1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28 #include <linux/cgroup-defs.h>
29 #include <linux/page_counter.h>
30 #include <linux/memcontrol.h>
31 #include <linux/cgroup.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/pagevec.h>
37 #include <linux/vm_event_item.h>
38 #include <linux/smp.h>
39 #include <linux/page-flags.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bit_spinlock.h>
42 #include <linux/rcupdate.h>
43 #include <linux/limits.h>
44 #include <linux/export.h>
45 #include <linux/list.h>
46 #include <linux/mutex.h>
47 #include <linux/rbtree.h>
48 #include <linux/slab.h>
49 #include <linux/swapops.h>
50 #include <linux/spinlock.h>
51 #include <linux/fs.h>
52 #include <linux/seq_file.h>
53 #include <linux/parser.h>
54 #include <linux/vmpressure.h>
55 #include <linux/memremap.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/resume_user_mode.h>
62 #include <linux/psi.h>
63 #include <linux/seq_buf.h>
64 #include <linux/sched/isolation.h>
65 #include <linux/kmemleak.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 #include "memcontrol-v1.h"
71
72 #include <linux/uaccess.h>
73
74 #define CREATE_TRACE_POINTS
75 #include <trace/events/memcg.h>
76 #undef CREATE_TRACE_POINTS
77
78 #include <trace/events/vmscan.h>
79
80 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
81 EXPORT_SYMBOL(memory_cgrp_subsys);
82
83 struct mem_cgroup *root_mem_cgroup __read_mostly;
84
85 /* Active memory cgroup to use from an interrupt context */
86 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
87 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
88
89 /* Socket memory accounting disabled? */
90 static bool cgroup_memory_nosocket __ro_after_init;
91
92 /* Kernel memory accounting disabled? */
93 static bool cgroup_memory_nokmem __ro_after_init;
94
95 /* BPF memory accounting disabled? */
96 static bool cgroup_memory_nobpf __ro_after_init;
97
98 #ifdef CONFIG_CGROUP_WRITEBACK
99 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
100 #endif
101
task_is_dying(void)102 static inline bool task_is_dying(void)
103 {
104 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
105 (current->flags & PF_EXITING);
106 }
107
108 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)109 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
110 {
111 if (!memcg)
112 memcg = root_mem_cgroup;
113 return &memcg->vmpressure;
114 }
115
vmpressure_to_memcg(struct vmpressure * vmpr)116 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
117 {
118 return container_of(vmpr, struct mem_cgroup, vmpressure);
119 }
120
121 #define SEQ_BUF_SIZE SZ_4K
122 #define CURRENT_OBJCG_UPDATE_BIT 0
123 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
124
125 static DEFINE_SPINLOCK(objcg_lock);
126
mem_cgroup_kmem_disabled(void)127 bool mem_cgroup_kmem_disabled(void)
128 {
129 return cgroup_memory_nokmem;
130 }
131
132 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
133 unsigned int nr_pages);
134
obj_cgroup_release(struct percpu_ref * ref)135 static void obj_cgroup_release(struct percpu_ref *ref)
136 {
137 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
138 unsigned int nr_bytes;
139 unsigned int nr_pages;
140 unsigned long flags;
141
142 /*
143 * At this point all allocated objects are freed, and
144 * objcg->nr_charged_bytes can't have an arbitrary byte value.
145 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
146 *
147 * The following sequence can lead to it:
148 * 1) CPU0: objcg == stock->cached_objcg
149 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
150 * PAGE_SIZE bytes are charged
151 * 3) CPU1: a process from another memcg is allocating something,
152 * the stock if flushed,
153 * objcg->nr_charged_bytes = PAGE_SIZE - 92
154 * 5) CPU0: we do release this object,
155 * 92 bytes are added to stock->nr_bytes
156 * 6) CPU0: stock is flushed,
157 * 92 bytes are added to objcg->nr_charged_bytes
158 *
159 * In the result, nr_charged_bytes == PAGE_SIZE.
160 * This page will be uncharged in obj_cgroup_release().
161 */
162 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
163 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
164 nr_pages = nr_bytes >> PAGE_SHIFT;
165
166 if (nr_pages)
167 obj_cgroup_uncharge_pages(objcg, nr_pages);
168
169 spin_lock_irqsave(&objcg_lock, flags);
170 list_del(&objcg->list);
171 spin_unlock_irqrestore(&objcg_lock, flags);
172
173 percpu_ref_exit(ref);
174 kfree_rcu(objcg, rcu);
175 }
176
obj_cgroup_alloc(void)177 static struct obj_cgroup *obj_cgroup_alloc(void)
178 {
179 struct obj_cgroup *objcg;
180 int ret;
181
182 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
183 if (!objcg)
184 return NULL;
185
186 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
187 GFP_KERNEL);
188 if (ret) {
189 kfree(objcg);
190 return NULL;
191 }
192 INIT_LIST_HEAD(&objcg->list);
193 return objcg;
194 }
195
memcg_reparent_objcgs(struct mem_cgroup * memcg,struct mem_cgroup * parent)196 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
197 struct mem_cgroup *parent)
198 {
199 struct obj_cgroup *objcg, *iter;
200
201 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
202
203 spin_lock_irq(&objcg_lock);
204
205 /* 1) Ready to reparent active objcg. */
206 list_add(&objcg->list, &memcg->objcg_list);
207 /* 2) Reparent active objcg and already reparented objcgs to parent. */
208 list_for_each_entry(iter, &memcg->objcg_list, list)
209 WRITE_ONCE(iter->memcg, parent);
210 /* 3) Move already reparented objcgs to the parent's list */
211 list_splice(&memcg->objcg_list, &parent->objcg_list);
212
213 spin_unlock_irq(&objcg_lock);
214
215 percpu_ref_kill(&objcg->refcnt);
216 }
217
218 /*
219 * A lot of the calls to the cache allocation functions are expected to be
220 * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are
221 * conditional to this static branch, we'll have to allow modules that does
222 * kmem_cache_alloc and the such to see this symbol as well
223 */
224 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
225 EXPORT_SYMBOL(memcg_kmem_online_key);
226
227 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
228 EXPORT_SYMBOL(memcg_bpf_enabled_key);
229
230 /**
231 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
232 * @folio: folio of interest
233 *
234 * If memcg is bound to the default hierarchy, css of the memcg associated
235 * with @folio is returned. The returned css remains associated with @folio
236 * until it is released.
237 *
238 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
239 * is returned.
240 */
mem_cgroup_css_from_folio(struct folio * folio)241 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
242 {
243 struct mem_cgroup *memcg = folio_memcg(folio);
244
245 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
246 memcg = root_mem_cgroup;
247
248 return &memcg->css;
249 }
250
251 /**
252 * page_cgroup_ino - return inode number of the memcg a page is charged to
253 * @page: the page
254 *
255 * Look up the closest online ancestor of the memory cgroup @page is charged to
256 * and return its inode number or 0 if @page is not charged to any cgroup. It
257 * is safe to call this function without holding a reference to @page.
258 *
259 * Note, this function is inherently racy, because there is nothing to prevent
260 * the cgroup inode from getting torn down and potentially reallocated a moment
261 * after page_cgroup_ino() returns, so it only should be used by callers that
262 * do not care (such as procfs interfaces).
263 */
page_cgroup_ino(struct page * page)264 ino_t page_cgroup_ino(struct page *page)
265 {
266 struct mem_cgroup *memcg;
267 unsigned long ino = 0;
268
269 rcu_read_lock();
270 /* page_folio() is racy here, but the entire function is racy anyway */
271 memcg = folio_memcg_check(page_folio(page));
272
273 while (memcg && !(memcg->css.flags & CSS_ONLINE))
274 memcg = parent_mem_cgroup(memcg);
275 if (memcg)
276 ino = cgroup_ino(memcg->css.cgroup);
277 rcu_read_unlock();
278 return ino;
279 }
280
281 /* Subset of node_stat_item for memcg stats */
282 static const unsigned int memcg_node_stat_items[] = {
283 NR_INACTIVE_ANON,
284 NR_ACTIVE_ANON,
285 NR_INACTIVE_FILE,
286 NR_ACTIVE_FILE,
287 NR_UNEVICTABLE,
288 NR_SLAB_RECLAIMABLE_B,
289 NR_SLAB_UNRECLAIMABLE_B,
290 WORKINGSET_REFAULT_ANON,
291 WORKINGSET_REFAULT_FILE,
292 WORKINGSET_ACTIVATE_ANON,
293 WORKINGSET_ACTIVATE_FILE,
294 WORKINGSET_RESTORE_ANON,
295 WORKINGSET_RESTORE_FILE,
296 WORKINGSET_NODERECLAIM,
297 NR_ANON_MAPPED,
298 NR_FILE_MAPPED,
299 NR_FILE_PAGES,
300 NR_FILE_DIRTY,
301 NR_WRITEBACK,
302 NR_SHMEM,
303 NR_SHMEM_THPS,
304 NR_FILE_THPS,
305 NR_ANON_THPS,
306 NR_KERNEL_STACK_KB,
307 NR_PAGETABLE,
308 NR_SECONDARY_PAGETABLE,
309 #ifdef CONFIG_SWAP
310 NR_SWAPCACHE,
311 #endif
312 #ifdef CONFIG_NUMA_BALANCING
313 PGPROMOTE_SUCCESS,
314 #endif
315 PGDEMOTE_KSWAPD,
316 PGDEMOTE_DIRECT,
317 PGDEMOTE_KHUGEPAGED,
318 #ifdef CONFIG_HUGETLB_PAGE
319 NR_HUGETLB,
320 #endif
321 };
322
323 static const unsigned int memcg_stat_items[] = {
324 MEMCG_SWAP,
325 MEMCG_SOCK,
326 MEMCG_PERCPU_B,
327 MEMCG_VMALLOC,
328 MEMCG_KMEM,
329 MEMCG_ZSWAP_B,
330 MEMCG_ZSWAPPED,
331 };
332
333 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items)
334 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \
335 ARRAY_SIZE(memcg_stat_items))
336 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX)
337 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly;
338
init_memcg_stats(void)339 static void init_memcg_stats(void)
340 {
341 u8 i, j = 0;
342
343 BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX);
344
345 memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index));
346
347 for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j)
348 mem_cgroup_stats_index[memcg_node_stat_items[i]] = j;
349
350 for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j)
351 mem_cgroup_stats_index[memcg_stat_items[i]] = j;
352 }
353
memcg_stats_index(int idx)354 static inline int memcg_stats_index(int idx)
355 {
356 return mem_cgroup_stats_index[idx];
357 }
358
359 struct lruvec_stats_percpu {
360 /* Local (CPU and cgroup) state */
361 long state[NR_MEMCG_NODE_STAT_ITEMS];
362
363 /* Delta calculation for lockless upward propagation */
364 long state_prev[NR_MEMCG_NODE_STAT_ITEMS];
365 };
366
367 struct lruvec_stats {
368 /* Aggregated (CPU and subtree) state */
369 long state[NR_MEMCG_NODE_STAT_ITEMS];
370
371 /* Non-hierarchical (CPU aggregated) state */
372 long state_local[NR_MEMCG_NODE_STAT_ITEMS];
373
374 /* Pending child counts during tree propagation */
375 long state_pending[NR_MEMCG_NODE_STAT_ITEMS];
376 };
377
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)378 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx)
379 {
380 struct mem_cgroup_per_node *pn;
381 long x;
382 int i;
383
384 if (mem_cgroup_disabled())
385 return node_page_state(lruvec_pgdat(lruvec), idx);
386
387 i = memcg_stats_index(idx);
388 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
389 return 0;
390
391 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
392 x = READ_ONCE(pn->lruvec_stats->state[i]);
393 #ifdef CONFIG_SMP
394 if (x < 0)
395 x = 0;
396 #endif
397 return x;
398 }
399
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)400 unsigned long lruvec_page_state_local(struct lruvec *lruvec,
401 enum node_stat_item idx)
402 {
403 struct mem_cgroup_per_node *pn;
404 long x;
405 int i;
406
407 if (mem_cgroup_disabled())
408 return node_page_state(lruvec_pgdat(lruvec), idx);
409
410 i = memcg_stats_index(idx);
411 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
412 return 0;
413
414 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
415 x = READ_ONCE(pn->lruvec_stats->state_local[i]);
416 #ifdef CONFIG_SMP
417 if (x < 0)
418 x = 0;
419 #endif
420 return x;
421 }
422
423 /* Subset of vm_event_item to report for memcg event stats */
424 static const unsigned int memcg_vm_event_stat[] = {
425 #ifdef CONFIG_MEMCG_V1
426 PGPGIN,
427 PGPGOUT,
428 #endif
429 PSWPIN,
430 PSWPOUT,
431 PGSCAN_KSWAPD,
432 PGSCAN_DIRECT,
433 PGSCAN_KHUGEPAGED,
434 PGSTEAL_KSWAPD,
435 PGSTEAL_DIRECT,
436 PGSTEAL_KHUGEPAGED,
437 PGFAULT,
438 PGMAJFAULT,
439 PGREFILL,
440 PGACTIVATE,
441 PGDEACTIVATE,
442 PGLAZYFREE,
443 PGLAZYFREED,
444 #ifdef CONFIG_SWAP
445 SWPIN_ZERO,
446 SWPOUT_ZERO,
447 #endif
448 #ifdef CONFIG_ZSWAP
449 ZSWPIN,
450 ZSWPOUT,
451 ZSWPWB,
452 #endif
453 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
454 THP_FAULT_ALLOC,
455 THP_COLLAPSE_ALLOC,
456 THP_SWPOUT,
457 THP_SWPOUT_FALLBACK,
458 #endif
459 #ifdef CONFIG_NUMA_BALANCING
460 NUMA_PAGE_MIGRATE,
461 NUMA_PTE_UPDATES,
462 NUMA_HINT_FAULTS,
463 #endif
464 };
465
466 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
467 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
468
init_memcg_events(void)469 static void init_memcg_events(void)
470 {
471 u8 i;
472
473 BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX);
474
475 memset(mem_cgroup_events_index, U8_MAX,
476 sizeof(mem_cgroup_events_index));
477
478 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
479 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i;
480 }
481
memcg_events_index(enum vm_event_item idx)482 static inline int memcg_events_index(enum vm_event_item idx)
483 {
484 return mem_cgroup_events_index[idx];
485 }
486
487 struct memcg_vmstats_percpu {
488 /* Stats updates since the last flush */
489 unsigned int stats_updates;
490
491 /* Cached pointers for fast iteration in memcg_rstat_updated() */
492 struct memcg_vmstats_percpu *parent;
493 struct memcg_vmstats *vmstats;
494
495 /* The above should fit a single cacheline for memcg_rstat_updated() */
496
497 /* Local (CPU and cgroup) page state & events */
498 long state[MEMCG_VMSTAT_SIZE];
499 unsigned long events[NR_MEMCG_EVENTS];
500
501 /* Delta calculation for lockless upward propagation */
502 long state_prev[MEMCG_VMSTAT_SIZE];
503 unsigned long events_prev[NR_MEMCG_EVENTS];
504 } ____cacheline_aligned;
505
506 struct memcg_vmstats {
507 /* Aggregated (CPU and subtree) page state & events */
508 long state[MEMCG_VMSTAT_SIZE];
509 unsigned long events[NR_MEMCG_EVENTS];
510
511 /* Non-hierarchical (CPU aggregated) page state & events */
512 long state_local[MEMCG_VMSTAT_SIZE];
513 unsigned long events_local[NR_MEMCG_EVENTS];
514
515 /* Pending child counts during tree propagation */
516 long state_pending[MEMCG_VMSTAT_SIZE];
517 unsigned long events_pending[NR_MEMCG_EVENTS];
518
519 /* Stats updates since the last flush */
520 atomic64_t stats_updates;
521 };
522
523 /*
524 * memcg and lruvec stats flushing
525 *
526 * Many codepaths leading to stats update or read are performance sensitive and
527 * adding stats flushing in such codepaths is not desirable. So, to optimize the
528 * flushing the kernel does:
529 *
530 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
531 * rstat update tree grow unbounded.
532 *
533 * 2) Flush the stats synchronously on reader side only when there are more than
534 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
535 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
536 * only for 2 seconds due to (1).
537 */
538 static void flush_memcg_stats_dwork(struct work_struct *w);
539 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
540 static u64 flush_last_time;
541
542 #define FLUSH_TIME (2UL*HZ)
543
544 /*
545 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
546 * not rely on this as part of an acquired spinlock_t lock. These functions are
547 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
548 * is sufficient.
549 */
memcg_stats_lock(void)550 static void memcg_stats_lock(void)
551 {
552 preempt_disable_nested();
553 VM_WARN_ON_IRQS_ENABLED();
554 }
555
__memcg_stats_lock(void)556 static void __memcg_stats_lock(void)
557 {
558 preempt_disable_nested();
559 }
560
memcg_stats_unlock(void)561 static void memcg_stats_unlock(void)
562 {
563 preempt_enable_nested();
564 }
565
566
memcg_vmstats_needs_flush(struct memcg_vmstats * vmstats)567 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats)
568 {
569 return atomic64_read(&vmstats->stats_updates) >
570 MEMCG_CHARGE_BATCH * num_online_cpus();
571 }
572
memcg_rstat_updated(struct mem_cgroup * memcg,int val)573 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
574 {
575 struct memcg_vmstats_percpu *statc;
576 int cpu = smp_processor_id();
577 unsigned int stats_updates;
578
579 if (!val)
580 return;
581
582 cgroup_rstat_updated(memcg->css.cgroup, cpu);
583 statc = this_cpu_ptr(memcg->vmstats_percpu);
584 for (; statc; statc = statc->parent) {
585 stats_updates = READ_ONCE(statc->stats_updates) + abs(val);
586 WRITE_ONCE(statc->stats_updates, stats_updates);
587 if (stats_updates < MEMCG_CHARGE_BATCH)
588 continue;
589
590 /*
591 * If @memcg is already flush-able, increasing stats_updates is
592 * redundant. Avoid the overhead of the atomic update.
593 */
594 if (!memcg_vmstats_needs_flush(statc->vmstats))
595 atomic64_add(stats_updates,
596 &statc->vmstats->stats_updates);
597 WRITE_ONCE(statc->stats_updates, 0);
598 }
599 }
600
__mem_cgroup_flush_stats(struct mem_cgroup * memcg,bool force)601 static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force)
602 {
603 bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats);
604
605 trace_memcg_flush_stats(memcg, atomic64_read(&memcg->vmstats->stats_updates),
606 force, needs_flush);
607
608 if (!force && !needs_flush)
609 return;
610
611 if (mem_cgroup_is_root(memcg))
612 WRITE_ONCE(flush_last_time, jiffies_64);
613
614 cgroup_rstat_flush(memcg->css.cgroup);
615 }
616
617 /*
618 * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
619 * @memcg: root of the subtree to flush
620 *
621 * Flushing is serialized by the underlying global rstat lock. There is also a
622 * minimum amount of work to be done even if there are no stat updates to flush.
623 * Hence, we only flush the stats if the updates delta exceeds a threshold. This
624 * avoids unnecessary work and contention on the underlying lock.
625 */
mem_cgroup_flush_stats(struct mem_cgroup * memcg)626 void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
627 {
628 if (mem_cgroup_disabled())
629 return;
630
631 if (!memcg)
632 memcg = root_mem_cgroup;
633
634 __mem_cgroup_flush_stats(memcg, false);
635 }
636
mem_cgroup_flush_stats_ratelimited(struct mem_cgroup * memcg)637 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
638 {
639 /* Only flush if the periodic flusher is one full cycle late */
640 if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
641 mem_cgroup_flush_stats(memcg);
642 }
643
flush_memcg_stats_dwork(struct work_struct * w)644 static void flush_memcg_stats_dwork(struct work_struct *w)
645 {
646 /*
647 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing
648 * in latency-sensitive paths is as cheap as possible.
649 */
650 __mem_cgroup_flush_stats(root_mem_cgroup, true);
651 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
652 }
653
memcg_page_state(struct mem_cgroup * memcg,int idx)654 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
655 {
656 long x;
657 int i = memcg_stats_index(idx);
658
659 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
660 return 0;
661
662 x = READ_ONCE(memcg->vmstats->state[i]);
663 #ifdef CONFIG_SMP
664 if (x < 0)
665 x = 0;
666 #endif
667 return x;
668 }
669
670 static int memcg_page_state_unit(int item);
671
672 /*
673 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
674 * up non-zero sub-page updates to 1 page as zero page updates are ignored.
675 */
memcg_state_val_in_pages(int idx,int val)676 static int memcg_state_val_in_pages(int idx, int val)
677 {
678 int unit = memcg_page_state_unit(idx);
679
680 if (!val || unit == PAGE_SIZE)
681 return val;
682 else
683 return max(val * unit / PAGE_SIZE, 1UL);
684 }
685
686 /**
687 * __mod_memcg_state - update cgroup memory statistics
688 * @memcg: the memory cgroup
689 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
690 * @val: delta to add to the counter, can be negative
691 */
__mod_memcg_state(struct mem_cgroup * memcg,enum memcg_stat_item idx,int val)692 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
693 int val)
694 {
695 int i = memcg_stats_index(idx);
696
697 if (mem_cgroup_disabled())
698 return;
699
700 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
701 return;
702
703 __this_cpu_add(memcg->vmstats_percpu->state[i], val);
704 val = memcg_state_val_in_pages(idx, val);
705 memcg_rstat_updated(memcg, val);
706 trace_mod_memcg_state(memcg, idx, val);
707 }
708
709 /* idx can be of type enum memcg_stat_item or node_stat_item. */
memcg_page_state_local(struct mem_cgroup * memcg,int idx)710 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
711 {
712 long x;
713 int i = memcg_stats_index(idx);
714
715 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
716 return 0;
717
718 x = READ_ONCE(memcg->vmstats->state_local[i]);
719 #ifdef CONFIG_SMP
720 if (x < 0)
721 x = 0;
722 #endif
723 return x;
724 }
725
__mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)726 static void __mod_memcg_lruvec_state(struct lruvec *lruvec,
727 enum node_stat_item idx,
728 int val)
729 {
730 struct mem_cgroup_per_node *pn;
731 struct mem_cgroup *memcg;
732 int i = memcg_stats_index(idx);
733
734 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
735 return;
736
737 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
738 memcg = pn->memcg;
739
740 /*
741 * The caller from rmap relies on disabled preemption because they never
742 * update their counter from in-interrupt context. For these two
743 * counters we check that the update is never performed from an
744 * interrupt context while other caller need to have disabled interrupt.
