1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/sched/mm.h>
10 #include <linux/spinlock.h>
11 #include <linux/blkdev.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/prefetch.h>
16 #include <linux/fsverity.h>
17 #include "extent_io.h"
18 #include "extent-io-tree.h"
19 #include "extent_map.h"
20 #include "ctree.h"
21 #include "btrfs_inode.h"
22 #include "bio.h"
23 #include "locking.h"
24 #include "backref.h"
25 #include "disk-io.h"
26 #include "subpage.h"
27 #include "zoned.h"
28 #include "block-group.h"
29 #include "compression.h"
30 #include "fs.h"
31 #include "accessors.h"
32 #include "file-item.h"
33 #include "file.h"
34 #include "dev-replace.h"
35 #include "super.h"
36 #include "transaction.h"
37
38 static struct kmem_cache *extent_buffer_cache;
39
40 #ifdef CONFIG_BTRFS_DEBUG
btrfs_leak_debug_add_eb(struct extent_buffer * eb)41 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
42 {
43 struct btrfs_fs_info *fs_info = eb->fs_info;
44 unsigned long flags;
45
46 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
47 list_add(&eb->leak_list, &fs_info->allocated_ebs);
48 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
49 }
50
btrfs_leak_debug_del_eb(struct extent_buffer * eb)51 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
52 {
53 struct btrfs_fs_info *fs_info = eb->fs_info;
54 unsigned long flags;
55
56 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
57 list_del(&eb->leak_list);
58 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
59 }
60
btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info * fs_info)61 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
62 {
63 struct extent_buffer *eb;
64 unsigned long flags;
65
66 /*
67 * If we didn't get into open_ctree our allocated_ebs will not be
68 * initialized, so just skip this.
69 */
70 if (!fs_info->allocated_ebs.next)
71 return;
72
73 WARN_ON(!list_empty(&fs_info->allocated_ebs));
74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75 while (!list_empty(&fs_info->allocated_ebs)) {
76 eb = list_first_entry(&fs_info->allocated_ebs,
77 struct extent_buffer, leak_list);
78 pr_err(
79 "BTRFS: buffer leak start %llu len %u refs %d bflags %lu owner %llu\n",
80 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
81 btrfs_header_owner(eb));
82 list_del(&eb->leak_list);
83 WARN_ON_ONCE(1);
84 kmem_cache_free(extent_buffer_cache, eb);
85 }
86 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
87 }
88 #else
89 #define btrfs_leak_debug_add_eb(eb) do {} while (0)
90 #define btrfs_leak_debug_del_eb(eb) do {} while (0)
91 #endif
92
93 /*
94 * Structure to record info about the bio being assembled, and other info like
95 * how many bytes are there before stripe/ordered extent boundary.
96 */
97 struct btrfs_bio_ctrl {
98 struct btrfs_bio *bbio;
99 /* Last byte contained in bbio + 1 . */
100 loff_t next_file_offset;
101 enum btrfs_compression_type compress_type;
102 u32 len_to_oe_boundary;
103 blk_opf_t opf;
104 btrfs_bio_end_io_t end_io_func;
105 struct writeback_control *wbc;
106
107 /*
108 * The sectors of the page which are going to be submitted by
109 * extent_writepage_io().
110 * This is to avoid touching ranges covered by compression/inline.
111 */
112 unsigned long submit_bitmap;
113 };
114
submit_one_bio(struct btrfs_bio_ctrl * bio_ctrl)115 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
116 {
117 struct btrfs_bio *bbio = bio_ctrl->bbio;
118
119 if (!bbio)
120 return;
121
122 /* Caller should ensure the bio has at least some range added */
123 ASSERT(bbio->bio.bi_iter.bi_size);
124
125 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
126 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
127 btrfs_submit_compressed_read(bbio);
128 else
129 btrfs_submit_bbio(bbio, 0);
130
131 /* The bbio is owned by the end_io handler now */
132 bio_ctrl->bbio = NULL;
133 }
134
135 /*
136 * Submit or fail the current bio in the bio_ctrl structure.
137 */
submit_write_bio(struct btrfs_bio_ctrl * bio_ctrl,int ret)138 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
139 {
140 struct btrfs_bio *bbio = bio_ctrl->bbio;
141
142 if (!bbio)
143 return;
144
145 if (ret) {
146 ASSERT(ret < 0);
147 btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
148 /* The bio is owned by the end_io handler now */
149 bio_ctrl->bbio = NULL;
150 } else {
151 submit_one_bio(bio_ctrl);
152 }
153 }
154
extent_buffer_init_cachep(void)155 int __init extent_buffer_init_cachep(void)
156 {
157 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
158 sizeof(struct extent_buffer), 0, 0,
159 NULL);
160 if (!extent_buffer_cache)
161 return -ENOMEM;
162
163 return 0;
164 }
165
extent_buffer_free_cachep(void)166 void __cold extent_buffer_free_cachep(void)
167 {
168 /*
169 * Make sure all delayed rcu free are flushed before we
170 * destroy caches.
171 */
172 rcu_barrier();
173 kmem_cache_destroy(extent_buffer_cache);
174 }
175
process_one_folio(struct btrfs_fs_info * fs_info,struct folio * folio,const struct folio * locked_folio,unsigned long page_ops,u64 start,u64 end)176 static void process_one_folio(struct btrfs_fs_info *fs_info,
177 struct folio *folio, const struct folio *locked_folio,
178 unsigned long page_ops, u64 start, u64 end)
179 {
180 u32 len;
181
182 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
183 len = end + 1 - start;
184
185 if (page_ops & PAGE_SET_ORDERED)
186 btrfs_folio_clamp_set_ordered(fs_info, folio, start, len);
187 if (page_ops & PAGE_START_WRITEBACK) {
188 btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len);
189 btrfs_folio_clamp_set_writeback(fs_info, folio, start, len);
190 }
191 if (page_ops & PAGE_END_WRITEBACK)
192 btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len);
193
194 if (folio != locked_folio && (page_ops & PAGE_UNLOCK))
195 btrfs_folio_end_lock(fs_info, folio, start, len);
196 }
197
__process_folios_contig(struct address_space * mapping,const struct folio * locked_folio,u64 start,u64 end,unsigned long page_ops)198 static void __process_folios_contig(struct address_space *mapping,
199 const struct folio *locked_folio, u64 start,
200 u64 end, unsigned long page_ops)
201 {
202 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
203 pgoff_t index = start >> PAGE_SHIFT;
204 pgoff_t end_index = end >> PAGE_SHIFT;
205 struct folio_batch fbatch;
206 int i;
207
208 folio_batch_init(&fbatch);
209 while (index <= end_index) {
210 int found_folios;
211
212 found_folios = filemap_get_folios_contig(mapping, &index,
213 end_index, &fbatch);
214 for (i = 0; i < found_folios; i++) {
215 struct folio *folio = fbatch.folios[i];
216
217 process_one_folio(fs_info, folio, locked_folio,
218 page_ops, start, end);
219 }
220 folio_batch_release(&fbatch);
221 cond_resched();
222 }
223 }
224
unlock_delalloc_folio(const struct inode * inode,struct folio * locked_folio,u64 start,u64 end)225 static noinline void unlock_delalloc_folio(const struct inode *inode,
226 struct folio *locked_folio,
227 u64 start, u64 end)
228 {
229 ASSERT(locked_folio);
230
231 __process_folios_contig(inode->i_mapping, locked_folio, start, end,
232 PAGE_UNLOCK);
233 }
234
lock_delalloc_folios(struct inode * inode,struct folio * locked_folio,u64 start,u64 end)235 static noinline int lock_delalloc_folios(struct inode *inode,
236 struct folio *locked_folio,
237 u64 start, u64 end)
238 {
239 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
240 struct address_space *mapping = inode->i_mapping;
241 pgoff_t index = start >> PAGE_SHIFT;
242 pgoff_t end_index = end >> PAGE_SHIFT;
243 u64 processed_end = start;
244 struct folio_batch fbatch;
245
246 folio_batch_init(&fbatch);
247 while (index <= end_index) {
248 unsigned int found_folios, i;
249
250 found_folios = filemap_get_folios_contig(mapping, &index,
251 end_index, &fbatch);
252 if (found_folios == 0)
253 goto out;
254
255 for (i = 0; i < found_folios; i++) {
256 struct folio *folio = fbatch.folios[i];
257 u64 range_start;
258 u32 range_len;
259
260 if (folio == locked_folio)
261 continue;
262
263 folio_lock(folio);
264 if (!folio_test_dirty(folio) || folio->mapping != mapping) {
265 folio_unlock(folio);
266 goto out;
267 }
268 range_start = max_t(u64, folio_pos(folio), start);
269 range_len = min_t(u64, folio_pos(folio) + folio_size(folio),
270 end + 1) - range_start;
271 btrfs_folio_set_lock(fs_info, folio, range_start, range_len);
272
273 processed_end = range_start + range_len - 1;
274 }
275 folio_batch_release(&fbatch);
276 cond_resched();
277 }
278
279 return 0;
280 out:
281 folio_batch_release(&fbatch);
282 if (processed_end > start)
283 unlock_delalloc_folio(inode, locked_folio, start, processed_end);
284 return -EAGAIN;
285 }
286
287 /*
288 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
289 * more than @max_bytes.
290 *
291 * @start: The original start bytenr to search.
292 * Will store the extent range start bytenr.
293 * @end: The original end bytenr of the search range
294 * Will store the extent range end bytenr.
295 *
296 * Return true if we find a delalloc range which starts inside the original
297 * range, and @start/@end will store the delalloc range start/end.
298 *
299 * Return false if we can't find any delalloc range which starts inside the
300 * original range, and @start/@end will be the non-delalloc range start/end.
