pl011_stop_tx(&uap->port);
1517 return false;
1518 }
1519
1520 /* If we are using DMA mode, try to send some characters. */
1521 if (pl011_dma_tx_irq(uap))
1522 return true;
1523
1524 while (1) {
1525 unsigned char c;
1526
1527 if (likely(from_irq) && count-- == 0)
1528 break;
1529
1530 if (!kfifo_peek(&tport->xmit_fifo, &c))
1531 break;
1532
1533 if (!pl011_tx_char(uap, c, from_irq))
1534 break;
1535
1536 kfifo_skip(&tport->xmit_fifo);
1537 }
1538
1539 if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS)
1540 uart_write_wakeup(&uap->port);
1541
1542 if (kfifo_is_empty(&tport->xmit_fifo)) {
1543 pl011_stop_tx(&uap->port);
1544 return false;
1545 }
1546 return true;
1547 }
1548
pl011_modem_status(struct uart_amba_port * uap)1549 static void pl011_modem_status(struct uart_amba_port *uap)
1550 {
1551 unsigned int status, delta;
1552
1553 status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1554
1555 delta = status ^ uap->old_status;
1556 uap->old_status = status;
1557
1558 if (!delta)
1559 return;
1560
1561 if (delta & UART01x_FR_DCD)
1562 uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1563
1564 if (delta & uap->vendor->fr_dsr)
1565 uap->port.icount.dsr++;
1566
1567 if (delta & uap->vendor->fr_cts)
1568 uart_handle_cts_change(&uap->port,
1569 status & uap->vendor->fr_cts);
1570
1571 wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1572 }
1573
check_apply_cts_event_workaround(struct uart_amba_port * uap)1574 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1575 {
1576 if (!uap->vendor->cts_event_workaround)
1577 return;
1578
1579 /* workaround to make sure that all bits are unlocked.. */
1580 pl011_write(0x00, uap, REG_ICR);
1581
1582 /*
1583 * WA: introduce 26ns(1 uart clk) delay before W1C;
1584 * single apb access will incur 2 pclk(133.12Mhz) delay,
1585 * so add 2 dummy reads
1586 */
1587 pl011_read(uap, REG_ICR);
1588 pl011_read(uap, REG_ICR);
1589 }
1590
pl011_int(int irq,void * dev_id)1591 static irqreturn_t pl011_int(int irq, void *dev_id)
1592 {
1593 struct uart_amba_port *uap = dev_id;
1594 unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1595 int handled = 0;
1596
1597 uart_port_lock(&uap->port);
1598 status = pl011_read(uap, REG_RIS) & uap->im;
1599 if (status) {
1600 do {
1601 check_apply_cts_event_workaround(uap);
1602
1603 pl011_write(status & ~(UART011_TXIS | UART011_RTIS | UART011_RXIS),
1604 uap, REG_ICR);
1605
1606 if (status & (UART011_RTIS | UART011_RXIS)) {
1607 if (pl011_dma_rx_running(uap))
1608 pl011_dma_rx_irq(uap);
1609 else
1610 pl011_rx_chars(uap);
1611 }
1612 if (status & (UART011_DSRMIS | UART011_DCDMIS |
1613 UART011_CTSMIS | UART011_RIMIS))
1614 pl011_modem_status(uap);
1615 if (status & UART011_TXIS)
1616 pl011_tx_chars(uap, true);
1617
1618 if (pass_counter-- == 0)
1619 break;
1620
1621 status = pl011_read(uap, REG_RIS) & uap->im;
1622 } while (status != 0);
1623 handled = 1;
1624 }
1625
1626 uart_unlock_and_check_sysrq(&uap->port);
1627
1628 return IRQ_RETVAL(handled);
1629 }
1630
pl011_tx_empty(struct uart_port * port)1631 static unsigned int pl011_tx_empty(struct uart_port *port)
1632 {
1633 struct uart_amba_port *uap =
1634 container_of(port, struct uart_amba_port, port);
1635
1636 /* Allow feature register bits to be inverted to work around errata */
1637 unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1638
1639 return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1640 0 : TIOCSER_TEMT;
1641 }
1642
pl011_maybe_set_bit(bool cond,unsigned int * ptr,unsigned int mask)1643 static void pl011_maybe_set_bit(bool cond, unsigned int *ptr, unsigned int mask)
1644 {
1645 if (cond)
1646 *ptr |= mask;
1647 }
1648
pl011_get_mctrl(struct uart_port * port)1649 static unsigned int pl011_get_mctrl(struct uart_port *port)
1650 {
1651 struct uart_amba_port *uap =
1652 container_of(port, struct uart_amba_port, port);
1653 unsigned int result = 0;
1654 unsigned int status = pl011_read(uap, REG_FR);
1655
1656 pl011_maybe_set_bit(status & UART01x_FR_DCD, &result, TIOCM_CAR);
1657 pl011_maybe_set_bit(status & uap->vendor->fr_dsr, &result, TIOCM_DSR);
1658 pl011_maybe_set_bit(status & uap->vendor->fr_cts, &result, TIOCM_CTS);
1659 pl011_maybe_set_bit(status & uap->vendor->fr_ri, &result, TIOCM_RNG);
1660
1661 return result;
1662 }
1663
pl011_assign_bit(bool cond,unsigned int * ptr,unsigned int mask)1664 static void pl011_assign_bit(bool cond, unsigned int *ptr, unsigned int mask)
1665 {
1666 if (cond)
1667 *ptr |= mask;
1668 else
1669 *ptr &= ~mask;
1670 }
1671
pl011_set_mctrl(struct uart_port * port,unsigned int mctrl)1672 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1673 {
1674 struct uart_amba_port *uap =
1675 container_of(port, struct uart_amba_port, port);
1676 unsigned int cr;
1677
1678 cr = pl011_read(uap, REG_CR);
1679
1680 pl011_assign_bit(mctrl & TIOCM_RTS, &cr, UART011_CR_RTS);
1681 pl011_assign_bit(mctrl & TIOCM_DTR, &cr, UART011_CR_DTR);
1682 pl011_assign_bit(mctrl & TIOCM_OUT1, &cr, UART011_CR_OUT1);
1683 pl011_assign_bit(mctrl & TIOCM_OUT2, &cr, UART011_CR_OUT2);
1684 pl011_assign_bit(mctrl & TIOCM_LOOP, &cr, UART011_CR_LBE);
1685
1686 if (port->status & UPSTAT_AUTORTS) {
1687 /* We need to disable auto-RTS if we want to turn RTS off */
1688 pl011_assign_bit(mctrl & TIOCM_RTS, &cr, UART011_CR_RTSEN);
1689 }
1690
1691 pl011_write(cr, uap, REG_CR);
1692 }
1693
pl011_break_ctl(struct uart_port * port,int break_state)1694 static void pl011_break_ctl(struct uart_port *port, int break_state)
1695 {
1696 struct uart_amba_port *uap =
1697 container_of(port, struct uart_amba_port, port);
1698 unsigned long flags;
1699 unsigned int lcr_h;
1700
1701 uart_port_lock_irqsave(&uap->port, &flags);
1702 lcr_h = pl011_read(uap, REG_LCRH_TX);
1703 if (break_state == -1)
1704 lcr_h |= UART01x_LCRH_BRK;
1705 else
1706 lcr_h &= ~UART01x_LCRH_BRK;
1707 pl011_write(lcr_h, uap, REG_LCRH_TX);
1708 uart_port_unlock_irqrestore(&uap->port, flags);
1709 }
1710
1711 #ifdef CONFIG_CONSOLE_POLL
1712
pl011_quiesce_irqs(struct uart_port * port)1713 static void pl011_quiesce_irqs(struct uart_port *port)
1714 {
1715 struct uart_amba_port *uap =
1716 container_of(port, struct uart_amba_port, port);
1717
1718 pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1719 /*
1720 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1721 * we simply mask it. start_tx() will unmask it.