745 */
746 __memcg_stats_lock();
747 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
748 switch (idx) {
749 case NR_ANON_MAPPED:
750 case NR_FILE_MAPPED:
751 case NR_ANON_THPS:
752 WARN_ON_ONCE(!in_task());
753 break;
754 default:
755 VM_WARN_ON_IRQS_ENABLED();
756 }
757 }
758
759 /* Update memcg */
760 __this_cpu_add(memcg->vmstats_percpu->state[i], val);
761
762 /* Update lruvec */
763 __this_cpu_add(pn->lruvec_stats_percpu->state[i], val);
764
765 val = memcg_state_val_in_pages(idx, val);
766 memcg_rstat_updated(memcg, val);
767 trace_mod_memcg_lruvec_state(memcg, idx, val);
768 memcg_stats_unlock();
769 }
770
771 /**
772 * __mod_lruvec_state - update lruvec memory statistics
773 * @lruvec: the lruvec
774 * @idx: the stat item
775 * @val: delta to add to the counter, can be negative
776 *
777 * The lruvec is the intersection of the NUMA node and a cgroup. This
778 * function updates the all three counters that are affected by a
779 * change of state at this level: per-node, per-cgroup, per-lruvec.
780 */
__mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)781 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
782 int val)
783 {
784 /* Update node */
785 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
786
787 /* Update memcg and lruvec */
788 if (!mem_cgroup_disabled())
789 __mod_memcg_lruvec_state(lruvec, idx, val);
790 }
791
__lruvec_stat_mod_folio(struct folio * folio,enum node_stat_item idx,int val)792 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
793 int val)
794 {
795 struct mem_cgroup *memcg;
796 pg_data_t *pgdat = folio_pgdat(folio);
797 struct lruvec *lruvec;
798
799 rcu_read_lock();
800 memcg = folio_memcg(folio);
801 /* Untracked pages have no memcg, no lruvec. Update only the node */
802 if (!memcg) {
803 rcu_read_unlock();
804 __mod_node_page_state(pgdat, idx, val);
805 return;
806 }
807
808 lruvec = mem_cgroup_lruvec(memcg, pgdat);
809 __mod_lruvec_state(lruvec, idx, val);
810 rcu_read_unlock();
811 }
812 EXPORT_SYMBOL(__lruvec_stat_mod_folio);
813
__mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)814 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
815 {
816 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
817 struct mem_cgroup *memcg;
818 struct lruvec *lruvec;
819
820 rcu_read_lock();
821 memcg = mem_cgroup_from_slab_obj(p);
822
823 /*
824 * Untracked pages have no memcg, no lruvec. Update only the
825 * node. If we reparent the slab objects to the root memcg,
826 * when we free the slab object, we need to update the per-memcg
827 * vmstats to keep it correct for the root memcg.
828 */
829 if (!memcg) {
830 __mod_node_page_state(pgdat, idx, val);
831 } else {
832 lruvec = mem_cgroup_lruvec(memcg, pgdat);
833 __mod_lruvec_state(lruvec, idx, val);
834 }
835 rcu_read_unlock();
836 }
837
838 /**
839 * __count_memcg_events - account VM events in a cgroup
840 * @memcg: the memory cgroup
841 * @idx: the event item
842 * @count: the number of events that occurred
843 */
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)844 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
845 unsigned long count)
846 {
847 int i = memcg_events_index(idx);
848
849 if (mem_cgroup_disabled())
850 return;
851
852 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
853 return;
854
855 memcg_stats_lock();
856 __this_cpu_add(memcg->vmstats_percpu->events[i], count);
857 memcg_rstat_updated(memcg, count);
858 trace_count_memcg_events(memcg, idx, count);
859 memcg_stats_unlock();
860 }
861
memcg_events(struct mem_cgroup * memcg,int event)862 unsigned long memcg_events(struct mem_cgroup *memcg, int event)
863 {
864 int i = memcg_events_index(event);
865
866 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
867 return 0;
868
869 return READ_ONCE(memcg->vmstats->events[i]);
870 }
871
memcg_events_local(struct mem_cgroup * memcg,int event)872 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
873 {
874 int i = memcg_events_index(event);
875
876 if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
877 return 0;
878
879 return READ_ONCE(memcg->vmstats->events_local[i]);
880 }
881
mem_cgroup_from_task(struct task_struct * p)882 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
883 {
884 /*
885 * mm_update_next_owner() may clear mm->owner to NULL
886 * if it races with swapoff, page migration, etc.
887 * So this can be called with p == NULL.
888 */
889 if (unlikely(!p))
890 return NULL;
891
892 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
893 }
894 EXPORT_SYMBOL(mem_cgroup_from_task);
895
active_memcg(void)896 static __always_inline struct mem_cgroup *active_memcg(void)
897 {
898 if (!in_task())
899 return this_cpu_read(int_active_memcg);
900 else
901 return current->active_memcg;
902 }
903
904 /**
905 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
906 * @mm: mm from which memcg should be extracted. It can be NULL.
907 *
908 * Obtain a reference on mm->memcg and returns it if successful. If mm
909 * is NULL, then the memcg is chosen as follows:
910 * 1) The active memcg, if set.
911 * 2) current->mm->memcg, if available
912 * 3) root memcg
913 * If mem_cgroup is disabled, NULL is returned.
914 */
get_mem_cgroup_from_mm(struct mm_struct * mm)915 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
916 {
917 struct mem_cgroup *memcg;
918
919 if (mem_cgroup_disabled())
920 return NULL;
921
922 /*
923 * Page cache insertions can happen without an
924 * actual mm context, e.g. during disk probing
925 * on boot, loopback IO, acct() writes etc.
926 *
927 * No need to css_get on root memcg as the reference
928 * counting is disabled on the root level in the
929 * cgroup core. See CSS_NO_REF.
930 */
931 if (unlikely(!mm)) {
932 memcg = active_memcg();
933 if (unlikely(memcg)) {
934 /* remote memcg must hold a ref */
935 css_get(&memcg->css);
936 return memcg;
937 }
938 mm = current->mm;
939 if (unlikely(!mm))
940 return root_mem_cgroup;
941 }
942
943 rcu_read_lock();
944 do {
945 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
946 if (unlikely(!memcg))
947 memcg = root_mem_cgroup;
948 } while (!css_tryget(&memcg->css));
949 rcu_read_unlock();
950 return memcg;
951 }
952 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
953
954 /**
955 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
956 */
get_mem_cgroup_from_current(void)957 struct mem_cgroup *get_mem_cgroup_from_current(void)
958 {
959 struct mem_cgroup *memcg;
960
961 if (mem_cgroup_disabled())
962 return NULL;
963
964 again:
965 rcu_read_lock();
966 memcg = mem_cgroup_from_task(current);
967 if (!css_tryget(&memcg->css)) {
968 rcu_read_unlock();
969 goto again;
970 }
971 rcu_read_unlock();
972 return memcg;
973 }
974
975 /**
976 * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg.
977 * @folio: folio from which memcg should be extracted.
978 */
get_mem_cgroup_from_folio(struct folio * folio)979 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
980 {
981 struct mem_cgroup *memcg = folio_memcg(folio);
982
983 if (mem_cgroup_disabled())
984 return NULL;
985
986 rcu_read_lock();
987 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
988 memcg = root_mem_cgroup;
989 rcu_read_unlock();
990 return memcg;
991 }
992
993 /**
994 * mem_cgroup_iter - iterate over memory cgroup hierarchy
995 * @root: hierarchy root
996 * @prev: previously returned memcg, NULL on first invocation
997 * @reclaim: cookie for shared reclaim walks, NULL for full walks
998 *
999 * Returns references to children of the hierarchy below @root, or
1000 * @root itself, or %NULL after a full round-trip.
1001 *
1002 * Caller must pass the return value in @prev on subsequent
1003 * invocations for reference counting, or use mem_cgroup_iter_break()
1004 * to cancel a hierarchy walk before the round-trip is complete.
1005 *
1006 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1007 * in the hierarchy among all concurrent reclaimers operating on the
1008 * same node.
1009 */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1010 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1011 struct mem_cgroup *prev,
1012 struct mem_cgroup_reclaim_cookie *reclaim)
1013 {
1014 struct mem_cgroup_reclaim_iter *iter;
1015 struct cgroup_subsys_state *css;
1016 struct mem_cgroup *pos;
1017 struct mem_cgroup *next;
1018
1019 if (mem_cgroup_disabled())
1020 return NULL;
1021
1022 if (!root)
1023 root = root_mem_cgroup;
1024
1025 rcu_read_lock();
1026 restart:
1027 next = NULL;
1028
1029 if (reclaim) {
1030 int gen;
1031 int nid = reclaim->pgdat->node_id;
1032
1033 iter = &root->nodeinfo[nid]->iter;
1034 gen = atomic_read(&iter->generation);
1035
1036 /*
1037 * On start, join the current reclaim iteration cycle.
1038 * Exit when a concurrent walker completes it.
1039 */
1040 if (!prev)
1041 reclaim->generation = gen;
1042 else if (reclaim->generation != gen)
1043 goto out_unlock;
1044
1045 pos = READ_ONCE(iter->position);
1046 } else
1047 pos = prev;
1048
1049 css = pos ? &pos->css : NULL;
1050
1051 while ((css = css_next_descendant_pre(css, &root->css))) {
1052 /*
1053 * Verify the css and acquire a reference. The root
1054 * is provided by the caller, so we know it's alive
1055 * and kicking, and don't take an extra reference.
1056 */
1057 if (css == &root->css || css_tryget(css))
1058 break;
1059 }
1060
1061 next = mem_cgroup_from_css(css);
1062
1063 if (reclaim) {
1064 /*
1065 * The position could have already been updated by a competing
1066 * thread, so check that the value hasn't changed since we read
1067 * it to avoid reclaiming from the same cgroup twice.
1068 */
1069 if (cmpxchg(&iter->position, pos, next) != pos) {
1070 if (css && css != &root->css)
1071 css_put(css);
1072 goto restart;
1073 }
1074
1075 if (!next) {
1076 atomic_inc(&iter->generation);
1077
1078 /*
1079 * Reclaimers share the hierarchy walk, and a
1080 * new one might jump in right at the end of
1081 * the hierarchy - make sure they see at least
1082 * one group and restart from the beginning.
1083 */
1084 if (!prev)
1085 goto restart;
1086 }
1087 }
1088
1089 out_unlock:
1090 rcu_read_unlock();
1091 if (prev && prev != root)
1092 css_put(&prev->css);
1093
1094 return next;
1095 }
1096
1097 /**
1098 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1099 * @root: hierarchy root
1100 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1101 */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1102 void mem_cgroup_iter_break(struct mem_cgroup *root,
1103 struct mem_cgroup *prev)
1104 {
1105 if (!root)
1106 root = root_mem_cgroup;
1107 if (prev && prev != root)
1108 css_put(&prev->css);
1109 }
1110
__invalidate_reclaim_iterators(struct mem_cgroup * from,struct mem_cgroup * dead_memcg)1111 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1112 struct mem_cgroup *dead_memcg)
1113 {
1114 struct mem_cgroup_reclaim_iter *iter;
1115 struct mem_cgroup_per_node *mz;
1116 int nid;
1117
1118 for_each_node(nid) {
1119 mz = from->nodeinfo[nid];
1120 iter = &mz->iter;
1121 cmpxchg(&iter->position, dead_memcg, NULL);
1122 }
1123 }
1124
invalidate_reclaim_iterators(struct mem_cgroup * dead_memcg)1125 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1126 {
1127 struct mem_cgroup *memcg = dead_memcg;
1128 struct mem_cgroup *last;
1129
1130 do {
1131 __invalidate_reclaim_iterators(memcg, dead_memcg);
1132 last = memcg;
1133 } while ((memcg = parent_mem_cgroup(memcg)));
1134
1135 /*
1136 * When cgroup1 non-hierarchy mode is used,
1137 * parent_mem_cgroup() does not walk all the way up to the
1138 * cgroup root (root_mem_cgroup). So we have to handle
1139 * dead_memcg from cgroup root separately.
1140 */
1141 if (!mem_cgroup_is_root(last))
1142 __invalidate_reclaim_iterators(root_mem_cgroup,
1143 dead_memcg);
1144 }
1145
1146 /**
1147 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1148 * @memcg: hierarchy root
1149 * @fn: function to call for each task
1150 * @arg: argument passed to @fn
1151 *
1152 * This function iterates over tasks attached to @memcg or to any of its
1153 * descendants and calls @fn for each task. If @fn returns a non-zero
1154 * value, the function breaks the iteration loop. Otherwise, it will iterate
1155 * over all tasks and return 0.
1156 *
1157 * This function must not be called for the root memory cgroup.
1158 */
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1159 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1160 int (*fn)(struct task_struct *, void *), void *arg)
1161 {
1162 struct mem_cgroup *iter;
1163 int ret = 0;
1164 int i = 0;
1165
1166 BUG_ON(mem_cgroup_is_root(memcg));
1167
1168 for_each_mem_cgroup_tree(iter, memcg) {
1169 struct css_task_iter it;
1170 struct task_struct *task;
1171
1172 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1173 while (!ret && (task = css_task_iter_next(&it))) {
1174 /* Avoid potential softlockup warning */
1175 if ((++i & 1023) == 0)
1176 cond_resched();
1177 ret = fn(task, arg);
1178 }
1179 css_task_iter_end(&it);
1180 if (ret) {
1181 mem_cgroup_iter_break(memcg, iter);
1182 break;
1183 }
1184 }
1185 }
1186
1187 #ifdef CONFIG_DEBUG_VM
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)1188 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1189 {
1190 struct mem_cgroup *memcg;
1191
1192 if (mem_cgroup_disabled())
1193 return;
1194
1195 memcg = folio_memcg(folio);
1196
1197 if (!memcg)
1198 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1199 else
1200 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1201 }
1202 #endif
1203
1204 /**
1205 * folio_lruvec_lock - Lock the lruvec for a folio.
1206 * @folio: Pointer to the folio.
1207 *
1208 * These functions are safe to use under any of the following conditions:
1209 * - folio locked
1210 * - folio_test_lru false
1211 * - folio frozen (refcount of 0)
1212 *
1213 * Return: The lruvec this folio is on with its lock held.
1214 */
folio_lruvec_lock(struct folio * folio)1215 struct lruvec *folio_lruvec_lock(struct folio *folio)
1216 {
1217 struct lruvec *lruvec = folio_lruvec(folio);
1218
1219 spin_lock(&lruvec->lru_lock);
1220 lruvec_memcg_debug(lruvec, folio);
1221
1222 return lruvec;
1223 }
1224
1225 /**
1226 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1227 * @folio: Pointer to the folio.
1228 *
1229 * These functions are safe to use under any of the following conditions:
1230 * - folio locked
1231 * - folio_test_lru false
1232 * - folio frozen (refcount of 0)
1233 *
1234 * Return: The lruvec this folio is on with its lock held and interrupts
1235 * disabled.
1236 */
folio_lruvec_lock_irq(struct folio * folio)1237 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1238 {
1239 struct lruvec *lruvec = folio_lruvec(folio);
1240
1241 spin_lock_irq(&lruvec->lru_lock);
1242 lruvec_memcg_debug(lruvec, folio);
1243
1244 return lruvec;
1245 }
1246
1247 /**
1248 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1249 * @folio: Pointer to the folio.
1250 * @flags: Pointer to irqsave flags.
1251 *
1252 * These functions are safe to use under any of the following conditions:
1253 * - folio locked
1254 * - folio_test_lru false
1255 * - folio frozen (refcount of 0)
1256 *
1257 * Return: The lruvec this folio is on with its lock held and interrupts
1258 * disabled.
1259 */
folio_lruvec_lock_irqsave(struct folio * folio,unsigned long * flags)1260 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1261 unsigned long *flags)
1262 {
1263 struct lruvec *lruvec = folio_lruvec(folio);
1264
1265 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1266 lruvec_memcg_debug(lruvec, folio);
1267
1268 return lruvec;
1269 }
1270
1271 /**
1272 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1273 * @lruvec: mem_cgroup per zone lru vector
1274 * @lru: index of lru list the page is sitting on
1275 * @zid: zone id of the accounted pages
1276 * @nr_pages: positive when adding or negative when removing
1277 *
1278 * This function must be called under lru_lock, just before a page is added
1279 * to or just after a page is removed from an lru list.
1280 */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int zid,int nr_pages)1281 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1282 int zid, int nr_pages)
1283 {
1284 struct mem_cgroup_per_node *mz;
1285 unsigned long *lru_size;
1286 long size;
1287
1288 if (mem_cgroup_disabled())
1289 return;
1290
1291 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1292 lru_size = &mz->lru_zone_size[zid][lru];
1293
1294 if (nr_pages < 0)
1295 *lru_size += nr_pages;
1296
1297 size = *lru_size;
1298 if (WARN_ONCE(size < 0,
1299 "%s(%p, %d, %d): lru_size %ld\n",
1300 __func__, lruvec, lru, nr_pages, size)) {
1301 VM_BUG_ON(1);
1302 *lru_size = 0;
1303 }
1304
1305 if (nr_pages > 0)
1306 *lru_size += nr_pages;
1307 }
1308
1309 /**
1310 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1311 * @memcg: the memory cgroup
1312 *
1313 * Returns the maximum amount of memory @mem can be charged with, in
1314 * pages.
1315 */
mem_cgroup_margin(struct mem_cgroup * memcg)1316 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1317 {
1318 unsigned long margin = 0;
1319 unsigned long count;
1320 unsigned long limit;
1321
1322 count = page_counter_read(&memcg->memory);
1323 limit = READ_ONCE(memcg->memory.max);
1324 if (count < limit)
1325 margin = limit - count;
1326
1327 if (do_memsw_account()) {
1328 count = page_counter_read(&memcg->memsw);
1329 limit = READ_ONCE(memcg->memsw.max);
1330 if (count < limit)
1331 margin = min(margin, limit - count);
1332 else
1333 margin = 0;
1334 }
1335
1336 return margin;
1337 }
1338
1339 struct memory_stat {
1340 const char *name;
1341 unsigned int idx;
1342 };
1343
1344 static const struct memory_stat memory_stats[] = {
1345 { "anon", NR_ANON_MAPPED },
1346 { "file", NR_FILE_PAGES },
1347 { "kernel", MEMCG_KMEM },
1348 { "kernel_stack", NR_KERNEL_STACK_KB },
1349 { "pagetables", NR_PAGETABLE },
1350 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
1351 { "percpu", MEMCG_PERCPU_B },
1352 { "sock", MEMCG_SOCK },
1353 { "vmalloc", MEMCG_VMALLOC },
1354 { "shmem", NR_SHMEM },
1355 #ifdef CONFIG_ZSWAP
1356 { "zswap", MEMCG_ZSWAP_B },
1357 { "zswapped", MEMCG_ZSWAPPED },
1358 #endif
1359 { "file_mapped", NR_FILE_MAPPED },
1360 { "file_dirty", NR_FILE_DIRTY },
1361 { "file_writeback", NR_WRITEBACK },
1362 #ifdef CONFIG_SWAP
1363 { "swapcached", NR_SWAPCACHE },
1364 #endif
1365 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1366 { "anon_thp", NR_ANON_THPS },
1367 { "file_thp", NR_FILE_THPS },
1368 { "shmem_thp", NR_SHMEM_THPS },
1369 #endif
1370 { "inactive_anon", NR_INACTIVE_ANON },
1371 { "active_anon", NR_ACTIVE_ANON },
1372 { "inactive_file", NR_INACTIVE_FILE },
1373 { "active_file", NR_ACTIVE_FILE },
1374 { "unevictable", NR_UNEVICTABLE },
1375 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1376 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1377 #ifdef CONFIG_HUGETLB_PAGE
1378 { "hugetlb", NR_HUGETLB },
1379 #endif
1380
1381 /* The memory events */
1382 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1383 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1384 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1385 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1386 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1387 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1388 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1389
1390 { "pgdemote_kswapd", PGDEMOTE_KSWAPD },
1391 { "pgdemote_direct", PGDEMOTE_DIRECT },
1392 { "pgdemote_khugepaged", PGDEMOTE_KHUGEPAGED },
1393 #ifdef CONFIG_NUMA_BALANCING
1394 { "pgpromote_success", PGPROMOTE_SUCCESS },
1395 #endif
1396 };
1397
1398 /* The actual unit of the state item, not the same as the output unit */
memcg_page_state_unit(int item)1399 static int memcg_page_state_unit(int item)
1400 {
1401 switch (item) {
1402 case MEMCG_PERCPU_B:
1403 case MEMCG_ZSWAP_B:
1404 case NR_SLAB_RECLAIMABLE_B:
1405 case NR_SLAB_UNRECLAIMABLE_B:
1406 return 1;
1407 case NR_KERNEL_STACK_KB:
1408 return SZ_1K;
1409 default:
1410 return PAGE_SIZE;
1411 }
1412 }
1413
1414 /* Translate stat items to the correct unit for memory.stat output */
memcg_page_state_output_unit(int item)1415 static int memcg_page_state_output_unit(int item)
1416 {
1417 /*
1418 * Workingset state is actually in pages, but we export it to userspace
1419 * as a scalar count of events, so special case it here.
