xref: /linux/tools/testing/selftests/kvm/include/x86/processor.h (revision f3826aa9962b4572d01083c84ac0f8345f121168)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2018, Google LLC.
4  */
5 
6 #ifndef SELFTEST_KVM_PROCESSOR_H
7 #define SELFTEST_KVM_PROCESSOR_H
8 
9 #include <assert.h>
10 #include <stdint.h>
11 #include <syscall.h>
12 
13 #include <asm/msr-index.h>
14 #include <asm/prctl.h>
15 
16 #include <linux/kvm_para.h>
17 #include <linux/stringify.h>
18 
19 #include "kvm_util.h"
20 #include "ucall_common.h"
21 
22 extern bool host_cpu_is_intel;
23 extern bool host_cpu_is_amd;
24 extern uint64_t guest_tsc_khz;
25 
26 #ifndef MAX_NR_CPUID_ENTRIES
27 #define MAX_NR_CPUID_ENTRIES 100
28 #endif
29 
30 #define NONCANONICAL 0xaaaaaaaaaaaaaaaaull
31 
32 /* Forced emulation prefix, used to invoke the emulator unconditionally. */
33 #define KVM_FEP "ud2; .byte 'k', 'v', 'm';"
34 
35 #define NMI_VECTOR		0x02
36 
37 const char *ex_str(int vector);
38 
39 #define X86_EFLAGS_FIXED	 (1u << 1)
40 
41 #define X86_CR4_VME		(1ul << 0)
42 #define X86_CR4_PVI		(1ul << 1)
43 #define X86_CR4_TSD		(1ul << 2)
44 #define X86_CR4_DE		(1ul << 3)
45 #define X86_CR4_PSE		(1ul << 4)
46 #define X86_CR4_PAE		(1ul << 5)
47 #define X86_CR4_MCE		(1ul << 6)
48 #define X86_CR4_PGE		(1ul << 7)
49 #define X86_CR4_PCE		(1ul << 8)
50 #define X86_CR4_OSFXSR		(1ul << 9)
51 #define X86_CR4_OSXMMEXCPT	(1ul << 10)
52 #define X86_CR4_UMIP		(1ul << 11)
53 #define X86_CR4_LA57		(1ul << 12)
54 #define X86_CR4_VMXE		(1ul << 13)
55 #define X86_CR4_SMXE		(1ul << 14)
56 #define X86_CR4_FSGSBASE	(1ul << 16)
57 #define X86_CR4_PCIDE		(1ul << 17)
58 #define X86_CR4_OSXSAVE		(1ul << 18)
59 #define X86_CR4_SMEP		(1ul << 20)
60 #define X86_CR4_SMAP		(1ul << 21)
61 #define X86_CR4_PKE		(1ul << 22)
62 
63 struct xstate_header {
64 	u64				xstate_bv;
65 	u64				xcomp_bv;
66 	u64				reserved[6];
67 } __attribute__((packed));
68 
69 struct xstate {
70 	u8				i387[512];
71 	struct xstate_header		header;
72 	u8				extended_state_area[0];
73 } __attribute__ ((packed, aligned (64)));
74 
75 #define XFEATURE_MASK_FP		BIT_ULL(0)
76 #define XFEATURE_MASK_SSE		BIT_ULL(1)
77 #define XFEATURE_MASK_YMM		BIT_ULL(2)
78 #define XFEATURE_MASK_BNDREGS		BIT_ULL(3)
79 #define XFEATURE_MASK_BNDCSR		BIT_ULL(4)
80 #define XFEATURE_MASK_OPMASK		BIT_ULL(5)
81 #define XFEATURE_MASK_ZMM_Hi256		BIT_ULL(6)
82 #define XFEATURE_MASK_Hi16_ZMM		BIT_ULL(7)
83 #define XFEATURE_MASK_PT		BIT_ULL(8)
84 #define XFEATURE_MASK_PKRU		BIT_ULL(9)
85 #define XFEATURE_MASK_PASID		BIT_ULL(10)
86 #define XFEATURE_MASK_CET_USER		BIT_ULL(11)
87 #define XFEATURE_MASK_CET_KERNEL	BIT_ULL(12)
88 #define XFEATURE_MASK_LBR		BIT_ULL(15)
89 #define XFEATURE_MASK_XTILE_CFG		BIT_ULL(17)
90 #define XFEATURE_MASK_XTILE_DATA	BIT_ULL(18)
91 
92 #define XFEATURE_MASK_AVX512		(XFEATURE_MASK_OPMASK | \
93 					 XFEATURE_MASK_ZMM_Hi256 | \
94 					 XFEATURE_MASK_Hi16_ZMM)
95 #define XFEATURE_MASK_XTILE		(XFEATURE_MASK_XTILE_DATA | \
96 					 XFEATURE_MASK_XTILE_CFG)
97 
98 /* Note, these are ordered alphabetically to match kvm_cpuid_entry2.  Eww. */
99 enum cpuid_output_regs {
100 	KVM_CPUID_EAX,
101 	KVM_CPUID_EBX,
102 	KVM_CPUID_ECX,
103 	KVM_CPUID_EDX
104 };
105 
106 /*
107  * Pack the information into a 64-bit value so that each X86_FEATURE_XXX can be
108  * passed by value with no overhead.
109  */
110 struct kvm_x86_cpu_feature {
111 	u32	function;
112 	u16	index;
113 	u8	reg;
114 	u8	bit;
115 };
116 #define	KVM_X86_CPU_FEATURE(fn, idx, gpr, __bit)				\
117 ({										\
118 	struct kvm_x86_cpu_feature feature = {					\
119 		.function = fn,							\
120 		.index = idx,							\
121 		.reg = KVM_CPUID_##gpr,						\
122 		.bit = __bit,							\
123 	};									\
124 										\
125 	kvm_static_assert((fn & 0xc0000000) == 0 ||				\
126 			  (fn & 0xc0000000) == 0x40000000 ||			\
127 			  (fn & 0xc0000000) == 0x80000000 ||			\
128 			  (fn & 0xc0000000) == 0xc0000000);			\
129 	kvm_static_assert(idx < BIT(sizeof(feature.index) * BITS_PER_BYTE));	\
130 	feature;								\
131 })
132 
133 /*
134  * Basic Leafs, a.k.a. Intel defined
135  */
136 #define	X86_FEATURE_MWAIT		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 3)
137 #define	X86_FEATURE_VMX			KVM_X86_CPU_FEATURE(0x1, 0, ECX, 5)
138 #define	X86_FEATURE_SMX			KVM_X86_CPU_FEATURE(0x1, 0, ECX, 6)
139 #define	X86_FEATURE_PDCM		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 15)
140 #define	X86_FEATURE_PCID		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 17)
141 #define X86_FEATURE_X2APIC		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 21)
142 #define	X86_FEATURE_MOVBE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 22)
143 #define	X86_FEATURE_TSC_DEADLINE_TIMER	KVM_X86_CPU_FEATURE(0x1, 0, ECX, 24)
144 #define	X86_FEATURE_XSAVE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 26)
145 #define	X86_FEATURE_OSXSAVE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 27)
146 #define	X86_FEATURE_RDRAND		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 30)
147 #define	X86_FEATURE_HYPERVISOR		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 31)
148 #define X86_FEATURE_PAE			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 6)
149 #define	X86_FEATURE_MCE			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 7)
150 #define	X86_FEATURE_APIC		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 9)
151 #define	X86_FEATURE_CLFLUSH		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 19)
152 #define	X86_FEATURE_XMM			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 25)
153 #define	X86_FEATURE_XMM2		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 26)
154 #define	X86_FEATURE_FSGSBASE		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 0)
155 #define	X86_FEATURE_TSC_ADJUST		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 1)
156 #define	X86_FEATURE_SGX			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 2)
157 #define	X86_FEATURE_HLE			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 4)
158 #define	X86_FEATURE_SMEP	        KVM_X86_CPU_FEATURE(0x7, 0, EBX, 7)
159 #define	X86_FEATURE_INVPCID		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 10)
160 #define	X86_FEATURE_RTM			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 11)
161 #define	X86_FEATURE_MPX			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 14)
162 #define	X86_FEATURE_SMAP		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 20)
163 #define	X86_FEATURE_PCOMMIT		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 22)
164 #define	X86_FEATURE_CLFLUSHOPT		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 23)
165 #define	X86_FEATURE_CLWB		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 24)
166 #define	X86_FEATURE_UMIP		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 2)
