1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/sched/mm.h>
10 #include <linux/spinlock.h>
11 #include <linux/blkdev.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/prefetch.h>
16 #include <linux/fsverity.h>
17 #include "extent_io.h"
18 #include "extent-io-tree.h"
19 #include "extent_map.h"
20 #include "ctree.h"
21 #include "btrfs_inode.h"
22 #include "bio.h"
23 #include "locking.h"
24 #include "backref.h"
25 #include "disk-io.h"
26 #include "subpage.h"
27 #include "zoned.h"
28 #include "block-group.h"
29 #include "compression.h"
30 #include "fs.h"
31 #include "accessors.h"
32 #include "file-item.h"
33 #include "file.h"
34 #include "dev-replace.h"
35 #include "super.h"
36 #include "transaction.h"
37
38 static struct kmem_cache *extent_buffer_cache;
39
40 #ifdef CONFIG_BTRFS_DEBUG
btrfs_leak_debug_add_eb(struct extent_buffer * eb)41 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
42 {
43 struct btrfs_fs_info *fs_info = eb->fs_info;
44 unsigned long flags;
45
46 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
47 list_add(&eb->leak_list, &fs_info->allocated_ebs);
48 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
49 }
50
btrfs_leak_debug_del_eb(struct extent_buffer * eb)51 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
52 {
53 struct btrfs_fs_info *fs_info = eb->fs_info;
54 unsigned long flags;
55
56 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
57 list_del(&eb->leak_list);
58 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
59 }
60
btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info * fs_info)61 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
62 {
63 struct extent_buffer *eb;
64 unsigned long flags;
65
66 /*
67 * If we didn't get into open_ctree our allocated_ebs will not be
68 * initialized, so just skip this.
69 */
70 if (!fs_info->allocated_ebs.next)
71 return;
72
73 WARN_ON(!list_empty(&fs_info->allocated_ebs));
74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75 while (!list_empty(&fs_info->allocated_ebs)) {
76 eb = list_first_entry(&fs_info->allocated_ebs,
77 struct extent_buffer, leak_list);
78 pr_err(
79 "BTRFS: buffer leak start %llu len %u refs %d bflags %lu owner %llu\n",
80 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
81 btrfs_header_owner(eb));
82 list_del(&eb->leak_list);
83 WARN_ON_ONCE(1);
84 kmem_cache_free(extent_buffer_cache, eb);
85 }
86 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
87 }
88 #else
89 #define btrfs_leak_debug_add_eb(eb) do {} while (0)
90 #define btrfs_leak_debug_del_eb(eb) do {} while (0)
91 #endif
92
93 /*
94 * Structure to record info about the bio being assembled, and other info like
95 * how many bytes are there before stripe/ordered extent boundary.
96 */
97 struct btrfs_bio_ctrl {
98 struct btrfs_bio *bbio;
99 enum btrfs_compression_type compress_type;
100 u32 len_to_oe_boundary;
101 blk_opf_t opf;
102 btrfs_bio_end_io_t end_io_func;
103 struct writeback_control *wbc;
104
105 /*
106 * The sectors of the page which are going to be submitted by
107 * extent_writepage_io().
108 * This is to avoid touching ranges covered by compression/inline.
109 */
110 unsigned long submit_bitmap;
111 };
112
submit_one_bio(struct btrfs_bio_ctrl * bio_ctrl)113 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
114 {
115 struct btrfs_bio *bbio = bio_ctrl->bbio;
116
117 if (!bbio)
118 return;
119
120 /* Caller should ensure the bio has at least some range added */
121 ASSERT(bbio->bio.bi_iter.bi_size);
122
123 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
124 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
125 btrfs_submit_compressed_read(bbio);
126 else
127 btrfs_submit_bbio(bbio, 0);
128
129 /* The bbio is owned by the end_io handler now */
130 bio_ctrl->bbio = NULL;
131 }
132
133 /*
134 * Submit or fail the current bio in the bio_ctrl structure.
135 */
submit_write_bio(struct btrfs_bio_ctrl * bio_ctrl,int ret)136 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
137 {
138 struct btrfs_bio *bbio = bio_ctrl->bbio;
139
140 if (!bbio)
141 return;
142
143 if (ret) {
144 ASSERT(ret < 0);
145 btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
146 /* The bio is owned by the end_io handler now */
147 bio_ctrl->bbio = NULL;
148 } else {
149 submit_one_bio(bio_ctrl);
150 }
151 }
152
extent_buffer_init_cachep(void)153 int __init extent_buffer_init_cachep(void)
154 {
155 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
156 sizeof(struct extent_buffer), 0, 0,
157 NULL);
158 if (!extent_buffer_cache)
159 return -ENOMEM;
160
161 return 0;
162 }
163
extent_buffer_free_cachep(void)164 void __cold extent_buffer_free_cachep(void)
165 {
166 /*
167 * Make sure all delayed rcu free are flushed before we
168 * destroy caches.
169 */
170 rcu_barrier();
171 kmem_cache_destroy(extent_buffer_cache);
172 }
173
process_one_folio(struct btrfs_fs_info * fs_info,struct folio * folio,const struct folio * locked_folio,unsigned long page_ops,u64 start,u64 end)174 static void process_one_folio(struct btrfs_fs_info *fs_info,
175 struct folio *folio, const struct folio *locked_folio,
176 unsigned long page_ops, u64 start, u64 end)
177 {
178 u32 len;
179
180 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
181 len = end + 1 - start;
182
183 if (page_ops & PAGE_SET_ORDERED)
184 btrfs_folio_clamp_set_ordered(fs_info, folio, start, len);
185 if (page_ops & PAGE_START_WRITEBACK) {
186 btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len);
187 btrfs_folio_clamp_set_writeback(fs_info, folio, start, len);
188 }
189 if (page_ops & PAGE_END_WRITEBACK)
190 btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len);
191
192 if (folio != locked_folio && (page_ops & PAGE_UNLOCK))
193 btrfs_folio_end_lock(fs_info, folio, start, len);
194 }
195
__process_folios_contig(struct address_space * mapping,const struct folio * locked_folio,u64 start,u64 end,unsigned long page_ops)196 static void __process_folios_contig(struct address_space *mapping,
197 const struct folio *locked_folio, u64 start,
198 u64 end, unsigned long page_ops)
199 {
200 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
201 pgoff_t index = start >> PAGE_SHIFT;
202 pgoff_t end_index = end >> PAGE_SHIFT;
203 struct folio_batch fbatch;
204 int i;
205
206 folio_batch_init(&fbatch);
207 while (index <= end_index) {
208 int found_folios;
209
210 found_folios = filemap_get_folios_contig(mapping, &index,
211 end_index, &fbatch);
212 for (i = 0; i < found_folios; i++) {
213 struct folio *folio = fbatch.folios[i];
214
215 process_one_folio(fs_info, folio, locked_folio,
216 page_ops, start, end);
217 }
218 folio_batch_release(&fbatch);
219 cond_resched();
220 }
221 }
222
unlock_delalloc_folio(const struct inode * inode,const struct folio * locked_folio,u64 start,u64 end)223 static noinline void unlock_delalloc_folio(const struct inode *inode,
224 const struct folio *locked_folio,
225 u64 start, u64 end)
226 {
227 unsigned long index = start >> PAGE_SHIFT;
228 unsigned long end_index = end >> PAGE_SHIFT;
229
230 ASSERT(locked_folio);
231 if (index == locked_folio->index && end_index == index)
232 return;
233
234 __process_folios_contig(inode->i_mapping, locked_folio, start, end,
235 PAGE_UNLOCK);
236 }
237
lock_delalloc_folios(struct inode * inode,const struct folio * locked_folio,u64 start,u64 end)238 static noinline int lock_delalloc_folios(struct inode *inode,
239 const struct folio *locked_folio,
240 u64 start, u64 end)
241 {
242 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
243 struct address_space *mapping = inode->i_mapping;
244 pgoff_t index = start >> PAGE_SHIFT;
245 pgoff_t end_index = end >> PAGE_SHIFT;
246 u64 processed_end = start;
247 struct folio_batch fbatch;
248
249 if (index == locked_folio->index && index == end_index)
250 return 0;
251
252 folio_batch_init(&fbatch);
253 while (index <= end_index) {
254 unsigned int found_folios, i;
255
256 found_folios = filemap_get_folios_contig(mapping, &index,
257 end_index, &fbatch);
258 if (found_folios == 0)
259 goto out;
260
261 for (i = 0; i < found_folios; i++) {
262 struct folio *folio = fbatch.folios[i];
263 u64 range_start;
264 u32 range_len;
265
266 if (folio == locked_folio)
267 continue;
268
269 folio_lock(folio);
270 if (!folio_test_dirty(folio) || folio->mapping != mapping) {
271 folio_unlock(folio);
272 goto out;
273 }
274 range_start = max_t(u64, folio_pos(folio), start);
275 range_len = min_t(u64, folio_pos(folio) + folio_size(folio),
276 end + 1) - range_start;
277 btrfs_folio_set_lock(fs_info, folio, range_start, range_len);
278
279 processed_end = range_start + range_len - 1;
280 }
281 folio_batch_release(&fbatch);
282 cond_resched();
283 }
284
285 return 0;
286 out:
287 folio_batch_release(&fbatch);
288 if (processed_end > start)
289 unlock_delalloc_folio(inode, locked_folio, start, processed_end);
290 return -EAGAIN;
291 }
292
293 /*
294 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
295 * more than @max_bytes.
296 *
297 * @start: The original start bytenr to search.
298 * Will store the extent range start bytenr.
299 * @end: The original end bytenr of the search range
300 * Will store the extent range end bytenr.
301 *
302 * Return true if we find a delalloc range which starts inside the original
303 * range, and @start/@end will store the delalloc range start/end.
304 *
305 * Return false if we can't find any delalloc range which starts inside the
306 * original range, and @start/@end will be the non-delalloc range start/end.
307 */
308 EXPORT_FOR_TESTS
find_lock_delalloc_range(struct inode * inode,struct folio * locked_folio,u64 * start,u64 * end)309 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
310 struct folio *locked_folio,
311 u64 *start, u64 *end)
312 {
313 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
314 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
315 const u64 orig_start = *start;
316 const u64 orig_end = *end;
317 /* The sanity tests may not set a valid fs_info. */
318 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
319 u64 delalloc_start;
320 u64 delalloc_end;
321 bool found;
322 struct extent_state *cached_state = NULL;
323 int ret;
324 int loops = 0;
325
326 /* Caller should pass a valid @end to indicate the search range end */
327 ASSERT(orig_end > orig_start);
328
329 /* The range should at least cover part of the folio */
330 ASSERT(!(orig_start >= folio_pos(locked_folio) + folio_size(locked_folio) ||
331 orig_end <= folio_pos(locked_folio)));
332 again:
333 /* step one, find a bunch of delalloc bytes starting at start */
334 delalloc_start = *start;
335 delalloc_end = 0;
336 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
337 max_bytes, &cached_state);
338 if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
339 *start = delalloc_start;
340
341 /* @delalloc_end can be -1, never go beyond @orig_end */
342 *end = min(delalloc_end, orig_end);
343 free_extent_state(cached_state);
344 return false;
345 }
346
347 /*
348 * start comes from the offset of locked_folio. We have to lock
349 * folios in order, so we can't process delalloc bytes before
350 * locked_folio
351 */
352 if (delalloc_start < *start)
353 delalloc_start = *start;
354
355 /*
356 * make sure to limit the number of folios we try to lock down
357 */
358 if (delalloc_end + 1 - delalloc_start > max_bytes)
359 delalloc_end = delalloc_start + max_bytes - 1;
360
361 /* step two, lock all the folioss after the folios that has start */
362 ret = lock_delalloc_folios(inode, locked_folio, delalloc_start,
363 delalloc_end);
364 ASSERT(!ret || ret == -EAGAIN);
365 if (ret == -EAGAIN) {
366 /* some of the folios are gone, lets avoid looping by
367 * shortening the size of the delalloc range we're searching
368 */
369 free_extent_state(cached_state);
370 cached_state = NULL;
371 if (!loops) {
372 max_bytes = PAGE_SIZE;
373 loops = 1;
374 goto again;
375 } else {
376 found = false;
377 goto out_failed;
378 }
379 }
380
381 /* step three, lock the state bits for the whole range */
382 lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
383
384 /* then test to make sure it is all still delalloc */
385 ret = test_range_bit(tree, delalloc_start, delalloc_end,
386 EXTENT_DELALLOC, cached_state);
387
388 unlock_extent(tree, delalloc_start, delalloc_end, &cached_state);
389 if (!ret) {
390 unlock_delalloc_folio(inode, locked_folio, delalloc_start,
391 delalloc_end);
392 cond_resched();
393 goto again;
394 }
395 *start = delalloc_start;
396 *end = delalloc_end;
397 out_failed:
398 return found;
399 }
400
extent_clear_unlock_delalloc(struct btrfs_inode * inode,u64 start,u64 end,const struct folio * locked_folio,struct extent_state ** cached,u32 clear_bits,unsigned long page_ops)401 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
402 const struct folio *locked_folio,
403 struct extent_state **cached,
404 u32 clear_bits, unsigned long page_ops)
405 {
406 clear_extent_bit(&inode->io_tree, start, end, clear_bits, cached);
407
408 __process_folios_contig(inode->vfs_inode.i_mapping, locked_folio, start,
409 end, page_ops);
410 }
411
btrfs_verify_folio(struct folio * folio,u64 start,u32 len)412 static bool btrfs_verify_folio(struct folio *folio, u64 start, u32 len)
413 {
414 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
415
416 if (!fsverity_active(folio->mapping->host) ||
417 btrfs_folio_test_uptodate(fs_info, folio, start, len) ||
418 start >= i_size_read(folio->mapping->host))
419 return true;
420 return fsverity_verify_folio(folio);
421 }
422
end_folio_read(struct folio * folio,bool uptodate,u64 start,u32 len)423 static void end_folio_read(struct folio *folio, bool uptodate, u64 start, u32 len)
424 {
425 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
426
427 ASSERT(folio_pos(folio) <= start &&
428 start + len <= folio_pos(folio) + folio_size(folio));
429
430 if (uptodate && btrfs_verify_folio(folio, start, len))
431 btrfs_folio_set_uptodate(fs_info, folio, start, len);
432 else
433 btrfs_folio_clear_uptodate(fs_info, folio, start, len);
434
435 if (!btrfs_is_subpage(fs_info, folio))
436 folio_unlock(folio);
437 else
438 btrfs_folio_end_lock(fs_info, folio, start, len);
439 }
440
441 /*
442 * After a write IO is done, we need to:
443 *
444 * - clear the uptodate bits on error
445 * - clear the writeback bits in the extent tree for the range
446 * - filio_end_writeback() if there is no more pending io for the folio
447 *
448 * Scheduling is not allowed, so the extent state tree is expected
449 * to have one and only one object corresponding to this IO.
450 */
end_bbio_data_write(struct btrfs_bio * bbio)451 static void end_bbio_data_write(struct btrfs_bio *bbio)
452 {
453 struct btrfs_fs_info *fs_info = bbio->fs_info;
454 struct bio *bio = &bbio->bio;
455 int error = blk_status_to_errno(bio->bi_status);
456 struct folio_iter fi;
457 const u32 sectorsize = fs_info->sectorsize;
458
459 ASSERT(!bio_flagged(bio, BIO_CLONED));
460 bio_for_each_folio_all(fi, bio) {
461 struct folio *folio = fi.folio;
462 u64 start = folio_pos(folio) + fi.offset;
463 u32 len = fi.length;
464
465 /* Only order 0 (single page) folios are allowed for data. */
466 ASSERT(folio_order(folio) == 0);
467
468 /* Our read/write should always be sector aligned. */
469 if (!IS_ALIGNED(fi.offset, sectorsize))
470 btrfs_err(fs_info,
471 "partial page write in btrfs with offset %zu and length %zu",
472 fi.offset, fi.length);
473 else if (!IS_ALIGNED(fi.length, sectorsize))
474 btrfs_info(fs_info,
475 "incomplete page write with offset %zu and length %zu",
476 fi.offset, fi.length);
477
478 btrfs_finish_ordered_extent(bbio->ordered, folio, start, len,
479 !error);
480 if (error)
481 mapping_set_error(folio->mapping, error);
482 btrfs_folio_clear_writeback(fs_info, folio, start, len);
483 }
484
485 bio_put(bio);
486 }
487
begin_folio_read(struct btrfs_fs_info * fs_info,struct folio * folio)488 static void begin_folio_read(struct btrfs_fs_info *fs_info, struct folio *folio)
489 {
490 ASSERT(folio_test_locked(folio));
491 if (!btrfs_is_subpage(fs_info, folio))
492 return;
493
494 ASSERT(folio_test_private(folio));
495 btrfs_folio_set_lock(fs_info, folio, folio_pos(folio), folio_size(folio));
496 }
497
498 /*
499 * After a data read IO is done, we need to:
500 *
501 * - clear the uptodate bits on error
502 * - set the uptodate bits if things worked
503 * - set the folio up to date if all extents in the tree are uptodate
504 * - clear the lock bit in the extent tree
505 * - unlock the folio if there are no other extents locked for it
506 *
507 * Scheduling is not allowed, so the extent state tree is expected
508 * to have one and only one object corresponding to this IO.
509 */
end_bbio_data_read(struct btrfs_bio * bbio)510 static void end_bbio_data_read(struct btrfs_bio *bbio)
511 {
512 struct btrfs_fs_info *fs_info = bbio->fs_info;
513 struct bio *bio = &bbio->bio;
514 struct folio_iter fi;
515 const u32 sectorsize = fs_info->sectorsize;
516
517 ASSERT(!bio_flagged(bio, BIO_CLONED));
518 bio_for_each_folio_all(fi, &bbio->bio) {
519 bool uptodate = !bio->bi_status;
520 struct folio *folio = fi.folio;
521 struct inode *inode = folio->mapping->host;
522 u64 start;
523 u64 end;
524 u32 len;
525
526 btrfs_debug(fs_info,
527 "%s: bi_sector=%llu, err=%d, mirror=%u",
528 __func__, bio->bi_iter.bi_sector, bio->bi_status,
529 bbio->mirror_num);
530
531 /*
532 * We always issue full-sector reads, but if some block in a
533 * folio fails to read, blk_update_request() will advance
534 * bv_offset and adjust bv_len to compensate. Print a warning
535 * for unaligned offsets, and an error if they don't add up to
536 * a full sector.
537 */
538 if (!IS_ALIGNED(fi.offset, sectorsize))
539 btrfs_err(fs_info,
540 "partial page read in btrfs with offset %zu and length %zu",
541 fi.offset, fi.length);
542 else if (!IS_ALIGNED(fi.offset + fi.length, sectorsize))
543 btrfs_info(fs_info,
544 "incomplete page read with offset %zu and length %zu",
545 fi.offset, fi.length);
546
547 start = folio_pos(folio) + fi.offset;
548 end = start + fi.length - 1;
549 len = fi.length;
550
551 if (likely(uptodate)) {
552 loff_t i_size = i_size_read(inode);
553
554 /*
555 * Zero out the remaining part if this range straddles
556 * i_size.
557 *
558 * Here we should only zero the range inside the folio,
559 * not touch anything else.
560 *
561 * NOTE: i_size is exclusive while end is inclusive and
562 * folio_contains() takes PAGE_SIZE units.
563 */
564 if (folio_contains(folio, i_size >> PAGE_SHIFT) &&
565 i_size <= end) {
566 u32 zero_start = max(offset_in_folio(folio, i_size),
567 offset_in_folio(folio, start));
568 u32 zero_len = offset_in_folio(folio, end) + 1 -
569 zero_start;
570
571 folio_zero_range(folio, zero_start, zero_len);
572 }
573 }
574
575 /* Update page status and unlock. */
576 end_folio_read(folio, uptodate, start, len);
577 }
578 bio_put(bio);
579 }
580
581 /*
582 * Populate every free slot in a provided array with folios using GFP_NOFS.