1420 *
1421 * Demotion and promotion activities are exported in pages, consistent
1422 * with their global counterparts.
1423 */
1424 switch (item) {
1425 case WORKINGSET_REFAULT_ANON:
1426 case WORKINGSET_REFAULT_FILE:
1427 case WORKINGSET_ACTIVATE_ANON:
1428 case WORKINGSET_ACTIVATE_FILE:
1429 case WORKINGSET_RESTORE_ANON:
1430 case WORKINGSET_RESTORE_FILE:
1431 case WORKINGSET_NODERECLAIM:
1432 case PGDEMOTE_KSWAPD:
1433 case PGDEMOTE_DIRECT:
1434 case PGDEMOTE_KHUGEPAGED:
1435 #ifdef CONFIG_NUMA_BALANCING
1436 case PGPROMOTE_SUCCESS:
1437 #endif
1438 return 1;
1439 default:
1440 return memcg_page_state_unit(item);
1441 }
1442 }
1443
memcg_page_state_output(struct mem_cgroup * memcg,int item)1444 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item)
1445 {
1446 return memcg_page_state(memcg, item) *
1447 memcg_page_state_output_unit(item);
1448 }
1449
memcg_page_state_local_output(struct mem_cgroup * memcg,int item)1450 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item)
1451 {
1452 return memcg_page_state_local(memcg, item) *
1453 memcg_page_state_output_unit(item);
1454 }
1455
1456 #ifdef CONFIG_HUGETLB_PAGE
memcg_accounts_hugetlb(void)1457 static bool memcg_accounts_hugetlb(void)
1458 {
1459 return cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1460 }
1461 #else /* CONFIG_HUGETLB_PAGE */
memcg_accounts_hugetlb(void)1462 static bool memcg_accounts_hugetlb(void)
1463 {
1464 return false;
1465 }
1466 #endif /* CONFIG_HUGETLB_PAGE */
1467
memcg_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1468 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1469 {
1470 int i;
1471
1472 /*
1473 * Provide statistics on the state of the memory subsystem as
1474 * well as cumulative event counters that show past behavior.
1475 *
1476 * This list is ordered following a combination of these gradients:
1477 * 1) generic big picture -> specifics and details
1478 * 2) reflecting userspace activity -> reflecting kernel heuristics
1479 *
1480 * Current memory state:
1481 */
1482 mem_cgroup_flush_stats(memcg);
1483
1484 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1485 u64 size;
1486
1487 #ifdef CONFIG_HUGETLB_PAGE
1488 if (unlikely(memory_stats[i].idx == NR_HUGETLB) &&
1489 !memcg_accounts_hugetlb())
1490 continue;
1491 #endif
1492 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1493 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1494
1495 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1496 size += memcg_page_state_output(memcg,
1497 NR_SLAB_RECLAIMABLE_B);
1498 seq_buf_printf(s, "slab %llu\n", size);
1499 }
1500 }
1501
1502 /* Accumulated memory events */
1503 seq_buf_printf(s, "pgscan %lu\n",
1504 memcg_events(memcg, PGSCAN_KSWAPD) +
1505 memcg_events(memcg, PGSCAN_DIRECT) +
1506 memcg_events(memcg, PGSCAN_KHUGEPAGED));
1507 seq_buf_printf(s, "pgsteal %lu\n",
1508 memcg_events(memcg, PGSTEAL_KSWAPD) +
1509 memcg_events(memcg, PGSTEAL_DIRECT) +
1510 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1511
1512 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1513 #ifdef CONFIG_MEMCG_V1
1514 if (memcg_vm_event_stat[i] == PGPGIN ||
1515 memcg_vm_event_stat[i] == PGPGOUT)
1516 continue;
1517 #endif
1518 seq_buf_printf(s, "%s %lu\n",
1519 vm_event_name(memcg_vm_event_stat[i]),
1520 memcg_events(memcg, memcg_vm_event_stat[i]));
1521 }
1522 }
1523
memory_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1524 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1525 {
1526 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1527 memcg_stat_format(memcg, s);
1528 else
1529 memcg1_stat_format(memcg, s);
1530 if (seq_buf_has_overflowed(s))
1531 pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__);
1532 }
1533
1534 /**
1535 * mem_cgroup_print_oom_context: Print OOM information relevant to
1536 * memory controller.
1537 * @memcg: The memory cgroup that went over limit
1538 * @p: Task that is going to be killed
1539 *
1540 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1541 * enabled
1542 */
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1543 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1544 {
1545 rcu_read_lock();
1546
1547 if (memcg) {
1548 pr_cont(",oom_memcg=");
1549 pr_cont_cgroup_path(memcg->css.cgroup);
1550 } else
1551 pr_cont(",global_oom");
1552 if (p) {
1553 pr_cont(",task_memcg=");
1554 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1555 }
1556 rcu_read_unlock();
1557 }
1558
1559 /**
1560 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1561 * memory controller.
1562 * @memcg: The memory cgroup that went over limit
1563 */
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1564 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1565 {
1566 /* Use static buffer, for the caller is holding oom_lock. */
1567 static char buf[SEQ_BUF_SIZE];
1568 struct seq_buf s;
1569
1570 lockdep_assert_held(&oom_lock);
1571
1572 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1573 K((u64)page_counter_read(&memcg->memory)),
1574 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1575 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1576 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1577 K((u64)page_counter_read(&memcg->swap)),
1578 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1579 #ifdef CONFIG_MEMCG_V1
1580 else {
1581 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1582 K((u64)page_counter_read(&memcg->memsw)),
1583 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1584 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1585 K((u64)page_counter_read(&memcg->kmem)),
1586 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1587 }
1588 #endif
1589
1590 pr_info("Memory cgroup stats for ");
1591 pr_cont_cgroup_path(memcg->css.cgroup);
1592 pr_cont(":");
1593 seq_buf_init(&s, buf, SEQ_BUF_SIZE);
1594 memory_stat_format(memcg, &s);
1595 seq_buf_do_printk(&s, KERN_INFO);
1596 }
1597
1598 /*
1599 * Return the memory (and swap, if configured) limit for a memcg.
1600 */
mem_cgroup_get_max(struct mem_cgroup * memcg)1601 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1602 {
1603 unsigned long max = READ_ONCE(memcg->memory.max);
1604
1605 if (do_memsw_account()) {
1606 if (mem_cgroup_swappiness(memcg)) {
1607 /* Calculate swap excess capacity from memsw limit */
1608 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1609
1610 max += min(swap, (unsigned long)total_swap_pages);
1611 }
1612 } else {
1613 if (mem_cgroup_swappiness(memcg))
1614 max += min(READ_ONCE(memcg->swap.max),
1615 (unsigned long)total_swap_pages);
1616 }
1617 return max;
1618 }
1619
mem_cgroup_size(struct mem_cgroup * memcg)1620 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1621 {
1622 return page_counter_read(&memcg->memory);
1623 }
1624
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1625 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1626 int order)
1627 {
1628 struct oom_control oc = {
1629 .zonelist = NULL,
1630 .nodemask = NULL,
1631 .memcg = memcg,
1632 .gfp_mask = gfp_mask,
1633 .order = order,
1634 };
1635 bool ret = true;
1636
1637 if (mutex_lock_killable(&oom_lock))
1638 return true;
1639
1640 if (mem_cgroup_margin(memcg) >= (1 << order))
1641 goto unlock;
1642
1643 /*
1644 * A few threads which were not waiting at mutex_lock_killable() can
1645 * fail to bail out. Therefore, check again after holding oom_lock.
1646 */
1647 ret = task_is_dying() || out_of_memory(&oc);
1648
1649 unlock:
1650 mutex_unlock(&oom_lock);
1651 return ret;
1652 }
1653
1654 /*
1655 * Returns true if successfully killed one or more processes. Though in some
1656 * corner cases it can return true even without killing any process.
1657 */
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1658 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1659 {
1660 bool locked, ret;
1661
1662 if (order > PAGE_ALLOC_COSTLY_ORDER)
1663 return false;
1664
1665 memcg_memory_event(memcg, MEMCG_OOM);
1666
1667 if (!memcg1_oom_prepare(memcg, &locked))
1668 return false;
1669
1670 ret = mem_cgroup_out_of_memory(memcg, mask, order);
1671
1672 memcg1_oom_finish(memcg, locked);
1673
1674 return ret;
1675 }
1676
1677 /**
1678 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1679 * @victim: task to be killed by the OOM killer
1680 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1681 *
1682 * Returns a pointer to a memory cgroup, which has to be cleaned up
1683 * by killing all belonging OOM-killable tasks.
1684 *
1685 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1686 */
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1687 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1688 struct mem_cgroup *oom_domain)
1689 {
1690 struct mem_cgroup *oom_group = NULL;
1691 struct mem_cgroup *memcg;
1692
1693 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1694 return NULL;
1695
1696 if (!oom_domain)
1697 oom_domain = root_mem_cgroup;
1698
1699 rcu_read_lock();
1700
1701 memcg = mem_cgroup_from_task(victim);
1702 if (mem_cgroup_is_root(memcg))
1703 goto out;
1704
1705 /*
1706 * If the victim task has been asynchronously moved to a different
1707 * memory cgroup, we might end up killing tasks outside oom_domain.
1708 * In this case it's better to ignore memory.group.oom.
1709 */
1710 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1711 goto out;
1712
1713 /*
1714 * Traverse the memory cgroup hierarchy from the victim task's
1715 * cgroup up to the OOMing cgroup (or root) to find the
1716 * highest-level memory cgroup with oom.group set.
1717 */
1718 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1719 if (READ_ONCE(memcg->oom_group))
1720 oom_group = memcg;
1721
1722 if (memcg == oom_domain)
1723 break;
1724 }
1725
1726 if (oom_group)
1727 css_get(&oom_group->css);
1728 out:
1729 rcu_read_unlock();
1730
1731 return oom_group;
1732 }
1733
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1734 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1735 {
1736 pr_info("Tasks in ");
1737 pr_cont_cgroup_path(memcg->css.cgroup);
1738 pr_cont(" are going to be killed due to memory.oom.group set\n");
1739 }
1740
1741 struct memcg_stock_pcp {
1742 local_lock_t stock_lock;
1743 struct mem_cgroup *cached; /* this never be root cgroup */
1744 unsigned int nr_pages;
1745
1746 struct obj_cgroup *cached_objcg;
1747 struct pglist_data *cached_pgdat;
1748 unsigned int nr_bytes;
1749 int nr_slab_reclaimable_b;
1750 int nr_slab_unreclaimable_b;
1751
1752 struct work_struct work;
1753 unsigned long flags;
1754 #define FLUSHING_CACHED_CHARGE 0
1755 };
1756 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
1757 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
1758 };
1759 static DEFINE_MUTEX(percpu_charge_mutex);
1760
1761 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
1762 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
1763 struct mem_cgroup *root_memcg);
1764
1765 /**
1766 * consume_stock: Try to consume stocked charge on this cpu.
1767 * @memcg: memcg to consume from.
1768 * @nr_pages: how many pages to charge.
1769 *
1770 * The charges will only happen if @memcg matches the current cpu's memcg
1771 * stock, and at least @nr_pages are available in that stock. Failure to
1772 * service an allocation will refill the stock.
1773 *
1774 * returns true if successful, false otherwise.
1775 */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1776 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1777 {
1778 struct memcg_stock_pcp *stock;
1779 unsigned int stock_pages;
1780 unsigned long flags;
1781 bool ret = false;
1782
1783 if (nr_pages > MEMCG_CHARGE_BATCH)
1784 return ret;
1785
1786 local_lock_irqsave(&memcg_stock.stock_lock, flags);
1787
1788 stock = this_cpu_ptr(&memcg_stock);
1789 stock_pages = READ_ONCE(stock->nr_pages);
1790 if (memcg == READ_ONCE(stock->cached) && stock_pages >= nr_pages) {
1791 WRITE_ONCE(stock->nr_pages, stock_pages - nr_pages);
1792 ret = true;
1793 }
1794
1795 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1796
1797 return ret;
1798 }
1799
1800 /*
1801 * Returns stocks cached in percpu and reset cached information.
1802 */
drain_stock(struct memcg_stock_pcp * stock)1803 static void drain_stock(struct memcg_stock_pcp *stock)
1804 {
1805 unsigned int stock_pages = READ_ONCE(stock->nr_pages);
1806 struct mem_cgroup *old = READ_ONCE(stock->cached);
1807
1808 if (!old)
1809 return;
1810
1811 if (stock_pages) {
1812 page_counter_uncharge(&old->memory, stock_pages);
1813 if (do_memsw_account())
1814 page_counter_uncharge(&old->memsw, stock_pages);
1815
1816 WRITE_ONCE(stock->nr_pages, 0);
1817 }
1818
1819 css_put(&old->css);
1820 WRITE_ONCE(stock->cached, NULL);
1821 }
1822
drain_local_stock(struct work_struct * dummy)1823 static void drain_local_stock(struct work_struct *dummy)
1824 {
1825 struct memcg_stock_pcp *stock;
1826 struct obj_cgroup *old = NULL;
1827 unsigned long flags;
1828
1829 /*
1830 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
1831 * drain_stock races is that we always operate on local CPU stock
1832 * here with IRQ disabled
1833 */
1834 local_lock_irqsave(&memcg_stock.stock_lock, flags);
1835
1836 stock = this_cpu_ptr(&memcg_stock);
1837 old = drain_obj_stock(stock);
1838 drain_stock(stock);
1839 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1840
1841 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1842 obj_cgroup_put(old);
1843 }
1844
1845 /*
1846 * Cache charges(val) to local per_cpu area.
1847 * This will be consumed by consume_stock() function, later.
1848 */
__refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1849 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1850 {
1851 struct memcg_stock_pcp *stock;
1852 unsigned int stock_pages;
1853
1854 stock = this_cpu_ptr(&memcg_stock);
1855 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
1856 drain_stock(stock);
1857 css_get(&memcg->css);
1858 WRITE_ONCE(stock->cached, memcg);
1859 }
1860 stock_pages = READ_ONCE(stock->nr_pages) + nr_pages;
1861 WRITE_ONCE(stock->nr_pages, stock_pages);
1862
1863 if (stock_pages > MEMCG_CHARGE_BATCH)
1864 drain_stock(stock);
1865 }
1866
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1867 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1868 {
1869 unsigned long flags;
1870
1871 local_lock_irqsave(&memcg_stock.stock_lock, flags);
1872 __refill_stock(memcg, nr_pages);
1873 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1874 }
1875
1876 /*
1877 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1878 * of the hierarchy under it.
1879 */
drain_all_stock(struct mem_cgroup * root_memcg)1880 void drain_all_stock(struct mem_cgroup *root_memcg)
1881 {
1882 int cpu, curcpu;
1883
1884 /* If someone's already draining, avoid adding running more workers. */
1885 if (!mutex_trylock(&percpu_charge_mutex))
1886 return;
1887 /*
1888 * Notify other cpus that system-wide "drain" is running
1889 * We do not care about races with the cpu hotplug because cpu down
1890 * as well as workers from this path always operate on the local
1891 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1892 */
1893 migrate_disable();
1894 curcpu = smp_processor_id();
1895 for_each_online_cpu(cpu) {
1896 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1897 struct mem_cgroup *memcg;
1898 bool flush = false;
1899
1900 rcu_read_lock();
1901 memcg = READ_ONCE(stock->cached);
1902 if (memcg && READ_ONCE(stock->nr_pages) &&
1903 mem_cgroup_is_descendant(memcg, root_memcg))
1904 flush = true;
1905 else if (obj_stock_flush_required(stock, root_memcg))
1906 flush = true;
1907 rcu_read_unlock();
1908
1909 if (flush &&
1910 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1911 if (cpu == curcpu)
1912 drain_local_stock(&stock->work);
1913 else if (!cpu_is_isolated(cpu))
1914 schedule_work_on(cpu, &stock->work);
1915 }
1916 }
1917 migrate_enable();
1918 mutex_unlock(&percpu_charge_mutex);
1919 }
1920
memcg_hotplug_cpu_dead(unsigned int cpu)1921 static int memcg_hotplug_cpu_dead(unsigned int cpu)
1922 {
1923 struct memcg_stock_pcp *stock;
1924 struct obj_cgroup *old;
1925 unsigned long flags;
1926
1927 stock = &per_cpu(memcg_stock, cpu);
1928
1929 /* drain_obj_stock requires stock_lock */
1930 local_lock_irqsave(&memcg_stock.stock_lock, flags);
1931 old = drain_obj_stock(stock);
1932 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
1933
1934 drain_stock(stock);
1935 obj_cgroup_put(old);
1936
1937 return 0;
1938 }
1939
reclaim_high(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)1940 static unsigned long reclaim_high(struct mem_cgroup *memcg,
1941 unsigned int nr_pages,
1942 gfp_t gfp_mask)
1943 {
1944 unsigned long nr_reclaimed = 0;
1945
1946 do {
1947 unsigned long pflags;
1948
1949 if (page_counter_read(&memcg->memory) <=
1950 READ_ONCE(memcg->memory.high))
1951 continue;
1952
1953 memcg_memory_event(memcg, MEMCG_HIGH);
1954
1955 psi_memstall_enter(&pflags);
1956 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
1957 gfp_mask,
1958 MEMCG_RECLAIM_MAY_SWAP,
1959 NULL);
1960 psi_memstall_leave(&pflags);
1961 } while ((memcg = parent_mem_cgroup(memcg)) &&
1962 !mem_cgroup_is_root(memcg));
1963
1964 return nr_reclaimed;
1965 }
1966
high_work_func(struct work_struct * work)1967 static void high_work_func(struct work_struct *work)
1968 {
1969 struct mem_cgroup *memcg;
1970
1971 memcg = container_of(work, struct mem_cgroup, high_work);
1972 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
1973 }
1974
1975 /*
1976 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
1977 * enough to still cause a significant slowdown in most cases, while still
1978 * allowing diagnostics and tracing to proceed without becoming stuck.
1979 */
1980 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
1981
1982 /*
1983 * When calculating the delay, we use these either side of the exponentiation to
1984 * maintain precision and scale to a reasonable number of jiffies (see the table
1985 * below.
1986 *
1987 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
1988 * overage ratio to a delay.
1989 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
1990 * proposed penalty in order to reduce to a reasonable number of jiffies, and
1991 * to produce a reasonable delay curve.
1992 *
1993 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
1994 * reasonable delay curve compared to precision-adjusted overage, not
1995 * penalising heavily at first, but still making sure that growth beyond the
1996 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
1997 * example, with a high of 100 megabytes:
1998 *
1999 * +-------+------------------------+
2000 * | usage | time to allocate in ms |
2001 * +-------+------------------------+
2002 * | 100M | 0 |
2003 * | 101M | 6 |
2004 * | 102M | 25 |
2005 * | 103M | 57 |
2006 * | 104M | 102 |
2007 * | 105M | 159 |
2008 * | 106M | 230 |
2009 * | 107M | 313 |
2010 * | 108M | 409 |
2011 * | 109M | 518 |
2012 * | 110M | 639 |
2013 * | 111M | 774 |
2014 * | 112M | 921 |
2015 * | 113M | 1081 |
2016 * | 114M | 1254 |
2017 * | 115M | 1439 |
2018 * | 116M | 1638 |
2019 * | 117M | 1849 |
2020 * | 118M | 2000 |
2021 * | 119M | 2000 |
2022 * | 120M | 2000 |
2023 * +-------+------------------------+
2024 */
2025 #define MEMCG_DELAY_PRECISION_SHIFT 20
2026 #define MEMCG_DELAY_SCALING_SHIFT 14
2027
calculate_overage(unsigned long usage,unsigned long high)2028 static u64 calculate_overage(unsigned long usage, unsigned long high)
2029 {
2030 u64 overage;
2031
2032 if (usage <= high)
2033 return 0;
2034
2035 /*
2036 * Prevent division by 0 in overage calculation by acting as if
2037 * it was a threshold of 1 page
2038 */
2039 high = max(high, 1UL);
2040
2041 overage = usage - high;
2042 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2043 return div64_u64(overage, high);
2044 }
2045
mem_find_max_overage(struct mem_cgroup * memcg)2046 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2047 {
2048 u64 overage, max_overage = 0;
2049
2050 do {
2051 overage = calculate_overage(page_counter_read(&memcg->memory),
2052 READ_ONCE(memcg->memory.high));
2053 max_overage = max(overage, max_overage);
2054 } while ((memcg = parent_mem_cgroup(memcg)) &&
2055 !mem_cgroup_is_root(memcg));
2056
2057 return max_overage;
2058 }
2059
swap_find_max_overage(struct mem_cgroup * memcg)2060 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2061 {
2062 u64 overage, max_overage = 0;
2063
2064 do {
2065 overage = calculate_overage(page_counter_read(&memcg->swap),
2066 READ_ONCE(memcg->swap.high));
2067 if (overage)
2068 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2069 max_overage = max(overage, max_overage);
2070 } while ((memcg = parent_mem_cgroup(memcg)) &&
2071 !mem_cgroup_is_root(memcg));
2072
2073 return max_overage;
2074 }
2075
2076 /*
2077 * Get the number of jiffies that we should penalise a mischievous cgroup which
2078 * is exceeding its memory.high by checking both it and its ancestors.
