1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/madvise.c
4 *
5 * Copyright (C) 1999 Linus Torvalds
6 * Copyright (C) 2002 Christoph Hellwig
7 */
8
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/mm_inline.h>
22 #include <linux/string.h>
23 #include <linux/uio.h>
24 #include <linux/ksm.h>
25 #include <linux/fs.h>
26 #include <linux/file.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagewalk.h>
30 #include <linux/swap.h>
31 #include <linux/swapops.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/mmu_notifier.h>
34
35 #include <asm/tlb.h>
36
37 #include "internal.h"
38 #include "swap.h"
39
40 /*
41 * Maximum number of attempts we make to install guard pages before we give up
42 * and return -ERESTARTNOINTR to have userspace try again.
43 */
44 #define MAX_MADVISE_GUARD_RETRIES 3
45
46 struct madvise_walk_private {
47 struct mmu_gather *tlb;
48 bool pageout;
49 };
50
51 struct madvise_behavior {
52 int behavior;
53 struct mmu_gather *tlb;
54 };
55
56 /*
57 * Any behaviour which results in changes to the vma->vm_flags needs to
58 * take mmap_lock for writing. Others, which simply traverse vmas, need
59 * to only take it for reading.
60 */
madvise_need_mmap_write(int behavior)61 static int madvise_need_mmap_write(int behavior)
62 {
63 switch (behavior) {
64 case MADV_REMOVE:
65 case MADV_WILLNEED:
66 case MADV_DONTNEED:
67 case MADV_DONTNEED_LOCKED:
68 case MADV_COLD:
69 case MADV_PAGEOUT:
70 case MADV_FREE:
71 case MADV_POPULATE_READ:
72 case MADV_POPULATE_WRITE:
73 case MADV_COLLAPSE:
74 case MADV_GUARD_INSTALL:
75 case MADV_GUARD_REMOVE:
76 return 0;
77 default:
78 /* be safe, default to 1. list exceptions explicitly */
79 return 1;
80 }
81 }
82
83 #ifdef CONFIG_ANON_VMA_NAME
anon_vma_name_alloc(const char * name)84 struct anon_vma_name *anon_vma_name_alloc(const char *name)
85 {
86 struct anon_vma_name *anon_name;
87 size_t count;
88
89 /* Add 1 for NUL terminator at the end of the anon_name->name */
90 count = strlen(name) + 1;
91 anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL);
92 if (anon_name) {
93 kref_init(&anon_name->kref);
94 memcpy(anon_name->name, name, count);
95 }
96
97 return anon_name;
98 }
99
anon_vma_name_free(struct kref * kref)100 void anon_vma_name_free(struct kref *kref)
101 {
102 struct anon_vma_name *anon_name =
103 container_of(kref, struct anon_vma_name, kref);
104 kfree(anon_name);
105 }
106
anon_vma_name(struct vm_area_struct * vma)107 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
108 {
109 mmap_assert_locked(vma->vm_mm);
110
111 return vma->anon_name;
112 }
113
114 /* mmap_lock should be write-locked */
replace_anon_vma_name(struct vm_area_struct * vma,struct anon_vma_name * anon_name)115 static int replace_anon_vma_name(struct vm_area_struct *vma,
116 struct anon_vma_name *anon_name)
117 {
118 struct anon_vma_name *orig_name = anon_vma_name(vma);
119
120 if (!anon_name) {
121 vma->anon_name = NULL;
122 anon_vma_name_put(orig_name);
123 return 0;
124 }
125
126 if (anon_vma_name_eq(orig_name, anon_name))
127 return 0;
128
129 vma->anon_name = anon_vma_name_reuse(anon_name);
130 anon_vma_name_put(orig_name);
131
132 return 0;
133 }
134 #else /* CONFIG_ANON_VMA_NAME */
replace_anon_vma_name(struct vm_area_struct * vma,struct anon_vma_name * anon_name)135 static int replace_anon_vma_name(struct vm_area_struct *vma,
136 struct anon_vma_name *anon_name)
137 {
138 if (anon_name)
139 return -EINVAL;
140
141 return 0;
142 }
143 #endif /* CONFIG_ANON_VMA_NAME */
144 /*
145 * Update the vm_flags on region of a vma, splitting it or merging it as
146 * necessary. Must be called with mmap_lock held for writing;
147 * Caller should ensure anon_name stability by raising its refcount even when
148 * anon_name belongs to a valid vma because this function might free that vma.
149 */
madvise_update_vma(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,unsigned long new_flags,struct anon_vma_name * anon_name)150 static int madvise_update_vma(struct vm_area_struct *vma,
151 struct vm_area_struct **prev, unsigned long start,
152 unsigned long end, unsigned long new_flags,
153 struct anon_vma_name *anon_name)
154 {
155 struct mm_struct *mm = vma->vm_mm;
156 int error;
157 VMA_ITERATOR(vmi, mm, start);
158
159 if (new_flags == vma->vm_flags && anon_vma_name_eq(anon_vma_name(vma), anon_name)) {
160 *prev = vma;
161 return 0;
162 }
163
164 vma = vma_modify_flags_name(&vmi, *prev, vma, start, end, new_flags,
165 anon_name);
166 if (IS_ERR(vma))
167 return PTR_ERR(vma);
168
169 *prev = vma;
170
171 /* vm_flags is protected by the mmap_lock held in write mode. */
172 vma_start_write(vma);
173 vm_flags_reset(vma, new_flags);
174 if (!vma->vm_file || vma_is_anon_shmem(vma)) {
175 error = replace_anon_vma_name(vma, anon_name);
176 if (error)
177 return error;
178 }
179
180 return 0;
181 }
182
183 #ifdef CONFIG_SWAP
swapin_walk_pmd_entry(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * walk)184 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
185 unsigned long end, struct mm_walk *walk)
186 {
187 struct vm_area_struct *vma = walk->private;
188 struct swap_iocb *splug = NULL;
189 pte_t *ptep = NULL;
190 spinlock_t *ptl;
191 unsigned long addr;
192
193 for (addr = start; addr < end; addr += PAGE_SIZE) {
194 pte_t pte;
195 swp_entry_t entry;
196 struct folio *folio;
197
198 if (!ptep++) {
199 ptep = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
200 if (!ptep)
201 break;
202 }
203
204 pte = ptep_get(ptep);
205 if (!is_swap_pte(pte))
206 continue;
207 entry = pte_to_swp_entry(pte);
208 if (unlikely(non_swap_entry(entry)))
209 continue;
210
211 pte_unmap_unlock(ptep, ptl);
212 ptep = NULL;
213
214 folio = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
215 vma, addr, &splug);
216 if (folio)
217 folio_put(folio);
218 }
219
220 if (ptep)
221 pte_unmap_unlock(ptep, ptl);
222 swap_read_unplug(splug);
223 cond_resched();
224
225 return 0;
226 }
227
228 static const struct mm_walk_ops swapin_walk_ops = {
229 .pmd_entry = swapin_walk_pmd_entry,
230 .walk_lock = PGWALK_RDLOCK,
231 };
232
shmem_swapin_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct address_space * mapping)233 static void shmem_swapin_range(struct vm_area_struct *vma,
234 unsigned long start, unsigned long end,
235 struct address_space *mapping)
236 {
237 XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
238 pgoff_t end_index = linear_page_index(vma, end) - 1;
239 struct folio *folio;
240 struct swap_iocb *splug = NULL;
241
242 rcu_read_lock();
243 xas_for_each(&xas, folio, end_index) {
244 unsigned long addr;
245 swp_entry_t entry;
246
247 if (!xa_is_value(folio))
248 continue;
249 entry = radix_to_swp_entry(folio);
250 /* There might be swapin error entries in shmem mapping. */
251 if (non_swap_entry(entry))
252 continue;
253
254 addr = vma->vm_start +
255 ((xas.xa_index - vma->vm_pgoff) << PAGE_SHIFT);
256 xas_pause(&xas);
257 rcu_read_unlock();
258
259 folio = read_swap_cache_async(entry, mapping_gfp_mask(mapping),
260 vma, addr, &splug);
261 if (folio)
262 folio_put(folio);
263
264 rcu_read_lock();
265 }
266 rcu_read_unlock();
267 swap_read_unplug(splug);
268 }
269 #endif /* CONFIG_SWAP */
270
271 /*
272 * Schedule all required I/O operations. Do not wait for completion.