583 *
584 * @nr_folios: number of folios to allocate
585 * @folio_array: the array to fill with folios; any existing non-NULL entries in
586 * the array will be skipped
587 *
588 * Return: 0 if all folios were able to be allocated;
589 * -ENOMEM otherwise, the partially allocated folios would be freed and
590 * the array slots zeroed
591 */
btrfs_alloc_folio_array(unsigned int nr_folios,struct folio ** folio_array)592 int btrfs_alloc_folio_array(unsigned int nr_folios, struct folio **folio_array)
593 {
594 for (int i = 0; i < nr_folios; i++) {
595 if (folio_array[i])
596 continue;
597 folio_array[i] = folio_alloc(GFP_NOFS, 0);
598 if (!folio_array[i])
599 goto error;
600 }
601 return 0;
602 error:
603 for (int i = 0; i < nr_folios; i++) {
604 if (folio_array[i])
605 folio_put(folio_array[i]);
606 }
607 return -ENOMEM;
608 }
609
610 /*
611 * Populate every free slot in a provided array with pages, using GFP_NOFS.
612 *
613 * @nr_pages: number of pages to allocate
614 * @page_array: the array to fill with pages; any existing non-null entries in
615 * the array will be skipped
616 * @nofail: whether using __GFP_NOFAIL flag
617 *
618 * Return: 0 if all pages were able to be allocated;
619 * -ENOMEM otherwise, the partially allocated pages would be freed and
620 * the array slots zeroed
621 */
btrfs_alloc_page_array(unsigned int nr_pages,struct page ** page_array,bool nofail)622 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array,
623 bool nofail)
624 {
625 const gfp_t gfp = nofail ? (GFP_NOFS | __GFP_NOFAIL) : GFP_NOFS;
626 unsigned int allocated;
627
628 for (allocated = 0; allocated < nr_pages;) {
629 unsigned int last = allocated;
630
631 allocated = alloc_pages_bulk(gfp, nr_pages, page_array);
632 if (unlikely(allocated == last)) {
633 /* No progress, fail and do cleanup. */
634 for (int i = 0; i < allocated; i++) {
635 __free_page(page_array[i]);
636 page_array[i] = NULL;
637 }
638 return -ENOMEM;
639 }
640 }
641 return 0;
642 }
643
644 /*
645 * Populate needed folios for the extent buffer.
646 *
647 * For now, the folios populated are always in order 0 (aka, single page).
648 */
alloc_eb_folio_array(struct extent_buffer * eb,bool nofail)649 static int alloc_eb_folio_array(struct extent_buffer *eb, bool nofail)
650 {
651 struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 };
652 int num_pages = num_extent_pages(eb);
653 int ret;
654
655 ret = btrfs_alloc_page_array(num_pages, page_array, nofail);
656 if (ret < 0)
657 return ret;
658
659 for (int i = 0; i < num_pages; i++)
660 eb->folios[i] = page_folio(page_array[i]);
661 eb->folio_size = PAGE_SIZE;
662 eb->folio_shift = PAGE_SHIFT;
663 return 0;
664 }
665
btrfs_bio_is_contig(struct btrfs_bio_ctrl * bio_ctrl,struct folio * folio,u64 disk_bytenr,unsigned int pg_offset)666 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
667 struct folio *folio, u64 disk_bytenr,
668 unsigned int pg_offset)
669 {
670 struct bio *bio = &bio_ctrl->bbio->bio;
671 struct bio_vec *bvec = bio_last_bvec_all(bio);
672 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
673 struct folio *bv_folio = page_folio(bvec->bv_page);
674
675 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
676 /*
677 * For compression, all IO should have its logical bytenr set
678 * to the starting bytenr of the compressed extent.
679 */
680 return bio->bi_iter.bi_sector == sector;
681 }
682
683 /*
684 * The contig check requires the following conditions to be met:
685 *
686 * 1) The folios are belonging to the same inode
687 * This is implied by the call chain.
688 *
689 * 2) The range has adjacent logical bytenr
690 *
691 * 3) The range has adjacent file offset
692 * This is required for the usage of btrfs_bio->file_offset.
693 */
694 return bio_end_sector(bio) == sector &&
695 folio_pos(bv_folio) + bvec->bv_offset + bvec->bv_len ==
696 folio_pos(folio) + pg_offset;
697 }
698
alloc_new_bio(struct btrfs_inode * inode,struct btrfs_bio_ctrl * bio_ctrl,u64 disk_bytenr,u64 file_offset)699 static void alloc_new_bio(struct btrfs_inode *inode,
700 struct btrfs_bio_ctrl *bio_ctrl,
701 u64 disk_bytenr, u64 file_offset)
702 {
703 struct btrfs_fs_info *fs_info = inode->root->fs_info;
704 struct btrfs_bio *bbio;
705
706 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
707 bio_ctrl->end_io_func, NULL);
708 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
709 bbio->bio.bi_write_hint = inode->vfs_inode.i_write_hint;
710 bbio->inode = inode;
711 bbio->file_offset = file_offset;
712 bio_ctrl->bbio = bbio;
713 bio_ctrl->len_to_oe_boundary = U32_MAX;
714
715 /* Limit data write bios to the ordered boundary. */
716 if (bio_ctrl->wbc) {
717 struct btrfs_ordered_extent *ordered;
718
719 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
720 if (ordered) {
721 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
722 ordered->file_offset +
723 ordered->disk_num_bytes - file_offset);
724 bbio->ordered = ordered;
725 }
726
727 /*
728 * Pick the last added device to support cgroup writeback. For
729 * multi-device file systems this means blk-cgroup policies have
730 * to always be set on the last added/replaced device.
731 * This is a bit odd but has been like that for a long time.
732 */
733 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
734 wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
735 }
736 }
737
738 /*
739 * @disk_bytenr: logical bytenr where the write will be
740 * @page: page to add to the bio
741 * @size: portion of page that we want to write to
742 * @pg_offset: offset of the new bio or to check whether we are adding
743 * a contiguous page to the previous one
744 *
745 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
746 * new one in @bio_ctrl->bbio.
747 * The mirror number for this IO should already be initizlied in
748 * @bio_ctrl->mirror_num.
749 */
submit_extent_folio(struct btrfs_bio_ctrl * bio_ctrl,u64 disk_bytenr,struct folio * folio,size_t size,unsigned long pg_offset)750 static void submit_extent_folio(struct btrfs_bio_ctrl *bio_ctrl,
751 u64 disk_bytenr, struct folio *folio,
752 size_t size, unsigned long pg_offset)
753 {
754 struct btrfs_inode *inode = folio_to_inode(folio);
755
756 ASSERT(pg_offset + size <= folio_size(folio));
757 ASSERT(bio_ctrl->end_io_func);
758
759 if (bio_ctrl->bbio &&
760 !btrfs_bio_is_contig(bio_ctrl, folio, disk_bytenr, pg_offset))
761 submit_one_bio(bio_ctrl);
762
763 do {
764 u32 len = size;
765
766 /* Allocate new bio if needed */
767 if (!bio_ctrl->bbio) {
768 alloc_new_bio(inode, bio_ctrl, disk_bytenr,
769 folio_pos(folio) + pg_offset);
770 }
771
772 /* Cap to the current ordered extent boundary if there is one. */
773 if (len > bio_ctrl->len_to_oe_boundary) {
774 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
775 ASSERT(is_data_inode(inode));
776 len = bio_ctrl->len_to_oe_boundary;
777 }
778
779 if (!bio_add_folio(&bio_ctrl->bbio->bio, folio, len, pg_offset)) {
780 /* bio full: move on to a new one */
781 submit_one_bio(bio_ctrl);
782 continue;
783 }
784
785 if (bio_ctrl->wbc)
786 wbc_account_cgroup_owner(bio_ctrl->wbc, folio,
787 len);
788
789 size -= len;
790 pg_offset += len;
791 disk_bytenr += len;
792
793 /*
794 * len_to_oe_boundary defaults to U32_MAX, which isn't folio or
795 * sector aligned. alloc_new_bio() then sets it to the end of
796 * our ordered extent for writes into zoned devices.
797 *
798 * When len_to_oe_boundary is tracking an ordered extent, we
799 * trust the ordered extent code to align things properly, and
800 * the check above to cap our write to the ordered extent
801 * boundary is correct.
802 *
803 * When len_to_oe_boundary is U32_MAX, the cap above would
804 * result in a 4095 byte IO for the last folio right before
805 * we hit the bio limit of UINT_MAX. bio_add_folio() has all
806 * the checks required to make sure we don't overflow the bio,
807 * and we should just ignore len_to_oe_boundary completely
808 * unless we're using it to track an ordered extent.
809 *
810 * It's pretty hard to make a bio sized U32_MAX, but it can
811 * happen when the page cache is able to feed us contiguous
812 * folios for large extents.
813 */
814 if (bio_ctrl->len_to_oe_boundary != U32_MAX)
815 bio_ctrl->len_to_oe_boundary -= len;
816
817 /* Ordered extent boundary: move on to a new bio. */
818 if (bio_ctrl->len_to_oe_boundary == 0)
819 submit_one_bio(bio_ctrl);
820 } while (size);
821 }
822
attach_extent_buffer_folio(struct extent_buffer * eb,struct folio * folio,struct btrfs_subpage * prealloc)823 static int attach_extent_buffer_folio(struct extent_buffer *eb,
824 struct folio *folio,
825 struct btrfs_subpage *prealloc)
826 {
827 struct btrfs_fs_info *fs_info = eb->fs_info;
828 int ret = 0;
829
830 /*
831 * If the page is mapped to btree inode, we should hold the private
832 * lock to prevent race.
833 * For cloned or dummy extent buffers, their pages are not mapped and
834 * will not race with any other ebs.
835 */
836 if (folio->mapping)
837 lockdep_assert_held(&folio->mapping->i_private_lock);
838
839 if (!btrfs_meta_is_subpage(fs_info)) {
840 if (!folio_test_private(folio))
841 folio_attach_private(folio, eb);
842 else
843 WARN_ON(folio_get_private(folio) != eb);
844 return 0;
845 }
846
847 /* Already mapped, just free prealloc */
848 if (folio_test_private(folio)) {
849 btrfs_free_subpage(prealloc);
850 return 0;
851 }
852
853 if (prealloc)
854 /* Has preallocated memory for subpage */
855 folio_attach_private(folio, prealloc);
856 else
857 /* Do new allocation to attach subpage */
858 ret = btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA);
859 return ret;
860 }
861
set_folio_extent_mapped(struct folio * folio)862 int set_folio_extent_mapped(struct folio *folio)
863 {
864 struct btrfs_fs_info *fs_info;
865
866 ASSERT(folio->mapping);
867
868 if (folio_test_private(folio))
869 return 0;
870
871 fs_info = folio_to_fs_info(folio);
872
873 if (btrfs_is_subpage(fs_info, folio))
874 return btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA);
875
876 folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE);
877 return 0;
878 }
879
clear_folio_extent_mapped(struct folio * folio)880 void clear_folio_extent_mapped(struct folio *folio)
881 {
882 struct btrfs_fs_info *fs_info;
883
884 ASSERT(folio->mapping);
885
886 if (!folio_test_private(folio))
887 return;
888
889 fs_info = folio_to_fs_info(folio);
890 if (btrfs_is_subpage(fs_info, folio))
891 return btrfs_detach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA);
892
893 folio_detach_private(folio);
894 }
895
get_extent_map(struct btrfs_inode * inode,struct folio * folio,u64 start,u64 len,struct extent_map ** em_cached)896 static struct extent_map *get_extent_map(struct btrfs_inode *inode,
897 struct folio *folio, u64 start,
898 u64 len, struct extent_map **em_cached)
899 {
900 struct extent_map *em;
901
902 ASSERT(em_cached);
903
904 if (*em_cached) {
905 em = *em_cached;
906 if (extent_map_in_tree(em) && start >= em->start &&
907 start < extent_map_end(em)) {
908 refcount_inc(&em->refs);
909 return em;
910 }
911
912 free_extent_map(em);
913 *em_cached = NULL;
914 }
915
916 em = btrfs_get_extent(inode, folio, start, len);
917 if (!IS_ERR(em)) {
918 BUG_ON(*em_cached);
919 refcount_inc(&em->refs);
920 *em_cached = em;
921 }
922
923 return em;
924 }
925 /*
926 * basic readpage implementation. Locked extent state structs are inserted
927 * into the tree that are removed when the IO is done (by the end_io
928 * handlers)
929 * XXX JDM: This needs looking at to ensure proper page locking
930 * return 0 on success, otherwise return error
931 */
btrfs_do_readpage(struct folio * folio,struct extent_map ** em_cached,struct btrfs_bio_ctrl * bio_ctrl,u64 * prev_em_start)932 static int btrfs_do_readpage(struct folio *folio, struct extent_map **em_cached,
933 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
934 {
935 struct inode *inode = folio->mapping->host;
936 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
937 u64 start = folio_pos(folio);
938 const u64 end = start + folio_size(folio) - 1;
939 u64 extent_offset;
940 u64 last_byte = i_size_read(inode);
941 struct extent_map *em;
942 int ret = 0;
943 const size_t blocksize = fs_info->sectorsize;
944
945 ret = set_folio_extent_mapped(folio);
946 if (ret < 0) {
947 folio_unlock(folio);
948 return ret;
949 }
950
951 if (folio_contains(folio, last_byte >> PAGE_SHIFT)) {
952 size_t zero_offset = offset_in_folio(folio, last_byte);
953
954 if (zero_offset)
955 folio_zero_range(folio, zero_offset,
956 folio_size(folio) - zero_offset);
957 }
958 bio_ctrl->end_io_func = end_bbio_data_read;
959 begin_folio_read(fs_info, folio);
960 for (u64 cur = start; cur <= end; cur += blocksize) {
961 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
962 unsigned long pg_offset = offset_in_folio(folio, cur);
963 bool force_bio_submit = false;
964 u64 disk_bytenr;
965 u64 block_start;
966
967 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
968 if (cur >= last_byte) {
969 folio_zero_range(folio, pg_offset, end - cur + 1);
970 end_folio_read(folio, true, cur, end - cur + 1);
971 break;
972 }
973 if (btrfs_folio_test_uptodate(fs_info, folio, cur, blocksize)) {
974 end_folio_read(folio, true, cur, blocksize);
975 continue;
976 }
977 em = get_extent_map(BTRFS_I(inode), folio, cur, end - cur + 1, em_cached);
978 if (IS_ERR(em)) {
979 end_folio_read(folio, false, cur, end + 1 - cur);
980 return PTR_ERR(em);
981 }
982 extent_offset = cur - em->start;
983 BUG_ON(extent_map_end(em) <= cur);
984 BUG_ON(end < cur);
985
986 compress_type = extent_map_compression(em);
987
988 if (compress_type != BTRFS_COMPRESS_NONE)
989 disk_bytenr = em->disk_bytenr;
990 else
991 disk_bytenr = extent_map_block_start(em) + extent_offset;
992
993 if (em->flags & EXTENT_FLAG_PREALLOC)
994 block_start = EXTENT_MAP_HOLE;
995 else
996 block_start = extent_map_block_start(em);
997
998 /*
999 * If we have a file range that points to a compressed extent
1000 * and it's followed by a consecutive file range that points
1001 * to the same compressed extent (possibly with a different
1002 * offset and/or length, so it either points to the whole extent
1003 * or only part of it), we must make sure we do not submit a
1004 * single bio to populate the folios for the 2 ranges because
1005 * this makes the compressed extent read zero out the folios
1006 * belonging to the 2nd range. Imagine the following scenario:
1007 *
1008 * File layout
1009 * [0 - 8K] [8K - 24K]
1010 * | |
1011 * | |
1012 * points to extent X, points to extent X,
1013 * offset 4K, length of 8K offset 0, length 16K
1014 *
1015 * [extent X, compressed length = 4K uncompressed length = 16K]
1016 *
1017 * If the bio to read the compressed extent covers both ranges,
1018 * it will decompress extent X into the folios belonging to the
1019 * first range and then it will stop, zeroing out the remaining
1020 * folios that belong to the other range that points to extent X.
1021 * So here we make sure we submit 2 bios, one for the first
1022 * range and another one for the third range. Both will target
1023 * the same physical extent from disk, but we can't currently
1024 * make the compressed bio endio callback populate the folios
1025 * for both ranges because each compressed bio is tightly
1026 * coupled with a single extent map, and each range can have
1027 * an extent map with a different offset value relative to the
1028 * uncompressed data of our extent and different lengths. This
1029 * is a corner case so we prioritize correctness over
1030 * non-optimal behavior (submitting 2 bios for the same extent).
1031 */
1032 if (compress_type != BTRFS_COMPRESS_NONE &&
1033 prev_em_start && *prev_em_start != (u64)-1 &&
1034 *prev_em_start != em->start)
1035 force_bio_submit = true;
1036
1037 if (prev_em_start)
1038 *prev_em_start = em->start;
1039
1040 free_extent_map(em);
1041 em = NULL;
1042
1043 /* we've found a hole, just zero and go on */
1044 if (block_start == EXTENT_MAP_HOLE) {
1045 folio_zero_range(folio, pg_offset, blocksize);
1046 end_folio_read(folio, true, cur, blocksize);
1047 continue;
1048 }
1049 /* the get_extent function already copied into the folio */
1050 if (block_start == EXTENT_MAP_INLINE) {
1051 end_folio_read(folio, true, cur, blocksize);
1052 continue;
1053 }
1054
1055 if (bio_ctrl->compress_type != compress_type) {
1056 submit_one_bio(bio_ctrl);
1057 bio_ctrl->compress_type = compress_type;
1058 }
1059
1060 if (force_bio_submit)
1061 submit_one_bio(bio_ctrl);
1062 submit_extent_folio(bio_ctrl, disk_bytenr, folio, blocksize,
1063 pg_offset);
1064 }
1065 return 0;
1066 }
1067
1068 /*
1069 * Check if we can skip waiting the @ordered extent covering the block at @fileoff.
1070 *
1071 * @fileoff: Both input and output.
1072 * Input as the file offset where the check should start at.
1073 * Output as where the next check should start at,
1074 * if the function returns true.
1075 *
1076 * Return true if we can skip to @fileoff. The caller needs to check the new
1077 * @fileoff value to make sure it covers the full range, before skipping the
1078 * full OE.
1079 *
1080 * Return false if we must wait for the ordered extent.
1081 */
can_skip_one_ordered_range(struct btrfs_inode * inode,struct btrfs_ordered_extent * ordered,u64 * fileoff)1082 static bool can_skip_one_ordered_range(struct btrfs_inode *inode,
1083 struct btrfs_ordered_extent *ordered,
1084 u64 *fileoff)
1085 {
1086 const struct btrfs_fs_info *fs_info = inode->root->fs_info;
1087 struct folio *folio;
1088 const u32 blocksize = fs_info->sectorsize;
1089 u64 cur = *fileoff;
1090 bool ret;
1091
1092 folio = filemap_get_folio(inode->vfs_inode.i_mapping, cur >> PAGE_SHIFT);
1093
1094 /*
1095 * We should have locked the folio(s) for range [start, end], thus
1096 * there must be a folio and it must be locked.
1097 */
1098 ASSERT(!IS_ERR(folio));
1099 ASSERT(folio_test_locked(folio));
1100
1101 /*
1102 * There are several cases for the folio and OE combination:
1103 *
1104 * 1) Folio has no private flag
1105 * The OE has all its IO done but not yet finished, and folio got
1106 * invalidated.
1107 *
1108 * Have we have to wait for the OE to finish, as it may contain the
1109 * to-be-inserted data checksum.
1110 * Without the data checksum inserted into the csum tree, read will
1111 * just fail with missing csum.
1112 */
1113 if (!folio_test_private(folio)) {
1114 ret = false;
1115 goto out;
1116 }
1117
1118 /*
1119 * 2) The first block is DIRTY.
1120 *
1121 * This means the OE is created by some other folios whose file pos is
1122 * before this one. And since we are holding the folio lock, the writeback
1123 * of this folio cannot start.