2079 */
calculate_high_delay(struct mem_cgroup * memcg,unsigned int nr_pages,u64 max_overage)2080 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2081 unsigned int nr_pages,
2082 u64 max_overage)
2083 {
2084 unsigned long penalty_jiffies;
2085
2086 if (!max_overage)
2087 return 0;
2088
2089 /*
2090 * We use overage compared to memory.high to calculate the number of
2091 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2092 * fairly lenient on small overages, and increasingly harsh when the
2093 * memcg in question makes it clear that it has no intention of stopping
2094 * its crazy behaviour, so we exponentially increase the delay based on
2095 * overage amount.
2096 */
2097 penalty_jiffies = max_overage * max_overage * HZ;
2098 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2099 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2100
2101 /*
2102 * Factor in the task's own contribution to the overage, such that four
2103 * N-sized allocations are throttled approximately the same as one
2104 * 4N-sized allocation.
2105 *
2106 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2107 * larger the current charge patch is than that.
2108 */
2109 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2110 }
2111
2112 /*
2113 * Reclaims memory over the high limit. Called directly from
2114 * try_charge() (context permitting), as well as from the userland
2115 * return path where reclaim is always able to block.
2116 */
mem_cgroup_handle_over_high(gfp_t gfp_mask)2117 void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2118 {
2119 unsigned long penalty_jiffies;
2120 unsigned long pflags;
2121 unsigned long nr_reclaimed;
2122 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2123 int nr_retries = MAX_RECLAIM_RETRIES;
2124 struct mem_cgroup *memcg;
2125 bool in_retry = false;
2126
2127 if (likely(!nr_pages))
2128 return;
2129
2130 memcg = get_mem_cgroup_from_mm(current->mm);
2131 current->memcg_nr_pages_over_high = 0;
2132
2133 retry_reclaim:
2134 /*
2135 * Bail if the task is already exiting. Unlike memory.max,
2136 * memory.high enforcement isn't as strict, and there is no
2137 * OOM killer involved, which means the excess could already
2138 * be much bigger (and still growing) than it could for
2139 * memory.max; the dying task could get stuck in fruitless
2140 * reclaim for a long time, which isn't desirable.
2141 */
2142 if (task_is_dying())
2143 goto out;
2144
2145 /*
2146 * The allocating task should reclaim at least the batch size, but for
2147 * subsequent retries we only want to do what's necessary to prevent oom
2148 * or breaching resource isolation.
2149 *
2150 * This is distinct from memory.max or page allocator behaviour because
2151 * memory.high is currently batched, whereas memory.max and the page
2152 * allocator run every time an allocation is made.
2153 */
2154 nr_reclaimed = reclaim_high(memcg,
2155 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2156 gfp_mask);
2157
2158 /*
2159 * memory.high is breached and reclaim is unable to keep up. Throttle
2160 * allocators proactively to slow down excessive growth.
2161 */
2162 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2163 mem_find_max_overage(memcg));
2164
2165 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2166 swap_find_max_overage(memcg));
2167
2168 /*
2169 * Clamp the max delay per usermode return so as to still keep the
2170 * application moving forwards and also permit diagnostics, albeit
2171 * extremely slowly.
2172 */
2173 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2174
2175 /*
2176 * Don't sleep if the amount of jiffies this memcg owes us is so low
2177 * that it's not even worth doing, in an attempt to be nice to those who
2178 * go only a small amount over their memory.high value and maybe haven't
2179 * been aggressively reclaimed enough yet.
2180 */
2181 if (penalty_jiffies <= HZ / 100)
2182 goto out;
2183
2184 /*
2185 * If reclaim is making forward progress but we're still over
2186 * memory.high, we want to encourage that rather than doing allocator
2187 * throttling.
2188 */
2189 if (nr_reclaimed || nr_retries--) {
2190 in_retry = true;
2191 goto retry_reclaim;
2192 }
2193
2194 /*
2195 * Reclaim didn't manage to push usage below the limit, slow
2196 * this allocating task down.
2197 *
2198 * If we exit early, we're guaranteed to die (since
2199 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2200 * need to account for any ill-begotten jiffies to pay them off later.
2201 */
2202 psi_memstall_enter(&pflags);
2203 schedule_timeout_killable(penalty_jiffies);
2204 psi_memstall_leave(&pflags);
2205
2206 out:
2207 css_put(&memcg->css);
2208 }
2209
try_charge_memcg(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2210 int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2211 unsigned int nr_pages)
2212 {
2213 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2214 int nr_retries = MAX_RECLAIM_RETRIES;
2215 struct mem_cgroup *mem_over_limit;
2216 struct page_counter *counter;
2217 unsigned long nr_reclaimed;
2218 bool passed_oom = false;
2219 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2220 bool drained = false;
2221 bool raised_max_event = false;
2222 unsigned long pflags;
2223
2224 retry:
2225 if (consume_stock(memcg, nr_pages))
2226 return 0;
2227
2228 if (!do_memsw_account() ||
2229 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2230 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2231 goto done_restock;
2232 if (do_memsw_account())
2233 page_counter_uncharge(&memcg->memsw, batch);
2234 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2235 } else {
2236 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2237 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2238 }
2239
2240 if (batch > nr_pages) {
2241 batch = nr_pages;
2242 goto retry;
2243 }
2244
2245 /*
2246 * Prevent unbounded recursion when reclaim operations need to
2247 * allocate memory. This might exceed the limits temporarily,
2248 * but we prefer facilitating memory reclaim and getting back
2249 * under the limit over triggering OOM kills in these cases.
2250 */
2251 if (unlikely(current->flags & PF_MEMALLOC))
2252 goto force;
2253
2254 if (unlikely(task_in_memcg_oom(current)))
2255 goto nomem;
2256
2257 if (!gfpflags_allow_blocking(gfp_mask))
2258 goto nomem;
2259
2260 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2261 raised_max_event = true;
2262
2263 psi_memstall_enter(&pflags);
2264 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2265 gfp_mask, reclaim_options, NULL);
2266 psi_memstall_leave(&pflags);
2267
2268 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2269 goto retry;
2270
2271 if (!drained) {
2272 drain_all_stock(mem_over_limit);
2273 drained = true;
2274 goto retry;
2275 }
2276
2277 if (gfp_mask & __GFP_NORETRY)
2278 goto nomem;
2279 /*
2280 * Even though the limit is exceeded at this point, reclaim
2281 * may have been able to free some pages. Retry the charge
2282 * before killing the task.
2283 *
2284 * Only for regular pages, though: huge pages are rather
2285 * unlikely to succeed so close to the limit, and we fall back
2286 * to regular pages anyway in case of failure.
2287 */
2288 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2289 goto retry;
2290
2291 if (nr_retries--)
2292 goto retry;
2293
2294 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2295 goto nomem;
2296
2297 /* Avoid endless loop for tasks bypassed by the oom killer */
2298 if (passed_oom && task_is_dying())
2299 goto nomem;
2300
2301 /*
2302 * keep retrying as long as the memcg oom killer is able to make
2303 * a forward progress or bypass the charge if the oom killer
2304 * couldn't make any progress.
2305 */
2306 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2307 get_order(nr_pages * PAGE_SIZE))) {
2308 passed_oom = true;
2309 nr_retries = MAX_RECLAIM_RETRIES;
2310 goto retry;
2311 }
2312 nomem:
2313 /*
2314 * Memcg doesn't have a dedicated reserve for atomic
2315 * allocations. But like the global atomic pool, we need to
2316 * put the burden of reclaim on regular allocation requests
2317 * and let these go through as privileged allocations.
2318 */
2319 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2320 return -ENOMEM;
2321 force:
2322 /*
2323 * If the allocation has to be enforced, don't forget to raise
2324 * a MEMCG_MAX event.
2325 */
2326 if (!raised_max_event)
2327 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2328
2329 /*
2330 * The allocation either can't fail or will lead to more memory
2331 * being freed very soon. Allow memory usage go over the limit
2332 * temporarily by force charging it.
2333 */
2334 page_counter_charge(&memcg->memory, nr_pages);
2335 if (do_memsw_account())
2336 page_counter_charge(&memcg->memsw, nr_pages);
2337
2338 return 0;
2339
2340 done_restock:
2341 if (batch > nr_pages)
2342 refill_stock(memcg, batch - nr_pages);
2343
2344 /*
2345 * If the hierarchy is above the normal consumption range, schedule
2346 * reclaim on returning to userland. We can perform reclaim here
2347 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2348 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2349 * not recorded as it most likely matches current's and won't
2350 * change in the meantime. As high limit is checked again before
2351 * reclaim, the cost of mismatch is negligible.
2352 */
2353 do {
2354 bool mem_high, swap_high;
2355
2356 mem_high = page_counter_read(&memcg->memory) >
2357 READ_ONCE(memcg->memory.high);
2358 swap_high = page_counter_read(&memcg->swap) >
2359 READ_ONCE(memcg->swap.high);
2360
2361 /* Don't bother a random interrupted task */
2362 if (!in_task()) {
2363 if (mem_high) {
2364 schedule_work(&memcg->high_work);
2365 break;
2366 }
2367 continue;
2368 }
2369
2370 if (mem_high || swap_high) {
2371 /*
2372 * The allocating tasks in this cgroup will need to do
2373 * reclaim or be throttled to prevent further growth
2374 * of the memory or swap footprints.
2375 *
2376 * Target some best-effort fairness between the tasks,
2377 * and distribute reclaim work and delay penalties
2378 * based on how much each task is actually allocating.
2379 */
2380 current->memcg_nr_pages_over_high += batch;
2381 set_notify_resume(current);
2382 break;
2383 }
2384 } while ((memcg = parent_mem_cgroup(memcg)));
2385
2386 /*
2387 * Reclaim is set up above to be called from the userland
2388 * return path. But also attempt synchronous reclaim to avoid
2389 * excessive overrun while the task is still inside the
2390 * kernel. If this is successful, the return path will see it
2391 * when it rechecks the overage and simply bail out.
2392 */
2393 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2394 !(current->flags & PF_MEMALLOC) &&
2395 gfpflags_allow_blocking(gfp_mask))
2396 mem_cgroup_handle_over_high(gfp_mask);
2397 return 0;
2398 }
2399
commit_charge(struct folio * folio,struct mem_cgroup * memcg)2400 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2401 {
2402 VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio);
2403 /*
2404 * Any of the following ensures page's memcg stability:
2405 *
2406 * - the page lock
2407 * - LRU isolation
2408 * - exclusive reference
2409 */
2410 folio->memcg_data = (unsigned long)memcg;
2411 }
2412
__mod_objcg_mlstate(struct obj_cgroup * objcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2413 static inline void __mod_objcg_mlstate(struct obj_cgroup *objcg,
2414 struct pglist_data *pgdat,
2415 enum node_stat_item idx, int nr)
2416 {
2417 struct mem_cgroup *memcg;
2418 struct lruvec *lruvec;
2419
2420 rcu_read_lock();
2421 memcg = obj_cgroup_memcg(objcg);
2422 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2423 __mod_memcg_lruvec_state(lruvec, idx, nr);
2424 rcu_read_unlock();
2425 }
2426
2427 static __always_inline
mem_cgroup_from_obj_folio(struct folio * folio,void * p)2428 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2429 {
2430 /*
2431 * Slab objects are accounted individually, not per-page.
2432 * Memcg membership data for each individual object is saved in
2433 * slab->obj_exts.
2434 */
2435 if (folio_test_slab(folio)) {
2436 struct slabobj_ext *obj_exts;
2437 struct slab *slab;
2438 unsigned int off;
2439
2440 slab = folio_slab(folio);
2441 obj_exts = slab_obj_exts(slab);
2442 if (!obj_exts)
2443 return NULL;
2444
2445 off = obj_to_index(slab->slab_cache, slab, p);
2446 if (obj_exts[off].objcg)
2447 return obj_cgroup_memcg(obj_exts[off].objcg);
2448
2449 return NULL;
2450 }
2451
2452 /*
2453 * folio_memcg_check() is used here, because in theory we can encounter
2454 * a folio where the slab flag has been cleared already, but
2455 * slab->obj_exts has not been freed yet
2456 * folio_memcg_check() will guarantee that a proper memory
2457 * cgroup pointer or NULL will be returned.
2458 */
2459 return folio_memcg_check(folio);
2460 }
2461
2462 /*
2463 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2464 * It is not suitable for objects allocated using vmalloc().
2465 *
2466 * A passed kernel object must be a slab object or a generic kernel page.
2467 *
2468 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2469 * cgroup_mutex, etc.
2470 */
mem_cgroup_from_slab_obj(void * p)2471 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2472 {
2473 if (mem_cgroup_disabled())
2474 return NULL;
2475
2476 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
2477 }
2478
__get_obj_cgroup_from_memcg(struct mem_cgroup * memcg)2479 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2480 {
2481 struct obj_cgroup *objcg = NULL;
2482
2483 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2484 objcg = rcu_dereference(memcg->objcg);
2485 if (likely(objcg && obj_cgroup_tryget(objcg)))
2486 break;
2487 objcg = NULL;
2488 }
2489 return objcg;
2490 }
2491
current_objcg_update(void)2492 static struct obj_cgroup *current_objcg_update(void)
2493 {
2494 struct mem_cgroup *memcg;
2495 struct obj_cgroup *old, *objcg = NULL;
2496
2497 do {
2498 /* Atomically drop the update bit. */
2499 old = xchg(¤t->objcg, NULL);
2500 if (old) {
2501 old = (struct obj_cgroup *)
2502 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
2503 obj_cgroup_put(old);
2504
2505 old = NULL;
2506 }
2507
2508 /* If new objcg is NULL, no reason for the second atomic update. */
2509 if (!current->mm || (current->flags & PF_KTHREAD))
2510 return NULL;
2511
2512 /*
2513 * Release the objcg pointer from the previous iteration,
2514 * if try_cmpxcg() below fails.
2515 */
2516 if (unlikely(objcg)) {
2517 obj_cgroup_put(objcg);
2518 objcg = NULL;
2519 }
2520
2521 /*
2522 * Obtain the new objcg pointer. The current task can be
2523 * asynchronously moved to another memcg and the previous
2524 * memcg can be offlined. So let's get the memcg pointer
2525 * and try get a reference to objcg under a rcu read lock.
2526 */
2527
2528 rcu_read_lock();
2529 memcg = mem_cgroup_from_task(current);
2530 objcg = __get_obj_cgroup_from_memcg(memcg);
2531 rcu_read_unlock();
2532
2533 /*
2534 * Try set up a new objcg pointer atomically. If it
2535 * fails, it means the update flag was set concurrently, so
2536 * the whole procedure should be repeated.
2537 */
2538 } while (!try_cmpxchg(¤t->objcg, &old, objcg));
2539
2540 return objcg;
2541 }
2542
current_obj_cgroup(void)2543 __always_inline struct obj_cgroup *current_obj_cgroup(void)
2544 {
2545 struct mem_cgroup *memcg;
2546 struct obj_cgroup *objcg;
2547
2548 if (in_task()) {
2549 memcg = current->active_memcg;
2550 if (unlikely(memcg))
2551 goto from_memcg;
2552
2553 objcg = READ_ONCE(current->objcg);
2554 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
2555 objcg = current_objcg_update();
2556 /*
2557 * Objcg reference is kept by the task, so it's safe
2558 * to use the objcg by the current task.
2559 */
2560 return objcg;
2561 }
2562
2563 memcg = this_cpu_read(int_active_memcg);
2564 if (unlikely(memcg))
2565 goto from_memcg;
2566
2567 return NULL;
2568
2569 from_memcg:
2570 objcg = NULL;
2571 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2572 /*
2573 * Memcg pointer is protected by scope (see set_active_memcg())
2574 * and is pinning the corresponding objcg, so objcg can't go
2575 * away and can be used within the scope without any additional
2576 * protection.
2577 */
2578 objcg = rcu_dereference_check(memcg->objcg, 1);
2579 if (likely(objcg))
2580 break;
2581 }
2582
2583 return objcg;
2584 }
2585
get_obj_cgroup_from_folio(struct folio * folio)2586 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
2587 {
2588 struct obj_cgroup *objcg;
2589
2590 if (!memcg_kmem_online())
2591 return NULL;
2592
2593 if (folio_memcg_kmem(folio)) {
2594 objcg = __folio_objcg(folio);
2595 obj_cgroup_get(objcg);
2596 } else {
2597 struct mem_cgroup *memcg;
2598
2599 rcu_read_lock();
2600 memcg = __folio_memcg(folio);
2601 if (memcg)
2602 objcg = __get_obj_cgroup_from_memcg(memcg);
2603 else
2604 objcg = NULL;
2605 rcu_read_unlock();
2606 }
2607 return objcg;
2608 }
2609
2610 /*
2611 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2612 * @objcg: object cgroup to uncharge
2613 * @nr_pages: number of pages to uncharge
2614 */
obj_cgroup_uncharge_pages(struct obj_cgroup * objcg,unsigned int nr_pages)2615 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2616 unsigned int nr_pages)
2617 {
2618 struct mem_cgroup *memcg;
2619
2620 memcg = get_mem_cgroup_from_objcg(objcg);
2621
2622 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
2623 memcg1_account_kmem(memcg, -nr_pages);
2624 refill_stock(memcg, nr_pages);
2625
2626 css_put(&memcg->css);
2627 }
2628
2629 /*
2630 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2631 * @objcg: object cgroup to charge
2632 * @gfp: reclaim mode
2633 * @nr_pages: number of pages to charge
2634 *
2635 * Returns 0 on success, an error code on failure.
2636 */
obj_cgroup_charge_pages(struct obj_cgroup * objcg,gfp_t gfp,unsigned int nr_pages)2637 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2638 unsigned int nr_pages)
2639 {
2640 struct mem_cgroup *memcg;
2641 int ret;
2642
2643 memcg = get_mem_cgroup_from_objcg(objcg);
2644
2645 ret = try_charge_memcg(memcg, gfp, nr_pages);
2646 if (ret)
2647 goto out;
2648
2649 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
2650 memcg1_account_kmem(memcg, nr_pages);
2651 out:
2652 css_put(&memcg->css);
2653
2654 return ret;
2655 }
2656
2657 /**
2658 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2659 * @page: page to charge
2660 * @gfp: reclaim mode
2661 * @order: allocation order
2662 *
2663 * Returns 0 on success, an error code on failure.
2664 */
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)2665 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2666 {
2667 struct obj_cgroup *objcg;
2668 int ret = 0;
2669
2670 objcg = current_obj_cgroup();
2671 if (objcg) {
2672 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
2673 if (!ret) {
2674 obj_cgroup_get(objcg);
2675 page->memcg_data = (unsigned long)objcg |
2676 MEMCG_DATA_KMEM;
2677 return 0;
2678 }
2679 }
2680 return ret;
2681 }
2682
2683 /**
2684 * __memcg_kmem_uncharge_page: uncharge a kmem page
2685 * @page: page to uncharge
2686 * @order: allocation order
2687 */
__memcg_kmem_uncharge_page(struct page * page,int order)2688 void __memcg_kmem_uncharge_page(struct page *page, int order)
2689 {
2690 struct folio *folio = page_folio(page);
2691 struct obj_cgroup *objcg;
2692 unsigned int nr_pages = 1 << order;
2693
2694 if (!folio_memcg_kmem(folio))
2695 return;
2696
2697 objcg = __folio_objcg(folio);
2698 obj_cgroup_uncharge_pages(objcg, nr_pages);
2699 folio->memcg_data = 0;
2700 obj_cgroup_put(objcg);
2701 }
2702
mod_objcg_state(struct obj_cgroup * objcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2703 static void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
2704 enum node_stat_item idx, int nr)
2705 {
2706 struct memcg_stock_pcp *stock;
2707 struct obj_cgroup *old = NULL;
2708 unsigned long flags;
2709 int *bytes;
2710
2711 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2712 stock = this_cpu_ptr(&memcg_stock);
2713
2714 /*
2715 * Save vmstat data in stock and skip vmstat array update unless
2716 * accumulating over a page of vmstat data or when pgdat or idx
2717 * changes.
2718 */
2719 if (READ_ONCE(stock->cached_objcg) != objcg) {
2720 old = drain_obj_stock(stock);
2721 obj_cgroup_get(objcg);
2722 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
2723 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
2724 WRITE_ONCE(stock->cached_objcg, objcg);
2725 stock->cached_pgdat = pgdat;
2726 } else if (stock->cached_pgdat != pgdat) {
2727 /* Flush the existing cached vmstat data */
2728 struct pglist_data *oldpg = stock->cached_pgdat;
2729
2730 if (stock->nr_slab_reclaimable_b) {
2731 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
2732 stock->nr_slab_reclaimable_b);
2733 stock->nr_slab_reclaimable_b = 0;
2734 }
2735 if (stock->nr_slab_unreclaimable_b) {
2736 __mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
2737 stock->nr_slab_unreclaimable_b);
2738 stock->nr_slab_unreclaimable_b = 0;
2739 }
2740 stock->cached_pgdat = pgdat;
2741 }
2742
2743 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
2744 : &stock->nr_slab_unreclaimable_b;
2745 /*
2746 * Even for large object >= PAGE_SIZE, the vmstat data will still be
2747 * cached locally at least once before pushing it out.