167 #define	X86_FEATURE_PKU			KVM_X86_CPU_FEATURE(0x7, 0, ECX, 3)
168 #define	X86_FEATURE_OSPKE		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 4)
169 #define	X86_FEATURE_LA57		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 16)
170 #define	X86_FEATURE_RDPID		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 22)
171 #define	X86_FEATURE_SGX_LC		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 30)
172 #define	X86_FEATURE_SHSTK		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 7)
173 #define	X86_FEATURE_IBT			KVM_X86_CPU_FEATURE(0x7, 0, EDX, 20)
174 #define	X86_FEATURE_AMX_TILE		KVM_X86_CPU_FEATURE(0x7, 0, EDX, 24)
175 #define	X86_FEATURE_SPEC_CTRL		KVM_X86_CPU_FEATURE(0x7, 0, EDX, 26)
176 #define	X86_FEATURE_ARCH_CAPABILITIES	KVM_X86_CPU_FEATURE(0x7, 0, EDX, 29)
177 #define	X86_FEATURE_PKS			KVM_X86_CPU_FEATURE(0x7, 0, ECX, 31)
178 #define	X86_FEATURE_XTILECFG		KVM_X86_CPU_FEATURE(0xD, 0, EAX, 17)
179 #define	X86_FEATURE_XTILEDATA		KVM_X86_CPU_FEATURE(0xD, 0, EAX, 18)
180 #define	X86_FEATURE_XSAVES		KVM_X86_CPU_FEATURE(0xD, 1, EAX, 3)
181 #define	X86_FEATURE_XFD			KVM_X86_CPU_FEATURE(0xD, 1, EAX, 4)
182 #define X86_FEATURE_XTILEDATA_XFD	KVM_X86_CPU_FEATURE(0xD, 18, ECX, 2)
183 
184 /*
185  * Extended Leafs, a.k.a. AMD defined
186  */
187 #define	X86_FEATURE_SVM			KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 2)
188 #define	X86_FEATURE_PERFCTR_CORE	KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 23)
189 #define	X86_FEATURE_PERFCTR_NB		KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 24)
190 #define	X86_FEATURE_PERFCTR_LLC		KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 28)
191 #define	X86_FEATURE_NX			KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 20)
192 #define	X86_FEATURE_GBPAGES		KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 26)
193 #define	X86_FEATURE_RDTSCP		KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 27)
194 #define	X86_FEATURE_LM			KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 29)
195 #define	X86_FEATURE_INVTSC		KVM_X86_CPU_FEATURE(0x80000007, 0, EDX, 8)
196 #define	X86_FEATURE_RDPRU		KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 4)
197 #define	X86_FEATURE_AMD_IBPB		KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 12)
198 #define	X86_FEATURE_NPT			KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 0)
199 #define	X86_FEATURE_LBRV		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 1)
200 #define	X86_FEATURE_NRIPS		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 3)
201 #define X86_FEATURE_TSCRATEMSR          KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 4)
202 #define X86_FEATURE_PAUSEFILTER         KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 10)
203 #define X86_FEATURE_PFTHRESHOLD         KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 12)
204 #define	X86_FEATURE_VGIF		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 16)
205 #define X86_FEATURE_IDLE_HLT		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 30)
206 #define X86_FEATURE_SEV			KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 1)
207 #define X86_FEATURE_SEV_ES		KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 3)
208 #define X86_FEATURE_SEV_SNP		KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 4)
209 #define	X86_FEATURE_PERFMON_V2		KVM_X86_CPU_FEATURE(0x80000022, 0, EAX, 0)
210 #define	X86_FEATURE_LBR_PMC_FREEZE	KVM_X86_CPU_FEATURE(0x80000022, 0, EAX, 2)
211 
212 /*
213  * KVM defined paravirt features.
214  */
215 #define X86_FEATURE_KVM_CLOCKSOURCE	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 0)
216 #define X86_FEATURE_KVM_NOP_IO_DELAY	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 1)
217 #define X86_FEATURE_KVM_MMU_OP		KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 2)
218 #define X86_FEATURE_KVM_CLOCKSOURCE2	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 3)
219 #define X86_FEATURE_KVM_ASYNC_PF	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 4)
220 #define X86_FEATURE_KVM_STEAL_TIME	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 5)
221 #define X86_FEATURE_KVM_PV_EOI		KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 6)
222 #define X86_FEATURE_KVM_PV_UNHALT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 7)
223 /* Bit 8 apparently isn't used?!?! */
224 #define X86_FEATURE_KVM_PV_TLB_FLUSH	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 9)
225 #define X86_FEATURE_KVM_ASYNC_PF_VMEXIT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 10)
226 #define X86_FEATURE_KVM_PV_SEND_IPI	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 11)
227 #define X86_FEATURE_KVM_POLL_CONTROL	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 12)
228 #define X86_FEATURE_KVM_PV_SCHED_YIELD	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 13)
229 #define X86_FEATURE_KVM_ASYNC_PF_INT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 14)
230 #define X86_FEATURE_KVM_MSI_EXT_DEST_ID	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 15)
231 #define X86_FEATURE_KVM_HC_MAP_GPA_RANGE	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 16)
232 #define X86_FEATURE_KVM_MIGRATION_CONTROL	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 17)
233 
234 /*
235  * Same idea as X86_FEATURE_XXX, but X86_PROPERTY_XXX retrieves a multi-bit
236  * value/property as opposed to a single-bit feature.  Again, pack the info
237  * into a 64-bit value to pass by value with no overhead.
238  */
239 struct kvm_x86_cpu_property {
240 	u32	function;
241 	u8	index;
242 	u8	reg;
243 	u8	lo_bit;
244 	u8	hi_bit;
245 };
246 #define	KVM_X86_CPU_PROPERTY(fn, idx, gpr, low_bit, high_bit)			\
247 ({										\
248 	struct kvm_x86_cpu_property property = {				\
249 		.function = fn,							\
250 		.index = idx,							\
251 		.reg = KVM_CPUID_##gpr,						\
252 		.lo_bit = low_bit,						\
253 		.hi_bit = high_bit,						\
254 	};									\
255 										\
256 	kvm_static_assert(low_bit < high_bit);					\
257 	kvm_static_assert((fn & 0xc0000000) == 0 ||				\
258 			  (fn & 0xc0000000) == 0x40000000 ||			\
259 			  (fn & 0xc0000000) == 0x80000000 ||			\
260 			  (fn & 0xc0000000) == 0xc0000000);			\
261 	kvm_static_assert(idx < BIT(sizeof(property.index) * BITS_PER_BYTE));	\
262 	property;								\
263 })
264 
265 #define X86_PROPERTY_MAX_BASIC_LEAF		KVM_X86_CPU_PROPERTY(0, 0, EAX, 0, 31)
266 #define X86_PROPERTY_PMU_VERSION		KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 0, 7)
267 #define X86_PROPERTY_PMU_NR_GP_COUNTERS		KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 8, 15)
268 #define X86_PROPERTY_PMU_GP_COUNTERS_BIT_WIDTH	KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 16, 23)
269 #define X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH	KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 24, 31)