1124 *
1125 * We must skip the whole OE, because it will never start until we
1126 * finished our folio read and unlocked the folio.
1127 */
1128 if (btrfs_folio_test_dirty(fs_info, folio, cur, blocksize)) {
1129 u64 range_len = min(folio_pos(folio) + folio_size(folio),
1130 ordered->file_offset + ordered->num_bytes) - cur;
1131
1132 ret = true;
1133 /*
1134 * At least inside the folio, all the remaining blocks should
1135 * also be dirty.
1136 */
1137 ASSERT(btrfs_folio_test_dirty(fs_info, folio, cur, range_len));
1138 *fileoff = ordered->file_offset + ordered->num_bytes;
1139 goto out;
1140 }
1141
1142 /*
1143 * 3) The first block is uptodate.
1144 *
1145 * At least the first block can be skipped, but we are still not fully
1146 * sure. E.g. if the OE has some other folios in the range that cannot
1147 * be skipped.
1148 * So we return true and update @next_ret to the OE/folio boundary.
1149 */
1150 if (btrfs_folio_test_uptodate(fs_info, folio, cur, blocksize)) {
1151 u64 range_len = min(folio_pos(folio) + folio_size(folio),
1152 ordered->file_offset + ordered->num_bytes) - cur;
1153
1154 /*
1155 * The whole range to the OE end or folio boundary should also
1156 * be uptodate.
1157 */
1158 ASSERT(btrfs_folio_test_uptodate(fs_info, folio, cur, range_len));
1159 ret = true;
1160 *fileoff = cur + range_len;
1161 goto out;
1162 }
1163
1164 /*
1165 * 4) The first block is not uptodate.
1166 *
1167 * This means the folio is invalidated after the writeback was finished,
1168 * but by some other operations (e.g. block aligned buffered write) the
1169 * folio is inserted into filemap.
1170 * Very much the same as case 1).
1171 */
1172 ret = false;
1173 out:
1174 folio_put(folio);
1175 return ret;
1176 }
1177
can_skip_ordered_extent(struct btrfs_inode * inode,struct btrfs_ordered_extent * ordered,u64 start,u64 end)1178 static bool can_skip_ordered_extent(struct btrfs_inode *inode,
1179 struct btrfs_ordered_extent *ordered,
1180 u64 start, u64 end)
1181 {
1182 const u64 range_end = min(end, ordered->file_offset + ordered->num_bytes - 1);
1183 u64 cur = max(start, ordered->file_offset);
1184
1185 while (cur < range_end) {
1186 bool can_skip;
1187
1188 can_skip = can_skip_one_ordered_range(inode, ordered, &cur);
1189 if (!can_skip)
1190 return false;
1191 }
1192 return true;
1193 }
1194
1195 /*
1196 * Locking helper to make sure we get a stable view of extent maps for the
1197 * involved range.
1198 *
1199 * This is for folio read paths (read and readahead), thus the involved range
1200 * should have all the folios locked.
1201 */
lock_extents_for_read(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state)1202 static void lock_extents_for_read(struct btrfs_inode *inode, u64 start, u64 end,
1203 struct extent_state **cached_state)
1204 {
1205 u64 cur_pos;
1206
1207 /* Caller must provide a valid @cached_state. */
1208 ASSERT(cached_state);
1209
1210 /* The range must at least be page aligned, as all read paths are folio based. */
1211 ASSERT(IS_ALIGNED(start, PAGE_SIZE));
1212 ASSERT(IS_ALIGNED(end + 1, PAGE_SIZE));
1213
1214 again:
1215 lock_extent(&inode->io_tree, start, end, cached_state);
1216 cur_pos = start;
1217 while (cur_pos < end) {
1218 struct btrfs_ordered_extent *ordered;
1219
1220 ordered = btrfs_lookup_ordered_range(inode, cur_pos,
1221 end - cur_pos + 1);
1222 /*
1223 * No ordered extents in the range, and we hold the extent lock,
1224 * no one can modify the extent maps in the range, we're safe to return.
1225 */
1226 if (!ordered)
1227 break;
1228
1229 /* Check if we can skip waiting for the whole OE. */
1230 if (can_skip_ordered_extent(inode, ordered, start, end)) {
1231 cur_pos = min(ordered->file_offset + ordered->num_bytes,
1232 end + 1);
1233 btrfs_put_ordered_extent(ordered);
1234 continue;
1235 }
1236
1237 /* Now wait for the OE to finish. */
1238 unlock_extent(&inode->io_tree, start, end, cached_state);
1239 btrfs_start_ordered_extent_nowriteback(ordered, start, end + 1 - start);
1240 btrfs_put_ordered_extent(ordered);
1241 /* We have unlocked the whole range, restart from the beginning. */
1242 goto again;
1243 }
1244 }
1245
btrfs_read_folio(struct file * file,struct folio * folio)1246 int btrfs_read_folio(struct file *file, struct folio *folio)
1247 {
1248 struct btrfs_inode *inode = folio_to_inode(folio);
1249 const u64 start = folio_pos(folio);
1250 const u64 end = start + folio_size(folio) - 1;
1251 struct extent_state *cached_state = NULL;
1252 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
1253 struct extent_map *em_cached = NULL;
1254 int ret;
1255
1256 lock_extents_for_read(inode, start, end, &cached_state);
1257 ret = btrfs_do_readpage(folio, &em_cached, &bio_ctrl, NULL);
1258 unlock_extent(&inode->io_tree, start, end, &cached_state);
1259
1260 free_extent_map(em_cached);
1261
1262 /*
1263 * If btrfs_do_readpage() failed we will want to submit the assembled
1264 * bio to do the cleanup.
1265 */
1266 submit_one_bio(&bio_ctrl);
1267 return ret;
1268 }
1269
set_delalloc_bitmap(struct folio * folio,unsigned long * delalloc_bitmap,u64 start,u32 len)1270 static void set_delalloc_bitmap(struct folio *folio, unsigned long *delalloc_bitmap,
1271 u64 start, u32 len)
1272 {
1273 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1274 const u64 folio_start = folio_pos(folio);
1275 unsigned int start_bit;
1276 unsigned int nbits;
1277
1278 ASSERT(start >= folio_start && start + len <= folio_start + folio_size(folio));
1279 start_bit = (start - folio_start) >> fs_info->sectorsize_bits;
1280 nbits = len >> fs_info->sectorsize_bits;
1281 ASSERT(bitmap_test_range_all_zero(delalloc_bitmap, start_bit, nbits));
1282 bitmap_set(delalloc_bitmap, start_bit, nbits);
1283 }
1284
find_next_delalloc_bitmap(struct folio * folio,unsigned long * delalloc_bitmap,u64 start,u64 * found_start,u32 * found_len)1285 static bool find_next_delalloc_bitmap(struct folio *folio,
1286 unsigned long *delalloc_bitmap, u64 start,
1287 u64 *found_start, u32 *found_len)
1288 {
1289 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1290 const u64 folio_start = folio_pos(folio);
1291 const unsigned int bitmap_size = btrfs_blocks_per_folio(fs_info, folio);
1292 unsigned int start_bit;
1293 unsigned int first_zero;
1294 unsigned int first_set;
1295
1296 ASSERT(start >= folio_start && start < folio_start + folio_size(folio));
1297
1298 start_bit = (start - folio_start) >> fs_info->sectorsize_bits;
1299 first_set = find_next_bit(delalloc_bitmap, bitmap_size, start_bit);
1300 if (first_set >= bitmap_size)
1301 return false;
1302
1303 *found_start = folio_start + (first_set << fs_info->sectorsize_bits);
1304 first_zero = find_next_zero_bit(delalloc_bitmap, bitmap_size, first_set);
1305 *found_len = (first_zero - first_set) << fs_info->sectorsize_bits;
1306 return true;
1307 }
1308
1309 /*
1310 * Do all of the delayed allocation setup.
1311 *
1312 * Return >0 if all the dirty blocks are submitted async (compression) or inlined.
1313 * The @folio should no longer be touched (treat it as already unlocked).
1314 *
1315 * Return 0 if there is still dirty block that needs to be submitted through
1316 * extent_writepage_io().
1317 * bio_ctrl->submit_bitmap will indicate which blocks of the folio should be
1318 * submitted, and @folio is still kept locked.
1319 *
1320 * Return <0 if there is any error hit.
1321 * Any allocated ordered extent range covering this folio will be marked
1322 * finished (IOERR), and @folio is still kept locked.
1323 */
writepage_delalloc(struct btrfs_inode * inode,struct folio * folio,struct btrfs_bio_ctrl * bio_ctrl)1324 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1325 struct folio *folio,
1326 struct btrfs_bio_ctrl *bio_ctrl)
1327 {
1328 struct btrfs_fs_info *fs_info = inode_to_fs_info(&inode->vfs_inode);
1329 struct writeback_control *wbc = bio_ctrl->wbc;
1330 const bool is_subpage = btrfs_is_subpage(fs_info, folio);
1331 const u64 page_start = folio_pos(folio);
1332 const u64 page_end = page_start + folio_size(folio) - 1;
1333 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio);
1334 unsigned long delalloc_bitmap = 0;
1335 /*
1336 * Save the last found delalloc end. As the delalloc end can go beyond
1337 * page boundary, thus we cannot rely on subpage bitmap to locate the
1338 * last delalloc end.
1339 */
1340 u64 last_delalloc_end = 0;
1341 /*
1342 * The range end (exclusive) of the last successfully finished delalloc
1343 * range.
1344 * Any range covered by ordered extent must either be manually marked
1345 * finished (error handling), or has IO submitted (and finish the
1346 * ordered extent normally).
1347 *
1348 * This records the end of ordered extent cleanup if we hit an error.
1349 */
1350 u64 last_finished_delalloc_end = page_start;
1351 u64 delalloc_start = page_start;
1352 u64 delalloc_end = page_end;
1353 u64 delalloc_to_write = 0;
1354 int ret = 0;
1355 int bit;
1356
1357 /* Save the dirty bitmap as our submission bitmap will be a subset of it. */
1358 if (btrfs_is_subpage(fs_info, folio)) {
1359 ASSERT(blocks_per_folio > 1);
1360 btrfs_get_subpage_dirty_bitmap(fs_info, folio, &bio_ctrl->submit_bitmap);
1361 } else {
1362 bio_ctrl->submit_bitmap = 1;
1363 }
1364
1365 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, blocks_per_folio) {
1366 u64 start = page_start + (bit << fs_info->sectorsize_bits);
1367
1368 btrfs_folio_set_lock(fs_info, folio, start, fs_info->sectorsize);
1369 }
1370
1371 /* Lock all (subpage) delalloc ranges inside the folio first. */
1372 while (delalloc_start < page_end) {
1373 delalloc_end = page_end;
1374 if (!find_lock_delalloc_range(&inode->vfs_inode, folio,
1375 &delalloc_start, &delalloc_end)) {
1376 delalloc_start = delalloc_end + 1;
1377 continue;
1378 }
1379 set_delalloc_bitmap(folio, &delalloc_bitmap, delalloc_start,
1380 min(delalloc_end, page_end) + 1 - delalloc_start);
1381 last_delalloc_end = delalloc_end;
1382 delalloc_start = delalloc_end + 1;
1383 }
1384 delalloc_start = page_start;
1385
1386 if (!last_delalloc_end)
1387 goto out;
1388
1389 /* Run the delalloc ranges for the above locked ranges. */
1390 while (delalloc_start < page_end) {
1391 u64 found_start;
1392 u32 found_len;
1393 bool found;
1394
1395 if (!is_subpage) {
1396 /*
1397 * For non-subpage case, the found delalloc range must
1398 * cover this folio and there must be only one locked
1399 * delalloc range.
1400 */
1401 found_start = page_start;
1402 found_len = last_delalloc_end + 1 - found_start;
1403 found = true;
1404 } else {
1405 found = find_next_delalloc_bitmap(folio, &delalloc_bitmap,
1406 delalloc_start, &found_start, &found_len);
1407 }
1408 if (!found)
1409 break;
1410 /*
1411 * The subpage range covers the last sector, the delalloc range may
1412 * end beyond the folio boundary, use the saved delalloc_end
1413 * instead.
1414 */
1415 if (found_start + found_len >= page_end)
1416 found_len = last_delalloc_end + 1 - found_start;
1417
1418 if (ret >= 0) {
1419 /*
1420 * Some delalloc range may be created by previous folios.
1421 * Thus we still need to clean up this range during error
1422 * handling.
1423 */
1424 last_finished_delalloc_end = found_start;
1425 /* No errors hit so far, run the current delalloc range. */
1426 ret = btrfs_run_delalloc_range(inode, folio,
1427 found_start,
1428 found_start + found_len - 1,
1429 wbc);
1430 if (ret >= 0)
1431 last_finished_delalloc_end = found_start + found_len;
1432 if (unlikely(ret < 0))
1433 btrfs_err_rl(fs_info,
1434 "failed to run delalloc range, root=%lld ino=%llu folio=%llu submit_bitmap=%*pbl start=%llu len=%u: %d",
1435 btrfs_root_id(inode->root),
1436 btrfs_ino(inode),
1437 folio_pos(folio),
1438 blocks_per_folio,
1439 &bio_ctrl->submit_bitmap,
1440 found_start, found_len, ret);
1441 } else {
1442 /*
1443 * We've hit an error during previous delalloc range,
1444 * have to cleanup the remaining locked ranges.
1445 */
1446 unlock_extent(&inode->io_tree, found_start,
1447 found_start + found_len - 1, NULL);
1448 unlock_delalloc_folio(&inode->vfs_inode, folio,
1449 found_start,
1450 found_start + found_len - 1);
1451 }
1452
1453 /*
1454 * We have some ranges that's going to be submitted asynchronously
1455 * (compression or inline). These range have their own control
1456 * on when to unlock the pages. We should not touch them
1457 * anymore, so clear the range from the submission bitmap.
1458 */
1459 if (ret > 0) {
1460 unsigned int start_bit = (found_start - page_start) >>
1461 fs_info->sectorsize_bits;
1462 unsigned int end_bit = (min(page_end + 1, found_start + found_len) -
1463 page_start) >> fs_info->sectorsize_bits;
1464 bitmap_clear(&bio_ctrl->submit_bitmap, start_bit, end_bit - start_bit);
1465 }
1466 /*
1467 * Above btrfs_run_delalloc_range() may have unlocked the folio,
1468 * thus for the last range, we cannot touch the folio anymore.
1469 */
1470 if (found_start + found_len >= last_delalloc_end + 1)
1471 break;
1472
1473 delalloc_start = found_start + found_len;
1474 }
1475 /*
1476 * It's possible we had some ordered extents created before we hit
1477 * an error, cleanup non-async successfully created delalloc ranges.
1478 */
1479 if (unlikely(ret < 0)) {
1480 unsigned int bitmap_size = min(
1481 (last_finished_delalloc_end - page_start) >>
1482 fs_info->sectorsize_bits,
1483 blocks_per_folio);
1484
1485 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, bitmap_size)
1486 btrfs_mark_ordered_io_finished(inode, folio,
1487 page_start + (bit << fs_info->sectorsize_bits),
1488 fs_info->sectorsize, false);
1489 return ret;
1490 }
1491 out:
1492 if (last_delalloc_end)
1493 delalloc_end = last_delalloc_end;
1494 else
1495 delalloc_end = page_end;
1496 /*
1497 * delalloc_end is already one less than the total length, so
1498 * we don't subtract one from PAGE_SIZE.
1499 */
1500 delalloc_to_write +=
1501 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1502
1503 /*
1504 * If all ranges are submitted asynchronously, we just need to account
1505 * for them here.
1506 */
1507 if (bitmap_empty(&bio_ctrl->submit_bitmap, blocks_per_folio)) {
1508 wbc->nr_to_write -= delalloc_to_write;
1509 return 1;
1510 }
1511
1512 if (wbc->nr_to_write < delalloc_to_write) {
1513 int thresh = 8192;
1514
1515 if (delalloc_to_write < thresh * 2)
1516 thresh = delalloc_to_write;
1517 wbc->nr_to_write = min_t(u64, delalloc_to_write,
1518 thresh);
1519 }
1520
1521 return 0;
1522 }
1523
1524 /*
1525 * Return 0 if we have submitted or queued the sector for submission.
1526 * Return <0 for critical errors.
1527 *
1528 * Caller should make sure filepos < i_size and handle filepos >= i_size case.
1529 */
submit_one_sector(struct btrfs_inode * inode,struct folio * folio,u64 filepos,struct btrfs_bio_ctrl * bio_ctrl,loff_t i_size)1530 static int submit_one_sector(struct btrfs_inode *inode,
1531 struct folio *folio,
1532 u64 filepos, struct btrfs_bio_ctrl *bio_ctrl,
1533 loff_t i_size)
1534 {
1535 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1536 struct extent_map *em;
1537 u64 block_start;
1538 u64 disk_bytenr;
1539 u64 extent_offset;
1540 u64 em_end;
1541 const u32 sectorsize = fs_info->sectorsize;
1542
1543 ASSERT(IS_ALIGNED(filepos, sectorsize));
1544
1545 /* @filepos >= i_size case should be handled by the caller. */
1546 ASSERT(filepos < i_size);
1547
1548 em = btrfs_get_extent(inode, NULL, filepos, sectorsize);
1549 if (IS_ERR(em))
1550 return PTR_ERR(em);
1551
1552 extent_offset = filepos - em->start;
1553 em_end = extent_map_end(em);
1554 ASSERT(filepos <= em_end);
1555 ASSERT(IS_ALIGNED(em->start, sectorsize));
1556 ASSERT(IS_ALIGNED(em->len, sectorsize));
1557
1558 block_start = extent_map_block_start(em);
1559 disk_bytenr = extent_map_block_start(em) + extent_offset;
1560
1561 ASSERT(!extent_map_is_compressed(em));
1562 ASSERT(block_start != EXTENT_MAP_HOLE);
1563 ASSERT(block_start != EXTENT_MAP_INLINE);
1564
1565 free_extent_map(em);
1566 em = NULL;
1567
1568 /*
1569 * Although the PageDirty bit is cleared before entering this
1570 * function, subpage dirty bit is not cleared.
1571 * So clear subpage dirty bit here so next time we won't submit
1572 * a folio for a range already written to disk.
1573 */
1574 btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize);
1575 btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize);
1576 /*
1577 * Above call should set the whole folio with writeback flag, even
1578 * just for a single subpage sector.
1579 * As long as the folio is properly locked and the range is correct,
1580 * we should always get the folio with writeback flag.
1581 */
1582 ASSERT(folio_test_writeback(folio));
1583
1584 submit_extent_folio(bio_ctrl, disk_bytenr, folio,
1585 sectorsize, filepos - folio_pos(folio));
1586 return 0;
1587 }
1588
1589 /*
1590 * Helper for extent_writepage(). This calls the writepage start hooks,
1591 * and does the loop to map the page into extents and bios.