2748 */
2749 if (!*bytes) {
2750 *bytes = nr;
2751 nr = 0;
2752 } else {
2753 *bytes += nr;
2754 if (abs(*bytes) > PAGE_SIZE) {
2755 nr = *bytes;
2756 *bytes = 0;
2757 } else {
2758 nr = 0;
2759 }
2760 }
2761 if (nr)
2762 __mod_objcg_mlstate(objcg, pgdat, idx, nr);
2763
2764 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2765 obj_cgroup_put(old);
2766 }
2767
consume_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes)2768 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
2769 {
2770 struct memcg_stock_pcp *stock;
2771 unsigned long flags;
2772 bool ret = false;
2773
2774 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2775
2776 stock = this_cpu_ptr(&memcg_stock);
2777 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
2778 stock->nr_bytes -= nr_bytes;
2779 ret = true;
2780 }
2781
2782 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2783
2784 return ret;
2785 }
2786
drain_obj_stock(struct memcg_stock_pcp * stock)2787 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2788 {
2789 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
2790
2791 if (!old)
2792 return NULL;
2793
2794 if (stock->nr_bytes) {
2795 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
2796 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
2797
2798 if (nr_pages) {
2799 struct mem_cgroup *memcg;
2800
2801 memcg = get_mem_cgroup_from_objcg(old);
2802
2803 mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
2804 memcg1_account_kmem(memcg, -nr_pages);
2805 __refill_stock(memcg, nr_pages);
2806
2807 css_put(&memcg->css);
2808 }
2809
2810 /*
2811 * The leftover is flushed to the centralized per-memcg value.
2812 * On the next attempt to refill obj stock it will be moved
2813 * to a per-cpu stock (probably, on an other CPU), see
2814 * refill_obj_stock().
2815 *
2816 * How often it's flushed is a trade-off between the memory
2817 * limit enforcement accuracy and potential CPU contention,
2818 * so it might be changed in the future.
2819 */
2820 atomic_add(nr_bytes, &old->nr_charged_bytes);
2821 stock->nr_bytes = 0;
2822 }
2823
2824 /*
2825 * Flush the vmstat data in current stock
2826 */
2827 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
2828 if (stock->nr_slab_reclaimable_b) {
2829 __mod_objcg_mlstate(old, stock->cached_pgdat,
2830 NR_SLAB_RECLAIMABLE_B,
2831 stock->nr_slab_reclaimable_b);
2832 stock->nr_slab_reclaimable_b = 0;
2833 }
2834 if (stock->nr_slab_unreclaimable_b) {
2835 __mod_objcg_mlstate(old, stock->cached_pgdat,
2836 NR_SLAB_UNRECLAIMABLE_B,
2837 stock->nr_slab_unreclaimable_b);
2838 stock->nr_slab_unreclaimable_b = 0;
2839 }
2840 stock->cached_pgdat = NULL;
2841 }
2842
2843 WRITE_ONCE(stock->cached_objcg, NULL);
2844 /*
2845 * The `old' objects needs to be released by the caller via
2846 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
2847 */
2848 return old;
2849 }
2850
obj_stock_flush_required(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)2851 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2852 struct mem_cgroup *root_memcg)
2853 {
2854 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
2855 struct mem_cgroup *memcg;
2856
2857 if (objcg) {
2858 memcg = obj_cgroup_memcg(objcg);
2859 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
2860 return true;
2861 }
2862
2863 return false;
2864 }
2865
refill_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes,bool allow_uncharge)2866 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
2867 bool allow_uncharge)
2868 {
2869 struct memcg_stock_pcp *stock;
2870 struct obj_cgroup *old = NULL;
2871 unsigned long flags;
2872 unsigned int nr_pages = 0;
2873
2874 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2875
2876 stock = this_cpu_ptr(&memcg_stock);
2877 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
2878 old = drain_obj_stock(stock);
2879 obj_cgroup_get(objcg);
2880 WRITE_ONCE(stock->cached_objcg, objcg);
2881 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
2882 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
2883 allow_uncharge = true; /* Allow uncharge when objcg changes */
2884 }
2885 stock->nr_bytes += nr_bytes;
2886
2887 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
2888 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
2889 stock->nr_bytes &= (PAGE_SIZE - 1);
2890 }
2891
2892 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2893 obj_cgroup_put(old);
2894
2895 if (nr_pages)
2896 obj_cgroup_uncharge_pages(objcg, nr_pages);
2897 }
2898
obj_cgroup_charge(struct obj_cgroup * objcg,gfp_t gfp,size_t size)2899 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
2900 {
2901 unsigned int nr_pages, nr_bytes;
2902 int ret;
2903
2904 if (consume_obj_stock(objcg, size))
2905 return 0;
2906
2907 /*
2908 * In theory, objcg->nr_charged_bytes can have enough
2909 * pre-charged bytes to satisfy the allocation. However,
2910 * flushing objcg->nr_charged_bytes requires two atomic
2911 * operations, and objcg->nr_charged_bytes can't be big.
2912 * The shared objcg->nr_charged_bytes can also become a
2913 * performance bottleneck if all tasks of the same memcg are
2914 * trying to update it. So it's better to ignore it and try
2915 * grab some new pages. The stock's nr_bytes will be flushed to
2916 * objcg->nr_charged_bytes later on when objcg changes.
2917 *
2918 * The stock's nr_bytes may contain enough pre-charged bytes
2919 * to allow one less page from being charged, but we can't rely
2920 * on the pre-charged bytes not being changed outside of
2921 * consume_obj_stock() or refill_obj_stock(). So ignore those
2922 * pre-charged bytes as well when charging pages. To avoid a
2923 * page uncharge right after a page charge, we set the
2924 * allow_uncharge flag to false when calling refill_obj_stock()
2925 * to temporarily allow the pre-charged bytes to exceed the page
2926 * size limit. The maximum reachable value of the pre-charged
2927 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
2928 * race.
2929 */
2930 nr_pages = size >> PAGE_SHIFT;
2931 nr_bytes = size & (PAGE_SIZE - 1);
2932
2933 if (nr_bytes)
2934 nr_pages += 1;
2935
2936 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
2937 if (!ret && nr_bytes)
2938 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
2939
2940 return ret;
2941 }
2942
obj_cgroup_uncharge(struct obj_cgroup * objcg,size_t size)2943 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
2944 {
2945 refill_obj_stock(objcg, size, true);
2946 }
2947
obj_full_size(struct kmem_cache * s)2948 static inline size_t obj_full_size(struct kmem_cache *s)
2949 {
2950 /*
2951 * For each accounted object there is an extra space which is used
2952 * to store obj_cgroup membership. Charge it too.
2953 */
2954 return s->size + sizeof(struct obj_cgroup *);
2955 }
2956
__memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)2957 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2958 gfp_t flags, size_t size, void **p)
2959 {
2960 struct obj_cgroup *objcg;
2961 struct slab *slab;
2962 unsigned long off;
2963 size_t i;
2964
2965 /*
2966 * The obtained objcg pointer is safe to use within the current scope,
2967 * defined by current task or set_active_memcg() pair.
2968 * obj_cgroup_get() is used to get a permanent reference.
2969 */
2970 objcg = current_obj_cgroup();
2971 if (!objcg)
2972 return true;
2973
2974 /*
2975 * slab_alloc_node() avoids the NULL check, so we might be called with a
2976 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill
2977 * the whole requested size.
2978 * return success as there's nothing to free back
2979 */
2980 if (unlikely(*p == NULL))
2981 return true;
2982
2983 flags &= gfp_allowed_mask;
2984
2985 if (lru) {
2986 int ret;
2987 struct mem_cgroup *memcg;
2988
2989 memcg = get_mem_cgroup_from_objcg(objcg);
2990 ret = memcg_list_lru_alloc(memcg, lru, flags);
2991 css_put(&memcg->css);
2992
2993 if (ret)
2994 return false;
2995 }
2996
2997 if (obj_cgroup_charge(objcg, flags, size * obj_full_size(s)))
2998 return false;
2999
3000 for (i = 0; i < size; i++) {
3001 slab = virt_to_slab(p[i]);
3002
3003 if (!slab_obj_exts(slab) &&
3004 alloc_slab_obj_exts(slab, s, flags, false)) {
3005 obj_cgroup_uncharge(objcg, obj_full_size(s));
3006 continue;
3007 }
3008
3009 off = obj_to_index(s, slab, p[i]);
3010 obj_cgroup_get(objcg);
3011 slab_obj_exts(slab)[off].objcg = objcg;
3012 mod_objcg_state(objcg, slab_pgdat(slab),
3013 cache_vmstat_idx(s), obj_full_size(s));
3014 }
3015
3016 return true;
3017 }
3018
__memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects,struct slabobj_ext * obj_exts)3019 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
3020 void **p, int objects, struct slabobj_ext *obj_exts)
3021 {
3022 for (int i = 0; i < objects; i++) {
3023 struct obj_cgroup *objcg;
3024 unsigned int off;
3025
3026 off = obj_to_index(s, slab, p[i]);
3027 objcg = obj_exts[off].objcg;
3028 if (!objcg)
3029 continue;
3030
3031 obj_exts[off].objcg = NULL;
3032 obj_cgroup_uncharge(objcg, obj_full_size(s));
3033 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
3034 -obj_full_size(s));
3035 obj_cgroup_put(objcg);
3036 }
3037 }
3038
3039 /*
3040 * Because folio_memcg(head) is not set on tails, set it now.
3041 */
split_page_memcg(struct page * head,int old_order,int new_order)3042 void split_page_memcg(struct page *head, int old_order, int new_order)
3043 {
3044 struct folio *folio = page_folio(head);
3045 int i;
3046 unsigned int old_nr = 1 << old_order;
3047 unsigned int new_nr = 1 << new_order;
3048
3049 if (mem_cgroup_disabled() || !folio_memcg_charged(folio))
3050 return;
3051
3052 for (i = new_nr; i < old_nr; i += new_nr)
3053 folio_page(folio, i)->memcg_data = folio->memcg_data;
3054
3055 if (folio_memcg_kmem(folio))
3056 obj_cgroup_get_many(__folio_objcg(folio), old_nr / new_nr - 1);
3057 else
3058 css_get_many(&folio_memcg(folio)->css, old_nr / new_nr - 1);
3059 }
3060
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)3061 unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3062 {
3063 unsigned long val;
3064
3065 if (mem_cgroup_is_root(memcg)) {
3066 /*
3067 * Approximate root's usage from global state. This isn't
3068 * perfect, but the root usage was always an approximation.
3069 */
3070 val = global_node_page_state(NR_FILE_PAGES) +
3071 global_node_page_state(NR_ANON_MAPPED);
3072 if (swap)
3073 val += total_swap_pages - get_nr_swap_pages();
3074 } else {
3075 if (!swap)
3076 val = page_counter_read(&memcg->memory);
3077 else
3078 val = page_counter_read(&memcg->memsw);
3079 }
3080 return val;
3081 }
3082
memcg_online_kmem(struct mem_cgroup * memcg)3083 static int memcg_online_kmem(struct mem_cgroup *memcg)
3084 {
3085 struct obj_cgroup *objcg;
3086
3087 if (mem_cgroup_kmem_disabled())
3088 return 0;
3089
3090 if (unlikely(mem_cgroup_is_root(memcg)))
3091 return 0;
3092
3093 objcg = obj_cgroup_alloc();
3094 if (!objcg)
3095 return -ENOMEM;
3096
3097 objcg->memcg = memcg;
3098 rcu_assign_pointer(memcg->objcg, objcg);
3099 obj_cgroup_get(objcg);
3100 memcg->orig_objcg = objcg;
3101
3102 static_branch_enable(&memcg_kmem_online_key);
3103
3104 memcg->kmemcg_id = memcg->id.id;
3105
3106 return 0;
3107 }
3108
memcg_offline_kmem(struct mem_cgroup * memcg)3109 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3110 {
3111 struct mem_cgroup *parent;
3112
3113 if (mem_cgroup_kmem_disabled())
3114 return;
3115
3116 if (unlikely(mem_cgroup_is_root(memcg)))
3117 return;
3118
3119 parent = parent_mem_cgroup(memcg);
3120 if (!parent)
3121 parent = root_mem_cgroup;
3122
3123 memcg_reparent_list_lrus(memcg, parent);
3124
3125 /*
3126 * Objcg's reparenting must be after list_lru's, make sure list_lru
3127 * helpers won't use parent's list_lru until child is drained.
3128 */
3129 memcg_reparent_objcgs(memcg, parent);
3130 }
3131
3132 #ifdef CONFIG_CGROUP_WRITEBACK
3133
3134 #include <trace/events/writeback.h>
3135
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3136 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3137 {
3138 return wb_domain_init(&memcg->cgwb_domain, gfp);
3139 }
3140
memcg_wb_domain_exit(struct mem_cgroup * memcg)3141 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3142 {
3143 wb_domain_exit(&memcg->cgwb_domain);
3144 }
3145
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3146 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3147 {
3148 wb_domain_size_changed(&memcg->cgwb_domain);
3149 }
3150
mem_cgroup_wb_domain(struct bdi_writeback * wb)3151 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3152 {
3153 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3154
3155 if (!memcg->css.parent)
3156 return NULL;
3157
3158 return &memcg->cgwb_domain;
3159 }
3160
3161 /**
3162 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3163 * @wb: bdi_writeback in question
3164 * @pfilepages: out parameter for number of file pages
3165 * @pheadroom: out parameter for number of allocatable pages according to memcg
3166 * @pdirty: out parameter for number of dirty pages
3167 * @pwriteback: out parameter for number of pages under writeback
3168 *
3169 * Determine the numbers of file, headroom, dirty, and writeback pages in
3170 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3171 * is a bit more involved.
3172 *
3173 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3174 * headroom is calculated as the lowest headroom of itself and the
3175 * ancestors. Note that this doesn't consider the actual amount of
3176 * available memory in the system. The caller should further cap
3177 * *@pheadroom accordingly.
3178 */
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)3179 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3180 unsigned long *pheadroom, unsigned long *pdirty,
3181 unsigned long *pwriteback)
3182 {
3183 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3184 struct mem_cgroup *parent;
3185
3186 mem_cgroup_flush_stats_ratelimited(memcg);
3187
3188 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3189 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3190 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
3191 memcg_page_state(memcg, NR_ACTIVE_FILE);
3192
3193 *pheadroom = PAGE_COUNTER_MAX;
3194 while ((parent = parent_mem_cgroup(memcg))) {
3195 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
3196 READ_ONCE(memcg->memory.high));
3197 unsigned long used = page_counter_read(&memcg->memory);
3198
3199 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3200 memcg = parent;
3201 }
3202 }
3203
3204 /*
3205 * Foreign dirty flushing
3206 *
3207 * There's an inherent mismatch between memcg and writeback. The former
3208 * tracks ownership per-page while the latter per-inode. This was a
3209 * deliberate design decision because honoring per-page ownership in the
3210 * writeback path is complicated, may lead to higher CPU and IO overheads
3211 * and deemed unnecessary given that write-sharing an inode across
3212 * different cgroups isn't a common use-case.
3213 *
3214 * Combined with inode majority-writer ownership switching, this works well
3215 * enough in most cases but there are some pathological cases. For
3216 * example, let's say there are two cgroups A and B which keep writing to
3217 * different but confined parts of the same inode. B owns the inode and
3218 * A's memory is limited far below B's. A's dirty ratio can rise enough to
3219 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
3220 * triggering background writeback. A will be slowed down without a way to
3221 * make writeback of the dirty pages happen.
3222 *
3223 * Conditions like the above can lead to a cgroup getting repeatedly and
3224 * severely throttled after making some progress after each
3225 * dirty_expire_interval while the underlying IO device is almost
3226 * completely idle.
3227 *
3228 * Solving this problem completely requires matching the ownership tracking
3229 * granularities between memcg and writeback in either direction. However,
3230 * the more egregious behaviors can be avoided by simply remembering the
3231 * most recent foreign dirtying events and initiating remote flushes on
3232 * them when local writeback isn't enough to keep the memory clean enough.
3233 *
3234 * The following two functions implement such mechanism. When a foreign
3235 * page - a page whose memcg and writeback ownerships don't match - is
3236 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
3237 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
3238 * decides that the memcg needs to sleep due to high dirty ratio, it calls
3239 * mem_cgroup_flush_foreign() which queues writeback on the recorded
3240 * foreign bdi_writebacks which haven't expired. Both the numbers of
3241 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
3242 * limited to MEMCG_CGWB_FRN_CNT.
3243 *
3244 * The mechanism only remembers IDs and doesn't hold any object references.
3245 * As being wrong occasionally doesn't matter, updates and accesses to the
3246 * records are lockless and racy.
3247 */
mem_cgroup_track_foreign_dirty_slowpath(struct folio * folio,struct bdi_writeback * wb)3248 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
3249 struct bdi_writeback *wb)
3250 {
3251 struct mem_cgroup *memcg = folio_memcg(folio);
3252 struct memcg_cgwb_frn *frn;
3253 u64 now = get_jiffies_64();
3254 u64 oldest_at = now;
3255 int oldest = -1;
3256 int i;
3257
3258 trace_track_foreign_dirty(folio, wb);
3259
3260 /*
3261 * Pick the slot to use. If there is already a slot for @wb, keep
3262 * using it. If not replace the oldest one which isn't being
3263 * written out.
3264 */
3265 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3266 frn = &memcg->cgwb_frn[i];
3267 if (frn->bdi_id == wb->bdi->id &&
3268 frn->memcg_id == wb->memcg_css->id)
3269 break;
3270 if (time_before64(frn->at, oldest_at) &&
3271 atomic_read(&frn->done.cnt) == 1) {
3272 oldest = i;
3273 oldest_at = frn->at;
3274 }
3275 }
3276
3277 if (i < MEMCG_CGWB_FRN_CNT) {
3278 /*
3279 * Re-using an existing one. Update timestamp lazily to
3280 * avoid making the cacheline hot. We want them to be
3281 * reasonably up-to-date and significantly shorter than
3282 * dirty_expire_interval as that's what expires the record.
3283 * Use the shorter of 1s and dirty_expire_interval / 8.
3284 */
3285 unsigned long update_intv =
3286 min_t(unsigned long, HZ,
3287 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
3288
3289 if (time_before64(frn->at, now - update_intv))
3290 frn->at = now;
3291 } else if (oldest >= 0) {
3292 /* replace the oldest free one */
3293 frn = &memcg->cgwb_frn[oldest];
3294 frn->bdi_id = wb->bdi->id;
3295 frn->memcg_id = wb->memcg_css->id;
3296 frn->at = now;
3297 }
3298 }
3299
3300 /* issue foreign writeback flushes for recorded foreign dirtying events */
mem_cgroup_flush_foreign(struct bdi_writeback * wb)3301 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
3302 {
3303 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3304 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
3305 u64 now = jiffies_64;
3306 int i;
3307
3308 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3309 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
3310
3311 /*
3312 * If the record is older than dirty_expire_interval,
3313 * writeback on it has already started. No need to kick it
3314 * off again. Also, don't start a new one if there's
3315 * already one in flight.
3316 */
3317 if (time_after64(frn->at, now - intv) &&
3318 atomic_read(&frn->done.cnt) == 1) {
3319 frn->at = 0;
3320 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
3321 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
3322 WB_REASON_FOREIGN_FLUSH,
3323 &frn->done);
3324 }
3325 }
3326 }
3327
3328 #else /* CONFIG_CGROUP_WRITEBACK */
3329
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3330 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3331 {
3332 return 0;
3333 }
3334
memcg_wb_domain_exit(struct mem_cgroup * memcg)3335 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3336 {
3337 }
3338
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3339 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3340 {
3341 }
3342
3343 #endif /* CONFIG_CGROUP_WRITEBACK */
3344
3345 /*
3346 * Private memory cgroup IDR
3347 *
3348 * Swap-out records and page cache shadow entries need to store memcg
3349 * references in constrained space, so we maintain an ID space that is
3350 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
3351 * memory-controlled cgroups to 64k.
3352 *
3353 * However, there usually are many references to the offline CSS after
3354 * the cgroup has been destroyed, such as page cache or reclaimable
3355 * slab objects, that don't need to hang on to the ID. We want to keep
3356 * those dead CSS from occupying IDs, or we might quickly exhaust the
3357 * relatively small ID space and prevent the creation of new cgroups
3358 * even when there are much fewer than 64k cgroups - possibly none.
3359 *
3360 * Maintain a private 16-bit ID space for memcg, and allow the ID to
3361 * be freed and recycled when it's no longer needed, which is usually
3362 * when the CSS is offlined.
3363 *
3364 * The only exception to that are records of swapped out tmpfs/shmem
3365 * pages that need to be attributed to live ancestors on swapin. But
3366 * those references are manageable from userspace.
3367 */
3368
3369 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1)
3370 static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids);
3371
mem_cgroup_id_remove(struct mem_cgroup * memcg)3372 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
3373 {
3374 if (memcg->id.id > 0) {
3375 xa_erase(&mem_cgroup_ids, memcg->id.id);
3376 memcg->id.id = 0;
3377 }
3378 }
3379
mem_cgroup_id_get_many(struct mem_cgroup * memcg,unsigned int n)3380 void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
3381 unsigned int n)
3382 {
3383 refcount_add(n, &memcg->id.ref);
3384 }
3385
mem_cgroup_id_put_many(struct mem_cgroup * memcg,unsigned int n)3386 void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
3387 {
3388 if (refcount_sub_and_test(n, &memcg->id.ref)) {
3389 mem_cgroup_id_remove(memcg);
3390
3391 /* Memcg ID pins CSS */
3392 css_put(&memcg->css);
3393 }
3394 }
3395
mem_cgroup_id_put(struct mem_cgroup * memcg)3396 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
3397 {
3398 mem_cgroup_id_put_many(memcg, 1);
3399 }
3400
3401 /**
3402 * mem_cgroup_from_id - look up a memcg from a memcg id
3403 * @id: the memcg id to look up
3404 *
3405 * Caller must hold rcu_read_lock().
