xref: /linux/kernel/workqueue.c (revision 0564e6a8c2c3152783906534d5767cabe1b05930)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/signal.h>
34 #include <linux/completion.h>
35 #include <linux/workqueue.h>
36 #include <linux/slab.h>
37 #include <linux/cpu.h>
38 #include <linux/notifier.h>
39 #include <linux/kthread.h>
40 #include <linux/hardirq.h>
41 #include <linux/mempolicy.h>
42 #include <linux/freezer.h>
43 #include <linux/debug_locks.h>
44 #include <linux/lockdep.h>
45 #include <linux/idr.h>
46 #include <linux/jhash.h>
47 #include <linux/hashtable.h>
48 #include <linux/rculist.h>
49 #include <linux/nodemask.h>
50 #include <linux/moduleparam.h>
51 #include <linux/uaccess.h>
52 #include <linux/sched/isolation.h>
53 #include <linux/sched/debug.h>
54 #include <linux/nmi.h>
55 #include <linux/kvm_para.h>
56 #include <linux/delay.h>
57 #include <linux/irq_work.h>
58 
59 #include "workqueue_internal.h"
60 
61 enum worker_pool_flags {
62 	/*
63 	 * worker_pool flags
64 	 *
65 	 * A bound pool is either associated or disassociated with its CPU.
66 	 * While associated (!DISASSOCIATED), all workers are bound to the
67 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
68 	 * is in effect.
69 	 *
70 	 * While DISASSOCIATED, the cpu may be offline and all workers have
71 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
72 	 * be executing on any CPU.  The pool behaves as an unbound one.
73 	 *
74 	 * Note that DISASSOCIATED should be flipped only while holding
75 	 * wq_pool_attach_mutex to avoid changing binding state while
76 	 * worker_attach_to_pool() is in progress.
77 	 *
78 	 * As there can only be one concurrent BH execution context per CPU, a
79 	 * BH pool is per-CPU and always DISASSOCIATED.
80 	 */
81 	POOL_BH			= 1 << 0,	/* is a BH pool */
82 	POOL_MANAGER_ACTIVE	= 1 << 1,	/* being managed */
83 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
84 	POOL_BH_DRAINING	= 1 << 3,	/* draining after CPU offline */
85 };
86 
87 enum worker_flags {
88 	/* worker flags */
89 	WORKER_DIE		= 1 << 1,	/* die die die */
90 	WORKER_IDLE		= 1 << 2,	/* is idle */
91 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
92 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
93 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
94 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
95 
96 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
97 				  WORKER_UNBOUND | WORKER_REBOUND,
98 };
99 
100 enum work_cancel_flags {
101 	WORK_CANCEL_DELAYED	= 1 << 0,	/* canceling a delayed_work */
102 	WORK_CANCEL_DISABLE	= 1 << 1,	/* canceling to disable */
103 };
104 
105 enum wq_internal_consts {
106 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
107 
108 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
109 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
110 
111 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
112 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
113 
114 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
115 						/* call for help after 10ms
116 						   (min two ticks) */
117 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
118 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
119 
120 	/*
121 	 * Rescue workers are used only on emergencies and shared by
122 	 * all cpus.  Give MIN_NICE.
123 	 */
124 	RESCUER_NICE_LEVEL	= MIN_NICE,
125 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
126 
127 	WQ_NAME_LEN		= 32,
128 	WORKER_ID_LEN		= 10 + WQ_NAME_LEN, /* "kworker/R-" + WQ_NAME_LEN */
129 };
130 
131 /*
132  * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and
133  * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because
134  * msecs_to_jiffies() can't be an initializer.
135  */
136 #define BH_WORKER_JIFFIES	msecs_to_jiffies(2)
137 #define BH_WORKER_RESTARTS	10
138 
139 /*
140  * Structure fields follow one of the following exclusion rules.
141  *
142  * I: Modifiable by initialization/destruction paths and read-only for
143  *    everyone else.
144  *
145  * P: Preemption protected.  Disabling preemption is enough and should
146  *    only be modified and accessed from the local cpu.
147  *
148  * L: pool->lock protected.  Access with pool->lock held.
149  *
150  * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
151  *     reads.
152  *
153  * K: Only modified by worker while holding pool->lock. Can be safely read by
154  *    self, while holding pool->lock or from IRQ context if %current is the
155  *    kworker.
156  *
157  * S: Only modified by worker self.
158  *
159  * A: wq_pool_attach_mutex protected.
160  *
161  * PL: wq_pool_mutex protected.
162  *
163  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
164  *
165  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
166  *
167  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
168  *      RCU for reads.
169  *
170  * WQ: wq->mutex protected.
171  *
172  * WR: wq->mutex protected for writes.  RCU protected for reads.
173  *
174  * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
175  *     with READ_ONCE() without locking.
176  *
177  * MD: wq_mayday_lock protected.
178  *
179  * WD: Used internally by the watchdog.
180  */
181 
182 /* struct worker is defined in workqueue_internal.h */
183 
184 struct worker_pool {
185 	raw_spinlock_t		lock;		/* the pool lock */
186 	int			cpu;		/* I: the associated cpu */
187 	int			node;		/* I: the associated node ID */
188 	int			id;		/* I: pool ID */
189 	unsigned int		flags;		/* L: flags */
190 
191 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
192 	bool			cpu_stall;	/* WD: stalled cpu bound pool */
193 
194 	/*
195 	 * The counter is incremented in a process context on the associated CPU
196 	 * w/ preemption disabled, and decremented or reset in the same context
197 	 * but w/ pool->lock held. The readers grab pool->lock and are
198 	 * guaranteed to see if the counter reached zero.
199 	 */
200 	int			nr_running;
201 
202 	struct list_head	worklist;	/* L: list of pending works */
203 
204 	int			nr_workers;	/* L: total number of workers */
205 	int			nr_idle;	/* L: currently idle workers */
206 
207 	struct list_head	idle_list;	/* L: list of idle workers */
208 	struct timer_list	idle_timer;	/* L: worker idle timeout */
209 	struct work_struct      idle_cull_work; /* L: worker idle cleanup */
210 
211 	struct timer_list	mayday_timer;	  /* L: SOS timer for workers */
212 
213 	/* a workers is either on busy_hash or idle_list, or the manager */
214 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
215 						/* L: hash of busy workers */
216 
217 	struct worker		*manager;	/* L: purely informational */
218 	struct list_head	workers;	/* A: attached workers */
219 
220 	struct ida		worker_ida;	/* worker IDs for task name */
221 
222 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
223 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
224 	int			refcnt;		/* PL: refcnt for unbound pools */
225 
226 	/*
227 	 * Destruction of pool is RCU protected to allow dereferences
228 	 * from get_work_pool().
229 	 */
230 	struct rcu_head		rcu;
231 };
232 
233 /*
234  * Per-pool_workqueue statistics. These can be monitored using
235  * tools/workqueue/wq_monitor.py.
236  */
237 enum pool_workqueue_stats {
238 	PWQ_STAT_STARTED,	/* work items started execution */
239 	PWQ_STAT_COMPLETED,	/* work items completed execution */
240 	PWQ_STAT_CPU_TIME,	/* total CPU time consumed */
241 	PWQ_STAT_CPU_INTENSIVE,	/* wq_cpu_intensive_thresh_us violations */
242 	PWQ_STAT_CM_WAKEUP,	/* concurrency-management worker wakeups */
243 	PWQ_STAT_REPATRIATED,	/* unbound workers brought back into scope */
244 	PWQ_STAT_MAYDAY,	/* maydays to rescuer */
245 	PWQ_STAT_RESCUED,	/* linked work items executed by rescuer */
246 
247 	PWQ_NR_STATS,
248 };
249 
250 /*
251  * The per-pool workqueue.  While queued, bits below WORK_PWQ_SHIFT
252  * of work_struct->data are used for flags and the remaining high bits
253  * point to the pwq; thus, pwqs need to be aligned at two's power of the
254  * number of flag bits.
255  */
256 struct pool_workqueue {
257 	struct worker_pool	*pool;		/* I: the associated pool */
258 	struct workqueue_struct *wq;		/* I: the owning workqueue */
259 	int			work_color;	/* L: current color */
260 	int			flush_color;	/* L: flushing color */
261 	int			refcnt;		/* L: reference count */
262 	int			nr_in_flight[WORK_NR_COLORS];
263 						/* L: nr of in_flight works */
264 	bool			plugged;	/* L: execution suspended */
265 
266 	/*
267 	 * nr_active management and WORK_STRUCT_INACTIVE:
268 	 *
269 	 * When pwq->nr_active >= max_active, new work item is queued to
270 	 * pwq->inactive_works instead of pool->worklist and marked with
271 	 * WORK_STRUCT_INACTIVE.
272 	 *
273 	 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
274 	 * nr_active and all work items in pwq->inactive_works are marked with
275 	 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
276 	 * in pwq->inactive_works. Some of them are ready to run in
277 	 * pool->worklist or worker->scheduled. Those work itmes are only struct
278 	 * wq_barrier which is used for flush_work() and should not participate
279 	 * in nr_active. For non-barrier work item, it is marked with
280 	 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
281 	 */
282 	int			nr_active;	/* L: nr of active works */
283 	struct list_head	inactive_works;	/* L: inactive works */
284 	struct list_head	pending_node;	/* LN: node on wq_node_nr_active->pending_pwqs */
285 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
286 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
287 
288 	u64			stats[PWQ_NR_STATS];
289 
290 	/*
291 	 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
292 	 * and pwq_release_workfn() for details. pool_workqueue itself is also
293 	 * RCU protected so that the first pwq can be determined without
294 	 * grabbing wq->mutex.
295 	 */
296 	struct kthread_work	release_work;
297 	struct rcu_head		rcu;
298 } __aligned(1 << WORK_STRUCT_PWQ_SHIFT);
299 
300 /*
301  * Structure used to wait for workqueue flush.
302  */
303 struct wq_flusher {
304 	struct list_head	list;		/* WQ: list of flushers */
305 	int			flush_color;	/* WQ: flush color waiting for */
306 	struct completion	done;		/* flush completion */
307 };
308 
309 struct wq_device;
310 
311 /*
312  * Unlike in a per-cpu workqueue where max_active limits its concurrency level
313  * on each CPU, in an unbound workqueue, max_active applies to the whole system.
314  * As sharing a single nr_active across multiple sockets can be very expensive,
315  * the counting and enforcement is per NUMA node.
316  *
317  * The following struct is used to enforce per-node max_active. When a pwq wants
318  * to start executing a work item, it should increment ->nr using
319  * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
320  * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
321  * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
322  * round-robin order.
323  */
324 struct wq_node_nr_active {
325 	int			max;		/* per-node max_active */
326 	atomic_t		nr;		/* per-node nr_active */
327 	raw_spinlock_t		lock;		/* nests inside pool locks */
328 	struct list_head	pending_pwqs;	/* LN: pwqs with inactive works */
329 };
330 
331 /*
332  * The externally visible workqueue.  It relays the issued work items to
333  * the appropriate worker_pool through its pool_workqueues.
334  */
335 struct workqueue_struct {
336 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
337 	struct list_head	list;		/* PR: list of all workqueues */
338 
339 	struct mutex		mutex;		/* protects this wq */
340 	int			work_color;	/* WQ: current work color */
341 	int			flush_color;	/* WQ: current flush color */
342 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
343 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
344 	struct list_head	flusher_queue;	/* WQ: flush waiters */
345 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
346 
347 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
348 	struct worker		*rescuer;	/* MD: rescue worker */
349 
350 	int			nr_drainers;	/* WQ: drain in progress */
351 
352 	/* See alloc_workqueue() function comment for info on min/max_active */
353 	int			max_active;	/* WO: max active works */
354 	int			min_active;	/* WO: min active works */
355 	int			saved_max_active; /* WQ: saved max_active */
356 	int			saved_min_active; /* WQ: saved min_active */
357 
358 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
359 	struct pool_workqueue __rcu *dfl_pwq;   /* PW: only for unbound wqs */
360 
361 #ifdef CONFIG_SYSFS
362 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
363 #endif
364 #ifdef CONFIG_LOCKDEP
365 	char			*lock_name;
366 	struct lock_class_key	key;
367 	struct lockdep_map	__lockdep_map;
368 	struct lockdep_map	*lockdep_map;
369 #endif
370 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
371 
372 	/*
373 	 * Destruction of workqueue_struct is RCU protected to allow walking
374 	 * the workqueues list without grabbing wq_pool_mutex.
375 	 * This is used to dump all workqueues from sysrq.
376 	 */
377 	struct rcu_head		rcu;
378 
379 	/* hot fields used during command issue, aligned to cacheline */
380 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
381 	struct pool_workqueue __rcu * __percpu *cpu_pwq; /* I: per-cpu pwqs */
382 	struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
383 };
384 
385 /*
386  * Each pod type describes how CPUs should be grouped for unbound workqueues.
387  * See the comment above workqueue_attrs->affn_scope.
388  */
389 struct wq_pod_type {
390 	int			nr_pods;	/* number of pods */
391 	cpumask_var_t		*pod_cpus;	/* pod -> cpus */
392 	int			*pod_node;	/* pod -> node */
393 	int			*cpu_pod;	/* cpu -> pod */
394 };
395 
396 struct work_offq_data {
397 	u32			pool_id;
398 	u32			disable;
399 	u32			flags;
400 };
401 
402 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
403 	[WQ_AFFN_DFL]		= "default",
404 	[WQ_AFFN_CPU]		= "cpu",
405 	[WQ_AFFN_SMT]		= "smt",
406 	[WQ_AFFN_CACHE]		= "cache",
407 	[WQ_AFFN_NUMA]		= "numa",
408 	[WQ_AFFN_SYSTEM]	= "system",
409 };
410 
411 /*
412  * Per-cpu work items which run for longer than the following threshold are
413  * automatically considered CPU intensive and excluded from concurrency
414  * management to prevent them from noticeably delaying other per-cpu work items.
415  * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
416  * The actual value is initialized in wq_cpu_intensive_thresh_init().
417  */
418 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
419 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
420 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
421 static unsigned int wq_cpu_intensive_warning_thresh = 4;
422 module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644);
423 #endif
424 
425 /* see the comment above the definition of WQ_POWER_EFFICIENT */
426 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
427 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
428 
429 static bool wq_online;			/* can kworkers be created yet? */
430 static bool wq_topo_initialized __read_mostly = false;
431 
432 static struct kmem_cache *pwq_cache;
433 
434 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
435 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
436 
437 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
438 static struct workqueue_attrs *unbound_wq_update_pwq_attrs_buf;
439 
440 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
441 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
442 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
443 /* wait for manager to go away */
444 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
445 
446 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
447 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
448 
449 /* PL: mirror the cpu_online_mask excluding the CPU in the midst of hotplugging */
450 static cpumask_var_t wq_online_cpumask;
451 
452 /* PL&A: allowable cpus for unbound wqs and work items */
453 static cpumask_var_t wq_unbound_cpumask;
454 
455 /* PL: user requested unbound cpumask via sysfs */
456 static cpumask_var_t wq_requested_unbound_cpumask;
457 
458 /* PL: isolated cpumask to be excluded from unbound cpumask */
459 static cpumask_var_t wq_isolated_cpumask;
460 
461 /* for further constrain wq_unbound_cpumask by cmdline parameter*/
462 static struct cpumask wq_cmdline_cpumask __initdata;
463 
464 /* CPU where unbound work was last round robin scheduled from this CPU */
465 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
466 
467 /*
468  * Local execution of unbound work items is no longer guaranteed.  The
469  * following always forces round-robin CPU selection on unbound work items
470  * to uncover usages which depend on it.
471  */
472 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
473 static bool wq_debug_force_rr_cpu = true;
474 #else
475 static bool wq_debug_force_rr_cpu = false;
476 #endif
477 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
478 
479 /* to raise softirq for the BH worker pools on other CPUs */
480 static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS], bh_pool_irq_works);
481 
482 /* the BH worker pools */
483 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], bh_worker_pools);
484 
485 /* the per-cpu worker pools */
486 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
487 
488 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
489 
490 /* PL: hash of all unbound pools keyed by pool->attrs */
491 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
492 
493 /* I: attributes used when instantiating standard unbound pools on demand */
494 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
495 
496 /* I: attributes used when instantiating ordered pools on demand */
497 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
498 
499 /*
500  * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
501  * process context while holding a pool lock. Bounce to a dedicated kthread
502  * worker to avoid A-A deadlocks.
503  */
504 static struct kthread_worker *pwq_release_worker __ro_after_init;
505 
506 struct workqueue_struct *system_wq __ro_after_init;
507 EXPORT_SYMBOL(system_wq);
508 struct workqueue_struct *system_highpri_wq __ro_after_init;
509 EXPORT_SYMBOL_GPL(system_highpri_wq);
510 struct workqueue_struct *system_long_wq __ro_after_init;
511 EXPORT_SYMBOL_GPL(system_long_wq);
512 struct workqueue_struct *system_unbound_wq __ro_after_init;
513 EXPORT_SYMBOL_GPL(system_unbound_wq);
514 struct workqueue_struct *system_freezable_wq __ro_after_init;
515 EXPORT_SYMBOL_GPL(system_freezable_wq);
516 struct workqueue_struct *system_power_efficient_wq __ro_after_init;
517 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
518 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
519 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
520 struct workqueue_struct *system_bh_wq;
521 EXPORT_SYMBOL_GPL(system_bh_wq);
522 struct workqueue_struct *system_bh_highpri_wq;
523 EXPORT_SYMBOL_GPL(system_bh_highpri_wq);
524 
525 static int worker_thread(void *__worker);
526 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
527 static void show_pwq(struct pool_workqueue *pwq);
528 static void show_one_worker_pool(struct worker_pool *pool);
529 
530 #define CREATE_TRACE_POINTS
531 #include <trace/events/workqueue.h>
532 
533 #define assert_rcu_or_pool_mutex()					\
534 	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
535 			 !lockdep_is_held(&wq_pool_mutex),		\
536 			 "RCU or wq_pool_mutex should be held")
537 
538 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
539 	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
540 			 !lockdep_is_held(&wq->mutex) &&		\
541 			 !lockdep_is_held(&wq_pool_mutex),		\
542 			 "RCU, wq->mutex or wq_pool_mutex should be held")
543 
544 #define for_each_bh_worker_pool(pool, cpu)				\
545 	for ((pool) = &per_cpu(bh_worker_pools, cpu)[0];		\
546 	     (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
547 	     (pool)++)
548 
549 #define for_each_cpu_worker_pool(pool, cpu)				\
550 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
551 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
552 	     (pool)++)
553 
554 /**
555  * for_each_pool - iterate through all worker_pools in the system
556  * @pool: iteration cursor
557  * @pi: integer used for iteration
558  *
559  * This must be called either with wq_pool_mutex held or RCU read
560  * locked.  If the pool needs to be used beyond the locking in effect, the
561  * caller is responsible for guaranteeing that the pool stays online.
562  *
563  * The if/else clause exists only for the lockdep assertion and can be
564  * ignored.
565  */
566 #define for_each_pool(pool, pi)						\
567 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
568 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
569 		else
570 
571 /**
572  * for_each_pool_worker - iterate through all workers of a worker_pool
573  * @worker: iteration cursor
574  * @pool: worker_pool to iterate workers of
575  *
576  * This must be called with wq_pool_attach_mutex.
577  *
578  * The if/else clause exists only for the lockdep assertion and can be
579  * ignored.
580  */
581 #define for_each_pool_worker(worker, pool)				\
582 	list_for_each_entry((worker), &(pool)->workers, node)		\
583 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
584 		else
585 
586 /**
587  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
588  * @pwq: iteration cursor
589  * @wq: the target workqueue
590  *
591  * This must be called either with wq->mutex held or RCU read locked.
592  * If the pwq needs to be used beyond the locking in effect, the caller is
593  * responsible for guaranteeing that the pwq stays online.
594  *
595  * The if/else clause exists only for the lockdep assertion and can be
596  * ignored.
597  */
598 #define for_each_pwq(pwq, wq)						\
599 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
600 				 lockdep_is_held(&(wq->mutex)))
601 
602 #ifdef CONFIG_DEBUG_OBJECTS_WORK
603 
604 static const struct debug_obj_descr work_debug_descr;
605 
work_debug_hint(void * addr)606 static void *work_debug_hint(void *addr)
607 {
608 	return ((struct work_struct *) addr)->func;
609 }
610 
work_is_static_object(void * addr)611 static bool work_is_static_object(void *addr)
612 {
613 	struct work_struct *work = addr;
614 
615 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
616 }
617 
618 /*
619  * fixup_init is called when:
620  * - an active object is initialized
621  */
work_fixup_init(void * addr,enum debug_obj_state state)622 static bool work_fixup_init(void *addr, enum debug_obj_state state)
623 {
624 	struct work_struct *work = addr;
625 
626 	switch (state) {
627 	case ODEBUG_STATE_ACTIVE:
628 		cancel_work_sync(work);
629 		debug_object_init(work, &work_debug_descr);
630 		return true;
631 	default:
632 		return false;
633 	}
634 }
635 
636 /*
637  * fixup_free is called when:
638  * - an active object is freed
639  */
work_fixup_free(void * addr,enum debug_obj_state state)640 static bool work_fixup_free(void *addr, enum debug_obj_state state)
641 {
642 	struct work_struct *work = addr;
643 
644 	switch (state) {
645 	case ODEBUG_STATE_ACTIVE:
646 		cancel_work_sync(work);
647 		debug_object_free(work, &work_debug_descr);
648 		return true;
649 	default:
650 		return false;
651 	}
652 }
653 
654 static const struct debug_obj_descr work_debug_descr = {
655 	.name		= "work_struct",
656 	.debug_hint	= work_debug_hint,
657 	.is_static_object = work_is_static_object,
658 	.fixup_init	= work_fixup_init,
659 	.fixup_free	= work_fixup_free,
660 };
661 
debug_work_activate(struct work_struct * work)662 static inline void debug_work_activate(struct work_struct *work)
663 {
664 	debug_object_activate(work, &work_debug_descr);
665 }
666 
debug_work_deactivate(struct work_struct * work)667 static inline void debug_work_deactivate(struct work_struct *work)
668 {
669 	debug_object_deactivate(work, &work_debug_descr);
670 }
671 
__init_work(struct work_struct * work,int onstack)672 void __init_work(struct work_struct *work, int onstack)
673 {
674 	if (onstack)
675 		debug_object_init_on_stack(work, &work_debug_descr);
676 	else
677 		debug_object_init(work, &work_debug_descr);
678 }
679 EXPORT_SYMBOL_GPL(__init_work);
680 
destroy_work_on_stack(struct work_struct * work)681 void destroy_work_on_stack(struct work_struct *work)
682 {
683 	debug_object_free(work, &work_debug_descr);
684 }
685 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
686 
destroy_delayed_work_on_stack(struct delayed_work * work)687 void destroy_delayed_work_on_stack(struct delayed_work *work)
688 {
689 	timer_destroy_on_stack(&work->timer);
690 	debug_object_free(&work->work, &work_debug_descr);
691 }
692 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
693 
694 #else
debug_work_activate(struct work_struct * work)695 static inline void debug_work_activate(struct work_struct *work) { }
debug_work_deactivate(struct work_struct * work)696 static inline void debug_work_deactivate(struct work_struct *work) { }
697 #endif
698 
699 /**
700  * worker_pool_assign_id - allocate ID and assign it to @pool
701  * @pool: the pool pointer of interest
702  *
703  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
704  * successfully, -errno on failure.
705  */
worker_pool_assign_id(struct worker_pool * pool)706 static int worker_pool_assign_id(struct worker_pool *pool)
707 {
708 	int ret;
709 
710 	lockdep_assert_held(&wq_pool_mutex);
711 
712 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
713 			GFP_KERNEL);
714 	if (ret >= 0) {
715 		pool->id = ret;
716 		return 0;
717 	}
718 	return ret;
719 }
720 
721 static struct pool_workqueue __rcu **
unbound_pwq_slot(struct workqueue_struct * wq,int cpu)722 unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
723 {
724        if (cpu >= 0)
725                return per_cpu_ptr(wq->cpu_pwq, cpu);
726        else
727                return &wq->dfl_pwq;
728 }
729 
730 /* @cpu < 0 for dfl_pwq */
unbound_pwq(struct workqueue_struct * wq,int cpu)731 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
732 {
733 	return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
734 				     lockdep_is_held(&wq_pool_mutex) ||
735 				     lockdep_is_held(&wq->mutex));
736 }
737 
738 /**
739  * unbound_effective_cpumask - effective cpumask of an unbound workqueue
740  * @wq: workqueue of interest
741  *
742  * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
743  * is masked with wq_unbound_cpumask to determine the effective cpumask. The
744  * default pwq is always mapped to the pool with the current effective cpumask.
745  */
unbound_effective_cpumask(struct workqueue_struct * wq)746 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
747 {
748 	return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
749 }
750 
work_color_to_flags(int color)751 static unsigned int work_color_to_flags(int color)
752 {
753 	return color << WORK_STRUCT_COLOR_SHIFT;
754 }
755 
get_work_color(unsigned long work_data)756 static int get_work_color(unsigned long work_data)
757 {
758 	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
759 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
760 }
761 
work_next_color(int color)762 static int work_next_color(int color)
763 {
764 	return (color + 1) % WORK_NR_COLORS;
765 }
766 
pool_offq_flags(struct worker_pool * pool)767 static unsigned long pool_offq_flags(struct worker_pool *pool)
768 {
769 	return (pool->flags & POOL_BH) ? WORK_OFFQ_BH : 0;
770 }
771 
772 /*
773  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
774  * contain the pointer to the queued pwq.  Once execution starts, the flag
775  * is cleared and the high bits contain OFFQ flags and pool ID.
776  *
777  * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling()
778  * can be used to set the pwq, pool or clear work->data. These functions should
779  * only be called while the work is owned - ie. while the PENDING bit is set.
780  *
781  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
782  * corresponding to a work.  Pool is available once the work has been
783  * queued anywhere after initialization until it is sync canceled.  pwq is
784  * available only while the work item is queued.
785  */
set_work_data(struct work_struct * work,unsigned long data)786 static inline void set_work_data(struct work_struct *work, unsigned long data)
787 {
788 	WARN_ON_ONCE(!work_pending(work));
789 	atomic_long_set(&work->data, data | work_static(work));
790 }
791 
set_work_pwq(struct work_struct * work,struct pool_workqueue * pwq,unsigned long flags)792 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
793 			 unsigned long flags)
794 {
795 	set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING |
796 		      WORK_STRUCT_PWQ | flags);
797 }
798 
set_work_pool_and_keep_pending(struct work_struct * work,int pool_id,unsigned long flags)799 static void set_work_pool_and_keep_pending(struct work_struct *work,
800 					   int pool_id, unsigned long flags)
801 {
802 	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
803 		      WORK_STRUCT_PENDING | flags);
804 }
805 
set_work_pool_and_clear_pending(struct work_struct * work,int pool_id,unsigned long flags)806 static void set_work_pool_and_clear_pending(struct work_struct *work,
807 					    int pool_id, unsigned long flags)
808 {
809 	/*
810 	 * The following wmb is paired with the implied mb in
811 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
812 	 * here are visible to and precede any updates by the next PENDING
813 	 * owner.
814 	 */
815 	smp_wmb();
816 	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
817 		      flags);
818 	/*
819 	 * The following mb guarantees that previous clear of a PENDING bit
820 	 * will not be reordered with any speculative LOADS or STORES from
821 	 * work->current_func, which is executed afterwards.  This possible
822 	 * reordering can lead to a missed execution on attempt to queue
823 	 * the same @work.  E.g. consider this case:
824 	 *
825 	 *   CPU#0                         CPU#1
826 	 *   ----------------------------  --------------------------------
827 	 *
828 	 * 1  STORE event_indicated
829 	 * 2  queue_work_on() {
830 	 * 3    test_and_set_bit(PENDING)
831 	 * 4 }                             set_..._and_clear_pending() {
832 	 * 5                                 set_work_data() # clear bit
833 	 * 6                                 smp_mb()
834 	 * 7                               work->current_func() {
835 	 * 8				      LOAD event_indicated
836 	 *				   }
837 	 *
838 	 * Without an explicit full barrier speculative LOAD on line 8 can
839 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
840 	 * CPU#0 observes the PENDING bit is still set and new execution of
841 	 * a @work is not queued in a hope, that CPU#1 will eventually
842 	 * finish the queued @work.  Meanwhile CPU#1 does not see
843 	 * event_indicated is set, because speculative LOAD was executed
844 	 * before actual STORE.
845 	 */
846 	smp_mb();
847 }
848 
work_struct_pwq(unsigned long data)849 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
850 {
851 	return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK);
852 }
853 
get_work_pwq(struct work_struct * work)854 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
855 {
856 	unsigned long data = atomic_long_read(&work->data);
857 
858 	if (data & WORK_STRUCT_PWQ)
859 		return work_struct_pwq(data);
860 	else
861 		return NULL;
862 }
863 
864 /**
865  * get_work_pool - return the worker_pool a given work was associated with
866  * @work: the work item of interest
867  *
868  * Pools are created and destroyed under wq_pool_mutex, and allows read
869  * access under RCU read lock.  As such, this function should be
870  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
871  *
872  * All fields of the returned pool are accessible as long as the above
873  * mentioned locking is in effect.  If the returned pool needs to be used
874  * beyond the critical section, the caller is responsible for ensuring the
875  * returned pool is and stays online.
876  *
877  * Return: The worker_pool @work was last associated with.  %NULL if none.
878  */
get_work_pool(struct work_struct * work)879 static struct worker_pool *get_work_pool(struct work_struct *work)
880 {
881 	unsigned long data = atomic_long_read(&work->data);
882 	int pool_id;
883 
884 	assert_rcu_or_pool_mutex();
885 
886 	if (data & WORK_STRUCT_PWQ)
887 		return work_struct_pwq(data)->pool;
888 
889 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
890 	if (pool_id == WORK_OFFQ_POOL_NONE)
891 		return NULL;
892 
893 	return idr_find(&worker_pool_idr, pool_id);
894 }
895 
shift_and_mask(unsigned long v,u32 shift,u32 bits)896 static unsigned long shift_and_mask(unsigned long v, u32 shift, u32 bits)
897 {
898 	return (v >> shift) & ((1U << bits) - 1);
899 }
900 
work_offqd_unpack(struct work_offq_data * offqd,unsigned long data)901 static void work_offqd_unpack(struct work_offq_data *offqd, unsigned long data)
902 {
903 	WARN_ON_ONCE(data & WORK_STRUCT_PWQ);
904 
905 	offqd->pool_id = shift_and_mask(data, WORK_OFFQ_POOL_SHIFT,
906 					WORK_OFFQ_POOL_BITS);
907 	offqd->disable = shift_and_mask(data, WORK_OFFQ_DISABLE_SHIFT,
908 					WORK_OFFQ_DISABLE_BITS);
909 	offqd->flags = data & WORK_OFFQ_FLAG_MASK;
910 }
911 
work_offqd_pack_flags(struct work_offq_data * offqd)912 static unsigned long work_offqd_pack_flags(struct work_offq_data *offqd)
913 {
914 	return ((unsigned long)offqd->disable << WORK_OFFQ_DISABLE_SHIFT) |
915 		((unsigned long)offqd->flags);
916 }
917 
918 /*
919  * Policy functions.  These define the policies on how the global worker
920  * pools are managed.  Unless noted otherwise, these functions assume that
921  * they're being called with pool->lock held.
922  */
923 
924 /*
925  * Need to wake up a worker?  Called from anything but currently
926  * running workers.
927  *
928  * Note that, because unbound workers never contribute to nr_running, this
929  * function will always return %true for unbound pools as long as the
930  * worklist isn't empty.
931  */
need_more_worker(struct worker_pool * pool)932 static bool need_more_worker(struct worker_pool *pool)
933 {
934 	return !list_empty(&pool->worklist) && !pool->nr_running;
935 }
936 
937 /* Can I start working?  Called from busy but !running workers. */
may_start_working(struct worker_pool * pool)938 static bool may_start_working(struct worker_pool *pool)
939 {
940 	return pool->nr_idle;
941 }
942 
943 /* Do I need to keep working?  Called from currently running workers. */
keep_working(struct worker_pool * pool)944 static bool keep_working(struct worker_pool *pool)
945 {
946 	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
947 }
948 
949 /* Do we need a new worker?  Called from manager. */
need_to_create_worker(struct worker_pool * pool)950 static bool need_to_create_worker(struct worker_pool *pool)
951 {
952 	return need_more_worker(pool) && !may_start_working(pool);
953 }
954 
955 /* Do we have too many workers and should some go away? */
too_many_workers(struct worker_pool * pool)956 static bool too_many_workers(struct worker_pool *pool)
957 {
958 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
959 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
960 	int nr_busy = pool->nr_workers - nr_idle;
961 
962 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
963 }
964 
965 /**
966  * worker_set_flags - set worker flags and adjust nr_running accordingly
967  * @worker: self
968  * @flags: flags to set
969  *
970  * Set @flags in @worker->flags and adjust nr_running accordingly.
971  */
worker_set_flags(struct worker * worker,unsigned int flags)972 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
973 {
974 	struct worker_pool *pool = worker->pool;
975 
976 	lockdep_assert_held(&pool->lock);
977 
978 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
979 	if ((flags & WORKER_NOT_RUNNING) &&
980 	    !(worker->flags & WORKER_NOT_RUNNING)) {
981 		pool->nr_running--;
982 	}
983 
984 	worker->flags |= flags;
985 }
986 
987 /**
988  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
989  * @worker: self
990  * @flags: flags to clear
991  *
992  * Clear @flags in @worker->flags and adjust nr_running accordingly.
993  */
worker_clr_flags(struct worker * worker,unsigned int flags)994 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
995 {
996 	struct worker_pool *pool = worker->pool;
997 	unsigned int oflags = worker->flags;
998 
999 	lockdep_assert_held(&pool->lock);
1000 
1001 	worker->flags &= ~flags;
1002 
1003 	/*
1004 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1005 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1006 	 * of multiple flags, not a single flag.
1007 	 */
1008 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1009 		if (!(worker->flags & WORKER_NOT_RUNNING))
1010 			pool->nr_running++;
1011 }
1012 
1013 /* Return the first idle worker.  Called with pool->lock held. */
first_idle_worker(struct worker_pool * pool)1014 static struct worker *first_idle_worker(struct worker_pool *pool)
1015 {
1016 	if (unlikely(list_empty(&pool->idle_list)))
1017 		return NULL;
1018 
1019 	return list_first_entry(&pool->idle_list, struct worker, entry);
1020 }
1021 
1022 /**
1023  * worker_enter_idle - enter idle state
1024  * @worker: worker which is entering idle state
1025  *
1026  * @worker is entering idle state.  Update stats and idle timer if
1027  * necessary.
1028  *
1029  * LOCKING:
1030  * raw_spin_lock_irq(pool->lock).
1031  */
worker_enter_idle(struct worker * worker)1032 static void worker_enter_idle(struct worker *worker)
1033 {
1034 	struct worker_pool *pool = worker->pool;
1035 
1036 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1037 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1038 			 (worker->hentry.next || worker->hentry.pprev)))
1039 		return;
1040 
1041 	/* can't use worker_set_flags(), also called from create_worker() */
1042 	worker->flags |= WORKER_IDLE;
1043 	pool->nr_idle++;
1044 	worker->last_active = jiffies;
1045 
1046 	/* idle_list is LIFO */
1047 	list_add(&worker->entry, &pool->idle_list);
1048 
1049 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1050 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1051 
1052 	/* Sanity check nr_running. */
1053 	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1054 }
1055 
1056 /**
1057  * worker_leave_idle - leave idle state
1058  * @worker: worker which is leaving idle state
1059  *
1060  * @worker is leaving idle state.  Update stats.