270 #define X86_PROPERTY_PMU_EVENTS_MASK		KVM_X86_CPU_PROPERTY(0xa, 0, EBX, 0, 12)
271 #define X86_PROPERTY_PMU_FIXED_COUNTERS_BITMASK	KVM_X86_CPU_PROPERTY(0xa, 0, ECX, 0, 31)
272 #define X86_PROPERTY_PMU_NR_FIXED_COUNTERS	KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 0, 4)
273 #define X86_PROPERTY_PMU_FIXED_COUNTERS_BIT_WIDTH	KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 5, 12)
274 
275 #define X86_PROPERTY_SUPPORTED_XCR0_LO		KVM_X86_CPU_PROPERTY(0xd,  0, EAX,  0, 31)
276 #define X86_PROPERTY_XSTATE_MAX_SIZE_XCR0	KVM_X86_CPU_PROPERTY(0xd,  0, EBX,  0, 31)
277 #define X86_PROPERTY_XSTATE_MAX_SIZE		KVM_X86_CPU_PROPERTY(0xd,  0, ECX,  0, 31)
278 #define X86_PROPERTY_SUPPORTED_XCR0_HI		KVM_X86_CPU_PROPERTY(0xd,  0, EDX,  0, 31)
279 
280 #define X86_PROPERTY_XSTATE_TILE_SIZE		KVM_X86_CPU_PROPERTY(0xd, 18, EAX,  0, 31)
281 #define X86_PROPERTY_XSTATE_TILE_OFFSET		KVM_X86_CPU_PROPERTY(0xd, 18, EBX,  0, 31)
282 #define X86_PROPERTY_AMX_MAX_PALETTE_TABLES	KVM_X86_CPU_PROPERTY(0x1d, 0, EAX,  0, 31)
283 #define X86_PROPERTY_AMX_TOTAL_TILE_BYTES	KVM_X86_CPU_PROPERTY(0x1d, 1, EAX,  0, 15)
284 #define X86_PROPERTY_AMX_BYTES_PER_TILE		KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 16, 31)
285 #define X86_PROPERTY_AMX_BYTES_PER_ROW		KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 0,  15)
286 #define X86_PROPERTY_AMX_NR_TILE_REGS		KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 16, 31)
287 #define X86_PROPERTY_AMX_MAX_ROWS		KVM_X86_CPU_PROPERTY(0x1d, 1, ECX, 0,  15)
288 
289 #define X86_PROPERTY_MAX_KVM_LEAF		KVM_X86_CPU_PROPERTY(0x40000000, 0, EAX, 0, 31)
290 
291 #define X86_PROPERTY_MAX_EXT_LEAF		KVM_X86_CPU_PROPERTY(0x80000000, 0, EAX, 0, 31)
292 #define X86_PROPERTY_MAX_PHY_ADDR		KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 0, 7)
293 #define X86_PROPERTY_MAX_VIRT_ADDR		KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 8, 15)
294 #define X86_PROPERTY_GUEST_MAX_PHY_ADDR		KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 16, 23)
295 #define X86_PROPERTY_SEV_C_BIT			KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 0, 5)
296 #define X86_PROPERTY_PHYS_ADDR_REDUCTION	KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 6, 11)
297 #define X86_PROPERTY_NR_PERFCTR_CORE		KVM_X86_CPU_PROPERTY(0x80000022, 0, EBX, 0, 3)
298 #define X86_PROPERTY_NR_PERFCTR_NB		KVM_X86_CPU_PROPERTY(0x80000022, 0, EBX, 10, 15)
299 
300 #define X86_PROPERTY_MAX_CENTAUR_LEAF		KVM_X86_CPU_PROPERTY(0xC0000000, 0, EAX, 0, 31)
301 
302 /*
303  * Intel's architectural PMU events are bizarre.  They have a "feature" bit
304  * that indicates the feature is _not_ supported, and a property that states
305  * the length of the bit mask of unsupported features.  A feature is supported
306  * if the size of the bit mask is larger than the "unavailable" bit, and said
307  * bit is not set.  Fixed counters also bizarre enumeration, but inverted from
308  * arch events for general purpose counters.  Fixed counters are supported if a
309  * feature flag is set **OR** the total number of fixed counters is greater
310  * than index of the counter.
311  *
312  * Wrap the events for general purpose and fixed counters to simplify checking
313  * whether or not a given architectural event is supported.
314  */
315 struct kvm_x86_pmu_feature {
316 	struct kvm_x86_cpu_feature f;
317 };
318 #define	KVM_X86_PMU_FEATURE(__reg, __bit)				\
319 ({									\
320 	struct kvm_x86_pmu_feature feature = {				\
321 		.f = KVM_X86_CPU_FEATURE(0xa, 0, __reg, __bit),		\
322 	};								\
323 									\
324 	kvm_static_assert(KVM_CPUID_##__reg == KVM_CPUID_EBX ||		\
325 			  KVM_CPUID_##__reg == KVM_CPUID_ECX);		\
326 	feature;							\
327 })
328 
329 #define X86_PMU_FEATURE_CPU_CYCLES			KVM_X86_PMU_FEATURE(EBX, 0)
330 #define X86_PMU_FEATURE_INSNS_RETIRED			KVM_X86_PMU_FEATURE(EBX, 1)
331 #define X86_PMU_FEATURE_REFERENCE_CYCLES		KVM_X86_PMU_FEATURE(EBX, 2)
332 #define X86_PMU_FEATURE_LLC_REFERENCES			KVM_X86_PMU_FEATURE(EBX, 3)
333 #define X86_PMU_FEATURE_LLC_MISSES			KVM_X86_PMU_FEATURE(EBX, 4)
334 #define X86_PMU_FEATURE_BRANCH_INSNS_RETIRED		KVM_X86_PMU_FEATURE(EBX, 5)
335 #define X86_PMU_FEATURE_BRANCHES_MISPREDICTED		KVM_X86_PMU_FEATURE(EBX, 6)
336 #define X86_PMU_FEATURE_TOPDOWN_SLOTS			KVM_X86_PMU_FEATURE(EBX, 7)
337 #define X86_PMU_FEATURE_TOPDOWN_BE_BOUND		KVM_X86_PMU_FEATURE(EBX, 8)
338 #define X86_PMU_FEATURE_TOPDOWN_BAD_SPEC		KVM_X86_PMU_FEATURE(EBX, 9)
339 #define X86_PMU_FEATURE_TOPDOWN_FE_BOUND		KVM_X86_PMU_FEATURE(EBX, 10)
340 #define X86_PMU_FEATURE_TOPDOWN_RETIRING		KVM_X86_PMU_FEATURE(EBX, 11)
341 #define X86_PMU_FEATURE_LBR_INSERTS			KVM_X86_PMU_FEATURE(EBX, 12)
342 
343 #define X86_PMU_FEATURE_INSNS_RETIRED_FIXED		KVM_X86_PMU_FEATURE(ECX, 0)
344 #define X86_PMU_FEATURE_CPU_CYCLES_FIXED		KVM_X86_PMU_FEATURE(ECX, 1)
345 #define X86_PMU_FEATURE_REFERENCE_TSC_CYCLES_FIXED	KVM_X86_PMU_FEATURE(ECX, 2)
346 #define X86_PMU_FEATURE_TOPDOWN_SLOTS_FIXED		KVM_X86_PMU_FEATURE(ECX, 3)
347 
348 static inline unsigned int x86_family(unsigned int eax)
349 {
350 	unsigned int x86;
351 
352 	x86 = (eax >> 8) & 0xf;
353 
354 	if (x86 == 0xf)
355 		x86 += (eax >> 20) & 0xff;
356 
357 	return x86;
358 }
359 
360 static inline unsigned int x86_model(unsigned int eax)
361 {
362 	return ((eax >> 12) & 0xf0) | ((eax >> 4) & 0x0f);
363 }
364 
365 /* Page table bitfield declarations */
366 #define PTE_PRESENT_MASK        BIT_ULL(0)
367 #define PTE_WRITABLE_MASK       BIT_ULL(1)
368 #define PTE_USER_MASK           BIT_ULL(2)
369 #define PTE_ACCESSED_MASK       BIT_ULL(5)
370 #define PTE_DIRTY_MASK          BIT_ULL(6)
371 #define PTE_LARGE_MASK          BIT_ULL(7)
372 #define PTE_GLOBAL_MASK         BIT_ULL(8)
373 #define PTE_NX_MASK             BIT_ULL(63)
374 
375 #define PHYSICAL_PAGE_MASK      GENMASK_ULL(51, 12)
376 
377 #define PAGE_SHIFT		12
378 #define PAGE_SIZE		(1ULL << PAGE_SHIFT)
379 #define PAGE_MASK		(~(PAGE_SIZE-1) & PHYSICAL_PAGE_MASK)
380 
381 #define HUGEPAGE_SHIFT(x)	(PAGE_SHIFT + (((x) - 1) * 9))
382 #define HUGEPAGE_SIZE(x)	(1UL << HUGEPAGE_SHIFT(x))
383 #define HUGEPAGE_MASK(x)	(~(HUGEPAGE_SIZE(x) - 1) & PHYSICAL_PAGE_MASK)
384 
385 #define PTE_GET_PA(pte)		((pte) & PHYSICAL_PAGE_MASK)
386 #define PTE_GET_PFN(pte)        (PTE_GET_PA(pte) >> PAGE_SHIFT)
387 
388 /* General Registers in 64-Bit Mode */
389 struct gpr64_regs {
390 	u64 rax;
391 	u64 rcx;
392 	u64 rdx;
393 	u64 rbx;
394 	u64 rsp;
395 	u64 rbp;
396 	u64 rsi;
397 	u64 rdi;
398 	u64 r8;
399 	u64 r9;
400 	u64 r10;
401 	u64 r11;
402 	u64 r12;
403 	u64 r13;
404 	u64 r14;
405 	u64 r15;
406 };
407 
408 struct desc64 {
409 	uint16_t limit0;
410 	uint16_t base0;
411 	unsigned base1:8, type:4, s:1, dpl:2, p:1;
412 	unsigned limit1:4, avl:1, l:1, db:1, g:1, base2:8;
413 	uint32_t base3;
414 	uint32_t zero1;