1722 *
1723 * Note we can race with start_tx(), and if the race happens, the
1724 * polling user might get another interrupt just after we clear it.
1725 * But it should be OK and can happen even w/o the race, e.g.
1726 * controller immediately got some new data and raised the IRQ.
1727 *
1728 * And whoever uses polling routines assumes that it manages the device
1729 * (including tx queue), so we're also fine with start_tx()'s caller
1730 * side.
1731 */
1732 pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1733 REG_IMSC);
1734 }
1735
pl011_get_poll_char(struct uart_port * port)1736 static int pl011_get_poll_char(struct uart_port *port)
1737 {
1738 struct uart_amba_port *uap =
1739 container_of(port, struct uart_amba_port, port);
1740 unsigned int status;
1741
1742 /*
1743 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1744 * debugger.
1745 */
1746 pl011_quiesce_irqs(port);
1747
1748 status = pl011_read(uap, REG_FR);
1749 if (status & UART01x_FR_RXFE)
1750 return NO_POLL_CHAR;
1751
1752 return pl011_read(uap, REG_DR);
1753 }
1754
pl011_put_poll_char(struct uart_port * port,unsigned char ch)1755 static void pl011_put_poll_char(struct uart_port *port, unsigned char ch)
1756 {
1757 struct uart_amba_port *uap =
1758 container_of(port, struct uart_amba_port, port);
1759
1760 while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1761 cpu_relax();
1762
1763 pl011_write(ch, uap, REG_DR);
1764 }
1765
1766 #endif /* CONFIG_CONSOLE_POLL */
1767
pl011_hwinit(struct uart_port * port)1768 static int pl011_hwinit(struct uart_port *port)
1769 {
1770 struct uart_amba_port *uap =
1771 container_of(port, struct uart_amba_port, port);
1772 int retval;
1773
1774 /* Optionaly enable pins to be muxed in and configured */
1775 pinctrl_pm_select_default_state(port->dev);
1776
1777 /*
1778 * Try to enable the clock producer.
1779 */
1780 retval = clk_prepare_enable(uap->clk);
1781 if (retval)
1782 return retval;
1783
1784 uap->port.uartclk = clk_get_rate(uap->clk);
1785
1786 /* Clear pending error and receive interrupts */
1787 pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1788 UART011_FEIS | UART011_RTIS | UART011_RXIS,
1789 uap, REG_ICR);
1790
1791 /*
1792 * Save interrupts enable mask, and enable RX interrupts in case if
1793 * the interrupt is used for NMI entry.
1794 */
1795 uap->im = pl011_read(uap, REG_IMSC);
1796 pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1797
1798 if (dev_get_platdata(uap->port.dev)) {
1799 struct amba_pl011_data *plat;
1800
1801 plat = dev_get_platdata(uap->port.dev);
1802 if (plat->init)
1803 plat->init();
1804 }
1805 return 0;
1806 }
1807
pl011_split_lcrh(const struct uart_amba_port * uap)1808 static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1809 {
1810 return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1811 pl011_reg_to_offset(uap, REG_LCRH_TX);
1812 }
1813
pl011_write_lcr_h(struct uart_amba_port * uap,unsigned int lcr_h)1814 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1815 {
1816 pl011_write(lcr_h, uap, REG_LCRH_RX);
1817 if (pl011_split_lcrh(uap)) {
1818 int i;
1819 /*
1820 * Wait 10 PCLKs before writing LCRH_TX register,
1821 * to get this delay write read only register 10 times
1822 */
1823 for (i = 0; i < 10; ++i)
1824 pl011_write(0xff, uap, REG_MIS);
1825 pl011_write(lcr_h, uap, REG_LCRH_TX);
1826 }
1827 }
1828
pl011_allocate_irq(struct uart_amba_port * uap)1829 static int pl011_allocate_irq(struct uart_amba_port *uap)
1830 {
1831 pl011_write(uap->im, uap, REG_IMSC);
1832
1833 return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap);
1834 }
1835
1836 /*
1837 * Enable interrupts, only timeouts when using DMA
1838 * if initial RX DMA job failed, start in interrupt mode
1839 * as well.
1840 */
pl011_enable_interrupts(struct uart_amba_port * uap)1841 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1842 {
1843 unsigned long flags;
1844 unsigned int i;
1845
1846 uart_port_lock_irqsave(&uap->port, &flags);
1847
1848 /* Clear out any spuriously appearing RX interrupts */
1849 pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1850
1851 /*
1852 * RXIS is asserted only when the RX FIFO transitions from below
1853 * to above the trigger threshold. If the RX FIFO is already
1854 * full to the threshold this can't happen and RXIS will now be
1855 * stuck off. Drain the RX FIFO explicitly to fix this:
1856 */
1857 for (i = 0; i < uap->fifosize * 2; ++i) {
1858 if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1859 break;
1860
1861 pl011_read(uap, REG_DR);
1862 }
1863
1864 uap->im = UART011_RTIM;
1865 if (!pl011_dma_rx_running(uap))
1866 uap->im |= UART011_RXIM;
1867 pl011_write(uap->im, uap, REG_IMSC);
1868 uart_port_unlock_irqrestore(&uap->port, flags);
1869 }
1870
pl011_unthrottle_rx(struct uart_port * port)1871 static void pl011_unthrottle_rx(struct uart_port *port)
1872 {
1873 struct uart_amba_port *uap = container_of(port, struct uart_amba_port, port);
1874 unsigned long flags;
1875
1876 uart_port_lock_irqsave(&uap->port, &flags);
1877
1878 uap->im = UART011_RTIM;
1879 if (!pl011_dma_rx_running(uap))
1880 uap->im |= UART011_RXIM;
1881
1882 pl011_write(uap->im, uap, REG_IMSC);
1883
1884 #ifdef CONFIG_DMA_ENGINE
1885 if (uap->using_rx_dma) {
1886 uap->dmacr |= UART011_RXDMAE;
1887 pl011_write(uap->dmacr, uap, REG_DMACR);
1888 }
1889 #endif
1890
1891 uart_port_unlock_irqrestore(&uap->port, flags);
1892 }
1893
pl011_startup(struct uart_port * port)1894 static int pl011_startup(struct uart_port *port)
1895 {
1896 struct uart_amba_port *uap =
1897 container_of(port, struct uart_amba_port, port);
1898 unsigned int cr;
1899 int retval;
1900
1901 retval = pl011_hwinit(port);
1902 if (retval)
1903 goto clk_dis;
1904
1905 retval = pl011_allocate_irq(uap);
1906 if (retval)
1907 goto clk_dis;
1908
1909 pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1910
1911 uart_port_lock_irq(&uap->port);
1912
1913 cr = pl011_read(uap, REG_CR);
1914 cr &= UART011_CR_RTS | UART011_CR_DTR;
1915 cr |= UART01x_CR_UARTEN | UART011_CR_RXE;
1916
1917 if (!(port->rs485.flags & SER_RS485_ENABLED))
1918 cr |= UART011_CR_TXE;
1919
1920 pl011_write(cr, uap, REG_CR);
1921
1922 uart_port_unlock_irq(&uap->port);
1923
1924 /*
1925 * initialise the old status of the modem signals
1926 */
1927 uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1928
1929 /* Startup DMA */
1930 pl011_dma_startup(uap);
1931
1932 pl011_enable_interrupts(uap);
1933
1934 return 0;
1935
1936 clk_dis:
1937 clk_disable_unprepare(uap->clk);
1938 return retval;
1939 }
1940
sbsa_uart_startup(struct uart_port * port)1941 static int sbsa_uart_startup(struct uart_port *port)
1942 {
1943 struct uart_amba_port *uap =
1944 container_of(port, struct uart_amba_port, port);
1945 int retval;
1946
1947 retval = pl011_hwinit(port);
1948 if (retval)
1949 return retval;
1950
1951 retval = pl011_allocate_irq(uap);
1952 if (retval)
1953 return retval;
1954
1955 /* The SBSA UART does not support any modem status lines. */
1956 uap->old_status = 0;
1957
1958 pl011_enable_interrupts(uap);
1959
1960 return 0;
1961 }
1962
pl011_shutdown_channel(struct uart_amba_port * uap,unsigned int lcrh)1963 static void pl011_shutdown_channel(struct uart_amba_port *uap, unsigned int lcrh)
1964 {
1965 unsigned long val;
1966
1967 val = pl011_read(uap, lcrh);
1968 val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1969 pl011_write(val, uap, lcrh);
1970 }
1971
1972 /*
1973 * disable the port. It should not disable RTS and DTR.