301 */
302 EXPORT_FOR_TESTS
find_lock_delalloc_range(struct inode * inode,struct folio * locked_folio,u64 * start,u64 * end)303 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
304 struct folio *locked_folio,
305 u64 *start, u64 *end)
306 {
307 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
308 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
309 const u64 orig_start = *start;
310 const u64 orig_end = *end;
311 /* The sanity tests may not set a valid fs_info. */
312 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
313 u64 delalloc_start;
314 u64 delalloc_end;
315 bool found;
316 struct extent_state *cached_state = NULL;
317 int ret;
318 int loops = 0;
319
320 /* Caller should pass a valid @end to indicate the search range end */
321 ASSERT(orig_end > orig_start);
322
323 /* The range should at least cover part of the folio */
324 ASSERT(!(orig_start >= folio_pos(locked_folio) + folio_size(locked_folio) ||
325 orig_end <= folio_pos(locked_folio)));
326 again:
327 /* step one, find a bunch of delalloc bytes starting at start */
328 delalloc_start = *start;
329 delalloc_end = 0;
330 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
331 max_bytes, &cached_state);
332 if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
333 *start = delalloc_start;
334
335 /* @delalloc_end can be -1, never go beyond @orig_end */
336 *end = min(delalloc_end, orig_end);
337 btrfs_free_extent_state(cached_state);
338 return false;
339 }
340
341 /*
342 * start comes from the offset of locked_folio. We have to lock
343 * folios in order, so we can't process delalloc bytes before
344 * locked_folio
345 */
346 if (delalloc_start < *start)
347 delalloc_start = *start;
348
349 /*
350 * make sure to limit the number of folios we try to lock down
351 */
352 if (delalloc_end + 1 - delalloc_start > max_bytes)
353 delalloc_end = delalloc_start + max_bytes - 1;
354
355 /* step two, lock all the folioss after the folios that has start */
356 ret = lock_delalloc_folios(inode, locked_folio, delalloc_start,
357 delalloc_end);
358 ASSERT(!ret || ret == -EAGAIN);
359 if (ret == -EAGAIN) {
360 /* some of the folios are gone, lets avoid looping by
361 * shortening the size of the delalloc range we're searching
362 */
363 btrfs_free_extent_state(cached_state);
364 cached_state = NULL;
365 if (!loops) {
366 max_bytes = PAGE_SIZE;
367 loops = 1;
368 goto again;
369 } else {
370 found = false;
371 goto out_failed;
372 }
373 }
374
375 /* step three, lock the state bits for the whole range */
376 btrfs_lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
377
378 /* then test to make sure it is all still delalloc */
379 ret = btrfs_test_range_bit(tree, delalloc_start, delalloc_end,
380 EXTENT_DELALLOC, cached_state);
381
382 btrfs_unlock_extent(tree, delalloc_start, delalloc_end, &cached_state);
383 if (!ret) {
384 unlock_delalloc_folio(inode, locked_folio, delalloc_start,
385 delalloc_end);
386 cond_resched();
387 goto again;
388 }
389 *start = delalloc_start;
390 *end = delalloc_end;
391 out_failed:
392 return found;
393 }
394
extent_clear_unlock_delalloc(struct btrfs_inode * inode,u64 start,u64 end,const struct folio * locked_folio,struct extent_state ** cached,u32 clear_bits,unsigned long page_ops)395 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
396 const struct folio *locked_folio,
397 struct extent_state **cached,
398 u32 clear_bits, unsigned long page_ops)
399 {
400 btrfs_clear_extent_bit(&inode->io_tree, start, end, clear_bits, cached);
401
402 __process_folios_contig(inode->vfs_inode.i_mapping, locked_folio, start,
403 end, page_ops);
404 }
405
btrfs_verify_folio(struct folio * folio,u64 start,u32 len)406 static bool btrfs_verify_folio(struct folio *folio, u64 start, u32 len)
407 {
408 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
409
410 if (!fsverity_active(folio->mapping->host) ||
411 btrfs_folio_test_uptodate(fs_info, folio, start, len) ||
412 start >= i_size_read(folio->mapping->host))
413 return true;
414 return fsverity_verify_folio(folio);
415 }
416
end_folio_read(struct folio * folio,bool uptodate,u64 start,u32 len)417 static void end_folio_read(struct folio *folio, bool uptodate, u64 start, u32 len)
418 {
419 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
420
421 ASSERT(folio_pos(folio) <= start &&
422 start + len <= folio_pos(folio) + folio_size(folio));
423
424 if (uptodate && btrfs_verify_folio(folio, start, len))
425 btrfs_folio_set_uptodate(fs_info, folio, start, len);
426 else
427 btrfs_folio_clear_uptodate(fs_info, folio, start, len);
428
429 if (!btrfs_is_subpage(fs_info, folio))
430 folio_unlock(folio);
431 else
432 btrfs_folio_end_lock(fs_info, folio, start, len);
433 }
434
435 /*
436 * After a write IO is done, we need to:
437 *
438 * - clear the uptodate bits on error
439 * - clear the writeback bits in the extent tree for the range
440 * - filio_end_writeback() if there is no more pending io for the folio
441 *
442 * Scheduling is not allowed, so the extent state tree is expected
443 * to have one and only one object corresponding to this IO.
444 */
end_bbio_data_write(struct btrfs_bio * bbio)445 static void end_bbio_data_write(struct btrfs_bio *bbio)
446 {
447 struct btrfs_fs_info *fs_info = bbio->fs_info;
448 struct bio *bio = &bbio->bio;
449 int error = blk_status_to_errno(bio->bi_status);
450 struct folio_iter fi;
451 const u32 sectorsize = fs_info->sectorsize;
452
453 ASSERT(!bio_flagged(bio, BIO_CLONED));
454 bio_for_each_folio_all(fi, bio) {
455 struct folio *folio = fi.folio;
456 u64 start = folio_pos(folio) + fi.offset;
457 u32 len = fi.length;
458
459 /* Our read/write should always be sector aligned. */
460 if (!IS_ALIGNED(fi.offset, sectorsize))
461 btrfs_err(fs_info,
462 "partial page write in btrfs with offset %zu and length %zu",
463 fi.offset, fi.length);
464 else if (!IS_ALIGNED(fi.length, sectorsize))
465 btrfs_info(fs_info,
466 "incomplete page write with offset %zu and length %zu",
467 fi.offset, fi.length);
468
469 btrfs_finish_ordered_extent(bbio->ordered, folio, start, len,
470 !error);
471 if (error)
472 mapping_set_error(folio->mapping, error);
473 btrfs_folio_clear_writeback(fs_info, folio, start, len);
474 }
475
476 bio_put(bio);
477 }
478
begin_folio_read(struct btrfs_fs_info * fs_info,struct folio * folio)479 static void begin_folio_read(struct btrfs_fs_info *fs_info, struct folio *folio)
480 {
481 ASSERT(folio_test_locked(folio));
482 if (!btrfs_is_subpage(fs_info, folio))
483 return;
484
485 ASSERT(folio_test_private(folio));
486 btrfs_folio_set_lock(fs_info, folio, folio_pos(folio), folio_size(folio));
487 }
488
489 /*
490 * After a data read IO is done, we need to:
491 *
492 * - clear the uptodate bits on error
493 * - set the uptodate bits if things worked
494 * - set the folio up to date if all extents in the tree are uptodate
495 * - clear the lock bit in the extent tree
496 * - unlock the folio if there are no other extents locked for it
497 *
498 * Scheduling is not allowed, so the extent state tree is expected
499 * to have one and only one object corresponding to this IO.
500 */
end_bbio_data_read(struct btrfs_bio * bbio)501 static void end_bbio_data_read(struct btrfs_bio *bbio)
502 {
503 struct btrfs_fs_info *fs_info = bbio->fs_info;
504 struct bio *bio = &bbio->bio;
505 struct folio_iter fi;
506
507 ASSERT(!bio_flagged(bio, BIO_CLONED));
508 bio_for_each_folio_all(fi, &bbio->bio) {
509 bool uptodate = !bio->bi_status;
510 struct folio *folio = fi.folio;
511 struct inode *inode = folio->mapping->host;
512 u64 start = folio_pos(folio) + fi.offset;
513
514 btrfs_debug(fs_info,
515 "%s: bi_sector=%llu, err=%d, mirror=%u",
516 __func__, bio->bi_iter.bi_sector, bio->bi_status,
517 bbio->mirror_num);
518
519
520 if (likely(uptodate)) {
521 u64 end = start + fi.length - 1;
522 loff_t i_size = i_size_read(inode);
523
524 /*
525 * Zero out the remaining part if this range straddles
526 * i_size.
527 *
528 * Here we should only zero the range inside the folio,
529 * not touch anything else.
530 *
531 * NOTE: i_size is exclusive while end is inclusive and
532 * folio_contains() takes PAGE_SIZE units.
533 */
534 if (folio_contains(folio, i_size >> PAGE_SHIFT) &&
535 i_size <= end) {
536 u32 zero_start = max(offset_in_folio(folio, i_size),
537 offset_in_folio(folio, start));
538 u32 zero_len = offset_in_folio(folio, end) + 1 -
539 zero_start;
540
541 folio_zero_range(folio, zero_start, zero_len);
542 }
543 }
544
545 /* Update page status and unlock. */
546 end_folio_read(folio, uptodate, start, fi.length);
547 }
548 bio_put(bio);
549 }
550
551 /*
552 * Populate every free slot in a provided array with folios using GFP_NOFS.
553 *
554 * @nr_folios: number of folios to allocate
555 * @folio_array: the array to fill with folios; any existing non-NULL entries in
556 * the array will be skipped
557 *
558 * Return: 0 if all folios were able to be allocated;
559 * -ENOMEM otherwise, the partially allocated folios would be freed and
560 * the array slots zeroed
561 */
btrfs_alloc_folio_array(unsigned int nr_folios,struct folio ** folio_array)562 int btrfs_alloc_folio_array(unsigned int nr_folios, struct folio **folio_array)
563 {
564 for (int i = 0; i < nr_folios; i++) {
565 if (folio_array[i])
566 continue;
567 folio_array[i] = folio_alloc(GFP_NOFS, 0);
568 if (!folio_array[i])
569 goto error;
570 }
571 return 0;
572 error:
573 for (int i = 0; i < nr_folios; i++) {
574 if (folio_array[i])
575 folio_put(folio_array[i]);
576 }
577 return -ENOMEM;
578 }
579
580 /*
581 * Populate every free slot in a provided array with pages, using GFP_NOFS.
