1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Scheduler topology setup/handling methods 4 */ 5 6 #include <linux/sched/isolation.h> 7 #include <linux/bsearch.h> 8 #include "sched.h" 9 10 DEFINE_MUTEX(sched_domains_mutex); 11 void sched_domains_mutex_lock(void) 12 { 13 mutex_lock(&sched_domains_mutex); 14 } 15 void sched_domains_mutex_unlock(void) 16 { 17 mutex_unlock(&sched_domains_mutex); 18 } 19 20 /* Protected by sched_domains_mutex: */ 21 static cpumask_var_t sched_domains_tmpmask; 22 static cpumask_var_t sched_domains_tmpmask2; 23 24 static int __init sched_debug_setup(char *str) 25 { 26 sched_debug_verbose = true; 27 28 return 0; 29 } 30 early_param("sched_verbose", sched_debug_setup); 31 32 static inline bool sched_debug(void) 33 { 34 return sched_debug_verbose; 35 } 36 37 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name }, 38 const struct sd_flag_debug sd_flag_debug[] = { 39 #include <linux/sched/sd_flags.h> 40 }; 41 #undef SD_FLAG 42 43 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, 44 struct cpumask *groupmask) 45 { 46 struct sched_group *group = sd->groups; 47 unsigned long flags = sd->flags; 48 unsigned int idx; 49 50 cpumask_clear(groupmask); 51 52 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level); 53 printk(KERN_CONT "span=%*pbl level=%s\n", 54 cpumask_pr_args(sched_domain_span(sd)), sd->name); 55 56 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { 57 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu); 58 } 59 if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) { 60 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu); 61 } 62 63 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) { 64 unsigned int flag = BIT(idx); 65 unsigned int meta_flags = sd_flag_debug[idx].meta_flags; 66 67 if ((meta_flags & SDF_SHARED_CHILD) && sd->child && 68 !(sd->child->flags & flag)) 69 printk(KERN_ERR "ERROR: flag %s set here but not in child\n", 70 sd_flag_debug[idx].name); 71 72 if ((meta_flags & SDF_SHARED_PARENT) && sd->parent && 73 !(sd->parent->flags & flag)) 74 printk(KERN_ERR "ERROR: flag %s set here but not in parent\n", 75 sd_flag_debug[idx].name); 76 } 77 78 printk(KERN_DEBUG "%*s groups:", level + 1, ""); 79 do { 80 if (!group) { 81 printk("\n"); 82 printk(KERN_ERR "ERROR: group is NULL\n"); 83 break; 84 } 85 86 if (cpumask_empty(sched_group_span(group))) { 87 printk(KERN_CONT "\n"); 88 printk(KERN_ERR "ERROR: empty group\n"); 89 break; 90 } 91 92 if (!(sd->flags & SD_NUMA) && 93 cpumask_intersects(groupmask, sched_group_span(group))) { 94 printk(KERN_CONT "\n"); 95 printk(KERN_ERR "ERROR: repeated CPUs\n"); 96 break; 97 } 98 99 cpumask_or(groupmask, groupmask, sched_group_span(group)); 100 101 printk(KERN_CONT " %d:{ span=%*pbl", 102 group->sgc->id, 103 cpumask_pr_args(sched_group_span(group))); 104 105 if ((sd->flags & SD_NUMA) && 106 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) { 107 printk(KERN_CONT " mask=%*pbl", 108 cpumask_pr_args(group_balance_mask(group))); 109 } 110 111 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) 112 printk(KERN_CONT " cap=%lu", group->sgc->capacity); 113 114 if (group == sd->groups && sd->child && 115 !cpumask_equal(sched_domain_span(sd->child), 116 sched_group_span(group))) { 117 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n"); 118 } 119 120 printk(KERN_CONT " }"); 121 122 group = group->next; 123 124 if (group != sd->groups) 125 printk(KERN_CONT ","); 126 127 } while (group != sd->groups); 128 printk(KERN_CONT "\n"); 129 130 if (!cpumask_equal(sched_domain_span(sd), groupmask)) 131 printk(KERN_ERR "ERROR: groups don't span domain->span\n"); 132 133 if (sd->parent && 134 !cpumask_subset(groupmask, sched_domain_span(sd->parent))) 135 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n"); 136 return 0; 137 } 138 139 static void sched_domain_debug(struct sched_domain *sd, int cpu) 140 { 141 int level = 0; 142 143 if (!sched_debug_verbose) 144 return; 145 146 if (!sd) { 147 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); 148 return; 149 } 150 151 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu); 152 153 for (;;) { 154 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) 155 break; 156 level++; 157 sd = sd->parent; 158 if (!sd) 159 break; 160 } 161 } 162 163 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */ 164 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) | 165 static const unsigned int SD_DEGENERATE_GROUPS_MASK = 166 #include <linux/sched/sd_flags.h> 167 0; 168 #undef SD_FLAG 169 170 static int sd_degenerate(struct sched_domain *sd) 171 { 172 if (cpumask_weight(sched_domain_span(sd)) == 1) 173 return 1; 174 175 /* Following flags need at least 2 groups */ 176 if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) && 177 (sd->groups != sd->groups->next)) 178 return 0; 179 180 /* Following flags don't use groups */ 181 if (sd->flags & (SD_WAKE_AFFINE)) 182 return 0; 183 184 return 1; 185 } 186 187 static int 188 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) 189 { 190 unsigned long cflags = sd->flags, pflags = parent->flags; 191 192 if (sd_degenerate(parent)) 193 return 1; 194 195 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) 196 return 0; 197 198 /* Flags needing groups don't count if only 1 group in parent */ 199 if (parent->groups == parent->groups->next) 200 pflags &= ~SD_DEGENERATE_GROUPS_MASK; 201 202 if (~cflags & pflags) 203 return 0; 204 205 return 1; 206 } 207 208 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 209 DEFINE_STATIC_KEY_FALSE(sched_energy_present); 210 static unsigned int sysctl_sched_energy_aware = 1; 211 static DEFINE_MUTEX(sched_energy_mutex); 212 static bool sched_energy_update; 213 214 static bool sched_is_eas_possible(const struct cpumask *cpu_mask) 215 { 216 bool any_asym_capacity = false; 217 int i; 218 219 /* EAS is enabled for asymmetric CPU capacity topologies. */ 220 for_each_cpu(i, cpu_mask) { 221 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, i))) { 222 any_asym_capacity = true; 223 break; 224 } 225 } 226 if (!any_asym_capacity) { 227 if (sched_debug()) { 228 pr_info("rd %*pbl: Checking EAS, CPUs do not have asymmetric capacities\n", 229 cpumask_pr_args(cpu_mask)); 230 } 231 return false; 232 } 233 234 /* EAS definitely does *not* handle SMT */ 235 if (sched_smt_active()) { 236 if (sched_debug()) { 237 pr_info("rd %*pbl: Checking EAS, SMT is not supported\n", 238 cpumask_pr_args(cpu_mask)); 239 } 240 return false; 241 } 242 243 if (!arch_scale_freq_invariant()) { 244 if (sched_debug()) { 245 pr_info("rd %*pbl: Checking EAS: frequency-invariant load tracking not yet supported", 246 cpumask_pr_args(cpu_mask)); 247 } 248 return false; 249 } 250 251 if (!cpufreq_ready_for_eas(cpu_mask)) { 252 if (sched_debug()) { 253 pr_info("rd %*pbl: Checking EAS: cpufreq is not ready\n", 254 cpumask_pr_args(cpu_mask)); 255 } 256 return false; 257 } 258 259 return true; 260 } 261 262 void rebuild_sched_domains_energy(void) 263 { 264 mutex_lock(&sched_energy_mutex); 265 sched_energy_update = true; 266 rebuild_sched_domains(); 267 sched_energy_update = false; 268 mutex_unlock(&sched_energy_mutex); 269 } 270 271 #ifdef CONFIG_PROC_SYSCTL 272 static int sched_energy_aware_handler(const struct ctl_table *table, int write, 273 void *buffer, size_t *lenp, loff_t *ppos) 274 { 275 int ret, state; 276 277 if (write && !capable(CAP_SYS_ADMIN)) 278 return -EPERM; 279 280 if (!sched_is_eas_possible(cpu_active_mask)) { 281 if (write) { 282 return -EOPNOTSUPP; 283 } else { 284 *lenp = 0; 285 return 0; 286 } 287 } 288 289 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 290 if (!ret && write) { 291 state = static_branch_unlikely(&sched_energy_present); 292 if (state != sysctl_sched_energy_aware) 293 rebuild_sched_domains_energy(); 294 } 295 296 return ret; 297 } 298 299 static const struct ctl_table sched_energy_aware_sysctls[] = { 300 { 301 .procname = "sched_energy_aware", 302 .data = &sysctl_sched_energy_aware, 303 .maxlen = sizeof(unsigned int), 304 .mode = 0644, 305 .proc_handler = sched_energy_aware_handler, 306 .extra1 = SYSCTL_ZERO, 307 .extra2 = SYSCTL_ONE, 308 }, 309 }; 310 311 static int __init sched_energy_aware_sysctl_init(void) 312 { 313 register_sysctl_init("kernel", sched_energy_aware_sysctls); 314 return 0; 315 } 316 317 late_initcall(sched_energy_aware_sysctl_init); 318 #endif /* CONFIG_PROC_SYSCTL */ 319 320 static void free_pd(struct perf_domain *pd) 321 { 322 struct perf_domain *tmp; 323 324 while (pd) { 325 tmp = pd->next; 326 kfree(pd); 327 pd = tmp; 328 } 329 } 330 331 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu) 332 { 333 while (pd) { 334 if (cpumask_test_cpu(cpu, perf_domain_span(pd))) 335 return pd; 336 pd = pd->next; 337 } 338 339 return NULL; 340 } 341 342 static struct perf_domain *pd_init(int cpu) 343 { 344 struct em_perf_domain *obj = em_cpu_get(cpu); 345 struct perf_domain *pd; 346 347 if (!obj) { 348 if (sched_debug()) 349 pr_info("%s: no EM found for CPU%d\n", __func__, cpu); 350 return NULL; 351 } 352 353 pd = kzalloc(sizeof(*pd), GFP_KERNEL); 354 if (!pd) 355 return NULL; 356 pd->em_pd = obj; 357 358 return pd; 359 } 360 361 static void perf_domain_debug(const struct cpumask *cpu_map, 362 struct perf_domain *pd) 363 { 364 if (!sched_debug() || !pd) 365 return; 366 367 printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map)); 368 369 while (pd) { 370 printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }", 371 cpumask_first(perf_domain_span(pd)), 372 cpumask_pr_args(perf_domain_span(pd)), 373 em_pd_nr_perf_states(pd->em_pd)); 374 pd = pd->next; 375 } 376 377 printk(KERN_CONT "\n"); 378 } 379 380 static void destroy_perf_domain_rcu(struct rcu_head *rp) 381 { 382 struct perf_domain *pd; 383 384 pd = container_of(rp, struct perf_domain, rcu); 385 free_pd(pd); 386 } 387 388 static void sched_energy_set(bool has_eas) 389 { 390 if (!has_eas && static_branch_unlikely(&sched_energy_present)) { 391 if (sched_debug()) 392 pr_info("%s: stopping EAS\n", __func__); 393 static_branch_disable_cpuslocked(&sched_energy_present); 394 } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) { 395 if (sched_debug()) 396 pr_info("%s: starting EAS\n", __func__); 397 static_branch_enable_cpuslocked(&sched_energy_present); 398 } 399 } 400 401 /* 402 * EAS can be used on a root domain if it meets all the following conditions: 403 * 1. an Energy Model (EM) is available; 404 * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy. 405 * 3. no SMT is detected. 