1592 *
1593 * We return 1 if the IO is started and the page is unlocked,
1594 * 0 if all went well (page still locked)
1595 * < 0 if there were errors (page still locked)
1596 */
extent_writepage_io(struct btrfs_inode * inode,struct folio * folio,u64 start,u32 len,struct btrfs_bio_ctrl * bio_ctrl,loff_t i_size)1597 static noinline_for_stack int extent_writepage_io(struct btrfs_inode *inode,
1598 struct folio *folio,
1599 u64 start, u32 len,
1600 struct btrfs_bio_ctrl *bio_ctrl,
1601 loff_t i_size)
1602 {
1603 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1604 unsigned long range_bitmap = 0;
1605 bool submitted_io = false;
1606 bool error = false;
1607 const u64 folio_start = folio_pos(folio);
1608 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio);
1609 u64 cur;
1610 int bit;
1611 int ret = 0;
1612
1613 ASSERT(start >= folio_start &&
1614 start + len <= folio_start + folio_size(folio));
1615
1616 ret = btrfs_writepage_cow_fixup(folio);
1617 if (ret == -EAGAIN) {
1618 /* Fixup worker will requeue */
1619 folio_redirty_for_writepage(bio_ctrl->wbc, folio);
1620 folio_unlock(folio);
1621 return 1;
1622 }
1623 if (ret < 0)
1624 return ret;
1625
1626 for (cur = start; cur < start + len; cur += fs_info->sectorsize)
1627 set_bit((cur - folio_start) >> fs_info->sectorsize_bits, &range_bitmap);
1628 bitmap_and(&bio_ctrl->submit_bitmap, &bio_ctrl->submit_bitmap, &range_bitmap,
1629 blocks_per_folio);
1630
1631 bio_ctrl->end_io_func = end_bbio_data_write;
1632
1633 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, blocks_per_folio) {
1634 cur = folio_pos(folio) + (bit << fs_info->sectorsize_bits);
1635
1636 if (cur >= i_size) {
1637 btrfs_mark_ordered_io_finished(inode, folio, cur,
1638 start + len - cur, true);
1639 /*
1640 * This range is beyond i_size, thus we don't need to
1641 * bother writing back.
1642 * But we still need to clear the dirty subpage bit, or
1643 * the next time the folio gets dirtied, we will try to
1644 * writeback the sectors with subpage dirty bits,
1645 * causing writeback without ordered extent.
1646 */
1647 btrfs_folio_clear_dirty(fs_info, folio, cur,
1648 start + len - cur);
1649 break;
1650 }
1651 ret = submit_one_sector(inode, folio, cur, bio_ctrl, i_size);
1652 if (unlikely(ret < 0)) {
1653 /*
1654 * bio_ctrl may contain a bio crossing several folios.
1655 * Submit it immediately so that the bio has a chance
1656 * to finish normally, other than marked as error.
1657 */
1658 submit_one_bio(bio_ctrl);
1659 /*
1660 * Failed to grab the extent map which should be very rare.
1661 * Since there is no bio submitted to finish the ordered
1662 * extent, we have to manually finish this sector.
1663 */
1664 btrfs_mark_ordered_io_finished(inode, folio, cur,
1665 fs_info->sectorsize, false);
1666 error = true;
1667 continue;
1668 }
1669 submitted_io = true;
1670 }
1671
1672 /*
1673 * If we didn't submitted any sector (>= i_size), folio dirty get
1674 * cleared but PAGECACHE_TAG_DIRTY is not cleared (only cleared
1675 * by folio_start_writeback() if the folio is not dirty).
1676 *
1677 * Here we set writeback and clear for the range. If the full folio
1678 * is no longer dirty then we clear the PAGECACHE_TAG_DIRTY tag.
1679 *
1680 * If we hit any error, the corresponding sector will still be dirty
1681 * thus no need to clear PAGECACHE_TAG_DIRTY.
1682 */
1683 if (!submitted_io && !error) {
1684 btrfs_folio_set_writeback(fs_info, folio, start, len);
1685 btrfs_folio_clear_writeback(fs_info, folio, start, len);
1686 }
1687 return ret;
1688 }
1689
1690 /*
1691 * the writepage semantics are similar to regular writepage. extent
1692 * records are inserted to lock ranges in the tree, and as dirty areas
1693 * are found, they are marked writeback. Then the lock bits are removed
1694 * and the end_io handler clears the writeback ranges
1695 *
1696 * Return 0 if everything goes well.
1697 * Return <0 for error.
1698 */
extent_writepage(struct folio * folio,struct btrfs_bio_ctrl * bio_ctrl)1699 static int extent_writepage(struct folio *folio, struct btrfs_bio_ctrl *bio_ctrl)
1700 {
1701 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
1702 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1703 int ret;
1704 size_t pg_offset;
1705 loff_t i_size = i_size_read(&inode->vfs_inode);
1706 unsigned long end_index = i_size >> PAGE_SHIFT;
1707 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio);
1708
1709 trace_extent_writepage(folio, &inode->vfs_inode, bio_ctrl->wbc);
1710
1711 WARN_ON(!folio_test_locked(folio));
1712
1713 pg_offset = offset_in_folio(folio, i_size);
1714 if (folio->index > end_index ||
1715 (folio->index == end_index && !pg_offset)) {
1716 folio_invalidate(folio, 0, folio_size(folio));
1717 folio_unlock(folio);
1718 return 0;
1719 }
1720
1721 if (folio->index == end_index)
1722 folio_zero_range(folio, pg_offset, folio_size(folio) - pg_offset);
1723
1724 /*
1725 * Default to unlock the whole folio.
1726 * The proper bitmap can only be initialized until writepage_delalloc().
1727 */
1728 bio_ctrl->submit_bitmap = (unsigned long)-1;
1729
1730 /*
1731 * If the page is dirty but without private set, it's marked dirty
1732 * without informing the fs.
1733 * Nowadays that is a bug, since the introduction of
1734 * pin_user_pages*().
1735 *
1736 * So here we check if the page has private set to rule out such
1737 * case.
1738 * But we also have a long history of relying on the COW fixup,
1739 * so here we only enable this check for experimental builds until
1740 * we're sure it's safe.
1741 */
1742 if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL) &&
1743 unlikely(!folio_test_private(folio))) {
1744 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
1745 btrfs_err_rl(fs_info,
1746 "root %lld ino %llu folio %llu is marked dirty without notifying the fs",
1747 inode->root->root_key.objectid,
1748 btrfs_ino(inode), folio_pos(folio));
1749 ret = -EUCLEAN;
1750 goto done;
1751 }
1752
1753 ret = set_folio_extent_mapped(folio);
1754 if (ret < 0)
1755 goto done;
1756
1757 ret = writepage_delalloc(inode, folio, bio_ctrl);
1758 if (ret == 1)
1759 return 0;
1760 if (ret)
1761 goto done;
1762
1763 ret = extent_writepage_io(inode, folio, folio_pos(folio),
1764 folio_size(folio), bio_ctrl, i_size);
1765 if (ret == 1)
1766 return 0;
1767 if (ret < 0)
1768 btrfs_err_rl(fs_info,
1769 "failed to submit blocks, root=%lld inode=%llu folio=%llu submit_bitmap=%*pbl: %d",
1770 btrfs_root_id(inode->root), btrfs_ino(inode),
1771 folio_pos(folio), blocks_per_folio,
1772 &bio_ctrl->submit_bitmap, ret);
1773
1774 bio_ctrl->wbc->nr_to_write--;
1775
1776 done:
1777 if (ret < 0)
1778 mapping_set_error(folio->mapping, ret);
1779 /*
1780 * Only unlock ranges that are submitted. As there can be some async
1781 * submitted ranges inside the folio.
1782 */
1783 btrfs_folio_end_lock_bitmap(fs_info, folio, bio_ctrl->submit_bitmap);
1784 ASSERT(ret <= 0);
1785 return ret;
1786 }
1787
1788 /*
1789 * Lock extent buffer status and pages for writeback.
1790 *
1791 * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1792 * extent buffer is not dirty)
1793 * Return %true is the extent buffer is submitted to bio.
1794 */
lock_extent_buffer_for_io(struct extent_buffer * eb,struct writeback_control * wbc)1795 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1796 struct writeback_control *wbc)
1797 {
1798 struct btrfs_fs_info *fs_info = eb->fs_info;
1799 bool ret = false;
1800
1801 btrfs_tree_lock(eb);
1802 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1803 btrfs_tree_unlock(eb);
1804 if (wbc->sync_mode != WB_SYNC_ALL)
1805 return false;
1806 wait_on_extent_buffer_writeback(eb);
1807 btrfs_tree_lock(eb);
1808 }
1809
1810 /*
1811 * We need to do this to prevent races in people who check if the eb is
1812 * under IO since we can end up having no IO bits set for a short period
1813 * of time.
1814 */
1815 spin_lock(&eb->refs_lock);
1816 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1817 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1818 spin_unlock(&eb->refs_lock);
1819 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1820 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1821 -eb->len,
1822 fs_info->dirty_metadata_batch);
1823 ret = true;
1824 } else {
1825 spin_unlock(&eb->refs_lock);
1826 }
1827 btrfs_tree_unlock(eb);
1828 return ret;
1829 }
1830
set_btree_ioerr(struct extent_buffer * eb)1831 static void set_btree_ioerr(struct extent_buffer *eb)
1832 {
1833 struct btrfs_fs_info *fs_info = eb->fs_info;
1834
1835 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1836
1837 /*
1838 * A read may stumble upon this buffer later, make sure that it gets an
1839 * error and knows there was an error.
1840 */
1841 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1842
1843 /*
1844 * We need to set the mapping with the io error as well because a write
1845 * error will flip the file system readonly, and then syncfs() will
1846 * return a 0 because we are readonly if we don't modify the err seq for
1847 * the superblock.
1848 */
1849 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
1850
1851 /*
1852 * If writeback for a btree extent that doesn't belong to a log tree
1853 * failed, increment the counter transaction->eb_write_errors.
1854 * We do this because while the transaction is running and before it's
1855 * committing (when we call filemap_fdata[write|wait]_range against
1856 * the btree inode), we might have
1857 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1858 * returns an error or an error happens during writeback, when we're
1859 * committing the transaction we wouldn't know about it, since the pages
1860 * can be no longer dirty nor marked anymore for writeback (if a
1861 * subsequent modification to the extent buffer didn't happen before the
1862 * transaction commit), which makes filemap_fdata[write|wait]_range not
1863 * able to find the pages which contain errors at transaction
1864 * commit time. So if this happens we must abort the transaction,
1865 * otherwise we commit a super block with btree roots that point to
1866 * btree nodes/leafs whose content on disk is invalid - either garbage
1867 * or the content of some node/leaf from a past generation that got
1868 * cowed or deleted and is no longer valid.
1869 *
1870 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1871 * not be enough - we need to distinguish between log tree extents vs
1872 * non-log tree extents, and the next filemap_fdatawait_range() call
1873 * will catch and clear such errors in the mapping - and that call might
1874 * be from a log sync and not from a transaction commit. Also, checking
1875 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1876 * not done and would not be reliable - the eb might have been released
1877 * from memory and reading it back again means that flag would not be
1878 * set (since it's a runtime flag, not persisted on disk).
1879 *
1880 * Using the flags below in the btree inode also makes us achieve the
1881 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1882 * writeback for all dirty pages and before filemap_fdatawait_range()
1883 * is called, the writeback for all dirty pages had already finished
1884 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1885 * filemap_fdatawait_range() would return success, as it could not know
1886 * that writeback errors happened (the pages were no longer tagged for
1887 * writeback).
1888 */
1889 switch (eb->log_index) {
1890 case -1:
1891 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1892 break;
1893 case 0:
1894 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1895 break;
1896 case 1:
1897 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
1898 break;
1899 default:
1900 BUG(); /* unexpected, logic error */
1901 }
1902 }
1903
1904 /*
1905 * The endio specific version which won't touch any unsafe spinlock in endio
1906 * context.
1907 */
find_extent_buffer_nolock(const struct btrfs_fs_info * fs_info,u64 start)1908 static struct extent_buffer *find_extent_buffer_nolock(
1909 const struct btrfs_fs_info *fs_info, u64 start)
1910 {
1911 struct extent_buffer *eb;
1912
1913 rcu_read_lock();
1914 eb = radix_tree_lookup(&fs_info->buffer_radix,
1915 start >> fs_info->sectorsize_bits);
1916 if (eb && atomic_inc_not_zero(&eb->refs)) {
1917 rcu_read_unlock();
1918 return eb;
1919 }
1920 rcu_read_unlock();
1921 return NULL;
1922 }
1923
end_bbio_meta_write(struct btrfs_bio * bbio)1924 static void end_bbio_meta_write(struct btrfs_bio *bbio)
1925 {
1926 struct extent_buffer *eb = bbio->private;
1927 struct folio_iter fi;
1928
1929 if (bbio->bio.bi_status != BLK_STS_OK)
1930 set_btree_ioerr(eb);
1931
1932 bio_for_each_folio_all(fi, &bbio->bio) {
1933 btrfs_meta_folio_clear_writeback(fi.folio, eb);
1934 }
1935
1936 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1937 smp_mb__after_atomic();
1938 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
1939
1940 bio_put(&bbio->bio);
1941 }
1942
prepare_eb_write(struct extent_buffer * eb)1943 static void prepare_eb_write(struct extent_buffer *eb)
1944 {
1945 u32 nritems;
1946 unsigned long start;
1947 unsigned long end;
1948
1949 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1950
1951 /* Set btree blocks beyond nritems with 0 to avoid stale content */
1952 nritems = btrfs_header_nritems(eb);
1953 if (btrfs_header_level(eb) > 0) {
1954 end = btrfs_node_key_ptr_offset(eb, nritems);
1955 memzero_extent_buffer(eb, end, eb->len - end);
1956 } else {
1957 /*
1958 * Leaf:
1959 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
1960 */
1961 start = btrfs_item_nr_offset(eb, nritems);
1962 end = btrfs_item_nr_offset(eb, 0);
1963 if (nritems == 0)
1964 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
1965 else
1966 end += btrfs_item_offset(eb, nritems - 1);
1967 memzero_extent_buffer(eb, start, end - start);
1968 }
1969 }
1970
write_one_eb(struct extent_buffer * eb,struct writeback_control * wbc)1971 static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
1972 struct writeback_control *wbc)
1973 {
1974 struct btrfs_fs_info *fs_info = eb->fs_info;
1975 struct btrfs_bio *bbio;
1976
1977 prepare_eb_write(eb);
1978
1979 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
1980 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
1981 eb->fs_info, end_bbio_meta_write, eb);
1982 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
1983 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
1984 wbc_init_bio(wbc, &bbio->bio);
1985 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
1986 bbio->file_offset = eb->start;
1987 for (int i = 0; i < num_extent_folios(eb); i++) {
1988 struct folio *folio = eb->folios[i];
1989 u64 range_start = max_t(u64, eb->start, folio_pos(folio));
1990 u32 range_len = min_t(u64, folio_pos(folio) + folio_size(folio),
1991 eb->start + eb->len) - range_start;
1992
1993 folio_lock(folio);
1994 btrfs_meta_folio_clear_dirty(folio, eb);
1995 btrfs_meta_folio_set_writeback(folio, eb);
1996 if (!folio_test_dirty(folio))
1997 wbc->nr_to_write -= folio_nr_pages(folio);
1998 bio_add_folio_nofail(&bbio->bio, folio, range_len,
1999 offset_in_folio(folio, range_start));
2000 wbc_account_cgroup_owner(wbc, folio, range_len);
2001 folio_unlock(folio);
2002 }
2003 btrfs_submit_bbio(bbio, 0);
2004 }
2005
2006 /*
2007 * Submit one subpage btree page.
2008 *
2009 * The main difference to submit_eb_page() is:
2010 * - Page locking
2011 * For subpage, we don't rely on page locking at all.
2012 *
2013 * - Flush write bio
2014 * We only flush bio if we may be unable to fit current extent buffers into
2015 * current bio.
2016 *
2017 * Return >=0 for the number of submitted extent buffers.
2018 * Return <0 for fatal error.
2019 */
submit_eb_subpage(struct folio * folio,struct writeback_control * wbc)2020 static int submit_eb_subpage(struct folio *folio, struct writeback_control *wbc)
2021 {
2022 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
2023 int submitted = 0;
2024 u64 folio_start = folio_pos(folio);
2025 int bit_start = 0;
2026 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
2027 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio);
2028
2029 /* Lock and write each dirty extent buffers in the range */
2030 while (bit_start < blocks_per_folio) {
2031 struct btrfs_subpage *subpage = folio_get_private(folio);
2032 struct extent_buffer *eb;
2033 unsigned long flags;
2034 u64 start;
2035
2036 /*
2037 * Take private lock to ensure the subpage won't be detached
2038 * in the meantime.
2039 */
2040 spin_lock(&folio->mapping->i_private_lock);
2041 if (!folio_test_private(folio)) {
2042 spin_unlock(&folio->mapping->i_private_lock);
2043 break;
2044 }
2045 spin_lock_irqsave(&subpage->lock, flags);
2046 if (!test_bit(bit_start + btrfs_bitmap_nr_dirty * blocks_per_folio,
2047 subpage->bitmaps)) {
2048 spin_unlock_irqrestore(&subpage->lock, flags);
2049 spin_unlock(&folio->mapping->i_private_lock);
2050 bit_start++;
2051 continue;
2052 }
2053
2054 start = folio_start + bit_start * fs_info->sectorsize;
2055 bit_start += sectors_per_node;
2056
2057 /*
2058 * Here we just want to grab the eb without touching extra
2059 * spin locks, so call find_extent_buffer_nolock().
2060 */
2061 eb = find_extent_buffer_nolock(fs_info, start);
2062 spin_unlock_irqrestore(&subpage->lock, flags);
2063 spin_unlock(&folio->mapping->i_private_lock);
2064
2065 /*
2066 * The eb has already reached 0 refs thus find_extent_buffer()
2067 * doesn't return it. We don't need to write back such eb
2068 * anyway.
2069 */
2070 if (!eb)
2071 continue;
2072
2073 if (lock_extent_buffer_for_io(eb, wbc)) {
2074 write_one_eb(eb, wbc);
2075 submitted++;
2076 }
2077 free_extent_buffer(eb);
2078 }
2079 return submitted;
2080 }
2081
2082 /*
2083 * Submit all page(s) of one extent buffer.
2084 *
2085 * @page: the page of one extent buffer
2086 * @eb_context: to determine if we need to submit this page, if current page
2087 * belongs to this eb, we don't need to submit
2088 *
2089 * The caller should pass each page in their bytenr order, and here we use
2090 * @eb_context to determine if we have submitted pages of one extent buffer.
2091 *
2092 * If we have, we just skip until we hit a new page that doesn't belong to
2093 * current @eb_context.
2094 *
2095 * If not, we submit all the page(s) of the extent buffer.
2096 *
2097 * Return >0 if we have submitted the extent buffer successfully.
2098 * Return 0 if we don't need to submit the page, as it's already submitted by
2099 * previous call.
2100 * Return <0 for fatal error.
2101 */
submit_eb_page(struct folio * folio,struct btrfs_eb_write_context * ctx)2102 static int submit_eb_page(struct folio *folio, struct btrfs_eb_write_context *ctx)
2103 {
2104 struct writeback_control *wbc = ctx->wbc;
2105 struct address_space *mapping = folio->mapping;
2106 struct extent_buffer *eb;
2107 int ret;
2108
2109 if (!folio_test_private(folio))
2110 return 0;
2111
2112 if (btrfs_meta_is_subpage(folio_to_fs_info(folio)))
2113 return submit_eb_subpage(folio, wbc);
2114
2115 spin_lock(&mapping->i_private_lock);
2116 if (!folio_test_private(folio)) {
2117 spin_unlock(&mapping->i_private_lock);
2118 return 0;
2119 }
2120
2121 eb = folio_get_private(folio);
2122
2123 /*
2124 * Shouldn't happen and normally this would be a BUG_ON but no point
2125 * crashing the machine for something we can survive anyway.