582 *
583 * @nr_pages: number of pages to allocate
584 * @page_array: the array to fill with pages; any existing non-null entries in
585 * the array will be skipped
586 * @nofail: whether using __GFP_NOFAIL flag
587 *
588 * Return: 0 if all pages were able to be allocated;
589 * -ENOMEM otherwise, the partially allocated pages would be freed and
590 * the array slots zeroed
591 */
btrfs_alloc_page_array(unsigned int nr_pages,struct page ** page_array,bool nofail)592 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array,
593 bool nofail)
594 {
595 const gfp_t gfp = nofail ? (GFP_NOFS | __GFP_NOFAIL) : GFP_NOFS;
596 unsigned int allocated;
597
598 for (allocated = 0; allocated < nr_pages;) {
599 unsigned int last = allocated;
600
601 allocated = alloc_pages_bulk(gfp, nr_pages, page_array);
602 if (unlikely(allocated == last)) {
603 /* No progress, fail and do cleanup. */
604 for (int i = 0; i < allocated; i++) {
605 __free_page(page_array[i]);
606 page_array[i] = NULL;
607 }
608 return -ENOMEM;
609 }
610 }
611 return 0;
612 }
613
614 /*
615 * Populate needed folios for the extent buffer.
616 *
617 * For now, the folios populated are always in order 0 (aka, single page).
618 */
alloc_eb_folio_array(struct extent_buffer * eb,bool nofail)619 static int alloc_eb_folio_array(struct extent_buffer *eb, bool nofail)
620 {
621 struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 };
622 int num_pages = num_extent_pages(eb);
623 int ret;
624
625 ret = btrfs_alloc_page_array(num_pages, page_array, nofail);
626 if (ret < 0)
627 return ret;
628
629 for (int i = 0; i < num_pages; i++)
630 eb->folios[i] = page_folio(page_array[i]);
631 eb->folio_size = PAGE_SIZE;
632 eb->folio_shift = PAGE_SHIFT;
633 return 0;
634 }
635
btrfs_bio_is_contig(struct btrfs_bio_ctrl * bio_ctrl,u64 disk_bytenr,loff_t file_offset)636 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
637 u64 disk_bytenr, loff_t file_offset)
638 {
639 struct bio *bio = &bio_ctrl->bbio->bio;
640 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
641
642 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
643 /*
644 * For compression, all IO should have its logical bytenr set
645 * to the starting bytenr of the compressed extent.
646 */
647 return bio->bi_iter.bi_sector == sector;
648 }
649
650 /*
651 * To merge into a bio both the disk sector and the logical offset in
652 * the file need to be contiguous.
653 */
654 return bio_ctrl->next_file_offset == file_offset &&
655 bio_end_sector(bio) == sector;
656 }
657
alloc_new_bio(struct btrfs_inode * inode,struct btrfs_bio_ctrl * bio_ctrl,u64 disk_bytenr,u64 file_offset)658 static void alloc_new_bio(struct btrfs_inode *inode,
659 struct btrfs_bio_ctrl *bio_ctrl,
660 u64 disk_bytenr, u64 file_offset)
661 {
662 struct btrfs_fs_info *fs_info = inode->root->fs_info;
663 struct btrfs_bio *bbio;
664
665 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
666 bio_ctrl->end_io_func, NULL);
667 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
668 bbio->bio.bi_write_hint = inode->vfs_inode.i_write_hint;
669 bbio->inode = inode;
670 bbio->file_offset = file_offset;
671 bio_ctrl->bbio = bbio;
672 bio_ctrl->len_to_oe_boundary = U32_MAX;
673 bio_ctrl->next_file_offset = file_offset;
674
675 /* Limit data write bios to the ordered boundary. */
676 if (bio_ctrl->wbc) {
677 struct btrfs_ordered_extent *ordered;
678
679 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
680 if (ordered) {
681 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
682 ordered->file_offset +
683 ordered->disk_num_bytes - file_offset);
684 bbio->ordered = ordered;
685 }
686
687 /*
688 * Pick the last added device to support cgroup writeback. For
689 * multi-device file systems this means blk-cgroup policies have
690 * to always be set on the last added/replaced device.
691 * This is a bit odd but has been like that for a long time.
692 */
693 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
694 wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
695 }
696 }
697
698 /*
699 * @disk_bytenr: logical bytenr where the write will be
700 * @page: page to add to the bio
701 * @size: portion of page that we want to write to
702 * @pg_offset: offset of the new bio or to check whether we are adding
703 * a contiguous page to the previous one
704 *
705 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
706 * new one in @bio_ctrl->bbio.
707 * The mirror number for this IO should already be initizlied in
708 * @bio_ctrl->mirror_num.
709 */
submit_extent_folio(struct btrfs_bio_ctrl * bio_ctrl,u64 disk_bytenr,struct folio * folio,size_t size,unsigned long pg_offset)710 static void submit_extent_folio(struct btrfs_bio_ctrl *bio_ctrl,
711 u64 disk_bytenr, struct folio *folio,
712 size_t size, unsigned long pg_offset)
713 {
714 struct btrfs_inode *inode = folio_to_inode(folio);
715 loff_t file_offset = folio_pos(folio) + pg_offset;
716
717 ASSERT(pg_offset + size <= folio_size(folio));
718 ASSERT(bio_ctrl->end_io_func);
719
720 if (bio_ctrl->bbio &&
721 !btrfs_bio_is_contig(bio_ctrl, disk_bytenr, file_offset))
722 submit_one_bio(bio_ctrl);
723
724 do {
725 u32 len = size;
726
727 /* Allocate new bio if needed */
728 if (!bio_ctrl->bbio)
729 alloc_new_bio(inode, bio_ctrl, disk_bytenr, file_offset);
730
731 /* Cap to the current ordered extent boundary if there is one. */
732 if (len > bio_ctrl->len_to_oe_boundary) {
733 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
734 ASSERT(is_data_inode(inode));
735 len = bio_ctrl->len_to_oe_boundary;
736 }
737
738 if (!bio_add_folio(&bio_ctrl->bbio->bio, folio, len, pg_offset)) {
739 /* bio full: move on to a new one */
740 submit_one_bio(bio_ctrl);
741 continue;
742 }
743 bio_ctrl->next_file_offset += len;
744
745 if (bio_ctrl->wbc)
746 wbc_account_cgroup_owner(bio_ctrl->wbc, folio, len);
747
748 size -= len;
749 pg_offset += len;
750 disk_bytenr += len;
751 file_offset += len;
752
753 /*
754 * len_to_oe_boundary defaults to U32_MAX, which isn't folio or
755 * sector aligned. alloc_new_bio() then sets it to the end of
756 * our ordered extent for writes into zoned devices.
757 *
758 * When len_to_oe_boundary is tracking an ordered extent, we
759 * trust the ordered extent code to align things properly, and
760 * the check above to cap our write to the ordered extent
761 * boundary is correct.
762 *
763 * When len_to_oe_boundary is U32_MAX, the cap above would
764 * result in a 4095 byte IO for the last folio right before
765 * we hit the bio limit of UINT_MAX. bio_add_folio() has all
766 * the checks required to make sure we don't overflow the bio,
767 * and we should just ignore len_to_oe_boundary completely
768 * unless we're using it to track an ordered extent.
769 *
770 * It's pretty hard to make a bio sized U32_MAX, but it can
771 * happen when the page cache is able to feed us contiguous
772 * folios for large extents.
773 */
774 if (bio_ctrl->len_to_oe_boundary != U32_MAX)
775 bio_ctrl->len_to_oe_boundary -= len;
776
777 /* Ordered extent boundary: move on to a new bio. */
778 if (bio_ctrl->len_to_oe_boundary == 0)
779 submit_one_bio(bio_ctrl);
780 } while (size);
781 }
782
attach_extent_buffer_folio(struct extent_buffer * eb,struct folio * folio,struct btrfs_subpage * prealloc)783 static int attach_extent_buffer_folio(struct extent_buffer *eb,
784 struct folio *folio,
785 struct btrfs_subpage *prealloc)
786 {
787 struct btrfs_fs_info *fs_info = eb->fs_info;
788 int ret = 0;
789
790 /*
791 * If the page is mapped to btree inode, we should hold the private
792 * lock to prevent race.
793 * For cloned or dummy extent buffers, their pages are not mapped and
794 * will not race with any other ebs.