406 * 4. schedutil is driving the frequency of all CPUs of the rd; 407 * 5. frequency invariance support is present; 408 */ 409 static bool build_perf_domains(const struct cpumask *cpu_map) 410 { 411 int i; 412 struct perf_domain *pd = NULL, *tmp; 413 int cpu = cpumask_first(cpu_map); 414 struct root_domain *rd = cpu_rq(cpu)->rd; 415 416 if (!sysctl_sched_energy_aware) 417 goto free; 418 419 if (!sched_is_eas_possible(cpu_map)) 420 goto free; 421 422 for_each_cpu(i, cpu_map) { 423 /* Skip already covered CPUs. */ 424 if (find_pd(pd, i)) 425 continue; 426 427 /* Create the new pd and add it to the local list. */ 428 tmp = pd_init(i); 429 if (!tmp) 430 goto free; 431 tmp->next = pd; 432 pd = tmp; 433 } 434 435 perf_domain_debug(cpu_map, pd); 436 437 /* Attach the new list of performance domains to the root domain. */ 438 tmp = rd->pd; 439 rcu_assign_pointer(rd->pd, pd); 440 if (tmp) 441 call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 442 443 return !!pd; 444 445 free: 446 free_pd(pd); 447 tmp = rd->pd; 448 rcu_assign_pointer(rd->pd, NULL); 449 if (tmp) 450 call_rcu(&tmp->rcu, destroy_perf_domain_rcu); 451 452 return false; 453 } 454 #else /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL): */ 455 static void free_pd(struct perf_domain *pd) { } 456 #endif /* !(CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ 457 458 static void free_rootdomain(struct rcu_head *rcu) 459 { 460 struct root_domain *rd = container_of(rcu, struct root_domain, rcu); 461 462 cpupri_cleanup(&rd->cpupri); 463 cpudl_cleanup(&rd->cpudl); 464 free_cpumask_var(rd->dlo_mask); 465 free_cpumask_var(rd->rto_mask); 466 free_cpumask_var(rd->online); 467 free_cpumask_var(rd->span); 468 free_pd(rd->pd); 469 kfree(rd); 470 } 471 472 void rq_attach_root(struct rq *rq, struct root_domain *rd) 473 { 474 struct root_domain *old_rd = NULL; 475 struct rq_flags rf; 476 477 rq_lock_irqsave(rq, &rf); 478 479 if (rq->rd) { 480 old_rd = rq->rd; 481 482 if (cpumask_test_cpu(rq->cpu, old_rd->online)) 483 set_rq_offline(rq); 484 485 cpumask_clear_cpu(rq->cpu, old_rd->span); 486 487 /* 488 * If we don't want to free the old_rd yet then 489 * set old_rd to NULL to skip the freeing later 490 * in this function: 491 */ 492 if (!atomic_dec_and_test(&old_rd->refcount)) 493 old_rd = NULL; 494 } 495 496 atomic_inc(&rd->refcount); 497 rq->rd = rd; 498 499 cpumask_set_cpu(rq->cpu, rd->span); 500 if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) 501 set_rq_online(rq); 502 503 /* 504 * Because the rq is not a task, dl_add_task_root_domain() did not 505 * move the fair server bw to the rd if it already started. 506 * Add it now. 507 */ 508 if (rq->fair_server.dl_server) 509 __dl_server_attach_root(&rq->fair_server, rq); 510 511 #ifdef CONFIG_SCHED_CLASS_EXT 512 if (rq->ext_server.dl_server) 513 __dl_server_attach_root(&rq->ext_server, rq); 514 #endif 515 516 rq_unlock_irqrestore(rq, &rf); 517 518 if (old_rd) 519 call_rcu(&old_rd->rcu, free_rootdomain); 520 } 521 522 void sched_get_rd(struct root_domain *rd) 523 { 524 atomic_inc(&rd->refcount); 525 } 526 527 void sched_put_rd(struct root_domain *rd) 528 { 529 if (!atomic_dec_and_test(&rd->refcount)) 530 return; 531 532 call_rcu(&rd->rcu, free_rootdomain); 533 } 534 535 static int init_rootdomain(struct root_domain *rd) 536 { 537 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) 538 goto out; 539 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) 540 goto free_span; 541 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) 542 goto free_online; 543 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) 544 goto free_dlo_mask; 545 546 #ifdef HAVE_RT_PUSH_IPI 547 rd->rto_cpu = -1; 548 raw_spin_lock_init(&rd->rto_lock); 549 rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func); 550 #endif 551 552 rd->visit_cookie = 0; 553 init_dl_bw(&rd->dl_bw); 554 if (cpudl_init(&rd->cpudl) != 0) 555 goto free_rto_mask; 556 557 if (cpupri_init(&rd->cpupri) != 0) 558 goto free_cpudl; 559 return 0; 560 561 free_cpudl: 562 cpudl_cleanup(&rd->cpudl); 563 free_rto_mask: 564 free_cpumask_var(rd->rto_mask); 565 free_dlo_mask: 566 free_cpumask_var(rd->dlo_mask); 567 free_online: 568 free_cpumask_var(rd->online); 569 free_span: 570 free_cpumask_var(rd->span); 571 out: 572 return -ENOMEM; 573 } 574 575 /* 576 * By default the system creates a single root-domain with all CPUs as 577 * members (mimicking the global state we have today). 578 */ 579 struct root_domain def_root_domain; 580 581 void __init init_defrootdomain(void) 582 { 583 init_rootdomain(&def_root_domain); 584 585 atomic_set(&def_root_domain.refcount, 1); 586 } 587 588 static struct root_domain *alloc_rootdomain(void) 589 { 590 struct root_domain *rd; 591 592 rd = kzalloc(sizeof(*rd), GFP_KERNEL); 593 if (!rd) 594 return NULL; 595 596 if (init_rootdomain(rd) != 0) { 597 kfree(rd); 598 return NULL; 599 } 600 601 return rd; 602 } 603 604 static void free_sched_groups(struct sched_group *sg, int free_sgc) 605 { 606 struct sched_group *tmp, *first; 607 608 if (!sg) 609 return; 610 611 first = sg; 612 do { 613 tmp = sg->next; 614 615 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) 616 kfree(sg->sgc); 617 618 if (atomic_dec_and_test(&sg->ref)) 619 kfree(sg); 620 sg = tmp; 621 } while (sg != first); 622 } 623 624 static void destroy_sched_domain(struct sched_domain *sd) 625 { 626 /* 627 * A normal sched domain may have multiple group references, an 628 * overlapping domain, having private groups, only one. Iterate, 629 * dropping group/capacity references, freeing where none remain. 630 */ 631 free_sched_groups(sd->groups, 1); 632 633 if (sd->shared && atomic_dec_and_test(&sd->shared->ref)) 634 kfree(sd->shared); 635 kfree(sd); 636 } 637 638 static void destroy_sched_domains_rcu(struct rcu_head *rcu) 639 { 640 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); 641 642 while (sd) { 643 struct sched_domain *parent = sd->parent; 644 destroy_sched_domain(sd); 645 sd = parent; 646 } 647 } 648 649 static void destroy_sched_domains(struct sched_domain *sd) 650 { 651 if (sd) 652 call_rcu(&sd->rcu, destroy_sched_domains_rcu); 653 } 654 655 /* 656 * Keep a special pointer to the highest sched_domain that has SD_SHARE_LLC set 657 * (Last Level Cache Domain) for this allows us to avoid some pointer chasing 658 * select_idle_sibling(). 659 * 660 * Also keep a unique ID per domain (we use the first CPU number in the cpumask 661 * of the domain), this allows us to quickly tell if two CPUs are in the same 662 * cache domain, see cpus_share_cache(). 663 */ 664 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc); 665 DEFINE_PER_CPU(int, sd_llc_size); 666 DEFINE_PER_CPU(int, sd_llc_id); 667 DEFINE_PER_CPU(int, sd_share_id); 668 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 669 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa); 670 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 671 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 672 673 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity); 674 DEFINE_STATIC_KEY_FALSE(sched_cluster_active); 675 676 static void update_top_cache_domain(int cpu) 677 { 678 struct sched_domain_shared *sds = NULL; 679 struct sched_domain *sd; 680 int id = cpu; 681 int size = 1; 682 683 sd = highest_flag_domain(cpu, SD_SHARE_LLC); 684 if (sd) { 685 id = cpumask_first(sched_domain_span(sd)); 686 size = cpumask_weight(sched_domain_span(sd)); 687 sds = sd->shared; 688 } 689 690 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); 691 per_cpu(sd_llc_size, cpu) = size; 692 per_cpu(sd_llc_id, cpu) = id; 693 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds); 694 695 sd = lowest_flag_domain(cpu, SD_CLUSTER); 696 if (sd) 697 id = cpumask_first(sched_domain_span(sd)); 698 699 /* 700 * This assignment should be placed after the sd_llc_id as 701 * we want this id equals to cluster id on cluster machines 702 * but equals to LLC id on non-Cluster machines. 703 */ 704 per_cpu(sd_share_id, cpu) = id; 705 706 sd = lowest_flag_domain(cpu, SD_NUMA); 707 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); 708 709 sd = highest_flag_domain(cpu, SD_ASYM_PACKING); 710 rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd); 711 712 sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL); 713 rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd); 714 } 715 716 /* 717 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must 718 * hold the hotplug lock. 719 */ 720 static void 721 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) 722 { 723 struct rq *rq = cpu_rq(cpu); 724 struct sched_domain *tmp; 725 726 /* Remove the sched domains which do not contribute to scheduling. */ 727 for (tmp = sd; tmp; ) { 728 struct sched_domain *parent = tmp->parent; 729 if (!parent) 730 break; 731 732 if (sd_parent_degenerate(tmp, parent)) { 733 tmp->parent = parent->parent; 734 735 if (parent->parent) { 736 parent->parent->child = tmp; 737 parent->parent->groups->flags = tmp->flags; 738 } 739 740 /* 741 * Transfer SD_PREFER_SIBLING down in case of a 742 * degenerate parent; the spans match for this 743 * so the property transfers. 744 */ 745 if (parent->flags & SD_PREFER_SIBLING) 746 tmp->flags |= SD_PREFER_SIBLING; 747 destroy_sched_domain(parent); 748 } else 749 tmp = tmp->parent; 750 } 751 752 if (sd && sd_degenerate(sd)) { 753 tmp = sd; 754 sd = sd->parent; 755 destroy_sched_domain(tmp); 756 if (sd) { 757 struct sched_group *sg = sd->groups; 758 759 /* 760 * sched groups hold the flags of the child sched 761 * domain for convenience. Clear such flags since 762 * the child is being destroyed. 763 */ 764 do { 765 sg->flags = 0; 766 } while (sg != sd->groups); 767 768 sd->child = NULL; 769 } 770 } 771 772 sched_domain_debug(sd, cpu); 773 774 rq_attach_root(rq, rd); 775 tmp = rq->sd; 776 rcu_assign_pointer(rq->sd, sd); 777 dirty_sched_domain_sysctl(cpu); 778 destroy_sched_domains(tmp); 779 780 update_top_cache_domain(cpu); 781 } 782 783 struct s_data { 784 struct sched_domain * __percpu *sd; 785 struct root_domain *rd; 786 }; 787 788 enum s_alloc { 789 sa_rootdomain, 790 sa_sd, 791 sa_sd_storage, 792 sa_none, 793 }; 794 795 /* 796 * Return the canonical balance CPU for this group, this is the first CPU 797 * of this group that's also in the balance mask. 798 * 799 * The balance mask are all those CPUs that could actually end up at this 800 * group. See build_balance_mask(). 801 * 802 * Also see should_we_balance(). 