415 } __attribute__((packed));
416 
417 struct desc_ptr {
418 	uint16_t size;
419 	uint64_t address;
420 } __attribute__((packed));
421 
422 struct kvm_x86_state {
423 	struct kvm_xsave *xsave;
424 	struct kvm_vcpu_events events;
425 	struct kvm_mp_state mp_state;
426 	struct kvm_regs regs;
427 	struct kvm_xcrs xcrs;
428 	struct kvm_sregs sregs;
429 	struct kvm_debugregs debugregs;
430 	union {
431 		struct kvm_nested_state nested;
432 		char nested_[16384];
433 	};
434 	struct kvm_msrs msrs;
435 };
436 
437 static inline uint64_t get_desc64_base(const struct desc64 *desc)
438 {
439 	return ((uint64_t)desc->base3 << 32) |
440 		(desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24));
441 }
442 
443 static inline uint64_t rdtsc(void)
444 {
445 	uint32_t eax, edx;
446 	uint64_t tsc_val;
447 	/*
448 	 * The lfence is to wait (on Intel CPUs) until all previous
449 	 * instructions have been executed. If software requires RDTSC to be
450 	 * executed prior to execution of any subsequent instruction, it can
451 	 * execute LFENCE immediately after RDTSC
452 	 */
453 	__asm__ __volatile__("lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx));
454 	tsc_val = ((uint64_t)edx) << 32 | eax;
455 	return tsc_val;
456 }
457 
458 static inline uint64_t rdtscp(uint32_t *aux)
459 {
460 	uint32_t eax, edx;
461 
462 	__asm__ __volatile__("rdtscp" : "=a"(eax), "=d"(edx), "=c"(*aux));
463 	return ((uint64_t)edx) << 32 | eax;
464 }
465 
466 static inline uint64_t rdmsr(uint32_t msr)
467 {
468 	uint32_t a, d;
469 
470 	__asm__ __volatile__("rdmsr" : "=a"(a), "=d"(d) : "c"(msr) : "memory");
471 
472 	return a | ((uint64_t) d << 32);
473 }
474 
475 static inline void wrmsr(uint32_t msr, uint64_t value)
476 {
477 	uint32_t a = value;
478 	uint32_t d = value >> 32;
479 
480 	__asm__ __volatile__("wrmsr" :: "a"(a), "d"(d), "c"(msr) : "memory");
481 }
482 
483 
484 static inline uint16_t inw(uint16_t port)
485 {
486 	uint16_t tmp;
487 
488 	__asm__ __volatile__("in %%dx, %%ax"
489 		: /* output */ "=a" (tmp)
490 		: /* input */ "d" (port));
491 
492 	return tmp;
493 }
494 
495 static inline uint16_t get_es(void)
496 {
497 	uint16_t es;
498 
499 	__asm__ __volatile__("mov %%es, %[es]"
500 			     : /* output */ [es]"=rm"(es));
501 	return es;
502 }
503 
504 static inline uint16_t get_cs(void)
505 {
506 	uint16_t cs;
507 
508 	__asm__ __volatile__("mov %%cs, %[cs]"
509 			     : /* output */ [cs]"=rm"(cs));
510 	return cs;
511 }
512 
513 static inline uint16_t get_ss(void)
514 {
515 	uint16_t ss;
516 
517 	__asm__ __volatile__("mov %%ss, %[ss]"
518 			     : /* output */ [ss]"=rm"(ss));
519 	return ss;
520 }
521 
522 static inline uint16_t get_ds(void)
523 {
524 	uint16_t ds;
525 
526 	__asm__ __volatile__("mov %%ds, %[ds]"
527 			     : /* output */ [ds]"=rm"(ds));
528 	return ds;
529 }
530 
531 static inline uint16_t get_fs(void)
532 {
533 	uint16_t fs;
534 
535 	__asm__ __volatile__("mov %%fs, %[fs]"
536 			     : /* output */ [fs]"=rm"(fs));
537 	return fs;
538 }
539 
540 static inline uint16_t get_gs(void)
541 {
542 	uint16_t gs;
543 
544 	__asm__ __volatile__("mov %%gs, %[gs]"
545 			     : /* output */ [gs]"=rm"(gs));
546 	return gs;
547 }
548 
549 static inline uint16_t get_tr(void)
550 {
551 	uint16_t tr;
552 
553 	__asm__ __volatile__("str %[tr]"
554 			     : /* output */ [tr]"=rm"(tr));
555 	return tr;
556 }
557 
558 static inline uint64_t get_cr0(void)
559 {
560 	uint64_t cr0;
561 
562 	__asm__ __volatile__("mov %%cr0, %[cr0]"
563 			     : /* output */ [cr0]"=r"(cr0));
564 	return cr0;
565 }
566 
567 static inline uint64_t get_cr3(void)
568 {
569 	uint64_t cr3;
570 
571 	__asm__ __volatile__("mov %%cr3, %[cr3]"
572 			     : /* output */ [cr3]"=r"(cr3));
573 	return cr3;
574 }
575 
576 static inline uint64_t get_cr4(void)
577 {
578 	uint64_t cr4;
579 
580 	__asm__ __volatile__("mov %%cr4, %[cr4]"
581 			     : /* output */ [cr4]"=r"(cr4));
582 	return cr4;
583 }
584 
585 static inline void set_cr4(uint64_t val)
586 {
587 	__asm__ __volatile__("mov %0, %%cr4" : : "r" (val) : "memory");
588 }
589 
590 static inline void set_idt(const struct desc_ptr *idt_desc)
591 {
592 	__asm__ __volatile__("lidt %0"::"m"(*idt_desc));
593 }
594 
595 static inline u64 xgetbv(u32 index)
596 {
597 	u32 eax, edx;
598 
599 	__asm__ __volatile__("xgetbv;"
600 		     : "=a" (eax), "=d" (edx)
601 		     : "c" (index));
602 	return eax | ((u64)edx << 32);
603 }
604 
605 static inline void xsetbv(u32 index, u64 value)
606 {
607 	u32 eax = value;
608 	u32 edx = value >> 32;
609 
610 	__asm__ __volatile__("xsetbv" :: "a" (eax), "d" (edx), "c" (index));
611 }
612 
613 static inline void wrpkru(u32 pkru)
614 {
615 	/* Note, ECX and EDX are architecturally required to be '0'. */
616 	asm volatile(".byte 0x0f,0x01,0xef\n\t"
617 		     : : "a" (pkru), "c"(0), "d"(0));
618 }
619 
620 static inline struct desc_ptr get_gdt(void)
621 {
622 	struct desc_ptr gdt;
623 	__asm__ __volatile__("sgdt %[gdt]"
624 			     : /* output */ [gdt]"=m"(gdt));
625 	return gdt;
626 }
627 
628 static inline struct desc_ptr get_idt(void)
629 {
630 	struct desc_ptr idt;
631 	__asm__ __volatile__("sidt %[idt]"
632 			     : /* output */ [idt]"=m"(idt));
633 	return idt;
634 }
635 
636 static inline void outl(uint16_t port, uint32_t value)
637 {
638 	__asm__ __volatile__("outl %%eax, %%dx" : : "d"(port), "a"(value));
639 }
640 
641 static inline void __cpuid(uint32_t function, uint32_t index,
642 			   uint32_t *eax, uint32_t *ebx,
643 			   uint32_t *ecx, uint32_t *edx)
644 {
645 	*eax = function;
646 	*ecx = index;
647 
648 	asm volatile("cpuid"
649 	    : "=a" (*eax),
650 	      "=b" (*ebx),
651 	      "=c" (*ecx),
652 	      "=d" (*edx)
653 	    : "0" (*eax), "2" (*ecx)
654 	    : "memory");
655 }
656 
657 static inline void cpuid(uint32_t function,
658 			 uint32_t *eax, uint32_t *ebx,
659 			 uint32_t *ecx, uint32_t *edx)
660 {
661 	return __cpuid(function, 0, eax, ebx, ecx, edx);
662 }
663 
664 static inline uint32_t this_cpu_fms(void)
665 {
666 	uint32_t eax, ebx, ecx, edx;
667 
668 	cpuid(1, &eax, &ebx, &ecx, &edx);
669 	return eax;
670 }
671 
672 static inline uint32_t this_cpu_family(void)
673 {
674 	return x86_family(this_cpu_fms());
675 }
676 
677 static inline uint32_t this_cpu_model(void)
678 {
679 	return x86_model(this_cpu_fms());
680 }
681 
682 static inline bool this_cpu_vendor_string_is(const char *vendor)
683 {
684 	const uint32_t *chunk = (const uint32_t *)vendor;
685 	uint32_t eax, ebx, ecx, edx;
686 
687 	cpuid(0, &eax, &ebx, &ecx, &edx);
688 	return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
689 }
690 
691 static inline bool this_cpu_is_intel(void)
692 {
693 	return this_cpu_vendor_string_is("GenuineIntel");
694 }
695 
696 /*
697  * Exclude early K5 samples with a vendor string of "AMDisbetter!"