1061  *
1062  * LOCKING:
1063  * raw_spin_lock_irq(pool->lock).
1064  */
worker_leave_idle(struct worker * worker)1065 static void worker_leave_idle(struct worker *worker)
1066 {
1067 	struct worker_pool *pool = worker->pool;
1068 
1069 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1070 		return;
1071 	worker_clr_flags(worker, WORKER_IDLE);
1072 	pool->nr_idle--;
1073 	list_del_init(&worker->entry);
1074 }
1075 
1076 /**
1077  * find_worker_executing_work - find worker which is executing a work
1078  * @pool: pool of interest
1079  * @work: work to find worker for
1080  *
1081  * Find a worker which is executing @work on @pool by searching
1082  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1083  * to match, its current execution should match the address of @work and
1084  * its work function.  This is to avoid unwanted dependency between
1085  * unrelated work executions through a work item being recycled while still
1086  * being executed.
1087  *
1088  * This is a bit tricky.  A work item may be freed once its execution
1089  * starts and nothing prevents the freed area from being recycled for
1090  * another work item.  If the same work item address ends up being reused
1091  * before the original execution finishes, workqueue will identify the
1092  * recycled work item as currently executing and make it wait until the
1093  * current execution finishes, introducing an unwanted dependency.
1094  *
1095  * This function checks the work item address and work function to avoid
1096  * false positives.  Note that this isn't complete as one may construct a
1097  * work function which can introduce dependency onto itself through a
1098  * recycled work item.  Well, if somebody wants to shoot oneself in the
1099  * foot that badly, there's only so much we can do, and if such deadlock
1100  * actually occurs, it should be easy to locate the culprit work function.
1101  *
1102  * CONTEXT:
1103  * raw_spin_lock_irq(pool->lock).
1104  *
1105  * Return:
1106  * Pointer to worker which is executing @work if found, %NULL
1107  * otherwise.
1108  */
find_worker_executing_work(struct worker_pool * pool,struct work_struct * work)1109 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1110 						 struct work_struct *work)
1111 {
1112 	struct worker *worker;
1113 
1114 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1115 			       (unsigned long)work)
1116 		if (worker->current_work == work &&
1117 		    worker->current_func == work->func)
1118 			return worker;
1119 
1120 	return NULL;
1121 }
1122 
1123 /**
1124  * move_linked_works - move linked works to a list
1125  * @work: start of series of works to be scheduled
1126  * @head: target list to append @work to
1127  * @nextp: out parameter for nested worklist walking
1128  *
1129  * Schedule linked works starting from @work to @head. Work series to be
1130  * scheduled starts at @work and includes any consecutive work with
1131  * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1132  * @nextp.
1133  *
1134  * CONTEXT:
1135  * raw_spin_lock_irq(pool->lock).
1136  */
move_linked_works(struct work_struct * work,struct list_head * head,struct work_struct ** nextp)1137 static void move_linked_works(struct work_struct *work, struct list_head *head,
1138 			      struct work_struct **nextp)
1139 {
1140 	struct work_struct *n;
1141 
1142 	/*
1143 	 * Linked worklist will always end before the end of the list,
1144 	 * use NULL for list head.
1145 	 */
1146 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1147 		list_move_tail(&work->entry, head);
1148 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1149 			break;
1150 	}
1151 
1152 	/*
1153 	 * If we're already inside safe list traversal and have moved
1154 	 * multiple works to the scheduled queue, the next position
1155 	 * needs to be updated.
1156 	 */
1157 	if (nextp)
1158 		*nextp = n;
1159 }
1160 
1161 /**
1162  * assign_work - assign a work item and its linked work items to a worker
1163  * @work: work to assign
1164  * @worker: worker to assign to
1165  * @nextp: out parameter for nested worklist walking
1166  *
1167  * Assign @work and its linked work items to @worker. If @work is already being
1168  * executed by another worker in the same pool, it'll be punted there.
1169  *
1170  * If @nextp is not NULL, it's updated to point to the next work of the last
1171  * scheduled work. This allows assign_work() to be nested inside
1172  * list_for_each_entry_safe().
1173  *
1174  * Returns %true if @work was successfully assigned to @worker. %false if @work
1175  * was punted to another worker already executing it.
1176  */
assign_work(struct work_struct * work,struct worker * worker,struct work_struct ** nextp)1177 static bool assign_work(struct work_struct *work, struct worker *worker,
1178 			struct work_struct **nextp)
1179 {
1180 	struct worker_pool *pool = worker->pool;
1181 	struct worker *collision;
1182 
1183 	lockdep_assert_held(&pool->lock);
1184 
1185 	/*
1186 	 * A single work shouldn't be executed concurrently by multiple workers.
1187 	 * __queue_work() ensures that @work doesn't jump to a different pool
1188 	 * while still running in the previous pool. Here, we should ensure that
1189 	 * @work is not executed concurrently by multiple workers from the same
1190 	 * pool. Check whether anyone is already processing the work. If so,
1191 	 * defer the work to the currently executing one.
1192 	 */
1193 	collision = find_worker_executing_work(pool, work);
1194 	if (unlikely(collision)) {
1195 		move_linked_works(work, &collision->scheduled, nextp);
1196 		return false;
1197 	}
1198 
1199 	move_linked_works(work, &worker->scheduled, nextp);
1200 	return true;
1201 }
1202 
bh_pool_irq_work(struct worker_pool * pool)1203 static struct irq_work *bh_pool_irq_work(struct worker_pool *pool)
1204 {
1205 	int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0;
1206 
1207 	return &per_cpu(bh_pool_irq_works, pool->cpu)[high];
1208 }
1209 
kick_bh_pool(struct worker_pool * pool)1210 static void kick_bh_pool(struct worker_pool *pool)
1211 {
1212 #ifdef CONFIG_SMP
1213 	/* see drain_dead_softirq_workfn() for BH_DRAINING */
1214 	if (unlikely(pool->cpu != smp_processor_id() &&
1215 		     !(pool->flags & POOL_BH_DRAINING))) {
1216 		irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu);
1217 		return;
1218 	}
1219 #endif
1220 	if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
1221 		raise_softirq_irqoff(HI_SOFTIRQ);
1222 	else
1223 		raise_softirq_irqoff(TASKLET_SOFTIRQ);
1224 }
1225 
1226 /**
1227  * kick_pool - wake up an idle worker if necessary
1228  * @pool: pool to kick
1229  *
1230  * @pool may have pending work items. Wake up worker if necessary. Returns
1231  * whether a worker was woken up.
1232  */
kick_pool(struct worker_pool * pool)1233 static bool kick_pool(struct worker_pool *pool)
1234 {
1235 	struct worker *worker = first_idle_worker(pool);
1236 	struct task_struct *p;
1237 
1238 	lockdep_assert_held(&pool->lock);
1239 
1240 	if (!need_more_worker(pool) || !worker)
1241 		return false;
1242 
1243 	if (pool->flags & POOL_BH) {
1244 		kick_bh_pool(pool);
1245 		return true;
1246 	}
1247 
1248 	p = worker->task;
1249 
1250 #ifdef CONFIG_SMP
1251 	/*
1252 	 * Idle @worker is about to execute @work and waking up provides an
1253 	 * opportunity to migrate @worker at a lower cost by setting the task's
1254 	 * wake_cpu field. Let's see if we want to move @worker to improve
1255 	 * execution locality.
1256 	 *
1257 	 * We're waking the worker that went idle the latest and there's some
1258 	 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1259 	 * so, setting the wake_cpu won't do anything. As this is a best-effort
1260 	 * optimization and the race window is narrow, let's leave as-is for
1261 	 * now. If this becomes pronounced, we can skip over workers which are
1262 	 * still on cpu when picking an idle worker.
1263 	 *
1264 	 * If @pool has non-strict affinity, @worker might have ended up outside
1265 	 * its affinity scope. Repatriate.
1266 	 */
1267 	if (!pool->attrs->affn_strict &&
1268 	    !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1269 		struct work_struct *work = list_first_entry(&pool->worklist,
1270 						struct work_struct, entry);
1271 		int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask,
1272 							  cpu_online_mask);
1273 		if (wake_cpu < nr_cpu_ids) {
1274 			p->wake_cpu = wake_cpu;
1275 			get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1276 		}
1277 	}
1278 #endif
1279 	wake_up_process(p);
1280 	return true;
1281 }
1282 
1283 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1284 
1285 /*
1286  * Concurrency-managed per-cpu work items that hog CPU for longer than
1287  * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1288  * which prevents them from stalling other concurrency-managed work items. If a
1289  * work function keeps triggering this mechanism, it's likely that the work item
1290  * should be using an unbound workqueue instead.
1291  *
1292  * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1293  * and report them so that they can be examined and converted to use unbound
1294  * workqueues as appropriate. To avoid flooding the console, each violating work
1295  * function is tracked and reported with exponential backoff.
1296  */
1297 #define WCI_MAX_ENTS 128
1298 
1299 struct wci_ent {
1300 	work_func_t		func;
1301 	atomic64_t		cnt;
1302 	struct hlist_node	hash_node;
1303 };
1304 
1305 static struct wci_ent wci_ents[WCI_MAX_ENTS];
1306 static int wci_nr_ents;
1307 static DEFINE_RAW_SPINLOCK(wci_lock);
1308 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1309 
wci_find_ent(work_func_t func)1310 static struct wci_ent *wci_find_ent(work_func_t func)
1311 {
1312 	struct wci_ent *ent;
1313 
1314 	hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1315 				   (unsigned long)func) {
1316 		if (ent->func == func)
1317 			return ent;
1318 	}
1319 	return NULL;
1320 }
1321 
wq_cpu_intensive_report(work_func_t func)1322 static void wq_cpu_intensive_report(work_func_t func)
1323 {
1324 	struct wci_ent *ent;
1325 
1326 restart:
1327 	ent = wci_find_ent(func);
1328 	if (ent) {
1329 		u64 cnt;
1330 
1331 		/*
1332 		 * Start reporting from the warning_thresh and back off
1333 		 * exponentially.
1334 		 */
1335 		cnt = atomic64_inc_return_relaxed(&ent->cnt);
1336 		if (wq_cpu_intensive_warning_thresh &&
1337 		    cnt >= wq_cpu_intensive_warning_thresh &&
1338 		    is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh))
1339 			printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1340 					ent->func, wq_cpu_intensive_thresh_us,
1341 					atomic64_read(&ent->cnt));
1342 		return;
1343 	}
1344 
1345 	/*
1346 	 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1347 	 * is exhausted, something went really wrong and we probably made enough
1348 	 * noise already.
1349 	 */
1350 	if (wci_nr_ents >= WCI_MAX_ENTS)
1351 		return;
1352 
1353 	raw_spin_lock(&wci_lock);
1354 
1355 	if (wci_nr_ents >= WCI_MAX_ENTS) {
1356 		raw_spin_unlock(&wci_lock);
1357 		return;
1358 	}
1359 
1360 	if (wci_find_ent(func)) {
1361 		raw_spin_unlock(&wci_lock);
1362 		goto restart;
1363 	}
1364 
1365 	ent = &wci_ents[wci_nr_ents++];
1366 	ent->func = func;
1367 	atomic64_set(&ent->cnt, 0);
1368 	hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1369 
1370 	raw_spin_unlock(&wci_lock);
1371 
1372 	goto restart;
1373 }
1374 
1375 #else	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
wq_cpu_intensive_report(work_func_t func)1376 static void wq_cpu_intensive_report(work_func_t func) {}
1377 #endif	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1378 
1379 /**
1380  * wq_worker_running - a worker is running again
1381  * @task: task waking up
1382  *
1383  * This function is called when a worker returns from schedule()
1384  */
wq_worker_running(struct task_struct * task)1385 void wq_worker_running(struct task_struct *task)
1386 {
1387 	struct worker *worker = kthread_data(task);
1388 
1389 	if (!READ_ONCE(worker->sleeping))
1390 		return;
1391 
1392 	/*
1393 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1394 	 * and the nr_running increment below, we may ruin the nr_running reset
1395 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1396 	 * pool. Protect against such race.
1397 	 */
1398 	preempt_disable();
1399 	if (!(worker->flags & WORKER_NOT_RUNNING))
1400 		worker->pool->nr_running++;
1401 	preempt_enable();
1402 
1403 	/*
1404 	 * CPU intensive auto-detection cares about how long a work item hogged
1405 	 * CPU without sleeping. Reset the starting timestamp on wakeup.
1406 	 */
1407 	worker->current_at = worker->task->se.sum_exec_runtime;
1408 
1409 	WRITE_ONCE(worker->sleeping, 0);
1410 }
1411 
1412 /**
1413  * wq_worker_sleeping - a worker is going to sleep
1414  * @task: task going to sleep
1415  *
1416  * This function is called from schedule() when a busy worker is
1417  * going to sleep.
1418  */
wq_worker_sleeping(struct task_struct * task)1419 void wq_worker_sleeping(struct task_struct *task)
1420 {
1421 	struct worker *worker = kthread_data(task);
1422 	struct worker_pool *pool;
1423 
1424 	/*
1425 	 * Rescuers, which may not have all the fields set up like normal
1426 	 * workers, also reach here, let's not access anything before
1427 	 * checking NOT_RUNNING.
1428 	 */
1429 	if (worker->flags & WORKER_NOT_RUNNING)
1430 		return;
1431 
1432 	pool = worker->pool;
1433 
1434 	/* Return if preempted before wq_worker_running() was reached */
1435 	if (READ_ONCE(worker->sleeping))
1436 		return;
1437 
1438 	WRITE_ONCE(worker->sleeping, 1);
1439 	raw_spin_lock_irq(&pool->lock);
1440 
1441 	/*
1442 	 * Recheck in case unbind_workers() preempted us. We don't
1443 	 * want to decrement nr_running after the worker is unbound
1444 	 * and nr_running has been reset.
1445 	 */
1446 	if (worker->flags & WORKER_NOT_RUNNING) {
1447 		raw_spin_unlock_irq(&pool->lock);
1448 		return;
1449 	}
1450 
1451 	pool->nr_running--;
1452 	if (kick_pool(pool))
1453 		worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1454 
1455 	raw_spin_unlock_irq(&pool->lock);
1456 }
1457 
1458 /**
1459  * wq_worker_tick - a scheduler tick occurred while a kworker is running
1460  * @task: task currently running
1461  *
1462  * Called from sched_tick(). We're in the IRQ context and the current
1463  * worker's fields which follow the 'K' locking rule can be accessed safely.
1464  */
wq_worker_tick(struct task_struct * task)1465 void wq_worker_tick(struct task_struct *task)
1466 {
1467 	struct worker *worker = kthread_data(task);
1468 	struct pool_workqueue *pwq = worker->current_pwq;
1469 	struct worker_pool *pool = worker->pool;
1470 
1471 	if (!pwq)
1472 		return;
1473 
1474 	pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1475 
1476 	if (!wq_cpu_intensive_thresh_us)
1477 		return;
1478 
1479 	/*
1480 	 * If the current worker is concurrency managed and hogged the CPU for
1481 	 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1482 	 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1483 	 *
1484 	 * Set @worker->sleeping means that @worker is in the process of
1485 	 * switching out voluntarily and won't be contributing to
1486 	 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1487 	 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1488 	 * double decrements. The task is releasing the CPU anyway. Let's skip.
1489 	 * We probably want to make this prettier in the future.
1490 	 */
1491 	if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1492 	    worker->task->se.sum_exec_runtime - worker->current_at <
1493 	    wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1494 		return;
1495 
1496 	raw_spin_lock(&pool->lock);
1497 
1498 	worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1499 	wq_cpu_intensive_report(worker->current_func);
1500 	pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1501 
1502 	if (kick_pool(pool))
1503 		pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1504 
1505 	raw_spin_unlock(&pool->lock);
1506 }
1507 
1508 /**
1509  * wq_worker_last_func - retrieve worker's last work function
1510  * @task: Task to retrieve last work function of.
1511  *
1512  * Determine the last function a worker executed. This is called from
1513  * the scheduler to get a worker's last known identity.
1514  *
1515  * CONTEXT:
1516  * raw_spin_lock_irq(rq->lock)
1517  *
1518  * This function is called during schedule() when a kworker is going
1519  * to sleep. It's used by psi to identify aggregation workers during
1520  * dequeuing, to allow periodic aggregation to shut-off when that
1521  * worker is the last task in the system or cgroup to go to sleep.
1522  *
1523  * As this function doesn't involve any workqueue-related locking, it
1524  * only returns stable values when called from inside the scheduler's
1525  * queuing and dequeuing paths, when @task, which must be a kworker,
1526  * is guaranteed to not be processing any works.
1527  *
1528  * Return:
1529  * The last work function %current executed as a worker, NULL if it
1530  * hasn't executed any work yet.
1531  */
wq_worker_last_func(struct task_struct * task)1532 work_func_t wq_worker_last_func(struct task_struct *task)
1533 {
1534 	struct worker *worker = kthread_data(task);
1535 
1536 	return worker->last_func;
1537 }
1538 
1539 /**
1540  * wq_node_nr_active - Determine wq_node_nr_active to use
1541  * @wq: workqueue of interest
1542  * @node: NUMA node, can be %NUMA_NO_NODE
1543  *
1544  * Determine wq_node_nr_active to use for @wq on @node. Returns:
1545  *
1546  * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1547  *
1548  * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1549  *
1550  * - Otherwise, node_nr_active[@node].
1551  */
wq_node_nr_active(struct workqueue_struct * wq,int node)1552 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1553 						   int node)
1554 {
1555 	if (!(wq->flags & WQ_UNBOUND))
1556 		return NULL;
1557 
1558 	if (node == NUMA_NO_NODE)
1559 		node = nr_node_ids;
1560 
1561 	return wq->node_nr_active[node];
1562 }
1563 
1564 /**
1565  * wq_update_node_max_active - Update per-node max_actives to use
1566  * @wq: workqueue to update
1567  * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1568  *
1569  * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1570  * distributed among nodes according to the proportions of numbers of online
1571  * cpus. The result is always between @wq->min_active and max_active.
1572  */
wq_update_node_max_active(struct workqueue_struct * wq,int off_cpu)1573 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
1574 {
1575 	struct cpumask *effective = unbound_effective_cpumask(wq);
1576 	int min_active = READ_ONCE(wq->min_active);
1577 	int max_active = READ_ONCE(wq->max_active);
1578 	int total_cpus, node;
1579 
1580 	lockdep_assert_held(&wq->mutex);
1581 
1582 	if (!wq_topo_initialized)
1583 		return;
1584 
1585 	if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
1586 		off_cpu = -1;
1587 
1588 	total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1589 	if (off_cpu >= 0)
1590 		total_cpus--;
1591 
1592 	/* If all CPUs of the wq get offline, use the default values */
1593 	if (unlikely(!total_cpus)) {
1594 		for_each_node(node)
1595 			wq_node_nr_active(wq, node)->max = min_active;
1596 
1597 		wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1598 		return;
1599 	}
1600 
1601 	for_each_node(node) {
1602 		int node_cpus;
1603 
1604 		node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1605 		if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1606 			node_cpus--;
1607 
1608 		wq_node_nr_active(wq, node)->max =
1609 			clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1610 			      min_active, max_active);
1611 	}
1612 
1613 	wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1614 }
1615 
1616 /**
1617  * get_pwq - get an extra reference on the specified pool_workqueue
1618  * @pwq: pool_workqueue to get
1619  *
1620  * Obtain an extra reference on @pwq.  The caller should guarantee that
1621  * @pwq has positive refcnt and be holding the matching pool->lock.
1622  */
get_pwq(struct pool_workqueue * pwq)1623 static void get_pwq(struct pool_workqueue *pwq)
1624 {
1625 	lockdep_assert_held(&pwq->pool->lock);
1626 	WARN_ON_ONCE(pwq->refcnt <= 0);
1627 	pwq->refcnt++;
1628 }
1629 
1630 /**
1631  * put_pwq - put a pool_workqueue reference
1632  * @pwq: pool_workqueue to put
1633  *
1634  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1635  * destruction.  The caller should be holding the matching pool->lock.
1636  */
put_pwq(struct pool_workqueue * pwq)1637 static void put_pwq(struct pool_workqueue *pwq)
1638 {
1639 	lockdep_assert_held(&pwq->pool->lock);
1640 	if (likely(--pwq->refcnt))
1641 		return;
1642 	/*
1643 	 * @pwq can't be released under pool->lock, bounce to a dedicated
1644 	 * kthread_worker to avoid A-A deadlocks.
1645 	 */
1646 	kthread_queue_work(pwq_release_worker, &pwq->release_work);
1647 }
1648 
1649 /**
1650  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1651  * @pwq: pool_workqueue to put (can be %NULL)
1652  *
1653  * put_pwq() with locking.  This function also allows %NULL @pwq.
1654  */
put_pwq_unlocked(struct pool_workqueue * pwq)1655 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1656 {
1657 	if (pwq) {
1658 		/*
1659 		 * As both pwqs and pools are RCU protected, the
1660 		 * following lock operations are safe.
1661 		 */
1662 		raw_spin_lock_irq(&pwq->pool->lock);
1663 		put_pwq(pwq);
1664 		raw_spin_unlock_irq(&pwq->pool->lock);
1665 	}
1666 }
1667 
pwq_is_empty(struct pool_workqueue * pwq)1668 static bool pwq_is_empty(struct pool_workqueue *pwq)
1669 {
1670 	return !pwq->nr_active && list_empty(&pwq->inactive_works);
1671 }
1672 
__pwq_activate_work(struct pool_workqueue * pwq,struct work_struct * work)1673 static void __pwq_activate_work(struct pool_workqueue *pwq,
1674 				struct work_struct *work)
1675 {
1676 	unsigned long *wdb = work_data_bits(work);
1677 
1678 	WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
1679 	trace_workqueue_activate_work(work);
1680 	if (list_empty(&pwq->pool->worklist))
1681 		pwq->pool->watchdog_ts = jiffies;
1682 	move_linked_works(work, &pwq->pool->worklist, NULL);
1683 	__clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
1684 }
1685 
tryinc_node_nr_active(struct wq_node_nr_active * nna)1686 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1687 {
1688 	int max = READ_ONCE(nna->max);
1689 
1690 	while (true) {
1691 		int old, tmp;
1692 
1693 		old = atomic_read(&nna->nr);
1694 		if (old >= max)
1695 			return false;
1696 		tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1);
1697 		if (tmp == old)
1698 			return true;
1699 	}
1700 }
1701 
1702 /**
1703  * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1704  * @pwq: pool_workqueue of interest
1705  * @fill: max_active may have increased, try to increase concurrency level
1706  *
1707  * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1708  * successfully obtained. %false otherwise.
1709  */
pwq_tryinc_nr_active(struct pool_workqueue * pwq,bool fill)1710 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1711 {
1712 	struct workqueue_struct *wq = pwq->wq;
1713 	struct worker_pool *pool = pwq->pool;
1714 	struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
1715 	bool obtained = false;
1716 
1717 	lockdep_assert_held(&pool->lock);
1718 
1719 	if (!nna) {
1720 		/* BH or per-cpu workqueue, pwq->nr_active is sufficient */
1721 		obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1722 		goto out;
1723 	}
1724 
1725 	if (unlikely(pwq->plugged))
1726 		return false;
1727 
1728 	/*
1729 	 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1730 	 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1731 	 * concurrency level. Don't jump the line.
1732 	 *
1733 	 * We need to ignore the pending test after max_active has increased as
1734 	 * pwq_dec_nr_active() can only maintain the concurrency level but not
1735 	 * increase it. This is indicated by @fill.
1736 	 */
1737 	if (!list_empty(&pwq->pending_node) && likely(!fill))
1738 		goto out;
1739 
1740 	obtained = tryinc_node_nr_active(nna);
1741 	if (obtained)
1742 		goto out;
1743 
1744 	/*
1745 	 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1746 	 * and try again. The smp_mb() is paired with the implied memory barrier
1747 	 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1748 	 * we see the decremented $nna->nr or they see non-empty
1749 	 * $nna->pending_pwqs.
1750 	 */
1751 	raw_spin_lock(&nna->lock);
1752 
1753 	if (list_empty(&pwq->pending_node))
1754 		list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1755 	else if (likely(!fill))
1756 		goto out_unlock;
1757 
1758 	smp_mb();
1759 
1760 	obtained = tryinc_node_nr_active(nna);
1761 
1762 	/*
1763 	 * If @fill, @pwq might have already been pending. Being spuriously
1764 	 * pending in cold paths doesn't affect anything. Let's leave it be.
1765 	 */
1766 	if (obtained && likely(!fill))
1767 		list_del_init(&pwq->pending_node);
1768 
1769 out_unlock:
1770 	raw_spin_unlock(&nna->lock);
1771 out:
1772 	if (obtained)
1773 		pwq->nr_active++;
1774 	return obtained;
1775 }
1776 
1777 /**
1778  * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1779  * @pwq: pool_workqueue of interest
1780  * @fill: max_active may have increased, try to increase concurrency level
1781  *
1782  * Activate the first inactive work item of @pwq if available and allowed by
1783  * max_active limit.
1784  *
1785  * Returns %true if an inactive work item has been activated. %false if no
1786  * inactive work item is found or max_active limit is reached.
1787  */
pwq_activate_first_inactive(struct pool_workqueue * pwq,bool fill)1788 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1789 {
1790 	struct work_struct *work =
1791 		list_first_entry_or_null(&pwq->inactive_works,
1792 					 struct work_struct, entry);
1793 
1794 	if (work && pwq_tryinc_nr_active(pwq, fill)) {
1795 		__pwq_activate_work(pwq, work);
1796 		return true;
1797 	} else {
1798 		return false;
1799 	}
1800 }
1801 
1802 /**
1803  * unplug_oldest_pwq - unplug the oldest pool_workqueue
1804  * @wq: workqueue_struct where its oldest pwq is to be unplugged
1805  *
1806  * This function should only be called for ordered workqueues where only the
1807  * oldest pwq is unplugged, the others are plugged to suspend execution to
1808  * ensure proper work item ordering::
1809  *
1810  *    dfl_pwq --------------+     [P] - plugged
1811  *                          |
1812  *                          v
1813  *    pwqs -> A -> B [P] -> C [P] (newest)
1814  *            |    |        |
1815  *            1    3        5
1816  *            |    |        |
1817  *            2    4        6
1818  *
1819  * When the oldest pwq is drained and removed, this function should be called
1820  * to unplug the next oldest one to start its work item execution. Note that
1821  * pwq's are linked into wq->pwqs with the oldest first, so the first one in
1822  * the list is the oldest.
1823  */
unplug_oldest_pwq(struct workqueue_struct * wq)1824 static void unplug_oldest_pwq(struct workqueue_struct *wq)
1825 {
1826 	struct pool_workqueue *pwq;
1827 
1828 	lockdep_assert_held(&wq->mutex);
1829 
1830 	/* Caller should make sure that pwqs isn't empty before calling */
1831 	pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue,
1832 				       pwqs_node);
1833 	raw_spin_lock_irq(&pwq->pool->lock);
1834 	if (pwq->plugged) {
1835 		pwq->plugged = false;
1836 		if (pwq_activate_first_inactive(pwq, true))
1837 			kick_pool(pwq->pool);
1838 	}
1839 	raw_spin_unlock_irq(&pwq->pool->lock);
1840 }
1841 
1842 /**
1843  * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1844  * @nna: wq_node_nr_active to activate a pending pwq for
1845  * @caller_pool: worker_pool the caller is locking
1846  *
1847  * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1848  * @caller_pool may be unlocked and relocked to lock other worker_pools.
1849  */
node_activate_pending_pwq(struct wq_node_nr_active * nna,struct worker_pool * caller_pool)1850 static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1851 				      struct worker_pool *caller_pool)
1852 {
1853 	struct worker_pool *locked_pool = caller_pool;
1854 	struct pool_workqueue *pwq;
1855 	struct work_struct *work;
1856 
1857 	lockdep_assert_held(&caller_pool->lock);
1858 
1859 	raw_spin_lock(&nna->lock);
1860 retry:
1861 	pwq = list_first_entry_or_null(&nna->pending_pwqs,
1862 				       struct pool_workqueue, pending_node);
1863 	if (!pwq)
1864 		goto out_unlock;
1865 
1866 	/*
1867 	 * If @pwq is for a different pool than @locked_pool, we need to lock
1868 	 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1869 	 * / lock dance. For that, we also need to release @nna->lock as it's
1870 	 * nested inside pool locks.
1871 	 */
1872 	if (pwq->pool != locked_pool) {
1873 		raw_spin_unlock(&locked_pool->lock);
1874 		locked_pool = pwq->pool;
1875 		if (!raw_spin_trylock(&locked_pool->lock)) {
1876 			raw_spin_unlock(&nna->lock);
1877 			raw_spin_lock(&locked_pool->lock);
1878 			raw_spin_lock(&nna->lock);
1879 			goto retry;
1880 		}
1881 	}
1882 
1883 	/*
1884 	 * $pwq may not have any inactive work items due to e.g. cancellations.
1885 	 * Drop it from pending_pwqs and see if there's another one.
1886 	 */
1887 	work = list_first_entry_or_null(&pwq->inactive_works,
1888 					struct work_struct, entry);
1889 	if (!work) {
1890 		list_del_init(&pwq->pending_node);
1891 		goto retry;
1892 	}
1893 
1894 	/*
1895 	 * Acquire an nr_active count and activate the inactive work item. If
1896 	 * $pwq still has inactive work items, rotate it to the end of the
1897 	 * pending_pwqs so that we round-robin through them. This means that
1898 	 * inactive work items are not activated in queueing order which is fine
1899 	 * given that there has never been any ordering across different pwqs.
1900 	 */
1901 	if (likely(tryinc_node_nr_active(nna))) {
1902 		pwq->nr_active++;
1903 		__pwq_activate_work(pwq, work);
1904 
1905 		if (list_empty(&pwq->inactive_works))
1906 			list_del_init(&pwq->pending_node);
1907 		else
1908 			list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1909 
1910 		/* if activating a foreign pool, make sure it's running */
1911 		if (pwq->pool != caller_pool)
1912 			kick_pool(pwq->pool);
1913 	}
1914 
1915 out_unlock:
1916 	raw_spin_unlock(&nna->lock);
1917 	if (locked_pool != caller_pool) {
1918 		raw_spin_unlock(&locked_pool->lock);
1919 		raw_spin_lock(&caller_pool->lock);
1920 	}
1921 }
1922 
1923 /**
1924  * pwq_dec_nr_active - Retire an active count
1925  * @pwq: pool_workqueue of interest
1926  *
1927  * Decrement @pwq's nr_active and try to activate the first inactive work item.
1928  * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1929  */
pwq_dec_nr_active(struct pool_workqueue * pwq)1930 static void pwq_dec_nr_active(struct pool_workqueue *pwq)
1931 {
1932 	struct worker_pool *pool = pwq->pool;
1933 	struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
1934 
1935 	lockdep_assert_held(&pool->lock);
1936 
1937 	/*
1938 	 * @pwq->nr_active should be decremented for both percpu and unbound
1939 	 * workqueues.
1940 	 */
1941 	pwq->nr_active--;
1942 
1943 	/*
1944 	 * For a percpu workqueue, it's simple. Just need to kick the first
1945 	 * inactive work item on @pwq itself.
1946 	 */
1947 	if (!nna) {
1948 		pwq_activate_first_inactive(pwq, false);
1949 		return;
1950 	}
1951 
1952 	/*
1953 	 * If @pwq is for an unbound workqueue, it's more complicated because
1954 	 * multiple pwqs and pools may be sharing the nr_active count. When a
1955 	 * pwq needs to wait for an nr_active count, it puts itself on
1956 	 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1957 	 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1958 	 * guarantee that either we see non-empty pending_pwqs or they see
1959 	 * decremented $nna->nr.
1960 	 *
1961 	 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1962 	 * max_active gets updated. However, it is guaranteed to be equal to or
1963 	 * larger than @pwq->wq->min_active which is above zero unless freezing.
1964 	 * This maintains the forward progress guarantee.
1965 	 */
1966 	if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
1967 		return;
1968 
1969 	if (!list_empty(&nna->pending_pwqs))
1970 		node_activate_pending_pwq(nna, pool);
1971 }
1972 
1973 /**
1974  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1975  * @pwq: pwq of interest
1976  * @work_data: work_data of work which left the queue
1977  *
1978  * A work either has completed or is removed from pending queue,
1979  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1980  *
1981  * NOTE:
1982  * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
1983  * and thus should be called after all other state updates for the in-flight
1984  * work item is complete.
1985  *
1986  * CONTEXT:
1987  * raw_spin_lock_irq(pool->lock).
1988  */
pwq_dec_nr_in_flight(struct pool_workqueue * pwq,unsigned long work_data)1989 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1990 {
1991 	int color = get_work_color(work_data);
1992 
1993 	if (!(work_data & WORK_STRUCT_INACTIVE))
1994 		pwq_dec_nr_active(pwq);
1995 
1996 	pwq->nr_in_flight[color]--;
1997 
1998 	/* is flush in progress and are we at the flushing tip? */
1999 	if (likely(pwq->flush_color != color))
2000 		goto out_put;
2001 
2002 	/* are there still in-flight works? */
2003 	if (pwq->nr_in_flight[color])
2004 		goto out_put;
2005 
2006 	/* this pwq is done, clear flush_color */
2007 	pwq->flush_color = -1;
2008 
2009 	/*
2010 	 * If this was the last pwq, wake up the first flusher.  It
2011 	 * will handle the rest.
2012 	 */
2013 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
2014 		complete(&pwq->wq->first_flusher->done);
2015 out_put:
2016 	put_pwq(pwq);
2017 }
2018 
2019 /**
2020  * try_to_grab_pending - steal work item from worklist and disable irq
2021  * @work: work item to steal
2022  * @cflags: %WORK_CANCEL_ flags
2023  * @irq_flags: place to store irq state
2024  *
2025  * Try to grab PENDING bit of @work.  This function can handle @work in any
2026  * stable state - idle, on timer or on worklist.
2027  *
2028  * Return:
2029  *
2030  *  ========	================================================================
2031  *  1		if @work was pending and we successfully stole PENDING
2032  *  0		if @work was idle and we claimed PENDING
2033  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
2034  *  ========	================================================================
2035  *
2036  * Note:
2037  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
2038  * interrupted while holding PENDING and @work off queue, irq must be
2039  * disabled on entry.  This, combined with delayed_work->timer being
2040  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
2041  *
2042  * On successful return, >= 0, irq is disabled and the caller is
2043  * responsible for releasing it using local_irq_restore(*@irq_flags).
2044  *
2045  * This function is safe to call from any context including IRQ handler.
2046  */
try_to_grab_pending(struct work_struct * work,u32 cflags,unsigned long * irq_flags)2047 static int try_to_grab_pending(struct work_struct *work, u32 cflags,
2048 			       unsigned long *irq_flags)
2049 {
2050 	struct worker_pool *pool;
2051 	struct pool_workqueue *pwq;
2052 
2053 	local_irq_save(*irq_flags);
2054 
2055 	/* try to steal the timer if it exists */
2056 	if (cflags & WORK_CANCEL_DELAYED) {
2057 		struct delayed_work *dwork = to_delayed_work(work);
2058 
2059 		/*
2060 		 * dwork->timer is irqsafe.  If timer_delete() fails, it's
2061 		 * guaranteed that the timer is not queued anywhere and not
2062 		 * running on the local CPU.