1974 * Also RTS and DTR state should be preserved to restore
1975 * it during startup().
1976 */
pl011_disable_uart(struct uart_amba_port * uap)1977 static void pl011_disable_uart(struct uart_amba_port *uap)
1978 {
1979 unsigned int cr;
1980
1981 uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1982 uart_port_lock_irq(&uap->port);
1983 cr = pl011_read(uap, REG_CR);
1984 cr &= UART011_CR_RTS | UART011_CR_DTR;
1985 cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1986 pl011_write(cr, uap, REG_CR);
1987 uart_port_unlock_irq(&uap->port);
1988
1989 /*
1990 * disable break condition and fifos
1991 */
1992 pl011_shutdown_channel(uap, REG_LCRH_RX);
1993 if (pl011_split_lcrh(uap))
1994 pl011_shutdown_channel(uap, REG_LCRH_TX);
1995 }
1996
pl011_disable_interrupts(struct uart_amba_port * uap)1997 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1998 {
1999 uart_port_lock_irq(&uap->port);
2000
2001 /* mask all interrupts and clear all pending ones */
2002 uap->im = 0;
2003 pl011_write(uap->im, uap, REG_IMSC);
2004 pl011_write(0xffff, uap, REG_ICR);
2005
2006 uart_port_unlock_irq(&uap->port);
2007 }
2008
pl011_shutdown(struct uart_port * port)2009 static void pl011_shutdown(struct uart_port *port)
2010 {
2011 struct uart_amba_port *uap =
2012 container_of(port, struct uart_amba_port, port);
2013
2014 pl011_disable_interrupts(uap);
2015
2016 pl011_dma_shutdown(uap);
2017
2018 if ((port->rs485.flags & SER_RS485_ENABLED && uap->rs485_tx_state != OFF))
2019 pl011_rs485_tx_stop(uap);
2020
2021 free_irq(uap->port.irq, uap);
2022
2023 pl011_disable_uart(uap);
2024
2025 /*
2026 * Shut down the clock producer
2027 */
2028 clk_disable_unprepare(uap->clk);
2029 /* Optionally let pins go into sleep states */
2030 pinctrl_pm_select_sleep_state(port->dev);
2031
2032 if (dev_get_platdata(uap->port.dev)) {
2033 struct amba_pl011_data *plat;
2034
2035 plat = dev_get_platdata(uap->port.dev);
2036 if (plat->exit)
2037 plat->exit();
2038 }
2039
2040 if (uap->port.ops->flush_buffer)
2041 uap->port.ops->flush_buffer(port);
2042 }
2043
sbsa_uart_shutdown(struct uart_port * port)2044 static void sbsa_uart_shutdown(struct uart_port *port)
2045 {
2046 struct uart_amba_port *uap =
2047 container_of(port, struct uart_amba_port, port);
2048
2049 pl011_disable_interrupts(uap);
2050
2051 free_irq(uap->port.irq, uap);
2052
2053 if (uap->port.ops->flush_buffer)
2054 uap->port.ops->flush_buffer(port);
2055 }
2056
2057 static void
pl011_setup_status_masks(struct uart_port * port,struct ktermios * termios)2058 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
2059 {
2060 port->read_status_mask = UART011_DR_OE | 255;
2061 if (termios->c_iflag & INPCK)
2062 port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
2063 if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
2064 port->read_status_mask |= UART011_DR_BE;
2065
2066 /*
2067 * Characters to ignore
2068 */
2069 port->ignore_status_mask = 0;
2070 if (termios->c_iflag & IGNPAR)
2071 port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
2072 if (termios->c_iflag & IGNBRK) {
2073 port->ignore_status_mask |= UART011_DR_BE;
2074 /*
2075 * If we're ignoring parity and break indicators,
2076 * ignore overruns too (for real raw support).
2077 */
2078 if (termios->c_iflag & IGNPAR)
2079 port->ignore_status_mask |= UART011_DR_OE;
2080 }
2081
2082 /*
2083 * Ignore all characters if CREAD is not set.
2084 */
2085 if ((termios->c_cflag & CREAD) == 0)
2086 port->ignore_status_mask |= UART_DUMMY_DR_RX;
2087 }
2088
2089 static void
pl011_set_termios(struct uart_port * port,struct ktermios * termios,const struct ktermios * old)2090 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
2091 const struct ktermios *old)
2092 {
2093 struct uart_amba_port *uap =
2094 container_of(port, struct uart_amba_port, port);
2095 unsigned int lcr_h, old_cr;
2096 unsigned long flags;
2097 unsigned int baud, quot, clkdiv;
2098 unsigned int bits;
2099
2100 if (uap->vendor->oversampling)
2101 clkdiv = 8;
2102 else
2103 clkdiv = 16;
2104
2105 /*
2106 * Ask the core to calculate the divisor for us.
2107 */
2108 baud = uart_get_baud_rate(port, termios, old, 0,
2109 port->uartclk / clkdiv);
2110 #ifdef CONFIG_DMA_ENGINE
2111 /*
2112 * Adjust RX DMA polling rate with baud rate if not specified.