698  */
699 static inline bool this_cpu_is_amd(void)
700 {
701 	return this_cpu_vendor_string_is("AuthenticAMD");
702 }
703 
704 static inline uint32_t __this_cpu_has(uint32_t function, uint32_t index,
705 				      uint8_t reg, uint8_t lo, uint8_t hi)
706 {
707 	uint32_t gprs[4];
708 
709 	__cpuid(function, index,
710 		&gprs[KVM_CPUID_EAX], &gprs[KVM_CPUID_EBX],
711 		&gprs[KVM_CPUID_ECX], &gprs[KVM_CPUID_EDX]);
712 
713 	return (gprs[reg] & GENMASK(hi, lo)) >> lo;
714 }
715 
716 static inline bool this_cpu_has(struct kvm_x86_cpu_feature feature)
717 {
718 	return __this_cpu_has(feature.function, feature.index,
719 			      feature.reg, feature.bit, feature.bit);
720 }
721 
722 static inline uint32_t this_cpu_property(struct kvm_x86_cpu_property property)
723 {
724 	return __this_cpu_has(property.function, property.index,
725 			      property.reg, property.lo_bit, property.hi_bit);
726 }
727 
728 static __always_inline bool this_cpu_has_p(struct kvm_x86_cpu_property property)
729 {
730 	uint32_t max_leaf;
731 
732 	switch (property.function & 0xc0000000) {
733 	case 0:
734 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
735 		break;
736 	case 0x40000000:
737 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
738 		break;
739 	case 0x80000000:
740 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
741 		break;
742 	case 0xc0000000:
743 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
744 	}
745 	return max_leaf >= property.function;
746 }
747 
748 static inline bool this_pmu_has(struct kvm_x86_pmu_feature feature)
749 {
750 	uint32_t nr_bits;
751 
752 	if (feature.f.reg == KVM_CPUID_EBX) {
753 		nr_bits = this_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
754 		return nr_bits > feature.f.bit && !this_cpu_has(feature.f);
755 	}
756 
757 	GUEST_ASSERT(feature.f.reg == KVM_CPUID_ECX);
758 	nr_bits = this_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS);
759 	return nr_bits > feature.f.bit || this_cpu_has(feature.f);
760 }
761 
762 static __always_inline uint64_t this_cpu_supported_xcr0(void)
763 {
764 	if (!this_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
765 		return 0;
766 
767 	return this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
768 	       ((uint64_t)this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
769 }
770 
771 typedef u32		__attribute__((vector_size(16))) sse128_t;
772 #define __sse128_u	union { sse128_t vec; u64 as_u64[2]; u32 as_u32[4]; }
773 #define sse128_lo(x)	({ __sse128_u t; t.vec = x; t.as_u64[0]; })
774 #define sse128_hi(x)	({ __sse128_u t; t.vec = x; t.as_u64[1]; })
775 
776 static inline void read_sse_reg(int reg, sse128_t *data)
777 {
778 	switch (reg) {
779 	case 0:
780 		asm("movdqa %%xmm0, %0" : "=m"(*data));
781 		break;
782 	case 1:
783 		asm("movdqa %%xmm1, %0" : "=m"(*data));
784 		break;
785 	case 2:
786 		asm("movdqa %%xmm2, %0" : "=m"(*data));
787 		break;
788 	case 3:
789 		asm("movdqa %%xmm3, %0" : "=m"(*data));
790 		break;
791 	case 4:
792 		asm("movdqa %%xmm4, %0" : "=m"(*data));
793 		break;
794 	case 5:
795 		asm("movdqa %%xmm5, %0" : "=m"(*data));
796 		break;
797 	case 6:
798 		asm("movdqa %%xmm6, %0" : "=m"(*data));
799 		break;
800 	case 7:
801 		asm("movdqa %%xmm7, %0" : "=m"(*data));
802 		break;
803 	default:
804 		BUG();
805 	}
806 }
807 
808 static inline void write_sse_reg(int reg, const sse128_t *data)
809 {
810 	switch (reg) {
811 	case 0:
812 		asm("movdqa %0, %%xmm0" : : "m"(*data));
813 		break;
814 	case 1:
815 		asm("movdqa %0, %%xmm1" : : "m"(*data));
816 		break;
817 	case 2:
818 		asm("movdqa %0, %%xmm2" : : "m"(*data));
819 		break;
820 	case 3:
821 		asm("movdqa %0, %%xmm3" : : "m"(*data));
822 		break;
823 	case 4:
824 		asm("movdqa %0, %%xmm4" : : "m"(*data));
825 		break;
826 	case 5:
827 		asm("movdqa %0, %%xmm5" : : "m"(*data));
828 		break;
829 	case 6:
830 		asm("movdqa %0, %%xmm6" : : "m"(*data));
831 		break;
832 	case 7:
833 		asm("movdqa %0, %%xmm7" : : "m"(*data));
834 		break;
835 	default:
836 		BUG();
837 	}
838 }
839 
840 static inline void cpu_relax(void)
841 {
842 	asm volatile("rep; nop" ::: "memory");
843 }
844 
845 static inline void udelay(unsigned long usec)
846 {
847 	uint64_t start, now, cycles;
848 
849 	GUEST_ASSERT(guest_tsc_khz);
850 	cycles = guest_tsc_khz / 1000 * usec;
851 
852 	/*
853 	 * Deliberately don't PAUSE, a.k.a. cpu_relax(), so that the delay is
854 	 * as accurate as possible, e.g. doesn't trigger PAUSE-Loop VM-Exits.