2063 		 */
2064 		if (likely(timer_delete(&dwork->timer)))
2065 			return 1;
2066 	}
2067 
2068 	/* try to claim PENDING the normal way */
2069 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2070 		return 0;
2071 
2072 	rcu_read_lock();
2073 	/*
2074 	 * The queueing is in progress, or it is already queued. Try to
2075 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2076 	 */
2077 	pool = get_work_pool(work);
2078 	if (!pool)
2079 		goto fail;
2080 
2081 	raw_spin_lock(&pool->lock);
2082 	/*
2083 	 * work->data is guaranteed to point to pwq only while the work
2084 	 * item is queued on pwq->wq, and both updating work->data to point
2085 	 * to pwq on queueing and to pool on dequeueing are done under
2086 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
2087 	 * points to pwq which is associated with a locked pool, the work
2088 	 * item is currently queued on that pool.
2089 	 */
2090 	pwq = get_work_pwq(work);
2091 	if (pwq && pwq->pool == pool) {
2092 		unsigned long work_data = *work_data_bits(work);
2093 
2094 		debug_work_deactivate(work);
2095 
2096 		/*
2097 		 * A cancelable inactive work item must be in the
2098 		 * pwq->inactive_works since a queued barrier can't be
2099 		 * canceled (see the comments in insert_wq_barrier()).
2100 		 *
2101 		 * An inactive work item cannot be deleted directly because
2102 		 * it might have linked barrier work items which, if left
2103 		 * on the inactive_works list, will confuse pwq->nr_active
2104 		 * management later on and cause stall.  Move the linked
2105 		 * barrier work items to the worklist when deleting the grabbed
2106 		 * item. Also keep WORK_STRUCT_INACTIVE in work_data, so that
2107 		 * it doesn't participate in nr_active management in later
2108 		 * pwq_dec_nr_in_flight().
2109 		 */
2110 		if (work_data & WORK_STRUCT_INACTIVE)
2111 			move_linked_works(work, &pwq->pool->worklist, NULL);
2112 
2113 		list_del_init(&work->entry);
2114 
2115 		/*
2116 		 * work->data points to pwq iff queued. Let's point to pool. As
2117 		 * this destroys work->data needed by the next step, stash it.
2118 		 */
2119 		set_work_pool_and_keep_pending(work, pool->id,
2120 					       pool_offq_flags(pool));
2121 
2122 		/* must be the last step, see the function comment */
2123 		pwq_dec_nr_in_flight(pwq, work_data);
2124 
2125 		raw_spin_unlock(&pool->lock);
2126 		rcu_read_unlock();
2127 		return 1;
2128 	}
2129 	raw_spin_unlock(&pool->lock);
2130 fail:
2131 	rcu_read_unlock();
2132 	local_irq_restore(*irq_flags);
2133 	return -EAGAIN;
2134 }
2135 
2136 /**
2137  * work_grab_pending - steal work item from worklist and disable irq
2138  * @work: work item to steal
2139  * @cflags: %WORK_CANCEL_ flags
2140  * @irq_flags: place to store IRQ state
2141  *
2142  * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer
2143  * or on worklist.
2144  *
2145  * Can be called from any context. IRQ is disabled on return with IRQ state
2146  * stored in *@irq_flags. The caller is responsible for re-enabling it using
2147  * local_irq_restore().
2148  *
2149  * Returns %true if @work was pending. %false if idle.
2150  */
work_grab_pending(struct work_struct * work,u32 cflags,unsigned long * irq_flags)2151 static bool work_grab_pending(struct work_struct *work, u32 cflags,
2152 			      unsigned long *irq_flags)
2153 {
2154 	int ret;
2155 
2156 	while (true) {
2157 		ret = try_to_grab_pending(work, cflags, irq_flags);
2158 		if (ret >= 0)
2159 			return ret;
2160 		cpu_relax();
2161 	}
2162 }
2163 
2164 /**
2165  * insert_work - insert a work into a pool
2166  * @pwq: pwq @work belongs to
2167  * @work: work to insert
2168  * @head: insertion point
2169  * @extra_flags: extra WORK_STRUCT_* flags to set
2170  *
2171  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
2172  * work_struct flags.
2173  *
2174  * CONTEXT:
2175  * raw_spin_lock_irq(pool->lock).
2176  */
insert_work(struct pool_workqueue * pwq,struct work_struct * work,struct list_head * head,unsigned int extra_flags)2177 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2178 			struct list_head *head, unsigned int extra_flags)
2179 {
2180 	debug_work_activate(work);
2181 
2182 	/* record the work call stack in order to print it in KASAN reports */
2183 	kasan_record_aux_stack(work);
2184 
2185 	/* we own @work, set data and link */
2186 	set_work_pwq(work, pwq, extra_flags);
2187 	list_add_tail(&work->entry, head);
2188 	get_pwq(pwq);
2189 }
2190 
2191 /*
2192  * Test whether @work is being queued from another work executing on the
2193  * same workqueue.
2194  */
is_chained_work(struct workqueue_struct * wq)2195 static bool is_chained_work(struct workqueue_struct *wq)
2196 {
2197 	struct worker *worker;
2198 
2199 	worker = current_wq_worker();
2200 	/*
2201 	 * Return %true iff I'm a worker executing a work item on @wq.  If
2202 	 * I'm @worker, it's safe to dereference it without locking.
2203 	 */
2204 	return worker && worker->current_pwq->wq == wq;
2205 }
2206 
2207 /*
2208  * When queueing an unbound work item to a wq, prefer local CPU if allowed
2209  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
2210  * avoid perturbing sensitive tasks.
2211  */
wq_select_unbound_cpu(int cpu)2212 static int wq_select_unbound_cpu(int cpu)
2213 {
2214 	int new_cpu;
2215 
2216 	if (likely(!wq_debug_force_rr_cpu)) {
2217 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2218 			return cpu;
2219 	} else {
2220 		pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
2221 	}
2222 
2223 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
2224 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2225 	if (unlikely(new_cpu >= nr_cpu_ids)) {
2226 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
2227 		if (unlikely(new_cpu >= nr_cpu_ids))
2228 			return cpu;
2229 	}
2230 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
2231 
2232 	return new_cpu;
2233 }
2234 
__queue_work(int cpu,struct workqueue_struct * wq,struct work_struct * work)2235 static void __queue_work(int cpu, struct workqueue_struct *wq,
2236 			 struct work_struct *work)
2237 {
2238 	struct pool_workqueue *pwq;
2239 	struct worker_pool *last_pool, *pool;
2240 	unsigned int work_flags;
2241 	unsigned int req_cpu = cpu;
2242 
2243 	/*
2244 	 * While a work item is PENDING && off queue, a task trying to
2245 	 * steal the PENDING will busy-loop waiting for it to either get
2246 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
2247 	 * happen with IRQ disabled.
2248 	 */
2249 	lockdep_assert_irqs_disabled();
2250 
2251 	/*
2252 	 * For a draining wq, only works from the same workqueue are
2253 	 * allowed. The __WQ_DESTROYING helps to spot the issue that
2254 	 * queues a new work item to a wq after destroy_workqueue(wq).
2255 	 */
2256 	if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2257 		     WARN_ONCE(!is_chained_work(wq), "workqueue: cannot queue %ps on wq %s\n",
2258 			       work->func, wq->name))) {
2259 		return;
2260 	}
2261 	rcu_read_lock();
2262 retry:
2263 	/* pwq which will be used unless @work is executing elsewhere */
2264 	if (req_cpu == WORK_CPU_UNBOUND) {
2265 		if (wq->flags & WQ_UNBOUND)
2266 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
2267 		else
2268 			cpu = raw_smp_processor_id();
2269 	}
2270 
2271 	pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
2272 	pool = pwq->pool;
2273 
2274 	/*
2275 	 * If @work was previously on a different pool, it might still be
2276 	 * running there, in which case the work needs to be queued on that
2277 	 * pool to guarantee non-reentrancy.
2278 	 *
2279 	 * For ordered workqueue, work items must be queued on the newest pwq
2280 	 * for accurate order management.  Guaranteed order also guarantees
2281 	 * non-reentrancy.  See the comments above unplug_oldest_pwq().
2282 	 */
2283 	last_pool = get_work_pool(work);
2284 	if (last_pool && last_pool != pool && !(wq->flags & __WQ_ORDERED)) {
2285 		struct worker *worker;
2286 
2287 		raw_spin_lock(&last_pool->lock);
2288 
2289 		worker = find_worker_executing_work(last_pool, work);
2290 
2291 		if (worker && worker->current_pwq->wq == wq) {
2292 			pwq = worker->current_pwq;
2293 			pool = pwq->pool;
2294 			WARN_ON_ONCE(pool != last_pool);
2295 		} else {
2296 			/* meh... not running there, queue here */
2297 			raw_spin_unlock(&last_pool->lock);
2298 			raw_spin_lock(&pool->lock);
2299 		}
2300 	} else {
2301 		raw_spin_lock(&pool->lock);
2302 	}
2303 
2304 	/*
2305 	 * pwq is determined and locked. For unbound pools, we could have raced
2306 	 * with pwq release and it could already be dead. If its refcnt is zero,
2307 	 * repeat pwq selection. Note that unbound pwqs never die without
2308 	 * another pwq replacing it in cpu_pwq or while work items are executing
2309 	 * on it, so the retrying is guaranteed to make forward-progress.
2310 	 */
2311 	if (unlikely(!pwq->refcnt)) {
2312 		if (wq->flags & WQ_UNBOUND) {
2313 			raw_spin_unlock(&pool->lock);
2314 			cpu_relax();
2315 			goto retry;
2316 		}
2317 		/* oops */
2318 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2319 			  wq->name, cpu);
2320 	}
2321 
2322 	/* pwq determined, queue */
2323 	trace_workqueue_queue_work(req_cpu, pwq, work);
2324 
2325 	if (WARN_ON(!list_empty(&work->entry)))
2326 		goto out;
2327 
2328 	pwq->nr_in_flight[pwq->work_color]++;
2329 	work_flags = work_color_to_flags(pwq->work_color);
2330 
2331 	/*
2332 	 * Limit the number of concurrently active work items to max_active.
2333 	 * @work must also queue behind existing inactive work items to maintain
2334 	 * ordering when max_active changes. See wq_adjust_max_active().
2335 	 */
2336 	if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
2337 		if (list_empty(&pool->worklist))
2338 			pool->watchdog_ts = jiffies;
2339 
2340 		trace_workqueue_activate_work(work);
2341 		insert_work(pwq, work, &pool->worklist, work_flags);
2342 		kick_pool(pool);
2343 	} else {
2344 		work_flags |= WORK_STRUCT_INACTIVE;
2345 		insert_work(pwq, work, &pwq->inactive_works, work_flags);
2346 	}
2347 
2348 out:
2349 	raw_spin_unlock(&pool->lock);
2350 	rcu_read_unlock();
2351 }
2352 
clear_pending_if_disabled(struct work_struct * work)2353 static bool clear_pending_if_disabled(struct work_struct *work)
2354 {
2355 	unsigned long data = *work_data_bits(work);
2356 	struct work_offq_data offqd;
2357 
2358 	if (likely((data & WORK_STRUCT_PWQ) ||
2359 		   !(data & WORK_OFFQ_DISABLE_MASK)))
2360 		return false;
2361 
2362 	work_offqd_unpack(&offqd, data);
2363 	set_work_pool_and_clear_pending(work, offqd.pool_id,
2364 					work_offqd_pack_flags(&offqd));
2365 	return true;
2366 }
2367 
2368 /**
2369  * queue_work_on - queue work on specific cpu
2370  * @cpu: CPU number to execute work on
2371  * @wq: workqueue to use
2372  * @work: work to queue
2373  *
2374  * We queue the work to a specific CPU, the caller must ensure it
2375  * can't go away.  Callers that fail to ensure that the specified
2376  * CPU cannot go away will execute on a randomly chosen CPU.
2377  * But note well that callers specifying a CPU that never has been
2378  * online will get a splat.
2379  *
2380  * Return: %false if @work was already on a queue, %true otherwise.
2381  */
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)2382 bool queue_work_on(int cpu, struct workqueue_struct *wq,
2383 		   struct work_struct *work)
2384 {
2385 	bool ret = false;
2386 	unsigned long irq_flags;
2387 
2388 	local_irq_save(irq_flags);
2389 
2390 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2391 	    !clear_pending_if_disabled(work)) {
2392 		__queue_work(cpu, wq, work);
2393 		ret = true;
2394 	}
2395 
2396 	local_irq_restore(irq_flags);
2397 	return ret;
2398 }
2399 EXPORT_SYMBOL(queue_work_on);
2400 
2401 /**
2402  * select_numa_node_cpu - Select a CPU based on NUMA node
2403  * @node: NUMA node ID that we want to select a CPU from
2404  *
2405  * This function will attempt to find a "random" cpu available on a given
2406  * node. If there are no CPUs available on the given node it will return
2407  * WORK_CPU_UNBOUND indicating that we should just schedule to any
2408  * available CPU if we need to schedule this work.
2409  */
select_numa_node_cpu(int node)2410 static int select_numa_node_cpu(int node)
2411 {
2412 	int cpu;
2413 
2414 	/* Delay binding to CPU if node is not valid or online */
2415 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2416 		return WORK_CPU_UNBOUND;
2417 
2418 	/* Use local node/cpu if we are already there */
2419 	cpu = raw_smp_processor_id();
2420 	if (node == cpu_to_node(cpu))
2421 		return cpu;
2422 
2423 	/* Use "random" otherwise know as "first" online CPU of node */
2424 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2425 
2426 	/* If CPU is valid return that, otherwise just defer */
2427 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2428 }
2429 
2430 /**
2431  * queue_work_node - queue work on a "random" cpu for a given NUMA node
2432  * @node: NUMA node that we are targeting the work for
2433  * @wq: workqueue to use
2434  * @work: work to queue
2435  *
2436  * We queue the work to a "random" CPU within a given NUMA node. The basic
2437  * idea here is to provide a way to somehow associate work with a given
2438  * NUMA node.
2439  *
2440  * This function will only make a best effort attempt at getting this onto
2441  * the right NUMA node. If no node is requested or the requested node is
2442  * offline then we just fall back to standard queue_work behavior.
2443  *
2444  * Currently the "random" CPU ends up being the first available CPU in the
2445  * intersection of cpu_online_mask and the cpumask of the node, unless we
2446  * are running on the node. In that case we just use the current CPU.
2447  *
2448  * Return: %false if @work was already on a queue, %true otherwise.
2449  */
queue_work_node(int node,struct workqueue_struct * wq,struct work_struct * work)2450 bool queue_work_node(int node, struct workqueue_struct *wq,
2451 		     struct work_struct *work)
2452 {
2453 	unsigned long irq_flags;
2454 	bool ret = false;
2455 
2456 	/*
2457 	 * This current implementation is specific to unbound workqueues.
2458 	 * Specifically we only return the first available CPU for a given
2459 	 * node instead of cycling through individual CPUs within the node.
2460 	 *
2461 	 * If this is used with a per-cpu workqueue then the logic in
2462 	 * workqueue_select_cpu_near would need to be updated to allow for
2463 	 * some round robin type logic.
2464 	 */
2465 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2466 
2467 	local_irq_save(irq_flags);
2468 
2469 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2470 	    !clear_pending_if_disabled(work)) {
2471 		int cpu = select_numa_node_cpu(node);
2472 
2473 		__queue_work(cpu, wq, work);
2474 		ret = true;
2475 	}
2476 
2477 	local_irq_restore(irq_flags);
2478 	return ret;
2479 }
2480 EXPORT_SYMBOL_GPL(queue_work_node);
2481 
delayed_work_timer_fn(struct timer_list * t)2482 void delayed_work_timer_fn(struct timer_list *t)
2483 {
2484 	struct delayed_work *dwork = timer_container_of(dwork, t, timer);
2485 
2486 	/* should have been called from irqsafe timer with irq already off */
2487 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2488 }
2489 EXPORT_SYMBOL(delayed_work_timer_fn);
2490 
__queue_delayed_work(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2491 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2492 				struct delayed_work *dwork, unsigned long delay)
2493 {
2494 	struct timer_list *timer = &dwork->timer;
2495 	struct work_struct *work = &dwork->work;
2496 
2497 	WARN_ON_ONCE(!wq);
2498 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
2499 	WARN_ON_ONCE(timer_pending(timer));
2500 	WARN_ON_ONCE(!list_empty(&work->entry));
2501 
2502 	/*
2503 	 * If @delay is 0, queue @dwork->work immediately.  This is for
2504 	 * both optimization and correctness.  The earliest @timer can
2505 	 * expire is on the closest next tick and delayed_work users depend
2506 	 * on that there's no such delay when @delay is 0.
2507 	 */
2508 	if (!delay) {
2509 		__queue_work(cpu, wq, &dwork->work);
2510 		return;
2511 	}
2512 
2513 	WARN_ON_ONCE(cpu != WORK_CPU_UNBOUND && !cpu_online(cpu));
2514 	dwork->wq = wq;
2515 	dwork->cpu = cpu;
2516 	timer->expires = jiffies + delay;
2517 
2518 	if (housekeeping_enabled(HK_TYPE_TIMER)) {
2519 		/* If the current cpu is a housekeeping cpu, use it. */
2520 		cpu = smp_processor_id();
2521 		if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER))
2522 			cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
2523 		add_timer_on(timer, cpu);
2524 	} else {
2525 		if (likely(cpu == WORK_CPU_UNBOUND))
2526 			add_timer_global(timer);
2527 		else
2528 			add_timer_on(timer, cpu);
2529 	}
2530 }
2531 
2532 /**
2533  * queue_delayed_work_on - queue work on specific CPU after delay
2534  * @cpu: CPU number to execute work on
2535  * @wq: workqueue to use
2536  * @dwork: work to queue
2537  * @delay: number of jiffies to wait before queueing
2538  *
2539  * We queue the delayed_work to a specific CPU, for non-zero delays the
2540  * caller must ensure it is online and can't go away. Callers that fail
2541  * to ensure this, may get @dwork->timer queued to an offlined CPU and
2542  * this will prevent queueing of @dwork->work unless the offlined CPU
2543  * becomes online again.
2544  *
2545  * Return: %false if @work was already on a queue, %true otherwise.  If
2546  * @delay is zero and @dwork is idle, it will be scheduled for immediate
2547  * execution.
2548  */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2549 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2550 			   struct delayed_work *dwork, unsigned long delay)
2551 {
2552 	struct work_struct *work = &dwork->work;
2553 	bool ret = false;
2554 	unsigned long irq_flags;
2555 
2556 	/* read the comment in __queue_work() */
2557 	local_irq_save(irq_flags);
2558 
2559 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2560 	    !clear_pending_if_disabled(work)) {
2561 		__queue_delayed_work(cpu, wq, dwork, delay);
2562 		ret = true;
2563 	}
2564 
2565 	local_irq_restore(irq_flags);
2566 	return ret;
2567 }
2568 EXPORT_SYMBOL(queue_delayed_work_on);
2569 
2570 /**
2571  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2572  * @cpu: CPU number to execute work on
2573  * @wq: workqueue to use
2574  * @dwork: work to queue
2575  * @delay: number of jiffies to wait before queueing
2576  *
2577  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2578  * modify @dwork's timer so that it expires after @delay.  If @delay is
2579  * zero, @work is guaranteed to be scheduled immediately regardless of its
2580  * current state.
2581  *
2582  * Return: %false if @dwork was idle and queued, %true if @dwork was
2583  * pending and its timer was modified.
2584  *
2585  * This function is safe to call from any context including IRQ handler.
2586  * See try_to_grab_pending() for details.
2587  */
mod_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)2588 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2589 			 struct delayed_work *dwork, unsigned long delay)
2590 {
2591 	unsigned long irq_flags;
2592 	bool ret;
2593 
2594 	ret = work_grab_pending(&dwork->work, WORK_CANCEL_DELAYED, &irq_flags);
2595 
2596 	if (!clear_pending_if_disabled(&dwork->work))
2597 		__queue_delayed_work(cpu, wq, dwork, delay);
2598 
2599 	local_irq_restore(irq_flags);
2600 	return ret;
2601 }
2602 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2603 
rcu_work_rcufn(struct rcu_head * rcu)2604 static void rcu_work_rcufn(struct rcu_head *rcu)
2605 {
2606 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2607 
2608 	/* read the comment in __queue_work() */
2609 	local_irq_disable();
2610 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2611 	local_irq_enable();
2612 }
2613 
2614 /**
2615  * queue_rcu_work - queue work after a RCU grace period
2616  * @wq: workqueue to use
2617  * @rwork: work to queue
2618  *
2619  * Return: %false if @rwork was already pending, %true otherwise.  Note
2620  * that a full RCU grace period is guaranteed only after a %true return.
2621  * While @rwork is guaranteed to be executed after a %false return, the
2622  * execution may happen before a full RCU grace period has passed.
2623  */
queue_rcu_work(struct workqueue_struct * wq,struct rcu_work * rwork)2624 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2625 {
2626 	struct work_struct *work = &rwork->work;
2627 
2628 	/*
2629 	 * rcu_work can't be canceled or disabled. Warn if the user reached
2630 	 * inside @rwork and disabled the inner work.
2631 	 */
2632 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2633 	    !WARN_ON_ONCE(clear_pending_if_disabled(work))) {
2634 		rwork->wq = wq;
2635 		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2636 		return true;
2637 	}
2638 
2639 	return false;
2640 }
2641 EXPORT_SYMBOL(queue_rcu_work);
2642 
alloc_worker(int node)2643 static struct worker *alloc_worker(int node)
2644 {
2645 	struct worker *worker;
2646 
2647 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2648 	if (worker) {
2649 		INIT_LIST_HEAD(&worker->entry);
2650 		INIT_LIST_HEAD(&worker->scheduled);
2651 		INIT_LIST_HEAD(&worker->node);
2652 		/* on creation a worker is in !idle && prep state */
2653 		worker->flags = WORKER_PREP;
2654 	}
2655 	return worker;
2656 }
2657 
pool_allowed_cpus(struct worker_pool * pool)2658 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2659 {
2660 	if (pool->cpu < 0 && pool->attrs->affn_strict)
2661 		return pool->attrs->__pod_cpumask;
2662 	else
2663 		return pool->attrs->cpumask;
2664 }
2665 
2666 /**
2667  * worker_attach_to_pool() - attach a worker to a pool
2668  * @worker: worker to be attached
2669  * @pool: the target pool
2670  *
2671  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
2672  * cpu-binding of @worker are kept coordinated with the pool across
2673  * cpu-[un]hotplugs.
2674  */
worker_attach_to_pool(struct worker * worker,struct worker_pool * pool)2675 static void worker_attach_to_pool(struct worker *worker,
2676 				  struct worker_pool *pool)
2677 {
2678 	mutex_lock(&wq_pool_attach_mutex);
2679 
2680 	/*
2681 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable
2682 	 * across this function. See the comments above the flag definition for
2683 	 * details. BH workers are, while per-CPU, always DISASSOCIATED.
2684 	 */
2685 	if (pool->flags & POOL_DISASSOCIATED) {
2686 		worker->flags |= WORKER_UNBOUND;
2687 	} else {
2688 		WARN_ON_ONCE(pool->flags & POOL_BH);
2689 		kthread_set_per_cpu(worker->task, pool->cpu);
2690 	}
2691 
2692 	if (worker->rescue_wq)
2693 		set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2694 
2695 	list_add_tail(&worker->node, &pool->workers);
2696 	worker->pool = pool;
2697 
2698 	mutex_unlock(&wq_pool_attach_mutex);
2699 }
2700 
unbind_worker(struct worker * worker)2701 static void unbind_worker(struct worker *worker)
2702 {
2703 	lockdep_assert_held(&wq_pool_attach_mutex);
2704 
2705 	kthread_set_per_cpu(worker->task, -1);
2706 	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2707 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2708 	else
2709 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2710 }
2711 
2712 
detach_worker(struct worker * worker)2713 static void detach_worker(struct worker *worker)
2714 {
2715 	lockdep_assert_held(&wq_pool_attach_mutex);
2716 
2717 	unbind_worker(worker);
2718 	list_del(&worker->node);
2719 }
2720 
2721 /**
2722  * worker_detach_from_pool() - detach a worker from its pool
2723  * @worker: worker which is attached to its pool
2724  *
2725  * Undo the attaching which had been done in worker_attach_to_pool().  The
2726  * caller worker shouldn't access to the pool after detached except it has
2727  * other reference to the pool.
2728  */
worker_detach_from_pool(struct worker * worker)2729 static void worker_detach_from_pool(struct worker *worker)
2730 {
2731 	struct worker_pool *pool = worker->pool;
2732 
2733 	/* there is one permanent BH worker per CPU which should never detach */
2734 	WARN_ON_ONCE(pool->flags & POOL_BH);
2735 
2736 	mutex_lock(&wq_pool_attach_mutex);
2737 	detach_worker(worker);
2738 	worker->pool = NULL;
2739 	mutex_unlock(&wq_pool_attach_mutex);
2740 
2741 	/* clear leftover flags without pool->lock after it is detached */
2742 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2743 }
2744 
format_worker_id(char * buf,size_t size,struct worker * worker,struct worker_pool * pool)2745 static int format_worker_id(char *buf, size_t size, struct worker *worker,
2746 			    struct worker_pool *pool)
2747 {
2748 	if (worker->rescue_wq)
2749 		return scnprintf(buf, size, "kworker/R-%s",
2750 				 worker->rescue_wq->name);
2751 
2752 	if (pool) {
2753 		if (pool->cpu >= 0)
2754 			return scnprintf(buf, size, "kworker/%d:%d%s",
2755 					 pool->cpu, worker->id,
2756 					 pool->attrs->nice < 0  ? "H" : "");
2757 		else
2758 			return scnprintf(buf, size, "kworker/u%d:%d",
2759 					 pool->id, worker->id);
2760 	} else {
2761 		return scnprintf(buf, size, "kworker/dying");
2762 	}
2763 }
2764 
2765 /**
2766  * create_worker - create a new workqueue worker
2767  * @pool: pool the new worker will belong to
2768  *
2769  * Create and start a new worker which is attached to @pool.
2770  *
2771  * CONTEXT:
2772  * Might sleep.  Does GFP_KERNEL allocations.
2773  *
2774  * Return:
2775  * Pointer to the newly created worker.
2776  */
create_worker(struct worker_pool * pool)2777 static struct worker *create_worker(struct worker_pool *pool)
2778 {
2779 	struct worker *worker;
2780 	int id;
2781 
2782 	/* ID is needed to determine kthread name */
2783 	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2784 	if (id < 0) {
2785 		pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2786 			    ERR_PTR(id));
2787 		return NULL;
2788 	}
2789 
2790 	worker = alloc_worker(pool->node);
2791 	if (!worker) {
2792 		pr_err_once("workqueue: Failed to allocate a worker\n");
2793 		goto fail;
2794 	}
2795 
2796 	worker->id = id;
2797 
2798 	if (!(pool->flags & POOL_BH)) {
2799 		char id_buf[WORKER_ID_LEN];
2800 
2801 		format_worker_id(id_buf, sizeof(id_buf), worker, pool);
2802 		worker->task = kthread_create_on_node(worker_thread, worker,
2803 						      pool->node, "%s", id_buf);
2804 		if (IS_ERR(worker->task)) {
2805 			if (PTR_ERR(worker->task) == -EINTR) {
2806 				pr_err("workqueue: Interrupted when creating a worker thread \"%s\"\n",
2807 				       id_buf);
2808 			} else {
2809 				pr_err_once("workqueue: Failed to create a worker thread: %pe",
2810 					    worker->task);
2811 			}
2812 			goto fail;
2813 		}
2814 
2815 		set_user_nice(worker->task, pool->attrs->nice);
2816 		kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2817 	}
2818 
2819 	/* successful, attach the worker to the pool */
2820 	worker_attach_to_pool(worker, pool);
2821 
2822 	/* start the newly created worker */
2823 	raw_spin_lock_irq(&pool->lock);
2824 
2825 	worker->pool->nr_workers++;
2826 	worker_enter_idle(worker);
2827 
2828 	/*
2829 	 * @worker is waiting on a completion in kthread() and will trigger hung
2830 	 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
2831 	 * wake it up explicitly.
2832 	 */
2833 	if (worker->task)
2834 		wake_up_process(worker->task);
2835 
2836 	raw_spin_unlock_irq(&pool->lock);
2837 
2838 	return worker;
2839 
2840 fail:
2841 	ida_free(&pool->worker_ida, id);
2842 	kfree(worker);
2843 	return NULL;
2844 }
2845 
detach_dying_workers(struct list_head * cull_list)2846 static void detach_dying_workers(struct list_head *cull_list)
2847 {
2848 	struct worker *worker;
2849 
2850 	list_for_each_entry(worker, cull_list, entry)
2851 		detach_worker(worker);
2852 }
2853 
reap_dying_workers(struct list_head * cull_list)2854 static void reap_dying_workers(struct list_head *cull_list)
2855 {
2856 	struct worker *worker, *tmp;
2857 
2858 	list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2859 		list_del_init(&worker->entry);
2860 		kthread_stop_put(worker->task);
2861 		kfree(worker);
2862 	}
2863 }
2864 
2865 /**
2866  * set_worker_dying - Tag a worker for destruction
2867  * @worker: worker to be destroyed
2868  * @list: transfer worker away from its pool->idle_list and into list
2869  *
2870  * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
2871  * should be idle.
2872  *
2873  * CONTEXT:
2874  * raw_spin_lock_irq(pool->lock).
2875  */
set_worker_dying(struct worker * worker,struct list_head * list)2876 static void set_worker_dying(struct worker *worker, struct list_head *list)
2877 {
2878 	struct worker_pool *pool = worker->pool;
2879 
2880 	lockdep_assert_held(&pool->lock);
2881 	lockdep_assert_held(&wq_pool_attach_mutex);
2882 
2883 	/* sanity check frenzy */
2884 	if (WARN_ON(worker->current_work) ||
2885 	    WARN_ON(!list_empty(&worker->scheduled)) ||
2886 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2887 		return;
2888 
2889 	pool->nr_workers--;
2890 	pool->nr_idle--;
2891 
2892 	worker->flags |= WORKER_DIE;
2893 
2894 	list_move(&worker->entry, list);
2895 
2896 	/* get an extra task struct reference for later kthread_stop_put() */
2897 	get_task_struct(worker->task);
2898 }
2899 
2900 /**
2901  * idle_worker_timeout - check if some idle workers can now be deleted.
2902  * @t: The pool's idle_timer that just expired
2903  *
2904  * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2905  * worker_leave_idle(), as a worker flicking between idle and active while its
2906  * pool is at the too_many_workers() tipping point would cause too much timer
2907  * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2908  * it expire and re-evaluate things from there.
2909  */
idle_worker_timeout(struct timer_list * t)2910 static void idle_worker_timeout(struct timer_list *t)
2911 {
2912 	struct worker_pool *pool = timer_container_of(pool, t, idle_timer);
2913 	bool do_cull = false;
2914 
2915 	if (work_pending(&pool->idle_cull_work))
2916 		return;
2917 
2918 	raw_spin_lock_irq(&pool->lock);
2919 
2920 	if (too_many_workers(pool)) {
2921 		struct worker *worker;
2922 		unsigned long expires;
2923 
2924 		/* idle_list is kept in LIFO order, check the last one */
2925 		worker = list_last_entry(&pool->idle_list, struct worker, entry);
2926 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2927 		do_cull = !time_before(jiffies, expires);
2928 
2929 		if (!do_cull)
2930 			mod_timer(&pool->idle_timer, expires);
2931 	}
2932 	raw_spin_unlock_irq(&pool->lock);
2933 
2934 	if (do_cull)
2935 		queue_work(system_unbound_wq, &pool->idle_cull_work);
2936 }
2937 
2938 /**
2939  * idle_cull_fn - cull workers that have been idle for too long.
2940  * @work: the pool's work for handling these idle workers
2941  *
2942  * This goes through a pool's idle workers and gets rid of those that have been
2943  * idle for at least IDLE_WORKER_TIMEOUT seconds.
2944  *
2945  * We don't want to disturb isolated CPUs because of a pcpu kworker being
2946  * culled, so this also resets worker affinity. This requires a sleepable
2947  * context, hence the split between timer callback and work item.
2948  */
idle_cull_fn(struct work_struct * work)2949 static void idle_cull_fn(struct work_struct *work)
2950 {
2951 	struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2952 	LIST_HEAD(cull_list);
2953 
2954 	/*
2955 	 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2956 	 * cannot proceed beyong set_pf_worker() in its self-destruct path.
2957 	 * This is required as a previously-preempted worker could run after
2958 	 * set_worker_dying() has happened but before detach_dying_workers() did.
2959 	 */
2960 	mutex_lock(&wq_pool_attach_mutex);
2961 	raw_spin_lock_irq(&pool->lock);
2962 
2963 	while (too_many_workers(pool)) {
2964 		struct worker *worker;
2965 		unsigned long expires;
2966 
2967 		worker = list_last_entry(&pool->idle_list, struct worker, entry);
2968 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2969 
2970 		if (time_before(jiffies, expires)) {
2971 			mod_timer(&pool->idle_timer, expires);
2972 			break;
2973 		}
2974 
2975 		set_worker_dying(worker, &cull_list);
2976 	}
2977 
2978 	raw_spin_unlock_irq(&pool->lock);
2979 	detach_dying_workers(&cull_list);
2980 	mutex_unlock(&wq_pool_attach_mutex);
2981 
2982 	reap_dying_workers(&cull_list);
2983 }
2984 
send_mayday(struct work_struct * work)2985 static void send_mayday(struct work_struct *work)
2986 {
2987 	struct pool_workqueue *pwq = get_work_pwq(work);
2988 	struct workqueue_struct *wq = pwq->wq;
2989 
2990 	lockdep_assert_held(&wq_mayday_lock);
2991 
2992 	if (!wq->rescuer)
2993 		return;
2994 
2995 	/* mayday mayday mayday */
2996 	if (list_empty(&pwq->mayday_node)) {
2997 		/*
2998 		 * If @pwq is for an unbound wq, its base ref may be put at
2999 		 * any time due to an attribute change.  Pin @pwq until the
3000 		 * rescuer is done with it.
3001 		 */
3002 		get_pwq(pwq);
3003 		list_add_tail(&pwq->mayday_node, &wq->maydays);
3004 		wake_up_process(wq->rescuer->task);
3005 		pwq->stats[PWQ_STAT_MAYDAY]++;
3006 	}
3007 }
3008 
pool_mayday_timeout(struct timer_list * t)3009 static void pool_mayday_timeout(struct timer_list *t)
3010 {
3011 	struct worker_pool *pool = timer_container_of(pool, t, mayday_timer);
3012 	struct work_struct *work;
3013 
3014 	raw_spin_lock_irq(&pool->lock);
3015 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
3016 
3017 	if (need_to_create_worker(pool)) {
3018 		/*
3019 		 * We've been trying to create a new worker but
3020 		 * haven't been successful.  We might be hitting an
3021 		 * allocation deadlock.  Send distress signals to
3022 		 * rescuers.
3023 		 */
3024 		list_for_each_entry(work, &pool->worklist, entry)
3025 			send_mayday(work);
3026 	}
3027 
3028 	raw_spin_unlock(&wq_mayday_lock);
3029 	raw_spin_unlock_irq(&pool->lock);
3030 
3031 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
3032 }
3033 
3034 /**
3035  * maybe_create_worker - create a new worker if necessary
3036  * @pool: pool to create a new worker for
3037  *
3038  * Create a new worker for @pool if necessary.  @pool is guaranteed to
3039  * have at least one idle worker on return from this function.  If
3040  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
3041  * sent to all rescuers with works scheduled on @pool to resolve
3042  * possible allocation deadlock.
3043  *
3044  * On return, need_to_create_worker() is guaranteed to be %false and
3045  * may_start_working() %true.
3046  *
3047  * LOCKING:
3048  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3049  * multiple times.  Does GFP_KERNEL allocations.  Called only from
3050  * manager.