2113 */
2114 if (uap->dmarx.auto_poll_rate)
2115 uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
2116 #endif
2117
2118 if (baud > port->uartclk / 16)
2119 quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
2120 else
2121 quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
2122
2123 switch (termios->c_cflag & CSIZE) {
2124 case CS5:
2125 lcr_h = UART01x_LCRH_WLEN_5;
2126 break;
2127 case CS6:
2128 lcr_h = UART01x_LCRH_WLEN_6;
2129 break;
2130 case CS7:
2131 lcr_h = UART01x_LCRH_WLEN_7;
2132 break;
2133 default: // CS8
2134 lcr_h = UART01x_LCRH_WLEN_8;
2135 break;
2136 }
2137 if (termios->c_cflag & CSTOPB)
2138 lcr_h |= UART01x_LCRH_STP2;
2139 if (termios->c_cflag & PARENB) {
2140 lcr_h |= UART01x_LCRH_PEN;
2141 if (!(termios->c_cflag & PARODD))
2142 lcr_h |= UART01x_LCRH_EPS;
2143 if (termios->c_cflag & CMSPAR)
2144 lcr_h |= UART011_LCRH_SPS;
2145 }
2146 if (uap->fifosize > 1)
2147 lcr_h |= UART01x_LCRH_FEN;
2148
2149 bits = tty_get_frame_size(termios->c_cflag);
2150
2151 uart_port_lock_irqsave(port, &flags);
2152
2153 /*
2154 * Update the per-port timeout.
2155 */
2156 uart_update_timeout(port, termios->c_cflag, baud);
2157
2158 /*
2159 * Calculate the approximated time it takes to transmit one character
2160 * with the given baud rate. We use this as the poll interval when we
2161 * wait for the tx queue to empty.
2162 */
2163 uap->rs485_tx_drain_interval = ns_to_ktime(DIV_ROUND_UP(bits * NSEC_PER_SEC, baud));
2164
2165 pl011_setup_status_masks(port, termios);
2166
2167 if (UART_ENABLE_MS(port, termios->c_cflag))
2168 pl011_enable_ms(port);
2169
2170 if (port->rs485.flags & SER_RS485_ENABLED)
2171 termios->c_cflag &= ~CRTSCTS;
2172
2173 old_cr = pl011_read(uap, REG_CR);
2174
2175 if (termios->c_cflag & CRTSCTS) {
2176 if (old_cr & UART011_CR_RTS)
2177 old_cr |= UART011_CR_RTSEN;
2178
2179 old_cr |= UART011_CR_CTSEN;
2180 port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2181 } else {
2182 old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2183 port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2184 }
2185
2186 if (uap->vendor->oversampling) {
2187 if (baud > port->uartclk / 16)
2188 old_cr |= ST_UART011_CR_OVSFACT;
2189 else
2190 old_cr &= ~ST_UART011_CR_OVSFACT;
2191 }
2192
2193 /*
2194 * Workaround for the ST Micro oversampling variants to
2195 * increase the bitrate slightly, by lowering the divisor,
2196 * to avoid delayed sampling of start bit at high speeds,
2197 * else we see data corruption.
2198 */
2199 if (uap->vendor->oversampling) {
2200 if (baud >= 3000000 && baud < 3250000 && quot > 1)
2201 quot -= 1;
2202 else if (baud > 3250000 && quot > 2)
2203 quot -= 2;
2204 }
2205 /* Set baud rate */
2206 pl011_write(quot & 0x3f, uap, REG_FBRD);
2207 pl011_write(quot >> 6, uap, REG_IBRD);
2208
2209 /*
2210 * ----------v----------v----------v----------v-----
2211 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2212 * REG_FBRD & REG_IBRD.
2213 * ----------^----------^----------^----------^-----
2214 */
2215 pl011_write_lcr_h(uap, lcr_h);
2216
2217 /*
2218 * Receive was disabled by pl011_disable_uart during shutdown.
2219 * Need to reenable receive if you need to use a tty_driver
2220 * returns from tty_find_polling_driver() after a port shutdown.
2221 */
2222 old_cr |= UART011_CR_RXE;
2223 pl011_write(old_cr, uap, REG_CR);
2224
2225 uart_port_unlock_irqrestore(port, flags);
2226 }
2227
2228 static void
sbsa_uart_set_termios(struct uart_port * port,struct ktermios * termios,const struct ktermios * old)2229 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2230 const struct ktermios *old)
2231 {
2232 struct uart_amba_port *uap =
2233 container_of(port, struct uart_amba_port, port);
2234 unsigned long flags;
2235
2236 tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2237
2238 /* The SBSA UART only supports 8n1 without hardware flow control. */
2239 termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2240 termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2241 termios->c_cflag |= CS8 | CLOCAL;
2242
2243 uart_port_lock_irqsave(port, &flags);
2244 uart_update_timeout(port, CS8, uap->fixed_baud);
2245 pl011_setup_status_masks(port, termios);
2246 uart_port_unlock_irqrestore(port, flags);
2247 }
2248
pl011_type(struct uart_port * port)2249 static const char *pl011_type(struct uart_port *port)
2250 {
2251 struct uart_amba_port *uap =
2252 container_of(port, struct uart_amba_port, port);
2253 return uap->port.type == PORT_AMBA ? uap->type : NULL;
2254 }
2255
2256 /*
2257 * Configure/autoconfigure the port.
2258 */
pl011_config_port(struct uart_port * port,int flags)2259 static void pl011_config_port(struct uart_port *port, int flags)
2260 {
2261 if (flags & UART_CONFIG_TYPE)
2262 port->type = PORT_AMBA;
2263 }
2264
2265 /*
2266 * verify the new serial_struct (for TIOCSSERIAL).