803 */ 804 int group_balance_cpu(struct sched_group *sg) 805 { 806 return cpumask_first(group_balance_mask(sg)); 807 } 808 809 810 /* 811 * NUMA topology (first read the regular topology blurb below) 812 * 813 * Given a node-distance table, for example: 814 * 815 * node 0 1 2 3 816 * 0: 10 20 30 20 817 * 1: 20 10 20 30 818 * 2: 30 20 10 20 819 * 3: 20 30 20 10 820 * 821 * which represents a 4 node ring topology like: 822 * 823 * 0 ----- 1 824 * | | 825 * | | 826 * | | 827 * 3 ----- 2 828 * 829 * We want to construct domains and groups to represent this. The way we go 830 * about doing this is to build the domains on 'hops'. For each NUMA level we 831 * construct the mask of all nodes reachable in @level hops. 832 * 833 * For the above NUMA topology that gives 3 levels: 834 * 835 * NUMA-2 0-3 0-3 0-3 0-3 836 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2} 837 * 838 * NUMA-1 0-1,3 0-2 1-3 0,2-3 839 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3} 840 * 841 * NUMA-0 0 1 2 3 842 * 843 * 844 * As can be seen; things don't nicely line up as with the regular topology. 845 * When we iterate a domain in child domain chunks some nodes can be 846 * represented multiple times -- hence the "overlap" naming for this part of 847 * the topology. 848 * 849 * In order to minimize this overlap, we only build enough groups to cover the 850 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3. 851 * 852 * Because: 853 * 854 * - the first group of each domain is its child domain; this 855 * gets us the first 0-1,3 856 * - the only uncovered node is 2, who's child domain is 1-3. 857 * 858 * However, because of the overlap, computing a unique CPU for each group is 859 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both 860 * groups include the CPUs of Node-0, while those CPUs would not in fact ever 861 * end up at those groups (they would end up in group: 0-1,3). 862 * 863 * To correct this we have to introduce the group balance mask. This mask 864 * will contain those CPUs in the group that can reach this group given the 865 * (child) domain tree. 866 * 867 * With this we can once again compute balance_cpu and sched_group_capacity 868 * relations. 869 * 870 * XXX include words on how balance_cpu is unique and therefore can be 871 * used for sched_group_capacity links. 872 * 873 * 874 * Another 'interesting' topology is: 875 * 876 * node 0 1 2 3 877 * 0: 10 20 20 30 878 * 1: 20 10 20 20 879 * 2: 20 20 10 20 880 * 3: 30 20 20 10 881 * 882 * Which looks a little like: 883 * 884 * 0 ----- 1 885 * | / | 886 * | / | 887 * | / | 888 * 2 ----- 3 889 * 890 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3 891 * are not. 892 * 893 * This leads to a few particularly weird cases where the sched_domain's are 894 * not of the same number for each CPU. Consider: 895 * 896 * NUMA-2 0-3 0-3 897 * groups: {0-2},{1-3} {1-3},{0-2} 898 * 899 * NUMA-1 0-2 0-3 0-3 1-3 900 * 901 * NUMA-0 0 1 2 3 902 * 903 */ 904 905 906 /* 907 * Build the balance mask; it contains only those CPUs that can arrive at this 908 * group and should be considered to continue balancing. 909 * 910 * We do this during the group creation pass, therefore the group information 911 * isn't complete yet, however since each group represents a (child) domain we 912 * can fully construct this using the sched_domain bits (which are already 913 * complete). 914 */ 915 static void 916 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask) 917 { 918 const struct cpumask *sg_span = sched_group_span(sg); 919 struct sd_data *sdd = sd->private; 920 struct sched_domain *sibling; 921 int i; 922 923 cpumask_clear(mask); 924 925 for_each_cpu(i, sg_span) { 926 sibling = *per_cpu_ptr(sdd->sd, i); 927 928 /* 929 * Can happen in the asymmetric case, where these siblings are 930 * unused. The mask will not be empty because those CPUs that 931 * do have the top domain _should_ span the domain. 932 */ 933 if (!sibling->child) 934 continue; 935 936 /* If we would not end up here, we can't continue from here */ 937 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child))) 938 continue; 939 940 cpumask_set_cpu(i, mask); 941 } 942 943 /* We must not have empty masks here */ 944 WARN_ON_ONCE(cpumask_empty(mask)); 945 } 946 947 /* 948 * XXX: This creates per-node group entries; since the load-balancer will 949 * immediately access remote memory to construct this group's load-balance 950 * statistics having the groups node local is of dubious benefit. 951 */ 952 static struct sched_group * 953 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu) 954 { 955 struct sched_group *sg; 956 struct cpumask *sg_span; 957 958 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 959 GFP_KERNEL, cpu_to_node(cpu)); 960 961 if (!sg) 962 return NULL; 963 964 sg_span = sched_group_span(sg); 965 if (sd->child) { 966 cpumask_copy(sg_span, sched_domain_span(sd->child)); 967 sg->flags = sd->child->flags; 968 } else { 969 cpumask_copy(sg_span, sched_domain_span(sd)); 970 } 971 972 atomic_inc(&sg->ref); 973 return sg; 974 } 975 976 static void init_overlap_sched_group(struct sched_domain *sd, 977 struct sched_group *sg) 978 { 979 struct cpumask *mask = sched_domains_tmpmask2; 980 struct sd_data *sdd = sd->private; 981 struct cpumask *sg_span; 982 int cpu; 983 984 build_balance_mask(sd, sg, mask); 985 cpu = cpumask_first(mask); 986 987 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 988 if (atomic_inc_return(&sg->sgc->ref) == 1) 989 cpumask_copy(group_balance_mask(sg), mask); 990 else 991 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask)); 992 993 /* 994 * Initialize sgc->capacity such that even if we mess up the 995 * domains and no possible iteration will get us here, we won't 996 * die on a /0 trap. 997 */ 998 sg_span = sched_group_span(sg); 999 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); 1000 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 1001 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 1002 } 1003 1004 static struct sched_domain * 1005 find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling) 1006 { 1007 /* 1008 * The proper descendant would be the one whose child won't span out 1009 * of sd 1010 */ 1011 while (sibling->child && 1012 !cpumask_subset(sched_domain_span(sibling->child), 1013 sched_domain_span(sd))) 1014 sibling = sibling->child; 1015 1016 /* 1017 * As we are referencing sgc across different topology level, we need 1018 * to go down to skip those sched_domains which don't contribute to 1019 * scheduling because they will be degenerated in cpu_attach_domain 1020 */ 1021 while (sibling->child && 1022 cpumask_equal(sched_domain_span(sibling->child), 1023 sched_domain_span(sibling))) 1024 sibling = sibling->child; 1025 1026 return sibling; 1027 } 1028 1029 static int 1030 build_overlap_sched_groups(struct sched_domain *sd, int cpu) 1031 { 1032 struct sched_group *first = NULL, *last = NULL, *sg; 1033 const struct cpumask *span = sched_domain_span(sd); 1034 struct cpumask *covered = sched_domains_tmpmask; 1035 struct sd_data *sdd = sd->private; 1036 struct sched_domain *sibling; 1037 int i; 1038 1039 cpumask_clear(covered); 1040 1041 for_each_cpu_wrap(i, span, cpu) { 1042 struct cpumask *sg_span; 1043 1044 if (cpumask_test_cpu(i, covered)) 1045 continue; 1046 1047 sibling = *per_cpu_ptr(sdd->sd, i); 1048 1049 /* 1050 * Asymmetric node setups can result in situations where the 1051 * domain tree is of unequal depth, make sure to skip domains 1052 * that already cover the entire range. 1053 * 1054 * In that case build_sched_domains() will have terminated the 1055 * iteration early and our sibling sd spans will be empty. 1056 * Domains should always include the CPU they're built on, so 1057 * check that. 1058 */ 1059 if (!cpumask_test_cpu(i, sched_domain_span(sibling))) 1060 continue; 1061 1062 /* 1063 * Usually we build sched_group by sibling's child sched_domain 1064 * But for machines whose NUMA diameter are 3 or above, we move 1065 * to build sched_group by sibling's proper descendant's child 1066 * domain because sibling's child sched_domain will span out of 1067 * the sched_domain being built as below. 1068 * 1069 * Smallest diameter=3 topology is: 1070 * 1071 * node 0 1 2 3 1072 * 0: 10 20 30 40 1073 * 1: 20 10 20 30 1074 * 2: 30 20 10 20 1075 * 3: 40 30 20 10 1076 * 1077 * 0 --- 1 --- 2 --- 3 1078 * 1079 * NUMA-3 0-3 N/A N/A 0-3 1080 * groups: {0-2},{1-3} {1-3},{0-2} 1081 * 1082 * NUMA-2 0-2 0-3 0-3 1-3 1083 * groups: {0-1},{1-3} {0-2},{2-3} {1-3},{0-1} {2-3},{0-2} 1084 * 1085 * NUMA-1 0-1 0-2 1-3 2-3 1086 * groups: {0},{1} {1},{2},{0} {2},{3},{1} {3},{2} 1087 * 1088 * NUMA-0 0 1 2 3 1089 * 1090 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the 1091 * group span isn't a subset of the domain span. 1092 */ 1093 if (sibling->child && 1094 !cpumask_subset(sched_domain_span(sibling->child), span)) 1095 sibling = find_descended_sibling(sd, sibling); 1096 1097 sg = build_group_from_child_sched_domain(sibling, cpu); 1098 if (!sg) 1099 goto fail; 1100 1101 sg_span = sched_group_span(sg); 1102 cpumask_or(covered, covered, sg_span); 1103 1104 init_overlap_sched_group(sibling, sg); 1105 1106 if (!first) 1107 first = sg; 1108 if (last) 1109 last->next = sg; 1110 last = sg; 1111 last->next = first; 1112 } 1113 sd->groups = first; 1114 1115 return 0; 1116 1117 fail: 1118 free_sched_groups(first, 0); 1119 1120 return -ENOMEM; 1121 } 1122 1123 1124 /* 1125 * Package topology (also see the load-balance blurb in fair.c) 1126 * 1127 * The scheduler builds a tree structure to represent a number of important 1128 * topology features. By default (default_topology[]) these include: 1129 * 1130 * - Simultaneous multithreading (SMT) 1131 * - Multi-Core Cache (MC) 1132 * - Package (PKG) 1133 * 1134 * Where the last one more or less denotes everything up to a NUMA node. 1135 * 1136 * The tree consists of 3 primary data structures: 1137 * 1138 * sched_domain -> sched_group -> sched_group_capacity 1139 * ^ ^ ^ ^ 1140 * `-' `-' 1141 * 1142 * The sched_domains are per-CPU and have a two way link (parent & child) and 1143 * denote the ever growing mask of CPUs belonging to that level of topology. 1144 * 1145 * Each sched_domain has a circular (double) linked list of sched_group's, each 1146 * denoting the domains of the level below (or individual CPUs in case of the 1147 * first domain level). The sched_group linked by a sched_domain includes the 1148 * CPU of that sched_domain [*]. 