3051  */
maybe_create_worker(struct worker_pool * pool)3052 static void maybe_create_worker(struct worker_pool *pool)
3053 __releases(&pool->lock)
3054 __acquires(&pool->lock)
3055 {
3056 restart:
3057 	raw_spin_unlock_irq(&pool->lock);
3058 
3059 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
3060 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
3061 
3062 	while (true) {
3063 		if (create_worker(pool) || !need_to_create_worker(pool))
3064 			break;
3065 
3066 		schedule_timeout_interruptible(CREATE_COOLDOWN);
3067 
3068 		if (!need_to_create_worker(pool))
3069 			break;
3070 	}
3071 
3072 	timer_delete_sync(&pool->mayday_timer);
3073 	raw_spin_lock_irq(&pool->lock);
3074 	/*
3075 	 * This is necessary even after a new worker was just successfully
3076 	 * created as @pool->lock was dropped and the new worker might have
3077 	 * already become busy.
3078 	 */
3079 	if (need_to_create_worker(pool))
3080 		goto restart;
3081 }
3082 
3083 /**
3084  * manage_workers - manage worker pool
3085  * @worker: self
3086  *
3087  * Assume the manager role and manage the worker pool @worker belongs
3088  * to.  At any given time, there can be only zero or one manager per
3089  * pool.  The exclusion is handled automatically by this function.
3090  *
3091  * The caller can safely start processing works on false return.  On
3092  * true return, it's guaranteed that need_to_create_worker() is false
3093  * and may_start_working() is true.
3094  *
3095  * CONTEXT:
3096  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3097  * multiple times.  Does GFP_KERNEL allocations.
3098  *
3099  * Return:
3100  * %false if the pool doesn't need management and the caller can safely
3101  * start processing works, %true if management function was performed and
3102  * the conditions that the caller verified before calling the function may
3103  * no longer be true.
3104  */
manage_workers(struct worker * worker)3105 static bool manage_workers(struct worker *worker)
3106 {
3107 	struct worker_pool *pool = worker->pool;
3108 
3109 	if (pool->flags & POOL_MANAGER_ACTIVE)
3110 		return false;
3111 
3112 	pool->flags |= POOL_MANAGER_ACTIVE;
3113 	pool->manager = worker;
3114 
3115 	maybe_create_worker(pool);
3116 
3117 	pool->manager = NULL;
3118 	pool->flags &= ~POOL_MANAGER_ACTIVE;
3119 	rcuwait_wake_up(&manager_wait);
3120 	return true;
3121 }
3122 
3123 /**
3124  * process_one_work - process single work
3125  * @worker: self
3126  * @work: work to process
3127  *
3128  * Process @work.  This function contains all the logics necessary to
3129  * process a single work including synchronization against and
3130  * interaction with other workers on the same cpu, queueing and
3131  * flushing.  As long as context requirement is met, any worker can
3132  * call this function to process a work.
3133  *
3134  * CONTEXT:
3135  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
3136  */
process_one_work(struct worker * worker,struct work_struct * work)3137 static void process_one_work(struct worker *worker, struct work_struct *work)
3138 __releases(&pool->lock)
3139 __acquires(&pool->lock)
3140 {
3141 	struct pool_workqueue *pwq = get_work_pwq(work);
3142 	struct worker_pool *pool = worker->pool;
3143 	unsigned long work_data;
3144 	int lockdep_start_depth, rcu_start_depth;
3145 	bool bh_draining = pool->flags & POOL_BH_DRAINING;
3146 #ifdef CONFIG_LOCKDEP
3147 	/*
3148 	 * It is permissible to free the struct work_struct from
3149 	 * inside the function that is called from it, this we need to
3150 	 * take into account for lockdep too.  To avoid bogus "held
3151 	 * lock freed" warnings as well as problems when looking into
3152 	 * work->lockdep_map, make a copy and use that here.
3153 	 */
3154 	struct lockdep_map lockdep_map;
3155 
3156 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
3157 #endif
3158 	/* ensure we're on the correct CPU */
3159 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
3160 		     raw_smp_processor_id() != pool->cpu);
3161 
3162 	/* claim and dequeue */
3163 	debug_work_deactivate(work);
3164 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
3165 	worker->current_work = work;
3166 	worker->current_func = work->func;
3167 	worker->current_pwq = pwq;
3168 	if (worker->task)
3169 		worker->current_at = worker->task->se.sum_exec_runtime;
3170 	work_data = *work_data_bits(work);
3171 	worker->current_color = get_work_color(work_data);
3172 
3173 	/*
3174 	 * Record wq name for cmdline and debug reporting, may get
3175 	 * overridden through set_worker_desc().
3176 	 */
3177 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
3178 
3179 	list_del_init(&work->entry);
3180 
3181 	/*
3182 	 * CPU intensive works don't participate in concurrency management.
3183 	 * They're the scheduler's responsibility.  This takes @worker out
3184 	 * of concurrency management and the next code block will chain
3185 	 * execution of the pending work items.
3186 	 */
3187 	if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
3188 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
3189 
3190 	/*
3191 	 * Kick @pool if necessary. It's always noop for per-cpu worker pools
3192 	 * since nr_running would always be >= 1 at this point. This is used to
3193 	 * chain execution of the pending work items for WORKER_NOT_RUNNING
3194 	 * workers such as the UNBOUND and CPU_INTENSIVE ones.
3195 	 */
3196 	kick_pool(pool);
3197 
3198 	/*
3199 	 * Record the last pool and clear PENDING which should be the last
3200 	 * update to @work.  Also, do this inside @pool->lock so that
3201 	 * PENDING and queued state changes happen together while IRQ is
3202 	 * disabled.
3203 	 */
3204 	set_work_pool_and_clear_pending(work, pool->id, pool_offq_flags(pool));
3205 
3206 	pwq->stats[PWQ_STAT_STARTED]++;
3207 	raw_spin_unlock_irq(&pool->lock);
3208 
3209 	rcu_start_depth = rcu_preempt_depth();
3210 	lockdep_start_depth = lockdep_depth(current);
3211 	/* see drain_dead_softirq_workfn() */
3212 	if (!bh_draining)
3213 		lock_map_acquire(pwq->wq->lockdep_map);
3214 	lock_map_acquire(&lockdep_map);
3215 	/*
3216 	 * Strictly speaking we should mark the invariant state without holding
3217 	 * any locks, that is, before these two lock_map_acquire()'s.
3218 	 *
3219 	 * However, that would result in:
3220 	 *
3221 	 *   A(W1)
3222 	 *   WFC(C)
3223 	 *		A(W1)
3224 	 *		C(C)
3225 	 *
3226 	 * Which would create W1->C->W1 dependencies, even though there is no
3227 	 * actual deadlock possible. There are two solutions, using a
3228 	 * read-recursive acquire on the work(queue) 'locks', but this will then
3229 	 * hit the lockdep limitation on recursive locks, or simply discard
3230 	 * these locks.
3231 	 *
3232 	 * AFAICT there is no possible deadlock scenario between the
3233 	 * flush_work() and complete() primitives (except for single-threaded
3234 	 * workqueues), so hiding them isn't a problem.
3235 	 */
3236 	lockdep_invariant_state(true);
3237 	trace_workqueue_execute_start(work);
3238 	worker->current_func(work);
3239 	/*
3240 	 * While we must be careful to not use "work" after this, the trace
3241 	 * point will only record its address.
3242 	 */
3243 	trace_workqueue_execute_end(work, worker->current_func);
3244 
3245 	lock_map_release(&lockdep_map);
3246 	if (!bh_draining)
3247 		lock_map_release(pwq->wq->lockdep_map);
3248 
3249 	if (unlikely((worker->task && in_atomic()) ||
3250 		     lockdep_depth(current) != lockdep_start_depth ||
3251 		     rcu_preempt_depth() != rcu_start_depth)) {
3252 		pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n"
3253 		       "     preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n",
3254 		       current->comm, task_pid_nr(current), preempt_count(),
3255 		       lockdep_start_depth, lockdep_depth(current),
3256 		       rcu_start_depth, rcu_preempt_depth(),
3257 		       worker->current_func);
3258 		debug_show_held_locks(current);
3259 		dump_stack();
3260 	}
3261 
3262 	/*
3263 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
3264 	 * kernels, where a requeueing work item waiting for something to
3265 	 * happen could deadlock with stop_machine as such work item could
3266 	 * indefinitely requeue itself while all other CPUs are trapped in
3267 	 * stop_machine. At the same time, report a quiescent RCU state so
3268 	 * the same condition doesn't freeze RCU.
3269 	 */
3270 	if (worker->task)
3271 		cond_resched();
3272 
3273 	raw_spin_lock_irq(&pool->lock);
3274 
3275 	pwq->stats[PWQ_STAT_COMPLETED]++;
3276 
3277 	/*
3278 	 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3279 	 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3280 	 * wq_cpu_intensive_thresh_us. Clear it.
3281 	 */
3282 	worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
3283 
3284 	/* tag the worker for identification in schedule() */
3285 	worker->last_func = worker->current_func;
3286 
3287 	/* we're done with it, release */
3288 	hash_del(&worker->hentry);
3289 	worker->current_work = NULL;
3290 	worker->current_func = NULL;
3291 	worker->current_pwq = NULL;
3292 	worker->current_color = INT_MAX;
3293 
3294 	/* must be the last step, see the function comment */
3295 	pwq_dec_nr_in_flight(pwq, work_data);
3296 }
3297 
3298 /**
3299  * process_scheduled_works - process scheduled works
3300  * @worker: self
3301  *
3302  * Process all scheduled works.  Please note that the scheduled list
3303  * may change while processing a work, so this function repeatedly
3304  * fetches a work from the top and executes it.
3305  *
3306  * CONTEXT:
3307  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3308  * multiple times.
3309  */
process_scheduled_works(struct worker * worker)3310 static void process_scheduled_works(struct worker *worker)
3311 {
3312 	struct work_struct *work;
3313 	bool first = true;
3314 
3315 	while ((work = list_first_entry_or_null(&worker->scheduled,
3316 						struct work_struct, entry))) {
3317 		if (first) {
3318 			worker->pool->watchdog_ts = jiffies;
3319 			first = false;
3320 		}
3321 		process_one_work(worker, work);
3322 	}
3323 }
3324 
set_pf_worker(bool val)3325 static void set_pf_worker(bool val)
3326 {
3327 	mutex_lock(&wq_pool_attach_mutex);
3328 	if (val)
3329 		current->flags |= PF_WQ_WORKER;
3330 	else
3331 		current->flags &= ~PF_WQ_WORKER;
3332 	mutex_unlock(&wq_pool_attach_mutex);
3333 }
3334 
3335 /**
3336  * worker_thread - the worker thread function
3337  * @__worker: self
3338  *
3339  * The worker thread function.  All workers belong to a worker_pool -
3340  * either a per-cpu one or dynamic unbound one.  These workers process all
3341  * work items regardless of their specific target workqueue.  The only
3342  * exception is work items which belong to workqueues with a rescuer which
3343  * will be explained in rescuer_thread().
3344  *
3345  * Return: 0
3346  */
worker_thread(void * __worker)3347 static int worker_thread(void *__worker)
3348 {
3349 	struct worker *worker = __worker;
3350 	struct worker_pool *pool = worker->pool;
3351 
3352 	/* tell the scheduler that this is a workqueue worker */
3353 	set_pf_worker(true);
3354 woke_up:
3355 	raw_spin_lock_irq(&pool->lock);
3356 
3357 	/* am I supposed to die? */
3358 	if (unlikely(worker->flags & WORKER_DIE)) {
3359 		raw_spin_unlock_irq(&pool->lock);
3360 		set_pf_worker(false);
3361 		/*
3362 		 * The worker is dead and PF_WQ_WORKER is cleared, worker->pool
3363 		 * shouldn't be accessed, reset it to NULL in case otherwise.
3364 		 */
3365 		worker->pool = NULL;
3366 		ida_free(&pool->worker_ida, worker->id);
3367 		return 0;
3368 	}
3369 
3370 	worker_leave_idle(worker);
3371 recheck:
3372 	/* no more worker necessary? */
3373 	if (!need_more_worker(pool))
3374 		goto sleep;
3375 
3376 	/* do we need to manage? */
3377 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
3378 		goto recheck;
3379 
3380 	/*
3381 	 * ->scheduled list can only be filled while a worker is
3382 	 * preparing to process a work or actually processing it.
3383 	 * Make sure nobody diddled with it while I was sleeping.
3384 	 */
3385 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3386 
3387 	/*
3388 	 * Finish PREP stage.  We're guaranteed to have at least one idle
3389 	 * worker or that someone else has already assumed the manager
3390 	 * role.  This is where @worker starts participating in concurrency
3391 	 * management if applicable and concurrency management is restored
3392 	 * after being rebound.  See rebind_workers() for details.
3393 	 */
3394 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3395 
3396 	do {
3397 		struct work_struct *work =
3398 			list_first_entry(&pool->worklist,
3399 					 struct work_struct, entry);
3400 
3401 		if (assign_work(work, worker, NULL))
3402 			process_scheduled_works(worker);
3403 	} while (keep_working(pool));
3404 
3405 	worker_set_flags(worker, WORKER_PREP);
3406 sleep:
3407 	/*
3408 	 * pool->lock is held and there's no work to process and no need to
3409 	 * manage, sleep.  Workers are woken up only while holding
3410 	 * pool->lock or from local cpu, so setting the current state
3411 	 * before releasing pool->lock is enough to prevent losing any
3412 	 * event.
3413 	 */
3414 	worker_enter_idle(worker);
3415 	__set_current_state(TASK_IDLE);
3416 	raw_spin_unlock_irq(&pool->lock);
3417 	schedule();
3418 	goto woke_up;
3419 }
3420 
3421 /**
3422  * rescuer_thread - the rescuer thread function
3423  * @__rescuer: self
3424  *
3425  * Workqueue rescuer thread function.  There's one rescuer for each
3426  * workqueue which has WQ_MEM_RECLAIM set.
3427  *
3428  * Regular work processing on a pool may block trying to create a new
3429  * worker which uses GFP_KERNEL allocation which has slight chance of
3430  * developing into deadlock if some works currently on the same queue
3431  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
3432  * the problem rescuer solves.
3433  *
3434  * When such condition is possible, the pool summons rescuers of all
3435  * workqueues which have works queued on the pool and let them process
3436  * those works so that forward progress can be guaranteed.
3437  *
3438  * This should happen rarely.
3439  *
3440  * Return: 0
3441  */
rescuer_thread(void * __rescuer)3442 static int rescuer_thread(void *__rescuer)
3443 {
3444 	struct worker *rescuer = __rescuer;
3445 	struct workqueue_struct *wq = rescuer->rescue_wq;
3446 	bool should_stop;
3447 
3448 	set_user_nice(current, RESCUER_NICE_LEVEL);
3449 
3450 	/*
3451 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
3452 	 * doesn't participate in concurrency management.
3453 	 */
3454 	set_pf_worker(true);
3455 repeat:
3456 	set_current_state(TASK_IDLE);
3457 
3458 	/*
3459 	 * By the time the rescuer is requested to stop, the workqueue
3460 	 * shouldn't have any work pending, but @wq->maydays may still have
3461 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
3462 	 * all the work items before the rescuer got to them.  Go through
3463 	 * @wq->maydays processing before acting on should_stop so that the
3464 	 * list is always empty on exit.
3465 	 */
3466 	should_stop = kthread_should_stop();
3467 
3468 	/* see whether any pwq is asking for help */
3469 	raw_spin_lock_irq(&wq_mayday_lock);
3470 
3471 	while (!list_empty(&wq->maydays)) {
3472 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3473 					struct pool_workqueue, mayday_node);
3474 		struct worker_pool *pool = pwq->pool;
3475 		struct work_struct *work, *n;
3476 
3477 		__set_current_state(TASK_RUNNING);
3478 		list_del_init(&pwq->mayday_node);
3479 
3480 		raw_spin_unlock_irq(&wq_mayday_lock);
3481 
3482 		worker_attach_to_pool(rescuer, pool);
3483 
3484 		raw_spin_lock_irq(&pool->lock);
3485 
3486 		/*
3487 		 * Slurp in all works issued via this workqueue and
3488 		 * process'em.
3489 		 */
3490 		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
3491 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
3492 			if (get_work_pwq(work) == pwq &&
3493 			    assign_work(work, rescuer, &n))
3494 				pwq->stats[PWQ_STAT_RESCUED]++;
3495 		}
3496 
3497 		if (!list_empty(&rescuer->scheduled)) {
3498 			process_scheduled_works(rescuer);
3499 
3500 			/*
3501 			 * The above execution of rescued work items could
3502 			 * have created more to rescue through
3503 			 * pwq_activate_first_inactive() or chained
3504 			 * queueing.  Let's put @pwq back on mayday list so
3505 			 * that such back-to-back work items, which may be
3506 			 * being used to relieve memory pressure, don't
3507 			 * incur MAYDAY_INTERVAL delay inbetween.
3508 			 */
3509 			if (pwq->nr_active && need_to_create_worker(pool)) {
3510 				raw_spin_lock(&wq_mayday_lock);
3511 				/*
3512 				 * Queue iff we aren't racing destruction
3513 				 * and somebody else hasn't queued it already.
3514 				 */
3515 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
3516 					get_pwq(pwq);
3517 					list_add_tail(&pwq->mayday_node, &wq->maydays);
3518 				}
3519 				raw_spin_unlock(&wq_mayday_lock);
3520 			}
3521 		}
3522 
3523 		/*
3524 		 * Leave this pool. Notify regular workers; otherwise, we end up
3525 		 * with 0 concurrency and stalling the execution.
3526 		 */
3527 		kick_pool(pool);
3528 
3529 		raw_spin_unlock_irq(&pool->lock);
3530 
3531 		worker_detach_from_pool(rescuer);
3532 
3533 		/*
3534 		 * Put the reference grabbed by send_mayday().  @pool might
3535 		 * go away any time after it.
3536 		 */
3537 		put_pwq_unlocked(pwq);
3538 
3539 		raw_spin_lock_irq(&wq_mayday_lock);
3540 	}
3541 
3542 	raw_spin_unlock_irq(&wq_mayday_lock);
3543 
3544 	if (should_stop) {
3545 		__set_current_state(TASK_RUNNING);
3546 		set_pf_worker(false);
3547 		return 0;
3548 	}
3549 
3550 	/* rescuers should never participate in concurrency management */
3551 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
3552 	schedule();
3553 	goto repeat;
3554 }
3555 
bh_worker(struct worker * worker)3556 static void bh_worker(struct worker *worker)
3557 {
3558 	struct worker_pool *pool = worker->pool;
3559 	int nr_restarts = BH_WORKER_RESTARTS;
3560 	unsigned long end = jiffies + BH_WORKER_JIFFIES;
3561 
3562 	raw_spin_lock_irq(&pool->lock);
3563 	worker_leave_idle(worker);
3564 
3565 	/*
3566 	 * This function follows the structure of worker_thread(). See there for
3567 	 * explanations on each step.
3568 	 */
3569 	if (!need_more_worker(pool))
3570 		goto done;
3571 
3572 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3573 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3574 
3575 	do {
3576 		struct work_struct *work =
3577 			list_first_entry(&pool->worklist,
3578 					 struct work_struct, entry);
3579 
3580 		if (assign_work(work, worker, NULL))
3581 			process_scheduled_works(worker);
3582 	} while (keep_working(pool) &&
3583 		 --nr_restarts && time_before(jiffies, end));
3584 
3585 	worker_set_flags(worker, WORKER_PREP);
3586 done:
3587 	worker_enter_idle(worker);
3588 	kick_pool(pool);
3589 	raw_spin_unlock_irq(&pool->lock);
3590 }
3591 
3592 /*
3593  * TODO: Convert all tasklet users to workqueue and use softirq directly.
3594  *
3595  * This is currently called from tasklet[_hi]action() and thus is also called
3596  * whenever there are tasklets to run. Let's do an early exit if there's nothing
3597  * queued. Once conversion from tasklet is complete, the need_more_worker() test
3598  * can be dropped.
3599  *
3600  * After full conversion, we'll add worker->softirq_action, directly use the
3601  * softirq action and obtain the worker pointer from the softirq_action pointer.
3602  */
workqueue_softirq_action(bool highpri)3603 void workqueue_softirq_action(bool highpri)
3604 {
3605 	struct worker_pool *pool =
3606 		&per_cpu(bh_worker_pools, smp_processor_id())[highpri];
3607 	if (need_more_worker(pool))
3608 		bh_worker(list_first_entry(&pool->workers, struct worker, node));
3609 }
3610 
3611 struct wq_drain_dead_softirq_work {
3612 	struct work_struct	work;
3613 	struct worker_pool	*pool;
3614 	struct completion	done;
3615 };
3616 
drain_dead_softirq_workfn(struct work_struct * work)3617 static void drain_dead_softirq_workfn(struct work_struct *work)
3618 {
3619 	struct wq_drain_dead_softirq_work *dead_work =
3620 		container_of(work, struct wq_drain_dead_softirq_work, work);
3621 	struct worker_pool *pool = dead_work->pool;
3622 	bool repeat;
3623 
3624 	/*
3625 	 * @pool's CPU is dead and we want to execute its still pending work
3626 	 * items from this BH work item which is running on a different CPU. As
3627 	 * its CPU is dead, @pool can't be kicked and, as work execution path
3628 	 * will be nested, a lockdep annotation needs to be suppressed. Mark
3629 	 * @pool with %POOL_BH_DRAINING for the special treatments.
3630 	 */
3631 	raw_spin_lock_irq(&pool->lock);
3632 	pool->flags |= POOL_BH_DRAINING;
3633 	raw_spin_unlock_irq(&pool->lock);
3634 
3635 	bh_worker(list_first_entry(&pool->workers, struct worker, node));
3636 
3637 	raw_spin_lock_irq(&pool->lock);
3638 	pool->flags &= ~POOL_BH_DRAINING;
3639 	repeat = need_more_worker(pool);
3640 	raw_spin_unlock_irq(&pool->lock);
3641 
3642 	/*
3643 	 * bh_worker() might hit consecutive execution limit and bail. If there
3644 	 * still are pending work items, reschedule self and return so that we
3645 	 * don't hog this CPU's BH.
3646 	 */
3647 	if (repeat) {
3648 		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3649 			queue_work(system_bh_highpri_wq, work);
3650 		else
3651 			queue_work(system_bh_wq, work);
3652 	} else {
3653 		complete(&dead_work->done);
3654 	}
3655 }
3656 
3657 /*
3658  * @cpu is dead. Drain the remaining BH work items on the current CPU. It's
3659  * possible to allocate dead_work per CPU and avoid flushing. However, then we
3660  * have to worry about draining overlapping with CPU coming back online or
3661  * nesting (one CPU's dead_work queued on another CPU which is also dead and so
3662  * on). Let's keep it simple and drain them synchronously. These are BH work
3663  * items which shouldn't be requeued on the same pool. Shouldn't take long.
3664  */
workqueue_softirq_dead(unsigned int cpu)3665 void workqueue_softirq_dead(unsigned int cpu)
3666 {
3667 	int i;
3668 
3669 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
3670 		struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i];
3671 		struct wq_drain_dead_softirq_work dead_work;
3672 
3673 		if (!need_more_worker(pool))
3674 			continue;
3675 
3676 		INIT_WORK_ONSTACK(&dead_work.work, drain_dead_softirq_workfn);
3677 		dead_work.pool = pool;
3678 		init_completion(&dead_work.done);
3679 
3680 		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3681 			queue_work(system_bh_highpri_wq, &dead_work.work);
3682 		else
3683 			queue_work(system_bh_wq, &dead_work.work);
3684 
3685 		wait_for_completion(&dead_work.done);
3686 		destroy_work_on_stack(&dead_work.work);
3687 	}
3688 }
3689 
3690 /**
3691  * check_flush_dependency - check for flush dependency sanity
3692  * @target_wq: workqueue being flushed
3693  * @target_work: work item being flushed (NULL for workqueue flushes)
3694  * @from_cancel: are we called from the work cancel path
3695  *
3696  * %current is trying to flush the whole @target_wq or @target_work on it.
3697  * If this is not the cancel path (which implies work being flushed is either
3698  * already running, or will not be at all), check if @target_wq doesn't have
3699  * %WQ_MEM_RECLAIM and verify that %current is not reclaiming memory or running
3700  * on a workqueue which doesn't have %WQ_MEM_RECLAIM as that can break forward-
3701  * progress guarantee leading to a deadlock.
3702  */
check_flush_dependency(struct workqueue_struct * target_wq,struct work_struct * target_work,bool from_cancel)3703 static void check_flush_dependency(struct workqueue_struct *target_wq,
3704 				   struct work_struct *target_work,
3705 				   bool from_cancel)
3706 {
3707 	work_func_t target_func;
3708 	struct worker *worker;
3709 
3710 	if (from_cancel || target_wq->flags & WQ_MEM_RECLAIM)
3711 		return;
3712 
3713 	worker = current_wq_worker();
3714 	target_func = target_work ? target_work->func : NULL;
3715 
3716 	WARN_ONCE(current->flags & PF_MEMALLOC,
3717 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
3718 		  current->pid, current->comm, target_wq->name, target_func);
3719 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3720 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
3721 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
3722 		  worker->current_pwq->wq->name, worker->current_func,
3723 		  target_wq->name, target_func);
3724 }
3725 
3726 struct wq_barrier {
3727 	struct work_struct	work;
3728 	struct completion	done;
3729 	struct task_struct	*task;	/* purely informational */
3730 };
3731 
wq_barrier_func(struct work_struct * work)3732 static void wq_barrier_func(struct work_struct *work)
3733 {
3734 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3735 	complete(&barr->done);
3736 }
3737 
3738 /**
3739  * insert_wq_barrier - insert a barrier work
3740  * @pwq: pwq to insert barrier into
3741  * @barr: wq_barrier to insert
3742  * @target: target work to attach @barr to
3743  * @worker: worker currently executing @target, NULL if @target is not executing
3744  *
3745  * @barr is linked to @target such that @barr is completed only after
3746  * @target finishes execution.  Please note that the ordering
3747  * guarantee is observed only with respect to @target and on the local
3748  * cpu.
3749  *
3750  * Currently, a queued barrier can't be canceled.  This is because
3751  * try_to_grab_pending() can't determine whether the work to be
3752  * grabbed is at the head of the queue and thus can't clear LINKED
3753  * flag of the previous work while there must be a valid next work
3754  * after a work with LINKED flag set.
3755  *
3756  * Note that when @worker is non-NULL, @target may be modified
3757  * underneath us, so we can't reliably determine pwq from @target.
3758  *
3759  * CONTEXT:
3760  * raw_spin_lock_irq(pool->lock).
3761  */
insert_wq_barrier(struct pool_workqueue * pwq,struct wq_barrier * barr,struct work_struct * target,struct worker * worker)3762 static void insert_wq_barrier(struct pool_workqueue *pwq,
3763 			      struct wq_barrier *barr,
3764 			      struct work_struct *target, struct worker *worker)
3765 {
3766 	static __maybe_unused struct lock_class_key bh_key, thr_key;
3767 	unsigned int work_flags = 0;
3768 	unsigned int work_color;
3769 	struct list_head *head;
3770 
3771 	/*
3772 	 * debugobject calls are safe here even with pool->lock locked
3773 	 * as we know for sure that this will not trigger any of the
3774 	 * checks and call back into the fixup functions where we
3775 	 * might deadlock.
3776 	 *
3777 	 * BH and threaded workqueues need separate lockdep keys to avoid
3778 	 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W}
3779 	 * usage".
3780 	 */
3781 	INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func,
3782 			      (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key);
3783 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3784 
3785 	init_completion_map(&barr->done, &target->lockdep_map);
3786 
3787 	barr->task = current;
3788 
3789 	/* The barrier work item does not participate in nr_active. */
3790 	work_flags |= WORK_STRUCT_INACTIVE;
3791 
3792 	/*
3793 	 * If @target is currently being executed, schedule the
3794 	 * barrier to the worker; otherwise, put it after @target.
3795 	 */
3796 	if (worker) {
3797 		head = worker->scheduled.next;
3798 		work_color = worker->current_color;
3799 	} else {
3800 		unsigned long *bits = work_data_bits(target);
3801 
3802 		head = target->entry.next;
3803 		/* there can already be other linked works, inherit and set */
3804 		work_flags |= *bits & WORK_STRUCT_LINKED;
3805 		work_color = get_work_color(*bits);
3806 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
3807 	}
3808 
3809 	pwq->nr_in_flight[work_color]++;
3810 	work_flags |= work_color_to_flags(work_color);
3811 
3812 	insert_work(pwq, &barr->work, head, work_flags);
3813 }
3814 
3815 /**
3816  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3817  * @wq: workqueue being flushed
3818  * @flush_color: new flush color, < 0 for no-op
3819  * @work_color: new work color, < 0 for no-op
3820  *
3821  * Prepare pwqs for workqueue flushing.
3822  *
3823  * If @flush_color is non-negative, flush_color on all pwqs should be
3824  * -1.  If no pwq has in-flight commands at the specified color, all
3825  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
3826  * has in flight commands, its pwq->flush_color is set to
3827  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3828  * wakeup logic is armed and %true is returned.
3829  *
3830  * The caller should have initialized @wq->first_flusher prior to
3831  * calling this function with non-negative @flush_color.  If
3832  * @flush_color is negative, no flush color update is done and %false
3833  * is returned.
3834  *
3835  * If @work_color is non-negative, all pwqs should have the same
3836  * work_color which is previous to @work_color and all will be
3837  * advanced to @work_color.
3838  *
3839  * CONTEXT:
3840  * mutex_lock(wq->mutex).
3841  *
3842  * Return:
3843  * %true if @flush_color >= 0 and there's something to flush.  %false
3844  * otherwise.
3845  */
flush_workqueue_prep_pwqs(struct workqueue_struct * wq,int flush_color,int work_color)3846 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3847 				      int flush_color, int work_color)
3848 {
3849 	bool wait = false;
3850 	struct pool_workqueue *pwq;
3851 	struct worker_pool *current_pool = NULL;
3852 
3853 	if (flush_color >= 0) {
3854 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3855 		atomic_set(&wq->nr_pwqs_to_flush, 1);
3856 	}
3857 
3858 	/*
3859 	 * For unbound workqueue, pwqs will map to only a few pools.
3860 	 * Most of the time, pwqs within the same pool will be linked
3861 	 * sequentially to wq->pwqs by cpu index. So in the majority
3862 	 * of pwq iters, the pool is the same, only doing lock/unlock
3863 	 * if the pool has changed. This can largely reduce expensive
3864 	 * lock operations.
3865 	 */
3866 	for_each_pwq(pwq, wq) {
3867 		if (current_pool != pwq->pool) {
3868 			if (likely(current_pool))
3869 				raw_spin_unlock_irq(&current_pool->lock);
3870 			current_pool = pwq->pool;
3871 			raw_spin_lock_irq(&current_pool->lock);
3872 		}
3873 
3874 		if (flush_color >= 0) {
3875 			WARN_ON_ONCE(pwq->flush_color != -1);
3876 
3877 			if (pwq->nr_in_flight[flush_color]) {
3878 				pwq->flush_color = flush_color;
3879 				atomic_inc(&wq->nr_pwqs_to_flush);
3880 				wait = true;
3881 			}
3882 		}
3883 
3884 		if (work_color >= 0) {
3885 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3886 			pwq->work_color = work_color;
3887 		}
3888 
3889 	}
3890 
3891 	if (current_pool)
3892 		raw_spin_unlock_irq(&current_pool->lock);
3893 
3894 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3895 		complete(&wq->first_flusher->done);
3896 
3897 	return wait;
3898 }
3899 
touch_wq_lockdep_map(struct workqueue_struct * wq)3900 static void touch_wq_lockdep_map(struct workqueue_struct *wq)
3901 {
3902 #ifdef CONFIG_LOCKDEP
3903 	if (unlikely(!wq->lockdep_map))
3904 		return;
3905 
3906 	if (wq->flags & WQ_BH)
3907 		local_bh_disable();
3908 
3909 	lock_map_acquire(wq->lockdep_map);
3910 	lock_map_release(wq->lockdep_map);
3911 
3912 	if (wq->flags & WQ_BH)
3913 		local_bh_enable();
3914 #endif
3915 }
3916 
touch_work_lockdep_map(struct work_struct * work,struct workqueue_struct * wq)3917 static void touch_work_lockdep_map(struct work_struct *work,
3918 				   struct workqueue_struct *wq)
3919 {
3920 #ifdef CONFIG_LOCKDEP
3921 	if (wq->flags & WQ_BH)
3922 		local_bh_disable();
3923 
3924 	lock_map_acquire(&work->lockdep_map);
3925 	lock_map_release(&work->lockdep_map);
3926 
3927 	if (wq->flags & WQ_BH)
3928 		local_bh_enable();
3929 #endif
3930 }
3931 
3932 /**
3933  * __flush_workqueue - ensure that any scheduled work has run to completion.
3934  * @wq: workqueue to flush
3935  *
3936  * This function sleeps until all work items which were queued on entry
3937  * have finished execution, but it is not livelocked by new incoming ones.
3938  */
__flush_workqueue(struct workqueue_struct * wq)3939 void __flush_workqueue(struct workqueue_struct *wq)
3940 {
3941 	struct wq_flusher this_flusher = {
3942 		.list = LIST_HEAD_INIT(this_flusher.list),
3943 		.flush_color = -1,
3944 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, (*wq->lockdep_map)),
3945 	};
3946 	int next_color;
3947 
3948 	if (WARN_ON(!wq_online))
3949 		return;
3950 
3951 	touch_wq_lockdep_map(wq);
3952 
3953 	mutex_lock(&wq->mutex);
3954 
3955 	/*
3956 	 * Start-to-wait phase
3957 	 */
3958 	next_color = work_next_color(wq->work_color);
3959 
3960 	if (next_color != wq->flush_color) {
3961 		/*
3962 		 * Color space is not full.  The current work_color
3963 		 * becomes our flush_color and work_color is advanced
3964 		 * by one.
3965 		 */
3966 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3967 		this_flusher.flush_color = wq->work_color;
3968 		wq->work_color = next_color;
3969 
3970 		if (!wq->first_flusher) {
3971 			/* no flush in progress, become the first flusher */
3972 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3973 
3974 			wq->first_flusher = &this_flusher;
3975 
3976 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3977 						       wq->work_color)) {
3978 				/* nothing to flush, done */
3979 				wq->flush_color = next_color;
3980 				wq->first_flusher = NULL;
3981 				goto out_unlock;
3982 			}
3983 		} else {
3984 			/* wait in queue */
3985 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3986 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
3987 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3988 		}
3989 	} else {
3990 		/*
3991 		 * Oops, color space is full, wait on overflow queue.
3992 		 * The next flush completion will assign us
3993 		 * flush_color and transfer to flusher_queue.
3994 		 */
3995 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3996 	}
3997 
3998 	check_flush_dependency(wq, NULL, false);
3999 
4000 	mutex_unlock(&wq->mutex);
4001 
4002 	wait_for_completion(&this_flusher.done);
4003 
4004 	/*
4005 	 * Wake-up-and-cascade phase
4006 	 *
4007 	 * First flushers are responsible for cascading flushes and
4008 	 * handling overflow.  Non-first flushers can simply return.