273 */
madvise_willneed(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)274 static long madvise_willneed(struct vm_area_struct *vma,
275 struct vm_area_struct **prev,
276 unsigned long start, unsigned long end)
277 {
278 struct mm_struct *mm = vma->vm_mm;
279 struct file *file = vma->vm_file;
280 loff_t offset;
281
282 *prev = vma;
283 #ifdef CONFIG_SWAP
284 if (!file) {
285 walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
286 lru_add_drain(); /* Push any new pages onto the LRU now */
287 return 0;
288 }
289
290 if (shmem_mapping(file->f_mapping)) {
291 shmem_swapin_range(vma, start, end, file->f_mapping);
292 lru_add_drain(); /* Push any new pages onto the LRU now */
293 return 0;
294 }
295 #else
296 if (!file)
297 return -EBADF;
298 #endif
299
300 if (IS_DAX(file_inode(file))) {
301 /* no bad return value, but ignore advice */
302 return 0;
303 }
304
305 /*
306 * Filesystem's fadvise may need to take various locks. We need to
307 * explicitly grab a reference because the vma (and hence the
308 * vma's reference to the file) can go away as soon as we drop
309 * mmap_lock.
310 */
311 *prev = NULL; /* tell sys_madvise we drop mmap_lock */
312 get_file(file);
313 offset = (loff_t)(start - vma->vm_start)
314 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
315 mmap_read_unlock(mm);
316 vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
317 fput(file);
318 mmap_read_lock(mm);
319 return 0;
320 }
321
can_do_file_pageout(struct vm_area_struct * vma)322 static inline bool can_do_file_pageout(struct vm_area_struct *vma)
323 {
324 if (!vma->vm_file)
325 return false;
326 /*
327 * paging out pagecache only for non-anonymous mappings that correspond
328 * to the files the calling process could (if tried) open for writing;
329 * otherwise we'd be including shared non-exclusive mappings, which
330 * opens a side channel.
331 */
332 return inode_owner_or_capable(&nop_mnt_idmap,
333 file_inode(vma->vm_file)) ||
334 file_permission(vma->vm_file, MAY_WRITE) == 0;
335 }
336
madvise_folio_pte_batch(unsigned long addr,unsigned long end,struct folio * folio,pte_t * ptep,pte_t pte,bool * any_young,bool * any_dirty)337 static inline int madvise_folio_pte_batch(unsigned long addr, unsigned long end,
338 struct folio *folio, pte_t *ptep,
339 pte_t pte, bool *any_young,
340 bool *any_dirty)
341 {
342 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
343 int max_nr = (end - addr) / PAGE_SIZE;
344
345 return folio_pte_batch(folio, addr, ptep, pte, max_nr, fpb_flags, NULL,
346 any_young, any_dirty);
347 }
348
madvise_cold_or_pageout_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)349 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
350 unsigned long addr, unsigned long end,
351 struct mm_walk *walk)
352 {
353 struct madvise_walk_private *private = walk->private;
354 struct mmu_gather *tlb = private->tlb;
355 bool pageout = private->pageout;
356 struct mm_struct *mm = tlb->mm;
357 struct vm_area_struct *vma = walk->vma;
358 pte_t *start_pte, *pte, ptent;
359 spinlock_t *ptl;
360 struct folio *folio = NULL;
361 LIST_HEAD(folio_list);
362 bool pageout_anon_only_filter;
363 unsigned int batch_count = 0;
364 int nr;
365
366 if (fatal_signal_pending(current))
367 return -EINTR;
368
369 pageout_anon_only_filter = pageout && !vma_is_anonymous(vma) &&
370 !can_do_file_pageout(vma);
371
372 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
373 if (pmd_trans_huge(*pmd)) {
374 pmd_t orig_pmd;
375 unsigned long next = pmd_addr_end(addr, end);
376
377 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
378 ptl = pmd_trans_huge_lock(pmd, vma);
379 if (!ptl)
380 return 0;
381
382 orig_pmd = *pmd;
383 if (is_huge_zero_pmd(orig_pmd))
384 goto huge_unlock;
385
386 if (unlikely(!pmd_present(orig_pmd))) {
387 VM_BUG_ON(thp_migration_supported() &&
388 !is_pmd_migration_entry(orig_pmd));
389 goto huge_unlock;
390 }
391
392 folio = pmd_folio(orig_pmd);
393
394 /* Do not interfere with other mappings of this folio */
395 if (folio_maybe_mapped_shared(folio))
396 goto huge_unlock;
397
398 if (pageout_anon_only_filter && !folio_test_anon(folio))
399 goto huge_unlock;
400
401 if (next - addr != HPAGE_PMD_SIZE) {
402 int err;
403
404 folio_get(folio);
405 spin_unlock(ptl);
406 folio_lock(folio);
407 err = split_folio(folio);
408 folio_unlock(folio);
409 folio_put(folio);
410 if (!err)
411 goto regular_folio;
412 return 0;
413 }
414
415 if (!pageout && pmd_young(orig_pmd)) {
416 pmdp_invalidate(vma, addr, pmd);
417 orig_pmd = pmd_mkold(orig_pmd);
418
419 set_pmd_at(mm, addr, pmd, orig_pmd);
420 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
421 }
422
423 folio_clear_referenced(folio);
424 folio_test_clear_young(folio);
425 if (folio_test_active(folio))
426 folio_set_workingset(folio);
427 if (pageout) {
428 if (folio_isolate_lru(folio)) {
429 if (folio_test_unevictable(folio))
430 folio_putback_lru(folio);
431 else
432 list_add(&folio->lru, &folio_list);
433 }
434 } else
435 folio_deactivate(folio);
436 huge_unlock:
437 spin_unlock(ptl);
438 if (pageout)
439 reclaim_pages(&folio_list);
440 return 0;
441 }
442
443 regular_folio:
444 #endif
445 tlb_change_page_size(tlb, PAGE_SIZE);
446 restart:
447 start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
448 if (!start_pte)
449 return 0;
450 flush_tlb_batched_pending(mm);
451 arch_enter_lazy_mmu_mode();
452 for (; addr < end; pte += nr, addr += nr * PAGE_SIZE) {
453 nr = 1;
454 ptent = ptep_get(pte);
455
456 if (++batch_count == SWAP_CLUSTER_MAX) {
457 batch_count = 0;
458 if (need_resched()) {
459 arch_leave_lazy_mmu_mode();
460 pte_unmap_unlock(start_pte, ptl);
461 cond_resched();
462 goto restart;
463 }
464 }
465
466 if (pte_none(ptent))
467 continue;
468
469 if (!pte_present(ptent))
470 continue;
471
472 folio = vm_normal_folio(vma, addr, ptent);
473 if (!folio || folio_is_zone_device(folio))
474 continue;
475
476 /*
477 * If we encounter a large folio, only split it if it is not
478 * fully mapped within the range we are operating on. Otherwise
479 * leave it as is so that it can be swapped out whole. If we
480 * fail to split a folio, leave it in place and advance to the
481 * next pte in the range.
482 */
483 if (folio_test_large(folio)) {
484 bool any_young;
485
486 nr = madvise_folio_pte_batch(addr, end, folio, pte,
487 ptent, &any_young, NULL);
488 if (any_young)
489 ptent = pte_mkyoung(ptent);
490
491 if (nr < folio_nr_pages(folio)) {
492 int err;
493
494 if (folio_maybe_mapped_shared(folio))
495 continue;
496 if (pageout_anon_only_filter && !folio_test_anon(folio))
497 continue;
498 if (!folio_trylock(folio))
499 continue;
500 folio_get(folio);
501 arch_leave_lazy_mmu_mode();
502 pte_unmap_unlock(start_pte, ptl);
503 start_pte = NULL;
504 err = split_folio(folio);
505 folio_unlock(folio);
506 folio_put(folio);
507 start_pte = pte =
508 pte_offset_map_lock(mm, pmd, addr, &ptl);
509 if (!start_pte)
510 break;
511 flush_tlb_batched_pending(mm);
512 arch_enter_lazy_mmu_mode();
513 if (!err)
514 nr = 0;
515 continue;
516 }
517 }
518
519 /*
520 * Do not interfere with other mappings of this folio and
521 * non-LRU folio. If we have a large folio at this point, we
522 * know it is fully mapped so if its mapcount is the same as its
523 * number of pages, it must be exclusive.
524 */
525 if (!folio_test_lru(folio) ||
526 folio_mapcount(folio) != folio_nr_pages(folio))
527 continue;
528
529 if (pageout_anon_only_filter && !folio_test_anon(folio))
530 continue;
531
532 if (!pageout && pte_young(ptent)) {
533 clear_young_dirty_ptes(vma, addr, pte, nr,
534 CYDP_CLEAR_YOUNG);
535 tlb_remove_tlb_entries(tlb, pte, nr, addr);
536 }
537
538 /*
539 * We are deactivating a folio for accelerating reclaiming.
540 * VM couldn't reclaim the folio unless we clear PG_young.