1149 * 1150 * Take for instance a 2 threaded, 2 core, 2 cache cluster part: 1151 * 1152 * CPU 0 1 2 3 4 5 6 7 1153 * 1154 * PKG [ ] 1155 * MC [ ] [ ] 1156 * SMT [ ] [ ] [ ] [ ] 1157 * 1158 * - or - 1159 * 1160 * PKG 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7 1161 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7 1162 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7 1163 * 1164 * CPU 0 1 2 3 4 5 6 7 1165 * 1166 * One way to think about it is: sched_domain moves you up and down among these 1167 * topology levels, while sched_group moves you sideways through it, at child 1168 * domain granularity. 1169 * 1170 * sched_group_capacity ensures each unique sched_group has shared storage. 1171 * 1172 * There are two related construction problems, both require a CPU that 1173 * uniquely identify each group (for a given domain): 1174 * 1175 * - The first is the balance_cpu (see should_we_balance() and the 1176 * load-balance blurb in fair.c); for each group we only want 1 CPU to 1177 * continue balancing at a higher domain. 1178 * 1179 * - The second is the sched_group_capacity; we want all identical groups 1180 * to share a single sched_group_capacity. 1181 * 1182 * Since these topologies are exclusive by construction. That is, its 1183 * impossible for an SMT thread to belong to multiple cores, and cores to 1184 * be part of multiple caches. There is a very clear and unique location 1185 * for each CPU in the hierarchy. 1186 * 1187 * Therefore computing a unique CPU for each group is trivial (the iteration 1188 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_ 1189 * group), we can simply pick the first CPU in each group. 1190 * 1191 * 1192 * [*] in other words, the first group of each domain is its child domain. 1193 */ 1194 1195 static struct sched_group *get_group(int cpu, struct sd_data *sdd) 1196 { 1197 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1198 struct sched_domain *child = sd->child; 1199 struct sched_group *sg; 1200 bool already_visited; 1201 1202 if (child) 1203 cpu = cpumask_first(sched_domain_span(child)); 1204 1205 sg = *per_cpu_ptr(sdd->sg, cpu); 1206 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu); 1207 1208 /* Increase refcounts for claim_allocations: */ 1209 already_visited = atomic_inc_return(&sg->ref) > 1; 1210 /* sgc visits should follow a similar trend as sg */ 1211 WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1)); 1212 1213 /* If we have already visited that group, it's already initialized. */ 1214 if (already_visited) 1215 return sg; 1216 1217 if (child) { 1218 cpumask_copy(sched_group_span(sg), sched_domain_span(child)); 1219 cpumask_copy(group_balance_mask(sg), sched_group_span(sg)); 1220 sg->flags = child->flags; 1221 } else { 1222 cpumask_set_cpu(cpu, sched_group_span(sg)); 1223 cpumask_set_cpu(cpu, group_balance_mask(sg)); 1224 } 1225 1226 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg)); 1227 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; 1228 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE; 1229 1230 return sg; 1231 } 1232 1233 /* 1234 * build_sched_groups will build a circular linked list of the groups 1235 * covered by the given span, will set each group's ->cpumask correctly, 1236 * and will initialize their ->sgc. 1237 * 1238 * Assumes the sched_domain tree is fully constructed 1239 */ 1240 static int 1241 build_sched_groups(struct sched_domain *sd, int cpu) 1242 { 1243 struct sched_group *first = NULL, *last = NULL; 1244 struct sd_data *sdd = sd->private; 1245 const struct cpumask *span = sched_domain_span(sd); 1246 struct cpumask *covered; 1247 int i; 1248 1249 lockdep_assert_held(&sched_domains_mutex); 1250 covered = sched_domains_tmpmask; 1251 1252 cpumask_clear(covered); 1253 1254 for_each_cpu_wrap(i, span, cpu) { 1255 struct sched_group *sg; 1256 1257 if (cpumask_test_cpu(i, covered)) 1258 continue; 1259 1260 sg = get_group(i, sdd); 1261 1262 cpumask_or(covered, covered, sched_group_span(sg)); 1263 1264 if (!first) 1265 first = sg; 1266 if (last) 1267 last->next = sg; 1268 last = sg; 1269 } 1270 last->next = first; 1271 sd->groups = first; 1272 1273 return 0; 1274 } 1275 1276 /* 1277 * Initialize sched groups cpu_capacity. 1278 * 1279 * cpu_capacity indicates the capacity of sched group, which is used while 1280 * distributing the load between different sched groups in a sched domain. 1281 * Typically cpu_capacity for all the groups in a sched domain will be same 1282 * unless there are asymmetries in the topology. If there are asymmetries, 1283 * group having more cpu_capacity will pickup more load compared to the 1284 * group having less cpu_capacity. 1285 */ 1286 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) 1287 { 1288 struct sched_group *sg = sd->groups; 1289 struct cpumask *mask = sched_domains_tmpmask2; 1290 1291 WARN_ON(!sg); 1292 1293 do { 1294 int cpu, cores = 0, max_cpu = -1; 1295 1296 sg->group_weight = cpumask_weight(sched_group_span(sg)); 1297 1298 cpumask_copy(mask, sched_group_span(sg)); 1299 for_each_cpu(cpu, mask) { 1300 cores++; 1301 #ifdef CONFIG_SCHED_SMT 1302 cpumask_andnot(mask, mask, cpu_smt_mask(cpu)); 1303 #endif 1304 } 1305 sg->cores = cores; 1306 1307 if (!(sd->flags & SD_ASYM_PACKING)) 1308 goto next; 1309 1310 for_each_cpu(cpu, sched_group_span(sg)) { 1311 if (max_cpu < 0) 1312 max_cpu = cpu; 1313 else if (sched_asym_prefer(cpu, max_cpu)) 1314 max_cpu = cpu; 1315 } 1316 sg->asym_prefer_cpu = max_cpu; 1317 1318 next: 1319 sg = sg->next; 1320 } while (sg != sd->groups); 1321 1322 if (cpu != group_balance_cpu(sg)) 1323 return; 1324 1325 update_group_capacity(sd, cpu); 1326 } 1327 1328 /* Update the "asym_prefer_cpu" when arch_asym_cpu_priority() changes. */ 1329 void sched_update_asym_prefer_cpu(int cpu, int old_prio, int new_prio) 1330 { 1331 int asym_prefer_cpu = cpu; 1332 struct sched_domain *sd; 1333 1334 guard(rcu)(); 1335 1336 for_each_domain(cpu, sd) { 1337 struct sched_group *sg; 1338 int group_cpu; 1339 1340 if (!(sd->flags & SD_ASYM_PACKING)) 1341 continue; 1342 1343 /* 1344 * Groups of overlapping domain are replicated per NUMA 1345 * node and will require updating "asym_prefer_cpu" on 1346 * each local copy. 1347 * 1348 * If you are hitting this warning, consider moving 1349 * "sg->asym_prefer_cpu" to "sg->sgc->asym_prefer_cpu" 1350 * which is shared by all the overlapping groups. 1351 */ 1352 WARN_ON_ONCE(sd->flags & SD_NUMA); 1353 1354 sg = sd->groups; 1355 if (cpu != sg->asym_prefer_cpu) { 1356 /* 1357 * Since the parent is a superset of the current group, 1358 * if the cpu is not the "asym_prefer_cpu" at the 1359 * current level, it cannot be the preferred CPU at a 1360 * higher levels either. 1361 */ 1362 if (!sched_asym_prefer(cpu, sg->asym_prefer_cpu)) 1363 return; 1364 1365 WRITE_ONCE(sg->asym_prefer_cpu, cpu); 1366 continue; 1367 } 1368 1369 /* Ranking has improved; CPU is still the preferred one. */ 1370 if (new_prio >= old_prio) 1371 continue; 1372 1373 for_each_cpu(group_cpu, sched_group_span(sg)) { 1374 if (sched_asym_prefer(group_cpu, asym_prefer_cpu)) 1375 asym_prefer_cpu = group_cpu; 1376 } 1377 1378 WRITE_ONCE(sg->asym_prefer_cpu, asym_prefer_cpu); 1379 } 1380 } 1381 1382 /* 1383 * Set of available CPUs grouped by their corresponding capacities 1384 * Each list entry contains a CPU mask reflecting CPUs that share the same 1385 * capacity. 1386 * The lifespan of data is unlimited. 1387 */ 1388 LIST_HEAD(asym_cap_list); 1389 1390 /* 1391 * Verify whether there is any CPU capacity asymmetry in a given sched domain. 1392 * Provides sd_flags reflecting the asymmetry scope. 1393 */ 1394 static inline int 1395 asym_cpu_capacity_classify(const struct cpumask *sd_span, 1396 const struct cpumask *cpu_map) 1397 { 1398 struct asym_cap_data *entry; 1399 int count = 0, miss = 0; 1400 1401 /* 1402 * Count how many unique CPU capacities this domain spans across 1403 * (compare sched_domain CPUs mask with ones representing available 1404 * CPUs capacities). Take into account CPUs that might be offline: 1405 * skip those. 1406 */ 1407 list_for_each_entry(entry, &asym_cap_list, link) { 1408 if (cpumask_intersects(sd_span, cpu_capacity_span(entry))) 1409 ++count; 1410 else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry))) 1411 ++miss; 1412 } 1413 1414 WARN_ON_ONCE(!count && !list_empty(&asym_cap_list)); 1415 1416 /* No asymmetry detected */ 1417 if (count < 2) 1418 return 0; 1419 /* Some of the available CPU capacity values have not been detected */ 1420 if (miss) 1421 return SD_ASYM_CPUCAPACITY; 1422 1423 /* Full asymmetry */ 1424 return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL; 1425 1426 } 1427 1428 static void free_asym_cap_entry(struct rcu_head *head) 1429 { 1430 struct asym_cap_data *entry = container_of(head, struct asym_cap_data, rcu); 1431 kfree(entry); 1432 } 1433 1434 static inline void asym_cpu_capacity_update_data(int cpu) 1435 { 1436 unsigned long capacity = arch_scale_cpu_capacity(cpu); 1437 struct asym_cap_data *insert_entry = NULL; 1438 struct asym_cap_data *entry; 1439 1440 /* 1441 * Search if capacity already exits. If not, track which the entry 1442 * where we should insert to keep the list ordered descending. 1443 */ 1444 list_for_each_entry(entry, &asym_cap_list, link) { 1445 if (capacity == entry->capacity) 1446 goto done; 1447 else if (!insert_entry && capacity > entry->capacity) 1448 insert_entry = list_prev_entry(entry, link); 1449 } 1450 1451 entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL); 1452 if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n")) 1453 return; 1454 entry->capacity = capacity; 1455 1456 /* If NULL then the new capacity is the smallest, add last. */ 1457 if (!insert_entry) 1458 list_add_tail_rcu(&entry->link, &asym_cap_list); 1459 else 1460 list_add_rcu(&entry->link, &insert_entry->link); 1461 done: 1462 __cpumask_set_cpu(cpu, cpu_capacity_span(entry)); 1463 } 1464 1465 /* 1466 * Build-up/update list of CPUs grouped by their capacities 1467 * An update requires explicit request to rebuild sched domains 1468 * with state indicating CPU topology changes. 1469 */ 1470 static void asym_cpu_capacity_scan(void) 1471 { 1472 struct asym_cap_data *entry, *next; 1473 int cpu; 1474 1475 list_for_each_entry(entry, &asym_cap_list, link) 1476 cpumask_clear(cpu_capacity_span(entry)); 1477 1478 for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) 1479 asym_cpu_capacity_update_data(cpu); 1480 1481 list_for_each_entry_safe(entry, next, &asym_cap_list, link) { 1482 if (cpumask_empty(cpu_capacity_span(entry))) { 1483 list_del_rcu(&entry->link); 1484 call_rcu(&entry->rcu, free_asym_cap_entry); 1485 } 1486 } 1487 1488 /* 1489 * Only one capacity value has been detected i.e. this system is symmetric. 