795 */
796 if (folio->mapping)
797 lockdep_assert_held(&folio->mapping->i_private_lock);
798
799 if (!btrfs_meta_is_subpage(fs_info)) {
800 if (!folio_test_private(folio))
801 folio_attach_private(folio, eb);
802 else
803 WARN_ON(folio_get_private(folio) != eb);
804 return 0;
805 }
806
807 /* Already mapped, just free prealloc */
808 if (folio_test_private(folio)) {
809 btrfs_free_subpage(prealloc);
810 return 0;
811 }
812
813 if (prealloc)
814 /* Has preallocated memory for subpage */
815 folio_attach_private(folio, prealloc);
816 else
817 /* Do new allocation to attach subpage */
818 ret = btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA);
819 return ret;
820 }
821
set_folio_extent_mapped(struct folio * folio)822 int set_folio_extent_mapped(struct folio *folio)
823 {
824 struct btrfs_fs_info *fs_info;
825
826 ASSERT(folio->mapping);
827
828 if (folio_test_private(folio))
829 return 0;
830
831 fs_info = folio_to_fs_info(folio);
832
833 if (btrfs_is_subpage(fs_info, folio))
834 return btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA);
835
836 folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE);
837 return 0;
838 }
839
clear_folio_extent_mapped(struct folio * folio)840 void clear_folio_extent_mapped(struct folio *folio)
841 {
842 struct btrfs_fs_info *fs_info;
843
844 ASSERT(folio->mapping);
845
846 if (!folio_test_private(folio))
847 return;
848
849 fs_info = folio_to_fs_info(folio);
850 if (btrfs_is_subpage(fs_info, folio))
851 return btrfs_detach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA);
852
853 folio_detach_private(folio);
854 }
855
get_extent_map(struct btrfs_inode * inode,struct folio * folio,u64 start,u64 len,struct extent_map ** em_cached)856 static struct extent_map *get_extent_map(struct btrfs_inode *inode,
857 struct folio *folio, u64 start,
858 u64 len, struct extent_map **em_cached)
859 {
860 struct extent_map *em;
861
862 ASSERT(em_cached);
863
864 if (*em_cached) {
865 em = *em_cached;
866 if (btrfs_extent_map_in_tree(em) && start >= em->start &&
867 start < btrfs_extent_map_end(em)) {
868 refcount_inc(&em->refs);
869 return em;
870 }
871
872 btrfs_free_extent_map(em);
873 *em_cached = NULL;
874 }
875
876 em = btrfs_get_extent(inode, folio, start, len);
877 if (!IS_ERR(em)) {
878 BUG_ON(*em_cached);
879 refcount_inc(&em->refs);
880 *em_cached = em;
881 }
882
883 return em;
884 }
885 /*
886 * basic readpage implementation. Locked extent state structs are inserted
887 * into the tree that are removed when the IO is done (by the end_io
888 * handlers)
889 * XXX JDM: This needs looking at to ensure proper page locking
890 * return 0 on success, otherwise return error
891 */
btrfs_do_readpage(struct folio * folio,struct extent_map ** em_cached,struct btrfs_bio_ctrl * bio_ctrl,u64 * prev_em_start)892 static int btrfs_do_readpage(struct folio *folio, struct extent_map **em_cached,
893 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
894 {
895 struct inode *inode = folio->mapping->host;
896 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
897 u64 start = folio_pos(folio);
898 const u64 end = start + folio_size(folio) - 1;
899 u64 extent_offset;
900 u64 last_byte = i_size_read(inode);
901 struct extent_map *em;
902 int ret = 0;
903 const size_t blocksize = fs_info->sectorsize;
904
905 ret = set_folio_extent_mapped(folio);
906 if (ret < 0) {
907 folio_unlock(folio);
908 return ret;
909 }
910
911 if (folio_contains(folio, last_byte >> PAGE_SHIFT)) {
912 size_t zero_offset = offset_in_folio(folio, last_byte);
913
914 if (zero_offset)
915 folio_zero_range(folio, zero_offset,
916 folio_size(folio) - zero_offset);
917 }
918 bio_ctrl->end_io_func = end_bbio_data_read;
919 begin_folio_read(fs_info, folio);
920 for (u64 cur = start; cur <= end; cur += blocksize) {
921 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
922 unsigned long pg_offset = offset_in_folio(folio, cur);
923 bool force_bio_submit = false;
924 u64 disk_bytenr;
925 u64 block_start;
926
927 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
928 if (cur >= last_byte) {
929 folio_zero_range(folio, pg_offset, end - cur + 1);
930 end_folio_read(folio, true, cur, end - cur + 1);
931 break;
932 }
933 if (btrfs_folio_test_uptodate(fs_info, folio, cur, blocksize)) {
934 end_folio_read(folio, true, cur, blocksize);
935 continue;
936 }
937 em = get_extent_map(BTRFS_I(inode), folio, cur, end - cur + 1, em_cached);
938 if (IS_ERR(em)) {
939 end_folio_read(folio, false, cur, end + 1 - cur);
940 return PTR_ERR(em);
941 }
942 extent_offset = cur - em->start;
943 BUG_ON(btrfs_extent_map_end(em) <= cur);
944 BUG_ON(end < cur);
945
946 compress_type = btrfs_extent_map_compression(em);
947
948 if (compress_type != BTRFS_COMPRESS_NONE)
949 disk_bytenr = em->disk_bytenr;
950 else
951 disk_bytenr = btrfs_extent_map_block_start(em) + extent_offset;
952
953 if (em->flags & EXTENT_FLAG_PREALLOC)
954 block_start = EXTENT_MAP_HOLE;
955 else
956 block_start = btrfs_extent_map_block_start(em);
957
958 /*
959 * If we have a file range that points to a compressed extent
960 * and it's followed by a consecutive file range that points
961 * to the same compressed extent (possibly with a different
962 * offset and/or length, so it either points to the whole extent
963 * or only part of it), we must make sure we do not submit a
964 * single bio to populate the folios for the 2 ranges because
965 * this makes the compressed extent read zero out the folios
966 * belonging to the 2nd range. Imagine the following scenario:
967 *
968 * File layout
969 * [0 - 8K] [8K - 24K]
970 * | |
971 * | |
972 * points to extent X, points to extent X,
973 * offset 4K, length of 8K offset 0, length 16K
974 *
975 * [extent X, compressed length = 4K uncompressed length = 16K]
976 *
977 * If the bio to read the compressed extent covers both ranges,
978 * it will decompress extent X into the folios belonging to the
979 * first range and then it will stop, zeroing out the remaining
980 * folios that belong to the other range that points to extent X.
981 * So here we make sure we submit 2 bios, one for the first
982 * range and another one for the third range. Both will target
983 * the same physical extent from disk, but we can't currently
984 * make the compressed bio endio callback populate the folios
985 * for both ranges because each compressed bio is tightly
986 * coupled with a single extent map, and each range can have
987 * an extent map with a different offset value relative to the
988 * uncompressed data of our extent and different lengths. This
989 * is a corner case so we prioritize correctness over
990 * non-optimal behavior (submitting 2 bios for the same extent).
991 */
992 if (compress_type != BTRFS_COMPRESS_NONE &&
993 prev_em_start && *prev_em_start != (u64)-1 &&
994 *prev_em_start != em->start)
995 force_bio_submit = true;
996
997 if (prev_em_start)
998 *prev_em_start = em->start;
999
1000 btrfs_free_extent_map(em);
1001 em = NULL;
1002
1003 /* we've found a hole, just zero and go on */
1004 if (block_start == EXTENT_MAP_HOLE) {
1005 folio_zero_range(folio, pg_offset, blocksize);
1006 end_folio_read(folio, true, cur, blocksize);
1007 continue;
1008 }
1009 /* the get_extent function already copied into the folio */
1010 if (block_start == EXTENT_MAP_INLINE) {
1011 end_folio_read(folio, true, cur, blocksize);
1012 continue;
1013 }
1014
1015 if (bio_ctrl->compress_type != compress_type) {
1016 submit_one_bio(bio_ctrl);
1017 bio_ctrl->compress_type = compress_type;
1018 }
1019
1020 if (force_bio_submit)
1021 submit_one_bio(bio_ctrl);
1022 submit_extent_folio(bio_ctrl, disk_bytenr, folio, blocksize,
1023 pg_offset);
1024 }
1025 return 0;
1026 }
1027
1028 /*
1029 * Check if we can skip waiting the @ordered extent covering the block at @fileoff.
1030 *
1031 * @fileoff: Both input and output.
1032 * Input as the file offset where the check should start at.
1033 * Output as where the next check should start at,
1034 * if the function returns true.
1035 *
1036 * Return true if we can skip to @fileoff. The caller needs to check the new
1037 * @fileoff value to make sure it covers the full range, before skipping the
1038 * full OE.
1039 *
1040 * Return false if we must wait for the ordered extent.
1041 */
can_skip_one_ordered_range(struct btrfs_inode * inode,struct btrfs_ordered_extent * ordered,u64 * fileoff)1042 static bool can_skip_one_ordered_range(struct btrfs_inode *inode,
1043 struct btrfs_ordered_extent *ordered,
1044 u64 *fileoff)
1045 {
1046 const struct btrfs_fs_info *fs_info = inode->root->fs_info;
1047 struct folio *folio;
1048 const u32 blocksize = fs_info->sectorsize;
1049 u64 cur = *fileoff;
1050 bool ret;
1051
1052 folio = filemap_get_folio(inode->vfs_inode.i_mapping, cur >> PAGE_SHIFT);
1053
1054 /*
1055 * We should have locked the folio(s) for range [start, end], thus
1056 * there must be a folio and it must be locked.
1057 */
1058 ASSERT(!IS_ERR(folio));
1059 ASSERT(folio_test_locked(folio));
1060
1061 /*
1062 * There are several cases for the folio and OE combination:
1063 *
1064 * 1) Folio has no private flag
1065 * The OE has all its IO done but not yet finished, and folio got
1066 * invalidated.
1067 *
1068 * Have we have to wait for the OE to finish, as it may contain the
1069 * to-be-inserted data checksum.
1070 * Without the data checksum inserted into the csum tree, read will
1071 * just fail with missing csum.
1072 */
1073 if (!folio_test_private(folio)) {
1074 ret = false;
1075 goto out;
1076 }
1077
1078 /*
1079 * 2) The first block is DIRTY.
1080 *
1081 * This means the OE is created by some other folios whose file pos is
1082 * before this one. And since we are holding the folio lock, the writeback
1083 * of this folio cannot start.
1084 *
1085 * We must skip the whole OE, because it will never start until we
1086 * finished our folio read and unlocked the folio.
1087 */
1088 if (btrfs_folio_test_dirty(fs_info, folio, cur, blocksize)) {
1089 u64 range_len = min(folio_pos(folio) + folio_size(folio),
1090 ordered->file_offset + ordered->num_bytes) - cur;
1091
1092 ret = true;
1093 /*
1094 * At least inside the folio, all the remaining blocks should
1095 * also be dirty.