4009 	 */
4010 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
4011 		return;
4012 
4013 	mutex_lock(&wq->mutex);
4014 
4015 	/* we might have raced, check again with mutex held */
4016 	if (wq->first_flusher != &this_flusher)
4017 		goto out_unlock;
4018 
4019 	WRITE_ONCE(wq->first_flusher, NULL);
4020 
4021 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
4022 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
4023 
4024 	while (true) {
4025 		struct wq_flusher *next, *tmp;
4026 
4027 		/* complete all the flushers sharing the current flush color */
4028 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
4029 			if (next->flush_color != wq->flush_color)
4030 				break;
4031 			list_del_init(&next->list);
4032 			complete(&next->done);
4033 		}
4034 
4035 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
4036 			     wq->flush_color != work_next_color(wq->work_color));
4037 
4038 		/* this flush_color is finished, advance by one */
4039 		wq->flush_color = work_next_color(wq->flush_color);
4040 
4041 		/* one color has been freed, handle overflow queue */
4042 		if (!list_empty(&wq->flusher_overflow)) {
4043 			/*
4044 			 * Assign the same color to all overflowed
4045 			 * flushers, advance work_color and append to
4046 			 * flusher_queue.  This is the start-to-wait
4047 			 * phase for these overflowed flushers.
4048 			 */
4049 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
4050 				tmp->flush_color = wq->work_color;
4051 
4052 			wq->work_color = work_next_color(wq->work_color);
4053 
4054 			list_splice_tail_init(&wq->flusher_overflow,
4055 					      &wq->flusher_queue);
4056 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
4057 		}
4058 
4059 		if (list_empty(&wq->flusher_queue)) {
4060 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
4061 			break;
4062 		}
4063 
4064 		/*
4065 		 * Need to flush more colors.  Make the next flusher
4066 		 * the new first flusher and arm pwqs.
4067 		 */
4068 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
4069 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
4070 
4071 		list_del_init(&next->list);
4072 		wq->first_flusher = next;
4073 
4074 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
4075 			break;
4076 
4077 		/*
4078 		 * Meh... this color is already done, clear first
4079 		 * flusher and repeat cascading.
4080 		 */
4081 		wq->first_flusher = NULL;
4082 	}
4083 
4084 out_unlock:
4085 	mutex_unlock(&wq->mutex);
4086 }
4087 EXPORT_SYMBOL(__flush_workqueue);
4088 
4089 /**
4090  * drain_workqueue - drain a workqueue
4091  * @wq: workqueue to drain
4092  *
4093  * Wait until the workqueue becomes empty.  While draining is in progress,
4094  * only chain queueing is allowed.  IOW, only currently pending or running
4095  * work items on @wq can queue further work items on it.  @wq is flushed
4096  * repeatedly until it becomes empty.  The number of flushing is determined
4097  * by the depth of chaining and should be relatively short.  Whine if it
4098  * takes too long.
4099  */
drain_workqueue(struct workqueue_struct * wq)4100 void drain_workqueue(struct workqueue_struct *wq)
4101 {
4102 	unsigned int flush_cnt = 0;
4103 	struct pool_workqueue *pwq;
4104 
4105 	/*
4106 	 * __queue_work() needs to test whether there are drainers, is much
4107 	 * hotter than drain_workqueue() and already looks at @wq->flags.
4108 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
4109 	 */
4110 	mutex_lock(&wq->mutex);
4111 	if (!wq->nr_drainers++)
4112 		wq->flags |= __WQ_DRAINING;
4113 	mutex_unlock(&wq->mutex);
4114 reflush:
4115 	__flush_workqueue(wq);
4116 
4117 	mutex_lock(&wq->mutex);
4118 
4119 	for_each_pwq(pwq, wq) {
4120 		bool drained;
4121 
4122 		raw_spin_lock_irq(&pwq->pool->lock);
4123 		drained = pwq_is_empty(pwq);
4124 		raw_spin_unlock_irq(&pwq->pool->lock);
4125 
4126 		if (drained)
4127 			continue;
4128 
4129 		if (++flush_cnt == 10 ||
4130 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
4131 			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
4132 				wq->name, __func__, flush_cnt);
4133 
4134 		mutex_unlock(&wq->mutex);
4135 		goto reflush;
4136 	}
4137 
4138 	if (!--wq->nr_drainers)
4139 		wq->flags &= ~__WQ_DRAINING;
4140 	mutex_unlock(&wq->mutex);
4141 }
4142 EXPORT_SYMBOL_GPL(drain_workqueue);
4143 
start_flush_work(struct work_struct * work,struct wq_barrier * barr,bool from_cancel)4144 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
4145 			     bool from_cancel)
4146 {
4147 	struct worker *worker = NULL;
4148 	struct worker_pool *pool;
4149 	struct pool_workqueue *pwq;
4150 	struct workqueue_struct *wq;
4151 
4152 	rcu_read_lock();
4153 	pool = get_work_pool(work);
4154 	if (!pool) {
4155 		rcu_read_unlock();
4156 		return false;
4157 	}
4158 
4159 	raw_spin_lock_irq(&pool->lock);
4160 	/* see the comment in try_to_grab_pending() with the same code */
4161 	pwq = get_work_pwq(work);
4162 	if (pwq) {
4163 		if (unlikely(pwq->pool != pool))
4164 			goto already_gone;
4165 	} else {
4166 		worker = find_worker_executing_work(pool, work);
4167 		if (!worker)
4168 			goto already_gone;
4169 		pwq = worker->current_pwq;
4170 	}
4171 
4172 	wq = pwq->wq;
4173 	check_flush_dependency(wq, work, from_cancel);
4174 
4175 	insert_wq_barrier(pwq, barr, work, worker);
4176 	raw_spin_unlock_irq(&pool->lock);
4177 
4178 	touch_work_lockdep_map(work, wq);
4179 
4180 	/*
4181 	 * Force a lock recursion deadlock when using flush_work() inside a
4182 	 * single-threaded or rescuer equipped workqueue.
4183 	 *
4184 	 * For single threaded workqueues the deadlock happens when the work
4185 	 * is after the work issuing the flush_work(). For rescuer equipped
4186 	 * workqueues the deadlock happens when the rescuer stalls, blocking
4187 	 * forward progress.
4188 	 */
4189 	if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer))
4190 		touch_wq_lockdep_map(wq);
4191 
4192 	rcu_read_unlock();
4193 	return true;
4194 already_gone:
4195 	raw_spin_unlock_irq(&pool->lock);
4196 	rcu_read_unlock();
4197 	return false;
4198 }
4199 
__flush_work(struct work_struct * work,bool from_cancel)4200 static bool __flush_work(struct work_struct *work, bool from_cancel)
4201 {
4202 	struct wq_barrier barr;
4203 
4204 	if (WARN_ON(!wq_online))
4205 		return false;
4206 
4207 	if (WARN_ON(!work->func))
4208 		return false;
4209 
4210 	if (!start_flush_work(work, &barr, from_cancel))
4211 		return false;
4212 
4213 	/*
4214 	 * start_flush_work() returned %true. If @from_cancel is set, we know
4215 	 * that @work must have been executing during start_flush_work() and
4216 	 * can't currently be queued. Its data must contain OFFQ bits. If @work
4217 	 * was queued on a BH workqueue, we also know that it was running in the
4218 	 * BH context and thus can be busy-waited.
4219 	 */
4220 	if (from_cancel) {
4221 		unsigned long data = *work_data_bits(work);
4222 
4223 		if (!WARN_ON_ONCE(data & WORK_STRUCT_PWQ) &&
4224 		    (data & WORK_OFFQ_BH)) {
4225 			/*
4226 			 * On RT, prevent a live lock when %current preempted
4227 			 * soft interrupt processing or prevents ksoftirqd from
4228 			 * running by keeping flipping BH. If the BH work item
4229 			 * runs on a different CPU then this has no effect other
4230 			 * than doing the BH disable/enable dance for nothing.
4231 			 * This is copied from
4232 			 * kernel/softirq.c::tasklet_unlock_spin_wait().
4233 			 */
4234 			while (!try_wait_for_completion(&barr.done)) {
4235 				if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4236 					local_bh_disable();
4237 					local_bh_enable();
4238 				} else {
4239 					cpu_relax();
4240 				}
4241 			}
4242 			goto out_destroy;
4243 		}
4244 	}
4245 
4246 	wait_for_completion(&barr.done);
4247 
4248 out_destroy:
4249 	destroy_work_on_stack(&barr.work);
4250 	return true;
4251 }
4252 
4253 /**
4254  * flush_work - wait for a work to finish executing the last queueing instance
4255  * @work: the work to flush
4256  *
4257  * Wait until @work has finished execution.  @work is guaranteed to be idle
4258  * on return if it hasn't been requeued since flush started.
4259  *
4260  * Return:
4261  * %true if flush_work() waited for the work to finish execution,
4262  * %false if it was already idle.
4263  */
flush_work(struct work_struct * work)4264 bool flush_work(struct work_struct *work)
4265 {
4266 	might_sleep();
4267 	return __flush_work(work, false);
4268 }
4269 EXPORT_SYMBOL_GPL(flush_work);
4270 
4271 /**
4272  * flush_delayed_work - wait for a dwork to finish executing the last queueing
4273  * @dwork: the delayed work to flush
4274  *
4275  * Delayed timer is cancelled and the pending work is queued for
4276  * immediate execution.  Like flush_work(), this function only
4277  * considers the last queueing instance of @dwork.
4278  *
4279  * Return:
4280  * %true if flush_work() waited for the work to finish execution,
4281  * %false if it was already idle.
4282  */
flush_delayed_work(struct delayed_work * dwork)4283 bool flush_delayed_work(struct delayed_work *dwork)
4284 {
4285 	local_irq_disable();
4286 	if (timer_delete_sync(&dwork->timer))
4287 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
4288 	local_irq_enable();
4289 	return flush_work(&dwork->work);
4290 }
4291 EXPORT_SYMBOL(flush_delayed_work);
4292 
4293 /**
4294  * flush_rcu_work - wait for a rwork to finish executing the last queueing
4295  * @rwork: the rcu work to flush
4296  *
4297  * Return:
4298  * %true if flush_rcu_work() waited for the work to finish execution,
4299  * %false if it was already idle.
4300  */
flush_rcu_work(struct rcu_work * rwork)4301 bool flush_rcu_work(struct rcu_work *rwork)
4302 {
4303 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
4304 		rcu_barrier();
4305 		flush_work(&rwork->work);
4306 		return true;
4307 	} else {
4308 		return flush_work(&rwork->work);
4309 	}
4310 }
4311 EXPORT_SYMBOL(flush_rcu_work);
4312 
work_offqd_disable(struct work_offq_data * offqd)4313 static void work_offqd_disable(struct work_offq_data *offqd)
4314 {
4315 	const unsigned long max = (1lu << WORK_OFFQ_DISABLE_BITS) - 1;
4316 
4317 	if (likely(offqd->disable < max))
4318 		offqd->disable++;
4319 	else
4320 		WARN_ONCE(true, "workqueue: work disable count overflowed\n");
4321 }
4322 
work_offqd_enable(struct work_offq_data * offqd)4323 static void work_offqd_enable(struct work_offq_data *offqd)
4324 {
4325 	if (likely(offqd->disable > 0))
4326 		offqd->disable--;
4327 	else
4328 		WARN_ONCE(true, "workqueue: work disable count underflowed\n");
4329 }
4330 
__cancel_work(struct work_struct * work,u32 cflags)4331 static bool __cancel_work(struct work_struct *work, u32 cflags)
4332 {
4333 	struct work_offq_data offqd;
4334 	unsigned long irq_flags;
4335 	int ret;
4336 
4337 	ret = work_grab_pending(work, cflags, &irq_flags);
4338 
4339 	work_offqd_unpack(&offqd, *work_data_bits(work));
4340 
4341 	if (cflags & WORK_CANCEL_DISABLE)
4342 		work_offqd_disable(&offqd);
4343 
4344 	set_work_pool_and_clear_pending(work, offqd.pool_id,
4345 					work_offqd_pack_flags(&offqd));
4346 	local_irq_restore(irq_flags);
4347 	return ret;
4348 }
4349 
__cancel_work_sync(struct work_struct * work,u32 cflags)4350 static bool __cancel_work_sync(struct work_struct *work, u32 cflags)
4351 {
4352 	bool ret;
4353 
4354 	ret = __cancel_work(work, cflags | WORK_CANCEL_DISABLE);
4355 
4356 	if (*work_data_bits(work) & WORK_OFFQ_BH)
4357 		WARN_ON_ONCE(in_hardirq());
4358 	else
4359 		might_sleep();
4360 
4361 	/*
4362 	 * Skip __flush_work() during early boot when we know that @work isn't
4363 	 * executing. This allows canceling during early boot.
4364 	 */
4365 	if (wq_online)
4366 		__flush_work(work, true);
4367 
4368 	if (!(cflags & WORK_CANCEL_DISABLE))
4369 		enable_work(work);
4370 
4371 	return ret;
4372 }
4373 
4374 /*
4375  * See cancel_delayed_work()
4376  */
cancel_work(struct work_struct * work)4377 bool cancel_work(struct work_struct *work)
4378 {
4379 	return __cancel_work(work, 0);
4380 }
4381 EXPORT_SYMBOL(cancel_work);
4382 
4383 /**
4384  * cancel_work_sync - cancel a work and wait for it to finish
4385  * @work: the work to cancel
4386  *
4387  * Cancel @work and wait for its execution to finish. This function can be used
4388  * even if the work re-queues itself or migrates to another workqueue. On return
4389  * from this function, @work is guaranteed to be not pending or executing on any
4390  * CPU as long as there aren't racing enqueues.
4391  *
4392  * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's.
4393  * Use cancel_delayed_work_sync() instead.
4394  *
4395  * Must be called from a sleepable context if @work was last queued on a non-BH
4396  * workqueue. Can also be called from non-hardirq atomic contexts including BH
4397  * if @work was last queued on a BH workqueue.
4398  *
4399  * Returns %true if @work was pending, %false otherwise.
4400  */
cancel_work_sync(struct work_struct * work)4401 bool cancel_work_sync(struct work_struct *work)
4402 {
4403 	return __cancel_work_sync(work, 0);
4404 }
4405 EXPORT_SYMBOL_GPL(cancel_work_sync);
4406 
4407 /**
4408  * cancel_delayed_work - cancel a delayed work
4409  * @dwork: delayed_work to cancel
4410  *
4411  * Kill off a pending delayed_work.
4412  *
4413  * Return: %true if @dwork was pending and canceled; %false if it wasn't
4414  * pending.
4415  *
4416  * Note:
4417  * The work callback function may still be running on return, unless
4418  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
4419  * use cancel_delayed_work_sync() to wait on it.
4420  *
4421  * This function is safe to call from any context including IRQ handler.
4422  */
cancel_delayed_work(struct delayed_work * dwork)4423 bool cancel_delayed_work(struct delayed_work *dwork)
4424 {
4425 	return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED);
4426 }
4427 EXPORT_SYMBOL(cancel_delayed_work);
4428 
4429 /**
4430  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4431  * @dwork: the delayed work cancel
4432  *
4433  * This is cancel_work_sync() for delayed works.
4434  *
4435  * Return:
4436  * %true if @dwork was pending, %false otherwise.
4437  */
cancel_delayed_work_sync(struct delayed_work * dwork)4438 bool cancel_delayed_work_sync(struct delayed_work *dwork)
4439 {
4440 	return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED);
4441 }
4442 EXPORT_SYMBOL(cancel_delayed_work_sync);
4443 
4444 /**
4445  * disable_work - Disable and cancel a work item
4446  * @work: work item to disable
4447  *
4448  * Disable @work by incrementing its disable count and cancel it if currently
4449  * pending. As long as the disable count is non-zero, any attempt to queue @work
4450  * will fail and return %false. The maximum supported disable depth is 2 to the
4451  * power of %WORK_OFFQ_DISABLE_BITS, currently 65536.
4452  *
4453  * Can be called from any context. Returns %true if @work was pending, %false
4454  * otherwise.
4455  */
disable_work(struct work_struct * work)4456 bool disable_work(struct work_struct *work)
4457 {
4458 	return __cancel_work(work, WORK_CANCEL_DISABLE);
4459 }
4460 EXPORT_SYMBOL_GPL(disable_work);
4461 
4462 /**
4463  * disable_work_sync - Disable, cancel and drain a work item
4464  * @work: work item to disable
4465  *
4466  * Similar to disable_work() but also wait for @work to finish if currently
4467  * executing.
4468  *
4469  * Must be called from a sleepable context if @work was last queued on a non-BH
4470  * workqueue. Can also be called from non-hardirq atomic contexts including BH
4471  * if @work was last queued on a BH workqueue.
4472  *
4473  * Returns %true if @work was pending, %false otherwise.
4474  */
disable_work_sync(struct work_struct * work)4475 bool disable_work_sync(struct work_struct *work)
4476 {
4477 	return __cancel_work_sync(work, WORK_CANCEL_DISABLE);
4478 }
4479 EXPORT_SYMBOL_GPL(disable_work_sync);
4480 
4481 /**
4482  * enable_work - Enable a work item
4483  * @work: work item to enable
4484  *
4485  * Undo disable_work[_sync]() by decrementing @work's disable count. @work can
4486  * only be queued if its disable count is 0.
4487  *
4488  * Can be called from any context. Returns %true if the disable count reached 0.
4489  * Otherwise, %false.
4490  */
enable_work(struct work_struct * work)4491 bool enable_work(struct work_struct *work)
4492 {
4493 	struct work_offq_data offqd;
4494 	unsigned long irq_flags;
4495 
4496 	work_grab_pending(work, 0, &irq_flags);
4497 
4498 	work_offqd_unpack(&offqd, *work_data_bits(work));
4499 	work_offqd_enable(&offqd);
4500 	set_work_pool_and_clear_pending(work, offqd.pool_id,
4501 					work_offqd_pack_flags(&offqd));
4502 	local_irq_restore(irq_flags);
4503 
4504 	return !offqd.disable;
4505 }
4506 EXPORT_SYMBOL_GPL(enable_work);
4507 
4508 /**
4509  * disable_delayed_work - Disable and cancel a delayed work item
4510  * @dwork: delayed work item to disable
4511  *
4512  * disable_work() for delayed work items.
4513  */
disable_delayed_work(struct delayed_work * dwork)4514 bool disable_delayed_work(struct delayed_work *dwork)
4515 {
4516 	return __cancel_work(&dwork->work,
4517 			     WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4518 }
4519 EXPORT_SYMBOL_GPL(disable_delayed_work);
4520 
4521 /**
4522  * disable_delayed_work_sync - Disable, cancel and drain a delayed work item
4523  * @dwork: delayed work item to disable
4524  *
4525  * disable_work_sync() for delayed work items.
4526  */
disable_delayed_work_sync(struct delayed_work * dwork)4527 bool disable_delayed_work_sync(struct delayed_work *dwork)
4528 {
4529 	return __cancel_work_sync(&dwork->work,
4530 				  WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4531 }
4532 EXPORT_SYMBOL_GPL(disable_delayed_work_sync);
4533 
4534 /**
4535  * enable_delayed_work - Enable a delayed work item
4536  * @dwork: delayed work item to enable
4537  *
4538  * enable_work() for delayed work items.
4539  */
enable_delayed_work(struct delayed_work * dwork)4540 bool enable_delayed_work(struct delayed_work *dwork)
4541 {
4542 	return enable_work(&dwork->work);
4543 }
4544 EXPORT_SYMBOL_GPL(enable_delayed_work);
4545 
4546 /**
4547  * schedule_on_each_cpu - execute a function synchronously on each online CPU
4548  * @func: the function to call
4549  *
4550  * schedule_on_each_cpu() executes @func on each online CPU using the
4551  * system workqueue and blocks until all CPUs have completed.
4552  * schedule_on_each_cpu() is very slow.
4553  *
4554  * Return:
4555  * 0 on success, -errno on failure.
4556  */
schedule_on_each_cpu(work_func_t func)4557 int schedule_on_each_cpu(work_func_t func)
4558 {
4559 	int cpu;
4560 	struct work_struct __percpu *works;
4561 
4562 	works = alloc_percpu(struct work_struct);
4563 	if (!works)
4564 		return -ENOMEM;
4565 
4566 	cpus_read_lock();
4567 
4568 	for_each_online_cpu(cpu) {
4569 		struct work_struct *work = per_cpu_ptr(works, cpu);
4570 
4571 		INIT_WORK(work, func);
4572 		schedule_work_on(cpu, work);
4573 	}
4574 
4575 	for_each_online_cpu(cpu)
4576 		flush_work(per_cpu_ptr(works, cpu));
4577 
4578 	cpus_read_unlock();
4579 	free_percpu(works);
4580 	return 0;
4581 }
4582 
4583 /**
4584  * execute_in_process_context - reliably execute the routine with user context
4585  * @fn:		the function to execute
4586  * @ew:		guaranteed storage for the execute work structure (must
4587  *		be available when the work executes)
4588  *
4589  * Executes the function immediately if process context is available,
4590  * otherwise schedules the function for delayed execution.
4591  *
4592  * Return:	0 - function was executed
4593  *		1 - function was scheduled for execution
4594  */
execute_in_process_context(work_func_t fn,struct execute_work * ew)4595 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
4596 {
4597 	if (!in_interrupt()) {
4598 		fn(&ew->work);
4599 		return 0;
4600 	}
4601 
4602 	INIT_WORK(&ew->work, fn);
4603 	schedule_work(&ew->work);
4604 
4605 	return 1;
4606 }
4607 EXPORT_SYMBOL_GPL(execute_in_process_context);
4608 
4609 /**
4610  * free_workqueue_attrs - free a workqueue_attrs
4611  * @attrs: workqueue_attrs to free
4612  *
4613  * Undo alloc_workqueue_attrs().
4614  */
free_workqueue_attrs(struct workqueue_attrs * attrs)4615 void free_workqueue_attrs(struct workqueue_attrs *attrs)
4616 {
4617 	if (attrs) {
4618 		free_cpumask_var(attrs->cpumask);
4619 		free_cpumask_var(attrs->__pod_cpumask);
4620 		kfree(attrs);
4621 	}
4622 }
4623 
4624 /**
4625  * alloc_workqueue_attrs - allocate a workqueue_attrs
4626  *
4627  * Allocate a new workqueue_attrs, initialize with default settings and
4628  * return it.
4629  *
4630  * Return: The allocated new workqueue_attr on success. %NULL on failure.
4631  */
alloc_workqueue_attrs(void)4632 struct workqueue_attrs *alloc_workqueue_attrs(void)
4633 {
4634 	struct workqueue_attrs *attrs;
4635 
4636 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
4637 	if (!attrs)
4638 		goto fail;
4639 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
4640 		goto fail;
4641 	if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4642 		goto fail;
4643 
4644 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
4645 	attrs->affn_scope = WQ_AFFN_DFL;
4646 	return attrs;
4647 fail:
4648 	free_workqueue_attrs(attrs);
4649 	return NULL;
4650 }
4651 
copy_workqueue_attrs(struct workqueue_attrs * to,const struct workqueue_attrs * from)4652 static void copy_workqueue_attrs(struct workqueue_attrs *to,
4653 				 const struct workqueue_attrs *from)
4654 {
4655 	to->nice = from->nice;
4656 	cpumask_copy(to->cpumask, from->cpumask);
4657 	cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
4658 	to->affn_strict = from->affn_strict;
4659 
4660 	/*
4661 	 * Unlike hash and equality test, copying shouldn't ignore wq-only
4662 	 * fields as copying is used for both pool and wq attrs. Instead,
4663 	 * get_unbound_pool() explicitly clears the fields.
4664 	 */
4665 	to->affn_scope = from->affn_scope;
4666 	to->ordered = from->ordered;
4667 }
4668 
4669 /*
4670  * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4671  * comments in 'struct workqueue_attrs' definition.
4672  */
wqattrs_clear_for_pool(struct workqueue_attrs * attrs)4673 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4674 {
4675 	attrs->affn_scope = WQ_AFFN_NR_TYPES;
4676 	attrs->ordered = false;
4677 	if (attrs->affn_strict)
4678 		cpumask_copy(attrs->cpumask, cpu_possible_mask);
4679 }
4680 
4681 /* hash value of the content of @attr */
wqattrs_hash(const struct workqueue_attrs * attrs)4682 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
4683 {
4684 	u32 hash = 0;
4685 
4686 	hash = jhash_1word(attrs->nice, hash);
4687 	hash = jhash_1word(attrs->affn_strict, hash);
4688 	hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4689 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4690 	if (!attrs->affn_strict)
4691 		hash = jhash(cpumask_bits(attrs->cpumask),
4692 			     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4693 	return hash;
4694 }
4695 
4696 /* content equality test */
wqattrs_equal(const struct workqueue_attrs * a,const struct workqueue_attrs * b)4697 static bool wqattrs_equal(const struct workqueue_attrs *a,
4698 			  const struct workqueue_attrs *b)
4699 {
4700 	if (a->nice != b->nice)
4701 		return false;
4702 	if (a->affn_strict != b->affn_strict)
4703 		return false;
4704 	if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4705 		return false;
4706 	if (!a->affn_strict && !cpumask_equal(a->cpumask, b->cpumask))
4707 		return false;
4708 	return true;
4709 }
4710 
4711 /* Update @attrs with actually available CPUs */
wqattrs_actualize_cpumask(struct workqueue_attrs * attrs,const cpumask_t * unbound_cpumask)4712 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4713 				      const cpumask_t *unbound_cpumask)
4714 {
4715 	/*
4716 	 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4717 	 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4718 	 * @unbound_cpumask.
4719 	 */
4720 	cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4721 	if (unlikely(cpumask_empty(attrs->cpumask)))
4722 		cpumask_copy(attrs->cpumask, unbound_cpumask);
4723 }
4724 
4725 /* find wq_pod_type to use for @attrs */
4726 static const struct wq_pod_type *
wqattrs_pod_type(const struct workqueue_attrs * attrs)4727 wqattrs_pod_type(const struct workqueue_attrs *attrs)
4728 {
4729 	enum wq_affn_scope scope;
4730 	struct wq_pod_type *pt;
4731 
4732 	/* to synchronize access to wq_affn_dfl */
4733 	lockdep_assert_held(&wq_pool_mutex);
4734 
4735 	if (attrs->affn_scope == WQ_AFFN_DFL)
4736 		scope = wq_affn_dfl;
4737 	else
4738 		scope = attrs->affn_scope;
4739 
4740 	pt = &wq_pod_types[scope];
4741 
4742 	if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4743 	    likely(pt->nr_pods))
4744 		return pt;
4745 
4746 	/*
4747 	 * Before workqueue_init_topology(), only SYSTEM is available which is
4748 	 * initialized in workqueue_init_early().
4749 	 */
4750 	pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4751 	BUG_ON(!pt->nr_pods);
4752 	return pt;
4753 }
4754 
4755 /**
4756  * init_worker_pool - initialize a newly zalloc'd worker_pool
4757  * @pool: worker_pool to initialize
4758  *
4759  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
4760  *
4761  * Return: 0 on success, -errno on failure.  Even on failure, all fields
4762  * inside @pool proper are initialized and put_unbound_pool() can be called
4763  * on @pool safely to release it.
4764  */
init_worker_pool(struct worker_pool * pool)4765 static int init_worker_pool(struct worker_pool *pool)
4766 {
4767 	raw_spin_lock_init(&pool->lock);
4768 	pool->id = -1;
4769 	pool->cpu = -1;
4770 	pool->node = NUMA_NO_NODE;
4771 	pool->flags |= POOL_DISASSOCIATED;
4772 	pool->watchdog_ts = jiffies;
4773 	INIT_LIST_HEAD(&pool->worklist);
4774 	INIT_LIST_HEAD(&pool->idle_list);
4775 	hash_init(pool->busy_hash);
4776 
4777 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
4778 	INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
4779 
4780 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
4781 
4782 	INIT_LIST_HEAD(&pool->workers);
4783 
4784 	ida_init(&pool->worker_ida);
4785 	INIT_HLIST_NODE(&pool->hash_node);
4786 	pool->refcnt = 1;
4787 
4788 	/* shouldn't fail above this point */
4789 	pool->attrs = alloc_workqueue_attrs();
4790 	if (!pool->attrs)
4791 		return -ENOMEM;
4792 
4793 	wqattrs_clear_for_pool(pool->attrs);
4794 
4795 	return 0;
4796 }
4797 
4798 #ifdef CONFIG_LOCKDEP
wq_init_lockdep(struct workqueue_struct * wq)4799 static void wq_init_lockdep(struct workqueue_struct *wq)
4800 {
4801 	char *lock_name;
4802 
4803 	lockdep_register_key(&wq->key);
4804 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4805 	if (!lock_name)
4806 		lock_name = wq->name;
4807 
4808 	wq->lock_name = lock_name;
4809 	wq->lockdep_map = &wq->__lockdep_map;
4810 	lockdep_init_map(wq->lockdep_map, lock_name, &wq->key, 0);
4811 }
4812 
wq_unregister_lockdep(struct workqueue_struct * wq)4813 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4814 {
4815 	if (wq->lockdep_map != &wq->__lockdep_map)
4816 		return;
4817 
4818 	lockdep_unregister_key(&wq->key);
4819 }
4820 
wq_free_lockdep(struct workqueue_struct * wq)4821 static void wq_free_lockdep(struct workqueue_struct *wq)
4822 {
4823 	if (wq->lockdep_map != &wq->__lockdep_map)
4824 		return;
4825 
4826 	if (wq->lock_name != wq->name)
4827 		kfree(wq->lock_name);
4828 }
4829 #else
wq_init_lockdep(struct workqueue_struct * wq)4830 static void wq_init_lockdep(struct workqueue_struct *wq)
4831 {
4832 }
4833 
wq_unregister_lockdep(struct workqueue_struct * wq)4834 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4835 {
4836 }
4837 
wq_free_lockdep(struct workqueue_struct * wq)4838 static void wq_free_lockdep(struct workqueue_struct *wq)
4839 {
4840 }
4841 #endif
4842 
free_node_nr_active(struct wq_node_nr_active ** nna_ar)4843 static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4844 {
4845 	int node;
4846 
4847 	for_each_node(node) {
4848 		kfree(nna_ar[node]);
4849 		nna_ar[node] = NULL;
4850 	}
4851 
4852 	kfree(nna_ar[nr_node_ids]);
4853 	nna_ar[nr_node_ids] = NULL;
4854 }
4855 
init_node_nr_active(struct wq_node_nr_active * nna)4856 static void init_node_nr_active(struct wq_node_nr_active *nna)
4857 {
4858 	nna->max = WQ_DFL_MIN_ACTIVE;
4859 	atomic_set(&nna->nr, 0);
4860 	raw_spin_lock_init(&nna->lock);
4861 	INIT_LIST_HEAD(&nna->pending_pwqs);
4862 }
4863 
4864 /*
4865  * Each node's nr_active counter will be accessed mostly from its own node and
4866  * should be allocated in the node.
4867  */
alloc_node_nr_active(struct wq_node_nr_active ** nna_ar)4868 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4869 {
4870 	struct wq_node_nr_active *nna;
4871 	int node;
4872 
4873 	for_each_node(node) {
4874 		nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4875 		if (!nna)
4876 			goto err_free;
4877 		init_node_nr_active(nna);
4878 		nna_ar[node] = nna;
4879 	}
4880 
4881 	/* [nr_node_ids] is used as the fallback */
4882 	nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4883 	if (!nna)
4884 		goto err_free;
4885 	init_node_nr_active(nna);
4886 	nna_ar[nr_node_ids] = nna;
4887 
4888 	return 0;
4889 
4890 err_free:
4891 	free_node_nr_active(nna_ar);
4892 	return -ENOMEM;
4893 }
4894 
rcu_free_wq(struct rcu_head * rcu)4895 static void rcu_free_wq(struct rcu_head *rcu)
4896 {
4897 	struct workqueue_struct *wq =
4898 		container_of(rcu, struct workqueue_struct, rcu);
4899 
4900 	if (wq->flags & WQ_UNBOUND)
4901 		free_node_nr_active(wq->node_nr_active);
4902 
4903 	wq_free_lockdep(wq);
4904 	free_percpu(wq->cpu_pwq);
4905 	free_workqueue_attrs(wq->unbound_attrs);
4906 	kfree(wq);
4907 }
4908 
rcu_free_pool(struct rcu_head * rcu)4909 static void rcu_free_pool(struct rcu_head *rcu)
4910 {
4911 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
4912 
4913 	ida_destroy(&pool->worker_ida);
4914 	free_workqueue_attrs(pool->attrs);
4915 	kfree(pool);
4916 }
4917 
4918 /**
4919  * put_unbound_pool - put a worker_pool
4920  * @pool: worker_pool to put
4921  *
4922  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
4923  * safe manner.  get_unbound_pool() calls this function on its failure path
4924  * and this function should be able to release pools which went through,
4925  * successfully or not, init_worker_pool().
4926  *
4927  * Should be called with wq_pool_mutex held.
4928  */
put_unbound_pool(struct worker_pool * pool)4929 static void put_unbound_pool(struct worker_pool *pool)
4930 {
4931 	struct worker *worker;
4932 	LIST_HEAD(cull_list);
4933 
4934 	lockdep_assert_held(&wq_pool_mutex);
4935 
4936 	if (--pool->refcnt)
4937 		return;
4938 
4939 	/* sanity checks */
4940 	if (WARN_ON(!(pool->cpu < 0)) ||
4941 	    WARN_ON(!list_empty(&pool->worklist)))
4942 		return;
4943 
4944 	/* release id and unhash */
4945 	if (pool->id >= 0)
4946 		idr_remove(&worker_pool_idr, pool->id);
4947 	hash_del(&pool->hash_node);
4948 
4949 	/*
4950 	 * Become the manager and destroy all workers.  This prevents
4951 	 * @pool's workers from blocking on attach_mutex.  We're the last
4952 	 * manager and @pool gets freed with the flag set.
4953 	 *
4954 	 * Having a concurrent manager is quite unlikely to happen as we can
4955 	 * only get here with
4956 	 *   pwq->refcnt == pool->refcnt == 0
4957 	 * which implies no work queued to the pool, which implies no worker can
4958 	 * become the manager. However a worker could have taken the role of
4959 	 * manager before the refcnts dropped to 0, since maybe_create_worker()
4960 	 * drops pool->lock
4961 	 */
4962 	while (true) {
4963 		rcuwait_wait_event(&manager_wait,
4964 				   !(pool->flags & POOL_MANAGER_ACTIVE),
4965 				   TASK_UNINTERRUPTIBLE);
4966 
4967 		mutex_lock(&wq_pool_attach_mutex);
4968 		raw_spin_lock_irq(&pool->lock);
4969 		if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4970 			pool->flags |= POOL_MANAGER_ACTIVE;
4971 			break;
4972 		}
4973 		raw_spin_unlock_irq(&pool->lock);
4974 		mutex_unlock(&wq_pool_attach_mutex);
4975 	}
4976 
4977 	while ((worker = first_idle_worker(pool)))
4978 		set_worker_dying(worker, &cull_list);
4979 	WARN_ON(pool->nr_workers || pool->nr_idle);
4980 	raw_spin_unlock_irq(&pool->lock);
4981 
4982 	detach_dying_workers(&cull_list);
4983 
4984 	mutex_unlock(&wq_pool_attach_mutex);
4985 
4986 	reap_dying_workers(&cull_list);
4987 
4988 	/* shut down the timers */
4989 	timer_delete_sync(&pool->idle_timer);
4990 	cancel_work_sync(&pool->idle_cull_work);
4991 	timer_delete_sync(&pool->mayday_timer);
4992 
4993 	/* RCU protected to allow dereferences from get_work_pool() */
4994 	call_rcu(&pool->rcu, rcu_free_pool);
4995 }
4996 
4997 /**
4998  * get_unbound_pool - get a worker_pool with the specified attributes
4999  * @attrs: the attributes of the worker_pool to get
5000  *
5001  * Obtain a worker_pool which has the same attributes as @attrs, bump the
5002  * reference count and return it.  If there already is a matching
5003  * worker_pool, it will be used; otherwise, this function attempts to
5004  * create a new one.
5005  *
5006  * Should be called with wq_pool_mutex held.