1490 * No need to keep this data around. 1491 */ 1492 if (list_is_singular(&asym_cap_list)) { 1493 entry = list_first_entry(&asym_cap_list, typeof(*entry), link); 1494 list_del_rcu(&entry->link); 1495 call_rcu(&entry->rcu, free_asym_cap_entry); 1496 } 1497 } 1498 1499 /* 1500 * Initializers for schedule domains 1501 * Non-inlined to reduce accumulated stack pressure in build_sched_domains() 1502 */ 1503 1504 static int default_relax_domain_level = -1; 1505 int sched_domain_level_max; 1506 1507 static int __init setup_relax_domain_level(char *str) 1508 { 1509 if (kstrtoint(str, 0, &default_relax_domain_level)) 1510 pr_warn("Unable to set relax_domain_level\n"); 1511 1512 return 1; 1513 } 1514 __setup("relax_domain_level=", setup_relax_domain_level); 1515 1516 static void set_domain_attribute(struct sched_domain *sd, 1517 struct sched_domain_attr *attr) 1518 { 1519 int request; 1520 1521 if (!attr || attr->relax_domain_level < 0) { 1522 if (default_relax_domain_level < 0) 1523 return; 1524 request = default_relax_domain_level; 1525 } else 1526 request = attr->relax_domain_level; 1527 1528 if (sd->level >= request) { 1529 /* Turn off idle balance on this domain: */ 1530 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); 1531 } 1532 } 1533 1534 static void __sdt_free(const struct cpumask *cpu_map); 1535 static int __sdt_alloc(const struct cpumask *cpu_map); 1536 1537 static void __free_domain_allocs(struct s_data *d, enum s_alloc what, 1538 const struct cpumask *cpu_map) 1539 { 1540 switch (what) { 1541 case sa_rootdomain: 1542 if (!atomic_read(&d->rd->refcount)) 1543 free_rootdomain(&d->rd->rcu); 1544 fallthrough; 1545 case sa_sd: 1546 free_percpu(d->sd); 1547 fallthrough; 1548 case sa_sd_storage: 1549 __sdt_free(cpu_map); 1550 fallthrough; 1551 case sa_none: 1552 break; 1553 } 1554 } 1555 1556 static enum s_alloc 1557 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map) 1558 { 1559 memset(d, 0, sizeof(*d)); 1560 1561 if (__sdt_alloc(cpu_map)) 1562 return sa_sd_storage; 1563 d->sd = alloc_percpu(struct sched_domain *); 1564 if (!d->sd) 1565 return sa_sd_storage; 1566 d->rd = alloc_rootdomain(); 1567 if (!d->rd) 1568 return sa_sd; 1569 1570 return sa_rootdomain; 1571 } 1572 1573 /* 1574 * NULL the sd_data elements we've used to build the sched_domain and 1575 * sched_group structure so that the subsequent __free_domain_allocs() 1576 * will not free the data we're using. 1577 */ 1578 static void claim_allocations(int cpu, struct sched_domain *sd) 1579 { 1580 struct sd_data *sdd = sd->private; 1581 1582 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); 1583 *per_cpu_ptr(sdd->sd, cpu) = NULL; 1584 1585 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref)) 1586 *per_cpu_ptr(sdd->sds, cpu) = NULL; 1587 1588 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) 1589 *per_cpu_ptr(sdd->sg, cpu) = NULL; 1590 1591 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) 1592 *per_cpu_ptr(sdd->sgc, cpu) = NULL; 1593 } 1594 1595 #ifdef CONFIG_NUMA 1596 enum numa_topology_type sched_numa_topology_type; 1597 1598 /* 1599 * sched_domains_numa_distance is derived from sched_numa_node_distance 1600 * and provides a simplified view of NUMA distances used specifically 1601 * for building NUMA scheduling domains. 1602 */ 1603 static int sched_domains_numa_levels; 1604 static int sched_numa_node_levels; 1605 1606 int sched_max_numa_distance; 1607 static int *sched_domains_numa_distance; 1608 static int *sched_numa_node_distance; 1609 static struct cpumask ***sched_domains_numa_masks; 1610 #endif /* CONFIG_NUMA */ 1611 1612 /* 1613 * SD_flags allowed in topology descriptions. 1614 * 1615 * These flags are purely descriptive of the topology and do not prescribe 1616 * behaviour. Behaviour is artificial and mapped in the below sd_init() 1617 * function. For details, see include/linux/sched/sd_flags.h. 1618 * 1619 * SD_SHARE_CPUCAPACITY 1620 * SD_SHARE_LLC 1621 * SD_CLUSTER 1622 * SD_NUMA 1623 * 1624 * Odd one out, which beside describing the topology has a quirk also 1625 * prescribes the desired behaviour that goes along with it: 1626 * 1627 * SD_ASYM_PACKING - describes SMT quirks 1628 */ 1629 #define TOPOLOGY_SD_FLAGS \ 1630 (SD_SHARE_CPUCAPACITY | \ 1631 SD_CLUSTER | \ 1632 SD_SHARE_LLC | \ 1633 SD_NUMA | \ 1634 SD_ASYM_PACKING) 1635 1636 static struct sched_domain * 1637 sd_init(struct sched_domain_topology_level *tl, 1638 const struct cpumask *cpu_map, 1639 struct sched_domain *child, int cpu) 1640 { 1641 struct sd_data *sdd = &tl->data; 1642 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); 1643 int sd_id, sd_weight, sd_flags = 0; 1644 struct cpumask *sd_span; 1645 1646 sd_weight = cpumask_weight(tl->mask(tl, cpu)); 1647 1648 if (tl->sd_flags) 1649 sd_flags = (*tl->sd_flags)(); 1650 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, 1651 "wrong sd_flags in topology description\n")) 1652 sd_flags &= TOPOLOGY_SD_FLAGS; 1653 1654 *sd = (struct sched_domain){ 1655 .min_interval = sd_weight, 1656 .max_interval = 2*sd_weight, 1657 .busy_factor = 16, 1658 .imbalance_pct = 117, 1659 1660 .cache_nice_tries = 0, 1661 1662 .flags = 1*SD_BALANCE_NEWIDLE 1663 | 1*SD_BALANCE_EXEC 1664 | 1*SD_BALANCE_FORK 1665 | 0*SD_BALANCE_WAKE 1666 | 1*SD_WAKE_AFFINE 1667 | 0*SD_SHARE_CPUCAPACITY 1668 | 0*SD_SHARE_LLC 1669 | 0*SD_SERIALIZE 1670 | 1*SD_PREFER_SIBLING 1671 | 0*SD_NUMA 1672 | sd_flags 1673 , 1674 1675 .last_balance = jiffies, 1676 .balance_interval = sd_weight, 1677 1678 /* 50% success rate */ 1679 .newidle_call = 512, 1680 .newidle_success = 256, 1681 .newidle_ratio = 512, 1682 1683 .max_newidle_lb_cost = 0, 1684 .last_decay_max_lb_cost = jiffies, 1685 .child = child, 1686 .name = tl->name, 1687 }; 1688 1689 sd_span = sched_domain_span(sd); 1690 cpumask_and(sd_span, cpu_map, tl->mask(tl, cpu)); 1691 sd_id = cpumask_first(sd_span); 1692 1693 sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map); 1694 1695 WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) == 1696 (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY), 1697 "CPU capacity asymmetry not supported on SMT\n"); 1698 1699 /* 1700 * Convert topological properties into behaviour. 1701 */ 1702 /* Don't attempt to spread across CPUs of different capacities. */ 1703 if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child) 1704 sd->child->flags &= ~SD_PREFER_SIBLING; 1705 1706 if (sd->flags & SD_SHARE_CPUCAPACITY) { 1707 sd->imbalance_pct = 110; 1708 1709 } else if (sd->flags & SD_SHARE_LLC) { 1710 sd->imbalance_pct = 117; 1711 sd->cache_nice_tries = 1; 1712 1713 #ifdef CONFIG_NUMA 1714 } else if (sd->flags & SD_NUMA) { 1715 sd->cache_nice_tries = 2; 1716 1717 sd->flags &= ~SD_PREFER_SIBLING; 1718 sd->flags |= SD_SERIALIZE; 1719 if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) { 1720 sd->flags &= ~(SD_BALANCE_EXEC | 1721 SD_BALANCE_FORK | 1722 SD_WAKE_AFFINE); 1723 } 1724 1725 #endif /* CONFIG_NUMA */ 1726 } else { 1727 sd->cache_nice_tries = 1; 1728 } 1729 1730 /* 1731 * For all levels sharing cache; connect a sched_domain_shared 1732 * instance. 1733 */ 1734 if (sd->flags & SD_SHARE_LLC) { 1735 sd->shared = *per_cpu_ptr(sdd->sds, sd_id); 1736 atomic_inc(&sd->shared->ref); 1737 atomic_set(&sd->shared->nr_busy_cpus, sd_weight); 1738 } 1739 1740 sd->private = sdd; 1741 1742 return sd; 1743 } 1744 1745 #ifdef CONFIG_SCHED_SMT 1746 int cpu_smt_flags(void) 1747 { 1748 return SD_SHARE_CPUCAPACITY | SD_SHARE_LLC; 1749 } 1750 1751 const struct cpumask *tl_smt_mask(struct sched_domain_topology_level *tl, int cpu) 1752 { 1753 return cpu_smt_mask(cpu); 1754 } 1755 #endif 1756 1757 #ifdef CONFIG_SCHED_CLUSTER 1758 int cpu_cluster_flags(void) 1759 { 1760 return SD_CLUSTER | SD_SHARE_LLC; 1761 } 1762 1763 const struct cpumask *tl_cls_mask(struct sched_domain_topology_level *tl, int cpu) 1764 { 1765 return cpu_clustergroup_mask(cpu); 1766 } 1767 #endif 1768 1769 #ifdef CONFIG_SCHED_MC 1770 int cpu_core_flags(void) 1771 { 1772 return SD_SHARE_LLC; 1773 } 1774 1775 const struct cpumask *tl_mc_mask(struct sched_domain_topology_level *tl, int cpu) 1776 { 1777 return cpu_coregroup_mask(cpu); 1778 } 1779 #endif 1780 1781 const struct cpumask *tl_pkg_mask(struct sched_domain_topology_level *tl, int cpu) 1782 { 1783 return cpu_node_mask(cpu); 1784 } 1785 1786 /* 1787 * Topology list, bottom-up. 1788 */ 1789 static struct sched_domain_topology_level default_topology[] = { 1790 #ifdef CONFIG_SCHED_SMT 1791 SDTL_INIT(tl_smt_mask, cpu_smt_flags, SMT), 1792 #endif 1793 1794 #ifdef CONFIG_SCHED_CLUSTER 1795 SDTL_INIT(tl_cls_mask, cpu_cluster_flags, CLS), 1796 #endif 1797 1798 #ifdef CONFIG_SCHED_MC 1799 SDTL_INIT(tl_mc_mask, cpu_core_flags, MC), 1800 #endif 1801 SDTL_INIT(tl_pkg_mask, NULL, PKG), 1802 { NULL, }, 1803 }; 1804 1805 static struct sched_domain_topology_level *sched_domain_topology = 1806 default_topology; 1807 static struct sched_domain_topology_level *sched_domain_topology_saved; 1808 1809 #define for_each_sd_topology(tl) \ 1810 for (tl = sched_domain_topology; tl->mask; tl++) 1811 1812 void __init set_sched_topology(struct sched_domain_topology_level *tl) 1813 { 1814 if (WARN_ON_ONCE(sched_smp_initialized)) 1815 return; 1816 1817 sched_domain_topology = tl; 1818 sched_domain_topology_saved = NULL; 1819 } 1820 1821 #ifdef CONFIG_NUMA 1822 static int cpu_numa_flags(void) 1823 { 1824 return SD_NUMA; 1825 } 1826 1827 static const struct cpumask *sd_numa_mask(struct sched_domain_topology_level *tl, int cpu) 1828 { 1829 return sched_domains_numa_masks[tl->numa_level][cpu_to_node(cpu)]; 1830 } 1831 1832 static void sched_numa_warn(const char *str) 1833 { 1834 static int done = false; 1835 int i,j; 1836 1837 if (done) 1838 return; 1839 1840 done = true; 1841 1842 printk(KERN_WARNING "ERROR: %s\n\n", str); 1843 1844 for (i = 0; i < nr_node_ids; i++) { 1845 printk(KERN_WARNING " "); 1846 for (j = 0; j < nr_node_ids; j++) { 1847 if (!node_state(i, N_CPU) || !node_state(j, N_CPU)) 1848 printk(KERN_CONT "(%02d) ", node_distance(i,j)); 1849 else 1850 printk(KERN_CONT " %02d ", node_distance(i,j)); 1851 } 1852 printk(KERN_CONT "\n"); 1853 } 1854 printk(KERN_WARNING "\n"); 1855 } 1856 1857 bool find_numa_distance(int distance) 1858 { 1859 bool found = false; 1860 int i, *distances; 1861 1862 if (distance == node_distance(0, 0)) 1863 return true; 1864 1865 rcu_read_lock(); 1866 distances = rcu_dereference(sched_numa_node_distance); 1867 if (!distances) 1868 goto unlock; 1869 for (i = 0; i < sched_numa_node_levels; i++) { 1870 if (distances[i] == distance) { 1871 found = true; 1872 break; 1873 } 1874 } 1875 unlock: 1876 rcu_read_unlock(); 1877 1878 return found; 1879 } 1880 1881 #define for_each_cpu_node_but(n, nbut) \ 1882 for_each_node_state(n, N_CPU) \ 1883 if (n == nbut) \ 1884 continue; \ 1885 else 1886 1887 /* 1888 * A system can have three types of NUMA topology: 1889 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system 1890 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes 1891 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane 1892 * 1893 * The difference between a glueless mesh topology and a backplane 1894 * topology lies in whether communication between not directly 1895 * connected nodes goes through intermediary nodes (where programs 1896 * could run), or through backplane controllers. This affects 1897 * placement of programs. 