541 * As a side effect, it makes confuse idle-page tracking
542 * because they will miss recent referenced history.
543 */
544 folio_clear_referenced(folio);
545 folio_test_clear_young(folio);
546 if (folio_test_active(folio))
547 folio_set_workingset(folio);
548 if (pageout) {
549 if (folio_isolate_lru(folio)) {
550 if (folio_test_unevictable(folio))
551 folio_putback_lru(folio);
552 else
553 list_add(&folio->lru, &folio_list);
554 }
555 } else
556 folio_deactivate(folio);
557 }
558
559 if (start_pte) {
560 arch_leave_lazy_mmu_mode();
561 pte_unmap_unlock(start_pte, ptl);
562 }
563 if (pageout)
564 reclaim_pages(&folio_list);
565 cond_resched();
566
567 return 0;
568 }
569
570 static const struct mm_walk_ops cold_walk_ops = {
571 .pmd_entry = madvise_cold_or_pageout_pte_range,
572 .walk_lock = PGWALK_RDLOCK,
573 };
574
madvise_cold_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end)575 static void madvise_cold_page_range(struct mmu_gather *tlb,
576 struct vm_area_struct *vma,
577 unsigned long addr, unsigned long end)
578 {
579 struct madvise_walk_private walk_private = {
580 .pageout = false,
581 .tlb = tlb,
582 };
583
584 tlb_start_vma(tlb, vma);
585 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
586 tlb_end_vma(tlb, vma);
587 }
588
can_madv_lru_vma(struct vm_area_struct * vma)589 static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
590 {
591 return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB));
592 }
593
madvise_cold(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start_addr,unsigned long end_addr)594 static long madvise_cold(struct vm_area_struct *vma,
595 struct vm_area_struct **prev,
596 unsigned long start_addr, unsigned long end_addr)
597 {
598 struct mm_struct *mm = vma->vm_mm;
599 struct mmu_gather tlb;
600
601 *prev = vma;
602 if (!can_madv_lru_vma(vma))
603 return -EINVAL;
604
605 lru_add_drain();
606 tlb_gather_mmu(&tlb, mm);
607 madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
608 tlb_finish_mmu(&tlb);
609
610 return 0;
611 }
612
madvise_pageout_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end)613 static void madvise_pageout_page_range(struct mmu_gather *tlb,
614 struct vm_area_struct *vma,
615 unsigned long addr, unsigned long end)
616 {
617 struct madvise_walk_private walk_private = {
618 .pageout = true,
619 .tlb = tlb,
620 };
621
622 tlb_start_vma(tlb, vma);
623 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
624 tlb_end_vma(tlb, vma);
625 }
626
madvise_pageout(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start_addr,unsigned long end_addr)627 static long madvise_pageout(struct vm_area_struct *vma,
628 struct vm_area_struct **prev,
629 unsigned long start_addr, unsigned long end_addr)
630 {
631 struct mm_struct *mm = vma->vm_mm;
632 struct mmu_gather tlb;
633
634 *prev = vma;
635 if (!can_madv_lru_vma(vma))
636 return -EINVAL;
637
638 /*
639 * If the VMA belongs to a private file mapping, there can be private
640 * dirty pages which can be paged out if even this process is neither
641 * owner nor write capable of the file. We allow private file mappings
642 * further to pageout dirty anon pages.
643 */
644 if (!vma_is_anonymous(vma) && (!can_do_file_pageout(vma) &&
645 (vma->vm_flags & VM_MAYSHARE)))
646 return 0;
647
648 lru_add_drain();
649 tlb_gather_mmu(&tlb, mm);
650 madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
651 tlb_finish_mmu(&tlb);
652
653 return 0;
654 }
655
madvise_free_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)656 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
657 unsigned long end, struct mm_walk *walk)
658
659 {
660 const cydp_t cydp_flags = CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY;
661 struct mmu_gather *tlb = walk->private;
662 struct mm_struct *mm = tlb->mm;
663 struct vm_area_struct *vma = walk->vma;
664 spinlock_t *ptl;
665 pte_t *start_pte, *pte, ptent;
666 struct folio *folio;
667 int nr_swap = 0;
668 unsigned long next;
669 int nr, max_nr;
670
671 next = pmd_addr_end(addr, end);
672 if (pmd_trans_huge(*pmd))
673 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
674 return 0;
675
676 tlb_change_page_size(tlb, PAGE_SIZE);
677 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
678 if (!start_pte)
679 return 0;
680 flush_tlb_batched_pending(mm);
681 arch_enter_lazy_mmu_mode();
682 for (; addr != end; pte += nr, addr += PAGE_SIZE * nr) {
683 nr = 1;
684 ptent = ptep_get(pte);
685
686 if (pte_none(ptent))
687 continue;
688 /*
689 * If the pte has swp_entry, just clear page table to
690 * prevent swap-in which is more expensive rather than
691 * (page allocation + zeroing).
692 */
693 if (!pte_present(ptent)) {
694 swp_entry_t entry;
695
696 entry = pte_to_swp_entry(ptent);
697 if (!non_swap_entry(entry)) {
698 max_nr = (end - addr) / PAGE_SIZE;
699 nr = swap_pte_batch(pte, max_nr, ptent);
700 nr_swap -= nr;
701 free_swap_and_cache_nr(entry, nr);
702 clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm);
703 } else if (is_hwpoison_entry(entry) ||
704 is_poisoned_swp_entry(entry)) {
705 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
706 }
707 continue;
708 }
709
710 folio = vm_normal_folio(vma, addr, ptent);
711 if (!folio || folio_is_zone_device(folio))
712 continue;
713
714 /*
715 * If we encounter a large folio, only split it if it is not
716 * fully mapped within the range we are operating on. Otherwise
717 * leave it as is so that it can be marked as lazyfree. If we
718 * fail to split a folio, leave it in place and advance to the
719 * next pte in the range.
720 */
721 if (folio_test_large(folio)) {
722 bool any_young, any_dirty;
723
724 nr = madvise_folio_pte_batch(addr, end, folio, pte,
725 ptent, &any_young, &any_dirty);
726
727 if (nr < folio_nr_pages(folio)) {
728 int err;
729
730 if (folio_maybe_mapped_shared(folio))
731 continue;
732 if (!folio_trylock(folio))
733 continue;
734 folio_get(folio);
735 arch_leave_lazy_mmu_mode();
736 pte_unmap_unlock(start_pte, ptl);
737 start_pte = NULL;
738 err = split_folio(folio);
739 folio_unlock(folio);
740 folio_put(folio);
741 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
742 start_pte = pte;
743 if (!start_pte)
744 break;
745 flush_tlb_batched_pending(mm);
746 arch_enter_lazy_mmu_mode();
747 if (!err)
748 nr = 0;
749 continue;
750 }
751
752 if (any_young)
753 ptent = pte_mkyoung(ptent);
754 if (any_dirty)
755 ptent = pte_mkdirty(ptent);
756 }
757
758 if (folio_test_swapcache(folio) || folio_test_dirty(folio)) {
759 if (!folio_trylock(folio))
760 continue;
761 /*
762 * If we have a large folio at this point, we know it is
763 * fully mapped so if its mapcount is the same as its
764 * number of pages, it must be exclusive.
765 */
766 if (folio_mapcount(folio) != folio_nr_pages(folio)) {
767 folio_unlock(folio);
768 continue;
769 }
770
771 if (folio_test_swapcache(folio) &&
772 !folio_free_swap(folio)) {
773 folio_unlock(folio);
774 continue;
775 }
776
777 folio_clear_dirty(folio);
778 folio_unlock(folio);
779 }
780
781 if (pte_young(ptent) || pte_dirty(ptent)) {
782 clear_young_dirty_ptes(vma, addr, pte, nr, cydp_flags);
783 tlb_remove_tlb_entries(tlb, pte, nr, addr);
784 }
785 folio_mark_lazyfree(folio);
786 }
787
788 if (nr_swap)
789 add_mm_counter(mm, MM_SWAPENTS, nr_swap);
790 if (start_pte) {
791 arch_leave_lazy_mmu_mode();
792 pte_unmap_unlock(start_pte, ptl);
793 }
794 cond_resched();
795
796 return 0;
797 }
798
799 static const struct mm_walk_ops madvise_free_walk_ops = {
800 .pmd_entry = madvise_free_pte_range,
801 .walk_lock = PGWALK_RDLOCK,
802 };
803
madvise_free_single_vma(struct madvise_behavior * madv_behavior,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr)804 static int madvise_free_single_vma(struct madvise_behavior *madv_behavior,
805 struct vm_area_struct *vma,
806 unsigned long start_addr, unsigned long end_addr)
807 {
808 struct mm_struct *mm = vma->vm_mm;
809 struct mmu_notifier_range range;
810 struct mmu_gather *tlb = madv_behavior->tlb;
811
812 /* MADV_FREE works for only anon vma at the moment */
813 if (!vma_is_anonymous(vma))
814 return -EINVAL;
815
816 range.start = max(vma->vm_start, start_addr);
817 if (range.start >= vma->vm_end)
818 return -EINVAL;
819 range.end = min(vma->vm_end, end_addr);
820 if (range.end <= vma->vm_start)
821 return -EINVAL;
822 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
823 range.start, range.end);
824
825 lru_add_drain();
826 update_hiwater_rss(mm);
827
828 mmu_notifier_invalidate_range_start(&range);
829 tlb_start_vma(tlb, vma);
830 walk_page_range(vma->vm_mm, range.start, range.end,
831 &madvise_free_walk_ops, tlb);
832 tlb_end_vma(tlb, vma);
833 mmu_notifier_invalidate_range_end(&range);
834 return 0;
835 }
836
837 /*
838 * Application no longer needs these pages. If the pages are dirty,
839 * it's OK to just throw them away. The app will be more careful about
840 * data it wants to keep. Be sure to free swap resources too. The
841 * zap_page_range_single call sets things up for shrink_active_list to actually
842 * free these pages later if no one else has touched them in the meantime,
843 * although we could add these pages to a global reuse list for
844 * shrink_active_list to pick up before reclaiming other pages.