5007  *
5008  * Return: On success, a worker_pool with the same attributes as @attrs.
5009  * On failure, %NULL.
5010  */
get_unbound_pool(const struct workqueue_attrs * attrs)5011 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
5012 {
5013 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
5014 	u32 hash = wqattrs_hash(attrs);
5015 	struct worker_pool *pool;
5016 	int pod, node = NUMA_NO_NODE;
5017 
5018 	lockdep_assert_held(&wq_pool_mutex);
5019 
5020 	/* do we already have a matching pool? */
5021 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
5022 		if (wqattrs_equal(pool->attrs, attrs)) {
5023 			pool->refcnt++;
5024 			return pool;
5025 		}
5026 	}
5027 
5028 	/* If __pod_cpumask is contained inside a NUMA pod, that's our node */
5029 	for (pod = 0; pod < pt->nr_pods; pod++) {
5030 		if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
5031 			node = pt->pod_node[pod];
5032 			break;
5033 		}
5034 	}
5035 
5036 	/* nope, create a new one */
5037 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
5038 	if (!pool || init_worker_pool(pool) < 0)
5039 		goto fail;
5040 
5041 	pool->node = node;
5042 	copy_workqueue_attrs(pool->attrs, attrs);
5043 	wqattrs_clear_for_pool(pool->attrs);
5044 
5045 	if (worker_pool_assign_id(pool) < 0)
5046 		goto fail;
5047 
5048 	/* create and start the initial worker */
5049 	if (wq_online && !create_worker(pool))
5050 		goto fail;
5051 
5052 	/* install */
5053 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
5054 
5055 	return pool;
5056 fail:
5057 	if (pool)
5058 		put_unbound_pool(pool);
5059 	return NULL;
5060 }
5061 
5062 /*
5063  * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
5064  * refcnt and needs to be destroyed.
5065  */
pwq_release_workfn(struct kthread_work * work)5066 static void pwq_release_workfn(struct kthread_work *work)
5067 {
5068 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
5069 						  release_work);
5070 	struct workqueue_struct *wq = pwq->wq;
5071 	struct worker_pool *pool = pwq->pool;
5072 	bool is_last = false;
5073 
5074 	/*
5075 	 * When @pwq is not linked, it doesn't hold any reference to the
5076 	 * @wq, and @wq is invalid to access.
5077 	 */
5078 	if (!list_empty(&pwq->pwqs_node)) {
5079 		mutex_lock(&wq->mutex);
5080 		list_del_rcu(&pwq->pwqs_node);
5081 		is_last = list_empty(&wq->pwqs);
5082 
5083 		/*
5084 		 * For ordered workqueue with a plugged dfl_pwq, restart it now.
5085 		 */
5086 		if (!is_last && (wq->flags & __WQ_ORDERED))
5087 			unplug_oldest_pwq(wq);
5088 
5089 		mutex_unlock(&wq->mutex);
5090 	}
5091 
5092 	if (wq->flags & WQ_UNBOUND) {
5093 		mutex_lock(&wq_pool_mutex);
5094 		put_unbound_pool(pool);
5095 		mutex_unlock(&wq_pool_mutex);
5096 	}
5097 
5098 	if (!list_empty(&pwq->pending_node)) {
5099 		struct wq_node_nr_active *nna =
5100 			wq_node_nr_active(pwq->wq, pwq->pool->node);
5101 
5102 		raw_spin_lock_irq(&nna->lock);
5103 		list_del_init(&pwq->pending_node);
5104 		raw_spin_unlock_irq(&nna->lock);
5105 	}
5106 
5107 	kfree_rcu(pwq, rcu);
5108 
5109 	/*
5110 	 * If we're the last pwq going away, @wq is already dead and no one
5111 	 * is gonna access it anymore.  Schedule RCU free.
5112 	 */
5113 	if (is_last) {
5114 		wq_unregister_lockdep(wq);
5115 		call_rcu(&wq->rcu, rcu_free_wq);
5116 	}
5117 }
5118 
5119 /* initialize newly allocated @pwq which is associated with @wq and @pool */
init_pwq(struct pool_workqueue * pwq,struct workqueue_struct * wq,struct worker_pool * pool)5120 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
5121 		     struct worker_pool *pool)
5122 {
5123 	BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK);
5124 
5125 	memset(pwq, 0, sizeof(*pwq));
5126 
5127 	pwq->pool = pool;
5128 	pwq->wq = wq;
5129 	pwq->flush_color = -1;
5130 	pwq->refcnt = 1;
5131 	INIT_LIST_HEAD(&pwq->inactive_works);
5132 	INIT_LIST_HEAD(&pwq->pending_node);
5133 	INIT_LIST_HEAD(&pwq->pwqs_node);
5134 	INIT_LIST_HEAD(&pwq->mayday_node);
5135 	kthread_init_work(&pwq->release_work, pwq_release_workfn);
5136 }
5137 
5138 /* sync @pwq with the current state of its associated wq and link it */
link_pwq(struct pool_workqueue * pwq)5139 static void link_pwq(struct pool_workqueue *pwq)
5140 {
5141 	struct workqueue_struct *wq = pwq->wq;
5142 
5143 	lockdep_assert_held(&wq->mutex);
5144 
5145 	/* may be called multiple times, ignore if already linked */
5146 	if (!list_empty(&pwq->pwqs_node))
5147 		return;
5148 
5149 	/* set the matching work_color */
5150 	pwq->work_color = wq->work_color;
5151 
5152 	/* link in @pwq */
5153 	list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
5154 }
5155 
5156 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
alloc_unbound_pwq(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)5157 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
5158 					const struct workqueue_attrs *attrs)
5159 {
5160 	struct worker_pool *pool;
5161 	struct pool_workqueue *pwq;
5162 
5163 	lockdep_assert_held(&wq_pool_mutex);
5164 
5165 	pool = get_unbound_pool(attrs);
5166 	if (!pool)
5167 		return NULL;
5168 
5169 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
5170 	if (!pwq) {
5171 		put_unbound_pool(pool);
5172 		return NULL;
5173 	}
5174 
5175 	init_pwq(pwq, wq, pool);
5176 	return pwq;
5177 }
5178 
apply_wqattrs_lock(void)5179 static void apply_wqattrs_lock(void)
5180 {
5181 	mutex_lock(&wq_pool_mutex);
5182 }
5183 
apply_wqattrs_unlock(void)5184 static void apply_wqattrs_unlock(void)
5185 {
5186 	mutex_unlock(&wq_pool_mutex);
5187 }
5188 
5189 /**
5190  * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
5191  * @attrs: the wq_attrs of the default pwq of the target workqueue
5192  * @cpu: the target CPU
5193  *
5194  * Calculate the cpumask a workqueue with @attrs should use on @pod.
5195  * The result is stored in @attrs->__pod_cpumask.
5196  *
5197  * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
5198  * and @pod has online CPUs requested by @attrs, the returned cpumask is the
5199  * intersection of the possible CPUs of @pod and @attrs->cpumask.
5200  *
5201  * The caller is responsible for ensuring that the cpumask of @pod stays stable.
5202  */
wq_calc_pod_cpumask(struct workqueue_attrs * attrs,int cpu)5203 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu)
5204 {
5205 	const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5206 	int pod = pt->cpu_pod[cpu];
5207 
5208 	/* calculate possible CPUs in @pod that @attrs wants */
5209 	cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
5210 	/* does @pod have any online CPUs @attrs wants? */
5211 	if (!cpumask_intersects(attrs->__pod_cpumask, wq_online_cpumask)) {
5212 		cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
5213 		return;
5214 	}
5215 }
5216 
5217 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
install_unbound_pwq(struct workqueue_struct * wq,int cpu,struct pool_workqueue * pwq)5218 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
5219 					int cpu, struct pool_workqueue *pwq)
5220 {
5221 	struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
5222 	struct pool_workqueue *old_pwq;
5223 
5224 	lockdep_assert_held(&wq_pool_mutex);
5225 	lockdep_assert_held(&wq->mutex);
5226 
5227 	/* link_pwq() can handle duplicate calls */
5228 	link_pwq(pwq);
5229 
5230 	old_pwq = rcu_access_pointer(*slot);
5231 	rcu_assign_pointer(*slot, pwq);
5232 	return old_pwq;
5233 }
5234 
5235 /* context to store the prepared attrs & pwqs before applying */
5236 struct apply_wqattrs_ctx {
5237 	struct workqueue_struct	*wq;		/* target workqueue */
5238 	struct workqueue_attrs	*attrs;		/* attrs to apply */
5239 	struct list_head	list;		/* queued for batching commit */
5240 	struct pool_workqueue	*dfl_pwq;
5241 	struct pool_workqueue	*pwq_tbl[];
5242 };
5243 
5244 /* free the resources after success or abort */
apply_wqattrs_cleanup(struct apply_wqattrs_ctx * ctx)5245 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
5246 {
5247 	if (ctx) {
5248 		int cpu;
5249 
5250 		for_each_possible_cpu(cpu)
5251 			put_pwq_unlocked(ctx->pwq_tbl[cpu]);
5252 		put_pwq_unlocked(ctx->dfl_pwq);
5253 
5254 		free_workqueue_attrs(ctx->attrs);
5255 
5256 		kfree(ctx);
5257 	}
5258 }
5259 
5260 /* allocate the attrs and pwqs for later installation */
5261 static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct * wq,const struct workqueue_attrs * attrs,const cpumask_var_t unbound_cpumask)5262 apply_wqattrs_prepare(struct workqueue_struct *wq,
5263 		      const struct workqueue_attrs *attrs,
5264 		      const cpumask_var_t unbound_cpumask)
5265 {
5266 	struct apply_wqattrs_ctx *ctx;
5267 	struct workqueue_attrs *new_attrs;
5268 	int cpu;
5269 
5270 	lockdep_assert_held(&wq_pool_mutex);
5271 
5272 	if (WARN_ON(attrs->affn_scope < 0 ||
5273 		    attrs->affn_scope >= WQ_AFFN_NR_TYPES))
5274 		return ERR_PTR(-EINVAL);
5275 
5276 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
5277 
5278 	new_attrs = alloc_workqueue_attrs();
5279 	if (!ctx || !new_attrs)
5280 		goto out_free;
5281 
5282 	/*
5283 	 * If something goes wrong during CPU up/down, we'll fall back to
5284 	 * the default pwq covering whole @attrs->cpumask.  Always create
5285 	 * it even if we don't use it immediately.
5286 	 */
5287 	copy_workqueue_attrs(new_attrs, attrs);
5288 	wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
5289 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5290 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
5291 	if (!ctx->dfl_pwq)
5292 		goto out_free;
5293 
5294 	for_each_possible_cpu(cpu) {
5295 		if (new_attrs->ordered) {
5296 			ctx->dfl_pwq->refcnt++;
5297 			ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
5298 		} else {
5299 			wq_calc_pod_cpumask(new_attrs, cpu);
5300 			ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
5301 			if (!ctx->pwq_tbl[cpu])
5302 				goto out_free;
5303 		}
5304 	}
5305 
5306 	/* save the user configured attrs and sanitize it. */
5307 	copy_workqueue_attrs(new_attrs, attrs);
5308 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
5309 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5310 	ctx->attrs = new_attrs;
5311 
5312 	/*
5313 	 * For initialized ordered workqueues, there should only be one pwq
5314 	 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution
5315 	 * of newly queued work items until execution of older work items in
5316 	 * the old pwq's have completed.
5317 	 */
5318 	if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))
5319 		ctx->dfl_pwq->plugged = true;
5320 
5321 	ctx->wq = wq;
5322 	return ctx;
5323 
5324 out_free:
5325 	free_workqueue_attrs(new_attrs);
5326 	apply_wqattrs_cleanup(ctx);
5327 	return ERR_PTR(-ENOMEM);
5328 }
5329 
5330 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
apply_wqattrs_commit(struct apply_wqattrs_ctx * ctx)5331 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
5332 {
5333 	int cpu;
5334 
5335 	/* all pwqs have been created successfully, let's install'em */
5336 	mutex_lock(&ctx->wq->mutex);
5337 
5338 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
5339 
5340 	/* save the previous pwqs and install the new ones */
5341 	for_each_possible_cpu(cpu)
5342 		ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
5343 							ctx->pwq_tbl[cpu]);
5344 	ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
5345 
5346 	/* update node_nr_active->max */
5347 	wq_update_node_max_active(ctx->wq, -1);
5348 
5349 	/* rescuer needs to respect wq cpumask changes */
5350 	if (ctx->wq->rescuer)
5351 		set_cpus_allowed_ptr(ctx->wq->rescuer->task,
5352 				     unbound_effective_cpumask(ctx->wq));
5353 
5354 	mutex_unlock(&ctx->wq->mutex);
5355 }
5356 
apply_workqueue_attrs_locked(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)5357 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
5358 					const struct workqueue_attrs *attrs)
5359 {
5360 	struct apply_wqattrs_ctx *ctx;
5361 
5362 	/* only unbound workqueues can change attributes */
5363 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
5364 		return -EINVAL;
5365 
5366 	ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
5367 	if (IS_ERR(ctx))
5368 		return PTR_ERR(ctx);
5369 
5370 	/* the ctx has been prepared successfully, let's commit it */
5371 	apply_wqattrs_commit(ctx);
5372 	apply_wqattrs_cleanup(ctx);
5373 
5374 	return 0;
5375 }
5376 
5377 /**
5378  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
5379  * @wq: the target workqueue
5380  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
5381  *
5382  * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
5383  * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
5384  * work items are affine to the pod it was issued on. Older pwqs are released as
5385  * in-flight work items finish. Note that a work item which repeatedly requeues
5386  * itself back-to-back will stay on its current pwq.
5387  *
5388  * Performs GFP_KERNEL allocations.
5389  *
5390  * Return: 0 on success and -errno on failure.
5391  */
apply_workqueue_attrs(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)5392 int apply_workqueue_attrs(struct workqueue_struct *wq,
5393 			  const struct workqueue_attrs *attrs)
5394 {
5395 	int ret;
5396 
5397 	mutex_lock(&wq_pool_mutex);
5398 	ret = apply_workqueue_attrs_locked(wq, attrs);
5399 	mutex_unlock(&wq_pool_mutex);
5400 
5401 	return ret;
5402 }
5403 
5404 /**
5405  * unbound_wq_update_pwq - update a pwq slot for CPU hot[un]plug
5406  * @wq: the target workqueue
5407  * @cpu: the CPU to update the pwq slot for
5408  *
5409  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
5410  * %CPU_DOWN_FAILED.  @cpu is in the same pod of the CPU being hot[un]plugged.
5411  *
5412  *
5413  * If pod affinity can't be adjusted due to memory allocation failure, it falls
5414  * back to @wq->dfl_pwq which may not be optimal but is always correct.
5415  *
5416  * Note that when the last allowed CPU of a pod goes offline for a workqueue
5417  * with a cpumask spanning multiple pods, the workers which were already
5418  * executing the work items for the workqueue will lose their CPU affinity and
5419  * may execute on any CPU. This is similar to how per-cpu workqueues behave on
5420  * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
5421  * responsibility to flush the work item from CPU_DOWN_PREPARE.
5422  */
unbound_wq_update_pwq(struct workqueue_struct * wq,int cpu)5423 static void unbound_wq_update_pwq(struct workqueue_struct *wq, int cpu)
5424 {
5425 	struct pool_workqueue *old_pwq = NULL, *pwq;
5426 	struct workqueue_attrs *target_attrs;
5427 
5428 	lockdep_assert_held(&wq_pool_mutex);
5429 
5430 	if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
5431 		return;
5432 
5433 	/*
5434 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
5435 	 * Let's use a preallocated one.  The following buf is protected by
5436 	 * CPU hotplug exclusion.
5437 	 */
5438 	target_attrs = unbound_wq_update_pwq_attrs_buf;
5439 
5440 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
5441 	wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
5442 
5443 	/* nothing to do if the target cpumask matches the current pwq */
5444 	wq_calc_pod_cpumask(target_attrs, cpu);
5445 	if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
5446 		return;
5447 
5448 	/* create a new pwq */
5449 	pwq = alloc_unbound_pwq(wq, target_attrs);
5450 	if (!pwq) {
5451 		pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
5452 			wq->name);
5453 		goto use_dfl_pwq;
5454 	}
5455 
5456 	/* Install the new pwq. */
5457 	mutex_lock(&wq->mutex);
5458 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5459 	goto out_unlock;
5460 
5461 use_dfl_pwq:
5462 	mutex_lock(&wq->mutex);
5463 	pwq = unbound_pwq(wq, -1);
5464 	raw_spin_lock_irq(&pwq->pool->lock);
5465 	get_pwq(pwq);
5466 	raw_spin_unlock_irq(&pwq->pool->lock);
5467 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5468 out_unlock:
5469 	mutex_unlock(&wq->mutex);
5470 	put_pwq_unlocked(old_pwq);
5471 }
5472 
alloc_and_link_pwqs(struct workqueue_struct * wq)5473 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
5474 {
5475 	bool highpri = wq->flags & WQ_HIGHPRI;
5476 	int cpu, ret;
5477 
5478 	lockdep_assert_held(&wq_pool_mutex);
5479 
5480 	wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
5481 	if (!wq->cpu_pwq)
5482 		goto enomem;
5483 
5484 	if (!(wq->flags & WQ_UNBOUND)) {
5485 		struct worker_pool __percpu *pools;
5486 
5487 		if (wq->flags & WQ_BH)
5488 			pools = bh_worker_pools;
5489 		else
5490 			pools = cpu_worker_pools;
5491 
5492 		for_each_possible_cpu(cpu) {
5493 			struct pool_workqueue **pwq_p;
5494 			struct worker_pool *pool;
5495 
5496 			pool = &(per_cpu_ptr(pools, cpu)[highpri]);
5497 			pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu);
5498 
5499 			*pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
5500 						       pool->node);
5501 			if (!*pwq_p)
5502 				goto enomem;
5503 
5504 			init_pwq(*pwq_p, wq, pool);
5505 
5506 			mutex_lock(&wq->mutex);
5507 			link_pwq(*pwq_p);
5508 			mutex_unlock(&wq->mutex);
5509 		}
5510 		return 0;
5511 	}
5512 
5513 	if (wq->flags & __WQ_ORDERED) {
5514 		struct pool_workqueue *dfl_pwq;
5515 
5516 		ret = apply_workqueue_attrs_locked(wq, ordered_wq_attrs[highpri]);
5517 		/* there should only be single pwq for ordering guarantee */
5518 		dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5519 		WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5520 			      wq->pwqs.prev != &dfl_pwq->pwqs_node),
5521 		     "ordering guarantee broken for workqueue %s\n", wq->name);
5522 	} else {
5523 		ret = apply_workqueue_attrs_locked(wq, unbound_std_wq_attrs[highpri]);
5524 	}
5525 
5526 	return ret;
5527 
5528 enomem:
5529 	if (wq->cpu_pwq) {
5530 		for_each_possible_cpu(cpu) {
5531 			struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5532 
5533 			if (pwq)
5534 				kmem_cache_free(pwq_cache, pwq);
5535 		}
5536 		free_percpu(wq->cpu_pwq);
5537 		wq->cpu_pwq = NULL;
5538 	}
5539 	return -ENOMEM;
5540 }
5541 
wq_clamp_max_active(int max_active,unsigned int flags,const char * name)5542 static int wq_clamp_max_active(int max_active, unsigned int flags,
5543 			       const char *name)
5544 {
5545 	if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
5546 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
5547 			max_active, name, 1, WQ_MAX_ACTIVE);
5548 
5549 	return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
5550 }
5551 
5552 /*
5553  * Workqueues which may be used during memory reclaim should have a rescuer
5554  * to guarantee forward progress.
5555  */
init_rescuer(struct workqueue_struct * wq)5556 static int init_rescuer(struct workqueue_struct *wq)
5557 {
5558 	struct worker *rescuer;
5559 	char id_buf[WORKER_ID_LEN];
5560 	int ret;
5561 
5562 	lockdep_assert_held(&wq_pool_mutex);
5563 
5564 	if (!(wq->flags & WQ_MEM_RECLAIM))
5565 		return 0;
5566 
5567 	rescuer = alloc_worker(NUMA_NO_NODE);
5568 	if (!rescuer) {
5569 		pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5570 		       wq->name);
5571 		return -ENOMEM;
5572 	}
5573 
5574 	rescuer->rescue_wq = wq;
5575 	format_worker_id(id_buf, sizeof(id_buf), rescuer, NULL);
5576 
5577 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", id_buf);
5578 	if (IS_ERR(rescuer->task)) {
5579 		ret = PTR_ERR(rescuer->task);
5580 		pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5581 		       wq->name, ERR_PTR(ret));
5582 		kfree(rescuer);
5583 		return ret;
5584 	}
5585 
5586 	wq->rescuer = rescuer;
5587 	if (wq->flags & WQ_UNBOUND)
5588 		kthread_bind_mask(rescuer->task, unbound_effective_cpumask(wq));
5589 	else
5590 		kthread_bind_mask(rescuer->task, cpu_possible_mask);
5591 	wake_up_process(rescuer->task);
5592 
5593 	return 0;
5594 }
5595 
5596 /**
5597  * wq_adjust_max_active - update a wq's max_active to the current setting
5598  * @wq: target workqueue
5599  *
5600  * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5601  * activate inactive work items accordingly. If @wq is freezing, clear
5602  * @wq->max_active to zero.
5603  */
wq_adjust_max_active(struct workqueue_struct * wq)5604 static void wq_adjust_max_active(struct workqueue_struct *wq)
5605 {
5606 	bool activated;
5607 	int new_max, new_min;
5608 
5609 	lockdep_assert_held(&wq->mutex);
5610 
5611 	if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5612 		new_max = 0;
5613 		new_min = 0;
5614 	} else {
5615 		new_max = wq->saved_max_active;
5616 		new_min = wq->saved_min_active;
5617 	}
5618 
5619 	if (wq->max_active == new_max && wq->min_active == new_min)
5620 		return;
5621 
5622 	/*
5623 	 * Update @wq->max/min_active and then kick inactive work items if more
5624 	 * active work items are allowed. This doesn't break work item ordering
5625 	 * because new work items are always queued behind existing inactive
5626 	 * work items if there are any.
5627 	 */
5628 	WRITE_ONCE(wq->max_active, new_max);
5629 	WRITE_ONCE(wq->min_active, new_min);
5630 
5631 	if (wq->flags & WQ_UNBOUND)
5632 		wq_update_node_max_active(wq, -1);
5633 
5634 	if (new_max == 0)
5635 		return;
5636 
5637 	/*
5638 	 * Round-robin through pwq's activating the first inactive work item
5639 	 * until max_active is filled.
5640 	 */
5641 	do {
5642 		struct pool_workqueue *pwq;
5643 
5644 		activated = false;
5645 		for_each_pwq(pwq, wq) {
5646 			unsigned long irq_flags;
5647 
5648 			/* can be called during early boot w/ irq disabled */
5649 			raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
5650 			if (pwq_activate_first_inactive(pwq, true)) {
5651 				activated = true;
5652 				kick_pool(pwq->pool);
5653 			}
5654 			raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
5655 		}
5656 	} while (activated);
5657 }
5658 
5659 __printf(1, 0)
__alloc_workqueue(const char * fmt,unsigned int flags,int max_active,va_list args)5660 static struct workqueue_struct *__alloc_workqueue(const char *fmt,
5661 						  unsigned int flags,
5662 						  int max_active, va_list args)
5663 {
5664 	struct workqueue_struct *wq;
5665 	size_t wq_size;
5666 	int name_len;
5667 
5668 	if (flags & WQ_BH) {
5669 		if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS))
5670 			return NULL;
5671 		if (WARN_ON_ONCE(max_active))
5672 			return NULL;
5673 	}
5674 
5675 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
5676 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5677 		flags |= WQ_UNBOUND;
5678 
5679 	/* allocate wq and format name */
5680 	if (flags & WQ_UNBOUND)
5681 		wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5682 	else
5683 		wq_size = sizeof(*wq);
5684 
5685 	wq = kzalloc(wq_size, GFP_KERNEL);
5686 	if (!wq)
5687 		return NULL;
5688 
5689 	if (flags & WQ_UNBOUND) {
5690 		wq->unbound_attrs = alloc_workqueue_attrs();
5691 		if (!wq->unbound_attrs)
5692 			goto err_free_wq;
5693 	}
5694 
5695 	name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
5696 
5697 	if (name_len >= WQ_NAME_LEN)
5698 		pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5699 			     wq->name);
5700 
5701 	if (flags & WQ_BH) {
5702 		/*
5703 		 * BH workqueues always share a single execution context per CPU
5704 		 * and don't impose any max_active limit.
5705 		 */
5706 		max_active = INT_MAX;
5707 	} else {
5708 		max_active = max_active ?: WQ_DFL_ACTIVE;
5709 		max_active = wq_clamp_max_active(max_active, flags, wq->name);
5710 	}
5711 
5712 	/* init wq */
5713 	wq->flags = flags;
5714 	wq->max_active = max_active;
5715 	wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5716 	wq->saved_max_active = wq->max_active;
5717 	wq->saved_min_active = wq->min_active;
5718 	mutex_init(&wq->mutex);
5719 	atomic_set(&wq->nr_pwqs_to_flush, 0);
5720 	INIT_LIST_HEAD(&wq->pwqs);
5721 	INIT_LIST_HEAD(&wq->flusher_queue);
5722 	INIT_LIST_HEAD(&wq->flusher_overflow);
5723 	INIT_LIST_HEAD(&wq->maydays);
5724 
5725 	INIT_LIST_HEAD(&wq->list);
5726 
5727 	if (flags & WQ_UNBOUND) {
5728 		if (alloc_node_nr_active(wq->node_nr_active) < 0)
5729 			goto err_free_wq;
5730 	}
5731 
5732 	/*
5733 	 * wq_pool_mutex protects the workqueues list, allocations of PWQs,
5734 	 * and the global freeze state.
5735 	 */
5736 	apply_wqattrs_lock();
5737 
5738 	if (alloc_and_link_pwqs(wq) < 0)
5739 		goto err_unlock_free_node_nr_active;
5740 
5741 	mutex_lock(&wq->mutex);
5742 	wq_adjust_max_active(wq);
5743 	mutex_unlock(&wq->mutex);
5744 
5745 	list_add_tail_rcu(&wq->list, &workqueues);
5746 
5747 	if (wq_online && init_rescuer(wq) < 0)
5748 		goto err_unlock_destroy;
5749 
5750 	apply_wqattrs_unlock();
5751 
5752 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5753 		goto err_destroy;
5754 
5755 	return wq;
5756 
5757 err_unlock_free_node_nr_active:
5758 	apply_wqattrs_unlock();
5759 	/*
5760 	 * Failed alloc_and_link_pwqs() may leave pending pwq->release_work,
5761 	 * flushing the pwq_release_worker ensures that the pwq_release_workfn()
5762 	 * completes before calling kfree(wq).
5763 	 */
5764 	if (wq->flags & WQ_UNBOUND) {
5765 		kthread_flush_worker(pwq_release_worker);
5766 		free_node_nr_active(wq->node_nr_active);
5767 	}
5768 err_free_wq:
5769 	free_workqueue_attrs(wq->unbound_attrs);
5770 	kfree(wq);
5771 	return NULL;
5772 err_unlock_destroy:
5773 	apply_wqattrs_unlock();
5774 err_destroy:
5775 	destroy_workqueue(wq);
5776 	return NULL;
5777 }
5778 
5779 __printf(1, 4)
alloc_workqueue(const char * fmt,unsigned int flags,int max_active,...)5780 struct workqueue_struct *alloc_workqueue(const char *fmt,
5781 					 unsigned int flags,
5782 					 int max_active, ...)
5783 {
5784 	struct workqueue_struct *wq;
5785 	va_list args;
5786 
5787 	va_start(args, max_active);
5788 	wq = __alloc_workqueue(fmt, flags, max_active, args);
5789 	va_end(args);
5790 	if (!wq)
5791 		return NULL;
5792 
5793 	wq_init_lockdep(wq);
5794 
5795 	return wq;
5796 }
5797 EXPORT_SYMBOL_GPL(alloc_workqueue);
5798 
5799 #ifdef CONFIG_LOCKDEP
5800 __printf(1, 5)
5801 struct workqueue_struct *
alloc_workqueue_lockdep_map(const char * fmt,unsigned int flags,int max_active,struct lockdep_map * lockdep_map,...)5802 alloc_workqueue_lockdep_map(const char *fmt, unsigned int flags,
5803 			    int max_active, struct lockdep_map *lockdep_map, ...)
5804 {
5805 	struct workqueue_struct *wq;
5806 	va_list args;
5807 
5808 	va_start(args, lockdep_map);
5809 	wq = __alloc_workqueue(fmt, flags, max_active, args);
5810 	va_end(args);
5811 	if (!wq)
5812 		return NULL;
5813 
5814 	wq->lockdep_map = lockdep_map;
5815 
5816 	return wq;
5817 }
5818 EXPORT_SYMBOL_GPL(alloc_workqueue_lockdep_map);
5819 #endif
5820 
pwq_busy(struct pool_workqueue * pwq)5821 static bool pwq_busy(struct pool_workqueue *pwq)
5822 {
5823 	int i;
5824 
5825 	for (i = 0; i < WORK_NR_COLORS; i++)
5826 		if (pwq->nr_in_flight[i])
5827 			return true;
5828 
5829 	if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
5830 		return true;
5831 	if (!pwq_is_empty(pwq))
5832 		return true;
5833 
5834 	return false;
5835 }
5836 
5837 /**
5838  * destroy_workqueue - safely terminate a workqueue
5839  * @wq: target workqueue
5840  *
5841  * Safely destroy a workqueue. All work currently pending will be done first.
5842  *
5843  * This function does NOT guarantee that non-pending work that has been
5844  * submitted with queue_delayed_work() and similar functions will be done
5845  * before destroying the workqueue. The fundamental problem is that, currently,
5846  * the workqueue has no way of accessing non-pending delayed_work. delayed_work
5847  * is only linked on the timer-side. All delayed_work must, therefore, be
5848  * canceled before calling this function.
5849  *
5850  * TODO: It would be better if the problem described above wouldn't exist and
5851  * destroy_workqueue() would cleanly cancel all pending and non-pending
5852  * delayed_work.
5853  */
destroy_workqueue(struct workqueue_struct * wq)5854 void destroy_workqueue(struct workqueue_struct *wq)
5855 {
5856 	struct pool_workqueue *pwq;
5857 	int cpu;
5858 
5859 	/*
5860 	 * Remove it from sysfs first so that sanity check failure doesn't
5861 	 * lead to sysfs name conflicts.
5862 	 */
5863 	workqueue_sysfs_unregister(wq);
5864 
5865 	/* mark the workqueue destruction is in progress */
5866 	mutex_lock(&wq->mutex);
5867 	wq->flags |= __WQ_DESTROYING;
5868 	mutex_unlock(&wq->mutex);
5869 
5870 	/* drain it before proceeding with destruction */
5871 	drain_workqueue(wq);
5872 
5873 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5874 	if (wq->rescuer) {
5875 		struct worker *rescuer = wq->rescuer;
5876 
5877 		/* this prevents new queueing */
5878 		raw_spin_lock_irq(&wq_mayday_lock);
5879 		wq->rescuer = NULL;
5880 		raw_spin_unlock_irq(&wq_mayday_lock);
5881 
5882 		/* rescuer will empty maydays list before exiting */
5883 		kthread_stop(rescuer->task);
5884 		kfree(rescuer);
5885 	}
5886 
5887 	/*
5888 	 * Sanity checks - grab all the locks so that we wait for all
5889 	 * in-flight operations which may do put_pwq().
5890 	 */
5891 	mutex_lock(&wq_pool_mutex);
5892 	mutex_lock(&wq->mutex);
5893 	for_each_pwq(pwq, wq) {
5894 		raw_spin_lock_irq(&pwq->pool->lock);
5895 		if (WARN_ON(pwq_busy(pwq))) {
5896 			pr_warn("%s: %s has the following busy pwq\n",
5897 				__func__, wq->name);
5898 			show_pwq(pwq);
5899 			raw_spin_unlock_irq(&pwq->pool->lock);
5900 			mutex_unlock(&wq->mutex);
5901 			mutex_unlock(&wq_pool_mutex);
5902 			show_one_workqueue(wq);
5903 			return;
5904 		}
5905 		raw_spin_unlock_irq(&pwq->pool->lock);
5906 	}
5907 	mutex_unlock(&wq->mutex);
5908 
5909 	/*
5910 	 * wq list is used to freeze wq, remove from list after
5911 	 * flushing is complete in case freeze races us.
5912 	 */
5913 	list_del_rcu(&wq->list);
5914 	mutex_unlock(&wq_pool_mutex);
5915 
5916 	/*
5917 	 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5918 	 * to put the base refs. @wq will be auto-destroyed from the last
5919 	 * pwq_put. RCU read lock prevents @wq from going away from under us.
5920 	 */
5921 	rcu_read_lock();
5922 
5923 	for_each_possible_cpu(cpu) {
5924 		put_pwq_unlocked(unbound_pwq(wq, cpu));
5925 		RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
5926 	}
5927 
5928 	put_pwq_unlocked(unbound_pwq(wq, -1));
5929 	RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
5930 
5931 	rcu_read_unlock();
5932 }
5933 EXPORT_SYMBOL_GPL(destroy_workqueue);
5934 
5935 /**
5936  * workqueue_set_max_active - adjust max_active of a workqueue
5937  * @wq: target workqueue
5938  * @max_active: new max_active value.
5939  *
5940  * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5941  * comment.
5942  *
5943  * CONTEXT:
5944  * Don't call from IRQ context.
5945  */
workqueue_set_max_active(struct workqueue_struct * wq,int max_active)5946 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
5947 {
5948 	/* max_active doesn't mean anything for BH workqueues */
5949 	if (WARN_ON(wq->flags & WQ_BH))
5950 		return;
5951 	/* disallow meddling with max_active for ordered workqueues */
5952 	if (WARN_ON(wq->flags & __WQ_ORDERED))
5953 		return;
5954 
5955 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
5956 
5957 	mutex_lock(&wq->mutex);
5958 
5959 	wq->saved_max_active = max_active;
5960 	if (wq->flags & WQ_UNBOUND)
5961 		wq->saved_min_active = min(wq->saved_min_active, max_active);
5962 
5963 	wq_adjust_max_active(wq);
5964 
5965 	mutex_unlock(&wq->mutex);
5966 }
5967 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
5968 
5969 /**
5970  * workqueue_set_min_active - adjust min_active of an unbound workqueue
5971  * @wq: target unbound workqueue
5972  * @min_active: new min_active value
5973  *
5974  * Set min_active of an unbound workqueue. Unlike other types of workqueues, an
5975  * unbound workqueue is not guaranteed to be able to process max_active
5976  * interdependent work items. Instead, an unbound workqueue is guaranteed to be
5977  * able to process min_active number of interdependent work items which is
5978  * %WQ_DFL_MIN_ACTIVE by default.
5979  *
5980  * Use this function to adjust the min_active value between 0 and the current
5981  * max_active.
5982  */
workqueue_set_min_active(struct workqueue_struct * wq,int min_active)5983 void workqueue_set_min_active(struct workqueue_struct *wq, int min_active)
5984 {
5985 	/* min_active is only meaningful for non-ordered unbound workqueues */
5986 	if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) !=
5987 		    WQ_UNBOUND))
5988 		return;
5989 
5990 	mutex_lock(&wq->mutex);
5991 	wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active);
5992 	wq_adjust_max_active(wq);
5993 	mutex_unlock(&wq->mutex);
5994 }
5995 
5996 /**
5997  * current_work - retrieve %current task's work struct
5998  *
5999  * Determine if %current task is a workqueue worker and what it's working on.