2267 */
pl011_verify_port(struct uart_port * port,struct serial_struct * ser)2268 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2269 {
2270 int ret = 0;
2271
2272 if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2273 ret = -EINVAL;
2274 if (ser->irq < 0 || ser->irq >= irq_get_nr_irqs())
2275 ret = -EINVAL;
2276 if (ser->baud_base < 9600)
2277 ret = -EINVAL;
2278 if (port->mapbase != (unsigned long)ser->iomem_base)
2279 ret = -EINVAL;
2280 return ret;
2281 }
2282
pl011_rs485_config(struct uart_port * port,struct ktermios * termios,struct serial_rs485 * rs485)2283 static int pl011_rs485_config(struct uart_port *port, struct ktermios *termios,
2284 struct serial_rs485 *rs485)
2285 {
2286 struct uart_amba_port *uap =
2287 container_of(port, struct uart_amba_port, port);
2288
2289 if (port->rs485.flags & SER_RS485_ENABLED)
2290 pl011_rs485_tx_stop(uap);
2291
2292 /* Make sure auto RTS is disabled */
2293 if (rs485->flags & SER_RS485_ENABLED) {
2294 u32 cr = pl011_read(uap, REG_CR);
2295
2296 cr &= ~UART011_CR_RTSEN;
2297 pl011_write(cr, uap, REG_CR);
2298 port->status &= ~UPSTAT_AUTORTS;
2299 }
2300
2301 return 0;
2302 }
2303
2304 static const struct uart_ops amba_pl011_pops = {
2305 .tx_empty = pl011_tx_empty,
2306 .set_mctrl = pl011_set_mctrl,
2307 .get_mctrl = pl011_get_mctrl,
2308 .stop_tx = pl011_stop_tx,
2309 .start_tx = pl011_start_tx,
2310 .stop_rx = pl011_stop_rx,
2311 .throttle = pl011_throttle_rx,
2312 .unthrottle = pl011_unthrottle_rx,
2313 .enable_ms = pl011_enable_ms,
2314 .break_ctl = pl011_break_ctl,
2315 .startup = pl011_startup,
2316 .shutdown = pl011_shutdown,
2317 .flush_buffer = pl011_dma_flush_buffer,
2318 .set_termios = pl011_set_termios,
2319 .type = pl011_type,
2320 .config_port = pl011_config_port,
2321 .verify_port = pl011_verify_port,
2322 #ifdef CONFIG_CONSOLE_POLL
2323 .poll_init = pl011_hwinit,
2324 .poll_get_char = pl011_get_poll_char,
2325 .poll_put_char = pl011_put_poll_char,
2326 #endif
2327 };
2328
sbsa_uart_set_mctrl(struct uart_port * port,unsigned int mctrl)2329 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2330 {
2331 }
2332
sbsa_uart_get_mctrl(struct uart_port * port)2333 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2334 {
2335 return 0;
2336 }
2337
2338 static const struct uart_ops sbsa_uart_pops = {
2339 .tx_empty = pl011_tx_empty,
2340 .set_mctrl = sbsa_uart_set_mctrl,
2341 .get_mctrl = sbsa_uart_get_mctrl,
2342 .stop_tx = pl011_stop_tx,
2343 .start_tx = pl011_start_tx,
2344 .stop_rx = pl011_stop_rx,
2345 .startup = sbsa_uart_startup,
2346 .shutdown = sbsa_uart_shutdown,
2347 .set_termios = sbsa_uart_set_termios,
2348 .type = pl011_type,
2349 .config_port = pl011_config_port,
2350 .verify_port = pl011_verify_port,
2351 #ifdef CONFIG_CONSOLE_POLL
2352 .poll_init = pl011_hwinit,
2353 .poll_get_char = pl011_get_poll_char,
2354 .poll_put_char = pl011_put_poll_char,
2355 #endif
2356 };
2357
2358 static struct uart_amba_port *amba_ports[UART_NR];
2359
2360 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2361
pl011_console_putchar(struct uart_port * port,unsigned char ch)2362 static void pl011_console_putchar(struct uart_port *port, unsigned char ch)
2363 {
2364 struct uart_amba_port *uap =
2365 container_of(port, struct uart_amba_port, port);
2366
2367 while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2368 cpu_relax();
2369 pl011_write(ch, uap, REG_DR);
2370 uap->console_line_ended = (ch == '\n');
2371 }
2372
pl011_console_get_options(struct uart_amba_port * uap,int * baud,int * parity,int * bits)2373 static void pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2374 int *parity, int *bits)
2375 {
2376 unsigned int lcr_h, ibrd, fbrd;
2377
2378 if (!(pl011_read(uap, REG_CR) & UART01x_CR_UARTEN))
2379 return;
2380
2381 lcr_h = pl011_read(uap, REG_LCRH_TX);
2382
2383 *parity = 'n';
2384 if (lcr_h & UART01x_LCRH_PEN) {
2385 if (lcr_h & UART01x_LCRH_EPS)
2386 *parity = 'e';
2387 else
2388 *parity = 'o';
2389 }
2390
2391 if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2392 *bits = 7;
2393 else
2394 *bits = 8;
2395
2396 ibrd = pl011_read(uap, REG_IBRD);
2397 fbrd = pl011_read(uap, REG_FBRD);
2398
2399 *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2400
2401 if (uap->vendor->oversampling &&
2402 (pl011_read(uap, REG_CR) & ST_UART011_CR_OVSFACT))
2403 *baud *= 2;
2404 }
2405
pl011_console_setup(struct console * co,char * options)2406 static int pl011_console_setup(struct console *co, char *options)
2407 {
2408 struct uart_amba_port *uap;
2409 int baud = 38400;
2410 int bits = 8;
2411 int parity = 'n';
2412 int flow = 'n';
2413 int ret;
2414
2415 /*
2416 * Check whether an invalid uart number has been specified, and
2417 * if so, search for the first available port that does have
2418 * console support.
2419 */
2420 if (co->index >= UART_NR)
2421 co->index = 0;
2422 uap = amba_ports[co->index];
2423 if (!uap)
2424 return -ENODEV;
2425
2426 /* Allow pins to be muxed in and configured */
2427 pinctrl_pm_select_default_state(uap->port.dev);
2428
2429 ret = clk_prepare(uap->clk);
2430 if (ret)
2431 return ret;
2432
2433 uap->console_line_ended = true;
2434
2435 if (dev_get_platdata(uap->port.dev)) {
2436 struct amba_pl011_data *plat;
2437
2438 plat = dev_get_platdata(uap->port.dev);
2439 if (plat->init)
2440 plat->init();
2441 }
2442
2443 uap->port.uartclk = clk_get_rate(uap->clk);
2444
2445 if (uap->vendor->fixed_options) {
2446 baud = uap->fixed_baud;
2447 } else {
2448 if (options)
2449 uart_parse_options(options,
2450 &baud, &parity, &bits, &flow);
2451 else
2452 pl011_console_get_options(uap, &baud, &parity, &bits);
2453 }
2454
2455 return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2456 }
2457
2458 /**
2459 * pl011_console_match - non-standard console matching
2460 * @co: registering console
2461 * @name: name from console command line
2462 * @idx: index from console command line
2463 * @options: ptr to option string from console command line
2464 *
2465 * Only attempts to match console command lines of the form:
2466 * console=pl011,mmio|mmio32,<addr>[,<options>]
2467 * console=pl011,0x<addr>[,<options>]
2468 * This form is used to register an initial earlycon boot console and
2469 * replace it with the amba_console at pl011 driver init.
2470 *
2471 * Performs console setup for a match (as required by interface)
2472 * If no <options> are specified, then assume the h/w is already setup.
2473 *
2474 * Returns 0 if console matches; otherwise non-zero to use default matching
2475 */
pl011_console_match(struct console * co,char * name,int idx,char * options)2476 static int pl011_console_match(struct console *co, char *name, int idx,
2477 char *options)
2478 {
2479 enum uart_iotype iotype;
2480 resource_size_t addr;
2481 int i;
2482
2483 /*
2484 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2485 * have a distinct console name, so make sure we check for that.
2486 * The actual implementation of the erratum occurs in the probe
2487 * function.