3406 */
mem_cgroup_from_id(unsigned short id)3407 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
3408 {
3409 WARN_ON_ONCE(!rcu_read_lock_held());
3410 return xa_load(&mem_cgroup_ids, id);
3411 }
3412
3413 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_get_from_ino(unsigned long ino)3414 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
3415 {
3416 struct cgroup *cgrp;
3417 struct cgroup_subsys_state *css;
3418 struct mem_cgroup *memcg;
3419
3420 cgrp = cgroup_get_from_id(ino);
3421 if (IS_ERR(cgrp))
3422 return ERR_CAST(cgrp);
3423
3424 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
3425 if (css)
3426 memcg = container_of(css, struct mem_cgroup, css);
3427 else
3428 memcg = ERR_PTR(-ENOENT);
3429
3430 cgroup_put(cgrp);
3431
3432 return memcg;
3433 }
3434 #endif
3435
alloc_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)3436 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
3437 {
3438 struct mem_cgroup_per_node *pn;
3439
3440 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
3441 if (!pn)
3442 return false;
3443
3444 pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats),
3445 GFP_KERNEL_ACCOUNT, node);
3446 if (!pn->lruvec_stats)
3447 goto fail;
3448
3449 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
3450 GFP_KERNEL_ACCOUNT);
3451 if (!pn->lruvec_stats_percpu)
3452 goto fail;
3453
3454 lruvec_init(&pn->lruvec);
3455 pn->memcg = memcg;
3456
3457 memcg->nodeinfo[node] = pn;
3458 return true;
3459 fail:
3460 kfree(pn->lruvec_stats);
3461 kfree(pn);
3462 return false;
3463 }
3464
free_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)3465 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
3466 {
3467 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3468
3469 if (!pn)
3470 return;
3471
3472 free_percpu(pn->lruvec_stats_percpu);
3473 kfree(pn->lruvec_stats);
3474 kfree(pn);
3475 }
3476
__mem_cgroup_free(struct mem_cgroup * memcg)3477 static void __mem_cgroup_free(struct mem_cgroup *memcg)
3478 {
3479 int node;
3480
3481 obj_cgroup_put(memcg->orig_objcg);
3482
3483 for_each_node(node)
3484 free_mem_cgroup_per_node_info(memcg, node);
3485 memcg1_free_events(memcg);
3486 kfree(memcg->vmstats);
3487 free_percpu(memcg->vmstats_percpu);
3488 kfree(memcg);
3489 }
3490
mem_cgroup_free(struct mem_cgroup * memcg)3491 static void mem_cgroup_free(struct mem_cgroup *memcg)
3492 {
3493 lru_gen_exit_memcg(memcg);
3494 memcg_wb_domain_exit(memcg);
3495 __mem_cgroup_free(memcg);
3496 }
3497
mem_cgroup_alloc(struct mem_cgroup * parent)3498 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent)
3499 {
3500 struct memcg_vmstats_percpu *statc, *pstatc;
3501 struct mem_cgroup *memcg;
3502 int node, cpu;
3503 int __maybe_unused i;
3504 long error;
3505
3506 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
3507 if (!memcg)
3508 return ERR_PTR(-ENOMEM);
3509
3510 error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL,
3511 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL);
3512 if (error)
3513 goto fail;
3514 error = -ENOMEM;
3515
3516 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats),
3517 GFP_KERNEL_ACCOUNT);
3518 if (!memcg->vmstats)
3519 goto fail;
3520
3521 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
3522 GFP_KERNEL_ACCOUNT);
3523 if (!memcg->vmstats_percpu)
3524 goto fail;
3525
3526 if (!memcg1_alloc_events(memcg))
3527 goto fail;
3528
3529 for_each_possible_cpu(cpu) {
3530 if (parent)
3531 pstatc = per_cpu_ptr(parent->vmstats_percpu, cpu);
3532 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
3533 statc->parent = parent ? pstatc : NULL;
3534 statc->vmstats = memcg->vmstats;
3535 }
3536
3537 for_each_node(node)
3538 if (!alloc_mem_cgroup_per_node_info(memcg, node))
3539 goto fail;
3540
3541 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
3542 goto fail;
3543
3544 INIT_WORK(&memcg->high_work, high_work_func);
3545 vmpressure_init(&memcg->vmpressure);
3546 INIT_LIST_HEAD(&memcg->memory_peaks);
3547 INIT_LIST_HEAD(&memcg->swap_peaks);
3548 spin_lock_init(&memcg->peaks_lock);
3549 memcg->socket_pressure = jiffies;
3550 memcg1_memcg_init(memcg);
3551 memcg->kmemcg_id = -1;
3552 INIT_LIST_HEAD(&memcg->objcg_list);
3553 #ifdef CONFIG_CGROUP_WRITEBACK
3554 INIT_LIST_HEAD(&memcg->cgwb_list);
3555 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3556 memcg->cgwb_frn[i].done =
3557 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
3558 #endif
3559 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3560 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
3561 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
3562 memcg->deferred_split_queue.split_queue_len = 0;
3563 #endif
3564 lru_gen_init_memcg(memcg);
3565 return memcg;
3566 fail:
3567 mem_cgroup_id_remove(memcg);
3568 __mem_cgroup_free(memcg);
3569 return ERR_PTR(error);
3570 }
3571
3572 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)3573 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
3574 {
3575 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
3576 struct mem_cgroup *memcg, *old_memcg;
3577
3578 old_memcg = set_active_memcg(parent);
3579 memcg = mem_cgroup_alloc(parent);
3580 set_active_memcg(old_memcg);
3581 if (IS_ERR(memcg))
3582 return ERR_CAST(memcg);
3583
3584 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3585 memcg1_soft_limit_reset(memcg);
3586 #ifdef CONFIG_ZSWAP
3587 memcg->zswap_max = PAGE_COUNTER_MAX;
3588 WRITE_ONCE(memcg->zswap_writeback, true);
3589 #endif
3590 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3591 if (parent) {
3592 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
3593
3594 page_counter_init(&memcg->memory, &parent->memory, true);
3595 page_counter_init(&memcg->swap, &parent->swap, false);
3596 #ifdef CONFIG_MEMCG_V1
3597 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
3598 page_counter_init(&memcg->kmem, &parent->kmem, false);
3599 page_counter_init(&memcg->tcpmem, &parent->tcpmem, false);
3600 #endif
3601 } else {
3602 init_memcg_stats();
3603 init_memcg_events();
3604 page_counter_init(&memcg->memory, NULL, true);
3605 page_counter_init(&memcg->swap, NULL, false);
3606 #ifdef CONFIG_MEMCG_V1
3607 page_counter_init(&memcg->kmem, NULL, false);
3608 page_counter_init(&memcg->tcpmem, NULL, false);
3609 #endif
3610 root_mem_cgroup = memcg;
3611 return &memcg->css;
3612 }
3613
3614 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3615 static_branch_inc(&memcg_sockets_enabled_key);
3616
3617 if (!cgroup_memory_nobpf)
3618 static_branch_inc(&memcg_bpf_enabled_key);
3619
3620 return &memcg->css;
3621 }
3622
mem_cgroup_css_online(struct cgroup_subsys_state * css)3623 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
3624 {
3625 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3626
3627 if (memcg_online_kmem(memcg))
3628 goto remove_id;
3629
3630 /*
3631 * A memcg must be visible for expand_shrinker_info()
3632 * by the time the maps are allocated. So, we allocate maps
3633 * here, when for_each_mem_cgroup() can't skip it.
3634 */
3635 if (alloc_shrinker_info(memcg))
3636 goto offline_kmem;
3637
3638 if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled())
3639 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
3640 FLUSH_TIME);
3641 lru_gen_online_memcg(memcg);
3642
3643 /* Online state pins memcg ID, memcg ID pins CSS */
3644 refcount_set(&memcg->id.ref, 1);
3645 css_get(css);
3646
3647 /*
3648 * Ensure mem_cgroup_from_id() works once we're fully online.
3649 *
3650 * We could do this earlier and require callers to filter with
3651 * css_tryget_online(). But right now there are no users that
3652 * need earlier access, and the workingset code relies on the
3653 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
3654 * publish it here at the end of onlining. This matches the
3655 * regular ID destruction during offlining.
3656 */
3657 xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL);
3658
3659 return 0;
3660 offline_kmem:
3661 memcg_offline_kmem(memcg);
3662 remove_id:
3663 mem_cgroup_id_remove(memcg);
3664 return -ENOMEM;
3665 }
3666
mem_cgroup_css_offline(struct cgroup_subsys_state * css)3667 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
3668 {
3669 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3670
3671 memcg1_css_offline(memcg);
3672
3673 page_counter_set_min(&memcg->memory, 0);
3674 page_counter_set_low(&memcg->memory, 0);
3675
3676 zswap_memcg_offline_cleanup(memcg);
3677
3678 memcg_offline_kmem(memcg);
3679 reparent_shrinker_deferred(memcg);
3680 wb_memcg_offline(memcg);
3681 lru_gen_offline_memcg(memcg);
3682
3683 drain_all_stock(memcg);
3684
3685 mem_cgroup_id_put(memcg);
3686 }
3687
mem_cgroup_css_released(struct cgroup_subsys_state * css)3688 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
3689 {
3690 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3691
3692 invalidate_reclaim_iterators(memcg);
3693 lru_gen_release_memcg(memcg);
3694 }
3695
mem_cgroup_css_free(struct cgroup_subsys_state * css)3696 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
3697 {
3698 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3699 int __maybe_unused i;
3700
3701 #ifdef CONFIG_CGROUP_WRITEBACK
3702 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3703 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
3704 #endif
3705 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3706 static_branch_dec(&memcg_sockets_enabled_key);
3707
3708 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg))
3709 static_branch_dec(&memcg_sockets_enabled_key);
3710
3711 if (!cgroup_memory_nobpf)
3712 static_branch_dec(&memcg_bpf_enabled_key);
3713
3714 vmpressure_cleanup(&memcg->vmpressure);
3715 cancel_work_sync(&memcg->high_work);
3716 memcg1_remove_from_trees(memcg);
3717 free_shrinker_info(memcg);
3718 mem_cgroup_free(memcg);
3719 }
3720
3721 /**
3722 * mem_cgroup_css_reset - reset the states of a mem_cgroup
3723 * @css: the target css
3724 *
3725 * Reset the states of the mem_cgroup associated with @css. This is
3726 * invoked when the userland requests disabling on the default hierarchy
3727 * but the memcg is pinned through dependency. The memcg should stop
3728 * applying policies and should revert to the vanilla state as it may be
3729 * made visible again.
3730 *
3731 * The current implementation only resets the essential configurations.
3732 * This needs to be expanded to cover all the visible parts.
3733 */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)3734 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
3735 {
3736 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3737
3738 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
3739 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
3740 #ifdef CONFIG_MEMCG_V1
3741 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
3742 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
3743 #endif
3744 page_counter_set_min(&memcg->memory, 0);
3745 page_counter_set_low(&memcg->memory, 0);
3746 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3747 memcg1_soft_limit_reset(memcg);
3748 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3749 memcg_wb_domain_size_changed(memcg);
3750 }
3751
3752 struct aggregate_control {
3753 /* pointer to the aggregated (CPU and subtree aggregated) counters */
3754 long *aggregate;
3755 /* pointer to the non-hierarchichal (CPU aggregated) counters */
3756 long *local;
3757 /* pointer to the pending child counters during tree propagation */
3758 long *pending;
3759 /* pointer to the parent's pending counters, could be NULL */
3760 long *ppending;
3761 /* pointer to the percpu counters to be aggregated */
3762 long *cstat;
3763 /* pointer to the percpu counters of the last aggregation*/
3764 long *cstat_prev;
3765 /* size of the above counters */
3766 int size;
3767 };
3768
mem_cgroup_stat_aggregate(struct aggregate_control * ac)3769 static void mem_cgroup_stat_aggregate(struct aggregate_control *ac)
3770 {
3771 int i;
3772 long delta, delta_cpu, v;
3773
3774 for (i = 0; i < ac->size; i++) {
3775 /*
3776 * Collect the aggregated propagation counts of groups
3777 * below us. We're in a per-cpu loop here and this is
3778 * a global counter, so the first cycle will get them.
3779 */
3780 delta = ac->pending[i];
3781 if (delta)
3782 ac->pending[i] = 0;
3783
3784 /* Add CPU changes on this level since the last flush */
3785 delta_cpu = 0;
3786 v = READ_ONCE(ac->cstat[i]);
3787 if (v != ac->cstat_prev[i]) {
3788 delta_cpu = v - ac->cstat_prev[i];
3789 delta += delta_cpu;
3790 ac->cstat_prev[i] = v;
3791 }
3792
3793 /* Aggregate counts on this level and propagate upwards */
3794 if (delta_cpu)
3795 ac->local[i] += delta_cpu;
3796
3797 if (delta) {
3798 ac->aggregate[i] += delta;
3799 if (ac->ppending)
3800 ac->ppending[i] += delta;
3801 }
3802 }
3803 }
3804
mem_cgroup_css_rstat_flush(struct cgroup_subsys_state * css,int cpu)3805 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
3806 {
3807 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3808 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3809 struct memcg_vmstats_percpu *statc;
3810 struct aggregate_control ac;
3811 int nid;
3812
3813 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
3814
3815 ac = (struct aggregate_control) {
3816 .aggregate = memcg->vmstats->state,
3817 .local = memcg->vmstats->state_local,
3818 .pending = memcg->vmstats->state_pending,
3819 .ppending = parent ? parent->vmstats->state_pending : NULL,
3820 .cstat = statc->state,
3821 .cstat_prev = statc->state_prev,
3822 .size = MEMCG_VMSTAT_SIZE,
3823 };
3824 mem_cgroup_stat_aggregate(&ac);
3825
3826 ac = (struct aggregate_control) {
3827 .aggregate = memcg->vmstats->events,
3828 .local = memcg->vmstats->events_local,
3829 .pending = memcg->vmstats->events_pending,
3830 .ppending = parent ? parent->vmstats->events_pending : NULL,
3831 .cstat = statc->events,
3832 .cstat_prev = statc->events_prev,
3833 .size = NR_MEMCG_EVENTS,
3834 };
3835 mem_cgroup_stat_aggregate(&ac);
3836
3837 for_each_node_state(nid, N_MEMORY) {
3838 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
3839 struct lruvec_stats *lstats = pn->lruvec_stats;
3840 struct lruvec_stats *plstats = NULL;
3841 struct lruvec_stats_percpu *lstatc;
3842
3843 if (parent)
3844 plstats = parent->nodeinfo[nid]->lruvec_stats;
3845
3846 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
3847
3848 ac = (struct aggregate_control) {
3849 .aggregate = lstats->state,
3850 .local = lstats->state_local,
3851 .pending = lstats->state_pending,
3852 .ppending = plstats ? plstats->state_pending : NULL,
3853 .cstat = lstatc->state,
3854 .cstat_prev = lstatc->state_prev,
3855 .size = NR_MEMCG_NODE_STAT_ITEMS,
3856 };
3857 mem_cgroup_stat_aggregate(&ac);
3858
3859 }
3860 WRITE_ONCE(statc->stats_updates, 0);
3861 /* We are in a per-cpu loop here, only do the atomic write once */
3862 if (atomic64_read(&memcg->vmstats->stats_updates))
3863 atomic64_set(&memcg->vmstats->stats_updates, 0);
3864 }
3865
mem_cgroup_fork(struct task_struct * task)3866 static void mem_cgroup_fork(struct task_struct *task)
3867 {
3868 /*
3869 * Set the update flag to cause task->objcg to be initialized lazily
3870 * on the first allocation. It can be done without any synchronization
3871 * because it's always performed on the current task, so does
3872 * current_objcg_update().
3873 */
3874 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
3875 }
3876
mem_cgroup_exit(struct task_struct * task)3877 static void mem_cgroup_exit(struct task_struct *task)
3878 {
3879 struct obj_cgroup *objcg = task->objcg;
3880
3881 objcg = (struct obj_cgroup *)
3882 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
3883 obj_cgroup_put(objcg);
3884
3885 /*
3886 * Some kernel allocations can happen after this point,
3887 * but let's ignore them. It can be done without any synchronization
3888 * because it's always performed on the current task, so does
3889 * current_objcg_update().
3890 */
3891 task->objcg = NULL;
3892 }
3893
3894 #ifdef CONFIG_LRU_GEN
mem_cgroup_lru_gen_attach(struct cgroup_taskset * tset)3895 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
3896 {
3897 struct task_struct *task;
3898 struct cgroup_subsys_state *css;
3899
3900 /* find the first leader if there is any */
3901 cgroup_taskset_for_each_leader(task, css, tset)
3902 break;
3903
3904 if (!task)
3905 return;
3906
3907 task_lock(task);
3908 if (task->mm && READ_ONCE(task->mm->owner) == task)
3909 lru_gen_migrate_mm(task->mm);
3910 task_unlock(task);
3911 }
3912 #else
mem_cgroup_lru_gen_attach(struct cgroup_taskset * tset)3913 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
3914 #endif /* CONFIG_LRU_GEN */
3915
mem_cgroup_kmem_attach(struct cgroup_taskset * tset)3916 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
3917 {
3918 struct task_struct *task;
3919 struct cgroup_subsys_state *css;
3920
3921 cgroup_taskset_for_each(task, css, tset) {
3922 /* atomically set the update bit */
3923 set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
3924 }
3925 }
3926
mem_cgroup_attach(struct cgroup_taskset * tset)3927 static void mem_cgroup_attach(struct cgroup_taskset *tset)
3928 {
3929 mem_cgroup_lru_gen_attach(tset);
3930 mem_cgroup_kmem_attach(tset);
3931 }
3932
seq_puts_memcg_tunable(struct seq_file * m,unsigned long value)3933 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
3934 {
3935 if (value == PAGE_COUNTER_MAX)
3936 seq_puts(m, "max\n");
3937 else
3938 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
3939
3940 return 0;
3941 }
3942
memory_current_read(struct cgroup_subsys_state * css,struct cftype * cft)3943 static u64 memory_current_read(struct cgroup_subsys_state *css,
3944 struct cftype *cft)
3945 {
3946 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3947
3948 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
3949 }
3950
3951 #define OFP_PEAK_UNSET (((-1UL)))
3952
peak_show(struct seq_file * sf,void * v,struct page_counter * pc)3953 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc)
3954 {
3955 struct cgroup_of_peak *ofp = of_peak(sf->private);
3956 u64 fd_peak = READ_ONCE(ofp->value), peak;
3957
3958 /* User wants global or local peak? */
3959 if (fd_peak == OFP_PEAK_UNSET)
3960 peak = pc->watermark;
3961 else
3962 peak = max(fd_peak, READ_ONCE(pc->local_watermark));
3963
3964 seq_printf(sf, "%llu\n", peak * PAGE_SIZE);
3965 return 0;
3966 }
3967
memory_peak_show(struct seq_file * sf,void * v)3968 static int memory_peak_show(struct seq_file *sf, void *v)
3969 {
3970 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3971
3972 return peak_show(sf, v, &memcg->memory);
3973 }
3974
peak_open(struct kernfs_open_file * of)3975 static int peak_open(struct kernfs_open_file *of)
3976 {
3977 struct cgroup_of_peak *ofp = of_peak(of);
3978
3979 ofp->value = OFP_PEAK_UNSET;
3980 return 0;
3981 }
3982
peak_release(struct kernfs_open_file * of)3983 static void peak_release(struct kernfs_open_file *of)
3984 {
3985 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3986 struct cgroup_of_peak *ofp = of_peak(of);
3987
3988 if (ofp->value == OFP_PEAK_UNSET) {
3989 /* fast path (no writes on this fd) */
3990 return;
3991 }
3992 spin_lock(&memcg->peaks_lock);
3993 list_del(&ofp->list);
3994 spin_unlock(&memcg->peaks_lock);
3995 }
3996
peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,struct page_counter * pc,struct list_head * watchers)3997 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
3998 loff_t off, struct page_counter *pc,
3999 struct list_head *watchers)
4000 {
4001 unsigned long usage;
4002 struct cgroup_of_peak *peer_ctx;
4003 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4004 struct cgroup_of_peak *ofp = of_peak(of);
4005
4006 spin_lock(&memcg->peaks_lock);
4007
4008 usage = page_counter_read(pc);
4009 WRITE_ONCE(pc->local_watermark, usage);
4010
4011 list_for_each_entry(peer_ctx, watchers, list)
4012 if (usage > peer_ctx->value)
4013 WRITE_ONCE(peer_ctx->value, usage);
4014
4015 /* initial write, register watcher */
4016 if (ofp->value == -1)
4017 list_add(&ofp->list, watchers);
4018
4019 WRITE_ONCE(ofp->value, usage);
4020 spin_unlock(&memcg->peaks_lock);
4021
4022 return nbytes;
4023 }
4024
memory_peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4025 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf,
4026 size_t nbytes, loff_t off)
4027 {
4028 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4029
4030 return peak_write(of, buf, nbytes, off, &memcg->memory,
4031 &memcg->memory_peaks);
4032 }
4033
4034 #undef OFP_PEAK_UNSET
4035
memory_min_show(struct seq_file * m,void * v)4036 static int memory_min_show(struct seq_file *m, void *v)
4037 {
4038 return seq_puts_memcg_tunable(m,
4039 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
4040 }
4041
memory_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4042 static ssize_t memory_min_write(struct kernfs_open_file *of,
4043 char *buf, size_t nbytes, loff_t off)
4044 {
4045 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4046 unsigned long min;
4047 int err;
4048
4049 buf = strstrip(buf);
4050 err = page_counter_memparse(buf, "max", &min);
4051 if (err)
4052 return err;
4053
4054 page_counter_set_min(&memcg->memory, min);
4055
4056 return nbytes;
4057 }
4058
memory_low_show(struct seq_file * m,void * v)4059 static int memory_low_show(struct seq_file *m, void *v)
4060 {
4061 return seq_puts_memcg_tunable(m,
4062 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
4063 }
4064
memory_low_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4065 static ssize_t memory_low_write(struct kernfs_open_file *of,
4066 char *buf, size_t nbytes, loff_t off)
4067 {
4068 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4069 unsigned long low;
4070 int err;
4071
4072 buf = strstrip(buf);
4073 err = page_counter_memparse(buf, "max", &low);
4074 if (err)
4075 return err;
4076
4077 page_counter_set_low(&memcg->memory, low);
4078
4079 return nbytes;
4080 }
4081
memory_high_show(struct seq_file * m,void * v)4082 static int memory_high_show(struct seq_file *m, void *v)
4083 {
4084 return seq_puts_memcg_tunable(m,
4085 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
4086 }
4087
memory_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4088 static ssize_t memory_high_write(struct kernfs_open_file *of,
4089 char *buf, size_t nbytes, loff_t off)
4090 {
4091 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4092 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4093 bool drained = false;
4094 unsigned long high;
4095 int err;
4096
4097 buf = strstrip(buf);
4098 err = page_counter_memparse(buf, "max", &high);
4099 if (err)
4100 return err;
4101
4102 page_counter_set_high(&memcg->memory, high);
4103
4104 for (;;) {
4105 unsigned long nr_pages = page_counter_read(&memcg->memory);
4106 unsigned long reclaimed;
4107
4108 if (nr_pages <= high)
4109 break;
4110
4111 if (signal_pending(current))
4112 break;
4113
4114 if (!drained) {
4115 drain_all_stock(memcg);
4116 drained = true;
4117 continue;
4118 }
4119
4120 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
4121 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL);
4122
4123 if (!reclaimed && !nr_retries--)
4124 break;
4125 }
4126
4127 memcg_wb_domain_size_changed(memcg);
4128 return nbytes;
4129 }
4130
memory_max_show(struct seq_file * m,void * v)4131 static int memory_max_show(struct seq_file *m, void *v)
4132 {
4133 return seq_puts_memcg_tunable(m,
4134 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
4135 }
4136
memory_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4137 static ssize_t memory_max_write(struct kernfs_open_file *of,
4138 char *buf, size_t nbytes, loff_t off)
4139 {
4140 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4141 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
4142 bool drained = false;
4143 unsigned long max;
4144 int err;
4145
4146 buf = strstrip(buf);
4147 err = page_counter_memparse(buf, "max", &max);
4148 if (err)
4149 return err;
4150
4151 xchg(&memcg->memory.max, max);
4152
4153 for (;;) {
4154 unsigned long nr_pages = page_counter_read(&memcg->memory);
4155
4156 if (nr_pages <= max)
4157 break;
4158
4159 if (signal_pending(current))
4160 break;
4161
4162 if (!drained) {
4163 drain_all_stock(memcg);
4164 drained = true;
4165 continue;
4166 }
4167
4168 if (nr_reclaims) {
4169 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
4170 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL))
4171 nr_reclaims--;
4172 continue;
4173 }
4174
4175 memcg_memory_event(memcg, MEMCG_OOM);
4176 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
4177 break;
4178 cond_resched();
4179 }
4180
4181 memcg_wb_domain_size_changed(memcg);
4182 return nbytes;
4183 }
4184
4185 /*
4186 * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
4187 * if any new events become available.