2126 */
2127 if (WARN_ON(!eb)) {
2128 spin_unlock(&mapping->i_private_lock);
2129 return 0;
2130 }
2131
2132 if (eb == ctx->eb) {
2133 spin_unlock(&mapping->i_private_lock);
2134 return 0;
2135 }
2136 ret = atomic_inc_not_zero(&eb->refs);
2137 spin_unlock(&mapping->i_private_lock);
2138 if (!ret)
2139 return 0;
2140
2141 ctx->eb = eb;
2142
2143 ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx);
2144 if (ret) {
2145 if (ret == -EBUSY)
2146 ret = 0;
2147 free_extent_buffer(eb);
2148 return ret;
2149 }
2150
2151 if (!lock_extent_buffer_for_io(eb, wbc)) {
2152 free_extent_buffer(eb);
2153 return 0;
2154 }
2155 /* Implies write in zoned mode. */
2156 if (ctx->zoned_bg) {
2157 /* Mark the last eb in the block group. */
2158 btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb);
2159 ctx->zoned_bg->meta_write_pointer += eb->len;
2160 }
2161 write_one_eb(eb, wbc);
2162 free_extent_buffer(eb);
2163 return 1;
2164 }
2165
btree_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc)2166 int btree_write_cache_pages(struct address_space *mapping,
2167 struct writeback_control *wbc)
2168 {
2169 struct btrfs_eb_write_context ctx = { .wbc = wbc };
2170 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
2171 int ret = 0;
2172 int done = 0;
2173 int nr_to_write_done = 0;
2174 struct folio_batch fbatch;
2175 unsigned int nr_folios;
2176 pgoff_t index;
2177 pgoff_t end; /* Inclusive */
2178 int scanned = 0;
2179 xa_mark_t tag;
2180
2181 folio_batch_init(&fbatch);
2182 if (wbc->range_cyclic) {
2183 index = mapping->writeback_index; /* Start from prev offset */
2184 end = -1;
2185 /*
2186 * Start from the beginning does not need to cycle over the
2187 * range, mark it as scanned.
2188 */
2189 scanned = (index == 0);
2190 } else {
2191 index = wbc->range_start >> PAGE_SHIFT;
2192 end = wbc->range_end >> PAGE_SHIFT;
2193 scanned = 1;
2194 }
2195 if (wbc->sync_mode == WB_SYNC_ALL)
2196 tag = PAGECACHE_TAG_TOWRITE;
2197 else
2198 tag = PAGECACHE_TAG_DIRTY;
2199 btrfs_zoned_meta_io_lock(fs_info);
2200 retry:
2201 if (wbc->sync_mode == WB_SYNC_ALL)
2202 tag_pages_for_writeback(mapping, index, end);
2203 while (!done && !nr_to_write_done && (index <= end) &&
2204 (nr_folios = filemap_get_folios_tag(mapping, &index, end,
2205 tag, &fbatch))) {
2206 unsigned i;
2207
2208 for (i = 0; i < nr_folios; i++) {
2209 struct folio *folio = fbatch.folios[i];
2210
2211 ret = submit_eb_page(folio, &ctx);
2212 if (ret == 0)
2213 continue;
2214 if (ret < 0) {
2215 done = 1;
2216 break;
2217 }
2218
2219 /*
2220 * the filesystem may choose to bump up nr_to_write.
2221 * We have to make sure to honor the new nr_to_write
2222 * at any time
2223 */
2224 nr_to_write_done = wbc->nr_to_write <= 0;
2225 }
2226 folio_batch_release(&fbatch);
2227 cond_resched();
2228 }
2229 if (!scanned && !done) {
2230 /*
2231 * We hit the last page and there is more work to be done: wrap
2232 * back to the start of the file
2233 */
2234 scanned = 1;
2235 index = 0;
2236 goto retry;
2237 }
2238 /*
2239 * If something went wrong, don't allow any metadata write bio to be
2240 * submitted.
2241 *
2242 * This would prevent use-after-free if we had dirty pages not
2243 * cleaned up, which can still happen by fuzzed images.
2244 *
2245 * - Bad extent tree
2246 * Allowing existing tree block to be allocated for other trees.
2247 *
2248 * - Log tree operations
2249 * Exiting tree blocks get allocated to log tree, bumps its
2250 * generation, then get cleaned in tree re-balance.
2251 * Such tree block will not be written back, since it's clean,
2252 * thus no WRITTEN flag set.
2253 * And after log writes back, this tree block is not traced by
2254 * any dirty extent_io_tree.
2255 *
2256 * - Offending tree block gets re-dirtied from its original owner
2257 * Since it has bumped generation, no WRITTEN flag, it can be
2258 * reused without COWing. This tree block will not be traced
2259 * by btrfs_transaction::dirty_pages.
2260 *
2261 * Now such dirty tree block will not be cleaned by any dirty
2262 * extent io tree. Thus we don't want to submit such wild eb
2263 * if the fs already has error.
2264 *
2265 * We can get ret > 0 from submit_extent_folio() indicating how many ebs
2266 * were submitted. Reset it to 0 to avoid false alerts for the caller.
2267 */
2268 if (ret > 0)
2269 ret = 0;
2270 if (!ret && BTRFS_FS_ERROR(fs_info))
2271 ret = -EROFS;
2272
2273 if (ctx.zoned_bg)
2274 btrfs_put_block_group(ctx.zoned_bg);
2275 btrfs_zoned_meta_io_unlock(fs_info);
2276 return ret;
2277 }
2278
2279 /*
2280 * Walk the list of dirty pages of the given address space and write all of them.
2281 *
2282 * @mapping: address space structure to write
2283 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2284 * @bio_ctrl: holds context for the write, namely the bio
2285 *
2286 * If a page is already under I/O, write_cache_pages() skips it, even
2287 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2288 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2289 * and msync() need to guarantee that all the data which was dirty at the time
2290 * the call was made get new I/O started against them. If wbc->sync_mode is
2291 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2292 * existing IO to complete.
2293 */
extent_write_cache_pages(struct address_space * mapping,struct btrfs_bio_ctrl * bio_ctrl)2294 static int extent_write_cache_pages(struct address_space *mapping,
2295 struct btrfs_bio_ctrl *bio_ctrl)
2296 {
2297 struct writeback_control *wbc = bio_ctrl->wbc;
2298 struct inode *inode = mapping->host;
2299 int ret = 0;
2300 int done = 0;
2301 int nr_to_write_done = 0;
2302 struct folio_batch fbatch;
2303 unsigned int nr_folios;
2304 pgoff_t index;
2305 pgoff_t end; /* Inclusive */
2306 pgoff_t done_index;
2307 int range_whole = 0;
2308 int scanned = 0;
2309 xa_mark_t tag;
2310
2311 /*
2312 * We have to hold onto the inode so that ordered extents can do their
2313 * work when the IO finishes. The alternative to this is failing to add
2314 * an ordered extent if the igrab() fails there and that is a huge pain
2315 * to deal with, so instead just hold onto the inode throughout the
2316 * writepages operation. If it fails here we are freeing up the inode
2317 * anyway and we'd rather not waste our time writing out stuff that is
2318 * going to be truncated anyway.
2319 */
2320 if (!igrab(inode))
2321 return 0;
2322
2323 folio_batch_init(&fbatch);
2324 if (wbc->range_cyclic) {
2325 index = mapping->writeback_index; /* Start from prev offset */
2326 end = -1;
2327 /*
2328 * Start from the beginning does not need to cycle over the
2329 * range, mark it as scanned.
2330 */
2331 scanned = (index == 0);
2332 } else {
2333 index = wbc->range_start >> PAGE_SHIFT;
2334 end = wbc->range_end >> PAGE_SHIFT;
2335 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2336 range_whole = 1;
2337 scanned = 1;
2338 }
2339
2340 /*
2341 * We do the tagged writepage as long as the snapshot flush bit is set
2342 * and we are the first one who do the filemap_flush() on this inode.
2343 *
2344 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2345 * not race in and drop the bit.
2346 */
2347 if (range_whole && wbc->nr_to_write == LONG_MAX &&
2348 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2349 &BTRFS_I(inode)->runtime_flags))
2350 wbc->tagged_writepages = 1;
2351
2352 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2353 tag = PAGECACHE_TAG_TOWRITE;
2354 else
2355 tag = PAGECACHE_TAG_DIRTY;
2356 retry:
2357 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2358 tag_pages_for_writeback(mapping, index, end);
2359 done_index = index;
2360 while (!done && !nr_to_write_done && (index <= end) &&
2361 (nr_folios = filemap_get_folios_tag(mapping, &index,
2362 end, tag, &fbatch))) {
2363 unsigned i;
2364
2365 for (i = 0; i < nr_folios; i++) {
2366 struct folio *folio = fbatch.folios[i];
2367
2368 done_index = folio_next_index(folio);
2369 /*
2370 * At this point we hold neither the i_pages lock nor
2371 * the folio lock: the folio may be truncated or
2372 * invalidated (changing folio->mapping to NULL).
2373 */
2374 if (!folio_trylock(folio)) {
2375 submit_write_bio(bio_ctrl, 0);
2376 folio_lock(folio);
2377 }
2378
2379 if (unlikely(folio->mapping != mapping)) {
2380 folio_unlock(folio);
2381 continue;
2382 }
2383
2384 if (!folio_test_dirty(folio)) {
2385 /* Someone wrote it for us. */
2386 folio_unlock(folio);
2387 continue;
2388 }
2389
2390 /*
2391 * For subpage case, compression can lead to mixed
2392 * writeback and dirty flags, e.g:
2393 * 0 32K 64K 96K 128K
2394 * | |//////||/////| |//|
2395 *
2396 * In above case, [32K, 96K) is asynchronously submitted
2397 * for compression, and [124K, 128K) needs to be written back.
2398 *
2399 * If we didn't wait wrtiteback for page 64K, [128K, 128K)
2400 * won't be submitted as the page still has writeback flag
2401 * and will be skipped in the next check.
2402 *
2403 * This mixed writeback and dirty case is only possible for
2404 * subpage case.
2405 *
2406 * TODO: Remove this check after migrating compression to
2407 * regular submission.
2408 */
2409 if (wbc->sync_mode != WB_SYNC_NONE ||
2410 btrfs_is_subpage(inode_to_fs_info(inode), folio)) {
2411 if (folio_test_writeback(folio))
2412 submit_write_bio(bio_ctrl, 0);
2413 folio_wait_writeback(folio);
2414 }
2415
2416 if (folio_test_writeback(folio) ||
2417 !folio_clear_dirty_for_io(folio)) {
2418 folio_unlock(folio);
2419 continue;
2420 }
2421
2422 ret = extent_writepage(folio, bio_ctrl);
2423 if (ret < 0) {
2424 done = 1;
2425 break;
2426 }
2427
2428 /*
2429 * The filesystem may choose to bump up nr_to_write.
2430 * We have to make sure to honor the new nr_to_write
2431 * at any time.
2432 */
2433 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2434 wbc->nr_to_write <= 0);
2435 }
2436 folio_batch_release(&fbatch);
2437 cond_resched();
2438 }
2439 if (!scanned && !done) {
2440 /*
2441 * We hit the last page and there is more work to be done: wrap
2442 * back to the start of the file
2443 */
2444 scanned = 1;
2445 index = 0;
2446
2447 /*
2448 * If we're looping we could run into a page that is locked by a
2449 * writer and that writer could be waiting on writeback for a
2450 * page in our current bio, and thus deadlock, so flush the
2451 * write bio here.
2452 */
2453 submit_write_bio(bio_ctrl, 0);
2454 goto retry;
2455 }
2456
2457 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2458 mapping->writeback_index = done_index;
2459
2460 btrfs_add_delayed_iput(BTRFS_I(inode));
2461 return ret;
2462 }
2463
2464 /*
2465 * Submit the pages in the range to bio for call sites which delalloc range has
2466 * already been ran (aka, ordered extent inserted) and all pages are still
2467 * locked.
2468 */
extent_write_locked_range(struct inode * inode,const struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc,bool pages_dirty)2469 void extent_write_locked_range(struct inode *inode, const struct folio *locked_folio,
2470 u64 start, u64 end, struct writeback_control *wbc,
2471 bool pages_dirty)
2472 {
2473 bool found_error = false;
2474 int ret = 0;
2475 struct address_space *mapping = inode->i_mapping;
2476 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2477 const u32 sectorsize = fs_info->sectorsize;
2478 loff_t i_size = i_size_read(inode);
2479 u64 cur = start;
2480 struct btrfs_bio_ctrl bio_ctrl = {
2481 .wbc = wbc,
2482 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2483 };
2484
2485 if (wbc->no_cgroup_owner)
2486 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2487
2488 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
2489
2490 while (cur <= end) {
2491 u64 cur_end;
2492 u32 cur_len;
2493 struct folio *folio;
2494
2495 folio = filemap_get_folio(mapping, cur >> PAGE_SHIFT);
2496
2497 /*
2498 * This shouldn't happen, the pages are pinned and locked, this
2499 * code is just in case, but shouldn't actually be run.
2500 */
2501 if (IS_ERR(folio)) {
2502 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2503 cur_len = cur_end + 1 - cur;
2504 btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL,
2505 cur, cur_len, false);
2506 mapping_set_error(mapping, PTR_ERR(folio));
2507 cur = cur_end;
2508 continue;
2509 }
2510
2511 cur_end = min_t(u64, folio_pos(folio) + folio_size(folio) - 1, end);
2512 cur_len = cur_end + 1 - cur;
2513
2514 ASSERT(folio_test_locked(folio));
2515 if (pages_dirty && folio != locked_folio)
2516 ASSERT(folio_test_dirty(folio));
2517
2518 /*
2519 * Set the submission bitmap to submit all sectors.
2520 * extent_writepage_io() will do the truncation correctly.
2521 */
2522 bio_ctrl.submit_bitmap = (unsigned long)-1;
2523 ret = extent_writepage_io(BTRFS_I(inode), folio, cur, cur_len,
2524 &bio_ctrl, i_size);
2525 if (ret == 1)
2526 goto next_page;
2527
2528 if (ret)
2529 mapping_set_error(mapping, ret);
2530 btrfs_folio_end_lock(fs_info, folio, cur, cur_len);
2531 if (ret < 0)
2532 found_error = true;
2533 next_page:
2534 folio_put(folio);
2535 cur = cur_end + 1;
2536 }
2537
2538 submit_write_bio(&bio_ctrl, found_error ? ret : 0);
2539 }
2540
btrfs_writepages(struct address_space * mapping,struct writeback_control * wbc)2541 int btrfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
2542 {
2543 struct inode *inode = mapping->host;
2544 int ret = 0;
2545 struct btrfs_bio_ctrl bio_ctrl = {
2546 .wbc = wbc,
2547 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2548 };
2549
2550 /*
2551 * Allow only a single thread to do the reloc work in zoned mode to
2552 * protect the write pointer updates.
2553 */
2554 btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2555 ret = extent_write_cache_pages(mapping, &bio_ctrl);
2556 submit_write_bio(&bio_ctrl, ret);
2557 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2558 return ret;
2559 }
2560
btrfs_readahead(struct readahead_control * rac)2561 void btrfs_readahead(struct readahead_control *rac)
2562 {
2563 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD };
2564 struct folio *folio;
2565 struct btrfs_inode *inode = BTRFS_I(rac->mapping->host);
2566 const u64 start = readahead_pos(rac);
2567 const u64 end = start + readahead_length(rac) - 1;
2568 struct extent_state *cached_state = NULL;
2569 struct extent_map *em_cached = NULL;
2570 u64 prev_em_start = (u64)-1;
2571
2572 lock_extents_for_read(inode, start, end, &cached_state);
2573
2574 while ((folio = readahead_folio(rac)) != NULL)
2575 btrfs_do_readpage(folio, &em_cached, &bio_ctrl, &prev_em_start);
2576
2577 unlock_extent(&inode->io_tree, start, end, &cached_state);
2578
2579 if (em_cached)
2580 free_extent_map(em_cached);
2581 submit_one_bio(&bio_ctrl);
2582 }
2583
2584 /*
2585 * basic invalidate_folio code, this waits on any locked or writeback
2586 * ranges corresponding to the folio, and then deletes any extent state
2587 * records from the tree
2588 */
extent_invalidate_folio(struct extent_io_tree * tree,struct folio * folio,size_t offset)2589 int extent_invalidate_folio(struct extent_io_tree *tree,
2590 struct folio *folio, size_t offset)
2591 {
2592 struct extent_state *cached_state = NULL;
2593 u64 start = folio_pos(folio);
2594 u64 end = start + folio_size(folio) - 1;
2595 size_t blocksize = folio_to_fs_info(folio)->sectorsize;
2596
2597 /* This function is only called for the btree inode */
2598 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2599
2600 start += ALIGN(offset, blocksize);
2601 if (start > end)
2602 return 0;
2603
2604 lock_extent(tree, start, end, &cached_state);
2605 folio_wait_writeback(folio);
2606
2607 /*
2608 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2609 * so here we only need to unlock the extent range to free any
2610 * existing extent state.
2611 */
2612 unlock_extent(tree, start, end, &cached_state);
2613 return 0;
2614 }
2615
2616 /*
2617 * a helper for release_folio, this tests for areas of the page that
2618 * are locked or under IO and drops the related state bits if it is safe
2619 * to drop the page.
2620 */
try_release_extent_state(struct extent_io_tree * tree,struct folio * folio)2621 static bool try_release_extent_state(struct extent_io_tree *tree,
2622 struct folio *folio)
2623 {
2624 u64 start = folio_pos(folio);
2625 u64 end = start + folio_size(folio) - 1;
2626 bool ret;
2627
2628 if (test_range_bit_exists(tree, start, end, EXTENT_LOCKED)) {
2629 ret = false;
2630 } else {
2631 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
2632 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS |
2633 EXTENT_QGROUP_RESERVED);
2634 int ret2;
2635
2636 /*
2637 * At this point we can safely clear everything except the
2638 * locked bit, the nodatasum bit and the delalloc new bit.
2639 * The delalloc new bit will be cleared by ordered extent
2640 * completion.
2641 */
2642 ret2 = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL);
2643
2644 /* if clear_extent_bit failed for enomem reasons,
2645 * we can't allow the release to continue.
2646 */
2647 if (ret2 < 0)
2648 ret = false;
2649 else
2650 ret = true;
2651 }
2652 return ret;
2653 }
2654
2655 /*
2656 * a helper for release_folio. As long as there are no locked extents
2657 * in the range corresponding to the page, both state records and extent
2658 * map records are removed
2659 */
try_release_extent_mapping(struct folio * folio,gfp_t mask)2660 bool try_release_extent_mapping(struct folio *folio, gfp_t mask)
2661 {
2662 u64 start = folio_pos(folio);
2663 u64 end = start + folio_size(folio) - 1;
2664 struct btrfs_inode *inode = folio_to_inode(folio);
2665 struct extent_io_tree *io_tree = &inode->io_tree;
2666
2667 while (start <= end) {
2668 const u64 cur_gen = btrfs_get_fs_generation(inode->root->fs_info);
2669 const u64 len = end - start + 1;
2670 struct extent_map_tree *extent_tree = &inode->extent_tree;
2671 struct extent_map *em;
2672
2673 write_lock(&extent_tree->lock);
2674 em = lookup_extent_mapping(extent_tree, start, len);
2675 if (!em) {
2676 write_unlock(&extent_tree->lock);
2677 break;
2678 }
2679 if ((em->flags & EXTENT_FLAG_PINNED) || em->start != start) {
2680 write_unlock(&extent_tree->lock);
2681 free_extent_map(em);
2682 break;
2683 }
2684 if (test_range_bit_exists(io_tree, em->start,
2685 extent_map_end(em) - 1, EXTENT_LOCKED))
2686 goto next;
2687 /*
2688 * If it's not in the list of modified extents, used by a fast
2689 * fsync, we can remove it. If it's being logged we can safely
2690 * remove it since fsync took an extra reference on the em.
2691 */
2692 if (list_empty(&em->list) || (em->flags & EXTENT_FLAG_LOGGING))
2693 goto remove_em;
2694 /*
2695 * If it's in the list of modified extents, remove it only if
2696 * its generation is older then the current one, in which case
2697 * we don't need it for a fast fsync. Otherwise don't remove it,
2698 * we could be racing with an ongoing fast fsync that could miss
2699 * the new extent.
2700 */
2701 if (em->generation >= cur_gen)
2702 goto next;
2703 remove_em:
2704 /*
2705 * We only remove extent maps that are not in the list of
2706 * modified extents or that are in the list but with a
2707 * generation lower then the current generation, so there is no
2708 * need to set the full fsync flag on the inode (it hurts the
2709 * fsync performance for workloads with a data size that exceeds
2710 * or is close to the system's memory).