6000  * Useful to find out the context that the %current task is running in.
6001  *
6002  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
6003  */
current_work(void)6004 struct work_struct *current_work(void)
6005 {
6006 	struct worker *worker = current_wq_worker();
6007 
6008 	return worker ? worker->current_work : NULL;
6009 }
6010 EXPORT_SYMBOL(current_work);
6011 
6012 /**
6013  * current_is_workqueue_rescuer - is %current workqueue rescuer?
6014  *
6015  * Determine whether %current is a workqueue rescuer.  Can be used from
6016  * work functions to determine whether it's being run off the rescuer task.
6017  *
6018  * Return: %true if %current is a workqueue rescuer. %false otherwise.
6019  */
current_is_workqueue_rescuer(void)6020 bool current_is_workqueue_rescuer(void)
6021 {
6022 	struct worker *worker = current_wq_worker();
6023 
6024 	return worker && worker->rescue_wq;
6025 }
6026 
6027 /**
6028  * workqueue_congested - test whether a workqueue is congested
6029  * @cpu: CPU in question
6030  * @wq: target workqueue
6031  *
6032  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
6033  * no synchronization around this function and the test result is
6034  * unreliable and only useful as advisory hints or for debugging.
6035  *
6036  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
6037  *
6038  * With the exception of ordered workqueues, all workqueues have per-cpu
6039  * pool_workqueues, each with its own congested state. A workqueue being
6040  * congested on one CPU doesn't mean that the workqueue is contested on any
6041  * other CPUs.
6042  *
6043  * Return:
6044  * %true if congested, %false otherwise.
6045  */
workqueue_congested(int cpu,struct workqueue_struct * wq)6046 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
6047 {
6048 	struct pool_workqueue *pwq;
6049 	bool ret;
6050 
6051 	rcu_read_lock();
6052 	preempt_disable();
6053 
6054 	if (cpu == WORK_CPU_UNBOUND)
6055 		cpu = smp_processor_id();
6056 
6057 	pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
6058 	ret = !list_empty(&pwq->inactive_works);
6059 
6060 	preempt_enable();
6061 	rcu_read_unlock();
6062 
6063 	return ret;
6064 }
6065 EXPORT_SYMBOL_GPL(workqueue_congested);
6066 
6067 /**
6068  * work_busy - test whether a work is currently pending or running
6069  * @work: the work to be tested
6070  *
6071  * Test whether @work is currently pending or running.  There is no
6072  * synchronization around this function and the test result is
6073  * unreliable and only useful as advisory hints or for debugging.
6074  *
6075  * Return:
6076  * OR'd bitmask of WORK_BUSY_* bits.
6077  */
work_busy(struct work_struct * work)6078 unsigned int work_busy(struct work_struct *work)
6079 {
6080 	struct worker_pool *pool;
6081 	unsigned long irq_flags;
6082 	unsigned int ret = 0;
6083 
6084 	if (work_pending(work))
6085 		ret |= WORK_BUSY_PENDING;
6086 
6087 	rcu_read_lock();
6088 	pool = get_work_pool(work);
6089 	if (pool) {
6090 		raw_spin_lock_irqsave(&pool->lock, irq_flags);
6091 		if (find_worker_executing_work(pool, work))
6092 			ret |= WORK_BUSY_RUNNING;
6093 		raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6094 	}
6095 	rcu_read_unlock();
6096 
6097 	return ret;
6098 }
6099 EXPORT_SYMBOL_GPL(work_busy);
6100 
6101 /**
6102  * set_worker_desc - set description for the current work item
6103  * @fmt: printf-style format string
6104  * @...: arguments for the format string
6105  *
6106  * This function can be called by a running work function to describe what
6107  * the work item is about.  If the worker task gets dumped, this
6108  * information will be printed out together to help debugging.  The
6109  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
6110  */
set_worker_desc(const char * fmt,...)6111 void set_worker_desc(const char *fmt, ...)
6112 {
6113 	struct worker *worker = current_wq_worker();
6114 	va_list args;
6115 
6116 	if (worker) {
6117 		va_start(args, fmt);
6118 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
6119 		va_end(args);
6120 	}
6121 }
6122 EXPORT_SYMBOL_GPL(set_worker_desc);
6123 
6124 /**
6125  * print_worker_info - print out worker information and description
6126  * @log_lvl: the log level to use when printing
6127  * @task: target task
6128  *
6129  * If @task is a worker and currently executing a work item, print out the
6130  * name of the workqueue being serviced and worker description set with
6131  * set_worker_desc() by the currently executing work item.
6132  *
6133  * This function can be safely called on any task as long as the
6134  * task_struct itself is accessible.  While safe, this function isn't
6135  * synchronized and may print out mixups or garbages of limited length.
6136  */
print_worker_info(const char * log_lvl,struct task_struct * task)6137 void print_worker_info(const char *log_lvl, struct task_struct *task)
6138 {
6139 	work_func_t *fn = NULL;
6140 	char name[WQ_NAME_LEN] = { };
6141 	char desc[WORKER_DESC_LEN] = { };
6142 	struct pool_workqueue *pwq = NULL;
6143 	struct workqueue_struct *wq = NULL;
6144 	struct worker *worker;
6145 
6146 	if (!(task->flags & PF_WQ_WORKER))
6147 		return;
6148 
6149 	/*
6150 	 * This function is called without any synchronization and @task
6151 	 * could be in any state.  Be careful with dereferences.
6152 	 */
6153 	worker = kthread_probe_data(task);
6154 
6155 	/*
6156 	 * Carefully copy the associated workqueue's workfn, name and desc.
6157 	 * Keep the original last '\0' in case the original is garbage.
6158 	 */
6159 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
6160 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
6161 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
6162 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
6163 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
6164 
6165 	if (fn || name[0] || desc[0]) {
6166 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
6167 		if (strcmp(name, desc))
6168 			pr_cont(" (%s)", desc);
6169 		pr_cont("\n");
6170 	}
6171 }
6172 
pr_cont_pool_info(struct worker_pool * pool)6173 static void pr_cont_pool_info(struct worker_pool *pool)
6174 {
6175 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
6176 	if (pool->node != NUMA_NO_NODE)
6177 		pr_cont(" node=%d", pool->node);
6178 	pr_cont(" flags=0x%x", pool->flags);
6179 	if (pool->flags & POOL_BH)
6180 		pr_cont(" bh%s",
6181 			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6182 	else
6183 		pr_cont(" nice=%d", pool->attrs->nice);
6184 }
6185 
pr_cont_worker_id(struct worker * worker)6186 static void pr_cont_worker_id(struct worker *worker)
6187 {
6188 	struct worker_pool *pool = worker->pool;
6189 
6190 	if (pool->flags & WQ_BH)
6191 		pr_cont("bh%s",
6192 			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6193 	else
6194 		pr_cont("%d%s", task_pid_nr(worker->task),
6195 			worker->rescue_wq ? "(RESCUER)" : "");
6196 }
6197 
6198 struct pr_cont_work_struct {
6199 	bool comma;
6200 	work_func_t func;
6201 	long ctr;
6202 };
6203 
pr_cont_work_flush(bool comma,work_func_t func,struct pr_cont_work_struct * pcwsp)6204 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
6205 {
6206 	if (!pcwsp->ctr)
6207 		goto out_record;
6208 	if (func == pcwsp->func) {
6209 		pcwsp->ctr++;
6210 		return;
6211 	}
6212 	if (pcwsp->ctr == 1)
6213 		pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
6214 	else
6215 		pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
6216 	pcwsp->ctr = 0;
6217 out_record:
6218 	if ((long)func == -1L)
6219 		return;
6220 	pcwsp->comma = comma;
6221 	pcwsp->func = func;
6222 	pcwsp->ctr = 1;
6223 }
6224 
pr_cont_work(bool comma,struct work_struct * work,struct pr_cont_work_struct * pcwsp)6225 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
6226 {
6227 	if (work->func == wq_barrier_func) {
6228 		struct wq_barrier *barr;
6229 
6230 		barr = container_of(work, struct wq_barrier, work);
6231 
6232 		pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6233 		pr_cont("%s BAR(%d)", comma ? "," : "",
6234 			task_pid_nr(barr->task));
6235 	} else {
6236 		if (!comma)
6237 			pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6238 		pr_cont_work_flush(comma, work->func, pcwsp);
6239 	}
6240 }
6241 
show_pwq(struct pool_workqueue * pwq)6242 static void show_pwq(struct pool_workqueue *pwq)
6243 {
6244 	struct pr_cont_work_struct pcws = { .ctr = 0, };
6245 	struct worker_pool *pool = pwq->pool;
6246 	struct work_struct *work;
6247 	struct worker *worker;
6248 	bool has_in_flight = false, has_pending = false;
6249 	int bkt;
6250 
6251 	pr_info("  pwq %d:", pool->id);
6252 	pr_cont_pool_info(pool);
6253 
6254 	pr_cont(" active=%d refcnt=%d%s\n",
6255 		pwq->nr_active, pwq->refcnt,
6256 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
6257 
6258 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6259 		if (worker->current_pwq == pwq) {
6260 			has_in_flight = true;
6261 			break;
6262 		}
6263 	}
6264 	if (has_in_flight) {
6265 		bool comma = false;
6266 
6267 		pr_info("    in-flight:");
6268 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6269 			if (worker->current_pwq != pwq)
6270 				continue;
6271 
6272 			pr_cont(" %s", comma ? "," : "");
6273 			pr_cont_worker_id(worker);
6274 			pr_cont(":%ps", worker->current_func);
6275 			list_for_each_entry(work, &worker->scheduled, entry)
6276 				pr_cont_work(false, work, &pcws);
6277 			pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6278 			comma = true;
6279 		}
6280 		pr_cont("\n");
6281 	}
6282 
6283 	list_for_each_entry(work, &pool->worklist, entry) {
6284 		if (get_work_pwq(work) == pwq) {
6285 			has_pending = true;
6286 			break;
6287 		}
6288 	}
6289 	if (has_pending) {
6290 		bool comma = false;
6291 
6292 		pr_info("    pending:");
6293 		list_for_each_entry(work, &pool->worklist, entry) {
6294 			if (get_work_pwq(work) != pwq)
6295 				continue;
6296 
6297 			pr_cont_work(comma, work, &pcws);
6298 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6299 		}
6300 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6301 		pr_cont("\n");
6302 	}
6303 
6304 	if (!list_empty(&pwq->inactive_works)) {
6305 		bool comma = false;
6306 
6307 		pr_info("    inactive:");
6308 		list_for_each_entry(work, &pwq->inactive_works, entry) {
6309 			pr_cont_work(comma, work, &pcws);
6310 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6311 		}
6312 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6313 		pr_cont("\n");
6314 	}
6315 }
6316 
6317 /**
6318  * show_one_workqueue - dump state of specified workqueue
6319  * @wq: workqueue whose state will be printed
6320  */
show_one_workqueue(struct workqueue_struct * wq)6321 void show_one_workqueue(struct workqueue_struct *wq)
6322 {
6323 	struct pool_workqueue *pwq;
6324 	bool idle = true;
6325 	unsigned long irq_flags;
6326 
6327 	for_each_pwq(pwq, wq) {
6328 		if (!pwq_is_empty(pwq)) {
6329 			idle = false;
6330 			break;
6331 		}
6332 	}
6333 	if (idle) /* Nothing to print for idle workqueue */
6334 		return;
6335 
6336 	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
6337 
6338 	for_each_pwq(pwq, wq) {
6339 		raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
6340 		if (!pwq_is_empty(pwq)) {
6341 			/*
6342 			 * Defer printing to avoid deadlocks in console
6343 			 * drivers that queue work while holding locks
6344 			 * also taken in their write paths.
6345 			 */
6346 			printk_deferred_enter();
6347 			show_pwq(pwq);
6348 			printk_deferred_exit();
6349 		}
6350 		raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
6351 		/*
6352 		 * We could be printing a lot from atomic context, e.g.
6353 		 * sysrq-t -> show_all_workqueues(). Avoid triggering
6354 		 * hard lockup.
6355 		 */
6356 		touch_nmi_watchdog();
6357 	}
6358 
6359 }
6360 
6361 /**
6362  * show_one_worker_pool - dump state of specified worker pool
6363  * @pool: worker pool whose state will be printed
6364  */
show_one_worker_pool(struct worker_pool * pool)6365 static void show_one_worker_pool(struct worker_pool *pool)
6366 {
6367 	struct worker *worker;
6368 	bool first = true;
6369 	unsigned long irq_flags;
6370 	unsigned long hung = 0;
6371 
6372 	raw_spin_lock_irqsave(&pool->lock, irq_flags);
6373 	if (pool->nr_workers == pool->nr_idle)
6374 		goto next_pool;
6375 
6376 	/* How long the first pending work is waiting for a worker. */
6377 	if (!list_empty(&pool->worklist))
6378 		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
6379 
6380 	/*
6381 	 * Defer printing to avoid deadlocks in console drivers that
6382 	 * queue work while holding locks also taken in their write
6383 	 * paths.
6384 	 */
6385 	printk_deferred_enter();
6386 	pr_info("pool %d:", pool->id);
6387 	pr_cont_pool_info(pool);
6388 	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
6389 	if (pool->manager)
6390 		pr_cont(" manager: %d",
6391 			task_pid_nr(pool->manager->task));
6392 	list_for_each_entry(worker, &pool->idle_list, entry) {
6393 		pr_cont(" %s", first ? "idle: " : "");
6394 		pr_cont_worker_id(worker);
6395 		first = false;
6396 	}
6397 	pr_cont("\n");
6398 	printk_deferred_exit();
6399 next_pool:
6400 	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6401 	/*
6402 	 * We could be printing a lot from atomic context, e.g.
6403 	 * sysrq-t -> show_all_workqueues(). Avoid triggering
6404 	 * hard lockup.
6405 	 */
6406 	touch_nmi_watchdog();
6407 
6408 }
6409 
6410 /**
6411  * show_all_workqueues - dump workqueue state
6412  *
6413  * Called from a sysrq handler and prints out all busy workqueues and pools.
6414  */
show_all_workqueues(void)6415 void show_all_workqueues(void)
6416 {
6417 	struct workqueue_struct *wq;
6418 	struct worker_pool *pool;
6419 	int pi;
6420 
6421 	rcu_read_lock();
6422 
6423 	pr_info("Showing busy workqueues and worker pools:\n");
6424 
6425 	list_for_each_entry_rcu(wq, &workqueues, list)
6426 		show_one_workqueue(wq);
6427 
6428 	for_each_pool(pool, pi)
6429 		show_one_worker_pool(pool);
6430 
6431 	rcu_read_unlock();
6432 }
6433 
6434 /**
6435  * show_freezable_workqueues - dump freezable workqueue state
6436  *
6437  * Called from try_to_freeze_tasks() and prints out all freezable workqueues
6438  * still busy.
6439  */
show_freezable_workqueues(void)6440 void show_freezable_workqueues(void)
6441 {
6442 	struct workqueue_struct *wq;
6443 
6444 	rcu_read_lock();
6445 
6446 	pr_info("Showing freezable workqueues that are still busy:\n");
6447 
6448 	list_for_each_entry_rcu(wq, &workqueues, list) {
6449 		if (!(wq->flags & WQ_FREEZABLE))
6450 			continue;
6451 		show_one_workqueue(wq);
6452 	}
6453 
6454 	rcu_read_unlock();
6455 }
6456 
6457 /* used to show worker information through /proc/PID/{comm,stat,status} */
wq_worker_comm(char * buf,size_t size,struct task_struct * task)6458 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
6459 {
6460 	/* stabilize PF_WQ_WORKER and worker pool association */
6461 	mutex_lock(&wq_pool_attach_mutex);
6462 
6463 	if (task->flags & PF_WQ_WORKER) {
6464 		struct worker *worker = kthread_data(task);
6465 		struct worker_pool *pool = worker->pool;
6466 		int off;
6467 
6468 		off = format_worker_id(buf, size, worker, pool);
6469 
6470 		if (pool) {
6471 			raw_spin_lock_irq(&pool->lock);
6472 			/*
6473 			 * ->desc tracks information (wq name or
6474 			 * set_worker_desc()) for the latest execution.  If
6475 			 * current, prepend '+', otherwise '-'.
6476 			 */
6477 			if (worker->desc[0] != '\0') {
6478 				if (worker->current_work)
6479 					scnprintf(buf + off, size - off, "+%s",
6480 						  worker->desc);
6481 				else
6482 					scnprintf(buf + off, size - off, "-%s",
6483 						  worker->desc);
6484 			}
6485 			raw_spin_unlock_irq(&pool->lock);
6486 		}
6487 	} else {
6488 		strscpy(buf, task->comm, size);
6489 	}
6490 
6491 	mutex_unlock(&wq_pool_attach_mutex);
6492 }
6493 
6494 #ifdef CONFIG_SMP
6495 
6496 /*
6497  * CPU hotplug.
6498  *
6499  * There are two challenges in supporting CPU hotplug.  Firstly, there
6500  * are a lot of assumptions on strong associations among work, pwq and
6501  * pool which make migrating pending and scheduled works very
6502  * difficult to implement without impacting hot paths.  Secondly,
6503  * worker pools serve mix of short, long and very long running works making
6504  * blocked draining impractical.
6505  *
6506  * This is solved by allowing the pools to be disassociated from the CPU
6507  * running as an unbound one and allowing it to be reattached later if the
6508  * cpu comes back online.
6509  */
6510 
unbind_workers(int cpu)6511 static void unbind_workers(int cpu)
6512 {
6513 	struct worker_pool *pool;
6514 	struct worker *worker;
6515 
6516 	for_each_cpu_worker_pool(pool, cpu) {
6517 		mutex_lock(&wq_pool_attach_mutex);
6518 		raw_spin_lock_irq(&pool->lock);
6519 
6520 		/*
6521 		 * We've blocked all attach/detach operations. Make all workers
6522 		 * unbound and set DISASSOCIATED.  Before this, all workers
6523 		 * must be on the cpu.  After this, they may become diasporas.
6524 		 * And the preemption disabled section in their sched callbacks
6525 		 * are guaranteed to see WORKER_UNBOUND since the code here
6526 		 * is on the same cpu.
6527 		 */
6528 		for_each_pool_worker(worker, pool)
6529 			worker->flags |= WORKER_UNBOUND;
6530 
6531 		pool->flags |= POOL_DISASSOCIATED;
6532 
6533 		/*
6534 		 * The handling of nr_running in sched callbacks are disabled
6535 		 * now.  Zap nr_running.  After this, nr_running stays zero and
6536 		 * need_more_worker() and keep_working() are always true as
6537 		 * long as the worklist is not empty.  This pool now behaves as
6538 		 * an unbound (in terms of concurrency management) pool which
6539 		 * are served by workers tied to the pool.
6540 		 */
6541 		pool->nr_running = 0;
6542 
6543 		/*
6544 		 * With concurrency management just turned off, a busy
6545 		 * worker blocking could lead to lengthy stalls.  Kick off
6546 		 * unbound chain execution of currently pending work items.
6547 		 */
6548 		kick_pool(pool);
6549 
6550 		raw_spin_unlock_irq(&pool->lock);
6551 
6552 		for_each_pool_worker(worker, pool)
6553 			unbind_worker(worker);
6554 
6555 		mutex_unlock(&wq_pool_attach_mutex);
6556 	}
6557 }
6558 
6559 /**
6560  * rebind_workers - rebind all workers of a pool to the associated CPU
6561  * @pool: pool of interest
6562  *
6563  * @pool->cpu is coming online.  Rebind all workers to the CPU.
6564  */
rebind_workers(struct worker_pool * pool)6565 static void rebind_workers(struct worker_pool *pool)
6566 {
6567 	struct worker *worker;
6568 
6569 	lockdep_assert_held(&wq_pool_attach_mutex);
6570 
6571 	/*
6572 	 * Restore CPU affinity of all workers.  As all idle workers should
6573 	 * be on the run-queue of the associated CPU before any local
6574 	 * wake-ups for concurrency management happen, restore CPU affinity
6575 	 * of all workers first and then clear UNBOUND.  As we're called
6576 	 * from CPU_ONLINE, the following shouldn't fail.
6577 	 */
6578 	for_each_pool_worker(worker, pool) {
6579 		kthread_set_per_cpu(worker->task, pool->cpu);
6580 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
6581 						  pool_allowed_cpus(pool)) < 0);
6582 	}
6583 
6584 	raw_spin_lock_irq(&pool->lock);
6585 
6586 	pool->flags &= ~POOL_DISASSOCIATED;
6587 
6588 	for_each_pool_worker(worker, pool) {
6589 		unsigned int worker_flags = worker->flags;
6590 
6591 		/*
6592 		 * We want to clear UNBOUND but can't directly call
6593 		 * worker_clr_flags() or adjust nr_running.  Atomically
6594 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
6595 		 * @worker will clear REBOUND using worker_clr_flags() when
6596 		 * it initiates the next execution cycle thus restoring
6597 		 * concurrency management.  Note that when or whether
6598 		 * @worker clears REBOUND doesn't affect correctness.
6599 		 *
6600 		 * WRITE_ONCE() is necessary because @worker->flags may be
6601 		 * tested without holding any lock in
6602 		 * wq_worker_running().  Without it, NOT_RUNNING test may
6603 		 * fail incorrectly leading to premature concurrency
6604 		 * management operations.
6605 		 */
6606 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
6607 		worker_flags |= WORKER_REBOUND;
6608 		worker_flags &= ~WORKER_UNBOUND;
6609 		WRITE_ONCE(worker->flags, worker_flags);
6610 	}
6611 
6612 	raw_spin_unlock_irq(&pool->lock);
6613 }
6614 
6615 /**
6616  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
6617  * @pool: unbound pool of interest
6618  * @cpu: the CPU which is coming up
6619  *
6620  * An unbound pool may end up with a cpumask which doesn't have any online
6621  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
6622  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
6623  * online CPU before, cpus_allowed of all its workers should be restored.
6624  */
restore_unbound_workers_cpumask(struct worker_pool * pool,int cpu)6625 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6626 {
6627 	static cpumask_t cpumask;
6628 	struct worker *worker;
6629 
6630 	lockdep_assert_held(&wq_pool_attach_mutex);
6631 
6632 	/* is @cpu allowed for @pool? */
6633 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6634 		return;
6635 
6636 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
6637 
6638 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
6639 	for_each_pool_worker(worker, pool)
6640 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
6641 }
6642 
workqueue_prepare_cpu(unsigned int cpu)6643 int workqueue_prepare_cpu(unsigned int cpu)
6644 {
6645 	struct worker_pool *pool;
6646 
6647 	for_each_cpu_worker_pool(pool, cpu) {
6648 		if (pool->nr_workers)
6649 			continue;
6650 		if (!create_worker(pool))
6651 			return -ENOMEM;
6652 	}
6653 	return 0;
6654 }
6655 
workqueue_online_cpu(unsigned int cpu)6656 int workqueue_online_cpu(unsigned int cpu)
6657 {
6658 	struct worker_pool *pool;
6659 	struct workqueue_struct *wq;
6660 	int pi;
6661 
6662 	mutex_lock(&wq_pool_mutex);
6663 
6664 	cpumask_set_cpu(cpu, wq_online_cpumask);
6665 
6666 	for_each_pool(pool, pi) {
6667 		/* BH pools aren't affected by hotplug */
6668 		if (pool->flags & POOL_BH)
6669 			continue;
6670 
6671 		mutex_lock(&wq_pool_attach_mutex);
6672 		if (pool->cpu == cpu)
6673 			rebind_workers(pool);
6674 		else if (pool->cpu < 0)
6675 			restore_unbound_workers_cpumask(pool, cpu);
6676 		mutex_unlock(&wq_pool_attach_mutex);
6677 	}
6678 
6679 	/* update pod affinity of unbound workqueues */
6680 	list_for_each_entry(wq, &workqueues, list) {
6681 		struct workqueue_attrs *attrs = wq->unbound_attrs;
6682 
6683 		if (attrs) {
6684 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6685 			int tcpu;
6686 
6687 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6688 				unbound_wq_update_pwq(wq, tcpu);
6689 
6690 			mutex_lock(&wq->mutex);
6691 			wq_update_node_max_active(wq, -1);
6692 			mutex_unlock(&wq->mutex);
6693 		}
6694 	}
6695 
6696 	mutex_unlock(&wq_pool_mutex);
6697 	return 0;
6698 }
6699 
workqueue_offline_cpu(unsigned int cpu)6700 int workqueue_offline_cpu(unsigned int cpu)
6701 {
6702 	struct workqueue_struct *wq;
6703 
6704 	/* unbinding per-cpu workers should happen on the local CPU */
6705 	if (WARN_ON(cpu != smp_processor_id()))
6706 		return -1;
6707 
6708 	unbind_workers(cpu);
6709 
6710 	/* update pod affinity of unbound workqueues */
6711 	mutex_lock(&wq_pool_mutex);
6712 
6713 	cpumask_clear_cpu(cpu, wq_online_cpumask);
6714 
6715 	list_for_each_entry(wq, &workqueues, list) {
6716 		struct workqueue_attrs *attrs = wq->unbound_attrs;
6717 
6718 		if (attrs) {
6719 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6720 			int tcpu;
6721 
6722 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6723 				unbound_wq_update_pwq(wq, tcpu);
6724 
6725 			mutex_lock(&wq->mutex);
6726 			wq_update_node_max_active(wq, cpu);
6727 			mutex_unlock(&wq->mutex);
6728 		}
6729 	}
6730 	mutex_unlock(&wq_pool_mutex);
6731 
6732 	return 0;
6733 }
6734 
6735 struct work_for_cpu {
6736 	struct work_struct work;
6737 	long (*fn)(void *);
6738 	void *arg;
6739 	long ret;
6740 };
6741 
work_for_cpu_fn(struct work_struct * work)6742 static void work_for_cpu_fn(struct work_struct *work)
6743 {
6744 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6745 
6746 	wfc->ret = wfc->fn(wfc->arg);
6747 }
6748 
6749 /**
6750  * work_on_cpu_key - run a function in thread context on a particular cpu
6751  * @cpu: the cpu to run on
6752  * @fn: the function to run
6753  * @arg: the function arg
6754  * @key: The lock class key for lock debugging purposes
6755  *
6756  * It is up to the caller to ensure that the cpu doesn't go offline.
6757  * The caller must not hold any locks which would prevent @fn from completing.
6758  *
6759  * Return: The value @fn returns.
6760  */
work_on_cpu_key(int cpu,long (* fn)(void *),void * arg,struct lock_class_key * key)6761 long work_on_cpu_key(int cpu, long (*fn)(void *),
6762 		     void *arg, struct lock_class_key *key)
6763 {
6764 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6765 
6766 	INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6767 	schedule_work_on(cpu, &wfc.work);
6768 	flush_work(&wfc.work);
6769 	destroy_work_on_stack(&wfc.work);
6770 	return wfc.ret;
6771 }
6772 EXPORT_SYMBOL_GPL(work_on_cpu_key);
6773 
6774 /**
6775  * work_on_cpu_safe_key - run a function in thread context on a particular cpu
6776  * @cpu: the cpu to run on
6777  * @fn:  the function to run
6778  * @arg: the function argument
6779  * @key: The lock class key for lock debugging purposes
6780  *
6781  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
6782  * any locks which would prevent @fn from completing.
6783  *
6784  * Return: The value @fn returns.
6785  */
work_on_cpu_safe_key(int cpu,long (* fn)(void *),void * arg,struct lock_class_key * key)6786 long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
6787 			  void *arg, struct lock_class_key *key)
6788 {
6789 	long ret = -ENODEV;
6790 
6791 	cpus_read_lock();
6792 	if (cpu_online(cpu))
6793 		ret = work_on_cpu_key(cpu, fn, arg, key);
6794 	cpus_read_unlock();
6795 	return ret;
6796 }
6797 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
6798 #endif /* CONFIG_SMP */
6799 
6800 #ifdef CONFIG_FREEZER
6801 
6802 /**
6803  * freeze_workqueues_begin - begin freezing workqueues
6804  *
6805  * Start freezing workqueues.  After this function returns, all freezable
6806  * workqueues will queue new works to their inactive_works list instead of
6807  * pool->worklist.
6808  *
6809  * CONTEXT:
6810  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6811  */
freeze_workqueues_begin(void)6812 void freeze_workqueues_begin(void)
6813 {
6814 	struct workqueue_struct *wq;
6815 
6816 	mutex_lock(&wq_pool_mutex);
6817 
6818 	WARN_ON_ONCE(workqueue_freezing);
6819 	workqueue_freezing = true;
6820 
6821 	list_for_each_entry(wq, &workqueues, list) {
6822 		mutex_lock(&wq->mutex);
6823 		wq_adjust_max_active(wq);
6824 		mutex_unlock(&wq->mutex);
6825 	}
6826 
6827 	mutex_unlock(&wq_pool_mutex);
6828 }
6829 
6830 /**
6831  * freeze_workqueues_busy - are freezable workqueues still busy?
6832  *
6833  * Check whether freezing is complete.  This function must be called
6834  * between freeze_workqueues_begin() and thaw_workqueues().
6835  *
6836  * CONTEXT:
6837  * Grabs and releases wq_pool_mutex.
6838  *
6839  * Return:
6840  * %true if some freezable workqueues are still busy.  %false if freezing
6841  * is complete.
6842  */
freeze_workqueues_busy(void)6843 bool freeze_workqueues_busy(void)
6844 {
6845 	bool busy = false;
6846 	struct workqueue_struct *wq;
6847 	struct pool_workqueue *pwq;
6848 
6849 	mutex_lock(&wq_pool_mutex);
6850 
6851 	WARN_ON_ONCE(!workqueue_freezing);
6852 
6853 	list_for_each_entry(wq, &workqueues, list) {
6854 		if (!(wq->flags & WQ_FREEZABLE))
6855 			continue;
6856 		/*
6857 		 * nr_active is monotonically decreasing.  It's safe
6858 		 * to peek without lock.
6859 		 */
6860 		rcu_read_lock();
6861 		for_each_pwq(pwq, wq) {
6862 			WARN_ON_ONCE(pwq->nr_active < 0);
6863 			if (pwq->nr_active) {
6864 				busy = true;
6865 				rcu_read_unlock();
6866 				goto out_unlock;
6867 			}
6868 		}
6869 		rcu_read_unlock();
6870 	}
6871 out_unlock:
6872 	mutex_unlock(&wq_pool_mutex);
6873 	return busy;
6874 }
6875 
6876 /**
6877  * thaw_workqueues - thaw workqueues
6878  *
6879  * Thaw workqueues.  Normal queueing is restored and all collected
6880  * frozen works are transferred to their respective pool worklists.
6881  *
6882  * CONTEXT:
6883  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6884  */
thaw_workqueues(void)6885 void thaw_workqueues(void)
6886 {
6887 	struct workqueue_struct *wq;
6888 
6889 	mutex_lock(&wq_pool_mutex);
6890 
6891 	if (!workqueue_freezing)
6892 		goto out_unlock;
6893 
6894 	workqueue_freezing = false;
6895 
6896 	/* restore max_active and repopulate worklist */
6897 	list_for_each_entry(wq, &workqueues, list) {
6898 		mutex_lock(&wq->mutex);
6899 		wq_adjust_max_active(wq);
6900 		mutex_unlock(&wq->mutex);
6901 	}
6902 
6903 out_unlock:
6904 	mutex_unlock(&wq_pool_mutex);
6905 }
6906 #endif /* CONFIG_FREEZER */
6907 
workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)6908 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
6909 {
6910 	LIST_HEAD(ctxs);
6911 	int ret = 0;
6912 	struct workqueue_struct *wq;
6913 	struct apply_wqattrs_ctx *ctx, *n;
6914 
6915 	lockdep_assert_held(&wq_pool_mutex);
6916 
6917 	list_for_each_entry(wq, &workqueues, list) {
6918 		if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING))
6919 			continue;
6920 
6921 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
6922 		if (IS_ERR(ctx)) {
6923 			ret = PTR_ERR(ctx);
6924 			break;
6925 		}
6926 
6927 		list_add_tail(&ctx->list, &ctxs);
6928 	}
6929 
6930 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
6931 		if (!ret)
6932 			apply_wqattrs_commit(ctx);
6933 		apply_wqattrs_cleanup(ctx);
6934 	}
6935 
6936 	if (!ret) {
6937 		mutex_lock(&wq_pool_attach_mutex);
6938 		cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
6939 		mutex_unlock(&wq_pool_attach_mutex);
6940 	}
6941 	return ret;
6942 }
6943 
6944 /**
6945  * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
6946  * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
6947  *
6948  * This function can be called from cpuset code to provide a set of isolated
6949  * CPUs that should be excluded from wq_unbound_cpumask.
6950  */
workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)6951 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
6952 {
6953 	cpumask_var_t cpumask;
6954 	int ret = 0;
6955 
6956 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6957 		return -ENOMEM;
6958 
6959 	mutex_lock(&wq_pool_mutex);
6960 
6961 	/*
6962 	 * If the operation fails, it will fall back to
6963 	 * wq_requested_unbound_cpumask which is initially set to
6964 	 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
6965 	 * by any subsequent write to workqueue/cpumask sysfs file.
6966 	 */
6967 	if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
6968 		cpumask_copy(cpumask, wq_requested_unbound_cpumask);
6969 	if (!cpumask_equal(cpumask, wq_unbound_cpumask))
6970 		ret = workqueue_apply_unbound_cpumask(cpumask);
6971 
6972 	/* Save the current isolated cpumask & export it via sysfs */
6973 	if (!ret)
6974 		cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
6975 
6976 	mutex_unlock(&wq_pool_mutex);
6977 	free_cpumask_var(cpumask);
6978 	return ret;
6979 }
6980 
parse_affn_scope(const char * val)6981 static int parse_affn_scope(const char *val)
6982 {
6983 	int i;
6984 
6985 	for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
6986 		if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
6987 			return i;
6988 	}
6989 	return -EINVAL;
6990 }
6991 
wq_affn_dfl_set(const char * val,const struct kernel_param * kp)6992 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
6993 {
6994 	struct workqueue_struct *wq;
6995 	int affn, cpu;
6996 
6997 	affn = parse_affn_scope(val);
6998 	if (affn < 0)
6999 		return affn;
7000 	if (affn == WQ_AFFN_DFL)
7001 		return -EINVAL;
7002 
7003 	cpus_read_lock();
7004 	mutex_lock(&wq_pool_mutex);
7005 
7006 	wq_affn_dfl = affn;
7007 
7008 	list_for_each_entry(wq, &workqueues, list) {
7009 		for_each_online_cpu(cpu)
7010 			unbound_wq_update_pwq(wq, cpu);
7011 	}
7012 
7013 	mutex_unlock(&wq_pool_mutex);
7014 	cpus_read_unlock();
7015 
7016 	return 0;
7017 }
7018 
wq_affn_dfl_get(char * buffer,const struct kernel_param * kp)7019 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
7020 {
7021 	return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
7022 }
7023 
7024 static const struct kernel_param_ops wq_affn_dfl_ops = {
7025 	.set	= wq_affn_dfl_set,
7026 	.get	= wq_affn_dfl_get,
7027 };
7028 
7029 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
7030 
7031 #ifdef CONFIG_SYSFS
7032 /*
7033  * Workqueues with WQ_SYSFS flag set is visible to userland via
7034  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
7035  * following attributes.
7036  *
7037  *  per_cpu		RO bool	: whether the workqueue is per-cpu or unbound
7038  *  max_active		RW int	: maximum number of in-flight work items
7039  *
7040  * Unbound workqueues have the following extra attributes.