1096 */
1097 ASSERT(btrfs_folio_test_dirty(fs_info, folio, cur, range_len));
1098 *fileoff = ordered->file_offset + ordered->num_bytes;
1099 goto out;
1100 }
1101
1102 /*
1103 * 3) The first block is uptodate.
1104 *
1105 * At least the first block can be skipped, but we are still not fully
1106 * sure. E.g. if the OE has some other folios in the range that cannot
1107 * be skipped.
1108 * So we return true and update @next_ret to the OE/folio boundary.
1109 */
1110 if (btrfs_folio_test_uptodate(fs_info, folio, cur, blocksize)) {
1111 u64 range_len = min(folio_pos(folio) + folio_size(folio),
1112 ordered->file_offset + ordered->num_bytes) - cur;
1113
1114 /*
1115 * The whole range to the OE end or folio boundary should also
1116 * be uptodate.
1117 */
1118 ASSERT(btrfs_folio_test_uptodate(fs_info, folio, cur, range_len));
1119 ret = true;
1120 *fileoff = cur + range_len;
1121 goto out;
1122 }
1123
1124 /*
1125 * 4) The first block is not uptodate.
1126 *
1127 * This means the folio is invalidated after the writeback was finished,
1128 * but by some other operations (e.g. block aligned buffered write) the
1129 * folio is inserted into filemap.
1130 * Very much the same as case 1).
1131 */
1132 ret = false;
1133 out:
1134 folio_put(folio);
1135 return ret;
1136 }
1137
can_skip_ordered_extent(struct btrfs_inode * inode,struct btrfs_ordered_extent * ordered,u64 start,u64 end)1138 static bool can_skip_ordered_extent(struct btrfs_inode *inode,
1139 struct btrfs_ordered_extent *ordered,
1140 u64 start, u64 end)
1141 {
1142 const u64 range_end = min(end, ordered->file_offset + ordered->num_bytes - 1);
1143 u64 cur = max(start, ordered->file_offset);
1144
1145 while (cur < range_end) {
1146 bool can_skip;
1147
1148 can_skip = can_skip_one_ordered_range(inode, ordered, &cur);
1149 if (!can_skip)
1150 return false;
1151 }
1152 return true;
1153 }
1154
1155 /*
1156 * Locking helper to make sure we get a stable view of extent maps for the
1157 * involved range.
1158 *
1159 * This is for folio read paths (read and readahead), thus the involved range
1160 * should have all the folios locked.
1161 */
lock_extents_for_read(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state)1162 static void lock_extents_for_read(struct btrfs_inode *inode, u64 start, u64 end,
1163 struct extent_state **cached_state)
1164 {
1165 u64 cur_pos;
1166
1167 /* Caller must provide a valid @cached_state. */
1168 ASSERT(cached_state);
1169
1170 /* The range must at least be page aligned, as all read paths are folio based. */
1171 ASSERT(IS_ALIGNED(start, PAGE_SIZE));
1172 ASSERT(IS_ALIGNED(end + 1, PAGE_SIZE));
1173
1174 again:
1175 btrfs_lock_extent(&inode->io_tree, start, end, cached_state);
1176 cur_pos = start;
1177 while (cur_pos < end) {
1178 struct btrfs_ordered_extent *ordered;
1179
1180 ordered = btrfs_lookup_ordered_range(inode, cur_pos,
1181 end - cur_pos + 1);
1182 /*
1183 * No ordered extents in the range, and we hold the extent lock,
1184 * no one can modify the extent maps in the range, we're safe to return.
1185 */
1186 if (!ordered)
1187 break;
1188
1189 /* Check if we can skip waiting for the whole OE. */
1190 if (can_skip_ordered_extent(inode, ordered, start, end)) {
1191 cur_pos = min(ordered->file_offset + ordered->num_bytes,
1192 end + 1);
1193 btrfs_put_ordered_extent(ordered);
1194 continue;
1195 }
1196
1197 /* Now wait for the OE to finish. */
1198 btrfs_unlock_extent(&inode->io_tree, start, end, cached_state);
1199 btrfs_start_ordered_extent_nowriteback(ordered, start, end + 1 - start);
1200 btrfs_put_ordered_extent(ordered);
1201 /* We have unlocked the whole range, restart from the beginning. */
1202 goto again;
1203 }
1204 }
1205
btrfs_read_folio(struct file * file,struct folio * folio)1206 int btrfs_read_folio(struct file *file, struct folio *folio)
1207 {
1208 struct btrfs_inode *inode = folio_to_inode(folio);
1209 const u64 start = folio_pos(folio);
1210 const u64 end = start + folio_size(folio) - 1;
1211 struct extent_state *cached_state = NULL;
1212 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
1213 struct extent_map *em_cached = NULL;
1214 int ret;
1215
1216 lock_extents_for_read(inode, start, end, &cached_state);
1217 ret = btrfs_do_readpage(folio, &em_cached, &bio_ctrl, NULL);
1218 btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state);
1219
1220 btrfs_free_extent_map(em_cached);
1221
1222 /*
1223 * If btrfs_do_readpage() failed we will want to submit the assembled
1224 * bio to do the cleanup.
1225 */
1226 submit_one_bio(&bio_ctrl);
1227 return ret;
1228 }
1229
set_delalloc_bitmap(struct folio * folio,unsigned long * delalloc_bitmap,u64 start,u32 len)1230 static void set_delalloc_bitmap(struct folio *folio, unsigned long *delalloc_bitmap,
1231 u64 start, u32 len)
1232 {
1233 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1234 const u64 folio_start = folio_pos(folio);
1235 unsigned int start_bit;
1236 unsigned int nbits;
1237
1238 ASSERT(start >= folio_start && start + len <= folio_start + folio_size(folio));
1239 start_bit = (start - folio_start) >> fs_info->sectorsize_bits;
1240 nbits = len >> fs_info->sectorsize_bits;
1241 ASSERT(bitmap_test_range_all_zero(delalloc_bitmap, start_bit, nbits));
1242 bitmap_set(delalloc_bitmap, start_bit, nbits);
1243 }
1244
find_next_delalloc_bitmap(struct folio * folio,unsigned long * delalloc_bitmap,u64 start,u64 * found_start,u32 * found_len)1245 static bool find_next_delalloc_bitmap(struct folio *folio,
1246 unsigned long *delalloc_bitmap, u64 start,
1247 u64 *found_start, u32 *found_len)
1248 {
1249 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1250 const u64 folio_start = folio_pos(folio);
1251 const unsigned int bitmap_size = btrfs_blocks_per_folio(fs_info, folio);
1252 unsigned int start_bit;
1253 unsigned int first_zero;
1254 unsigned int first_set;
1255
1256 ASSERT(start >= folio_start && start < folio_start + folio_size(folio));
1257
1258 start_bit = (start - folio_start) >> fs_info->sectorsize_bits;
1259 first_set = find_next_bit(delalloc_bitmap, bitmap_size, start_bit);
1260 if (first_set >= bitmap_size)
1261 return false;
1262
1263 *found_start = folio_start + (first_set << fs_info->sectorsize_bits);
1264 first_zero = find_next_zero_bit(delalloc_bitmap, bitmap_size, first_set);
1265 *found_len = (first_zero - first_set) << fs_info->sectorsize_bits;
1266 return true;
1267 }
1268
1269 /*
1270 * Do all of the delayed allocation setup.
1271 *
1272 * Return >0 if all the dirty blocks are submitted async (compression) or inlined.
1273 * The @folio should no longer be touched (treat it as already unlocked).
1274 *
1275 * Return 0 if there is still dirty block that needs to be submitted through
1276 * extent_writepage_io().
1277 * bio_ctrl->submit_bitmap will indicate which blocks of the folio should be
1278 * submitted, and @folio is still kept locked.
1279 *
1280 * Return <0 if there is any error hit.
1281 * Any allocated ordered extent range covering this folio will be marked
1282 * finished (IOERR), and @folio is still kept locked.
1283 */
writepage_delalloc(struct btrfs_inode * inode,struct folio * folio,struct btrfs_bio_ctrl * bio_ctrl)1284 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1285 struct folio *folio,
1286 struct btrfs_bio_ctrl *bio_ctrl)
1287 {
1288 struct btrfs_fs_info *fs_info = inode_to_fs_info(&inode->vfs_inode);
1289 struct writeback_control *wbc = bio_ctrl->wbc;
1290 const bool is_subpage = btrfs_is_subpage(fs_info, folio);
1291 const u64 page_start = folio_pos(folio);
1292 const u64 page_end = page_start + folio_size(folio) - 1;
1293 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio);
1294 unsigned long delalloc_bitmap = 0;
1295 /*
1296 * Save the last found delalloc end. As the delalloc end can go beyond
1297 * page boundary, thus we cannot rely on subpage bitmap to locate the
1298 * last delalloc end.
1299 */
1300 u64 last_delalloc_end = 0;
1301 /*
1302 * The range end (exclusive) of the last successfully finished delalloc
1303 * range.
1304 * Any range covered by ordered extent must either be manually marked
1305 * finished (error handling), or has IO submitted (and finish the
1306 * ordered extent normally).
1307 *
1308 * This records the end of ordered extent cleanup if we hit an error.