2711 */
2712 remove_extent_mapping(inode, em);
2713 /* Once for the inode's extent map tree. */
2714 free_extent_map(em);
2715 next:
2716 start = extent_map_end(em);
2717 write_unlock(&extent_tree->lock);
2718
2719 /* Once for us, for the lookup_extent_mapping() reference. */
2720 free_extent_map(em);
2721
2722 if (need_resched()) {
2723 /*
2724 * If we need to resched but we can't block just exit
2725 * and leave any remaining extent maps.
2726 */
2727 if (!gfpflags_allow_blocking(mask))
2728 break;
2729
2730 cond_resched();
2731 }
2732 }
2733 return try_release_extent_state(io_tree, folio);
2734 }
2735
extent_buffer_under_io(const struct extent_buffer * eb)2736 static int extent_buffer_under_io(const struct extent_buffer *eb)
2737 {
2738 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
2739 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
2740 }
2741
folio_range_has_eb(struct folio * folio)2742 static bool folio_range_has_eb(struct folio *folio)
2743 {
2744 struct btrfs_subpage *subpage;
2745
2746 lockdep_assert_held(&folio->mapping->i_private_lock);
2747
2748 if (folio_test_private(folio)) {
2749 subpage = folio_get_private(folio);
2750 if (atomic_read(&subpage->eb_refs))
2751 return true;
2752 }
2753 return false;
2754 }
2755
detach_extent_buffer_folio(const struct extent_buffer * eb,struct folio * folio)2756 static void detach_extent_buffer_folio(const struct extent_buffer *eb, struct folio *folio)
2757 {
2758 struct btrfs_fs_info *fs_info = eb->fs_info;
2759 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
2760
2761 /*
2762 * For mapped eb, we're going to change the folio private, which should
2763 * be done under the i_private_lock.
2764 */
2765 if (mapped)
2766 spin_lock(&folio->mapping->i_private_lock);
2767
2768 if (!folio_test_private(folio)) {
2769 if (mapped)
2770 spin_unlock(&folio->mapping->i_private_lock);
2771 return;
2772 }
2773
2774 if (!btrfs_meta_is_subpage(fs_info)) {
2775 /*
2776 * We do this since we'll remove the pages after we've
2777 * removed the eb from the radix tree, so we could race
2778 * and have this page now attached to the new eb. So
2779 * only clear folio if it's still connected to
2780 * this eb.
2781 */
2782 if (folio_test_private(folio) && folio_get_private(folio) == eb) {
2783 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
2784 BUG_ON(folio_test_dirty(folio));
2785 BUG_ON(folio_test_writeback(folio));
2786 /* We need to make sure we haven't be attached to a new eb. */
2787 folio_detach_private(folio);
2788 }
2789 if (mapped)
2790 spin_unlock(&folio->mapping->i_private_lock);
2791 return;
2792 }
2793
2794 /*
2795 * For subpage, we can have dummy eb with folio private attached. In
2796 * this case, we can directly detach the private as such folio is only
2797 * attached to one dummy eb, no sharing.
2798 */
2799 if (!mapped) {
2800 btrfs_detach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA);
2801 return;
2802 }
2803
2804 btrfs_folio_dec_eb_refs(fs_info, folio);
2805
2806 /*
2807 * We can only detach the folio private if there are no other ebs in the
2808 * page range and no unfinished IO.
2809 */
2810 if (!folio_range_has_eb(folio))
2811 btrfs_detach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA);
2812
2813 spin_unlock(&folio->mapping->i_private_lock);
2814 }
2815
2816 /* Release all folios attached to the extent buffer */
btrfs_release_extent_buffer_folios(const struct extent_buffer * eb)2817 static void btrfs_release_extent_buffer_folios(const struct extent_buffer *eb)
2818 {
2819 ASSERT(!extent_buffer_under_io(eb));
2820
2821 for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) {
2822 struct folio *folio = eb->folios[i];
2823
2824 if (!folio)
2825 continue;
2826
2827 detach_extent_buffer_folio(eb, folio);
2828
2829 /* One for when we allocated the folio. */
2830 folio_put(folio);
2831 }
2832 }
2833
2834 /*
2835 * Helper for releasing the extent buffer.
2836 */
btrfs_release_extent_buffer(struct extent_buffer * eb)2837 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
2838 {
2839 btrfs_release_extent_buffer_folios(eb);
2840 btrfs_leak_debug_del_eb(eb);
2841 kmem_cache_free(extent_buffer_cache, eb);
2842 }
2843
__alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)2844 static struct extent_buffer *__alloc_extent_buffer(struct btrfs_fs_info *fs_info,
2845 u64 start)
2846 {
2847 struct extent_buffer *eb = NULL;
2848
2849 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
2850 eb->start = start;
2851 eb->len = fs_info->nodesize;
2852 eb->fs_info = fs_info;
2853 init_rwsem(&eb->lock);
2854
2855 btrfs_leak_debug_add_eb(eb);
2856
2857 spin_lock_init(&eb->refs_lock);
2858 atomic_set(&eb->refs, 1);
2859
2860 ASSERT(eb->len <= BTRFS_MAX_METADATA_BLOCKSIZE);
2861
2862 return eb;
2863 }
2864
btrfs_clone_extent_buffer(const struct extent_buffer * src)2865 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
2866 {
2867 struct extent_buffer *new;
2868 int ret;
2869
2870 new = __alloc_extent_buffer(src->fs_info, src->start);
2871 if (new == NULL)
2872 return NULL;
2873
2874 /*
2875 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
2876 * btrfs_release_extent_buffer() have different behavior for
2877 * UNMAPPED subpage extent buffer.
2878 */
2879 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
2880
2881 ret = alloc_eb_folio_array(new, false);
2882 if (ret) {
2883 btrfs_release_extent_buffer(new);
2884 return NULL;
2885 }
2886
2887 for (int i = 0; i < num_extent_folios(src); i++) {
2888 struct folio *folio = new->folios[i];
2889
2890 ret = attach_extent_buffer_folio(new, folio, NULL);
2891 if (ret < 0) {
2892 btrfs_release_extent_buffer(new);
2893 return NULL;
2894 }
2895 WARN_ON(folio_test_dirty(folio));
2896 }
2897 copy_extent_buffer_full(new, src);
2898 set_extent_buffer_uptodate(new);
2899
2900 return new;
2901 }
2902
alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)2903 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
2904 u64 start)
2905 {
2906 struct extent_buffer *eb;
2907 int ret;
2908
2909 eb = __alloc_extent_buffer(fs_info, start);
2910 if (!eb)
2911 return NULL;
2912
2913 ret = alloc_eb_folio_array(eb, false);
2914 if (ret)
2915 goto out;
2916
2917 for (int i = 0; i < num_extent_folios(eb); i++) {
2918 ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL);
2919 if (ret < 0)
2920 goto out_detach;
2921 }
2922
2923 set_extent_buffer_uptodate(eb);
2924 btrfs_set_header_nritems(eb, 0);
2925 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
2926
2927 return eb;
2928
2929 out_detach:
2930 for (int i = 0; i < num_extent_folios(eb); i++) {
2931 if (eb->folios[i]) {
2932 detach_extent_buffer_folio(eb, eb->folios[i]);
2933 folio_put(eb->folios[i]);
2934 }
2935 }
2936 out:
2937 kmem_cache_free(extent_buffer_cache, eb);
2938 return NULL;
2939 }
2940
check_buffer_tree_ref(struct extent_buffer * eb)2941 static void check_buffer_tree_ref(struct extent_buffer *eb)
2942 {
2943 int refs;
2944 /*
2945 * The TREE_REF bit is first set when the extent_buffer is added
2946 * to the radix tree. It is also reset, if unset, when a new reference
2947 * is created by find_extent_buffer.
2948 *
2949 * It is only cleared in two cases: freeing the last non-tree
2950 * reference to the extent_buffer when its STALE bit is set or
2951 * calling release_folio when the tree reference is the only reference.
2952 *
2953 * In both cases, care is taken to ensure that the extent_buffer's
2954 * pages are not under io. However, release_folio can be concurrently
2955 * called with creating new references, which is prone to race
2956 * conditions between the calls to check_buffer_tree_ref in those
2957 * codepaths and clearing TREE_REF in try_release_extent_buffer.
2958 *
2959 * The actual lifetime of the extent_buffer in the radix tree is
2960 * adequately protected by the refcount, but the TREE_REF bit and
2961 * its corresponding reference are not. To protect against this
2962 * class of races, we call check_buffer_tree_ref from the codepaths
2963 * which trigger io. Note that once io is initiated, TREE_REF can no
2964 * longer be cleared, so that is the moment at which any such race is
2965 * best fixed.
2966 */
2967 refs = atomic_read(&eb->refs);
2968 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
2969 return;
2970
2971 spin_lock(&eb->refs_lock);
2972 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
2973 atomic_inc(&eb->refs);
2974 spin_unlock(&eb->refs_lock);
2975 }
2976
mark_extent_buffer_accessed(struct extent_buffer * eb)2977 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
2978 {
2979 check_buffer_tree_ref(eb);
2980
2981 for (int i = 0; i < num_extent_folios(eb); i++)
2982 folio_mark_accessed(eb->folios[i]);
2983 }
2984
find_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)2985 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
2986 u64 start)
2987 {
2988 struct extent_buffer *eb;
2989
2990 eb = find_extent_buffer_nolock(fs_info, start);
2991 if (!eb)
2992 return NULL;
2993 /*
2994 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
2995 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
2996 * another task running free_extent_buffer() might have seen that flag
2997 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
2998 * writeback flags not set) and it's still in the tree (flag
2999 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
3000 * decrementing the extent buffer's reference count twice. So here we
3001 * could race and increment the eb's reference count, clear its stale
3002 * flag, mark it as dirty and drop our reference before the other task
3003 * finishes executing free_extent_buffer, which would later result in
3004 * an attempt to free an extent buffer that is dirty.
3005 */
3006 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
3007 spin_lock(&eb->refs_lock);
3008 spin_unlock(&eb->refs_lock);
3009 }
3010 mark_extent_buffer_accessed(eb);
3011 return eb;
3012 }
3013
alloc_test_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)3014 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
3015 u64 start)
3016 {
3017 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3018 struct extent_buffer *eb, *exists = NULL;
3019 int ret;
3020
3021 eb = find_extent_buffer(fs_info, start);
3022 if (eb)
3023 return eb;
3024 eb = alloc_dummy_extent_buffer(fs_info, start);
3025 if (!eb)
3026 return ERR_PTR(-ENOMEM);
3027 eb->fs_info = fs_info;
3028 again:
3029 ret = radix_tree_preload(GFP_NOFS);
3030 if (ret) {
3031 exists = ERR_PTR(ret);
3032 goto free_eb;
3033 }
3034 spin_lock(&fs_info->buffer_lock);
3035 ret = radix_tree_insert(&fs_info->buffer_radix,
3036 start >> fs_info->sectorsize_bits, eb);
3037 spin_unlock(&fs_info->buffer_lock);
3038 radix_tree_preload_end();
3039 if (ret == -EEXIST) {
3040 exists = find_extent_buffer(fs_info, start);
3041 if (exists)
3042 goto free_eb;
3043 else
3044 goto again;
3045 }
3046 check_buffer_tree_ref(eb);
3047 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3048
3049 return eb;
3050 free_eb:
3051 btrfs_release_extent_buffer(eb);
3052 return exists;
3053 #else
3054 /* Stub to avoid linker error when compiled with optimizations turned off. */
3055 return NULL;
3056 #endif
3057 }
3058
grab_extent_buffer(struct btrfs_fs_info * fs_info,struct folio * folio)3059 static struct extent_buffer *grab_extent_buffer(struct btrfs_fs_info *fs_info,
3060 struct folio *folio)
3061 {
3062 struct extent_buffer *exists;
3063
3064 lockdep_assert_held(&folio->mapping->i_private_lock);
3065
3066 /*
3067 * For subpage case, we completely rely on radix tree to ensure we
3068 * don't try to insert two ebs for the same bytenr. So here we always
3069 * return NULL and just continue.
3070 */
3071 if (btrfs_meta_is_subpage(fs_info))
3072 return NULL;
3073
3074 /* Page not yet attached to an extent buffer */
3075 if (!folio_test_private(folio))
3076 return NULL;
3077
3078 /*
3079 * We could have already allocated an eb for this folio and attached one
3080 * so lets see if we can get a ref on the existing eb, and if we can we
3081 * know it's good and we can just return that one, else we know we can
3082 * just overwrite folio private.
3083 */
3084 exists = folio_get_private(folio);
3085 if (atomic_inc_not_zero(&exists->refs))
3086 return exists;
3087
3088 WARN_ON(folio_test_dirty(folio));
3089 folio_detach_private(folio);
3090 return NULL;
3091 }
3092
3093 /*
3094 * Validate alignment constraints of eb at logical address @start.
3095 */
check_eb_alignment(struct btrfs_fs_info * fs_info,u64 start)3096 static bool check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
3097 {
3098 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
3099 btrfs_err(fs_info, "bad tree block start %llu", start);
3100 return true;
3101 }
3102
3103 if (fs_info->nodesize < PAGE_SIZE &&
3104 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
3105 btrfs_err(fs_info,
3106 "tree block crosses page boundary, start %llu nodesize %u",
3107 start, fs_info->nodesize);
3108 return true;
3109 }
3110 if (fs_info->nodesize >= PAGE_SIZE &&
3111 !PAGE_ALIGNED(start)) {
3112 btrfs_err(fs_info,
3113 "tree block is not page aligned, start %llu nodesize %u",
3114 start, fs_info->nodesize);
3115 return true;
3116 }
3117 if (!IS_ALIGNED(start, fs_info->nodesize) &&
3118 !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) {
3119 btrfs_warn(fs_info,
3120 "tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance",
3121 start, fs_info->nodesize);
3122 }
3123 return false;
3124 }
3125
3126 /*
3127 * Return 0 if eb->folios[i] is attached to btree inode successfully.
3128 * Return >0 if there is already another extent buffer for the range,
3129 * and @found_eb_ret would be updated.
3130 * Return -EAGAIN if the filemap has an existing folio but with different size
3131 * than @eb.
3132 * The caller needs to free the existing folios and retry using the same order.
3133 */
attach_eb_folio_to_filemap(struct extent_buffer * eb,int i,struct btrfs_subpage * prealloc,struct extent_buffer ** found_eb_ret)3134 static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i,
3135 struct btrfs_subpage *prealloc,
3136 struct extent_buffer **found_eb_ret)
3137 {
3138
3139 struct btrfs_fs_info *fs_info = eb->fs_info;
3140 struct address_space *mapping = fs_info->btree_inode->i_mapping;
3141 const unsigned long index = eb->start >> PAGE_SHIFT;
3142 struct folio *existing_folio = NULL;
3143 int ret;
3144
3145 ASSERT(found_eb_ret);
3146
3147 /* Caller should ensure the folio exists. */
3148 ASSERT(eb->folios[i]);
3149
3150 retry:
3151 ret = filemap_add_folio(mapping, eb->folios[i], index + i,
3152 GFP_NOFS | __GFP_NOFAIL);
3153 if (!ret)
3154 goto finish;
3155
3156 existing_folio = filemap_lock_folio(mapping, index + i);
3157 /* The page cache only exists for a very short time, just retry. */
3158 if (IS_ERR(existing_folio)) {
3159 existing_folio = NULL;
3160 goto retry;
3161 }
3162
3163 /* For now, we should only have single-page folios for btree inode. */
3164 ASSERT(folio_nr_pages(existing_folio) == 1);
3165
3166 if (folio_size(existing_folio) != eb->folio_size) {
3167 folio_unlock(existing_folio);
3168 folio_put(existing_folio);
3169 return -EAGAIN;
3170 }
3171
3172 finish:
3173 spin_lock(&mapping->i_private_lock);
3174 if (existing_folio && btrfs_meta_is_subpage(fs_info)) {
3175 /* We're going to reuse the existing page, can drop our folio now. */
3176 __free_page(folio_page(eb->folios[i], 0));
3177 eb->folios[i] = existing_folio;
3178 } else if (existing_folio) {
3179 struct extent_buffer *existing_eb;
3180
3181 existing_eb = grab_extent_buffer(fs_info, existing_folio);
3182 if (existing_eb) {
3183 /* The extent buffer still exists, we can use it directly. */
3184 *found_eb_ret = existing_eb;
3185 spin_unlock(&mapping->i_private_lock);
3186 folio_unlock(existing_folio);
3187 folio_put(existing_folio);
3188 return 1;
3189 }
3190 /* The extent buffer no longer exists, we can reuse the folio. */
3191 __free_page(folio_page(eb->folios[i], 0));
3192 eb->folios[i] = existing_folio;
3193 }
3194 eb->folio_size = folio_size(eb->folios[i]);
3195 eb->folio_shift = folio_shift(eb->folios[i]);
3196 /* Should not fail, as we have preallocated the memory. */
3197 ret = attach_extent_buffer_folio(eb, eb->folios[i], prealloc);
3198 ASSERT(!ret);
3199 /*
3200 * To inform we have an extra eb under allocation, so that
3201 * detach_extent_buffer_page() won't release the folio private when the
3202 * eb hasn't been inserted into radix tree yet.
3203 *
3204 * The ref will be decreased when the eb releases the page, in
3205 * detach_extent_buffer_page(). Thus needs no special handling in the
3206 * error path.
3207 */
3208 btrfs_folio_inc_eb_refs(fs_info, eb->folios[i]);
3209 spin_unlock(&mapping->i_private_lock);
3210 return 0;
3211 }
3212
alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,u64 owner_root,int level)3213 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3214 u64 start, u64 owner_root, int level)
3215 {
3216 int attached = 0;
3217 struct extent_buffer *eb;
3218 struct extent_buffer *existing_eb = NULL;
3219 struct btrfs_subpage *prealloc = NULL;
3220 u64 lockdep_owner = owner_root;
3221 bool page_contig = true;
3222 int uptodate = 1;
3223 int ret;
3224
3225 if (check_eb_alignment(fs_info, start))
3226 return ERR_PTR(-EINVAL);
3227
3228 #if BITS_PER_LONG == 32
3229 if (start >= MAX_LFS_FILESIZE) {
3230 btrfs_err_rl(fs_info,
3231 "extent buffer %llu is beyond 32bit page cache limit", start);
3232 btrfs_err_32bit_limit(fs_info);
3233 return ERR_PTR(-EOVERFLOW);
3234 }
3235 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3236 btrfs_warn_32bit_limit(fs_info);
3237 #endif
3238
3239 eb = find_extent_buffer(fs_info, start);
3240 if (eb)
3241 return eb;
3242
3243 eb = __alloc_extent_buffer(fs_info, start);
3244 if (!eb)
3245 return ERR_PTR(-ENOMEM);
3246
3247 /*
3248 * The reloc trees are just snapshots, so we need them to appear to be
3249 * just like any other fs tree WRT lockdep.
3250 */
3251 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3252 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3253
3254 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3255
3256 /*
3257 * Preallocate folio private for subpage case, so that we won't
3258 * allocate memory with i_private_lock nor page lock hold.
3259 *
3260 * The memory will be freed by attach_extent_buffer_page() or freed
3261 * manually if we exit earlier.
3262 */
3263 if (btrfs_meta_is_subpage(fs_info)) {
3264 prealloc = btrfs_alloc_subpage(fs_info, PAGE_SIZE, BTRFS_SUBPAGE_METADATA);
3265 if (IS_ERR(prealloc)) {
3266 ret = PTR_ERR(prealloc);
3267 goto out;
3268 }
3269 }
3270
3271 reallocate:
3272 /* Allocate all pages first. */
3273 ret = alloc_eb_folio_array(eb, true);
3274 if (ret < 0) {
3275 btrfs_free_subpage(prealloc);
3276 goto out;
3277 }
3278
3279 /* Attach all pages to the filemap. */
3280 for (int i = 0; i < num_extent_folios(eb); i++) {
3281 struct folio *folio;
3282
3283 ret = attach_eb_folio_to_filemap(eb, i, prealloc, &existing_eb);
3284 if (ret > 0) {
3285 ASSERT(existing_eb);
3286 goto out;
3287 }
3288
3289 /*
3290 * TODO: Special handling for a corner case where the order of
3291 * folios mismatch between the new eb and filemap.