845 *
846 * NB: This interface discards data rather than pushes it out to swap,
847 * as some implementations do. This has performance implications for
848 * applications like large transactional databases which want to discard
849 * pages in anonymous maps after committing to backing store the data
850 * that was kept in them. There is no reason to write this data out to
851 * the swap area if the application is discarding it.
852 *
853 * An interface that causes the system to free clean pages and flush
854 * dirty pages is already available as msync(MS_INVALIDATE).
855 */
madvise_dontneed_single_vma(struct madvise_behavior * madv_behavior,struct vm_area_struct * vma,unsigned long start,unsigned long end)856 static long madvise_dontneed_single_vma(struct madvise_behavior *madv_behavior,
857 struct vm_area_struct *vma,
858 unsigned long start, unsigned long end)
859 {
860 struct zap_details details = {
861 .reclaim_pt = true,
862 .even_cows = true,
863 };
864
865 zap_page_range_single_batched(
866 madv_behavior->tlb, vma, start, end - start, &details);
867 return 0;
868 }
869
madvise_dontneed_free_valid_vma(struct vm_area_struct * vma,unsigned long start,unsigned long * end,int behavior)870 static bool madvise_dontneed_free_valid_vma(struct vm_area_struct *vma,
871 unsigned long start,
872 unsigned long *end,
873 int behavior)
874 {
875 if (!is_vm_hugetlb_page(vma)) {
876 unsigned int forbidden = VM_PFNMAP;
877
878 if (behavior != MADV_DONTNEED_LOCKED)
879 forbidden |= VM_LOCKED;
880
881 return !(vma->vm_flags & forbidden);
882 }
883
884 if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED)
885 return false;
886 if (start & ~huge_page_mask(hstate_vma(vma)))
887 return false;
888
889 /*
890 * Madvise callers expect the length to be rounded up to PAGE_SIZE
891 * boundaries, and may be unaware that this VMA uses huge pages.
892 * Avoid unexpected data loss by rounding down the number of
893 * huge pages freed.
894 */
895 *end = ALIGN_DOWN(*end, huge_page_size(hstate_vma(vma)));
896
897 return true;
898 }
899
madvise_dontneed_free(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,struct madvise_behavior * madv_behavior)900 static long madvise_dontneed_free(struct vm_area_struct *vma,
901 struct vm_area_struct **prev,
902 unsigned long start, unsigned long end,
903 struct madvise_behavior *madv_behavior)
904 {
905 int behavior = madv_behavior->behavior;
906 struct mm_struct *mm = vma->vm_mm;
907
908 *prev = vma;
909 if (!madvise_dontneed_free_valid_vma(vma, start, &end, behavior))
910 return -EINVAL;
911
912 if (start == end)
913 return 0;
914
915 if (!userfaultfd_remove(vma, start, end)) {
916 *prev = NULL; /* mmap_lock has been dropped, prev is stale */
917
918 mmap_read_lock(mm);
919 vma = vma_lookup(mm, start);
920 if (!vma)
921 return -ENOMEM;
922 /*
923 * Potential end adjustment for hugetlb vma is OK as
924 * the check below keeps end within vma.
925 */
926 if (!madvise_dontneed_free_valid_vma(vma, start, &end,
927 behavior))
928 return -EINVAL;
929 if (end > vma->vm_end) {
930 /*
931 * Don't fail if end > vma->vm_end. If the old
932 * vma was split while the mmap_lock was
933 * released the effect of the concurrent
934 * operation may not cause madvise() to
935 * have an undefined result. There may be an
936 * adjacent next vma that we'll walk
937 * next. userfaultfd_remove() will generate an
938 * UFFD_EVENT_REMOVE repetition on the
939 * end-vma->vm_end range, but the manager can
940 * handle a repetition fine.
941 */
942 end = vma->vm_end;
943 }
944 /*
945 * If the memory region between start and end was
946 * originally backed by 4kB pages and then remapped to
947 * be backed by hugepages while mmap_lock was dropped,
948 * the adjustment for hugetlb vma above may have rounded
949 * end down to the start address.
950 */
951 if (start == end)
952 return 0;
953 VM_WARN_ON(start > end);
954 }
955
956 if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED)
957 return madvise_dontneed_single_vma(
958 madv_behavior, vma, start, end);
959 else if (behavior == MADV_FREE)
960 return madvise_free_single_vma(madv_behavior, vma, start, end);
961 else
962 return -EINVAL;
963 }
964
madvise_populate(struct mm_struct * mm,unsigned long start,unsigned long end,int behavior)965 static long madvise_populate(struct mm_struct *mm, unsigned long start,
966 unsigned long end, int behavior)
967 {
968 const bool write = behavior == MADV_POPULATE_WRITE;
969 int locked = 1;
970 long pages;
971
972 while (start < end) {
973 /* Populate (prefault) page tables readable/writable. */
974 pages = faultin_page_range(mm, start, end, write, &locked);
975 if (!locked) {
976 mmap_read_lock(mm);
977 locked = 1;
978 }
979 if (pages < 0) {
980 switch (pages) {
981 case -EINTR:
982 return -EINTR;
983 case -EINVAL: /* Incompatible mappings / permissions. */
984 return -EINVAL;
985 case -EHWPOISON:
986 return -EHWPOISON;
987 case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */
988 return -EFAULT;
989 default:
990 pr_warn_once("%s: unhandled return value: %ld\n",
991 __func__, pages);
992 fallthrough;
993 case -ENOMEM: /* No VMA or out of memory. */
994 return -ENOMEM;
995 }
996 }
997 start += pages * PAGE_SIZE;
998 }
999 return 0;
1000 }
1001
1002 /*
1003 * Application wants to free up the pages and associated backing store.
1004 * This is effectively punching a hole into the middle of a file.
1005 */
madvise_remove(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)1006 static long madvise_remove(struct vm_area_struct *vma,
1007 struct vm_area_struct **prev,
1008 unsigned long start, unsigned long end)
1009 {
1010 loff_t offset;
1011 int error;
1012 struct file *f;
1013 struct mm_struct *mm = vma->vm_mm;
1014
1015 *prev = NULL; /* tell sys_madvise we drop mmap_lock */
1016
1017 if (vma->vm_flags & VM_LOCKED)
1018 return -EINVAL;
1019
1020 f = vma->vm_file;
1021
1022 if (!f || !f->f_mapping || !f->f_mapping->host) {
1023 return -EINVAL;
1024 }
1025
1026 if (!vma_is_shared_maywrite(vma))
1027 return -EACCES;
1028
1029 offset = (loff_t)(start - vma->vm_start)
1030 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
1031
1032 /*
1033 * Filesystem's fallocate may need to take i_rwsem. We need to
1034 * explicitly grab a reference because the vma (and hence the
1035 * vma's reference to the file) can go away as soon as we drop
1036 * mmap_lock.