1898 * 1899 * The type of topology can be discerned with the following tests: 1900 * - If the maximum distance between any nodes is 1 hop, the system 1901 * is directly connected. 1902 * - If for two nodes A and B, located N > 1 hops away from each other, 1903 * there is an intermediary node C, which is < N hops away from both 1904 * nodes A and B, the system is a glueless mesh. 1905 */ 1906 static void init_numa_topology_type(int offline_node) 1907 { 1908 int a, b, c, n; 1909 1910 n = sched_max_numa_distance; 1911 1912 if (sched_domains_numa_levels <= 2) { 1913 sched_numa_topology_type = NUMA_DIRECT; 1914 return; 1915 } 1916 1917 for_each_cpu_node_but(a, offline_node) { 1918 for_each_cpu_node_but(b, offline_node) { 1919 /* Find two nodes furthest removed from each other. */ 1920 if (node_distance(a, b) < n) 1921 continue; 1922 1923 /* Is there an intermediary node between a and b? */ 1924 for_each_cpu_node_but(c, offline_node) { 1925 if (node_distance(a, c) < n && 1926 node_distance(b, c) < n) { 1927 sched_numa_topology_type = 1928 NUMA_GLUELESS_MESH; 1929 return; 1930 } 1931 } 1932 1933 sched_numa_topology_type = NUMA_BACKPLANE; 1934 return; 1935 } 1936 } 1937 1938 pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n"); 1939 sched_numa_topology_type = NUMA_DIRECT; 1940 } 1941 1942 1943 #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS) 1944 1945 /* 1946 * An architecture could modify its NUMA distance, to change 1947 * grouping of NUMA nodes and number of NUMA levels when creating 1948 * NUMA level sched domains. 1949 * 1950 * A NUMA level is created for each unique 1951 * arch_sched_node_distance. 1952 */ 1953 static int numa_node_dist(int i, int j) 1954 { 1955 return node_distance(i, j); 1956 } 1957 1958 int arch_sched_node_distance(int from, int to) 1959 __weak __alias(numa_node_dist); 1960 1961 static bool modified_sched_node_distance(void) 1962 { 1963 return numa_node_dist != arch_sched_node_distance; 1964 } 1965 1966 static int sched_record_numa_dist(int offline_node, int (*n_dist)(int, int), 1967 int **dist, int *levels) 1968 { 1969 unsigned long *distance_map __free(bitmap) = NULL; 1970 int nr_levels = 0; 1971 int i, j; 1972 int *distances; 1973 1974 /* 1975 * O(nr_nodes^2) de-duplicating selection sort -- in order to find the 1976 * unique distances in the node_distance() table. 1977 */ 1978 distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL); 1979 if (!distance_map) 1980 return -ENOMEM; 1981 1982 bitmap_zero(distance_map, NR_DISTANCE_VALUES); 1983 for_each_cpu_node_but(i, offline_node) { 1984 for_each_cpu_node_but(j, offline_node) { 1985 int distance = n_dist(i, j); 1986 1987 if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) { 1988 sched_numa_warn("Invalid distance value range"); 1989 return -EINVAL; 1990 } 1991 1992 bitmap_set(distance_map, distance, 1); 1993 } 1994 } 1995 /* 1996 * We can now figure out how many unique distance values there are and 1997 * allocate memory accordingly. 1998 */ 1999 nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES); 2000 2001 distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL); 2002 if (!distances) 2003 return -ENOMEM; 2004 2005 for (i = 0, j = 0; i < nr_levels; i++, j++) { 2006 j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j); 2007 distances[i] = j; 2008 } 2009 *dist = distances; 2010 *levels = nr_levels; 2011 2012 return 0; 2013 } 2014 2015 void sched_init_numa(int offline_node) 2016 { 2017 struct sched_domain_topology_level *tl; 2018 int nr_levels, nr_node_levels; 2019 int i, j; 2020 int *distances, *domain_distances; 2021 struct cpumask ***masks; 2022 2023 /* Record the NUMA distances from SLIT table */ 2024 if (sched_record_numa_dist(offline_node, numa_node_dist, &distances, 2025 &nr_node_levels)) 2026 return; 2027 2028 /* Record modified NUMA distances for building sched domains */ 2029 if (modified_sched_node_distance()) { 2030 if (sched_record_numa_dist(offline_node, arch_sched_node_distance, 2031 &domain_distances, &nr_levels)) { 2032 kfree(distances); 2033 return; 2034 } 2035 } else { 2036 domain_distances = distances; 2037 nr_levels = nr_node_levels; 2038 } 2039 rcu_assign_pointer(sched_numa_node_distance, distances); 2040 WRITE_ONCE(sched_max_numa_distance, distances[nr_node_levels - 1]); 2041 WRITE_ONCE(sched_numa_node_levels, nr_node_levels); 2042 2043 /* 2044 * 'nr_levels' contains the number of unique distances 2045 * 2046 * The sched_domains_numa_distance[] array includes the actual distance 2047 * numbers. 2048 */ 2049 2050 /* 2051 * Here, we should temporarily reset sched_domains_numa_levels to 0. 2052 * If it fails to allocate memory for array sched_domains_numa_masks[][], 2053 * the array will contain less then 'nr_levels' members. This could be 2054 * dangerous when we use it to iterate array sched_domains_numa_masks[][] 2055 * in other functions. 2056 * 2057 * We reset it to 'nr_levels' at the end of this function. 2058 */ 2059 rcu_assign_pointer(sched_domains_numa_distance, domain_distances); 2060 2061 sched_domains_numa_levels = 0; 2062 2063 masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL); 2064 if (!masks) 2065 return; 2066 2067 /* 2068 * Now for each level, construct a mask per node which contains all 2069 * CPUs of nodes that are that many hops away from us. 2070 */ 2071 for (i = 0; i < nr_levels; i++) { 2072 masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); 2073 if (!masks[i]) 2074 return; 2075 2076 for_each_cpu_node_but(j, offline_node) { 2077 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); 2078 int k; 2079 2080 if (!mask) 2081 return; 2082 2083 masks[i][j] = mask; 2084 2085 for_each_cpu_node_but(k, offline_node) { 2086 if (sched_debug() && 2087 (arch_sched_node_distance(j, k) != 2088 arch_sched_node_distance(k, j))) 2089 sched_numa_warn("Node-distance not symmetric"); 2090 2091 if (arch_sched_node_distance(j, k) > 2092 sched_domains_numa_distance[i]) 2093 continue; 2094 2095 cpumask_or(mask, mask, cpumask_of_node(k)); 2096 } 2097 } 2098 } 2099 rcu_assign_pointer(sched_domains_numa_masks, masks); 2100 2101 /* Compute default topology size */ 2102 for (i = 0; sched_domain_topology[i].mask; i++); 2103 2104 tl = kzalloc((i + nr_levels + 1) * 2105 sizeof(struct sched_domain_topology_level), GFP_KERNEL); 2106 if (!tl) 2107 return; 2108 2109 /* 2110 * Copy the default topology bits.. 2111 */ 2112 for (i = 0; sched_domain_topology[i].mask; i++) 2113 tl[i] = sched_domain_topology[i]; 2114 2115 /* 2116 * Add the NUMA identity distance, aka single NODE. 2117 */ 2118 tl[i++] = SDTL_INIT(sd_numa_mask, NULL, NODE); 2119 2120 /* 2121 * .. and append 'j' levels of NUMA goodness. 2122 */ 2123 for (j = 1; j < nr_levels; i++, j++) { 2124 tl[i] = SDTL_INIT(sd_numa_mask, cpu_numa_flags, NUMA); 2125 tl[i].numa_level = j; 2126 } 2127 2128 sched_domain_topology_saved = sched_domain_topology; 2129 sched_domain_topology = tl; 2130 2131 sched_domains_numa_levels = nr_levels; 2132 2133 init_numa_topology_type(offline_node); 2134 } 2135 2136 2137 static void sched_reset_numa(void) 2138 { 2139 int nr_levels, *distances, *dom_distances = NULL; 2140 struct cpumask ***masks; 2141 2142 nr_levels = sched_domains_numa_levels; 2143 sched_numa_node_levels = 0; 2144 sched_domains_numa_levels = 0; 2145 sched_max_numa_distance = 0; 2146 sched_numa_topology_type = NUMA_DIRECT; 2147 distances = sched_numa_node_distance; 2148 if (sched_numa_node_distance != sched_domains_numa_distance) 2149 dom_distances = sched_domains_numa_distance; 2150 rcu_assign_pointer(sched_numa_node_distance, NULL); 2151 rcu_assign_pointer(sched_domains_numa_distance, NULL); 2152 masks = sched_domains_numa_masks; 2153 rcu_assign_pointer(sched_domains_numa_masks, NULL); 2154 if (distances || masks) { 2155 int i, j; 2156 2157 synchronize_rcu(); 2158 kfree(distances); 2159 kfree(dom_distances); 2160 for (i = 0; i < nr_levels && masks; i++) { 2161 if (!masks[i]) 2162 continue; 2163 for_each_node(j) 2164 kfree(masks[i][j]); 2165 kfree(masks[i]); 2166 } 2167 kfree(masks); 2168 } 2169 if (sched_domain_topology_saved) { 2170 kfree(sched_domain_topology); 2171 sched_domain_topology = sched_domain_topology_saved; 2172 sched_domain_topology_saved = NULL; 2173 } 2174 } 2175 2176 /* 2177 * Call with hotplug lock held 2178 */ 2179 void sched_update_numa(int cpu, bool online) 2180 { 2181 int node; 2182 2183 node = cpu_to_node(cpu); 2184 /* 2185 * Scheduler NUMA topology is updated when the first CPU of a 2186 * node is onlined or the last CPU of a node is offlined. 2187 */ 2188 if (cpumask_weight(cpumask_of_node(node)) != 1) 2189 return; 2190 2191 sched_reset_numa(); 2192 sched_init_numa(online ? NUMA_NO_NODE : node); 2193 } 2194 2195 void sched_domains_numa_masks_set(unsigned int cpu) 2196 { 2197 int node = cpu_to_node(cpu); 2198 int i, j; 2199 2200 for (i = 0; i < sched_domains_numa_levels; i++) { 2201 for (j = 0; j < nr_node_ids; j++) { 2202 if (!node_state(j, N_CPU)) 2203 continue; 2204 2205 /* Set ourselves in the remote node's masks */ 2206 if (arch_sched_node_distance(j, node) <= 2207 sched_domains_numa_distance[i]) 2208 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); 2209 } 2210 } 2211 } 2212 2213 void sched_domains_numa_masks_clear(unsigned int cpu) 2214 { 2215 int i, j; 2216 2217 for (i = 0; i < sched_domains_numa_levels; i++) { 2218 for (j = 0; j < nr_node_ids; j++) { 2219 if (sched_domains_numa_masks[i][j]) 2220 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); 2221 } 2222 } 2223 } 2224 2225 /* 2226 * sched_numa_find_closest() - given the NUMA topology, find the cpu 2227 * closest to @cpu from @cpumask. 