2488 */
2489 if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2490 return -ENODEV;
2491
2492 if (uart_parse_earlycon(options, &iotype, &addr, &options))
2493 return -ENODEV;
2494
2495 if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2496 return -ENODEV;
2497
2498 /* try to match the port specified on the command line */
2499 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2500 struct uart_port *port;
2501
2502 if (!amba_ports[i])
2503 continue;
2504
2505 port = &amba_ports[i]->port;
2506
2507 if (port->mapbase != addr)
2508 continue;
2509
2510 co->index = i;
2511 uart_port_set_cons(port, co);
2512 return pl011_console_setup(co, options);
2513 }
2514
2515 return -ENODEV;
2516 }
2517
2518 static void
pl011_console_write_atomic(struct console * co,struct nbcon_write_context * wctxt)2519 pl011_console_write_atomic(struct console *co, struct nbcon_write_context *wctxt)
2520 {
2521 struct uart_amba_port *uap = amba_ports[co->index];
2522 unsigned int old_cr = 0;
2523
2524 if (!nbcon_enter_unsafe(wctxt))
2525 return;
2526
2527 clk_enable(uap->clk);
2528
2529 if (!uap->vendor->always_enabled) {
2530 old_cr = pl011_read(uap, REG_CR);
2531 pl011_write((old_cr & ~UART011_CR_CTSEN) | (UART01x_CR_UARTEN | UART011_CR_TXE),
2532 uap, REG_CR);
2533 }
2534
2535 if (!uap->console_line_ended)
2536 uart_console_write(&uap->port, "\n", 1, pl011_console_putchar);
2537 uart_console_write(&uap->port, wctxt->outbuf, wctxt->len, pl011_console_putchar);
2538
2539 while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr) & uap->vendor->fr_busy)
2540 cpu_relax();
2541
2542 if (!uap->vendor->always_enabled)
2543 pl011_write(old_cr, uap, REG_CR);
2544
2545 clk_disable(uap->clk);
2546
2547 nbcon_exit_unsafe(wctxt);
2548 }
2549
2550 static void
pl011_console_write_thread(struct console * co,struct nbcon_write_context * wctxt)2551 pl011_console_write_thread(struct console *co, struct nbcon_write_context *wctxt)
2552 {
2553 struct uart_amba_port *uap = amba_ports[co->index];
2554 unsigned int old_cr = 0;
2555
2556 if (!nbcon_enter_unsafe(wctxt))
2557 return;
2558
2559 clk_enable(uap->clk);
2560
2561 if (!uap->vendor->always_enabled) {
2562 old_cr = pl011_read(uap, REG_CR);
2563 pl011_write((old_cr & ~UART011_CR_CTSEN) | (UART01x_CR_UARTEN | UART011_CR_TXE),
2564 uap, REG_CR);
2565 }
2566
2567 if (nbcon_exit_unsafe(wctxt)) {
2568 int i;
2569 unsigned int len = READ_ONCE(wctxt->len);
2570
2571 for (i = 0; i < len; i++) {
2572 if (!nbcon_enter_unsafe(wctxt))
2573 break;
2574 uart_console_write(&uap->port, wctxt->outbuf + i, 1, pl011_console_putchar);
2575 if (!nbcon_exit_unsafe(wctxt))
2576 break;
2577 }
2578 }
2579
2580 while (!nbcon_enter_unsafe(wctxt))
2581 nbcon_reacquire_nobuf(wctxt);
2582
2583 while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr) & uap->vendor->fr_busy)
2584 cpu_relax();
2585
2586 if (!uap->vendor->always_enabled)
2587 pl011_write(old_cr, uap, REG_CR);
2588
2589 clk_disable(uap->clk);
2590
2591 nbcon_exit_unsafe(wctxt);
2592 }
2593
2594 static void
pl011_console_device_lock(struct console * co,unsigned long * flags)2595 pl011_console_device_lock(struct console *co, unsigned long *flags)
2596 {
2597 __uart_port_lock_irqsave(&amba_ports[co->index]->port, flags);
2598 }
2599
2600 static void
pl011_console_device_unlock(struct console * co,unsigned long flags)2601 pl011_console_device_unlock(struct console *co, unsigned long flags)
2602 {
2603 __uart_port_unlock_irqrestore(&amba_ports[co->index]->port, flags);
2604 }
2605
2606 static struct uart_driver amba_reg;
2607 static struct console amba_console = {
2608 .name = "ttyAMA",
2609 .device = uart_console_device,
2610 .setup = pl011_console_setup,
2611 .match = pl011_console_match,
2612 .write_atomic = pl011_console_write_atomic,
2613 .write_thread = pl011_console_write_thread,
2614 .device_lock = pl011_console_device_lock,
2615 .device_unlock = pl011_console_device_unlock,
2616 .flags = CON_PRINTBUFFER | CON_ANYTIME | CON_NBCON,
2617 .index = -1,
2618 .data = &amba_reg,
2619 };
2620
2621 #define AMBA_CONSOLE (&amba_console)
2622
qdf2400_e44_putc(struct uart_port * port,unsigned char c)2623 static void qdf2400_e44_putc(struct uart_port *port, unsigned char c)
2624 {
2625 while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2626 cpu_relax();
2627 writel(c, port->membase + UART01x_DR);
2628 while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2629 cpu_relax();
2630 }
2631
qdf2400_e44_early_write(struct console * con,const char * s,unsigned int n)2632 static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned int n)
2633 {
2634 struct earlycon_device *dev = con->data;
2635
2636 uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2637 }
2638
pl011_putc(struct uart_port * port,unsigned char c)2639 static void pl011_putc(struct uart_port *port, unsigned char c)
2640 {
2641 while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2642 cpu_relax();
2643 if (port->iotype == UPIO_MEM32)
2644 writel(c, port->membase + UART01x_DR);
2645 else
2646 writeb(c, port->membase + UART01x_DR);
2647 while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2648 cpu_relax();
2649 }
2650
pl011_early_write(struct console * con,const char * s,unsigned int n)2651 static void pl011_early_write(struct console *con, const char *s, unsigned int n)
2652 {
2653 struct earlycon_device *dev = con->data;
2654
2655 uart_console_write(&dev->port, s, n, pl011_putc);
2656 }
2657
2658 #ifdef CONFIG_CONSOLE_POLL
pl011_getc(struct uart_port * port)2659 static int pl011_getc(struct uart_port *port)
2660 {
2661 if (readl(port->membase + UART01x_FR) & UART01x_FR_RXFE)
2662 return NO_POLL_CHAR;
2663
2664 if (port->iotype == UPIO_MEM32)
2665 return readl(port->membase + UART01x_DR);
2666 else
2667 return readb(port->membase + UART01x_DR);
2668 }
2669
pl011_early_read(struct console * con,char * s,unsigned int n)2670 static int pl011_early_read(struct console *con, char *s, unsigned int n)
2671 {
2672 struct earlycon_device *dev = con->data;
2673 int ch, num_read = 0;
2674
2675 while (num_read < n) {
2676 ch = pl011_getc(&dev->port);
2677 if (ch == NO_POLL_CHAR)
2678 break;
2679
2680 s[num_read++] = ch;
2681 }
2682
2683 return num_read;
2684 }
2685 #else
2686 #define pl011_early_read NULL
2687 #endif
2688
2689 /*
2690 * On non-ACPI systems, earlycon is enabled by specifying
2691 * "earlycon=pl011,<address>" on the kernel command line.
2692 *
2693 * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2694 * by specifying only "earlycon" on the command line. Because it requires
2695 * SPCR, the console starts after ACPI is parsed, which is later than a
2696 * traditional early console.