4188 */
__memory_events_show(struct seq_file * m,atomic_long_t * events)4189 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
4190 {
4191 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
4192 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
4193 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
4194 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
4195 seq_printf(m, "oom_kill %lu\n",
4196 atomic_long_read(&events[MEMCG_OOM_KILL]));
4197 seq_printf(m, "oom_group_kill %lu\n",
4198 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
4199 }
4200
memory_events_show(struct seq_file * m,void * v)4201 static int memory_events_show(struct seq_file *m, void *v)
4202 {
4203 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4204
4205 __memory_events_show(m, memcg->memory_events);
4206 return 0;
4207 }
4208
memory_events_local_show(struct seq_file * m,void * v)4209 static int memory_events_local_show(struct seq_file *m, void *v)
4210 {
4211 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4212
4213 __memory_events_show(m, memcg->memory_events_local);
4214 return 0;
4215 }
4216
memory_stat_show(struct seq_file * m,void * v)4217 int memory_stat_show(struct seq_file *m, void *v)
4218 {
4219 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4220 char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL);
4221 struct seq_buf s;
4222
4223 if (!buf)
4224 return -ENOMEM;
4225 seq_buf_init(&s, buf, SEQ_BUF_SIZE);
4226 memory_stat_format(memcg, &s);
4227 seq_puts(m, buf);
4228 kfree(buf);
4229 return 0;
4230 }
4231
4232 #ifdef CONFIG_NUMA
lruvec_page_state_output(struct lruvec * lruvec,int item)4233 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
4234 int item)
4235 {
4236 return lruvec_page_state(lruvec, item) *
4237 memcg_page_state_output_unit(item);
4238 }
4239
memory_numa_stat_show(struct seq_file * m,void * v)4240 static int memory_numa_stat_show(struct seq_file *m, void *v)
4241 {
4242 int i;
4243 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4244
4245 mem_cgroup_flush_stats(memcg);
4246
4247 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
4248 int nid;
4249
4250 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
4251 continue;
4252
4253 seq_printf(m, "%s", memory_stats[i].name);
4254 for_each_node_state(nid, N_MEMORY) {
4255 u64 size;
4256 struct lruvec *lruvec;
4257
4258 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4259 size = lruvec_page_state_output(lruvec,
4260 memory_stats[i].idx);
4261 seq_printf(m, " N%d=%llu", nid, size);
4262 }
4263 seq_putc(m, '\n');
4264 }
4265
4266 return 0;
4267 }
4268 #endif
4269
memory_oom_group_show(struct seq_file * m,void * v)4270 static int memory_oom_group_show(struct seq_file *m, void *v)
4271 {
4272 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4273
4274 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
4275
4276 return 0;
4277 }
4278
memory_oom_group_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4279 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
4280 char *buf, size_t nbytes, loff_t off)
4281 {
4282 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4283 int ret, oom_group;
4284
4285 buf = strstrip(buf);
4286 if (!buf)
4287 return -EINVAL;
4288
4289 ret = kstrtoint(buf, 0, &oom_group);
4290 if (ret)
4291 return ret;
4292
4293 if (oom_group != 0 && oom_group != 1)
4294 return -EINVAL;
4295
4296 WRITE_ONCE(memcg->oom_group, oom_group);
4297
4298 return nbytes;
4299 }
4300
4301 enum {
4302 MEMORY_RECLAIM_SWAPPINESS = 0,
4303 MEMORY_RECLAIM_NULL,
4304 };
4305
4306 static const match_table_t tokens = {
4307 { MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"},
4308 { MEMORY_RECLAIM_NULL, NULL },
4309 };
4310
memory_reclaim(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4311 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
4312 size_t nbytes, loff_t off)
4313 {
4314 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4315 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4316 unsigned long nr_to_reclaim, nr_reclaimed = 0;
4317 int swappiness = -1;
4318 unsigned int reclaim_options;
4319 char *old_buf, *start;
4320 substring_t args[MAX_OPT_ARGS];
4321
4322 buf = strstrip(buf);
4323
4324 old_buf = buf;
4325 nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE;
4326 if (buf == old_buf)
4327 return -EINVAL;
4328
4329 buf = strstrip(buf);
4330
4331 while ((start = strsep(&buf, " ")) != NULL) {
4332 if (!strlen(start))
4333 continue;
4334 switch (match_token(start, tokens, args)) {
4335 case MEMORY_RECLAIM_SWAPPINESS:
4336 if (match_int(&args[0], &swappiness))
4337 return -EINVAL;
4338 if (swappiness < MIN_SWAPPINESS || swappiness > MAX_SWAPPINESS)
4339 return -EINVAL;
4340 break;
4341 default:
4342 return -EINVAL;
4343 }
4344 }
4345
4346 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
4347 while (nr_reclaimed < nr_to_reclaim) {
4348 /* Will converge on zero, but reclaim enforces a minimum */
4349 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4;
4350 unsigned long reclaimed;
4351
4352 if (signal_pending(current))
4353 return -EINTR;
4354
4355 /*
4356 * This is the final attempt, drain percpu lru caches in the
4357 * hope of introducing more evictable pages for
4358 * try_to_free_mem_cgroup_pages().
4359 */
4360 if (!nr_retries)
4361 lru_add_drain_all();
4362
4363 reclaimed = try_to_free_mem_cgroup_pages(memcg,
4364 batch_size, GFP_KERNEL,
4365 reclaim_options,
4366 swappiness == -1 ? NULL : &swappiness);
4367
4368 if (!reclaimed && !nr_retries--)
4369 return -EAGAIN;
4370
4371 nr_reclaimed += reclaimed;
4372 }
4373
4374 return nbytes;
4375 }
4376
4377 static struct cftype memory_files[] = {
4378 {
4379 .name = "current",
4380 .flags = CFTYPE_NOT_ON_ROOT,
4381 .read_u64 = memory_current_read,
4382 },
4383 {
4384 .name = "peak",
4385 .flags = CFTYPE_NOT_ON_ROOT,
4386 .open = peak_open,
4387 .release = peak_release,
4388 .seq_show = memory_peak_show,
4389 .write = memory_peak_write,
4390 },
4391 {
4392 .name = "min",
4393 .flags = CFTYPE_NOT_ON_ROOT,
4394 .seq_show = memory_min_show,
4395 .write = memory_min_write,
4396 },
4397 {
4398 .name = "low",
4399 .flags = CFTYPE_NOT_ON_ROOT,
4400 .seq_show = memory_low_show,
4401 .write = memory_low_write,
4402 },
4403 {
4404 .name = "high",
4405 .flags = CFTYPE_NOT_ON_ROOT,
4406 .seq_show = memory_high_show,
4407 .write = memory_high_write,
4408 },
4409 {
4410 .name = "max",
4411 .flags = CFTYPE_NOT_ON_ROOT,
4412 .seq_show = memory_max_show,
4413 .write = memory_max_write,
4414 },
4415 {
4416 .name = "events",
4417 .flags = CFTYPE_NOT_ON_ROOT,
4418 .file_offset = offsetof(struct mem_cgroup, events_file),
4419 .seq_show = memory_events_show,
4420 },
4421 {
4422 .name = "events.local",
4423 .flags = CFTYPE_NOT_ON_ROOT,
4424 .file_offset = offsetof(struct mem_cgroup, events_local_file),
4425 .seq_show = memory_events_local_show,
4426 },
4427 {
4428 .name = "stat",
4429 .seq_show = memory_stat_show,
4430 },
4431 #ifdef CONFIG_NUMA
4432 {
4433 .name = "numa_stat",
4434 .seq_show = memory_numa_stat_show,
4435 },
4436 #endif
4437 {
4438 .name = "oom.group",
4439 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
4440 .seq_show = memory_oom_group_show,
4441 .write = memory_oom_group_write,
4442 },
4443 {
4444 .name = "reclaim",
4445 .flags = CFTYPE_NS_DELEGATABLE,
4446 .write = memory_reclaim,
4447 },
4448 { } /* terminate */
4449 };
4450
4451 struct cgroup_subsys memory_cgrp_subsys = {
4452 .css_alloc = mem_cgroup_css_alloc,
4453 .css_online = mem_cgroup_css_online,
4454 .css_offline = mem_cgroup_css_offline,
4455 .css_released = mem_cgroup_css_released,
4456 .css_free = mem_cgroup_css_free,
4457 .css_reset = mem_cgroup_css_reset,
4458 .css_rstat_flush = mem_cgroup_css_rstat_flush,
4459 .attach = mem_cgroup_attach,
4460 .fork = mem_cgroup_fork,
4461 .exit = mem_cgroup_exit,
4462 .dfl_cftypes = memory_files,
4463 #ifdef CONFIG_MEMCG_V1
4464 .legacy_cftypes = mem_cgroup_legacy_files,
4465 #endif
4466 .early_init = 0,
4467 };
4468
4469 /**
4470 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
4471 * @root: the top ancestor of the sub-tree being checked
4472 * @memcg: the memory cgroup to check
4473 *
4474 * WARNING: This function is not stateless! It can only be used as part
4475 * of a top-down tree iteration, not for isolated queries.
4476 */
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)4477 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
4478 struct mem_cgroup *memcg)
4479 {
4480 bool recursive_protection =
4481 cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT;
4482
4483 if (mem_cgroup_disabled())
4484 return;
4485
4486 if (!root)
4487 root = root_mem_cgroup;
4488
4489 page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection);
4490 }
4491
charge_memcg(struct folio * folio,struct mem_cgroup * memcg,gfp_t gfp)4492 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
4493 gfp_t gfp)
4494 {
4495 int ret;
4496
4497 ret = try_charge(memcg, gfp, folio_nr_pages(folio));
4498 if (ret)
4499 goto out;
4500
4501 css_get(&memcg->css);
4502 commit_charge(folio, memcg);
4503 memcg1_commit_charge(folio, memcg);
4504 out:
4505 return ret;
4506 }
4507
__mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)4508 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
4509 {
4510 struct mem_cgroup *memcg;
4511 int ret;
4512
4513 memcg = get_mem_cgroup_from_mm(mm);
4514 ret = charge_memcg(folio, memcg, gfp);
4515 css_put(&memcg->css);
4516
4517 return ret;
4518 }
4519
4520 /**
4521 * mem_cgroup_charge_hugetlb - charge the memcg for a hugetlb folio
4522 * @folio: folio being charged
4523 * @gfp: reclaim mode
4524 *
4525 * This function is called when allocating a huge page folio, after the page has
4526 * already been obtained and charged to the appropriate hugetlb cgroup
4527 * controller (if it is enabled).
4528 *
4529 * Returns ENOMEM if the memcg is already full.
4530 * Returns 0 if either the charge was successful, or if we skip the charging.
4531 */
mem_cgroup_charge_hugetlb(struct folio * folio,gfp_t gfp)4532 int mem_cgroup_charge_hugetlb(struct folio *folio, gfp_t gfp)
4533 {
4534 struct mem_cgroup *memcg = get_mem_cgroup_from_current();
4535 int ret = 0;
4536
4537 /*
4538 * Even memcg does not account for hugetlb, we still want to update
4539 * system-level stats via lruvec_stat_mod_folio. Return 0, and skip
4540 * charging the memcg.
4541 */
4542 if (mem_cgroup_disabled() || !memcg_accounts_hugetlb() ||
4543 !memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
4544 goto out;
4545
4546 if (charge_memcg(folio, memcg, gfp))
4547 ret = -ENOMEM;
4548
4549 out:
4550 mem_cgroup_put(memcg);
4551 return ret;
4552 }
4553
4554 /**
4555 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
4556 * @folio: folio to charge.
4557 * @mm: mm context of the victim
4558 * @gfp: reclaim mode
4559 * @entry: swap entry for which the folio is allocated
4560 *
4561 * This function charges a folio allocated for swapin. Please call this before
4562 * adding the folio to the swapcache.
4563 *
4564 * Returns 0 on success. Otherwise, an error code is returned.
4565 */
mem_cgroup_swapin_charge_folio(struct folio * folio,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)4566 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
4567 gfp_t gfp, swp_entry_t entry)
4568 {
4569 struct mem_cgroup *memcg;
4570 unsigned short id;
4571 int ret;
4572
4573 if (mem_cgroup_disabled())
4574 return 0;
4575
4576 id = lookup_swap_cgroup_id(entry);
4577 rcu_read_lock();
4578 memcg = mem_cgroup_from_id(id);
4579 if (!memcg || !css_tryget_online(&memcg->css))
4580 memcg = get_mem_cgroup_from_mm(mm);
4581 rcu_read_unlock();
4582
4583 ret = charge_memcg(folio, memcg, gfp);
4584
4585 css_put(&memcg->css);
4586 return ret;
4587 }
4588
4589 /*
4590 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
4591 * @entry: the first swap entry for which the pages are charged
4592 * @nr_pages: number of pages which will be uncharged
4593 *
4594 * Call this function after successfully adding the charged page to swapcache.
4595 *
4596 * Note: This function assumes the page for which swap slot is being uncharged
4597 * is order 0 page.
4598 */
mem_cgroup_swapin_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)4599 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
4600 {
4601 /*
4602 * Cgroup1's unified memory+swap counter has been charged with the
4603 * new swapcache page, finish the transfer by uncharging the swap
4604 * slot. The swap slot would also get uncharged when it dies, but
4605 * it can stick around indefinitely and we'd count the page twice
4606 * the entire time.
4607 *
4608 * Cgroup2 has separate resource counters for memory and swap,
4609 * so this is a non-issue here. Memory and swap charge lifetimes
4610 * correspond 1:1 to page and swap slot lifetimes: we charge the
4611 * page to memory here, and uncharge swap when the slot is freed.
4612 */
4613 if (do_memsw_account()) {
4614 /*
4615 * The swap entry might not get freed for a long time,
4616 * let's not wait for it. The page already received a
4617 * memory+swap charge, drop the swap entry duplicate.
4618 */
4619 mem_cgroup_uncharge_swap(entry, nr_pages);
4620 }
4621 }
4622
4623 struct uncharge_gather {
4624 struct mem_cgroup *memcg;
4625 unsigned long nr_memory;
4626 unsigned long pgpgout;
4627 unsigned long nr_kmem;
4628 int nid;
4629 };
4630
uncharge_gather_clear(struct uncharge_gather * ug)4631 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
4632 {
4633 memset(ug, 0, sizeof(*ug));
4634 }
4635
uncharge_batch(const struct uncharge_gather * ug)4636 static void uncharge_batch(const struct uncharge_gather *ug)
4637 {
4638 if (ug->nr_memory) {
4639 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
4640 if (do_memsw_account())
4641 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
4642 if (ug->nr_kmem) {
4643 mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem);
4644 memcg1_account_kmem(ug->memcg, -ug->nr_kmem);
4645 }
4646 memcg1_oom_recover(ug->memcg);
4647 }
4648
4649 memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid);
4650
4651 /* drop reference from uncharge_folio */
4652 css_put(&ug->memcg->css);
4653 }
4654
uncharge_folio(struct folio * folio,struct uncharge_gather * ug)4655 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
4656 {
4657 long nr_pages;
4658 struct mem_cgroup *memcg;
4659 struct obj_cgroup *objcg;
4660
4661 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
4662
4663 /*
4664 * Nobody should be changing or seriously looking at
4665 * folio memcg or objcg at this point, we have fully
4666 * exclusive access to the folio.
4667 */
4668 if (folio_memcg_kmem(folio)) {
4669 objcg = __folio_objcg(folio);
4670 /*
4671 * This get matches the put at the end of the function and
4672 * kmem pages do not hold memcg references anymore.
4673 */
4674 memcg = get_mem_cgroup_from_objcg(objcg);
4675 } else {
4676 memcg = __folio_memcg(folio);
4677 }
4678
4679 if (!memcg)
4680 return;
4681
4682 if (ug->memcg != memcg) {
4683 if (ug->memcg) {
4684 uncharge_batch(ug);
4685 uncharge_gather_clear(ug);
4686 }
4687 ug->memcg = memcg;
4688 ug->nid = folio_nid(folio);
4689
4690 /* pairs with css_put in uncharge_batch */
4691 css_get(&memcg->css);
4692 }
4693
4694 nr_pages = folio_nr_pages(folio);
4695
4696 if (folio_memcg_kmem(folio)) {
4697 ug->nr_memory += nr_pages;
4698 ug->nr_kmem += nr_pages;
4699
4700 folio->memcg_data = 0;
4701 obj_cgroup_put(objcg);
4702 } else {
4703 /* LRU pages aren't accounted at the root level */
4704 if (!mem_cgroup_is_root(memcg))
4705 ug->nr_memory += nr_pages;
4706 ug->pgpgout++;
4707
4708 WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
4709 folio->memcg_data = 0;
4710 }
4711
4712 css_put(&memcg->css);
4713 }
4714
__mem_cgroup_uncharge(struct folio * folio)4715 void __mem_cgroup_uncharge(struct folio *folio)
4716 {
4717 struct uncharge_gather ug;
4718
4719 /* Don't touch folio->lru of any random page, pre-check: */
4720 if (!folio_memcg_charged(folio))
4721 return;
4722
4723 uncharge_gather_clear(&ug);
4724 uncharge_folio(folio, &ug);
4725 uncharge_batch(&ug);
4726 }
4727
__mem_cgroup_uncharge_folios(struct folio_batch * folios)4728 void __mem_cgroup_uncharge_folios(struct folio_batch *folios)
4729 {
4730 struct uncharge_gather ug;
4731 unsigned int i;
4732
4733 uncharge_gather_clear(&ug);
4734 for (i = 0; i < folios->nr; i++)
4735 uncharge_folio(folios->folios[i], &ug);
4736 if (ug.memcg)
4737 uncharge_batch(&ug);
4738 }
4739
4740 /**
4741 * mem_cgroup_replace_folio - Charge a folio's replacement.
4742 * @old: Currently circulating folio.
4743 * @new: Replacement folio.
4744 *
4745 * Charge @new as a replacement folio for @old. @old will
4746 * be uncharged upon free.
4747 *
4748 * Both folios must be locked, @new->mapping must be set up.