2228 * cpumask: cpumask to find a cpu from 2229 * cpu: cpu to be close to 2230 * 2231 * returns: cpu, or nr_cpu_ids when nothing found. 2232 */ 2233 int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 2234 { 2235 int i, j = cpu_to_node(cpu), found = nr_cpu_ids; 2236 struct cpumask ***masks; 2237 2238 rcu_read_lock(); 2239 masks = rcu_dereference(sched_domains_numa_masks); 2240 if (!masks) 2241 goto unlock; 2242 for (i = 0; i < sched_domains_numa_levels; i++) { 2243 if (!masks[i][j]) 2244 break; 2245 cpu = cpumask_any_and_distribute(cpus, masks[i][j]); 2246 if (cpu < nr_cpu_ids) { 2247 found = cpu; 2248 break; 2249 } 2250 } 2251 unlock: 2252 rcu_read_unlock(); 2253 2254 return found; 2255 } 2256 2257 struct __cmp_key { 2258 const struct cpumask *cpus; 2259 struct cpumask ***masks; 2260 int node; 2261 int cpu; 2262 int w; 2263 }; 2264 2265 static int hop_cmp(const void *a, const void *b) 2266 { 2267 struct cpumask **prev_hop, **cur_hop = *(struct cpumask ***)b; 2268 struct __cmp_key *k = (struct __cmp_key *)a; 2269 2270 if (cpumask_weight_and(k->cpus, cur_hop[k->node]) <= k->cpu) 2271 return 1; 2272 2273 if (b == k->masks) { 2274 k->w = 0; 2275 return 0; 2276 } 2277 2278 prev_hop = *((struct cpumask ***)b - 1); 2279 k->w = cpumask_weight_and(k->cpus, prev_hop[k->node]); 2280 if (k->w <= k->cpu) 2281 return 0; 2282 2283 return -1; 2284 } 2285 2286 /** 2287 * sched_numa_find_nth_cpu() - given the NUMA topology, find the Nth closest CPU 2288 * from @cpus to @cpu, taking into account distance 2289 * from a given @node. 2290 * @cpus: cpumask to find a cpu from 2291 * @cpu: CPU to start searching 2292 * @node: NUMA node to order CPUs by distance 2293 * 2294 * Return: cpu, or nr_cpu_ids when nothing found. 2295 */ 2296 int sched_numa_find_nth_cpu(const struct cpumask *cpus, int cpu, int node) 2297 { 2298 struct __cmp_key k = { .cpus = cpus, .cpu = cpu }; 2299 struct cpumask ***hop_masks; 2300 int hop, ret = nr_cpu_ids; 2301 2302 if (node == NUMA_NO_NODE) 2303 return cpumask_nth_and(cpu, cpus, cpu_online_mask); 2304 2305 rcu_read_lock(); 2306 2307 /* CPU-less node entries are uninitialized in sched_domains_numa_masks */ 2308 node = numa_nearest_node(node, N_CPU); 2309 k.node = node; 2310 2311 k.masks = rcu_dereference(sched_domains_numa_masks); 2312 if (!k.masks) 2313 goto unlock; 2314 2315 hop_masks = bsearch(&k, k.masks, sched_domains_numa_levels, sizeof(k.masks[0]), hop_cmp); 2316 if (!hop_masks) 2317 goto unlock; 2318 hop = hop_masks - k.masks; 2319 2320 ret = hop ? 2321 cpumask_nth_and_andnot(cpu - k.w, cpus, k.masks[hop][node], k.masks[hop-1][node]) : 2322 cpumask_nth_and(cpu, cpus, k.masks[0][node]); 2323 unlock: 2324 rcu_read_unlock(); 2325 return ret; 2326 } 2327 EXPORT_SYMBOL_GPL(sched_numa_find_nth_cpu); 2328 2329 /** 2330 * sched_numa_hop_mask() - Get the cpumask of CPUs at most @hops hops away from 2331 * @node 2332 * @node: The node to count hops from. 2333 * @hops: Include CPUs up to that many hops away. 0 means local node. 2334 * 2335 * Return: On success, a pointer to a cpumask of CPUs at most @hops away from 2336 * @node, an error value otherwise. 2337 * 2338 * Requires rcu_lock to be held. Returned cpumask is only valid within that 2339 * read-side section, copy it if required beyond that. 2340 * 2341 * Note that not all hops are equal in distance; see sched_init_numa() for how 2342 * distances and masks are handled. 2343 * Also note that this is a reflection of sched_domains_numa_masks, which may change 2344 * during the lifetime of the system (offline nodes are taken out of the masks). 2345 */ 2346 const struct cpumask *sched_numa_hop_mask(unsigned int node, unsigned int hops) 2347 { 2348 struct cpumask ***masks; 2349 2350 if (node >= nr_node_ids || hops >= sched_domains_numa_levels) 2351 return ERR_PTR(-EINVAL); 2352 2353 masks = rcu_dereference(sched_domains_numa_masks); 2354 if (!masks) 2355 return ERR_PTR(-EBUSY); 2356 2357 return masks[hops][node]; 2358 } 2359 EXPORT_SYMBOL_GPL(sched_numa_hop_mask); 2360 2361 #endif /* CONFIG_NUMA */ 2362 2363 static int __sdt_alloc(const struct cpumask *cpu_map) 2364 { 2365 struct sched_domain_topology_level *tl; 2366 int j; 2367 2368 for_each_sd_topology(tl) { 2369 struct sd_data *sdd = &tl->data; 2370 2371 sdd->sd = alloc_percpu(struct sched_domain *); 2372 if (!sdd->sd) 2373 return -ENOMEM; 2374 2375 sdd->sds = alloc_percpu(struct sched_domain_shared *); 2376 if (!sdd->sds) 2377 return -ENOMEM; 2378 2379 sdd->sg = alloc_percpu(struct sched_group *); 2380 if (!sdd->sg) 2381 return -ENOMEM; 2382 2383 sdd->sgc = alloc_percpu(struct sched_group_capacity *); 2384 if (!sdd->sgc) 2385 return -ENOMEM; 2386 2387 for_each_cpu(j, cpu_map) { 2388 struct sched_domain *sd; 2389 struct sched_domain_shared *sds; 2390 struct sched_group *sg; 2391 struct sched_group_capacity *sgc; 2392 2393 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), 2394 GFP_KERNEL, cpu_to_node(j)); 2395 if (!sd) 2396 return -ENOMEM; 2397 2398 *per_cpu_ptr(sdd->sd, j) = sd; 2399 2400 sds = kzalloc_node(sizeof(struct sched_domain_shared), 2401 GFP_KERNEL, cpu_to_node(j)); 2402 if (!sds) 2403 return -ENOMEM; 2404 2405 *per_cpu_ptr(sdd->sds, j) = sds; 2406 2407 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), 2408 GFP_KERNEL, cpu_to_node(j)); 2409 if (!sg) 2410 return -ENOMEM; 2411 2412 sg->next = sg; 2413 2414 *per_cpu_ptr(sdd->sg, j) = sg; 2415 2416 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), 2417 GFP_KERNEL, cpu_to_node(j)); 2418 if (!sgc) 2419 return -ENOMEM; 2420 2421 sgc->id = j; 2422 2423 *per_cpu_ptr(sdd->sgc, j) = sgc; 2424 } 2425 } 2426 2427 return 0; 2428 } 2429 2430 static void __sdt_free(const struct cpumask *cpu_map) 2431 { 2432 struct sched_domain_topology_level *tl; 2433 int j; 2434 2435 for_each_sd_topology(tl) { 2436 struct sd_data *sdd = &tl->data; 2437 2438 for_each_cpu(j, cpu_map) { 2439 struct sched_domain *sd; 2440 2441 if (sdd->sd) { 2442 sd = *per_cpu_ptr(sdd->sd, j); 2443 if (sd && (sd->flags & SD_NUMA)) 2444 free_sched_groups(sd->groups, 0); 2445 kfree(*per_cpu_ptr(sdd->sd, j)); 2446 } 2447 2448 if (sdd->sds) 2449 kfree(*per_cpu_ptr(sdd->sds, j)); 2450 if (sdd->sg) 2451 kfree(*per_cpu_ptr(sdd->sg, j)); 2452 if (sdd->sgc) 2453 kfree(*per_cpu_ptr(sdd->sgc, j)); 2454 } 2455 free_percpu(sdd->sd); 2456 sdd->sd = NULL; 2457 free_percpu(sdd->sds); 2458 sdd->sds = NULL; 2459 free_percpu(sdd->sg); 2460 sdd->sg = NULL; 2461 free_percpu(sdd->sgc); 2462 sdd->sgc = NULL; 2463 } 2464 } 2465 2466 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, 2467 const struct cpumask *cpu_map, struct sched_domain_attr *attr, 2468 struct sched_domain *child, int cpu) 2469 { 2470 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu); 2471 2472 if (child) { 2473 sd->level = child->level + 1; 2474 sched_domain_level_max = max(sched_domain_level_max, sd->level); 2475 child->parent = sd; 2476 2477 if (!cpumask_subset(sched_domain_span(child), 2478 sched_domain_span(sd))) { 2479 pr_err("BUG: arch topology borken\n"); 2480 pr_err(" the %s domain not a subset of the %s domain\n", 2481 child->name, sd->name); 2482 /* Fixup, ensure @sd has at least @child CPUs. */ 2483 cpumask_or(sched_domain_span(sd), 2484 sched_domain_span(sd), 2485 sched_domain_span(child)); 2486 } 2487 2488 } 2489 set_domain_attribute(sd, attr); 2490 2491 return sd; 2492 } 2493 2494 /* 2495 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for 2496 * any two given CPUs on non-NUMA topology levels. 2497 */ 2498 static bool topology_span_sane(const struct cpumask *cpu_map) 2499 { 2500 struct sched_domain_topology_level *tl; 2501 struct cpumask *covered, *id_seen; 2502 int cpu; 2503 2504 lockdep_assert_held(&sched_domains_mutex); 2505 covered = sched_domains_tmpmask; 2506 id_seen = sched_domains_tmpmask2; 2507 2508 for_each_sd_topology(tl) { 2509 int tl_common_flags = 0; 2510 2511 if (tl->sd_flags) 2512 tl_common_flags = (*tl->sd_flags)(); 2513 2514 /* NUMA levels are allowed to overlap */ 2515 if (tl_common_flags & SD_NUMA) 2516 continue; 2517 2518 cpumask_clear(covered); 2519 cpumask_clear(id_seen); 2520 2521 /* 2522 * Non-NUMA levels cannot partially overlap - they must be either 2523 * completely equal or completely disjoint. Otherwise we can end up 2524 * breaking the sched_group lists - i.e. a later get_group() pass 2525 * breaks the linking done for an earlier span. 2526 */ 2527 for_each_cpu(cpu, cpu_map) { 2528 const struct cpumask *tl_cpu_mask = tl->mask(tl, cpu); 2529 int id; 2530 2531 /* lowest bit set in this mask is used as a unique id */ 2532 id = cpumask_first(tl_cpu_mask); 2533 2534 if (cpumask_test_cpu(id, id_seen)) { 2535 /* First CPU has already been seen, ensure identical spans */ 2536 if (!cpumask_equal(tl->mask(tl, id), tl_cpu_mask)) 2537 return false; 2538 } else { 2539 /* First CPU hasn't been seen before, ensure it's a completely new span */ 2540 if (cpumask_intersects(tl_cpu_mask, covered)) 2541 return false; 2542 2543 cpumask_or(covered, covered, tl_cpu_mask); 2544 cpumask_set_cpu(id, id_seen); 2545 } 2546 } 2547 } 2548 return true; 2549 } 2550 2551 /* 2552 * Build sched domains for a given set of CPUs and attach the sched domains 2553 * to the individual CPUs 2554 */ 2555 static int 2556 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr) 2557 { 2558 enum s_alloc alloc_state = sa_none; 2559 struct sched_domain *sd; 2560 struct s_data d; 2561 struct rq *rq = NULL; 2562 int i, ret = -ENOMEM; 2563 bool has_asym = false; 2564 bool has_cluster = false; 2565 2566 if (WARN_ON(cpumask_empty(cpu_map))) 2567 goto error; 2568 2569 alloc_state = __visit_domain_allocation_hell(&d, cpu_map); 2570 if (alloc_state != sa_rootdomain) 2571 goto error; 2572 2573 /* Set up domains for CPUs specified by the cpu_map: */ 2574 for_each_cpu(i, cpu_map) { 2575 struct sched_domain_topology_level *tl; 2576 2577 sd = NULL; 2578 for_each_sd_topology(tl) { 2579 2580 sd = build_sched_domain(tl, cpu_map, attr, sd, i); 2581 2582 has_asym |= sd->flags & SD_ASYM_CPUCAPACITY; 2583 2584 if (tl == sched_domain_topology) 2585 *per_cpu_ptr(d.sd, i) = sd; 2586 if (cpumask_equal(cpu_map, sched_domain_span(sd))) 2587 break; 2588 } 2589 } 2590 2591 if (WARN_ON(!topology_span_sane(cpu_map))) 2592 goto error; 2593 2594 /* Build the groups for the domains */ 2595 for_each_cpu(i, cpu_map) { 2596 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2597 sd->span_weight = cpumask_weight(sched_domain_span(sd)); 2598 if (sd->flags & SD_NUMA) { 2599 if (build_overlap_sched_groups(sd, i)) 2600 goto error; 2601 } else { 2602 if (build_sched_groups(sd, i)) 2603 goto error; 2604 } 2605 } 2606 } 2607 2608 /* 2609 * Calculate an allowed NUMA imbalance such that LLCs do not get 2610 * imbalanced. 