1309 */
1310 u64 last_finished_delalloc_end = page_start;
1311 u64 delalloc_start = page_start;
1312 u64 delalloc_end = page_end;
1313 u64 delalloc_to_write = 0;
1314 int ret = 0;
1315 int bit;
1316
1317 /* Save the dirty bitmap as our submission bitmap will be a subset of it. */
1318 if (btrfs_is_subpage(fs_info, folio)) {
1319 ASSERT(blocks_per_folio > 1);
1320 btrfs_get_subpage_dirty_bitmap(fs_info, folio, &bio_ctrl->submit_bitmap);
1321 } else {
1322 bio_ctrl->submit_bitmap = 1;
1323 }
1324
1325 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, blocks_per_folio) {
1326 u64 start = page_start + (bit << fs_info->sectorsize_bits);
1327
1328 btrfs_folio_set_lock(fs_info, folio, start, fs_info->sectorsize);
1329 }
1330
1331 /* Lock all (subpage) delalloc ranges inside the folio first. */
1332 while (delalloc_start < page_end) {
1333 delalloc_end = page_end;
1334 if (!find_lock_delalloc_range(&inode->vfs_inode, folio,
1335 &delalloc_start, &delalloc_end)) {
1336 delalloc_start = delalloc_end + 1;
1337 continue;
1338 }
1339 set_delalloc_bitmap(folio, &delalloc_bitmap, delalloc_start,
1340 min(delalloc_end, page_end) + 1 - delalloc_start);
1341 last_delalloc_end = delalloc_end;
1342 delalloc_start = delalloc_end + 1;
1343 }
1344 delalloc_start = page_start;
1345
1346 if (!last_delalloc_end)
1347 goto out;
1348
1349 /* Run the delalloc ranges for the above locked ranges. */
1350 while (delalloc_start < page_end) {
1351 u64 found_start;
1352 u32 found_len;
1353 bool found;
1354
1355 if (!is_subpage) {
1356 /*
1357 * For non-subpage case, the found delalloc range must
1358 * cover this folio and there must be only one locked
1359 * delalloc range.
1360 */
1361 found_start = page_start;
1362 found_len = last_delalloc_end + 1 - found_start;
1363 found = true;
1364 } else {
1365 found = find_next_delalloc_bitmap(folio, &delalloc_bitmap,
1366 delalloc_start, &found_start, &found_len);
1367 }
1368 if (!found)
1369 break;
1370 /*
1371 * The subpage range covers the last sector, the delalloc range may
1372 * end beyond the folio boundary, use the saved delalloc_end
1373 * instead.
1374 */
1375 if (found_start + found_len >= page_end)
1376 found_len = last_delalloc_end + 1 - found_start;
1377
1378 if (ret >= 0) {
1379 /*
1380 * Some delalloc range may be created by previous folios.
1381 * Thus we still need to clean up this range during error
1382 * handling.
1383 */
1384 last_finished_delalloc_end = found_start;
1385 /* No errors hit so far, run the current delalloc range. */
1386 ret = btrfs_run_delalloc_range(inode, folio,
1387 found_start,
1388 found_start + found_len - 1,
1389 wbc);
1390 if (ret >= 0)
1391 last_finished_delalloc_end = found_start + found_len;
1392 if (unlikely(ret < 0))
1393 btrfs_err_rl(fs_info,
1394 "failed to run delalloc range, root=%lld ino=%llu folio=%llu submit_bitmap=%*pbl start=%llu len=%u: %d",
1395 btrfs_root_id(inode->root),
1396 btrfs_ino(inode),
1397 folio_pos(folio),
1398 blocks_per_folio,
1399 &bio_ctrl->submit_bitmap,
1400 found_start, found_len, ret);
1401 } else {
1402 /*
1403 * We've hit an error during previous delalloc range,
1404 * have to cleanup the remaining locked ranges.
1405 */
1406 btrfs_unlock_extent(&inode->io_tree, found_start,
1407 found_start + found_len - 1, NULL);
1408 unlock_delalloc_folio(&inode->vfs_inode, folio,
1409 found_start,
1410 found_start + found_len - 1);
1411 }
1412
1413 /*
1414 * We have some ranges that's going to be submitted asynchronously
1415 * (compression or inline). These range have their own control
1416 * on when to unlock the pages. We should not touch them
1417 * anymore, so clear the range from the submission bitmap.
1418 */
1419 if (ret > 0) {
1420 unsigned int start_bit = (found_start - page_start) >>
1421 fs_info->sectorsize_bits;
1422 unsigned int end_bit = (min(page_end + 1, found_start + found_len) -
1423 page_start) >> fs_info->sectorsize_bits;
1424 bitmap_clear(&bio_ctrl->submit_bitmap, start_bit, end_bit - start_bit);
1425 }
1426 /*
1427 * Above btrfs_run_delalloc_range() may have unlocked the folio,
1428 * thus for the last range, we cannot touch the folio anymore.
1429 */
1430 if (found_start + found_len >= last_delalloc_end + 1)
1431 break;
1432
1433 delalloc_start = found_start + found_len;
1434 }
1435 /*
1436 * It's possible we had some ordered extents created before we hit
1437 * an error, cleanup non-async successfully created delalloc ranges.
1438 */
1439 if (unlikely(ret < 0)) {
1440 unsigned int bitmap_size = min(
1441 (last_finished_delalloc_end - page_start) >>
1442 fs_info->sectorsize_bits,
1443 blocks_per_folio);
1444
1445 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, bitmap_size)
1446 btrfs_mark_ordered_io_finished(inode, folio,
1447 page_start + (bit << fs_info->sectorsize_bits),
1448 fs_info->sectorsize, false);
1449 return ret;
1450 }
1451 out:
1452 if (last_delalloc_end)
1453 delalloc_end = last_delalloc_end;
1454 else
1455 delalloc_end = page_end;
1456 /*
1457 * delalloc_end is already one less than the total length, so
1458 * we don't subtract one from PAGE_SIZE.
1459 */
1460 delalloc_to_write +=
1461 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1462
1463 /*
1464 * If all ranges are submitted asynchronously, we just need to account
1465 * for them here.
1466 */
1467 if (bitmap_empty(&bio_ctrl->submit_bitmap, blocks_per_folio)) {
1468 wbc->nr_to_write -= delalloc_to_write;
1469 return 1;
1470 }
1471
1472 if (wbc->nr_to_write < delalloc_to_write) {
1473 int thresh = 8192;
1474
1475 if (delalloc_to_write < thresh * 2)
1476 thresh = delalloc_to_write;
1477 wbc->nr_to_write = min_t(u64, delalloc_to_write,
1478 thresh);
1479 }
1480
1481 return 0;
1482 }
1483
1484 /*
1485 * Return 0 if we have submitted or queued the sector for submission.
1486 * Return <0 for critical errors.
1487 *
1488 * Caller should make sure filepos < i_size and handle filepos >= i_size case.
1489 */
submit_one_sector(struct btrfs_inode * inode,struct folio * folio,u64 filepos,struct btrfs_bio_ctrl * bio_ctrl,loff_t i_size)1490 static int submit_one_sector(struct btrfs_inode *inode,
1491 struct folio *folio,
1492 u64 filepos, struct btrfs_bio_ctrl *bio_ctrl,
1493 loff_t i_size)
1494 {
1495 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1496 struct extent_map *em;
1497 u64 block_start;
1498 u64 disk_bytenr;
1499 u64 extent_offset;
1500 u64 em_end;
1501 const u32 sectorsize = fs_info->sectorsize;
1502
1503 ASSERT(IS_ALIGNED(filepos, sectorsize));
1504
1505 /* @filepos >= i_size case should be handled by the caller. */
1506 ASSERT(filepos < i_size);
1507
1508 em = btrfs_get_extent(inode, NULL, filepos, sectorsize);
1509 if (IS_ERR(em))
1510 return PTR_ERR(em);
1511
1512 extent_offset = filepos - em->start;
1513 em_end = btrfs_extent_map_end(em);
1514 ASSERT(filepos <= em_end);
1515 ASSERT(IS_ALIGNED(em->start, sectorsize));
1516 ASSERT(IS_ALIGNED(em->len, sectorsize));
1517
1518 block_start = btrfs_extent_map_block_start(em);
1519 disk_bytenr = btrfs_extent_map_block_start(em) + extent_offset;
1520
1521 ASSERT(!btrfs_extent_map_is_compressed(em));
1522 ASSERT(block_start != EXTENT_MAP_HOLE);
1523 ASSERT(block_start != EXTENT_MAP_INLINE);
1524
1525 btrfs_free_extent_map(em);
1526 em = NULL;
1527
1528 /*
1529 * Although the PageDirty bit is cleared before entering this
1530 * function, subpage dirty bit is not cleared.
1531 * So clear subpage dirty bit here so next time we won't submit
1532 * a folio for a range already written to disk.
1533 */
1534 btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize);
1535 btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize);
1536 /*
1537 * Above call should set the whole folio with writeback flag, even
1538 * just for a single subpage sector.
1539 * As long as the folio is properly locked and the range is correct,
1540 * we should always get the folio with writeback flag.
1541 */
1542 ASSERT(folio_test_writeback(folio));
1543
1544 submit_extent_folio(bio_ctrl, disk_bytenr, folio,
1545 sectorsize, filepos - folio_pos(folio));
1546 return 0;
1547 }
1548
1549 /*
1550 * Helper for extent_writepage(). This calls the writepage start hooks,
1551 * and does the loop to map the page into extents and bios.
1552 *
1553 * We return 1 if the IO is started and the page is unlocked,
1554 * 0 if all went well (page still locked)
1555 * < 0 if there were errors (page still locked)
1556 */
extent_writepage_io(struct btrfs_inode * inode,struct folio * folio,u64 start,u32 len,struct btrfs_bio_ctrl * bio_ctrl,loff_t i_size)1557 static noinline_for_stack int extent_writepage_io(struct btrfs_inode *inode,
1558 struct folio *folio,
1559 u64 start, u32 len,
1560 struct btrfs_bio_ctrl *bio_ctrl,
1561 loff_t i_size)
1562 {
1563 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1564 unsigned long range_bitmap = 0;
1565 bool submitted_io = false;
1566 bool error = false;
1567 const u64 folio_start = folio_pos(folio);
1568 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio);
1569 u64 cur;
1570 int bit;
1571 int ret = 0;
1572
1573 ASSERT(start >= folio_start &&
1574 start + len <= folio_start + folio_size(folio));
1575
1576 ret = btrfs_writepage_cow_fixup(folio);
1577 if (ret == -EAGAIN) {
1578 /* Fixup worker will requeue */
1579 folio_redirty_for_writepage(bio_ctrl->wbc, folio);
1580 folio_unlock(folio);
1581 return 1;
1582 }
1583 if (ret < 0)
1584 return ret;
1585
1586 for (cur = start; cur < start + len; cur += fs_info->sectorsize)
1587 set_bit((cur - folio_start) >> fs_info->sectorsize_bits, &range_bitmap);
1588 bitmap_and(&bio_ctrl->submit_bitmap, &bio_ctrl->submit_bitmap, &range_bitmap,
1589 blocks_per_folio);
1590
1591 bio_ctrl->end_io_func = end_bbio_data_write;
1592
1593 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, blocks_per_folio) {
1594 cur = folio_pos(folio) + (bit << fs_info->sectorsize_bits);
1595
1596 if (cur >= i_size) {
1597 btrfs_mark_ordered_io_finished(inode, folio, cur,
1598 start + len - cur, true);
1599 /*
1600 * This range is beyond i_size, thus we don't need to
1601 * bother writing back.