2697 *
2698 * To get the traditional early console that starts before ACPI is parsed,
2699 * specify the full "earlycon=pl011,<address>" option.
2700 */
pl011_early_console_setup(struct earlycon_device * device,const char * opt)2701 static int __init pl011_early_console_setup(struct earlycon_device *device,
2702 const char *opt)
2703 {
2704 if (!device->port.membase)
2705 return -ENODEV;
2706
2707 device->con->write = pl011_early_write;
2708 device->con->read = pl011_early_read;
2709
2710 return 0;
2711 }
2712
2713 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2714
2715 OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2716
2717 /*
2718 * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2719 * Erratum 44, traditional earlycon can be enabled by specifying
2720 * "earlycon=qdf2400_e44,<address>". Any options are ignored.
2721 *
2722 * Alternatively, you can just specify "earlycon", and the early console
2723 * will be enabled with the information from the SPCR table. In this
2724 * case, the SPCR code will detect the need for the E44 work-around,
2725 * and set the console name to "qdf2400_e44".
2726 */
2727 static int __init
qdf2400_e44_early_console_setup(struct earlycon_device * device,const char * opt)2728 qdf2400_e44_early_console_setup(struct earlycon_device *device,
2729 const char *opt)
2730 {
2731 if (!device->port.membase)
2732 return -ENODEV;
2733
2734 device->con->write = qdf2400_e44_early_write;
2735 return 0;
2736 }
2737
2738 EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2739
2740 #else
2741 #define AMBA_CONSOLE NULL
2742 #endif
2743
2744 static struct uart_driver amba_reg = {
2745 .owner = THIS_MODULE,
2746 .driver_name = "ttyAMA",
2747 .dev_name = "ttyAMA",
2748 .major = SERIAL_AMBA_MAJOR,
2749 .minor = SERIAL_AMBA_MINOR,
2750 .nr = UART_NR,
2751 .cons = AMBA_CONSOLE,
2752 };
2753
pl011_probe_dt_alias(int index,struct device * dev)2754 static int pl011_probe_dt_alias(int index, struct device *dev)
2755 {
2756 struct device_node *np;
2757 static bool seen_dev_with_alias;
2758 static bool seen_dev_without_alias;
2759 int ret = index;
2760
2761 if (!IS_ENABLED(CONFIG_OF))
2762 return ret;
2763
2764 np = dev->of_node;
2765 if (!np)
2766 return ret;
2767
2768 ret = of_alias_get_id(np, "serial");
2769 if (ret < 0) {
2770 seen_dev_without_alias = true;
2771 ret = index;
2772 } else {
2773 seen_dev_with_alias = true;
2774 if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret]) {
2775 dev_warn(dev, "requested serial port %d not available.\n", ret);
2776 ret = index;
2777 }
2778 }
2779
2780 if (seen_dev_with_alias && seen_dev_without_alias)
2781 dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2782
2783 return ret;
2784 }
2785
2786 /* unregisters the driver also if no more ports are left */
pl011_unregister_port(struct uart_amba_port * uap)2787 static void pl011_unregister_port(struct uart_amba_port *uap)
2788 {
2789 int i;
2790 bool busy = false;
2791
2792 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2793 if (amba_ports[i] == uap)
2794 amba_ports[i] = NULL;
2795 else if (amba_ports[i])
2796 busy = true;
2797 }
2798 pl011_dma_remove(uap);
2799 if (!busy)
2800 uart_unregister_driver(&amba_reg);
2801 }
2802
pl011_find_free_port(void)2803 static int pl011_find_free_port(void)
2804 {
2805 int i;
2806
2807 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2808 if (!amba_ports[i])
2809 return i;
2810
2811 return -EBUSY;
2812 }
2813
pl011_setup_port(struct device * dev,struct uart_amba_port * uap,struct resource * mmiobase,int index)2814 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2815 struct resource *mmiobase, int index)
2816 {
2817 void __iomem *base;
2818 int ret;
2819
2820 base = devm_ioremap_resource(dev, mmiobase);
2821 if (IS_ERR(base))
2822 return PTR_ERR(base);
2823
2824 index = pl011_probe_dt_alias(index, dev);
2825
2826 uap->port.dev = dev;
2827 uap->port.mapbase = mmiobase->start;
2828 uap->port.membase = base;
2829 uap->port.fifosize = uap->fifosize;
2830 uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE);
2831 uap->port.flags = UPF_BOOT_AUTOCONF;
2832 uap->port.line = index;
2833
2834 ret = uart_get_rs485_mode(&uap->port);
2835 if (ret)
2836 return ret;
2837
2838 amba_ports[index] = uap;
2839
2840 return 0;
2841 }
2842
pl011_register_port(struct uart_amba_port * uap)2843 static int pl011_register_port(struct uart_amba_port *uap)
2844 {
2845 int ret, i;
2846
2847 /* Ensure interrupts from this UART are masked and cleared */
2848 pl011_write(0, uap, REG_IMSC);
2849 pl011_write(0xffff, uap, REG_ICR);
2850
2851 if (!amba_reg.state) {
2852 ret = uart_register_driver(&amba_reg);
2853 if (ret < 0) {
2854 dev_err(uap->port.dev,
2855 "Failed to register AMBA-PL011 driver\n");
2856 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2857 if (amba_ports[i] == uap)
2858 amba_ports[i] = NULL;
2859 return ret;
2860 }
2861 }
2862
2863 ret = uart_add_one_port(&amba_reg, &uap->port);
2864 if (ret)
2865 pl011_unregister_port(uap);
2866
2867 return ret;
2868 }
2869
2870 static const struct serial_rs485 pl011_rs485_supported = {
2871 .flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND |
2872 SER_RS485_RX_DURING_TX,
2873 .delay_rts_before_send = 1,
2874 .delay_rts_after_send = 1,
2875 };
2876
pl011_probe(struct amba_device * dev,const struct amba_id * id)2877 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2878 {
2879 struct uart_amba_port *uap;
2880 struct vendor_data *vendor = id->data;
2881 int portnr, ret;
2882 u32 val;
2883
2884 portnr = pl011_find_free_port();
2885 if (portnr < 0)
2886 return portnr;
2887
2888 uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2889 GFP_KERNEL);
2890 if (!uap)
2891 return -ENOMEM;
2892
2893 uap->clk = devm_clk_get(&dev->dev, NULL);
2894 if (IS_ERR(uap->clk))
2895 return PTR_ERR(uap->clk);
2896
2897 uap->reg_offset = vendor->reg_offset;
2898 uap->vendor = vendor;
2899 uap->fifosize = vendor->get_fifosize(dev);
2900 uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2901 uap->port.irq = dev->irq[0];
2902 uap->port.ops = &amba_pl011_pops;
2903 uap->port.rs485_config = pl011_rs485_config;
2904 uap->port.rs485_supported = pl011_rs485_supported;
2905 snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2906