855 	 */
856 	start = rdtsc();
857 	do {
858 		now = rdtsc();
859 	} while (now - start < cycles);
860 }
861 
862 #define ud2()			\
863 	__asm__ __volatile__(	\
864 		"ud2\n"	\
865 		)
866 
867 #define hlt()			\
868 	__asm__ __volatile__(	\
869 		"hlt\n"	\
870 		)
871 
872 struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu);
873 void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state);
874 void kvm_x86_state_cleanup(struct kvm_x86_state *state);
875 
876 const struct kvm_msr_list *kvm_get_msr_index_list(void);
877 const struct kvm_msr_list *kvm_get_feature_msr_index_list(void);
878 bool kvm_msr_is_in_save_restore_list(uint32_t msr_index);
879 uint64_t kvm_get_feature_msr(uint64_t msr_index);
880 
881 static inline void vcpu_msrs_get(struct kvm_vcpu *vcpu,
882 				 struct kvm_msrs *msrs)
883 {
884 	int r = __vcpu_ioctl(vcpu, KVM_GET_MSRS, msrs);
885 
886 	TEST_ASSERT(r == msrs->nmsrs,
887 		    "KVM_GET_MSRS failed, r: %i (failed on MSR %x)",
888 		    r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
889 }
890 static inline void vcpu_msrs_set(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs)
891 {
892 	int r = __vcpu_ioctl(vcpu, KVM_SET_MSRS, msrs);
893 
894 	TEST_ASSERT(r == msrs->nmsrs,
895 		    "KVM_SET_MSRS failed, r: %i (failed on MSR %x)",
896 		    r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
897 }
898 static inline void vcpu_debugregs_get(struct kvm_vcpu *vcpu,
899 				      struct kvm_debugregs *debugregs)
900 {
901 	vcpu_ioctl(vcpu, KVM_GET_DEBUGREGS, debugregs);
902 }
903 static inline void vcpu_debugregs_set(struct kvm_vcpu *vcpu,
904 				      struct kvm_debugregs *debugregs)
905 {
906 	vcpu_ioctl(vcpu, KVM_SET_DEBUGREGS, debugregs);
907 }
908 static inline void vcpu_xsave_get(struct kvm_vcpu *vcpu,
909 				  struct kvm_xsave *xsave)
910 {
911 	vcpu_ioctl(vcpu, KVM_GET_XSAVE, xsave);
912 }
913 static inline void vcpu_xsave2_get(struct kvm_vcpu *vcpu,
914 				   struct kvm_xsave *xsave)
915 {
916 	vcpu_ioctl(vcpu, KVM_GET_XSAVE2, xsave);
917 }
918 static inline void vcpu_xsave_set(struct kvm_vcpu *vcpu,
919 				  struct kvm_xsave *xsave)
920 {
921 	vcpu_ioctl(vcpu, KVM_SET_XSAVE, xsave);
922 }
923 static inline void vcpu_xcrs_get(struct kvm_vcpu *vcpu,
924 				 struct kvm_xcrs *xcrs)
925 {
926 	vcpu_ioctl(vcpu, KVM_GET_XCRS, xcrs);
927 }
928 static inline void vcpu_xcrs_set(struct kvm_vcpu *vcpu, struct kvm_xcrs *xcrs)
929 {
930 	vcpu_ioctl(vcpu, KVM_SET_XCRS, xcrs);
931 }
932 
933 const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
934 					       uint32_t function, uint32_t index);
935 const struct kvm_cpuid2 *kvm_get_supported_cpuid(void);
936 
937 static inline uint32_t kvm_cpu_fms(void)
938 {
939 	return get_cpuid_entry(kvm_get_supported_cpuid(), 0x1, 0)->eax;
940 }
941 
942 static inline uint32_t kvm_cpu_family(void)
943 {
944 	return x86_family(kvm_cpu_fms());
945 }
946 
947 static inline uint32_t kvm_cpu_model(void)
948 {
949 	return x86_model(kvm_cpu_fms());
950 }
951 
952 bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
953 		   struct kvm_x86_cpu_feature feature);
954 
955 static inline bool kvm_cpu_has(struct kvm_x86_cpu_feature feature)
956 {
957 	return kvm_cpuid_has(kvm_get_supported_cpuid(), feature);
958 }
959 
960 uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
961 			    struct kvm_x86_cpu_property property);
962 
963 static inline uint32_t kvm_cpu_property(struct kvm_x86_cpu_property property)
964 {
965 	return kvm_cpuid_property(kvm_get_supported_cpuid(), property);
966 }
967 
968 static __always_inline bool kvm_cpu_has_p(struct kvm_x86_cpu_property property)
969 {
970 	uint32_t max_leaf;
971 
972 	switch (property.function & 0xc0000000) {
973 	case 0:
974 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
975 		break;
976 	case 0x40000000:
977 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
978 		break;
979 	case 0x80000000:
980 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
981 		break;
982 	case 0xc0000000:
983 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
984 	}
985 	return max_leaf >= property.function;
986 }
987 
988 static inline bool kvm_pmu_has(struct kvm_x86_pmu_feature feature)
989 {
990 	uint32_t nr_bits;
991 
992 	if (feature.f.reg == KVM_CPUID_EBX) {
993 		nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
994 		return nr_bits > feature.f.bit && !kvm_cpu_has(feature.f);
995 	}
996 
997 	TEST_ASSERT_EQ(feature.f.reg, KVM_CPUID_ECX);
998 	nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS);
999 	return nr_bits > feature.f.bit || kvm_cpu_has(feature.f);
1000 }
1001 
1002 static __always_inline uint64_t kvm_cpu_supported_xcr0(void)
1003 {
1004 	if (!kvm_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
1005 		return 0;
1006 
1007 	return kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
1008 	       ((uint64_t)kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
1009 }
1010 
1011 static inline size_t kvm_cpuid2_size(int nr_entries)
1012 {
1013 	return sizeof(struct kvm_cpuid2) +
1014 	       sizeof(struct kvm_cpuid_entry2) * nr_entries;
1015 }
1016 
1017 /*
1018  * Allocate a "struct kvm_cpuid2* instance, with the 0-length arrary of
1019  * entries sized to hold @nr_entries.  The caller is responsible for freeing
1020  * the struct.
1021  */
1022 static inline struct kvm_cpuid2 *allocate_kvm_cpuid2(int nr_entries)
1023 {
1024 	struct kvm_cpuid2 *cpuid;
1025 
1026 	cpuid = malloc(kvm_cpuid2_size(nr_entries));
1027 	TEST_ASSERT(cpuid, "-ENOMEM when allocating kvm_cpuid2");
1028 
1029 	cpuid->nent = nr_entries;
1030 
1031 	return cpuid;
1032 }
1033 
1034 void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid);
1035 
1036 static inline void vcpu_get_cpuid(struct kvm_vcpu *vcpu)
1037 {
1038 	vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
1039 }
1040 
1041 static inline struct kvm_cpuid_entry2 *__vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
1042 							      uint32_t function,
1043 							      uint32_t index)
1044 {
1045 	TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first (or equivalent)");
1046 
1047 	vcpu_get_cpuid(vcpu);
1048 
1049 	return (struct kvm_cpuid_entry2 *)get_cpuid_entry(vcpu->cpuid,
1050 							  function, index);
1051 }
1052 
1053 static inline struct kvm_cpuid_entry2 *vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
1054 							    uint32_t function)
1055 {
1056 	return __vcpu_get_cpuid_entry(vcpu, function, 0);
1057 }
1058 
1059 static inline int __vcpu_set_cpuid(struct kvm_vcpu *vcpu)
1060 {
1061 	int r;
1062 
1063 	TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
1064 	r = __vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
1065 	if (r)
1066 		return r;
1067 
1068 	/* On success, refresh the cache to pick up adjustments made by KVM. */
1069 	vcpu_get_cpuid(vcpu);
1070 	return 0;
1071 }
1072 
1073 static inline void vcpu_set_cpuid(struct kvm_vcpu *vcpu)
1074 {
1075 	TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
1076 	vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
1077 
1078 	/* Refresh the cache to pick up adjustments made by KVM. */
1079 	vcpu_get_cpuid(vcpu);
1080 }
1081 
1082 void vcpu_set_cpuid_property(struct kvm_vcpu *vcpu,
1083 			     struct kvm_x86_cpu_property property,
1084 			     uint32_t value);
1085 void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr);
1086 
1087 void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function);
1088 
1089 static inline bool vcpu_cpuid_has(struct kvm_vcpu *vcpu,
1090 				  struct kvm_x86_cpu_feature feature)
1091 {
1092 	struct kvm_cpuid_entry2 *entry;
1093 
1094 	entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index);
1095 	return *((&entry->eax) + feature.reg) & BIT(feature.bit);
1096 }
1097 
1098 void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
1099 				     struct kvm_x86_cpu_feature feature,
1100 				     bool set);
1101 
1102 static inline void vcpu_set_cpuid_feature(struct kvm_vcpu *vcpu,
1103 					  struct kvm_x86_cpu_feature feature)
1104 {
1105 	vcpu_set_or_clear_cpuid_feature(vcpu, feature, true);
1106 
1107 }
1108 
1109 static inline void vcpu_clear_cpuid_feature(struct kvm_vcpu *vcpu,
1110 					    struct kvm_x86_cpu_feature feature)
1111 {
1112 	vcpu_set_or_clear_cpuid_feature(vcpu, feature, false);
1113 }
1114 
1115 uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index);
1116 int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value);
1117 
1118 /*
1119  * Assert on an MSR access(es) and pretty print the MSR name when possible.
1120  * Note, the caller provides the stringified name so that the name of macro is
1121  * printed, not the value the macro resolves to (due to macro expansion).