1602 * But we still need to clear the dirty subpage bit, or
1603 * the next time the folio gets dirtied, we will try to
1604 * writeback the sectors with subpage dirty bits,
1605 * causing writeback without ordered extent.
1606 */
1607 btrfs_folio_clear_dirty(fs_info, folio, cur,
1608 start + len - cur);
1609 break;
1610 }
1611 ret = submit_one_sector(inode, folio, cur, bio_ctrl, i_size);
1612 if (unlikely(ret < 0)) {
1613 /*
1614 * bio_ctrl may contain a bio crossing several folios.
1615 * Submit it immediately so that the bio has a chance
1616 * to finish normally, other than marked as error.
1617 */
1618 submit_one_bio(bio_ctrl);
1619 /*
1620 * Failed to grab the extent map which should be very rare.
1621 * Since there is no bio submitted to finish the ordered
1622 * extent, we have to manually finish this sector.
1623 */
1624 btrfs_mark_ordered_io_finished(inode, folio, cur,
1625 fs_info->sectorsize, false);
1626 error = true;
1627 continue;
1628 }
1629 submitted_io = true;
1630 }
1631
1632 /*
1633 * If we didn't submitted any sector (>= i_size), folio dirty get
1634 * cleared but PAGECACHE_TAG_DIRTY is not cleared (only cleared
1635 * by folio_start_writeback() if the folio is not dirty).
1636 *
1637 * Here we set writeback and clear for the range. If the full folio
1638 * is no longer dirty then we clear the PAGECACHE_TAG_DIRTY tag.
1639 *
1640 * If we hit any error, the corresponding sector will still be dirty
1641 * thus no need to clear PAGECACHE_TAG_DIRTY.
1642 */
1643 if (!submitted_io && !error) {
1644 btrfs_folio_set_writeback(fs_info, folio, start, len);
1645 btrfs_folio_clear_writeback(fs_info, folio, start, len);
1646 }
1647 return ret;
1648 }
1649
1650 /*
1651 * the writepage semantics are similar to regular writepage. extent
1652 * records are inserted to lock ranges in the tree, and as dirty areas
1653 * are found, they are marked writeback. Then the lock bits are removed
1654 * and the end_io handler clears the writeback ranges
1655 *
1656 * Return 0 if everything goes well.
1657 * Return <0 for error.
1658 */
extent_writepage(struct folio * folio,struct btrfs_bio_ctrl * bio_ctrl)1659 static int extent_writepage(struct folio *folio, struct btrfs_bio_ctrl *bio_ctrl)
1660 {
1661 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
1662 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1663 int ret;
1664 size_t pg_offset;
1665 loff_t i_size = i_size_read(&inode->vfs_inode);
1666 unsigned long end_index = i_size >> PAGE_SHIFT;
1667 const unsigned int blocks_per_folio = btrfs_blocks_per_folio(fs_info, folio);
1668
1669 trace_extent_writepage(folio, &inode->vfs_inode, bio_ctrl->wbc);
1670
1671 WARN_ON(!folio_test_locked(folio));
1672
1673 pg_offset = offset_in_folio(folio, i_size);
1674 if (folio->index > end_index ||
1675 (folio->index == end_index && !pg_offset)) {
1676 folio_invalidate(folio, 0, folio_size(folio));
1677 folio_unlock(folio);
1678 return 0;
1679 }
1680
1681 if (folio_contains(folio, end_index))
1682 folio_zero_range(folio, pg_offset, folio_size(folio) - pg_offset);
1683
1684 /*
1685 * Default to unlock the whole folio.
1686 * The proper bitmap can only be initialized until writepage_delalloc().
1687 */
1688 bio_ctrl->submit_bitmap = (unsigned long)-1;
1689
1690 /*
1691 * If the page is dirty but without private set, it's marked dirty
1692 * without informing the fs.
1693 * Nowadays that is a bug, since the introduction of
1694 * pin_user_pages*().
1695 *
1696 * So here we check if the page has private set to rule out such
1697 * case.
1698 * But we also have a long history of relying on the COW fixup,
1699 * so here we only enable this check for experimental builds until
1700 * we're sure it's safe.
1701 */
1702 if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL) &&
1703 unlikely(!folio_test_private(folio))) {
1704 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
1705 btrfs_err_rl(fs_info,
1706 "root %lld ino %llu folio %llu is marked dirty without notifying the fs",
1707 inode->root->root_key.objectid,
1708 btrfs_ino(inode), folio_pos(folio));
1709 ret = -EUCLEAN;
1710 goto done;
1711 }
1712
1713 ret = set_folio_extent_mapped(folio);
1714 if (ret < 0)
1715 goto done;
1716
1717 ret = writepage_delalloc(inode, folio, bio_ctrl);
1718 if (ret == 1)
1719 return 0;
1720 if (ret)
1721 goto done;
1722
1723 ret = extent_writepage_io(inode, folio, folio_pos(folio),
1724 folio_size(folio), bio_ctrl, i_size);
1725 if (ret == 1)
1726 return 0;
1727 if (ret < 0)
1728 btrfs_err_rl(fs_info,
1729 "failed to submit blocks, root=%lld inode=%llu folio=%llu submit_bitmap=%*pbl: %d",
1730 btrfs_root_id(inode->root), btrfs_ino(inode),
1731 folio_pos(folio), blocks_per_folio,
1732 &bio_ctrl->submit_bitmap, ret);
1733
1734 bio_ctrl->wbc->nr_to_write--;
1735
1736 done:
1737 if (ret < 0)
1738 mapping_set_error(folio->mapping, ret);
1739 /*
1740 * Only unlock ranges that are submitted. As there can be some async
1741 * submitted ranges inside the folio.
1742 */
1743 btrfs_folio_end_lock_bitmap(fs_info, folio, bio_ctrl->submit_bitmap);
1744 ASSERT(ret <= 0);
1745 return ret;
1746 }
1747
1748 /*
1749 * Lock extent buffer status and pages for writeback.
1750 *
1751 * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1752 * extent buffer is not dirty)
1753 * Return %true is the extent buffer is submitted to bio.
1754 */
lock_extent_buffer_for_io(struct extent_buffer * eb,struct writeback_control * wbc)1755 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1756 struct writeback_control *wbc)
1757 {
1758 struct btrfs_fs_info *fs_info = eb->fs_info;
1759 bool ret = false;
1760
1761 btrfs_tree_lock(eb);
1762 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1763 btrfs_tree_unlock(eb);
1764 if (wbc->sync_mode != WB_SYNC_ALL)
1765 return false;
1766 wait_on_extent_buffer_writeback(eb);
1767 btrfs_tree_lock(eb);
1768 }
1769
1770 /*
1771 * We need to do this to prevent races in people who check if the eb is
1772 * under IO since we can end up having no IO bits set for a short period
1773 * of time.
1774 */
1775 spin_lock(&eb->refs_lock);
1776 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1777 XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->sectorsize_bits);
1778 unsigned long flags;
1779
1780 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1781 spin_unlock(&eb->refs_lock);
1782
1783 xas_lock_irqsave(&xas, flags);
1784 xas_load(&xas);
1785 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
1786 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
1787 xas_unlock_irqrestore(&xas, flags);
1788
1789 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1790 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1791 -eb->len,
1792 fs_info->dirty_metadata_batch);
1793 ret = true;
1794 } else {
1795 spin_unlock(&eb->refs_lock);
1796 }
1797 btrfs_tree_unlock(eb);
1798 return ret;
1799 }
1800
set_btree_ioerr(struct extent_buffer * eb)1801 static void set_btree_ioerr(struct extent_buffer *eb)
1802 {
1803 struct btrfs_fs_info *fs_info = eb->fs_info;
1804
1805 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1806
1807 /*
1808 * A read may stumble upon this buffer later, make sure that it gets an
1809 * error and knows there was an error.
1810 */
1811 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1812
1813 /*
1814 * We need to set the mapping with the io error as well because a write
1815 * error will flip the file system readonly, and then syncfs() will
1816 * return a 0 because we are readonly if we don't modify the err seq for
1817 * the superblock.
1818 */
1819 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
1820
1821 /*
1822 * If writeback for a btree extent that doesn't belong to a log tree
1823 * failed, increment the counter transaction->eb_write_errors.
1824 * We do this because while the transaction is running and before it's
1825 * committing (when we call filemap_fdata[write|wait]_range against
1826 * the btree inode), we might have
1827 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1828 * returns an error or an error happens during writeback, when we're
1829 * committing the transaction we wouldn't know about it, since the pages
1830 * can be no longer dirty nor marked anymore for writeback (if a
1831 * subsequent modification to the extent buffer didn't happen before the
1832 * transaction commit), which makes filemap_fdata[write|wait]_range not
1833 * able to find the pages which contain errors at transaction
1834 * commit time. So if this happens we must abort the transaction,
1835 * otherwise we commit a super block with btree roots that point to
1836 * btree nodes/leafs whose content on disk is invalid - either garbage
1837 * or the content of some node/leaf from a past generation that got
1838 * cowed or deleted and is no longer valid.