2907 if (device_property_read_u32(&dev->dev, "reg-io-width", &val) == 0) {
2908 switch (val) {
2909 case 1:
2910 uap->port.iotype = UPIO_MEM;
2911 break;
2912 case 4:
2913 uap->port.iotype = UPIO_MEM32;
2914 break;
2915 default:
2916 dev_warn(&dev->dev, "unsupported reg-io-width (%d)\n",
2917 val);
2918 return -EINVAL;
2919 }
2920 }
2921 hrtimer_setup(&uap->trigger_start_tx, pl011_trigger_start_tx, CLOCK_MONOTONIC,
2922 HRTIMER_MODE_REL);
2923 hrtimer_setup(&uap->trigger_stop_tx, pl011_trigger_stop_tx, CLOCK_MONOTONIC,
2924 HRTIMER_MODE_REL);
2925
2926 ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2927 if (ret)
2928 return ret;
2929
2930 amba_set_drvdata(dev, uap);
2931
2932 return pl011_register_port(uap);
2933 }
2934
pl011_remove(struct amba_device * dev)2935 static void pl011_remove(struct amba_device *dev)
2936 {
2937 struct uart_amba_port *uap = amba_get_drvdata(dev);
2938
2939 uart_remove_one_port(&amba_reg, &uap->port);
2940 pl011_unregister_port(uap);
2941 }
2942
2943 #ifdef CONFIG_PM_SLEEP
pl011_suspend(struct device * dev)2944 static int pl011_suspend(struct device *dev)
2945 {
2946 struct uart_amba_port *uap = dev_get_drvdata(dev);
2947
2948 if (!uap)
2949 return -EINVAL;
2950
2951 return uart_suspend_port(&amba_reg, &uap->port);
2952 }
2953
pl011_resume(struct device * dev)2954 static int pl011_resume(struct device *dev)
2955 {
2956 struct uart_amba_port *uap = dev_get_drvdata(dev);
2957
2958 if (!uap)
2959 return -EINVAL;
2960
2961 return uart_resume_port(&amba_reg, &uap->port);
2962 }
2963 #endif
2964
2965 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2966
2967 #ifdef CONFIG_ACPI_SPCR_TABLE
qpdf2400_erratum44_workaround(struct device * dev,struct uart_amba_port * uap)2968 static void qpdf2400_erratum44_workaround(struct device *dev,
2969 struct uart_amba_port *uap)
2970 {
2971 if (!qdf2400_e44_present)
2972 return;
2973
2974 dev_info(dev, "working around QDF2400 SoC erratum 44\n");
2975 uap->vendor = &vendor_qdt_qdf2400_e44;
2976 }
2977 #else
qpdf2400_erratum44_workaround(struct device * dev,struct uart_amba_port * uap)2978 static void qpdf2400_erratum44_workaround(struct device *dev,
2979 struct uart_amba_port *uap)
2980 { /* empty */ }
2981 #endif
2982
sbsa_uart_probe(struct platform_device * pdev)2983 static int sbsa_uart_probe(struct platform_device *pdev)
2984 {
2985 struct uart_amba_port *uap;
2986 struct resource *r;
2987 int portnr, ret;
2988 int baudrate;
2989
2990 /*
2991 * Check the mandatory baud rate parameter in the DT node early
2992 * so that we can easily exit with the error.
2993 */
2994 if (pdev->dev.of_node) {
2995 struct device_node *np = pdev->dev.of_node;
2996
2997 ret = of_property_read_u32(np, "current-speed", &baudrate);
2998 if (ret)
2999 return ret;
3000 } else {
3001 baudrate = 115200;
3002 }
3003
3004 portnr = pl011_find_free_port();
3005 if (portnr < 0)
3006 return portnr;
3007
3008 uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
3009 GFP_KERNEL);
3010 if (!uap)
3011 return -ENOMEM;
3012
3013 ret = platform_get_irq(pdev, 0);
3014 if (ret < 0)
3015 return ret;
3016 uap->port.irq = ret;
3017
3018 uap->vendor = &vendor_sbsa;
3019 qpdf2400_erratum44_workaround(&pdev->dev, uap);
3020
3021 uap->reg_offset = uap->vendor->reg_offset;
3022 uap->fifosize = 32;
3023 uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
3024 uap->port.ops = &sbsa_uart_pops;
3025 uap->fixed_baud = baudrate;
3026
3027 snprintf(uap->type, sizeof(uap->type), "SBSA");
3028
3029 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3030
3031 ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
3032 if (ret)
3033 return ret;
3034
3035 platform_set_drvdata(pdev, uap);
3036
3037 return pl011_register_port(uap);
3038 }
3039
sbsa_uart_remove(struct platform_device * pdev)3040 static void sbsa_uart_remove(struct platform_device *pdev)
3041 {
3042 struct uart_amba_port *uap = platform_get_drvdata(pdev);
3043
3044 uart_remove_one_port(&amba_reg, &uap->port);
3045 pl011_unregister_port(uap);
3046 }
3047
3048 static const struct of_device_id sbsa_uart_of_match[] = {
3049 { .compatible = "arm,sbsa-uart", },
3050 {},
3051 };
3052 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
3053
3054 static const struct acpi_device_id sbsa_uart_acpi_match[] = {
3055 { "ARMH0011", 0 },
3056 { "ARMHB000", 0 },
3057 {},
3058 };
3059 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
3060
3061 static struct platform_driver arm_sbsa_uart_platform_driver = {
3062 .probe = sbsa_uart_probe,
3063 .remove = sbsa_uart_remove,
3064 .driver = {
3065 .name = "sbsa-uart",
3066 .pm = &pl011_dev_pm_ops,
3067 .of_match_table = sbsa_uart_of_match,
3068 .acpi_match_table = sbsa_uart_acpi_match,
3069 .suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
3070 },
3071 };
3072
3073 static const struct amba_id pl011_ids[] = {
3074 {
3075 .id = 0x00041011,
3076 .mask = 0x000fffff,
3077 .data = &vendor_arm,
3078 },
3079 {
3080 .id = 0x00380802,
3081 .mask = 0x00ffffff,
3082 .data = &vendor_st,
3083 },
3084 { 0, 0 },
3085 };
3086
3087 MODULE_DEVICE_TABLE(amba, pl011_ids);
3088
3089 static struct amba_driver pl011_driver = {
3090 .drv = {
3091 .name = "uart-pl011",
3092 .pm = &pl011_dev_pm_ops,
3093 .suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
3094 },
3095 .id_table = pl011_ids,
3096 .probe = pl011_probe,
3097 .remove = pl011_remove,
3098 };
3099
pl011_init(void)3100 static int __init pl011_init(void)
3101 {
3102 pr_info("Serial: AMBA PL011 UART driver\n");
3103
3104 if (platform_driver_register(&arm_sbsa_uart_platform_driver))
3105 pr_warn("could not register SBSA UART platform driver\n");
3106 return amba_driver_register(&pl011_driver);
3107 }
3108
pl011_exit(void)3109 static void __exit pl011_exit(void)
3110 {
3111 platform_driver_unregister(&arm_sbsa_uart_platform_driver);
3112 amba_driver_unregister(&pl011_driver);
3113 }
3114
3115 /*
3116 * While this can be a module, if builtin it's most likely the console
3117 * So let's leave module_exit but move module_init to an earlier place
3118 */
3119 arch_initcall(pl011_init);
3120 module_exit(pl011_exit);
3121
3122 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
3123 MODULE_DESCRIPTION("ARM AMBA serial port driver");
3124 MODULE_LICENSE("GPL");
3125