1037 */
1038 get_file(f);
1039 if (userfaultfd_remove(vma, start, end)) {
1040 /* mmap_lock was not released by userfaultfd_remove() */
1041 mmap_read_unlock(mm);
1042 }
1043 error = vfs_fallocate(f,
1044 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
1045 offset, end - start);
1046 fput(f);
1047 mmap_read_lock(mm);
1048 return error;
1049 }
1050
is_valid_guard_vma(struct vm_area_struct * vma,bool allow_locked)1051 static bool is_valid_guard_vma(struct vm_area_struct *vma, bool allow_locked)
1052 {
1053 vm_flags_t disallowed = VM_SPECIAL | VM_HUGETLB;
1054
1055 /*
1056 * A user could lock after setting a guard range but that's fine, as
1057 * they'd not be able to fault in. The issue arises when we try to zap
1058 * existing locked VMAs. We don't want to do that.
1059 */
1060 if (!allow_locked)
1061 disallowed |= VM_LOCKED;
1062
1063 return !(vma->vm_flags & disallowed);
1064 }
1065
is_guard_pte_marker(pte_t ptent)1066 static bool is_guard_pte_marker(pte_t ptent)
1067 {
1068 return is_pte_marker(ptent) &&
1069 is_guard_swp_entry(pte_to_swp_entry(ptent));
1070 }
1071
guard_install_pud_entry(pud_t * pud,unsigned long addr,unsigned long next,struct mm_walk * walk)1072 static int guard_install_pud_entry(pud_t *pud, unsigned long addr,
1073 unsigned long next, struct mm_walk *walk)
1074 {
1075 pud_t pudval = pudp_get(pud);
1076
1077 /* If huge return >0 so we abort the operation + zap. */
1078 return pud_trans_huge(pudval) || pud_devmap(pudval);
1079 }
1080
guard_install_pmd_entry(pmd_t * pmd,unsigned long addr,unsigned long next,struct mm_walk * walk)1081 static int guard_install_pmd_entry(pmd_t *pmd, unsigned long addr,
1082 unsigned long next, struct mm_walk *walk)
1083 {
1084 pmd_t pmdval = pmdp_get(pmd);
1085
1086 /* If huge return >0 so we abort the operation + zap. */
1087 return pmd_trans_huge(pmdval) || pmd_devmap(pmdval);
1088 }
1089
guard_install_pte_entry(pte_t * pte,unsigned long addr,unsigned long next,struct mm_walk * walk)1090 static int guard_install_pte_entry(pte_t *pte, unsigned long addr,
1091 unsigned long next, struct mm_walk *walk)
1092 {
1093 pte_t pteval = ptep_get(pte);
1094 unsigned long *nr_pages = (unsigned long *)walk->private;
1095
1096 /* If there is already a guard page marker, we have nothing to do. */
1097 if (is_guard_pte_marker(pteval)) {
1098 (*nr_pages)++;
1099
1100 return 0;
1101 }
1102
1103 /* If populated return >0 so we abort the operation + zap. */
1104 return 1;
1105 }
1106
guard_install_set_pte(unsigned long addr,unsigned long next,pte_t * ptep,struct mm_walk * walk)1107 static int guard_install_set_pte(unsigned long addr, unsigned long next,
1108 pte_t *ptep, struct mm_walk *walk)
1109 {
1110 unsigned long *nr_pages = (unsigned long *)walk->private;
1111
1112 /* Simply install a PTE marker, this causes segfault on access. */
1113 *ptep = make_pte_marker(PTE_MARKER_GUARD);
1114 (*nr_pages)++;
1115
1116 return 0;
1117 }
1118
1119 static const struct mm_walk_ops guard_install_walk_ops = {
1120 .pud_entry = guard_install_pud_entry,
1121 .pmd_entry = guard_install_pmd_entry,
1122 .pte_entry = guard_install_pte_entry,
1123 .install_pte = guard_install_set_pte,
1124 .walk_lock = PGWALK_RDLOCK,
1125 };
1126
madvise_guard_install(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)1127 static long madvise_guard_install(struct vm_area_struct *vma,
1128 struct vm_area_struct **prev,
1129 unsigned long start, unsigned long end)
1130 {
1131 long err;
1132 int i;
1133
1134 *prev = vma;
1135 if (!is_valid_guard_vma(vma, /* allow_locked = */false))
1136 return -EINVAL;
1137
1138 /*
1139 * If we install guard markers, then the range is no longer
1140 * empty from a page table perspective and therefore it's
1141 * appropriate to have an anon_vma.
1142 *
1143 * This ensures that on fork, we copy page tables correctly.
1144 */
1145 err = anon_vma_prepare(vma);
1146 if (err)
1147 return err;
1148
1149 /*
1150 * Optimistically try to install the guard marker pages first. If any
1151 * non-guard pages are encountered, give up and zap the range before
1152 * trying again.
1153 *
1154 * We try a few times before giving up and releasing back to userland to
1155 * loop around, releasing locks in the process to avoid contention. This
1156 * would only happen if there was a great many racing page faults.
1157 *
1158 * In most cases we should simply install the guard markers immediately
1159 * with no zap or looping.
1160 */
1161 for (i = 0; i < MAX_MADVISE_GUARD_RETRIES; i++) {
1162 unsigned long nr_pages = 0;
1163
1164 /* Returns < 0 on error, == 0 if success, > 0 if zap needed. */
1165 err = walk_page_range_mm(vma->vm_mm, start, end,
1166 &guard_install_walk_ops, &nr_pages);
1167 if (err < 0)
1168 return err;
1169
1170 if (err == 0) {
1171 unsigned long nr_expected_pages = PHYS_PFN(end - start);
1172
1173 VM_WARN_ON(nr_pages != nr_expected_pages);
1174 return 0;
1175 }
1176
1177 /*
1178 * OK some of the range have non-guard pages mapped, zap
1179 * them. This leaves existing guard pages in place.
1180 */
1181 zap_page_range_single(vma, start, end - start, NULL);
1182 }
1183
1184 /*
1185 * We were unable to install the guard pages due to being raced by page
1186 * faults. This should not happen ordinarily. We return to userspace and
1187 * immediately retry, relieving lock contention.
1188 */
1189 return restart_syscall();
1190 }
1191
guard_remove_pud_entry(pud_t * pud,unsigned long addr,unsigned long next,struct mm_walk * walk)1192 static int guard_remove_pud_entry(pud_t *pud, unsigned long addr,
1193 unsigned long next, struct mm_walk *walk)
1194 {
1195 pud_t pudval = pudp_get(pud);
1196
1197 /* If huge, cannot have guard pages present, so no-op - skip. */
1198 if (pud_trans_huge(pudval) || pud_devmap(pudval))
1199 walk->action = ACTION_CONTINUE;
1200
1201 return 0;
1202 }
1203
guard_remove_pmd_entry(pmd_t * pmd,unsigned long addr,unsigned long next,struct mm_walk * walk)1204 static int guard_remove_pmd_entry(pmd_t *pmd, unsigned long addr,
1205 unsigned long next, struct mm_walk *walk)
1206 {
1207 pmd_t pmdval = pmdp_get(pmd);
1208
1209 /* If huge, cannot have guard pages present, so no-op - skip. */
1210 if (pmd_trans_huge(pmdval) || pmd_devmap(pmdval))
1211 walk->action = ACTION_CONTINUE;
1212
1213 return 0;
1214 }
1215
guard_remove_pte_entry(pte_t * pte,unsigned long addr,unsigned long next,struct mm_walk * walk)1216 static int guard_remove_pte_entry(pte_t *pte, unsigned long addr,
1217 unsigned long next, struct mm_walk *walk)
1218 {
1219 pte_t ptent = ptep_get(pte);
1220
1221 if (is_guard_pte_marker(ptent)) {
1222 /* Simply clear the PTE marker. */
1223 pte_clear_not_present_full(walk->mm, addr, pte, false);
1224 update_mmu_cache(walk->vma, addr, pte);
1225 }
1226
1227 return 0;
1228 }
1229
1230 static const struct mm_walk_ops guard_remove_walk_ops = {
1231 .pud_entry = guard_remove_pud_entry,
1232 .pmd_entry = guard_remove_pmd_entry,
1233 .pte_entry = guard_remove_pte_entry,
1234 .walk_lock = PGWALK_RDLOCK,
1235 };
1236
madvise_guard_remove(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)1237 static long madvise_guard_remove(struct vm_area_struct *vma,
1238 struct vm_area_struct **prev,
1239 unsigned long start, unsigned long end)
1240 {
1241 *prev = vma;
1242 /*
1243 * We're ok with removing guards in mlock()'d ranges, as this is a
1244 * non-destructive action.
1245 */
1246 if (!is_valid_guard_vma(vma, /* allow_locked = */true))
1247 return -EINVAL;
1248
1249 return walk_page_range(vma->vm_mm, start, end,
1250 &guard_remove_walk_ops, NULL);
1251 }
1252
1253 /*
1254 * Apply an madvise behavior to a region of a vma. madvise_update_vma
1255 * will handle splitting a vm area into separate areas, each area with its own
1256 * behavior.