3292 *
3293 * This happens when:
3294 *
3295 * - the new eb is using higher order folio
3296 *
3297 * - the filemap is still using 0-order folios for the range
3298 * This can happen at the previous eb allocation, and we don't
3299 * have higher order folio for the call.
3300 *
3301 * - the existing eb has already been freed
3302 *
3303 * In this case, we have to free the existing folios first, and
3304 * re-allocate using the same order.
3305 * Thankfully this is not going to happen yet, as we're still
3306 * using 0-order folios.
3307 */
3308 if (unlikely(ret == -EAGAIN)) {
3309 ASSERT(0);
3310 goto reallocate;
3311 }
3312 attached++;
3313
3314 /*
3315 * Only after attach_eb_folio_to_filemap(), eb->folios[] is
3316 * reliable, as we may choose to reuse the existing page cache
3317 * and free the allocated page.
3318 */
3319 folio = eb->folios[i];
3320 WARN_ON(btrfs_meta_folio_test_dirty(folio, eb));
3321
3322 /*
3323 * Check if the current page is physically contiguous with previous eb
3324 * page.
3325 * At this stage, either we allocated a large folio, thus @i
3326 * would only be 0, or we fall back to per-page allocation.
3327 */
3328 if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0))
3329 page_contig = false;
3330
3331 if (!btrfs_meta_folio_test_uptodate(folio, eb))
3332 uptodate = 0;
3333
3334 /*
3335 * We can't unlock the pages just yet since the extent buffer
3336 * hasn't been properly inserted in the radix tree, this
3337 * opens a race with btree_release_folio which can free a page
3338 * while we are still filling in all pages for the buffer and
3339 * we could crash.
3340 */
3341 }
3342 if (uptodate)
3343 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3344 /* All pages are physically contiguous, can skip cross page handling. */
3345 if (page_contig)
3346 eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start);
3347 again:
3348 ret = radix_tree_preload(GFP_NOFS);
3349 if (ret)
3350 goto out;
3351
3352 spin_lock(&fs_info->buffer_lock);
3353 ret = radix_tree_insert(&fs_info->buffer_radix,
3354 start >> fs_info->sectorsize_bits, eb);
3355 spin_unlock(&fs_info->buffer_lock);
3356 radix_tree_preload_end();
3357 if (ret == -EEXIST) {
3358 ret = 0;
3359 existing_eb = find_extent_buffer(fs_info, start);
3360 if (existing_eb)
3361 goto out;
3362 else
3363 goto again;
3364 }
3365 /* add one reference for the tree */
3366 check_buffer_tree_ref(eb);
3367 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3368
3369 /*
3370 * Now it's safe to unlock the pages because any calls to
3371 * btree_release_folio will correctly detect that a page belongs to a
3372 * live buffer and won't free them prematurely.
3373 */
3374 for (int i = 0; i < num_extent_folios(eb); i++)
3375 folio_unlock(eb->folios[i]);
3376 return eb;
3377
3378 out:
3379 WARN_ON(!atomic_dec_and_test(&eb->refs));
3380
3381 /*
3382 * Any attached folios need to be detached before we unlock them. This
3383 * is because when we're inserting our new folios into the mapping, and
3384 * then attaching our eb to that folio. If we fail to insert our folio
3385 * we'll lookup the folio for that index, and grab that EB. We do not
3386 * want that to grab this eb, as we're getting ready to free it. So we
3387 * have to detach it first and then unlock it.
3388 *
3389 * We have to drop our reference and NULL it out here because in the
3390 * subpage case detaching does a btrfs_folio_dec_eb_refs() for our eb.
3391 * Below when we call btrfs_release_extent_buffer() we will call
3392 * detach_extent_buffer_folio() on our remaining pages in the !subpage
3393 * case. If we left eb->folios[i] populated in the subpage case we'd
3394 * double put our reference and be super sad.
3395 */
3396 for (int i = 0; i < attached; i++) {
3397 ASSERT(eb->folios[i]);
3398 detach_extent_buffer_folio(eb, eb->folios[i]);
3399 folio_unlock(eb->folios[i]);
3400 folio_put(eb->folios[i]);
3401 eb->folios[i] = NULL;
3402 }
3403 /*
3404 * Now all pages of that extent buffer is unmapped, set UNMAPPED flag,
3405 * so it can be cleaned up without utilizing folio->mapping.
3406 */
3407 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3408
3409 btrfs_release_extent_buffer(eb);
3410 if (ret < 0)
3411 return ERR_PTR(ret);
3412 ASSERT(existing_eb);
3413 return existing_eb;
3414 }
3415
btrfs_release_extent_buffer_rcu(struct rcu_head * head)3416 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3417 {
3418 struct extent_buffer *eb =
3419 container_of(head, struct extent_buffer, rcu_head);
3420
3421 kmem_cache_free(extent_buffer_cache, eb);
3422 }
3423
release_extent_buffer(struct extent_buffer * eb)3424 static int release_extent_buffer(struct extent_buffer *eb)
3425 __releases(&eb->refs_lock)
3426 {
3427 lockdep_assert_held(&eb->refs_lock);
3428
3429 WARN_ON(atomic_read(&eb->refs) == 0);
3430 if (atomic_dec_and_test(&eb->refs)) {
3431 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
3432 struct btrfs_fs_info *fs_info = eb->fs_info;
3433
3434 spin_unlock(&eb->refs_lock);
3435
3436 spin_lock(&fs_info->buffer_lock);
3437 radix_tree_delete(&fs_info->buffer_radix,
3438 eb->start >> fs_info->sectorsize_bits);
3439 spin_unlock(&fs_info->buffer_lock);
3440 } else {
3441 spin_unlock(&eb->refs_lock);
3442 }
3443
3444 btrfs_leak_debug_del_eb(eb);
3445 /* Should be safe to release folios at this point. */
3446 btrfs_release_extent_buffer_folios(eb);
3447 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3448 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
3449 kmem_cache_free(extent_buffer_cache, eb);
3450 return 1;
3451 }
3452 #endif
3453 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3454 return 1;
3455 }
3456 spin_unlock(&eb->refs_lock);
3457
3458 return 0;
3459 }
3460
free_extent_buffer(struct extent_buffer * eb)3461 void free_extent_buffer(struct extent_buffer *eb)
3462 {
3463 int refs;
3464 if (!eb)
3465 return;
3466
3467 refs = atomic_read(&eb->refs);
3468 while (1) {
3469 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
3470 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
3471 refs == 1))
3472 break;
3473 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
3474 return;
3475 }
3476
3477 spin_lock(&eb->refs_lock);
3478 if (atomic_read(&eb->refs) == 2 &&
3479 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
3480 !extent_buffer_under_io(eb) &&
3481 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3482 atomic_dec(&eb->refs);
3483
3484 /*
3485 * I know this is terrible, but it's temporary until we stop tracking
3486 * the uptodate bits and such for the extent buffers.
3487 */
3488 release_extent_buffer(eb);
3489 }
3490
free_extent_buffer_stale(struct extent_buffer * eb)3491 void free_extent_buffer_stale(struct extent_buffer *eb)
3492 {
3493 if (!eb)
3494 return;
3495
3496 spin_lock(&eb->refs_lock);
3497 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
3498
3499 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3500 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3501 atomic_dec(&eb->refs);
3502 release_extent_buffer(eb);
3503 }
3504
btree_clear_folio_dirty_tag(struct folio * folio)3505 static void btree_clear_folio_dirty_tag(struct folio *folio)
3506 {
3507 ASSERT(!folio_test_dirty(folio));
3508 ASSERT(folio_test_locked(folio));
3509 xa_lock_irq(&folio->mapping->i_pages);
3510 if (!folio_test_dirty(folio))
3511 __xa_clear_mark(&folio->mapping->i_pages,
3512 folio_index(folio), PAGECACHE_TAG_DIRTY);
3513 xa_unlock_irq(&folio->mapping->i_pages);
3514 }
3515
btrfs_clear_buffer_dirty(struct btrfs_trans_handle * trans,struct extent_buffer * eb)3516 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
3517 struct extent_buffer *eb)
3518 {
3519 struct btrfs_fs_info *fs_info = eb->fs_info;
3520
3521 btrfs_assert_tree_write_locked(eb);
3522
3523 if (trans && btrfs_header_generation(eb) != trans->transid)
3524 return;
3525
3526 /*
3527 * Instead of clearing the dirty flag off of the buffer, mark it as
3528 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve
3529 * write-ordering in zoned mode, without the need to later re-dirty
3530 * the extent_buffer.
3531 *
3532 * The actual zeroout of the buffer will happen later in
3533 * btree_csum_one_bio.
3534 */
3535 if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3536 set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags);
3537 return;
3538 }
3539
3540 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
3541 return;
3542
3543 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
3544 fs_info->dirty_metadata_batch);
3545
3546 for (int i = 0; i < num_extent_folios(eb); i++) {
3547 struct folio *folio = eb->folios[i];
3548 bool last;
3549
3550 if (!folio_test_dirty(folio))
3551 continue;
3552 folio_lock(folio);
3553 last = btrfs_meta_folio_clear_and_test_dirty(folio, eb);
3554 if (last)
3555 btree_clear_folio_dirty_tag(folio);
3556 folio_unlock(folio);
3557 }
3558 WARN_ON(atomic_read(&eb->refs) == 0);
3559 }
3560
set_extent_buffer_dirty(struct extent_buffer * eb)3561 void set_extent_buffer_dirty(struct extent_buffer *eb)
3562 {
3563 bool was_dirty;
3564
3565 check_buffer_tree_ref(eb);
3566
3567 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3568
3569 WARN_ON(atomic_read(&eb->refs) == 0);
3570 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
3571 WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags));
3572
3573 if (!was_dirty) {
3574 bool subpage = btrfs_meta_is_subpage(eb->fs_info);
3575
3576 /*
3577 * For subpage case, we can have other extent buffers in the
3578 * same page, and in clear_extent_buffer_dirty() we
3579 * have to clear page dirty without subpage lock held.
3580 * This can cause race where our page gets dirty cleared after
3581 * we just set it.
3582 *
3583 * Thankfully, clear_extent_buffer_dirty() has locked
3584 * its page for other reasons, we can use page lock to prevent
3585 * the above race.
3586 */
3587 if (subpage)
3588 folio_lock(eb->folios[0]);
3589 for (int i = 0; i < num_extent_folios(eb); i++)
3590 btrfs_meta_folio_set_dirty(eb->folios[i], eb);
3591 if (subpage)
3592 folio_unlock(eb->folios[0]);
3593 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
3594 eb->len,
3595 eb->fs_info->dirty_metadata_batch);
3596 }
3597 #ifdef CONFIG_BTRFS_DEBUG
3598 for (int i = 0; i < num_extent_folios(eb); i++)
3599 ASSERT(folio_test_dirty(eb->folios[i]));
3600 #endif
3601 }
3602
clear_extent_buffer_uptodate(struct extent_buffer * eb)3603 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
3604 {
3605
3606 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3607 for (int i = 0; i < num_extent_folios(eb); i++) {
3608 struct folio *folio = eb->folios[i];
3609
3610 if (!folio)
3611 continue;
3612
3613 btrfs_meta_folio_clear_uptodate(folio, eb);
3614 }
3615 }
3616
set_extent_buffer_uptodate(struct extent_buffer * eb)3617 void set_extent_buffer_uptodate(struct extent_buffer *eb)
3618 {
3619
3620 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3621 for (int i = 0; i < num_extent_folios(eb); i++)
3622 btrfs_meta_folio_set_uptodate(eb->folios[i], eb);
3623 }
3624
clear_extent_buffer_reading(struct extent_buffer * eb)3625 static void clear_extent_buffer_reading(struct extent_buffer *eb)
3626 {
3627 clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
3628 smp_mb__after_atomic();
3629 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
3630 }
3631
end_bbio_meta_read(struct btrfs_bio * bbio)3632 static void end_bbio_meta_read(struct btrfs_bio *bbio)
3633 {
3634 struct extent_buffer *eb = bbio->private;
3635 bool uptodate = !bbio->bio.bi_status;
3636
3637 /*
3638 * If the extent buffer is marked UPTODATE before the read operation
3639 * completes, other calls to read_extent_buffer_pages() will return
3640 * early without waiting for the read to finish, causing data races.
3641 */
3642 WARN_ON(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags));
3643
3644 eb->read_mirror = bbio->mirror_num;
3645
3646 if (uptodate &&
3647 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
3648 uptodate = false;
3649
3650 if (uptodate) {
3651 set_extent_buffer_uptodate(eb);
3652 } else {
3653 clear_extent_buffer_uptodate(eb);
3654 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3655 }
3656
3657 clear_extent_buffer_reading(eb);
3658 free_extent_buffer(eb);
3659
3660 bio_put(&bbio->bio);
3661 }
3662
read_extent_buffer_pages_nowait(struct extent_buffer * eb,int mirror_num,const struct btrfs_tree_parent_check * check)3663 int read_extent_buffer_pages_nowait(struct extent_buffer *eb, int mirror_num,
3664 const struct btrfs_tree_parent_check *check)
3665 {
3666 struct btrfs_bio *bbio;
3667
3668 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3669 return 0;
3670
3671 /*
3672 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
3673 * operation, which could potentially still be in flight. In this case
3674 * we simply want to return an error.
3675 */
3676 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
3677 return -EIO;
3678
3679 /* Someone else is already reading the buffer, just wait for it. */
3680 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
3681 return 0;
3682
3683 /*
3684 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above
3685 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have
3686 * started and finished reading the same eb. In this case, UPTODATE
3687 * will now be set, and we shouldn't read it in again.
3688 */
3689 if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) {
3690 clear_extent_buffer_reading(eb);
3691 return 0;
3692 }
3693
3694 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3695 eb->read_mirror = 0;
3696 check_buffer_tree_ref(eb);
3697 atomic_inc(&eb->refs);
3698
3699 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
3700 REQ_OP_READ | REQ_META, eb->fs_info,
3701 end_bbio_meta_read, eb);
3702 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
3703 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
3704 bbio->file_offset = eb->start;
3705 memcpy(&bbio->parent_check, check, sizeof(*check));
3706 for (int i = 0; i < num_extent_folios(eb); i++) {
3707 struct folio *folio = eb->folios[i];
3708 u64 range_start = max_t(u64, eb->start, folio_pos(folio));
3709 u32 range_len = min_t(u64, folio_pos(folio) + folio_size(folio),
3710 eb->start + eb->len) - range_start;
3711
3712 bio_add_folio_nofail(&bbio->bio, folio, range_len,
3713 offset_in_folio(folio, range_start));
3714 }
3715 btrfs_submit_bbio(bbio, mirror_num);
3716 return 0;
3717 }
3718
read_extent_buffer_pages(struct extent_buffer * eb,int mirror_num,const struct btrfs_tree_parent_check * check)3719 int read_extent_buffer_pages(struct extent_buffer *eb, int mirror_num,
3720 const struct btrfs_tree_parent_check *check)
3721 {
3722 int ret;
3723
3724 ret = read_extent_buffer_pages_nowait(eb, mirror_num, check);
3725 if (ret < 0)
3726 return ret;
3727
3728 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
3729 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3730 return -EIO;
3731 return 0;
3732 }
3733
report_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)3734 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
3735 unsigned long len)
3736 {
3737 btrfs_warn(eb->fs_info,
3738 "access to eb bytenr %llu len %u out of range start %lu len %lu",
3739 eb->start, eb->len, start, len);
3740 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
3741
3742 return true;
3743 }
3744
3745 /*
3746 * Check if the [start, start + len) range is valid before reading/writing
3747 * the eb.
3748 * NOTE: @start and @len are offset inside the eb, not logical address.
3749 *
3750 * Caller should not touch the dst/src memory if this function returns error.
3751 */
check_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)3752 static inline int check_eb_range(const struct extent_buffer *eb,
3753 unsigned long start, unsigned long len)
3754 {
3755 unsigned long offset;
3756
3757 /* start, start + len should not go beyond eb->len nor overflow */
3758 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
3759 return report_eb_range(eb, start, len);
3760
3761 return false;
3762 }
3763
read_extent_buffer(const struct extent_buffer * eb,void * dstv,unsigned long start,unsigned long len)3764 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
3765 unsigned long start, unsigned long len)
3766 {
3767 const int unit_size = eb->folio_size;
3768 size_t cur;
3769 size_t offset;
3770 char *dst = (char *)dstv;
3771 unsigned long i = get_eb_folio_index(eb, start);
3772
3773 if (check_eb_range(eb, start, len)) {
3774 /*
3775 * Invalid range hit, reset the memory, so callers won't get
3776 * some random garbage for their uninitialized memory.
3777 */
3778 memset(dstv, 0, len);
3779 return;
3780 }
3781
3782 if (eb->addr) {
3783 memcpy(dstv, eb->addr + start, len);
3784 return;
3785 }
3786
3787 offset = get_eb_offset_in_folio(eb, start);
3788
3789 while (len > 0) {
3790 char *kaddr;
3791
3792 cur = min(len, unit_size - offset);
3793 kaddr = folio_address(eb->folios[i]);
3794 memcpy(dst, kaddr + offset, cur);
3795
3796 dst += cur;
3797 len -= cur;
3798 offset = 0;
3799 i++;
3800 }
3801 }
3802
read_extent_buffer_to_user_nofault(const struct extent_buffer * eb,void __user * dstv,unsigned long start,unsigned long len)3803 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
3804 void __user *dstv,
3805 unsigned long start, unsigned long len)
3806 {
3807 const int unit_size = eb->folio_size;
3808 size_t cur;
3809 size_t offset;
3810 char __user *dst = (char __user *)dstv;
3811 unsigned long i = get_eb_folio_index(eb, start);
3812 int ret = 0;
3813
3814 WARN_ON(start > eb->len);
3815 WARN_ON(start + len > eb->start + eb->len);
3816
3817 if (eb->addr) {
3818 if (copy_to_user_nofault(dstv, eb->addr + start, len))
3819 ret = -EFAULT;
3820 return ret;
3821 }
3822
3823 offset = get_eb_offset_in_folio(eb, start);
3824
3825 while (len > 0) {
3826 char *kaddr;
3827
3828 cur = min(len, unit_size - offset);
3829 kaddr = folio_address(eb->folios[i]);
3830 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
3831 ret = -EFAULT;
3832 break;
3833 }
3834
3835 dst += cur;
3836 len -= cur;
3837 offset = 0;
3838 i++;
3839 }
3840
3841 return ret;
3842 }
3843
memcmp_extent_buffer(const struct extent_buffer * eb,const void * ptrv,unsigned long start,unsigned long len)3844 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
3845 unsigned long start, unsigned long len)
3846 {
3847 const int unit_size = eb->folio_size;
3848 size_t cur;
3849 size_t offset;
3850 char *kaddr;
3851 char *ptr = (char *)ptrv;
3852 unsigned long i = get_eb_folio_index(eb, start);
3853 int ret = 0;
3854
3855 if (check_eb_range(eb, start, len))
3856 return -EINVAL;
3857
3858 if (eb->addr)
3859 return memcmp(ptrv, eb->addr + start, len);
3860
3861 offset = get_eb_offset_in_folio(eb, start);
3862
3863 while (len > 0) {
3864 cur = min(len, unit_size - offset);
3865 kaddr = folio_address(eb->folios[i]);
3866 ret = memcmp(ptr, kaddr + offset, cur);
3867 if (ret)
3868 break;
3869
3870 ptr += cur;
3871 len -= cur;
3872 offset = 0;
3873 i++;
3874 }
3875 return ret;
3876 }
3877
3878 /*
3879 * Check that the extent buffer is uptodate.