1122  */
1123 #define TEST_ASSERT_MSR(cond, fmt, msr, str, args...)				\
1124 do {										\
1125 	if (__builtin_constant_p(msr)) {					\
1126 		TEST_ASSERT(cond, fmt, str, args);				\
1127 	} else if (!(cond)) {							\
1128 		char buf[16];							\
1129 										\
1130 		snprintf(buf, sizeof(buf), "MSR 0x%x", msr);			\
1131 		TEST_ASSERT(cond, fmt, buf, args);				\
1132 	}									\
1133 } while (0)
1134 
1135 /*
1136  * Returns true if KVM should return the last written value when reading an MSR
1137  * from userspace, e.g. the MSR isn't a command MSR, doesn't emulate state that
1138  * is changing, etc.  This is NOT an exhaustive list!  The intent is to filter
1139  * out MSRs that are not durable _and_ that a selftest wants to write.
1140  */
1141 static inline bool is_durable_msr(uint32_t msr)
1142 {
1143 	return msr != MSR_IA32_TSC;
1144 }
1145 
1146 #define vcpu_set_msr(vcpu, msr, val)							\
1147 do {											\
1148 	uint64_t r, v = val;								\
1149 											\
1150 	TEST_ASSERT_MSR(_vcpu_set_msr(vcpu, msr, v) == 1,				\
1151 			"KVM_SET_MSRS failed on %s, value = 0x%lx", msr, #msr, v);	\
1152 	if (!is_durable_msr(msr))							\
1153 		break;									\
1154 	r = vcpu_get_msr(vcpu, msr);							\
1155 	TEST_ASSERT_MSR(r == v, "Set %s to '0x%lx', got back '0x%lx'", msr, #msr, v, r);\
1156 } while (0)
1157 
1158 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits);
1159 void kvm_init_vm_address_properties(struct kvm_vm *vm);
1160 
1161 struct ex_regs {
1162 	uint64_t rax, rcx, rdx, rbx;
1163 	uint64_t rbp, rsi, rdi;
1164 	uint64_t r8, r9, r10, r11;
1165 	uint64_t r12, r13, r14, r15;
1166 	uint64_t vector;
1167 	uint64_t error_code;
1168 	uint64_t rip;
1169 	uint64_t cs;
1170 	uint64_t rflags;
1171 };
1172 
1173 struct idt_entry {
1174 	uint16_t offset0;
1175 	uint16_t selector;
1176 	uint16_t ist : 3;
1177 	uint16_t : 5;
1178 	uint16_t type : 4;
1179 	uint16_t : 1;
1180 	uint16_t dpl : 2;
1181 	uint16_t p : 1;
1182 	uint16_t offset1;
1183 	uint32_t offset2; uint32_t reserved;
1184 };
1185 
1186 void vm_install_exception_handler(struct kvm_vm *vm, int vector,
1187 			void (*handler)(struct ex_regs *));
1188 
1189 /*
1190  * Exception fixup morphs #DE to an arbitrary magic vector so that '0' can be
1191  * used to signal "no expcetion".
1192  */
1193 #define KVM_MAGIC_DE_VECTOR 0xff
1194 
1195 /* If a toddler were to say "abracadabra". */
1196 #define KVM_EXCEPTION_MAGIC 0xabacadabaULL
1197 
1198 /*
1199  * KVM selftest exception fixup uses registers to coordinate with the exception
1200  * handler, versus the kernel's in-memory tables and KVM-Unit-Tests's in-memory
1201  * per-CPU data.  Using only registers avoids having to map memory into the
1202  * guest, doesn't require a valid, stable GS.base, and reduces the risk of
1203  * for recursive faults when accessing memory in the handler.  The downside to
1204  * using registers is that it restricts what registers can be used by the actual
1205  * instruction.  But, selftests are 64-bit only, making register* pressure a
1206  * minor concern.  Use r9-r11 as they are volatile, i.e. don't need to be saved
1207  * by the callee, and except for r11 are not implicit parameters to any
1208  * instructions.  Ideally, fixup would use r8-r10 and thus avoid implicit
1209  * parameters entirely, but Hyper-V's hypercall ABI uses r8 and testing Hyper-V
1210  * is higher priority than testing non-faulting SYSCALL/SYSRET.
1211  *
1212  * Note, the fixup handler deliberately does not handle #DE, i.e. the vector
1213  * is guaranteed to be non-zero on fault.
1214  *
1215  * REGISTER INPUTS:
1216  * r9  = MAGIC
1217  * r10 = RIP
1218  * r11 = new RIP on fault
1219  *
1220  * REGISTER OUTPUTS:
1221  * r9  = exception vector (non-zero)
1222  * r10 = error code
1223  */
1224 #define __KVM_ASM_SAFE(insn, fep)				\
1225 	"mov $" __stringify(KVM_EXCEPTION_MAGIC) ", %%r9\n\t"	\
1226 	"lea 1f(%%rip), %%r10\n\t"				\
1227 	"lea 2f(%%rip), %%r11\n\t"				\
1228 	fep "1: " insn "\n\t"					\
1229 	"xor %%r9, %%r9\n\t"					\
1230 	"2:\n\t"						\
1231 	"mov  %%r9b, %[vector]\n\t"				\
1232 	"mov  %%r10, %[error_code]\n\t"
1233 
1234 #define KVM_ASM_SAFE(insn) __KVM_ASM_SAFE(insn, "")
1235 #define KVM_ASM_SAFE_FEP(insn) __KVM_ASM_SAFE(insn, KVM_FEP)
1236 
1237 #define KVM_ASM_SAFE_OUTPUTS(v, ec)	[vector] "=qm"(v), [error_code] "=rm"(ec)
1238 #define KVM_ASM_SAFE_CLOBBERS	"r9", "r10", "r11"
1239 
1240 #define kvm_asm_safe(insn, inputs...)					\
1241 ({									\
1242 	uint64_t ign_error_code;					\
1243 	uint8_t vector;							\
1244 									\
1245 	asm volatile(KVM_ASM_SAFE(insn)					\
1246 		     : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code)	\
1247 		     : inputs						\
1248 		     : KVM_ASM_SAFE_CLOBBERS);				\
1249 	vector;								\
1250 })
1251 
1252 #define kvm_asm_safe_ec(insn, error_code, inputs...)			\
1253 ({									\
1254 	uint8_t vector;							\
1255 									\
1256 	asm volatile(KVM_ASM_SAFE(insn)					\
1257 		     : KVM_ASM_SAFE_OUTPUTS(vector, error_code)		\
1258 		     : inputs						\
1259 		     : KVM_ASM_SAFE_CLOBBERS);				\
1260 	vector;								\
1261 })
1262 
1263 #define kvm_asm_safe_fep(insn, inputs...)				\
1264 ({									\
1265 	uint64_t ign_error_code;					\
1266 	uint8_t vector;							\
1267 									\
1268 	asm volatile(KVM_ASM_SAFE_FEP(insn)				\
1269 		     : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code)	\
1270 		     : inputs						\
1271 		     : KVM_ASM_SAFE_CLOBBERS);				\
1272 	vector;								\
1273 })
1274 
1275 #define kvm_asm_safe_ec_fep(insn, error_code, inputs...)		\
1276 ({									\
1277 	uint8_t vector;							\
1278 									\
1279 	asm volatile(KVM_ASM_SAFE_FEP(insn)				\
1280 		     : KVM_ASM_SAFE_OUTPUTS(vector, error_code)		\
1281 		     : inputs						\
1282 		     : KVM_ASM_SAFE_CLOBBERS);				\
1283 	vector;								\
1284 })
1285 
1286 #define BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP)			\
1287 static inline uint8_t insn##_safe ##_fep(uint32_t idx, uint64_t *val)	\
1288 {									\
1289 	uint64_t error_code;						\
1290 	uint8_t vector;							\
1291 	uint32_t a, d;							\
1292 									\
1293 	asm volatile(KVM_ASM_SAFE##_FEP(#insn)				\
1294 		     : "=a"(a), "=d"(d),				\
1295 		       KVM_ASM_SAFE_OUTPUTS(vector, error_code)		\
1296 		     : "c"(idx)						\
1297 		     : KVM_ASM_SAFE_CLOBBERS);				\
1298 									\
1299 	*val = (uint64_t)a | ((uint64_t)d << 32);			\
1300 	return vector;							\
1301 }
1302 
1303 /*
1304  * Generate {insn}_safe() and {insn}_safe_fep() helpers for instructions that
1305  * use ECX as in input index, and EDX:EAX as a 64-bit output.