1257 */
madvise_vma_behavior(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,void * behavior_arg)1258 static int madvise_vma_behavior(struct vm_area_struct *vma,
1259 struct vm_area_struct **prev,
1260 unsigned long start, unsigned long end,
1261 void *behavior_arg)
1262 {
1263 struct madvise_behavior *arg = behavior_arg;
1264 int behavior = arg->behavior;
1265 int error;
1266 struct anon_vma_name *anon_name;
1267 unsigned long new_flags = vma->vm_flags;
1268
1269 if (unlikely(!can_modify_vma_madv(vma, behavior)))
1270 return -EPERM;
1271
1272 switch (behavior) {
1273 case MADV_REMOVE:
1274 return madvise_remove(vma, prev, start, end);
1275 case MADV_WILLNEED:
1276 return madvise_willneed(vma, prev, start, end);
1277 case MADV_COLD:
1278 return madvise_cold(vma, prev, start, end);
1279 case MADV_PAGEOUT:
1280 return madvise_pageout(vma, prev, start, end);
1281 case MADV_FREE:
1282 case MADV_DONTNEED:
1283 case MADV_DONTNEED_LOCKED:
1284 return madvise_dontneed_free(vma, prev, start, end, arg);
1285 case MADV_NORMAL:
1286 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
1287 break;
1288 case MADV_SEQUENTIAL:
1289 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
1290 break;
1291 case MADV_RANDOM:
1292 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
1293 break;
1294 case MADV_DONTFORK:
1295 new_flags |= VM_DONTCOPY;
1296 break;
1297 case MADV_DOFORK:
1298 if (vma->vm_flags & VM_IO)
1299 return -EINVAL;
1300 new_flags &= ~VM_DONTCOPY;
1301 break;
1302 case MADV_WIPEONFORK:
1303 /* MADV_WIPEONFORK is only supported on anonymous memory. */
1304 if (vma->vm_file || vma->vm_flags & VM_SHARED)
1305 return -EINVAL;
1306 new_flags |= VM_WIPEONFORK;
1307 break;
1308 case MADV_KEEPONFORK:
1309 if (vma->vm_flags & VM_DROPPABLE)
1310 return -EINVAL;
1311 new_flags &= ~VM_WIPEONFORK;
1312 break;
1313 case MADV_DONTDUMP:
1314 new_flags |= VM_DONTDUMP;
1315 break;
1316 case MADV_DODUMP:
1317 if ((!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) ||
1318 (vma->vm_flags & VM_DROPPABLE))
1319 return -EINVAL;
1320 new_flags &= ~VM_DONTDUMP;
1321 break;
1322 case MADV_MERGEABLE:
1323 case MADV_UNMERGEABLE:
1324 error = ksm_madvise(vma, start, end, behavior, &new_flags);
1325 if (error)
1326 goto out;
1327 break;
1328 case MADV_HUGEPAGE:
1329 case MADV_NOHUGEPAGE:
1330 error = hugepage_madvise(vma, &new_flags, behavior);
1331 if (error)
1332 goto out;
1333 break;
1334 case MADV_COLLAPSE:
1335 return madvise_collapse(vma, prev, start, end);
1336 case MADV_GUARD_INSTALL:
1337 return madvise_guard_install(vma, prev, start, end);
1338 case MADV_GUARD_REMOVE:
1339 return madvise_guard_remove(vma, prev, start, end);
1340 }
1341
1342 anon_name = anon_vma_name(vma);
1343 anon_vma_name_get(anon_name);
1344 error = madvise_update_vma(vma, prev, start, end, new_flags,
1345 anon_name);
1346 anon_vma_name_put(anon_name);
1347
1348 out:
1349 /*
1350 * madvise() returns EAGAIN if kernel resources, such as
1351 * slab, are temporarily unavailable.
1352 */
1353 if (error == -ENOMEM)
1354 error = -EAGAIN;
1355 return error;
1356 }
1357
1358 #ifdef CONFIG_MEMORY_FAILURE
1359 /*
1360 * Error injection support for memory error handling.
1361 */
madvise_inject_error(int behavior,unsigned long start,unsigned long end)1362 static int madvise_inject_error(int behavior,
1363 unsigned long start, unsigned long end)
1364 {
1365 unsigned long size;
1366
1367 if (!capable(CAP_SYS_ADMIN))
1368 return -EPERM;
1369
1370
1371 for (; start < end; start += size) {
1372 unsigned long pfn;
1373 struct page *page;
1374 int ret;
1375
1376 ret = get_user_pages_fast(start, 1, 0, &page);
1377 if (ret != 1)
1378 return ret;
1379 pfn = page_to_pfn(page);
1380
1381 /*
1382 * When soft offlining hugepages, after migrating the page
1383 * we dissolve it, therefore in the second loop "page" will
1384 * no longer be a compound page.
1385 */
1386 size = page_size(compound_head(page));
1387
1388 if (behavior == MADV_SOFT_OFFLINE) {
1389 pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
1390 pfn, start);
1391 ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
1392 } else {
1393 pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
1394 pfn, start);
1395 ret = memory_failure(pfn, MF_ACTION_REQUIRED | MF_COUNT_INCREASED | MF_SW_SIMULATED);
1396 if (ret == -EOPNOTSUPP)
1397 ret = 0;
1398 }
1399
1400 if (ret)
1401 return ret;
1402 }
1403
1404 return 0;
1405 }
1406
is_memory_failure(int behavior)1407 static bool is_memory_failure(int behavior)
1408 {
1409 switch (behavior) {
1410 case MADV_HWPOISON:
1411 case MADV_SOFT_OFFLINE:
1412 return true;
1413 default:
1414 return false;
1415 }
1416 }
1417
1418 #else
1419
madvise_inject_error(int behavior,unsigned long start,unsigned long end)1420 static int madvise_inject_error(int behavior,
1421 unsigned long start, unsigned long end)
1422 {
1423 return 0;
1424 }
1425
is_memory_failure(int behavior)1426 static bool is_memory_failure(int behavior)
1427 {
1428 return false;
1429 }
1430
1431 #endif /* CONFIG_MEMORY_FAILURE */
1432
1433 static bool
madvise_behavior_valid(int behavior)1434 madvise_behavior_valid(int behavior)
1435 {
1436 switch (behavior) {
1437 case MADV_DOFORK:
1438 case MADV_DONTFORK:
1439 case MADV_NORMAL:
1440 case MADV_SEQUENTIAL:
1441 case MADV_RANDOM:
1442 case MADV_REMOVE:
1443 case MADV_WILLNEED:
1444 case MADV_DONTNEED:
1445 case MADV_DONTNEED_LOCKED:
1446 case MADV_FREE:
1447 case MADV_COLD:
1448 case MADV_PAGEOUT:
1449 case MADV_POPULATE_READ:
1450 case MADV_POPULATE_WRITE:
1451 #ifdef CONFIG_KSM
1452 case MADV_MERGEABLE:
1453 case MADV_UNMERGEABLE:
1454 #endif
1455 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1456 case MADV_HUGEPAGE:
1457 case MADV_NOHUGEPAGE:
1458 case MADV_COLLAPSE:
1459 #endif
1460 case MADV_DONTDUMP:
1461 case MADV_DODUMP:
1462 case MADV_WIPEONFORK:
1463 case MADV_KEEPONFORK:
1464 case MADV_GUARD_INSTALL:
1465 case MADV_GUARD_REMOVE:
1466 #ifdef CONFIG_MEMORY_FAILURE
1467 case MADV_SOFT_OFFLINE:
1468 case MADV_HWPOISON:
1469 #endif
1470 return true;
1471
1472 default:
1473 return false;
1474 }
1475 }
1476
1477 /* Can we invoke process_madvise() on a remote mm for the specified behavior? */
process_madvise_remote_valid(int behavior)1478 static bool process_madvise_remote_valid(int behavior)
1479 {
1480 switch (behavior) {
1481 case MADV_COLD:
1482 case MADV_PAGEOUT:
1483 case MADV_WILLNEED:
1484 case MADV_COLLAPSE:
1485 return true;
1486 default:
1487 return false;
1488 }
1489 }
1490
1491 /*
1492 * Walk the vmas in range [start,end), and call the visit function on each one.
1493 * The visit function will get start and end parameters that cover the overlap
1494 * between the current vma and the original range. Any unmapped regions in the
1495 * original range will result in this function returning -ENOMEM while still
1496 * calling the visit function on all of the existing vmas in the range.
1497 * Must be called with the mmap_lock held for reading or writing.