7041  *
7042  *  nice		RW int	: nice value of the workers
7043  *  cpumask		RW mask	: bitmask of allowed CPUs for the workers
7044  *  affinity_scope	RW str  : worker CPU affinity scope (cache, numa, none)
7045  *  affinity_strict	RW bool : worker CPU affinity is strict
7046  */
7047 struct wq_device {
7048 	struct workqueue_struct		*wq;
7049 	struct device			dev;
7050 };
7051 
dev_to_wq(struct device * dev)7052 static struct workqueue_struct *dev_to_wq(struct device *dev)
7053 {
7054 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7055 
7056 	return wq_dev->wq;
7057 }
7058 
per_cpu_show(struct device * dev,struct device_attribute * attr,char * buf)7059 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
7060 			    char *buf)
7061 {
7062 	struct workqueue_struct *wq = dev_to_wq(dev);
7063 
7064 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
7065 }
7066 static DEVICE_ATTR_RO(per_cpu);
7067 
max_active_show(struct device * dev,struct device_attribute * attr,char * buf)7068 static ssize_t max_active_show(struct device *dev,
7069 			       struct device_attribute *attr, char *buf)
7070 {
7071 	struct workqueue_struct *wq = dev_to_wq(dev);
7072 
7073 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
7074 }
7075 
max_active_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7076 static ssize_t max_active_store(struct device *dev,
7077 				struct device_attribute *attr, const char *buf,
7078 				size_t count)
7079 {
7080 	struct workqueue_struct *wq = dev_to_wq(dev);
7081 	int val;
7082 
7083 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
7084 		return -EINVAL;
7085 
7086 	workqueue_set_max_active(wq, val);
7087 	return count;
7088 }
7089 static DEVICE_ATTR_RW(max_active);
7090 
7091 static struct attribute *wq_sysfs_attrs[] = {
7092 	&dev_attr_per_cpu.attr,
7093 	&dev_attr_max_active.attr,
7094 	NULL,
7095 };
7096 ATTRIBUTE_GROUPS(wq_sysfs);
7097 
wq_nice_show(struct device * dev,struct device_attribute * attr,char * buf)7098 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
7099 			    char *buf)
7100 {
7101 	struct workqueue_struct *wq = dev_to_wq(dev);
7102 	int written;
7103 
7104 	mutex_lock(&wq->mutex);
7105 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
7106 	mutex_unlock(&wq->mutex);
7107 
7108 	return written;
7109 }
7110 
7111 /* prepare workqueue_attrs for sysfs store operations */
wq_sysfs_prep_attrs(struct workqueue_struct * wq)7112 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
7113 {
7114 	struct workqueue_attrs *attrs;
7115 
7116 	lockdep_assert_held(&wq_pool_mutex);
7117 
7118 	attrs = alloc_workqueue_attrs();
7119 	if (!attrs)
7120 		return NULL;
7121 
7122 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
7123 	return attrs;
7124 }
7125 
wq_nice_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7126 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
7127 			     const char *buf, size_t count)
7128 {
7129 	struct workqueue_struct *wq = dev_to_wq(dev);
7130 	struct workqueue_attrs *attrs;
7131 	int ret = -ENOMEM;
7132 
7133 	apply_wqattrs_lock();
7134 
7135 	attrs = wq_sysfs_prep_attrs(wq);
7136 	if (!attrs)
7137 		goto out_unlock;
7138 
7139 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
7140 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
7141 		ret = apply_workqueue_attrs_locked(wq, attrs);
7142 	else
7143 		ret = -EINVAL;
7144 
7145 out_unlock:
7146 	apply_wqattrs_unlock();
7147 	free_workqueue_attrs(attrs);
7148 	return ret ?: count;
7149 }
7150 
wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)7151 static ssize_t wq_cpumask_show(struct device *dev,
7152 			       struct device_attribute *attr, char *buf)
7153 {
7154 	struct workqueue_struct *wq = dev_to_wq(dev);
7155 	int written;
7156 
7157 	mutex_lock(&wq->mutex);
7158 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
7159 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
7160 	mutex_unlock(&wq->mutex);
7161 	return written;
7162 }
7163 
wq_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7164 static ssize_t wq_cpumask_store(struct device *dev,
7165 				struct device_attribute *attr,
7166 				const char *buf, size_t count)
7167 {
7168 	struct workqueue_struct *wq = dev_to_wq(dev);
7169 	struct workqueue_attrs *attrs;
7170 	int ret = -ENOMEM;
7171 
7172 	apply_wqattrs_lock();
7173 
7174 	attrs = wq_sysfs_prep_attrs(wq);
7175 	if (!attrs)
7176 		goto out_unlock;
7177 
7178 	ret = cpumask_parse(buf, attrs->cpumask);
7179 	if (!ret)
7180 		ret = apply_workqueue_attrs_locked(wq, attrs);
7181 
7182 out_unlock:
7183 	apply_wqattrs_unlock();
7184 	free_workqueue_attrs(attrs);
7185 	return ret ?: count;
7186 }
7187 
wq_affn_scope_show(struct device * dev,struct device_attribute * attr,char * buf)7188 static ssize_t wq_affn_scope_show(struct device *dev,
7189 				  struct device_attribute *attr, char *buf)
7190 {
7191 	struct workqueue_struct *wq = dev_to_wq(dev);
7192 	int written;
7193 
7194 	mutex_lock(&wq->mutex);
7195 	if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
7196 		written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
7197 				    wq_affn_names[WQ_AFFN_DFL],
7198 				    wq_affn_names[wq_affn_dfl]);
7199 	else
7200 		written = scnprintf(buf, PAGE_SIZE, "%s\n",
7201 				    wq_affn_names[wq->unbound_attrs->affn_scope]);
7202 	mutex_unlock(&wq->mutex);
7203 
7204 	return written;
7205 }
7206 
wq_affn_scope_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7207 static ssize_t wq_affn_scope_store(struct device *dev,
7208 				   struct device_attribute *attr,
7209 				   const char *buf, size_t count)
7210 {
7211 	struct workqueue_struct *wq = dev_to_wq(dev);
7212 	struct workqueue_attrs *attrs;
7213 	int affn, ret = -ENOMEM;
7214 
7215 	affn = parse_affn_scope(buf);
7216 	if (affn < 0)
7217 		return affn;
7218 
7219 	apply_wqattrs_lock();
7220 	attrs = wq_sysfs_prep_attrs(wq);
7221 	if (attrs) {
7222 		attrs->affn_scope = affn;
7223 		ret = apply_workqueue_attrs_locked(wq, attrs);
7224 	}
7225 	apply_wqattrs_unlock();
7226 	free_workqueue_attrs(attrs);
7227 	return ret ?: count;
7228 }
7229 
wq_affinity_strict_show(struct device * dev,struct device_attribute * attr,char * buf)7230 static ssize_t wq_affinity_strict_show(struct device *dev,
7231 				       struct device_attribute *attr, char *buf)
7232 {
7233 	struct workqueue_struct *wq = dev_to_wq(dev);
7234 
7235 	return scnprintf(buf, PAGE_SIZE, "%d\n",
7236 			 wq->unbound_attrs->affn_strict);
7237 }
7238 
wq_affinity_strict_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7239 static ssize_t wq_affinity_strict_store(struct device *dev,
7240 					struct device_attribute *attr,
7241 					const char *buf, size_t count)
7242 {
7243 	struct workqueue_struct *wq = dev_to_wq(dev);
7244 	struct workqueue_attrs *attrs;
7245 	int v, ret = -ENOMEM;
7246 
7247 	if (sscanf(buf, "%d", &v) != 1)
7248 		return -EINVAL;
7249 
7250 	apply_wqattrs_lock();
7251 	attrs = wq_sysfs_prep_attrs(wq);
7252 	if (attrs) {
7253 		attrs->affn_strict = (bool)v;
7254 		ret = apply_workqueue_attrs_locked(wq, attrs);
7255 	}
7256 	apply_wqattrs_unlock();
7257 	free_workqueue_attrs(attrs);
7258 	return ret ?: count;
7259 }
7260 
7261 static struct device_attribute wq_sysfs_unbound_attrs[] = {
7262 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
7263 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
7264 	__ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
7265 	__ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
7266 	__ATTR_NULL,
7267 };
7268 
7269 static const struct bus_type wq_subsys = {
7270 	.name				= "workqueue",
7271 	.dev_groups			= wq_sysfs_groups,
7272 };
7273 
7274 /**
7275  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
7276  *  @cpumask: the cpumask to set
7277  *
7278  *  The low-level workqueues cpumask is a global cpumask that limits
7279  *  the affinity of all unbound workqueues.  This function check the @cpumask
7280  *  and apply it to all unbound workqueues and updates all pwqs of them.
7281  *
7282  *  Return:	0	- Success
7283  *		-EINVAL	- Invalid @cpumask
7284  *		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
7285  */
workqueue_set_unbound_cpumask(cpumask_var_t cpumask)7286 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
7287 {
7288 	int ret = -EINVAL;
7289 
7290 	/*
7291 	 * Not excluding isolated cpus on purpose.
7292 	 * If the user wishes to include them, we allow that.
7293 	 */
7294 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
7295 	if (!cpumask_empty(cpumask)) {
7296 		ret = 0;
7297 		apply_wqattrs_lock();
7298 		if (!cpumask_equal(cpumask, wq_unbound_cpumask))
7299 			ret = workqueue_apply_unbound_cpumask(cpumask);
7300 		if (!ret)
7301 			cpumask_copy(wq_requested_unbound_cpumask, cpumask);
7302 		apply_wqattrs_unlock();
7303 	}
7304 
7305 	return ret;
7306 }
7307 
__wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf,cpumask_var_t mask)7308 static ssize_t __wq_cpumask_show(struct device *dev,
7309 		struct device_attribute *attr, char *buf, cpumask_var_t mask)
7310 {
7311 	int written;
7312 
7313 	mutex_lock(&wq_pool_mutex);
7314 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
7315 	mutex_unlock(&wq_pool_mutex);
7316 
7317 	return written;
7318 }
7319 
cpumask_requested_show(struct device * dev,struct device_attribute * attr,char * buf)7320 static ssize_t cpumask_requested_show(struct device *dev,
7321 		struct device_attribute *attr, char *buf)
7322 {
7323 	return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
7324 }
7325 static DEVICE_ATTR_RO(cpumask_requested);
7326 
cpumask_isolated_show(struct device * dev,struct device_attribute * attr,char * buf)7327 static ssize_t cpumask_isolated_show(struct device *dev,
7328 		struct device_attribute *attr, char *buf)
7329 {
7330 	return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
7331 }
7332 static DEVICE_ATTR_RO(cpumask_isolated);
7333 
cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)7334 static ssize_t cpumask_show(struct device *dev,
7335 		struct device_attribute *attr, char *buf)
7336 {
7337 	return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
7338 }
7339 
cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7340 static ssize_t cpumask_store(struct device *dev,
7341 		struct device_attribute *attr, const char *buf, size_t count)
7342 {
7343 	cpumask_var_t cpumask;
7344 	int ret;
7345 
7346 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
7347 		return -ENOMEM;
7348 
7349 	ret = cpumask_parse(buf, cpumask);
7350 	if (!ret)
7351 		ret = workqueue_set_unbound_cpumask(cpumask);
7352 
7353 	free_cpumask_var(cpumask);
7354 	return ret ? ret : count;
7355 }
7356 static DEVICE_ATTR_RW(cpumask);
7357 
7358 static struct attribute *wq_sysfs_cpumask_attrs[] = {
7359 	&dev_attr_cpumask.attr,
7360 	&dev_attr_cpumask_requested.attr,
7361 	&dev_attr_cpumask_isolated.attr,
7362 	NULL,
7363 };
7364 ATTRIBUTE_GROUPS(wq_sysfs_cpumask);
7365 
wq_sysfs_init(void)7366 static int __init wq_sysfs_init(void)
7367 {
7368 	return subsys_virtual_register(&wq_subsys, wq_sysfs_cpumask_groups);
7369 }
7370 core_initcall(wq_sysfs_init);
7371 
wq_device_release(struct device * dev)7372 static void wq_device_release(struct device *dev)
7373 {
7374 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7375 
7376 	kfree(wq_dev);
7377 }
7378 
7379 /**
7380  * workqueue_sysfs_register - make a workqueue visible in sysfs
7381  * @wq: the workqueue to register
7382  *
7383  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
7384  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
7385  * which is the preferred method.
7386  *
7387  * Workqueue user should use this function directly iff it wants to apply
7388  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
7389  * apply_workqueue_attrs() may race against userland updating the
7390  * attributes.
7391  *
7392  * Return: 0 on success, -errno on failure.
7393  */
workqueue_sysfs_register(struct workqueue_struct * wq)7394 int workqueue_sysfs_register(struct workqueue_struct *wq)
7395 {
7396 	struct wq_device *wq_dev;
7397 	int ret;
7398 
7399 	/*
7400 	 * Adjusting max_active breaks ordering guarantee.  Disallow exposing
7401 	 * ordered workqueues.
7402 	 */
7403 	if (WARN_ON(wq->flags & __WQ_ORDERED))
7404 		return -EINVAL;
7405 
7406 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
7407 	if (!wq_dev)
7408 		return -ENOMEM;
7409 
7410 	wq_dev->wq = wq;
7411 	wq_dev->dev.bus = &wq_subsys;
7412 	wq_dev->dev.release = wq_device_release;
7413 	dev_set_name(&wq_dev->dev, "%s", wq->name);
7414 
7415 	/*
7416 	 * unbound_attrs are created separately.  Suppress uevent until
7417 	 * everything is ready.
7418 	 */
7419 	dev_set_uevent_suppress(&wq_dev->dev, true);
7420 
7421 	ret = device_register(&wq_dev->dev);
7422 	if (ret) {
7423 		put_device(&wq_dev->dev);
7424 		wq->wq_dev = NULL;
7425 		return ret;
7426 	}
7427 
7428 	if (wq->flags & WQ_UNBOUND) {
7429 		struct device_attribute *attr;
7430 
7431 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
7432 			ret = device_create_file(&wq_dev->dev, attr);
7433 			if (ret) {
7434 				device_unregister(&wq_dev->dev);
7435 				wq->wq_dev = NULL;
7436 				return ret;
7437 			}
7438 		}
7439 	}
7440 
7441 	dev_set_uevent_suppress(&wq_dev->dev, false);
7442 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
7443 	return 0;
7444 }
7445 
7446 /**
7447  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
7448  * @wq: the workqueue to unregister
7449  *
7450  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
7451  */
workqueue_sysfs_unregister(struct workqueue_struct * wq)7452 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
7453 {
7454 	struct wq_device *wq_dev = wq->wq_dev;
7455 
7456 	if (!wq->wq_dev)
7457 		return;
7458 
7459 	wq->wq_dev = NULL;
7460 	device_unregister(&wq_dev->dev);
7461 }
7462 #else	/* CONFIG_SYSFS */
workqueue_sysfs_unregister(struct workqueue_struct * wq)7463 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
7464 #endif	/* CONFIG_SYSFS */
7465 
7466 /*
7467  * Workqueue watchdog.
7468  *
7469  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
7470  * flush dependency, a concurrency managed work item which stays RUNNING
7471  * indefinitely.  Workqueue stalls can be very difficult to debug as the
7472  * usual warning mechanisms don't trigger and internal workqueue state is
7473  * largely opaque.
7474  *
7475  * Workqueue watchdog monitors all worker pools periodically and dumps
7476  * state if some pools failed to make forward progress for a while where
7477  * forward progress is defined as the first item on ->worklist changing.
7478  *
7479  * This mechanism is controlled through the kernel parameter
7480  * "workqueue.watchdog_thresh" which can be updated at runtime through the
7481  * corresponding sysfs parameter file.
7482  */
7483 #ifdef CONFIG_WQ_WATCHDOG
7484 
7485 static unsigned long wq_watchdog_thresh = 30;
7486 static struct timer_list wq_watchdog_timer;
7487 
7488 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
7489 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
7490 
7491 static unsigned int wq_panic_on_stall;
7492 module_param_named(panic_on_stall, wq_panic_on_stall, uint, 0644);
7493 
7494 /*
7495  * Show workers that might prevent the processing of pending work items.
7496  * The only candidates are CPU-bound workers in the running state.
7497  * Pending work items should be handled by another idle worker
7498  * in all other situations.
7499  */
show_cpu_pool_hog(struct worker_pool * pool)7500 static void show_cpu_pool_hog(struct worker_pool *pool)
7501 {
7502 	struct worker *worker;
7503 	unsigned long irq_flags;
7504 	int bkt;
7505 
7506 	raw_spin_lock_irqsave(&pool->lock, irq_flags);
7507 
7508 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
7509 		if (task_is_running(worker->task)) {
7510 			/*
7511 			 * Defer printing to avoid deadlocks in console
7512 			 * drivers that queue work while holding locks
7513 			 * also taken in their write paths.
7514 			 */
7515 			printk_deferred_enter();
7516 
7517 			pr_info("pool %d:\n", pool->id);
7518 			sched_show_task(worker->task);
7519 
7520 			printk_deferred_exit();
7521 		}
7522 	}
7523 
7524 	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
7525 }
7526 
show_cpu_pools_hogs(void)7527 static void show_cpu_pools_hogs(void)
7528 {
7529 	struct worker_pool *pool;
7530 	int pi;
7531 
7532 	pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
7533 
7534 	rcu_read_lock();
7535 
7536 	for_each_pool(pool, pi) {
7537 		if (pool->cpu_stall)
7538 			show_cpu_pool_hog(pool);
7539 
7540 	}
7541 
7542 	rcu_read_unlock();
7543 }
7544 
panic_on_wq_watchdog(void)7545 static void panic_on_wq_watchdog(void)
7546 {
7547 	static unsigned int wq_stall;
7548 
7549 	if (wq_panic_on_stall) {
7550 		wq_stall++;
7551 		BUG_ON(wq_stall >= wq_panic_on_stall);
7552 	}
7553 }
7554 
wq_watchdog_reset_touched(void)7555 static void wq_watchdog_reset_touched(void)
7556 {
7557 	int cpu;
7558 
7559 	wq_watchdog_touched = jiffies;
7560 	for_each_possible_cpu(cpu)
7561 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7562 }
7563 
wq_watchdog_timer_fn(struct timer_list * unused)7564 static void wq_watchdog_timer_fn(struct timer_list *unused)
7565 {
7566 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7567 	bool lockup_detected = false;
7568 	bool cpu_pool_stall = false;
7569 	unsigned long now = jiffies;
7570 	struct worker_pool *pool;
7571 	int pi;
7572 
7573 	if (!thresh)
7574 		return;
7575 
7576 	rcu_read_lock();
7577 
7578 	for_each_pool(pool, pi) {
7579 		unsigned long pool_ts, touched, ts;
7580 
7581 		pool->cpu_stall = false;
7582 		if (list_empty(&pool->worklist))
7583 			continue;
7584 
7585 		/*
7586 		 * If a virtual machine is stopped by the host it can look to
7587 		 * the watchdog like a stall.
7588 		 */
7589 		kvm_check_and_clear_guest_paused();
7590 
7591 		/* get the latest of pool and touched timestamps */
7592 		if (pool->cpu >= 0)
7593 			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
7594 		else
7595 			touched = READ_ONCE(wq_watchdog_touched);
7596 		pool_ts = READ_ONCE(pool->watchdog_ts);
7597 
7598 		if (time_after(pool_ts, touched))
7599 			ts = pool_ts;
7600 		else
7601 			ts = touched;
7602 
7603 		/* did we stall? */
7604 		if (time_after(now, ts + thresh)) {
7605 			lockup_detected = true;
7606 			if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) {
7607 				pool->cpu_stall = true;
7608 				cpu_pool_stall = true;
7609 			}
7610 			pr_emerg("BUG: workqueue lockup - pool");
7611 			pr_cont_pool_info(pool);
7612 			pr_cont(" stuck for %us!\n",
7613 				jiffies_to_msecs(now - pool_ts) / 1000);
7614 		}
7615 
7616 
7617 	}
7618 
7619 	rcu_read_unlock();
7620 
7621 	if (lockup_detected)
7622 		show_all_workqueues();
7623 
7624 	if (cpu_pool_stall)
7625 		show_cpu_pools_hogs();
7626 
7627 	if (lockup_detected)
7628 		panic_on_wq_watchdog();
7629 
7630 	wq_watchdog_reset_touched();
7631 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
7632 }
7633 
wq_watchdog_touch(int cpu)7634 notrace void wq_watchdog_touch(int cpu)
7635 {
7636 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7637 	unsigned long touch_ts = READ_ONCE(wq_watchdog_touched);
7638 	unsigned long now = jiffies;
7639 
7640 	if (cpu >= 0)
7641 		per_cpu(wq_watchdog_touched_cpu, cpu) = now;
7642 	else
7643 		WARN_ONCE(1, "%s should be called with valid CPU", __func__);
7644 
7645 	/* Don't unnecessarily store to global cacheline */
7646 	if (time_after(now, touch_ts + thresh / 4))
7647 		WRITE_ONCE(wq_watchdog_touched, jiffies);
7648 }
7649 
wq_watchdog_set_thresh(unsigned long thresh)7650 static void wq_watchdog_set_thresh(unsigned long thresh)
7651 {
7652 	wq_watchdog_thresh = 0;
7653 	timer_delete_sync(&wq_watchdog_timer);
7654 
7655 	if (thresh) {
7656 		wq_watchdog_thresh = thresh;
7657 		wq_watchdog_reset_touched();
7658 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
7659 	}
7660 }
7661 
wq_watchdog_param_set_thresh(const char * val,const struct kernel_param * kp)7662 static int wq_watchdog_param_set_thresh(const char *val,
7663 					const struct kernel_param *kp)
7664 {
7665 	unsigned long thresh;
7666 	int ret;
7667 
7668 	ret = kstrtoul(val, 0, &thresh);
7669 	if (ret)
7670 		return ret;
7671 
7672 	if (system_wq)
7673 		wq_watchdog_set_thresh(thresh);
7674 	else
7675 		wq_watchdog_thresh = thresh;
7676 
7677 	return 0;
7678 }
7679 
7680 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
7681 	.set	= wq_watchdog_param_set_thresh,
7682 	.get	= param_get_ulong,
7683 };
7684 
7685 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
7686 		0644);
7687 
wq_watchdog_init(void)7688 static void wq_watchdog_init(void)
7689 {
7690 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
7691 	wq_watchdog_set_thresh(wq_watchdog_thresh);
7692 }
7693 
7694 #else	/* CONFIG_WQ_WATCHDOG */
7695 
wq_watchdog_init(void)7696 static inline void wq_watchdog_init(void) { }
7697 
7698 #endif	/* CONFIG_WQ_WATCHDOG */
7699 
bh_pool_kick_normal(struct irq_work * irq_work)7700 static void bh_pool_kick_normal(struct irq_work *irq_work)
7701 {
7702 	raise_softirq_irqoff(TASKLET_SOFTIRQ);
7703 }
7704 
bh_pool_kick_highpri(struct irq_work * irq_work)7705 static void bh_pool_kick_highpri(struct irq_work *irq_work)
7706 {
7707 	raise_softirq_irqoff(HI_SOFTIRQ);
7708 }
7709 
restrict_unbound_cpumask(const char * name,const struct cpumask * mask)7710 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7711 {
7712 	if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7713 		pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7714 			cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7715 		return;
7716 	}
7717 
7718 	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7719 }
7720 
init_cpu_worker_pool(struct worker_pool * pool,int cpu,int nice)7721 static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice)
7722 {
7723 	BUG_ON(init_worker_pool(pool));
7724 	pool->cpu = cpu;
7725 	cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7726 	cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7727 	pool->attrs->nice = nice;
7728 	pool->attrs->affn_strict = true;
7729 	pool->node = cpu_to_node(cpu);
7730 
7731 	/* alloc pool ID */
7732 	mutex_lock(&wq_pool_mutex);
7733 	BUG_ON(worker_pool_assign_id(pool));
7734 	mutex_unlock(&wq_pool_mutex);
7735 }
7736 
7737 /**
7738  * workqueue_init_early - early init for workqueue subsystem
7739  *
7740  * This is the first step of three-staged workqueue subsystem initialization and
7741  * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7742  * up. It sets up all the data structures and system workqueues and allows early
7743  * boot code to create workqueues and queue/cancel work items. Actual work item
7744  * execution starts only after kthreads can be created and scheduled right
7745  * before early initcalls.
7746  */
workqueue_init_early(void)7747 void __init workqueue_init_early(void)
7748 {
7749 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7750 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
7751 	void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal,
7752 						       bh_pool_kick_highpri };
7753 	int i, cpu;
7754 
7755 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
7756 
7757 	BUG_ON(!alloc_cpumask_var(&wq_online_cpumask, GFP_KERNEL));
7758 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
7759 	BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
7760 	BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
7761 
7762 	cpumask_copy(wq_online_cpumask, cpu_online_mask);
7763 	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7764 	restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7765 	restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
7766 	if (!cpumask_empty(&wq_cmdline_cpumask))
7767 		restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
7768 
7769 	cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
7770 	cpumask_andnot(wq_isolated_cpumask, cpu_possible_mask,
7771 						housekeeping_cpumask(HK_TYPE_DOMAIN));
7772 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7773 
7774 	unbound_wq_update_pwq_attrs_buf = alloc_workqueue_attrs();
7775 	BUG_ON(!unbound_wq_update_pwq_attrs_buf);
7776 
7777 	/*
7778 	 * If nohz_full is enabled, set power efficient workqueue as unbound.
7779 	 * This allows workqueue items to be moved to HK CPUs.
7780 	 */
7781 	if (housekeeping_enabled(HK_TYPE_TICK))
7782 		wq_power_efficient = true;
7783 
7784 	/* initialize WQ_AFFN_SYSTEM pods */
7785 	pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7786 	pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7787 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7788 	BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7789 
7790 	BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7791 
7792 	pt->nr_pods = 1;
7793 	cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7794 	pt->pod_node[0] = NUMA_NO_NODE;
7795 	pt->cpu_pod[0] = 0;
7796 
7797 	/* initialize BH and CPU pools */
7798 	for_each_possible_cpu(cpu) {
7799 		struct worker_pool *pool;
7800 
7801 		i = 0;
7802 		for_each_bh_worker_pool(pool, cpu) {
7803 			init_cpu_worker_pool(pool, cpu, std_nice[i]);
7804 			pool->flags |= POOL_BH;
7805 			init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]);
7806 			i++;
7807 		}
7808 
7809 		i = 0;
7810 		for_each_cpu_worker_pool(pool, cpu)
7811 			init_cpu_worker_pool(pool, cpu, std_nice[i++]);
7812 	}
7813 
7814 	/* create default unbound and ordered wq attrs */
7815 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7816 		struct workqueue_attrs *attrs;
7817 
7818 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7819 		attrs->nice = std_nice[i];
7820 		unbound_std_wq_attrs[i] = attrs;
7821 
7822 		/*
7823 		 * An ordered wq should have only one pwq as ordering is
7824 		 * guaranteed by max_active which is enforced by pwqs.
7825 		 */
7826 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7827 		attrs->nice = std_nice[i];
7828 		attrs->ordered = true;
7829 		ordered_wq_attrs[i] = attrs;
7830 	}
7831 
7832 	system_wq = alloc_workqueue("events", 0, 0);
7833 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
7834 	system_long_wq = alloc_workqueue("events_long", 0, 0);
7835 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
7836 					    WQ_MAX_ACTIVE);
7837 	system_freezable_wq = alloc_workqueue("events_freezable",
7838 					      WQ_FREEZABLE, 0);
7839 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7840 					      WQ_POWER_EFFICIENT, 0);
7841 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
7842 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
7843 					      0);
7844 	system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0);
7845 	system_bh_highpri_wq = alloc_workqueue("events_bh_highpri",
7846 					       WQ_BH | WQ_HIGHPRI, 0);
7847 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
7848 	       !system_unbound_wq || !system_freezable_wq ||
7849 	       !system_power_efficient_wq ||
7850 	       !system_freezable_power_efficient_wq ||
7851 	       !system_bh_wq || !system_bh_highpri_wq);
7852 }
7853 
wq_cpu_intensive_thresh_init(void)7854 static void __init wq_cpu_intensive_thresh_init(void)
7855 {
7856 	unsigned long thresh;
7857 	unsigned long bogo;
7858 
7859 	pwq_release_worker = kthread_run_worker(0, "pool_workqueue_release");
7860 	BUG_ON(IS_ERR(pwq_release_worker));
7861 
7862 	/* if the user set it to a specific value, keep it */
7863 	if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7864 		return;
7865 
7866 	/*
7867 	 * The default of 10ms is derived from the fact that most modern (as of
7868 	 * 2023) processors can do a lot in 10ms and that it's just below what
7869 	 * most consider human-perceivable. However, the kernel also runs on a
7870 	 * lot slower CPUs including microcontrollers where the threshold is way
7871 	 * too low.
7872 	 *
7873 	 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7874 	 * This is by no means accurate but it doesn't have to be. The mechanism
7875 	 * is still useful even when the threshold is fully scaled up. Also, as
7876 	 * the reports would usually be applicable to everyone, some machines
7877 	 * operating on longer thresholds won't significantly diminish their
7878 	 * usefulness.
7879 	 */
7880 	thresh = 10 * USEC_PER_MSEC;
7881 
7882 	/* see init/calibrate.c for lpj -> BogoMIPS calculation */
7883 	bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7884 	if (bogo < 4000)
7885 		thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7886 
7887 	pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7888 		 loops_per_jiffy, bogo, thresh);
7889 
7890 	wq_cpu_intensive_thresh_us = thresh;
7891 }
7892 
7893 /**
7894  * workqueue_init - bring workqueue subsystem fully online
7895  *
7896  * This is the second step of three-staged workqueue subsystem initialization
7897  * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7898  * been created and work items queued on them, but there are no kworkers
7899  * executing the work items yet. Populate the worker pools with the initial
7900  * workers and enable future kworker creations.
7901  */
workqueue_init(void)7902 void __init workqueue_init(void)
7903 {
7904 	struct workqueue_struct *wq;
7905 	struct worker_pool *pool;
7906 	int cpu, bkt;
7907 
7908 	wq_cpu_intensive_thresh_init();
7909 
7910 	mutex_lock(&wq_pool_mutex);
7911 
7912 	/*
7913 	 * Per-cpu pools created earlier could be missing node hint. Fix them
7914 	 * up. Also, create a rescuer for workqueues that requested it.
7915 	 */
7916 	for_each_possible_cpu(cpu) {
7917 		for_each_bh_worker_pool(pool, cpu)
7918 			pool->node = cpu_to_node(cpu);
7919 		for_each_cpu_worker_pool(pool, cpu)
7920 			pool->node = cpu_to_node(cpu);
7921 	}
7922 
7923 	list_for_each_entry(wq, &workqueues, list) {
7924 		WARN(init_rescuer(wq),
7925 		     "workqueue: failed to create early rescuer for %s",
7926 		     wq->name);
7927 	}
7928 
7929 	mutex_unlock(&wq_pool_mutex);
7930 
7931 	/*
7932 	 * Create the initial workers. A BH pool has one pseudo worker that
7933 	 * represents the shared BH execution context and thus doesn't get
7934 	 * affected by hotplug events. Create the BH pseudo workers for all
7935 	 * possible CPUs here.
7936 	 */
7937 	for_each_possible_cpu(cpu)
7938 		for_each_bh_worker_pool(pool, cpu)
7939 			BUG_ON(!create_worker(pool));
7940 
7941 	for_each_online_cpu(cpu) {
7942 		for_each_cpu_worker_pool(pool, cpu) {
7943 			pool->flags &= ~POOL_DISASSOCIATED;
7944 			BUG_ON(!create_worker(pool));
7945 		}
7946 	}
7947 
7948 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
7949 		BUG_ON(!create_worker(pool));
7950 
7951 	wq_online = true;
7952 	wq_watchdog_init();
7953 }
7954 
7955 /*
7956  * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7957  * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7958  * and consecutive pod ID. The rest of @pt is initialized accordingly.
7959  */
init_pod_type(struct wq_pod_type * pt,bool (* cpus_share_pod)(int,int))7960 static void __init init_pod_type(struct wq_pod_type *pt,
7961 				 bool (*cpus_share_pod)(int, int))
7962 {
7963 	int cur, pre, cpu, pod;
7964 
7965 	pt->nr_pods = 0;
7966 
7967 	/* init @pt->cpu_pod[] according to @cpus_share_pod() */
7968 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7969 	BUG_ON(!pt->cpu_pod);
7970 
7971 	for_each_possible_cpu(cur) {
7972 		for_each_possible_cpu(pre) {
7973 			if (pre >= cur) {
7974 				pt->cpu_pod[cur] = pt->nr_pods++;
7975 				break;
7976 			}
7977 			if (cpus_share_pod(cur, pre)) {
7978 				pt->cpu_pod[cur] = pt->cpu_pod[pre];
7979 				break;
7980 			}
7981 		}
7982 	}
7983 
7984 	/* init the rest to match @pt->cpu_pod[] */
7985 	pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7986 	pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
7987 	BUG_ON(!pt->pod_cpus || !pt->pod_node);
7988 
7989 	for (pod = 0; pod < pt->nr_pods; pod++)
7990 		BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
7991 
7992 	for_each_possible_cpu(cpu) {
7993 		cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
7994 		pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
7995 	}
7996 }
7997 
cpus_dont_share(int cpu0,int cpu1)7998 static bool __init cpus_dont_share(int cpu0, int cpu1)
7999 {
8000 	return false;
8001 }
8002 
cpus_share_smt(int cpu0,int cpu1)8003 static bool __init cpus_share_smt(int cpu0, int cpu1)
8004 {
8005 #ifdef CONFIG_SCHED_SMT
8006 	return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
8007 #else
8008 	return false;
8009 #endif
8010 }
8011 
cpus_share_numa(int cpu0,int cpu1)8012 static bool __init cpus_share_numa(int cpu0, int cpu1)
8013 {
8014 	return cpu_to_node(cpu0) == cpu_to_node(cpu1);
8015 }
8016 
8017 /**
8018  * workqueue_init_topology - initialize CPU pods for unbound workqueues
8019  *
8020  * This is the third step of three-staged workqueue subsystem initialization and
8021  * invoked after SMP and topology information are fully initialized. It
8022  * initializes the unbound CPU pods accordingly.
8023  */
workqueue_init_topology(void)8024 void __init workqueue_init_topology(void)
8025 {
8026 	struct workqueue_struct *wq;
8027 	int cpu;
8028 
8029 	init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
8030 	init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
8031 	init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
8032 	init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
8033 
8034 	wq_topo_initialized = true;
8035 
8036 	mutex_lock(&wq_pool_mutex);
8037 
8038 	/*
8039 	 * Workqueues allocated earlier would have all CPUs sharing the default
8040 	 * worker pool. Explicitly call unbound_wq_update_pwq() on all workqueue
8041 	 * and CPU combinations to apply per-pod sharing.
8042 	 */
8043 	list_for_each_entry(wq, &workqueues, list) {
8044 		for_each_online_cpu(cpu)
8045 			unbound_wq_update_pwq(wq, cpu);
8046 		if (wq->flags & WQ_UNBOUND) {
8047 			mutex_lock(&wq->mutex);
8048 			wq_update_node_max_active(wq, -1);
8049 			mutex_unlock(&wq->mutex);
8050 		}
8051 	}
8052 
8053 	mutex_unlock(&wq_pool_mutex);
8054 }
8055 
__warn_flushing_systemwide_wq(void)8056 void __warn_flushing_systemwide_wq(void)
8057 {
8058 	pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
8059 	dump_stack();
8060 }
8061 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
8062 
workqueue_unbound_cpus_setup(char * str)8063 static int __init workqueue_unbound_cpus_setup(char *str)
8064 {
8065 	if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
8066 		cpumask_clear(&wq_cmdline_cpumask);
8067 		pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
8068 	}
8069 
8070 	return 1;
8071 }
8072 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
8073