1306  */
1307 #define BUILD_READ_U64_SAFE_HELPERS(insn)				\
1308 	BUILD_READ_U64_SAFE_HELPER(insn, , )				\
1309 	BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP)			\
1310 
1311 BUILD_READ_U64_SAFE_HELPERS(rdmsr)
1312 BUILD_READ_U64_SAFE_HELPERS(rdpmc)
1313 BUILD_READ_U64_SAFE_HELPERS(xgetbv)
1314 
1315 static inline uint8_t wrmsr_safe(uint32_t msr, uint64_t val)
1316 {
1317 	return kvm_asm_safe("wrmsr", "a"(val & -1u), "d"(val >> 32), "c"(msr));
1318 }
1319 
1320 static inline uint8_t xsetbv_safe(uint32_t index, uint64_t value)
1321 {
1322 	u32 eax = value;
1323 	u32 edx = value >> 32;
1324 
1325 	return kvm_asm_safe("xsetbv", "a" (eax), "d" (edx), "c" (index));
1326 }
1327 
1328 bool kvm_is_tdp_enabled(void);
1329 
1330 static inline bool get_kvm_intel_param_bool(const char *param)
1331 {
1332 	return kvm_get_module_param_bool("kvm_intel", param);
1333 }
1334 
1335 static inline bool get_kvm_amd_param_bool(const char *param)
1336 {
1337 	return kvm_get_module_param_bool("kvm_amd", param);
1338 }
1339 
1340 static inline int get_kvm_intel_param_integer(const char *param)
1341 {
1342 	return kvm_get_module_param_integer("kvm_intel", param);
1343 }
1344 
1345 static inline int get_kvm_amd_param_integer(const char *param)
1346 {
1347 	return kvm_get_module_param_integer("kvm_amd", param);
1348 }
1349 
1350 static inline bool kvm_is_pmu_enabled(void)
1351 {
1352 	return get_kvm_param_bool("enable_pmu");
1353 }
1354 
1355 static inline bool kvm_is_forced_emulation_enabled(void)
1356 {
1357 	return !!get_kvm_param_integer("force_emulation_prefix");
1358 }
1359 
1360 static inline bool kvm_is_unrestricted_guest_enabled(void)
1361 {
1362 	return get_kvm_intel_param_bool("unrestricted_guest");
1363 }
1364 
1365 uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr,
1366 				    int *level);
1367 uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr);
1368 
1369 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1370 		       uint64_t a3);
1371 uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1372 void xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1373 
1374 static inline uint64_t __kvm_hypercall_map_gpa_range(uint64_t gpa,
1375 						     uint64_t size, uint64_t flags)
1376 {
1377 	return kvm_hypercall(KVM_HC_MAP_GPA_RANGE, gpa, size >> PAGE_SHIFT, flags, 0);
1378 }
1379 
1380 static inline void kvm_hypercall_map_gpa_range(uint64_t gpa, uint64_t size,
1381 					       uint64_t flags)
1382 {
1383 	uint64_t ret = __kvm_hypercall_map_gpa_range(gpa, size, flags);
1384 
1385 	GUEST_ASSERT(!ret);
1386 }
1387 
1388 /*
1389  * Execute HLT in an STI interrupt shadow to ensure that a pending IRQ that's
1390  * intended to be a wake event arrives *after* HLT is executed.  Modern CPUs,
1391  * except for a few oddballs that KVM is unlikely to run on, block IRQs for one
1392  * instruction after STI, *if* RFLAGS.IF=0 before STI.  Note, Intel CPUs may
1393  * block other events beyond regular IRQs, e.g. may block NMIs and SMIs too.
1394  */
1395 static inline void safe_halt(void)
1396 {
1397 	asm volatile("sti; hlt");
1398 }
1399 
1400 /*
1401  * Enable interrupts and ensure that interrupts are evaluated upon return from
1402  * this function, i.e. execute a nop to consume the STi interrupt shadow.
1403  */
1404 static inline void sti_nop(void)
1405 {
1406 	asm volatile ("sti; nop");
1407 }
1408 
1409 /*
1410  * Enable interrupts for one instruction (nop), to allow the CPU to process all
1411  * interrupts that are already pending.
1412  */
1413 static inline void sti_nop_cli(void)
1414 {
1415 	asm volatile ("sti; nop; cli");
1416 }
1417 
1418 static inline void sti(void)
1419 {
1420 	asm volatile("sti");
1421 }
1422 
1423 static inline void cli(void)
1424 {
1425 	asm volatile ("cli");
1426 }
1427 
1428 void __vm_xsave_require_permission(uint64_t xfeature, const char *name);
1429 
1430 #define vm_xsave_require_permission(xfeature)	\
1431 	__vm_xsave_require_permission(xfeature, #xfeature)
1432 
1433 enum pg_level {
1434 	PG_LEVEL_NONE,
1435 	PG_LEVEL_4K,
1436 	PG_LEVEL_2M,
1437 	PG_LEVEL_1G,
1438 	PG_LEVEL_512G,
1439 	PG_LEVEL_NUM
1440 };
1441 
1442 #define PG_LEVEL_SHIFT(_level) ((_level - 1) * 9 + 12)
1443 #define PG_LEVEL_SIZE(_level) (1ull << PG_LEVEL_SHIFT(_level))
1444 
1445 #define PG_SIZE_4K PG_LEVEL_SIZE(PG_LEVEL_4K)
1446 #define PG_SIZE_2M PG_LEVEL_SIZE(PG_LEVEL_2M)
1447 #define PG_SIZE_1G PG_LEVEL_SIZE(PG_LEVEL_1G)
1448 
1449 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level);
1450 void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1451 		    uint64_t nr_bytes, int level);
1452 
1453 /*
1454  * Basic CPU control in CR0
1455  */
1456 #define X86_CR0_PE          (1UL<<0) /* Protection Enable */
1457 #define X86_CR0_MP          (1UL<<1) /* Monitor Coprocessor */
1458 #define X86_CR0_EM          (1UL<<2) /* Emulation */
1459 #define X86_CR0_TS          (1UL<<3) /* Task Switched */
1460 #define X86_CR0_ET          (1UL<<4) /* Extension Type */
1461 #define X86_CR0_NE          (1UL<<5) /* Numeric Error */
1462 #define X86_CR0_WP          (1UL<<16) /* Write Protect */
1463 #define X86_CR0_AM          (1UL<<18) /* Alignment Mask */
1464 #define X86_CR0_NW          (1UL<<29) /* Not Write-through */
1465 #define X86_CR0_CD          (1UL<<30) /* Cache Disable */
1466 #define X86_CR0_PG          (1UL<<31) /* Paging */
1467 
1468 #define PFERR_PRESENT_BIT 0
1469 #define PFERR_WRITE_BIT 1
1470 #define PFERR_USER_BIT 2
1471 #define PFERR_RSVD_BIT 3
1472 #define PFERR_FETCH_BIT 4
1473 #define PFERR_PK_BIT 5
1474 #define PFERR_SGX_BIT 15
1475 #define PFERR_GUEST_FINAL_BIT 32
1476 #define PFERR_GUEST_PAGE_BIT 33
1477 #define PFERR_IMPLICIT_ACCESS_BIT 48
1478 
1479 #define PFERR_PRESENT_MASK	BIT(PFERR_PRESENT_BIT)
1480 #define PFERR_WRITE_MASK	BIT(PFERR_WRITE_BIT)
1481 #define PFERR_USER_MASK		BIT(PFERR_USER_BIT)
1482 #define PFERR_RSVD_MASK		BIT(PFERR_RSVD_BIT)
1483 #define PFERR_FETCH_MASK	BIT(PFERR_FETCH_BIT)
1484 #define PFERR_PK_MASK		BIT(PFERR_PK_BIT)
1485 #define PFERR_SGX_MASK		BIT(PFERR_SGX_BIT)
1486 #define PFERR_GUEST_FINAL_MASK	BIT_ULL(PFERR_GUEST_FINAL_BIT)
1487 #define PFERR_GUEST_PAGE_MASK	BIT_ULL(PFERR_GUEST_PAGE_BIT)
1488 #define PFERR_IMPLICIT_ACCESS	BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT)
1489 
1490 bool sys_clocksource_is_based_on_tsc(void);
1491 
1492 #endif /* SELFTEST_KVM_PROCESSOR_H */
1493