1498 */
1499 static
madvise_walk_vmas(struct mm_struct * mm,unsigned long start,unsigned long end,void * arg,int (* visit)(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,void * arg))1500 int madvise_walk_vmas(struct mm_struct *mm, unsigned long start,
1501 unsigned long end, void *arg,
1502 int (*visit)(struct vm_area_struct *vma,
1503 struct vm_area_struct **prev, unsigned long start,
1504 unsigned long end, void *arg))
1505 {
1506 struct vm_area_struct *vma;
1507 struct vm_area_struct *prev;
1508 unsigned long tmp;
1509 int unmapped_error = 0;
1510
1511 /*
1512 * If the interval [start,end) covers some unmapped address
1513 * ranges, just ignore them, but return -ENOMEM at the end.
1514 * - different from the way of handling in mlock etc.
1515 */
1516 vma = find_vma_prev(mm, start, &prev);
1517 if (vma && start > vma->vm_start)
1518 prev = vma;
1519
1520 for (;;) {
1521 int error;
1522
1523 /* Still start < end. */
1524 if (!vma)
1525 return -ENOMEM;
1526
1527 /* Here start < (end|vma->vm_end). */
1528 if (start < vma->vm_start) {
1529 unmapped_error = -ENOMEM;
1530 start = vma->vm_start;
1531 if (start >= end)
1532 break;
1533 }
1534
1535 /* Here vma->vm_start <= start < (end|vma->vm_end) */
1536 tmp = vma->vm_end;
1537 if (end < tmp)
1538 tmp = end;
1539
1540 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1541 error = visit(vma, &prev, start, tmp, arg);
1542 if (error)
1543 return error;
1544 start = tmp;
1545 if (prev && start < prev->vm_end)
1546 start = prev->vm_end;
1547 if (start >= end)
1548 break;
1549 if (prev)
1550 vma = find_vma(mm, prev->vm_end);
1551 else /* madvise_remove dropped mmap_lock */
1552 vma = find_vma(mm, start);
1553 }
1554
1555 return unmapped_error;
1556 }
1557
1558 #ifdef CONFIG_ANON_VMA_NAME
madvise_vma_anon_name(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,void * anon_name)1559 static int madvise_vma_anon_name(struct vm_area_struct *vma,
1560 struct vm_area_struct **prev,
1561 unsigned long start, unsigned long end,
1562 void *anon_name)
1563 {
1564 int error;
1565
1566 /* Only anonymous mappings can be named */
1567 if (vma->vm_file && !vma_is_anon_shmem(vma))
1568 return -EBADF;
1569
1570 error = madvise_update_vma(vma, prev, start, end, vma->vm_flags,
1571 anon_name);
1572
1573 /*
1574 * madvise() returns EAGAIN if kernel resources, such as
1575 * slab, are temporarily unavailable.
1576 */
1577 if (error == -ENOMEM)
1578 error = -EAGAIN;
1579 return error;
1580 }
1581
madvise_set_anon_name(struct mm_struct * mm,unsigned long start,unsigned long len_in,struct anon_vma_name * anon_name)1582 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
1583 unsigned long len_in, struct anon_vma_name *anon_name)
1584 {
1585 unsigned long end;
1586 unsigned long len;
1587
1588 if (start & ~PAGE_MASK)
1589 return -EINVAL;
1590 len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1591
1592 /* Check to see whether len was rounded up from small -ve to zero */
1593 if (len_in && !len)
1594 return -EINVAL;
1595
1596 end = start + len;
1597 if (end < start)
1598 return -EINVAL;
1599
1600 if (end == start)
1601 return 0;
1602
1603 return madvise_walk_vmas(mm, start, end, anon_name,
1604 madvise_vma_anon_name);
1605 }
1606 #endif /* CONFIG_ANON_VMA_NAME */
1607
madvise_lock(struct mm_struct * mm,int behavior)1608 static int madvise_lock(struct mm_struct *mm, int behavior)
1609 {
1610 if (is_memory_failure(behavior))
1611 return 0;
1612
1613 if (madvise_need_mmap_write(behavior)) {
1614 if (mmap_write_lock_killable(mm))
1615 return -EINTR;
1616 } else {
1617 mmap_read_lock(mm);
1618 }
1619 return 0;
1620 }
1621
madvise_unlock(struct mm_struct * mm,int behavior)1622 static void madvise_unlock(struct mm_struct *mm, int behavior)
1623 {
1624 if (is_memory_failure(behavior))
1625 return;
1626
1627 if (madvise_need_mmap_write(behavior))
1628 mmap_write_unlock(mm);
1629 else
1630 mmap_read_unlock(mm);
1631 }
1632
madvise_batch_tlb_flush(int behavior)1633 static bool madvise_batch_tlb_flush(int behavior)
1634 {
1635 switch (behavior) {
1636 case MADV_DONTNEED:
1637 case MADV_DONTNEED_LOCKED:
1638 case MADV_FREE:
1639 return true;
1640 default:
1641 return false;
1642 }
1643 }
1644
madvise_init_tlb(struct madvise_behavior * madv_behavior,struct mm_struct * mm)1645 static void madvise_init_tlb(struct madvise_behavior *madv_behavior,
1646 struct mm_struct *mm)
1647 {
1648 if (madvise_batch_tlb_flush(madv_behavior->behavior))
1649 tlb_gather_mmu(madv_behavior->tlb, mm);
1650 }
1651
madvise_finish_tlb(struct madvise_behavior * madv_behavior)1652 static void madvise_finish_tlb(struct madvise_behavior *madv_behavior)
1653 {
1654 if (madvise_batch_tlb_flush(madv_behavior->behavior))
1655 tlb_finish_mmu(madv_behavior->tlb);
1656 }
1657
is_valid_madvise(unsigned long start,size_t len_in,int behavior)1658 static bool is_valid_madvise(unsigned long start, size_t len_in, int behavior)
1659 {
1660 size_t len;
1661
1662 if (!madvise_behavior_valid(behavior))
1663 return false;
1664
1665 if (!PAGE_ALIGNED(start))
1666 return false;
1667 len = PAGE_ALIGN(len_in);
1668
1669 /* Check to see whether len was rounded up from small -ve to zero */
1670 if (len_in && !len)
1671 return false;
1672
1673 if (start + len < start)
1674 return false;
1675
1676 return true;
1677 }
1678
1679 /*
1680 * madvise_should_skip() - Return if the request is invalid or nothing.
1681 * @start: Start address of madvise-requested address range.
1682 * @len_in: Length of madvise-requested address range.
1683 * @behavior: Requested madvise behavor.
1684 * @err: Pointer to store an error code from the check.
1685 *
1686 * If the specified behaviour is invalid or nothing would occur, we skip the
1687 * operation. This function returns true in the cases, otherwise false. In
1688 * the former case we store an error on @err.
1689 */
madvise_should_skip(unsigned long start,size_t len_in,int behavior,int * err)1690 static bool madvise_should_skip(unsigned long start, size_t len_in,
1691 int behavior, int *err)
1692 {
1693 if (!is_valid_madvise(start, len_in, behavior)) {
1694 *err = -EINVAL;
1695 return true;
1696 }
1697 if (start + PAGE_ALIGN(len_in) == start) {
1698 *err = 0;
1699 return true;
1700 }
1701 return false;
1702 }
1703
is_madvise_populate(int behavior)1704 static bool is_madvise_populate(int behavior)
1705 {
1706 switch (behavior) {
1707 case MADV_POPULATE_READ:
1708 case MADV_POPULATE_WRITE:
1709 return true;
1710 default:
1711 return false;
1712 }
1713 }
1714
madvise_do_behavior(struct mm_struct * mm,unsigned long start,size_t len_in,struct madvise_behavior * madv_behavior)1715 static int madvise_do_behavior(struct mm_struct *mm,
1716 unsigned long start, size_t len_in,
1717 struct madvise_behavior *madv_behavior)
1718 {
1719 int behavior = madv_behavior->behavior;
1720 struct blk_plug plug;
1721 unsigned long end;
1722 int error;
1723
1724 if (is_memory_failure(behavior))
1725 return madvise_inject_error(behavior, start, start + len_in);
1726 start = untagged_addr_remote(mm, start);
1727 end = start + PAGE_ALIGN(len_in);
1728
1729 blk_start_plug(&plug);
1730 if (is_madvise_populate(behavior))
1731 error = madvise_populate(mm, start, end, behavior);
1732 else
1733 error = madvise_walk_vmas(mm, start, end, madv_behavior,
1734 madvise_vma_behavior);
1735 blk_finish_plug(&plug);
1736 return error;
1737 }
1738
1739 /*
1740 * The madvise(2) system call.
1741 *
1742 * Applications can use madvise() to advise the kernel how it should
1743 * handle paging I/O in this VM area. The idea is to help the kernel
1744 * use appropriate read-ahead and caching techniques. The information
1745 * provided is advisory only, and can be safely disregarded by the
1746 * kernel without affecting the correct operation of the application.