3880 *
3881 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
3882 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
3883 */
assert_eb_folio_uptodate(const struct extent_buffer * eb,int i)3884 static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i)
3885 {
3886 struct btrfs_fs_info *fs_info = eb->fs_info;
3887 struct folio *folio = eb->folios[i];
3888
3889 ASSERT(folio);
3890
3891 /*
3892 * If we are using the commit root we could potentially clear a page
3893 * Uptodate while we're using the extent buffer that we've previously
3894 * looked up. We don't want to complain in this case, as the page was
3895 * valid before, we just didn't write it out. Instead we want to catch
3896 * the case where we didn't actually read the block properly, which
3897 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
3898 */
3899 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3900 return;
3901
3902 if (btrfs_meta_is_subpage(fs_info)) {
3903 folio = eb->folios[0];
3904 ASSERT(i == 0);
3905 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio,
3906 eb->start, eb->len)))
3907 btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len);
3908 } else {
3909 WARN_ON(!folio_test_uptodate(folio));
3910 }
3911 }
3912
__write_extent_buffer(const struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len,bool use_memmove)3913 static void __write_extent_buffer(const struct extent_buffer *eb,
3914 const void *srcv, unsigned long start,
3915 unsigned long len, bool use_memmove)
3916 {
3917 const int unit_size = eb->folio_size;
3918 size_t cur;
3919 size_t offset;
3920 char *kaddr;
3921 const char *src = (const char *)srcv;
3922 unsigned long i = get_eb_folio_index(eb, start);
3923 /* For unmapped (dummy) ebs, no need to check their uptodate status. */
3924 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3925
3926 if (check_eb_range(eb, start, len))
3927 return;
3928
3929 if (eb->addr) {
3930 if (use_memmove)
3931 memmove(eb->addr + start, srcv, len);
3932 else
3933 memcpy(eb->addr + start, srcv, len);
3934 return;
3935 }
3936
3937 offset = get_eb_offset_in_folio(eb, start);
3938
3939 while (len > 0) {
3940 if (check_uptodate)
3941 assert_eb_folio_uptodate(eb, i);
3942
3943 cur = min(len, unit_size - offset);
3944 kaddr = folio_address(eb->folios[i]);
3945 if (use_memmove)
3946 memmove(kaddr + offset, src, cur);
3947 else
3948 memcpy(kaddr + offset, src, cur);
3949
3950 src += cur;
3951 len -= cur;
3952 offset = 0;
3953 i++;
3954 }
3955 }
3956
write_extent_buffer(const struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len)3957 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
3958 unsigned long start, unsigned long len)
3959 {
3960 return __write_extent_buffer(eb, srcv, start, len, false);
3961 }
3962
memset_extent_buffer(const struct extent_buffer * eb,int c,unsigned long start,unsigned long len)3963 static void memset_extent_buffer(const struct extent_buffer *eb, int c,
3964 unsigned long start, unsigned long len)
3965 {
3966 const int unit_size = eb->folio_size;
3967 unsigned long cur = start;
3968
3969 if (eb->addr) {
3970 memset(eb->addr + start, c, len);
3971 return;
3972 }
3973
3974 while (cur < start + len) {
3975 unsigned long index = get_eb_folio_index(eb, cur);
3976 unsigned int offset = get_eb_offset_in_folio(eb, cur);
3977 unsigned int cur_len = min(start + len - cur, unit_size - offset);
3978
3979 assert_eb_folio_uptodate(eb, index);
3980 memset(folio_address(eb->folios[index]) + offset, c, cur_len);
3981
3982 cur += cur_len;
3983 }
3984 }
3985
memzero_extent_buffer(const struct extent_buffer * eb,unsigned long start,unsigned long len)3986 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
3987 unsigned long len)
3988 {
3989 if (check_eb_range(eb, start, len))
3990 return;
3991 return memset_extent_buffer(eb, 0, start, len);
3992 }
3993
copy_extent_buffer_full(const struct extent_buffer * dst,const struct extent_buffer * src)3994 void copy_extent_buffer_full(const struct extent_buffer *dst,
3995 const struct extent_buffer *src)
3996 {
3997 const int unit_size = src->folio_size;
3998 unsigned long cur = 0;
3999
4000 ASSERT(dst->len == src->len);
4001
4002 while (cur < src->len) {
4003 unsigned long index = get_eb_folio_index(src, cur);
4004 unsigned long offset = get_eb_offset_in_folio(src, cur);
4005 unsigned long cur_len = min(src->len, unit_size - offset);
4006 void *addr = folio_address(src->folios[index]) + offset;
4007
4008 write_extent_buffer(dst, addr, cur, cur_len);
4009
4010 cur += cur_len;
4011 }
4012 }
4013
copy_extent_buffer(const struct extent_buffer * dst,const struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,unsigned long len)4014 void copy_extent_buffer(const struct extent_buffer *dst,
4015 const struct extent_buffer *src,
4016 unsigned long dst_offset, unsigned long src_offset,
4017 unsigned long len)
4018 {
4019 const int unit_size = dst->folio_size;
4020 u64 dst_len = dst->len;
4021 size_t cur;
4022 size_t offset;
4023 char *kaddr;
4024 unsigned long i = get_eb_folio_index(dst, dst_offset);
4025
4026 if (check_eb_range(dst, dst_offset, len) ||
4027 check_eb_range(src, src_offset, len))
4028 return;
4029
4030 WARN_ON(src->len != dst_len);
4031
4032 offset = get_eb_offset_in_folio(dst, dst_offset);
4033
4034 while (len > 0) {
4035 assert_eb_folio_uptodate(dst, i);
4036
4037 cur = min(len, (unsigned long)(unit_size - offset));
4038
4039 kaddr = folio_address(dst->folios[i]);
4040 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4041
4042 src_offset += cur;
4043 len -= cur;
4044 offset = 0;
4045 i++;
4046 }
4047 }
4048
4049 /*
4050 * Calculate the folio and offset of the byte containing the given bit number.
4051 *
4052 * @eb: the extent buffer
4053 * @start: offset of the bitmap item in the extent buffer
4054 * @nr: bit number
4055 * @folio_index: return index of the folio in the extent buffer that contains
4056 * the given bit number
4057 * @folio_offset: return offset into the folio given by folio_index
4058 *
4059 * This helper hides the ugliness of finding the byte in an extent buffer which
4060 * contains a given bit.
4061 */
eb_bitmap_offset(const struct extent_buffer * eb,unsigned long start,unsigned long nr,unsigned long * folio_index,size_t * folio_offset)4062 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
4063 unsigned long start, unsigned long nr,
4064 unsigned long *folio_index,
4065 size_t *folio_offset)
4066 {
4067 size_t byte_offset = BIT_BYTE(nr);
4068 size_t offset;
4069
4070 /*
4071 * The byte we want is the offset of the extent buffer + the offset of
4072 * the bitmap item in the extent buffer + the offset of the byte in the
4073 * bitmap item.
4074 */
4075 offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset;
4076
4077 *folio_index = offset >> eb->folio_shift;
4078 *folio_offset = offset_in_eb_folio(eb, offset);
4079 }
4080
4081 /*
4082 * Determine whether a bit in a bitmap item is set.
4083 *
4084 * @eb: the extent buffer
4085 * @start: offset of the bitmap item in the extent buffer
4086 * @nr: bit number to test
4087 */
extent_buffer_test_bit(const struct extent_buffer * eb,unsigned long start,unsigned long nr)4088 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
4089 unsigned long nr)
4090 {
4091 unsigned long i;
4092 size_t offset;
4093 u8 *kaddr;
4094
4095 eb_bitmap_offset(eb, start, nr, &i, &offset);
4096 assert_eb_folio_uptodate(eb, i);
4097 kaddr = folio_address(eb->folios[i]);
4098 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
4099 }
4100
extent_buffer_get_byte(const struct extent_buffer * eb,unsigned long bytenr)4101 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
4102 {
4103 unsigned long index = get_eb_folio_index(eb, bytenr);
4104
4105 if (check_eb_range(eb, bytenr, 1))
4106 return NULL;
4107 return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr);
4108 }
4109
4110 /*
4111 * Set an area of a bitmap to 1.
4112 *
4113 * @eb: the extent buffer
4114 * @start: offset of the bitmap item in the extent buffer
4115 * @pos: bit number of the first bit
4116 * @len: number of bits to set
4117 */
extent_buffer_bitmap_set(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)4118 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4119 unsigned long pos, unsigned long len)
4120 {
4121 unsigned int first_byte = start + BIT_BYTE(pos);
4122 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4123 const bool same_byte = (first_byte == last_byte);
4124 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4125 u8 *kaddr;
4126
4127 if (same_byte)
4128 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4129
4130 /* Handle the first byte. */
4131 kaddr = extent_buffer_get_byte(eb, first_byte);
4132 *kaddr |= mask;
4133 if (same_byte)
4134 return;
4135
4136 /* Handle the byte aligned part. */
4137 ASSERT(first_byte + 1 <= last_byte);
4138 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4139
4140 /* Handle the last byte. */
4141 kaddr = extent_buffer_get_byte(eb, last_byte);
4142 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
4143 }
4144
4145
4146 /*
4147 * Clear an area of a bitmap.
4148 *
4149 * @eb: the extent buffer
4150 * @start: offset of the bitmap item in the extent buffer
4151 * @pos: bit number of the first bit
4152 * @len: number of bits to clear
4153 */
extent_buffer_bitmap_clear(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)4154 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4155 unsigned long start, unsigned long pos,
4156 unsigned long len)
4157 {
4158 unsigned int first_byte = start + BIT_BYTE(pos);
4159 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4160 const bool same_byte = (first_byte == last_byte);
4161 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4162 u8 *kaddr;
4163
4164 if (same_byte)
4165 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4166
4167 /* Handle the first byte. */
4168 kaddr = extent_buffer_get_byte(eb, first_byte);
4169 *kaddr &= ~mask;
4170 if (same_byte)
4171 return;
4172
4173 /* Handle the byte aligned part. */
4174 ASSERT(first_byte + 1 <= last_byte);
4175 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4176
4177 /* Handle the last byte. */
4178 kaddr = extent_buffer_get_byte(eb, last_byte);
4179 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
4180 }
4181
areas_overlap(unsigned long src,unsigned long dst,unsigned long len)4182 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4183 {
4184 unsigned long distance = (src > dst) ? src - dst : dst - src;
4185 return distance < len;
4186 }
4187
memcpy_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)4188 void memcpy_extent_buffer(const struct extent_buffer *dst,
4189 unsigned long dst_offset, unsigned long src_offset,
4190 unsigned long len)
4191 {
4192 const int unit_size = dst->folio_size;
4193 unsigned long cur_off = 0;
4194
4195 if (check_eb_range(dst, dst_offset, len) ||
4196 check_eb_range(dst, src_offset, len))
4197 return;
4198
4199 if (dst->addr) {
4200 const bool use_memmove = areas_overlap(src_offset, dst_offset, len);
4201
4202 if (use_memmove)
4203 memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4204 else
4205 memcpy(dst->addr + dst_offset, dst->addr + src_offset, len);
4206 return;
4207 }
4208
4209 while (cur_off < len) {
4210 unsigned long cur_src = cur_off + src_offset;
4211 unsigned long folio_index = get_eb_folio_index(dst, cur_src);
4212 unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src);
4213 unsigned long cur_len = min(src_offset + len - cur_src,
4214 unit_size - folio_off);
4215 void *src_addr = folio_address(dst->folios[folio_index]) + folio_off;
4216 const bool use_memmove = areas_overlap(src_offset + cur_off,
4217 dst_offset + cur_off, cur_len);
4218
4219 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4220 use_memmove);
4221 cur_off += cur_len;
4222 }
4223 }
4224
memmove_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)4225 void memmove_extent_buffer(const struct extent_buffer *dst,
4226 unsigned long dst_offset, unsigned long src_offset,
4227 unsigned long len)
4228 {
4229 unsigned long dst_end = dst_offset + len - 1;
4230 unsigned long src_end = src_offset + len - 1;
4231
4232 if (check_eb_range(dst, dst_offset, len) ||
4233 check_eb_range(dst, src_offset, len))
4234 return;
4235
4236 if (dst_offset < src_offset) {
4237 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4238 return;
4239 }
4240
4241 if (dst->addr) {
4242 memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4243 return;
4244 }
4245
4246 while (len > 0) {
4247 unsigned long src_i;
4248 size_t cur;
4249 size_t dst_off_in_folio;
4250 size_t src_off_in_folio;
4251 void *src_addr;
4252 bool use_memmove;
4253
4254 src_i = get_eb_folio_index(dst, src_end);
4255
4256 dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end);
4257 src_off_in_folio = get_eb_offset_in_folio(dst, src_end);
4258
4259 cur = min_t(unsigned long, len, src_off_in_folio + 1);
4260 cur = min(cur, dst_off_in_folio + 1);
4261
4262 src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio -
4263 cur + 1;
4264 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4265 cur);
4266
4267 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4268 use_memmove);
4269
4270 dst_end -= cur;
4271 src_end -= cur;
4272 len -= cur;
4273 }
4274 }
4275
4276 #define GANG_LOOKUP_SIZE 16
get_next_extent_buffer(const struct btrfs_fs_info * fs_info,struct folio * folio,u64 bytenr)4277 static struct extent_buffer *get_next_extent_buffer(
4278 const struct btrfs_fs_info *fs_info, struct folio *folio, u64 bytenr)
4279 {
4280 struct extent_buffer *gang[GANG_LOOKUP_SIZE];
4281 struct extent_buffer *found = NULL;
4282 u64 folio_start = folio_pos(folio);
4283 u64 cur = folio_start;
4284
4285 ASSERT(in_range(bytenr, folio_start, PAGE_SIZE));
4286 lockdep_assert_held(&fs_info->buffer_lock);
4287
4288 while (cur < folio_start + PAGE_SIZE) {
4289 int ret;
4290 int i;
4291
4292 ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
4293 (void **)gang, cur >> fs_info->sectorsize_bits,
4294 min_t(unsigned int, GANG_LOOKUP_SIZE,
4295 PAGE_SIZE / fs_info->nodesize));
4296 if (ret == 0)
4297 goto out;
4298 for (i = 0; i < ret; i++) {
4299 /* Already beyond page end */
4300 if (gang[i]->start >= folio_start + PAGE_SIZE)
4301 goto out;
4302 /* Found one */
4303 if (gang[i]->start >= bytenr) {
4304 found = gang[i];
4305 goto out;
4306 }
4307 }
4308 cur = gang[ret - 1]->start + gang[ret - 1]->len;
4309 }
4310 out:
4311 return found;
4312 }
4313
try_release_subpage_extent_buffer(struct folio * folio)4314 static int try_release_subpage_extent_buffer(struct folio *folio)
4315 {
4316 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
4317 u64 cur = folio_pos(folio);
4318 const u64 end = cur + PAGE_SIZE;
4319 int ret;
4320
4321 while (cur < end) {
4322 struct extent_buffer *eb = NULL;
4323
4324 /*
4325 * Unlike try_release_extent_buffer() which uses folio private
4326 * to grab buffer, for subpage case we rely on radix tree, thus
4327 * we need to ensure radix tree consistency.
4328 *
4329 * We also want an atomic snapshot of the radix tree, thus go
4330 * with spinlock rather than RCU.
4331 */
4332 spin_lock(&fs_info->buffer_lock);
4333 eb = get_next_extent_buffer(fs_info, folio, cur);
4334 if (!eb) {
4335 /* No more eb in the page range after or at cur */
4336 spin_unlock(&fs_info->buffer_lock);
4337 break;
4338 }
4339 cur = eb->start + eb->len;
4340
4341 /*
4342 * The same as try_release_extent_buffer(), to ensure the eb
4343 * won't disappear out from under us.
4344 */
4345 spin_lock(&eb->refs_lock);
4346 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4347 spin_unlock(&eb->refs_lock);
4348 spin_unlock(&fs_info->buffer_lock);
4349 break;
4350 }
4351 spin_unlock(&fs_info->buffer_lock);
4352
4353 /*
4354 * If tree ref isn't set then we know the ref on this eb is a
4355 * real ref, so just return, this eb will likely be freed soon
4356 * anyway.
4357 */
4358 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4359 spin_unlock(&eb->refs_lock);
4360 break;
4361 }
4362
4363 /*
4364 * Here we don't care about the return value, we will always
4365 * check the folio private at the end. And
4366 * release_extent_buffer() will release the refs_lock.
4367 */
4368 release_extent_buffer(eb);
4369 }
4370 /*
4371 * Finally to check if we have cleared folio private, as if we have
4372 * released all ebs in the page, the folio private should be cleared now.
4373 */
4374 spin_lock(&folio->mapping->i_private_lock);
4375 if (!folio_test_private(folio))
4376 ret = 1;
4377 else
4378 ret = 0;
4379 spin_unlock(&folio->mapping->i_private_lock);
4380 return ret;
4381
4382 }
4383
try_release_extent_buffer(struct folio * folio)4384 int try_release_extent_buffer(struct folio *folio)
4385 {
4386 struct extent_buffer *eb;
4387
4388 if (btrfs_meta_is_subpage(folio_to_fs_info(folio)))
4389 return try_release_subpage_extent_buffer(folio);
4390
4391 /*
4392 * We need to make sure nobody is changing folio private, as we rely on
4393 * folio private as the pointer to extent buffer.
4394 */
4395 spin_lock(&folio->mapping->i_private_lock);
4396 if (!folio_test_private(folio)) {
4397 spin_unlock(&folio->mapping->i_private_lock);
4398 return 1;
4399 }
4400
4401 eb = folio_get_private(folio);
4402 BUG_ON(!eb);
4403
4404 /*
4405 * This is a little awful but should be ok, we need to make sure that
4406 * the eb doesn't disappear out from under us while we're looking at
4407 * this page.
4408 */
4409 spin_lock(&eb->refs_lock);
4410 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4411 spin_unlock(&eb->refs_lock);
4412 spin_unlock(&folio->mapping->i_private_lock);
4413 return 0;
4414 }
4415 spin_unlock(&folio->mapping->i_private_lock);
4416
4417 /*
4418 * If tree ref isn't set then we know the ref on this eb is a real ref,
4419 * so just return, this page will likely be freed soon anyway.
4420 */
4421 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4422 spin_unlock(&eb->refs_lock);
4423 return 0;
4424 }
4425
4426 return release_extent_buffer(eb);
4427 }
4428
4429 /*
4430 * Attempt to readahead a child block.
4431 *
4432 * @fs_info: the fs_info
4433 * @bytenr: bytenr to read
4434 * @owner_root: objectid of the root that owns this eb
4435 * @gen: generation for the uptodate check, can be 0
4436 * @level: level for the eb
4437 *
4438 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
4439 * normal uptodate check of the eb, without checking the generation. If we have
4440 * to read the block we will not block on anything.
4441 */
btrfs_readahead_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,u64 gen,int level)4442 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
4443 u64 bytenr, u64 owner_root, u64 gen, int level)
4444 {
4445 struct btrfs_tree_parent_check check = {
4446 .level = level,
4447 .transid = gen
4448 };
4449 struct extent_buffer *eb;
4450 int ret;
4451
4452 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
4453 if (IS_ERR(eb))
4454 return;
4455
4456 if (btrfs_buffer_uptodate(eb, gen, 1)) {
4457 free_extent_buffer(eb);
4458 return;
4459 }
4460
4461 ret = read_extent_buffer_pages_nowait(eb, 0, &check);
4462 if (ret < 0)
4463 free_extent_buffer_stale(eb);
4464 else
4465 free_extent_buffer(eb);
4466 }
4467
4468 /*
4469 * Readahead a node's child block.
4470 *
4471 * @node: parent node we're reading from
4472 * @slot: slot in the parent node for the child we want to read
4473 *
4474 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
4475 * the slot in the node provided.
4476 */
btrfs_readahead_node_child(struct extent_buffer * node,int slot)4477 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
4478 {
4479 btrfs_readahead_tree_block(node->fs_info,
4480 btrfs_node_blockptr(node, slot),
4481 btrfs_header_owner(node),
4482 btrfs_node_ptr_generation(node, slot),
4483 btrfs_header_level(node) - 1);
4484 }
4485