2611 */ 2612 for_each_cpu(i, cpu_map) { 2613 unsigned int imb = 0; 2614 unsigned int imb_span = 1; 2615 2616 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2617 struct sched_domain *child = sd->child; 2618 2619 if (!(sd->flags & SD_SHARE_LLC) && child && 2620 (child->flags & SD_SHARE_LLC)) { 2621 struct sched_domain __rcu *top_p; 2622 unsigned int nr_llcs; 2623 2624 /* 2625 * For a single LLC per node, allow an 2626 * imbalance up to 12.5% of the node. This is 2627 * arbitrary cutoff based two factors -- SMT and 2628 * memory channels. For SMT-2, the intent is to 2629 * avoid premature sharing of HT resources but 2630 * SMT-4 or SMT-8 *may* benefit from a different 2631 * cutoff. For memory channels, this is a very 2632 * rough estimate of how many channels may be 2633 * active and is based on recent CPUs with 2634 * many cores. 2635 * 2636 * For multiple LLCs, allow an imbalance 2637 * until multiple tasks would share an LLC 2638 * on one node while LLCs on another node 2639 * remain idle. This assumes that there are 2640 * enough logical CPUs per LLC to avoid SMT 2641 * factors and that there is a correlation 2642 * between LLCs and memory channels. 2643 */ 2644 nr_llcs = sd->span_weight / child->span_weight; 2645 if (nr_llcs == 1) 2646 imb = sd->span_weight >> 3; 2647 else 2648 imb = nr_llcs; 2649 imb = max(1U, imb); 2650 sd->imb_numa_nr = imb; 2651 2652 /* Set span based on the first NUMA domain. */ 2653 top_p = sd->parent; 2654 while (top_p && !(top_p->flags & SD_NUMA)) { 2655 top_p = top_p->parent; 2656 } 2657 imb_span = top_p ? top_p->span_weight : sd->span_weight; 2658 } else { 2659 int factor = max(1U, (sd->span_weight / imb_span)); 2660 2661 sd->imb_numa_nr = imb * factor; 2662 } 2663 } 2664 } 2665 2666 /* Calculate CPU capacity for physical packages and nodes */ 2667 for (i = nr_cpumask_bits-1; i >= 0; i--) { 2668 if (!cpumask_test_cpu(i, cpu_map)) 2669 continue; 2670 2671 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { 2672 claim_allocations(i, sd); 2673 init_sched_groups_capacity(i, sd); 2674 } 2675 } 2676 2677 /* Attach the domains */ 2678 rcu_read_lock(); 2679 for_each_cpu(i, cpu_map) { 2680 rq = cpu_rq(i); 2681 sd = *per_cpu_ptr(d.sd, i); 2682 2683 cpu_attach_domain(sd, d.rd, i); 2684 2685 if (lowest_flag_domain(i, SD_CLUSTER)) 2686 has_cluster = true; 2687 } 2688 rcu_read_unlock(); 2689 2690 if (has_asym) 2691 static_branch_inc_cpuslocked(&sched_asym_cpucapacity); 2692 2693 if (has_cluster) 2694 static_branch_inc_cpuslocked(&sched_cluster_active); 2695 2696 if (rq && sched_debug_verbose) 2697 pr_info("root domain span: %*pbl\n", cpumask_pr_args(cpu_map)); 2698 2699 ret = 0; 2700 error: 2701 __free_domain_allocs(&d, alloc_state, cpu_map); 2702 2703 return ret; 2704 } 2705 2706 /* Current sched domains: */ 2707 static cpumask_var_t *doms_cur; 2708 2709 /* Number of sched domains in 'doms_cur': */ 2710 static int ndoms_cur; 2711 2712 /* Attributes of custom domains in 'doms_cur' */ 2713 static struct sched_domain_attr *dattr_cur; 2714 2715 /* 2716 * Special case: If a kmalloc() of a doms_cur partition (array of 2717 * cpumask) fails, then fallback to a single sched domain, 2718 * as determined by the single cpumask fallback_doms. 2719 */ 2720 static cpumask_var_t fallback_doms; 2721 2722 /* 2723 * arch_update_cpu_topology lets virtualized architectures update the 2724 * CPU core maps. It is supposed to return 1 if the topology changed 2725 * or 0 if it stayed the same. 2726 */ 2727 int __weak arch_update_cpu_topology(void) 2728 { 2729 return 0; 2730 } 2731 2732 cpumask_var_t *alloc_sched_domains(unsigned int ndoms) 2733 { 2734 int i; 2735 cpumask_var_t *doms; 2736 2737 doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL); 2738 if (!doms) 2739 return NULL; 2740 for (i = 0; i < ndoms; i++) { 2741 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { 2742 free_sched_domains(doms, i); 2743 return NULL; 2744 } 2745 } 2746 return doms; 2747 } 2748 2749 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) 2750 { 2751 unsigned int i; 2752 for (i = 0; i < ndoms; i++) 2753 free_cpumask_var(doms[i]); 2754 kfree(doms); 2755 } 2756 2757 /* 2758 * Set up scheduler domains and groups. For now this just excludes isolated 2759 * CPUs, but could be used to exclude other special cases in the future. 2760 */ 2761 int __init sched_init_domains(const struct cpumask *cpu_map) 2762 { 2763 int err; 2764 2765 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL); 2766 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL); 2767 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL); 2768 2769 arch_update_cpu_topology(); 2770 asym_cpu_capacity_scan(); 2771 ndoms_cur = 1; 2772 doms_cur = alloc_sched_domains(ndoms_cur); 2773 if (!doms_cur) 2774 doms_cur = &fallback_doms; 2775 cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN)); 2776 err = build_sched_domains(doms_cur[0], NULL); 2777 2778 return err; 2779 } 2780 2781 /* 2782 * Detach sched domains from a group of CPUs specified in cpu_map 2783 * These CPUs will now be attached to the NULL domain 2784 */ 2785 static void detach_destroy_domains(const struct cpumask *cpu_map) 2786 { 2787 unsigned int cpu = cpumask_any(cpu_map); 2788 int i; 2789 2790 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu))) 2791 static_branch_dec_cpuslocked(&sched_asym_cpucapacity); 2792 2793 if (static_branch_unlikely(&sched_cluster_active)) 2794 static_branch_dec_cpuslocked(&sched_cluster_active); 2795 2796 rcu_read_lock(); 2797 for_each_cpu(i, cpu_map) 2798 cpu_attach_domain(NULL, &def_root_domain, i); 2799 rcu_read_unlock(); 2800 } 2801 2802 /* handle null as "default" */ 2803 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, 2804 struct sched_domain_attr *new, int idx_new) 2805 { 2806 struct sched_domain_attr tmp; 2807 2808 /* Fast path: */ 2809 if (!new && !cur) 2810 return 1; 2811 2812 tmp = SD_ATTR_INIT; 2813 2814 return !memcmp(cur ? (cur + idx_cur) : &tmp, 2815 new ? (new + idx_new) : &tmp, 2816 sizeof(struct sched_domain_attr)); 2817 } 2818 2819 /* 2820 * Partition sched domains as specified by the 'ndoms_new' 2821 * cpumasks in the array doms_new[] of cpumasks. This compares 2822 * doms_new[] to the current sched domain partitioning, doms_cur[]. 2823 * It destroys each deleted domain and builds each new domain. 2824 * 2825 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. 2826 * The masks don't intersect (don't overlap.) We should setup one 2827 * sched domain for each mask. CPUs not in any of the cpumasks will 2828 * not be load balanced. If the same cpumask appears both in the 2829 * current 'doms_cur' domains and in the new 'doms_new', we can leave 2830 * it as it is. 2831 * 2832 * The passed in 'doms_new' should be allocated using 2833 * alloc_sched_domains. This routine takes ownership of it and will 2834 * free_sched_domains it when done with it. If the caller failed the 2835 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, 2836 * and partition_sched_domains() will fallback to the single partition 2837 * 'fallback_doms', it also forces the domains to be rebuilt. 2838 * 2839 * If doms_new == NULL it will be replaced with cpu_online_mask. 2840 * ndoms_new == 0 is a special case for destroying existing domains, 2841 * and it will not create the default domain. 2842 * 2843 * Call with hotplug lock and sched_domains_mutex held 2844 */ 2845 static void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[], 2846 struct sched_domain_attr *dattr_new) 2847 { 2848 bool __maybe_unused has_eas = false; 2849 int i, j, n; 2850 int new_topology; 2851 2852 lockdep_assert_held(&sched_domains_mutex); 2853 2854 /* Let the architecture update CPU core mappings: */ 2855 new_topology = arch_update_cpu_topology(); 2856 /* Trigger rebuilding CPU capacity asymmetry data */ 2857 if (new_topology) 2858 asym_cpu_capacity_scan(); 2859 2860 if (!doms_new) { 2861 WARN_ON_ONCE(dattr_new); 2862 n = 0; 2863 doms_new = alloc_sched_domains(1); 2864 if (doms_new) { 2865 n = 1; 2866 cpumask_and(doms_new[0], cpu_active_mask, 2867 housekeeping_cpumask(HK_TYPE_DOMAIN)); 2868 } 2869 } else { 2870 n = ndoms_new; 2871 } 2872 2873 /* Destroy deleted domains: */ 2874 for (i = 0; i < ndoms_cur; i++) { 2875 for (j = 0; j < n && !new_topology; j++) { 2876 if (cpumask_equal(doms_cur[i], doms_new[j]) && 2877 dattrs_equal(dattr_cur, i, dattr_new, j)) 2878 goto match1; 2879 } 2880 /* No match - a current sched domain not in new doms_new[] */ 2881 detach_destroy_domains(doms_cur[i]); 2882 match1: 2883 ; 2884 } 2885 2886 n = ndoms_cur; 2887 if (!doms_new) { 2888 n = 0; 2889 doms_new = &fallback_doms; 2890 cpumask_and(doms_new[0], cpu_active_mask, 2891 housekeeping_cpumask(HK_TYPE_DOMAIN)); 2892 } 2893 2894 /* Build new domains: */ 2895 for (i = 0; i < ndoms_new; i++) { 2896 for (j = 0; j < n && !new_topology; j++) { 2897 if (cpumask_equal(doms_new[i], doms_cur[j]) && 2898 dattrs_equal(dattr_new, i, dattr_cur, j)) 2899 goto match2; 2900 } 2901 /* No match - add a new doms_new */ 2902 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); 2903 match2: 2904 ; 2905 } 2906 2907 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 2908 /* Build perf domains: */ 2909 for (i = 0; i < ndoms_new; i++) { 2910 for (j = 0; j < n && !sched_energy_update; j++) { 2911 if (cpumask_equal(doms_new[i], doms_cur[j]) && 2912 cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) { 2913 has_eas = true; 2914 goto match3; 2915 } 2916 } 2917 /* No match - add perf domains for a new rd */ 2918 has_eas |= build_perf_domains(doms_new[i]); 2919 match3: 2920 ; 2921 } 2922 sched_energy_set(has_eas); 2923 #endif 2924 2925 /* Remember the new sched domains: */ 2926 if (doms_cur != &fallback_doms) 2927 free_sched_domains(doms_cur, ndoms_cur); 2928 2929 kfree(dattr_cur); 2930 doms_cur = doms_new; 2931 dattr_cur = dattr_new; 2932 ndoms_cur = ndoms_new; 2933 2934 update_sched_domain_debugfs(); 2935 dl_rebuild_rd_accounting(); 2936 } 2937 2938 /* 2939 * Call with hotplug lock held 2940 */ 2941 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 2942 struct sched_domain_attr *dattr_new) 2943 { 2944 sched_domains_mutex_lock(); 2945 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new); 2946 sched_domains_mutex_unlock(); 2947 } 2948