1747 *
1748 * behavior values:
1749 * MADV_NORMAL - the default behavior is to read clusters. This
1750 * results in some read-ahead and read-behind.
1751 * MADV_RANDOM - the system should read the minimum amount of data
1752 * on any access, since it is unlikely that the appli-
1753 * cation will need more than what it asks for.
1754 * MADV_SEQUENTIAL - pages in the given range will probably be accessed
1755 * once, so they can be aggressively read ahead, and
1756 * can be freed soon after they are accessed.
1757 * MADV_WILLNEED - the application is notifying the system to read
1758 * some pages ahead.
1759 * MADV_DONTNEED - the application is finished with the given range,
1760 * so the kernel can free resources associated with it.
1761 * MADV_FREE - the application marks pages in the given range as lazy free,
1762 * where actual purges are postponed until memory pressure happens.
1763 * MADV_REMOVE - the application wants to free up the given range of
1764 * pages and associated backing store.
1765 * MADV_DONTFORK - omit this area from child's address space when forking:
1766 * typically, to avoid COWing pages pinned by get_user_pages().
1767 * MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1768 * MADV_WIPEONFORK - present the child process with zero-filled memory in this
1769 * range after a fork.
1770 * MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1771 * MADV_HWPOISON - trigger memory error handler as if the given memory range
1772 * were corrupted by unrecoverable hardware memory failure.
1773 * MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1774 * MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1775 * this area with pages of identical content from other such areas.
1776 * MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1777 * MADV_HUGEPAGE - the application wants to back the given range by transparent
1778 * huge pages in the future. Existing pages might be coalesced and
1779 * new pages might be allocated as THP.
1780 * MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1781 * transparent huge pages so the existing pages will not be
1782 * coalesced into THP and new pages will not be allocated as THP.
1783 * MADV_COLLAPSE - synchronously coalesce pages into new THP.
1784 * MADV_DONTDUMP - the application wants to prevent pages in the given range
1785 * from being included in its core dump.
1786 * MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1787 * MADV_COLD - the application is not expected to use this memory soon,
1788 * deactivate pages in this range so that they can be reclaimed
1789 * easily if memory pressure happens.
1790 * MADV_PAGEOUT - the application is not expected to use this memory soon,
1791 * page out the pages in this range immediately.
1792 * MADV_POPULATE_READ - populate (prefault) page tables readable by
1793 * triggering read faults if required
1794 * MADV_POPULATE_WRITE - populate (prefault) page tables writable by
1795 * triggering write faults if required
1796 *
1797 * return values:
1798 * zero - success
1799 * -EINVAL - start + len < 0, start is not page-aligned,
1800 * "behavior" is not a valid value, or application
1801 * is attempting to release locked or shared pages,
1802 * or the specified address range includes file, Huge TLB,
1803 * MAP_SHARED or VMPFNMAP range.
1804 * -ENOMEM - addresses in the specified range are not currently
1805 * mapped, or are outside the AS of the process.
1806 * -EIO - an I/O error occurred while paging in data.
1807 * -EBADF - map exists, but area maps something that isn't a file.
1808 * -EAGAIN - a kernel resource was temporarily unavailable.
1809 * -EPERM - memory is sealed.
1810 */
do_madvise(struct mm_struct * mm,unsigned long start,size_t len_in,int behavior)1811 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1812 {
1813 int error;
1814 struct mmu_gather tlb;
1815 struct madvise_behavior madv_behavior = {
1816 .behavior = behavior,
1817 .tlb = &tlb,
1818 };
1819
1820 if (madvise_should_skip(start, len_in, behavior, &error))
1821 return error;
1822 error = madvise_lock(mm, behavior);
1823 if (error)
1824 return error;
1825 madvise_init_tlb(&madv_behavior, mm);
1826 error = madvise_do_behavior(mm, start, len_in, &madv_behavior);
1827 madvise_finish_tlb(&madv_behavior);
1828 madvise_unlock(mm, behavior);
1829
1830 return error;
1831 }
1832
SYSCALL_DEFINE3(madvise,unsigned long,start,size_t,len_in,int,behavior)1833 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1834 {
1835 return do_madvise(current->mm, start, len_in, behavior);
1836 }
1837
1838 /* Perform an madvise operation over a vector of addresses and lengths. */
vector_madvise(struct mm_struct * mm,struct iov_iter * iter,int behavior)1839 static ssize_t vector_madvise(struct mm_struct *mm, struct iov_iter *iter,
1840 int behavior)
1841 {
1842 ssize_t ret = 0;
1843 size_t total_len;
1844 struct mmu_gather tlb;
1845 struct madvise_behavior madv_behavior = {
1846 .behavior = behavior,
1847 .tlb = &tlb,
1848 };
1849
1850 total_len = iov_iter_count(iter);
1851
1852 ret = madvise_lock(mm, behavior);
1853 if (ret)
1854 return ret;
1855 madvise_init_tlb(&madv_behavior, mm);
1856
1857 while (iov_iter_count(iter)) {
1858 unsigned long start = (unsigned long)iter_iov_addr(iter);
1859 size_t len_in = iter_iov_len(iter);
1860 int error;
1861
1862 if (madvise_should_skip(start, len_in, behavior, &error))
1863 ret = error;
1864 else
1865 ret = madvise_do_behavior(mm, start, len_in,
1866 &madv_behavior);
1867 /*
1868 * An madvise operation is attempting to restart the syscall,
1869 * but we cannot proceed as it would not be correct to repeat
1870 * the operation in aggregate, and would be surprising to the
1871 * user.
1872 *
1873 * We drop and reacquire locks so it is safe to just loop and
1874 * try again. We check for fatal signals in case we need exit
1875 * early anyway.
1876 */
1877 if (ret == -ERESTARTNOINTR) {
1878 if (fatal_signal_pending(current)) {
1879 ret = -EINTR;
1880 break;
1881 }
1882
1883 /* Drop and reacquire lock to unwind race. */
1884 madvise_finish_tlb(&madv_behavior);
1885 madvise_unlock(mm, behavior);
1886 ret = madvise_lock(mm, behavior);
1887 if (ret)
1888 goto out;
1889 madvise_init_tlb(&madv_behavior, mm);
1890 continue;
1891 }
1892 if (ret < 0)
1893 break;
1894 iov_iter_advance(iter, iter_iov_len(iter));
1895 }
1896 madvise_finish_tlb(&madv_behavior);
1897 madvise_unlock(mm, behavior);
1898
1899 out:
1900 ret = (total_len - iov_iter_count(iter)) ? : ret;
1901
1902 return ret;
1903 }
1904
SYSCALL_DEFINE5(process_madvise,int,pidfd,const struct iovec __user *,vec,size_t,vlen,int,behavior,unsigned int,flags)1905 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1906 size_t, vlen, int, behavior, unsigned int, flags)
1907 {
1908 ssize_t ret;
1909 struct iovec iovstack[UIO_FASTIOV];
1910 struct iovec *iov = iovstack;
1911 struct iov_iter iter;
1912 struct task_struct *task;
1913 struct mm_struct *mm;
1914 unsigned int f_flags;
1915
1916 if (flags != 0) {
1917 ret = -EINVAL;
1918 goto out;
1919 }
1920
1921 ret = import_iovec(ITER_DEST, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1922 if (ret < 0)
1923 goto out;
1924
1925 task = pidfd_get_task(pidfd, &f_flags);
1926 if (IS_ERR(task)) {
1927 ret = PTR_ERR(task);
1928 goto free_iov;
1929 }
1930
1931 /* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
1932 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1933 if (IS_ERR(mm)) {
1934 ret = PTR_ERR(mm);
1935 goto release_task;
1936 }
1937
1938 /*
1939 * We need only perform this check if we are attempting to manipulate a
1940 * remote process's address space.
1941 */
1942 if (mm != current->mm && !process_madvise_remote_valid(behavior)) {
1943 ret = -EINVAL;
1944 goto release_mm;
1945 }
1946
1947 /*
1948 * Require CAP_SYS_NICE for influencing process performance. Note that
1949 * only non-destructive hints are currently supported for remote
1950 * processes.
1951 */
1952 if (mm != current->mm && !capable(CAP_SYS_NICE)) {
1953 ret = -EPERM;
1954 goto release_mm;
1955 }
1956
1957 ret = vector_madvise(mm, &iter, behavior);
1958
1959 release_mm:
1960 mmput(mm);
1961 release_task:
1962 put_task_struct(task);
1963 free_iov:
1964 kfree(iov);
1965 out:
1966 return ret;
1967 }
1968