4749 */
mem_cgroup_replace_folio(struct folio * old,struct folio * new)4750 void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
4751 {
4752 struct mem_cgroup *memcg;
4753 long nr_pages = folio_nr_pages(new);
4754
4755 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4756 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4757 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4758 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
4759
4760 if (mem_cgroup_disabled())
4761 return;
4762
4763 /* Page cache replacement: new folio already charged? */
4764 if (folio_memcg_charged(new))
4765 return;
4766
4767 memcg = folio_memcg(old);
4768 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
4769 if (!memcg)
4770 return;
4771
4772 /* Force-charge the new page. The old one will be freed soon */
4773 if (!mem_cgroup_is_root(memcg)) {
4774 page_counter_charge(&memcg->memory, nr_pages);
4775 if (do_memsw_account())
4776 page_counter_charge(&memcg->memsw, nr_pages);
4777 }
4778
4779 css_get(&memcg->css);
4780 commit_charge(new, memcg);
4781 memcg1_commit_charge(new, memcg);
4782 }
4783
4784 /**
4785 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
4786 * @old: Currently circulating folio.
4787 * @new: Replacement folio.
4788 *
4789 * Transfer the memcg data from the old folio to the new folio for migration.
4790 * The old folio's data info will be cleared. Note that the memory counters
4791 * will remain unchanged throughout the process.
4792 *
4793 * Both folios must be locked, @new->mapping must be set up.
4794 */
mem_cgroup_migrate(struct folio * old,struct folio * new)4795 void mem_cgroup_migrate(struct folio *old, struct folio *new)
4796 {
4797 struct mem_cgroup *memcg;
4798
4799 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4800 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4801 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4802 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
4803 VM_BUG_ON_FOLIO(folio_test_lru(old), old);
4804
4805 if (mem_cgroup_disabled())
4806 return;
4807
4808 memcg = folio_memcg(old);
4809 /*
4810 * Note that it is normal to see !memcg for a hugetlb folio.
4811 * For e.g, itt could have been allocated when memory_hugetlb_accounting
4812 * was not selected.
4813 */
4814 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
4815 if (!memcg)
4816 return;
4817
4818 /* Transfer the charge and the css ref */
4819 commit_charge(new, memcg);
4820
4821 /* Warning should never happen, so don't worry about refcount non-0 */
4822 WARN_ON_ONCE(folio_unqueue_deferred_split(old));
4823 old->memcg_data = 0;
4824 }
4825
4826 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
4827 EXPORT_SYMBOL(memcg_sockets_enabled_key);
4828
mem_cgroup_sk_alloc(struct sock * sk)4829 void mem_cgroup_sk_alloc(struct sock *sk)
4830 {
4831 struct mem_cgroup *memcg;
4832
4833 if (!mem_cgroup_sockets_enabled)
4834 return;
4835
4836 /* Do not associate the sock with unrelated interrupted task's memcg. */
4837 if (!in_task())
4838 return;
4839
4840 rcu_read_lock();
4841 memcg = mem_cgroup_from_task(current);
4842 if (mem_cgroup_is_root(memcg))
4843 goto out;
4844 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg))
4845 goto out;
4846 if (css_tryget(&memcg->css))
4847 sk->sk_memcg = memcg;
4848 out:
4849 rcu_read_unlock();
4850 }
4851
mem_cgroup_sk_free(struct sock * sk)4852 void mem_cgroup_sk_free(struct sock *sk)
4853 {
4854 if (sk->sk_memcg)
4855 css_put(&sk->sk_memcg->css);
4856 }
4857
4858 /**
4859 * mem_cgroup_charge_skmem - charge socket memory
4860 * @memcg: memcg to charge
4861 * @nr_pages: number of pages to charge
4862 * @gfp_mask: reclaim mode
4863 *
4864 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
4865 * @memcg's configured limit, %false if it doesn't.
4866 */
mem_cgroup_charge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)4867 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
4868 gfp_t gfp_mask)
4869 {
4870 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
4871 return memcg1_charge_skmem(memcg, nr_pages, gfp_mask);
4872
4873 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
4874 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
4875 return true;
4876 }
4877
4878 return false;
4879 }
4880
4881 /**
4882 * mem_cgroup_uncharge_skmem - uncharge socket memory
4883 * @memcg: memcg to uncharge
4884 * @nr_pages: number of pages to uncharge
4885 */
mem_cgroup_uncharge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages)4886 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
4887 {
4888 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
4889 memcg1_uncharge_skmem(memcg, nr_pages);
4890 return;
4891 }
4892
4893 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
4894
4895 refill_stock(memcg, nr_pages);
4896 }
4897
cgroup_memory(char * s)4898 static int __init cgroup_memory(char *s)
4899 {
4900 char *token;
4901
4902 while ((token = strsep(&s, ",")) != NULL) {
4903 if (!*token)
4904 continue;
4905 if (!strcmp(token, "nosocket"))
4906 cgroup_memory_nosocket = true;
4907 if (!strcmp(token, "nokmem"))
4908 cgroup_memory_nokmem = true;
4909 if (!strcmp(token, "nobpf"))
4910 cgroup_memory_nobpf = true;
4911 }
4912 return 1;
4913 }
4914 __setup("cgroup.memory=", cgroup_memory);
4915
4916 /*
4917 * subsys_initcall() for memory controller.
4918 *
4919 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
4920 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
4921 * basically everything that doesn't depend on a specific mem_cgroup structure
4922 * should be initialized from here.
4923 */
mem_cgroup_init(void)4924 static int __init mem_cgroup_init(void)
4925 {
4926 int cpu;
4927
4928 /*
4929 * Currently s32 type (can refer to struct batched_lruvec_stat) is
4930 * used for per-memcg-per-cpu caching of per-node statistics. In order
4931 * to work fine, we should make sure that the overfill threshold can't
4932 * exceed S32_MAX / PAGE_SIZE.
4933 */
4934 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
4935
4936 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
4937 memcg_hotplug_cpu_dead);
4938
4939 for_each_possible_cpu(cpu)
4940 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
4941 drain_local_stock);
4942
4943 return 0;
4944 }
4945 subsys_initcall(mem_cgroup_init);
4946
4947 #ifdef CONFIG_SWAP
mem_cgroup_id_get_online(struct mem_cgroup * memcg)4948 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
4949 {
4950 while (!refcount_inc_not_zero(&memcg->id.ref)) {
4951 /*
4952 * The root cgroup cannot be destroyed, so it's refcount must
4953 * always be >= 1.
4954 */
4955 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
4956 VM_BUG_ON(1);
4957 break;
4958 }
4959 memcg = parent_mem_cgroup(memcg);
4960 if (!memcg)
4961 memcg = root_mem_cgroup;
4962 }
4963 return memcg;
4964 }
4965
4966 /**
4967 * mem_cgroup_swapout - transfer a memsw charge to swap
4968 * @folio: folio whose memsw charge to transfer
4969 * @entry: swap entry to move the charge to
4970 *
4971 * Transfer the memsw charge of @folio to @entry.
4972 */
mem_cgroup_swapout(struct folio * folio,swp_entry_t entry)4973 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
4974 {
4975 struct mem_cgroup *memcg, *swap_memcg;
4976 unsigned int nr_entries;
4977
4978 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
4979 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
4980
4981 if (mem_cgroup_disabled())
4982 return;
4983
4984 if (!do_memsw_account())
4985 return;
4986
4987 memcg = folio_memcg(folio);
4988
4989 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
4990 if (!memcg)
4991 return;
4992
4993 /*
4994 * In case the memcg owning these pages has been offlined and doesn't
4995 * have an ID allocated to it anymore, charge the closest online
4996 * ancestor for the swap instead and transfer the memory+swap charge.
4997 */
4998 swap_memcg = mem_cgroup_id_get_online(memcg);
4999 nr_entries = folio_nr_pages(folio);
5000 /* Get references for the tail pages, too */
5001 if (nr_entries > 1)
5002 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
5003 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
5004
5005 swap_cgroup_record(folio, mem_cgroup_id(swap_memcg), entry);
5006
5007 folio_unqueue_deferred_split(folio);
5008 folio->memcg_data = 0;
5009
5010 if (!mem_cgroup_is_root(memcg))
5011 page_counter_uncharge(&memcg->memory, nr_entries);
5012
5013 if (memcg != swap_memcg) {
5014 if (!mem_cgroup_is_root(swap_memcg))
5015 page_counter_charge(&swap_memcg->memsw, nr_entries);
5016 page_counter_uncharge(&memcg->memsw, nr_entries);
5017 }
5018
5019 memcg1_swapout(folio, memcg);
5020 css_put(&memcg->css);
5021 }
5022
5023 /**
5024 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
5025 * @folio: folio being added to swap
5026 * @entry: swap entry to charge
5027 *
5028 * Try to charge @folio's memcg for the swap space at @entry.
5029 *
5030 * Returns 0 on success, -ENOMEM on failure.
5031 */
__mem_cgroup_try_charge_swap(struct folio * folio,swp_entry_t entry)5032 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
5033 {
5034 unsigned int nr_pages = folio_nr_pages(folio);
5035 struct page_counter *counter;
5036 struct mem_cgroup *memcg;
5037
5038 if (do_memsw_account())
5039 return 0;
5040
5041 memcg = folio_memcg(folio);
5042
5043 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
5044 if (!memcg)
5045 return 0;
5046
5047 if (!entry.val) {
5048 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5049 return 0;
5050 }
5051
5052 memcg = mem_cgroup_id_get_online(memcg);
5053
5054 if (!mem_cgroup_is_root(memcg) &&
5055 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
5056 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
5057 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5058 mem_cgroup_id_put(memcg);
5059 return -ENOMEM;
5060 }
5061
5062 /* Get references for the tail pages, too */
5063 if (nr_pages > 1)
5064 mem_cgroup_id_get_many(memcg, nr_pages - 1);
5065 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
5066
5067 swap_cgroup_record(folio, mem_cgroup_id(memcg), entry);
5068
5069 return 0;
5070 }
5071
5072 /**
5073 * __mem_cgroup_uncharge_swap - uncharge swap space
5074 * @entry: swap entry to uncharge
5075 * @nr_pages: the amount of swap space to uncharge
5076 */
__mem_cgroup_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)5077 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
5078 {
5079 struct mem_cgroup *memcg;
5080 unsigned short id;
5081
5082 id = swap_cgroup_clear(entry, nr_pages);
5083 rcu_read_lock();
5084 memcg = mem_cgroup_from_id(id);
5085 if (memcg) {
5086 if (!mem_cgroup_is_root(memcg)) {
5087 if (do_memsw_account())
5088 page_counter_uncharge(&memcg->memsw, nr_pages);
5089 else
5090 page_counter_uncharge(&memcg->swap, nr_pages);
5091 }
5092 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
5093 mem_cgroup_id_put_many(memcg, nr_pages);
5094 }
5095 rcu_read_unlock();
5096 }
5097
mem_cgroup_get_nr_swap_pages(struct mem_cgroup * memcg)5098 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5099 {
5100 long nr_swap_pages = get_nr_swap_pages();
5101
5102 if (mem_cgroup_disabled() || do_memsw_account())
5103 return nr_swap_pages;
5104 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
5105 nr_swap_pages = min_t(long, nr_swap_pages,
5106 READ_ONCE(memcg->swap.max) -
5107 page_counter_read(&memcg->swap));
5108 return nr_swap_pages;
5109 }
5110
mem_cgroup_swap_full(struct folio * folio)5111 bool mem_cgroup_swap_full(struct folio *folio)
5112 {
5113 struct mem_cgroup *memcg;
5114
5115 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5116
5117 if (vm_swap_full())
5118 return true;
5119 if (do_memsw_account())
5120 return false;
5121
5122 memcg = folio_memcg(folio);
5123 if (!memcg)
5124 return false;
5125
5126 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
5127 unsigned long usage = page_counter_read(&memcg->swap);
5128
5129 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
5130 usage * 2 >= READ_ONCE(memcg->swap.max))
5131 return true;
5132 }
5133
5134 return false;
5135 }
5136
setup_swap_account(char * s)5137 static int __init setup_swap_account(char *s)
5138 {
5139 bool res;
5140
5141 if (!kstrtobool(s, &res) && !res)
5142 pr_warn_once("The swapaccount=0 commandline option is deprecated "
5143 "in favor of configuring swap control via cgroupfs. "
5144 "Please report your usecase to linux-mm@kvack.org if you "
5145 "depend on this functionality.\n");
5146 return 1;
5147 }
5148 __setup("swapaccount=", setup_swap_account);
5149
swap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)5150 static u64 swap_current_read(struct cgroup_subsys_state *css,
5151 struct cftype *cft)
5152 {
5153 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5154
5155 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5156 }
5157
swap_peak_show(struct seq_file * sf,void * v)5158 static int swap_peak_show(struct seq_file *sf, void *v)
5159 {
5160 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5161
5162 return peak_show(sf, v, &memcg->swap);
5163 }
5164
swap_peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5165 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf,
5166 size_t nbytes, loff_t off)
5167 {
5168 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5169
5170 return peak_write(of, buf, nbytes, off, &memcg->swap,
5171 &memcg->swap_peaks);
5172 }
5173
swap_high_show(struct seq_file * m,void * v)5174 static int swap_high_show(struct seq_file *m, void *v)
5175 {
5176 return seq_puts_memcg_tunable(m,
5177 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
5178 }
5179
swap_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5180 static ssize_t swap_high_write(struct kernfs_open_file *of,
5181 char *buf, size_t nbytes, loff_t off)
5182 {
5183 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5184 unsigned long high;
5185 int err;
5186
5187 buf = strstrip(buf);
5188 err = page_counter_memparse(buf, "max", &high);
5189 if (err)
5190 return err;
5191
5192 page_counter_set_high(&memcg->swap, high);
5193
5194 return nbytes;
5195 }
5196
swap_max_show(struct seq_file * m,void * v)5197 static int swap_max_show(struct seq_file *m, void *v)
5198 {
5199 return seq_puts_memcg_tunable(m,
5200 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
5201 }
5202
swap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5203 static ssize_t swap_max_write(struct kernfs_open_file *of,
5204 char *buf, size_t nbytes, loff_t off)
5205 {
5206 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5207 unsigned long max;
5208 int err;
5209
5210 buf = strstrip(buf);
5211 err = page_counter_memparse(buf, "max", &max);
5212 if (err)
5213 return err;
5214
5215 xchg(&memcg->swap.max, max);
5216
5217 return nbytes;
5218 }
5219
swap_events_show(struct seq_file * m,void * v)5220 static int swap_events_show(struct seq_file *m, void *v)
5221 {
5222 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5223
5224 seq_printf(m, "high %lu\n",
5225 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
5226 seq_printf(m, "max %lu\n",
5227 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
5228 seq_printf(m, "fail %lu\n",
5229 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
5230
5231 return 0;
5232 }
5233
5234 static struct cftype swap_files[] = {
5235 {
5236 .name = "swap.current",
5237 .flags = CFTYPE_NOT_ON_ROOT,
5238 .read_u64 = swap_current_read,
5239 },
5240 {
5241 .name = "swap.high",
5242 .flags = CFTYPE_NOT_ON_ROOT,
5243 .seq_show = swap_high_show,
5244 .write = swap_high_write,
5245 },
5246 {
5247 .name = "swap.max",
5248 .flags = CFTYPE_NOT_ON_ROOT,
5249 .seq_show = swap_max_show,
5250 .write = swap_max_write,
5251 },
5252 {
5253 .name = "swap.peak",
5254 .flags = CFTYPE_NOT_ON_ROOT,
5255 .open = peak_open,
5256 .release = peak_release,
5257 .seq_show = swap_peak_show,
5258 .write = swap_peak_write,
5259 },
5260 {
5261 .name = "swap.events",
5262 .flags = CFTYPE_NOT_ON_ROOT,
5263 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
5264 .seq_show = swap_events_show,
5265 },
5266 { } /* terminate */
5267 };
5268
5269 #ifdef CONFIG_ZSWAP
5270 /**
5271 * obj_cgroup_may_zswap - check if this cgroup can zswap
5272 * @objcg: the object cgroup
5273 *
5274 * Check if the hierarchical zswap limit has been reached.
5275 *
5276 * This doesn't check for specific headroom, and it is not atomic
5277 * either. But with zswap, the size of the allocation is only known
5278 * once compression has occurred, and this optimistic pre-check avoids
5279 * spending cycles on compression when there is already no room left
5280 * or zswap is disabled altogether somewhere in the hierarchy.
5281 */
obj_cgroup_may_zswap(struct obj_cgroup * objcg)5282 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
5283 {
5284 struct mem_cgroup *memcg, *original_memcg;
5285 bool ret = true;
5286
5287 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5288 return true;
5289
5290 original_memcg = get_mem_cgroup_from_objcg(objcg);
5291 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
5292 memcg = parent_mem_cgroup(memcg)) {
5293 unsigned long max = READ_ONCE(memcg->zswap_max);
5294 unsigned long pages;
5295
5296 if (max == PAGE_COUNTER_MAX)
5297 continue;
5298 if (max == 0) {
5299 ret = false;
5300 break;
5301 }
5302
5303 /* Force flush to get accurate stats for charging */
5304 __mem_cgroup_flush_stats(memcg, true);
5305 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
5306 if (pages < max)
5307 continue;
5308 ret = false;
5309 break;
5310 }
5311 mem_cgroup_put(original_memcg);
5312 return ret;
5313 }
5314
5315 /**
5316 * obj_cgroup_charge_zswap - charge compression backend memory
5317 * @objcg: the object cgroup
5318 * @size: size of compressed object
5319 *
5320 * This forces the charge after obj_cgroup_may_zswap() allowed
5321 * compression and storage in zwap for this cgroup to go ahead.
5322 */
obj_cgroup_charge_zswap(struct obj_cgroup * objcg,size_t size)5323 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
5324 {
5325 struct mem_cgroup *memcg;
5326
5327 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5328 return;
5329
5330 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
5331
5332 /* PF_MEMALLOC context, charging must succeed */
5333 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
5334 VM_WARN_ON_ONCE(1);
5335
5336 rcu_read_lock();
5337 memcg = obj_cgroup_memcg(objcg);
5338 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
5339 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
5340 rcu_read_unlock();
5341 }
5342
5343 /**
5344 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
5345 * @objcg: the object cgroup
5346 * @size: size of compressed object
5347 *
5348 * Uncharges zswap memory on page in.
5349 */
obj_cgroup_uncharge_zswap(struct obj_cgroup * objcg,size_t size)5350 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
5351 {
5352 struct mem_cgroup *memcg;
5353
5354 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5355 return;
5356
5357 obj_cgroup_uncharge(objcg, size);
5358
5359 rcu_read_lock();
5360 memcg = obj_cgroup_memcg(objcg);
5361 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
5362 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
5363 rcu_read_unlock();
5364 }
5365
mem_cgroup_zswap_writeback_enabled(struct mem_cgroup * memcg)5366 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
5367 {
5368 /* if zswap is disabled, do not block pages going to the swapping device */
5369 if (!zswap_is_enabled())
5370 return true;
5371
5372 for (; memcg; memcg = parent_mem_cgroup(memcg))
5373 if (!READ_ONCE(memcg->zswap_writeback))
5374 return false;
5375
5376 return true;
5377 }
5378
zswap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)5379 static u64 zswap_current_read(struct cgroup_subsys_state *css,
5380 struct cftype *cft)
5381 {
5382 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5383
5384 mem_cgroup_flush_stats(memcg);
5385 return memcg_page_state(memcg, MEMCG_ZSWAP_B);
5386 }
5387
zswap_max_show(struct seq_file * m,void * v)5388 static int zswap_max_show(struct seq_file *m, void *v)
5389 {
5390 return seq_puts_memcg_tunable(m,
5391 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
5392 }
5393
zswap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5394 static ssize_t zswap_max_write(struct kernfs_open_file *of,
5395 char *buf, size_t nbytes, loff_t off)
5396 {
5397 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5398 unsigned long max;
5399 int err;
5400
5401 buf = strstrip(buf);
5402 err = page_counter_memparse(buf, "max", &max);
5403 if (err)
5404 return err;
5405
5406 xchg(&memcg->zswap_max, max);
5407
5408 return nbytes;
5409 }
5410
zswap_writeback_show(struct seq_file * m,void * v)5411 static int zswap_writeback_show(struct seq_file *m, void *v)
5412 {
5413 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5414
5415 seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
5416 return 0;
5417 }
5418
zswap_writeback_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5419 static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
5420 char *buf, size_t nbytes, loff_t off)
5421 {
5422 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5423 int zswap_writeback;
5424 ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
5425
5426 if (parse_ret)
5427 return parse_ret;
5428
5429 if (zswap_writeback != 0 && zswap_writeback != 1)
5430 return -EINVAL;
5431
5432 WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
5433 return nbytes;
5434 }
5435
5436 static struct cftype zswap_files[] = {
5437 {
5438 .name = "zswap.current",
5439 .flags = CFTYPE_NOT_ON_ROOT,
5440 .read_u64 = zswap_current_read,
5441 },
5442 {
5443 .name = "zswap.max",
5444 .flags = CFTYPE_NOT_ON_ROOT,
5445 .seq_show = zswap_max_show,
5446 .write = zswap_max_write,
5447 },
5448 {
5449 .name = "zswap.writeback",
5450 .seq_show = zswap_writeback_show,
5451 .write = zswap_writeback_write,
5452 },
5453 { } /* terminate */
5454 };
5455 #endif /* CONFIG_ZSWAP */
5456
mem_cgroup_swap_init(void)5457 static int __init mem_cgroup_swap_init(void)
5458 {
5459 if (mem_cgroup_disabled())
5460 return 0;
5461
5462 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
5463 #ifdef CONFIG_MEMCG_V1
5464 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
5465 #endif
5466 #ifdef CONFIG_ZSWAP
5467 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
5468 #endif
5469 return 0;
5470 }
5471 subsys_initcall(mem_cgroup_swap_init);
5472
5473 #endif /* CONFIG_SWAP */
5474