1839 *
1840 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1841 * not be enough - we need to distinguish between log tree extents vs
1842 * non-log tree extents, and the next filemap_fdatawait_range() call
1843 * will catch and clear such errors in the mapping - and that call might
1844 * be from a log sync and not from a transaction commit. Also, checking
1845 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1846 * not done and would not be reliable - the eb might have been released
1847 * from memory and reading it back again means that flag would not be
1848 * set (since it's a runtime flag, not persisted on disk).
1849 *
1850 * Using the flags below in the btree inode also makes us achieve the
1851 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1852 * writeback for all dirty pages and before filemap_fdatawait_range()
1853 * is called, the writeback for all dirty pages had already finished
1854 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1855 * filemap_fdatawait_range() would return success, as it could not know
1856 * that writeback errors happened (the pages were no longer tagged for
1857 * writeback).
1858 */
1859 switch (eb->log_index) {
1860 case -1:
1861 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1862 break;
1863 case 0:
1864 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1865 break;
1866 case 1:
1867 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
1868 break;
1869 default:
1870 BUG(); /* unexpected, logic error */
1871 }
1872 }
1873
buffer_tree_set_mark(const struct extent_buffer * eb,xa_mark_t mark)1874 static void buffer_tree_set_mark(const struct extent_buffer *eb, xa_mark_t mark)
1875 {
1876 struct btrfs_fs_info *fs_info = eb->fs_info;
1877 XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->sectorsize_bits);
1878 unsigned long flags;
1879
1880 xas_lock_irqsave(&xas, flags);
1881 xas_load(&xas);
1882 xas_set_mark(&xas, mark);
1883 xas_unlock_irqrestore(&xas, flags);
1884 }
1885
buffer_tree_clear_mark(const struct extent_buffer * eb,xa_mark_t mark)1886 static void buffer_tree_clear_mark(const struct extent_buffer *eb, xa_mark_t mark)
1887 {
1888 struct btrfs_fs_info *fs_info = eb->fs_info;
1889 XA_STATE(xas, &fs_info->buffer_tree, eb->start >> fs_info->sectorsize_bits);
1890 unsigned long flags;
1891
1892 xas_lock_irqsave(&xas, flags);
1893 xas_load(&xas);
1894 xas_clear_mark(&xas, mark);
1895 xas_unlock_irqrestore(&xas, flags);
1896 }
1897
buffer_tree_tag_for_writeback(struct btrfs_fs_info * fs_info,unsigned long start,unsigned long end)1898 static void buffer_tree_tag_for_writeback(struct btrfs_fs_info *fs_info,
1899 unsigned long start, unsigned long end)
1900 {
1901 XA_STATE(xas, &fs_info->buffer_tree, start);
1902 unsigned int tagged = 0;
1903 void *eb;
1904
1905 xas_lock_irq(&xas);
1906 xas_for_each_marked(&xas, eb, end, PAGECACHE_TAG_DIRTY) {
1907 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
1908 if (++tagged % XA_CHECK_SCHED)
1909 continue;
1910 xas_pause(&xas);
1911 xas_unlock_irq(&xas);
1912 cond_resched();
1913 xas_lock_irq(&xas);
1914 }
1915 xas_unlock_irq(&xas);
1916 }
1917
1918 struct eb_batch {
1919 unsigned int nr;
1920 unsigned int cur;
1921 struct extent_buffer *ebs[PAGEVEC_SIZE];
1922 };
1923
eb_batch_add(struct eb_batch * batch,struct extent_buffer * eb)1924 static inline bool eb_batch_add(struct eb_batch *batch, struct extent_buffer *eb)
1925 {
1926 batch->ebs[batch->nr++] = eb;
1927 return (batch->nr < PAGEVEC_SIZE);
1928 }
1929
eb_batch_init(struct eb_batch * batch)1930 static inline void eb_batch_init(struct eb_batch *batch)
1931 {
1932 batch->nr = 0;
1933 batch->cur = 0;
1934 }
1935
eb_batch_next(struct eb_batch * batch)1936 static inline struct extent_buffer *eb_batch_next(struct eb_batch *batch)
1937 {
1938 if (batch->cur >= batch->nr)
1939 return NULL;
1940 return batch->ebs[batch->cur++];
1941 }
1942
eb_batch_release(struct eb_batch * batch)1943 static inline void eb_batch_release(struct eb_batch *batch)
1944 {
1945 for (unsigned int i = 0; i < batch->nr; i++)
1946 free_extent_buffer(batch->ebs[i]);
1947 eb_batch_init(batch);
1948 }
1949
find_get_eb(struct xa_state * xas,unsigned long max,xa_mark_t mark)1950 static inline struct extent_buffer *find_get_eb(struct xa_state *xas, unsigned long max,
1951 xa_mark_t mark)
1952 {
1953 struct extent_buffer *eb;
1954
1955 retry:
1956 eb = xas_find_marked(xas, max, mark);
1957
1958 if (xas_retry(xas, eb))
1959 goto retry;
1960
1961 if (!eb)
1962 return NULL;
1963
1964 if (!atomic_inc_not_zero(&eb->refs)) {
1965 xas_reset(xas);
1966 goto retry;
1967 }
1968
1969 if (unlikely(eb != xas_reload(xas))) {
1970 free_extent_buffer(eb);
1971 xas_reset(xas);
1972 goto retry;
1973 }
1974
1975 return eb;
1976 }
1977
buffer_tree_get_ebs_tag(struct btrfs_fs_info * fs_info,unsigned long * start,unsigned long end,xa_mark_t tag,struct eb_batch * batch)1978 static unsigned int buffer_tree_get_ebs_tag(struct btrfs_fs_info *fs_info,
1979 unsigned long *start,
1980 unsigned long end, xa_mark_t tag,
1981 struct eb_batch *batch)
1982 {
1983 XA_STATE(xas, &fs_info->buffer_tree, *start);
1984 struct extent_buffer *eb;
1985
1986 rcu_read_lock();
1987 while ((eb = find_get_eb(&xas, end, tag)) != NULL) {
1988 if (!eb_batch_add(batch, eb)) {
1989 *start = ((eb->start + eb->len) >> fs_info->sectorsize_bits);
1990 goto out;
1991 }
1992 }
1993 if (end == ULONG_MAX)
1994 *start = ULONG_MAX;
1995 else
1996 *start = end + 1;
1997 out:
1998 rcu_read_unlock();
1999
2000 return batch->nr;
2001 }
2002
2003 /*
2004 * The endio specific version which won't touch any unsafe spinlock in endio
2005 * context.
2006 */
find_extent_buffer_nolock(struct btrfs_fs_info * fs_info,u64 start)2007 static struct extent_buffer *find_extent_buffer_nolock(
2008 struct btrfs_fs_info *fs_info, u64 start)
2009 {
2010 struct extent_buffer *eb;
2011 unsigned long index = (start >> fs_info->sectorsize_bits);
2012
2013 rcu_read_lock();
2014 eb = xa_load(&fs_info->buffer_tree, index);
2015 if (eb && !atomic_inc_not_zero(&eb->refs))
2016 eb = NULL;
2017 rcu_read_unlock();
2018 return eb;
2019 }
2020
end_bbio_meta_write(struct btrfs_bio * bbio)2021 static void end_bbio_meta_write(struct btrfs_bio *bbio)
2022 {
2023 struct extent_buffer *eb = bbio->private;
2024 struct folio_iter fi;
2025
2026 if (bbio->bio.bi_status != BLK_STS_OK)
2027 set_btree_ioerr(eb);
2028
2029 bio_for_each_folio_all(fi, &bbio->bio) {
2030 btrfs_meta_folio_clear_writeback(fi.folio, eb);
2031 }
2032
2033 buffer_tree_clear_mark(eb, PAGECACHE_TAG_WRITEBACK);
2034 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
2035 smp_mb__after_atomic();
2036 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
2037
2038 bio_put(&bbio->bio);
2039 }
2040
prepare_eb_write(struct extent_buffer * eb)2041 static void prepare_eb_write(struct extent_buffer *eb)
2042 {
2043 u32 nritems;
2044 unsigned long start;
2045 unsigned long end;
2046
2047 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
2048
2049 /* Set btree blocks beyond nritems with 0 to avoid stale content */
2050 nritems = btrfs_header_nritems(eb);
2051 if (btrfs_header_level(eb) > 0) {
2052 end = btrfs_node_key_ptr_offset(eb, nritems);
2053 memzero_extent_buffer(eb, end, eb->len - end);
2054 } else {
2055 /*
2056 * Leaf:
2057 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
2058 */
2059 start = btrfs_item_nr_offset(eb, nritems);
2060 end = btrfs_item_nr_offset(eb, 0);
2061 if (nritems == 0)
2062 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
2063 else
2064 end += btrfs_item_offset(eb, nritems - 1);
2065 memzero_extent_buffer(eb, start, end - start);
2066 }
2067 }
2068
write_one_eb(struct extent_buffer * eb,struct writeback_control * wbc)2069 static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
2070 struct writeback_control *wbc)
2071 {
2072 struct btrfs_fs_info *fs_info = eb->fs_info;
2073 struct btrfs_bio *bbio;
2074
2075 prepare_eb_write(eb);
2076
2077 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
2078 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
2079 eb->fs_info, end_bbio_meta_write, eb);
2080 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
2081 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
2082 wbc_init_bio(wbc, &bbio->bio);
2083 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
2084 bbio->file_offset = eb->start;
2085 for (int i = 0; i < num_extent_folios(eb); i++) {
2086 struct folio *folio = eb->folios[i];
2087 u64 range_start = max_t(u64, eb->start, folio_pos(folio));
2088 u32 range_len = min_t(u64, folio_pos(folio) + folio_size(folio),
2089 eb->start + eb->len) - range_start;
2090
2091 folio_lock(folio);
2092 btrfs_meta_folio_clear_dirty(folio, eb);
2093 btrfs_meta_folio_set_writeback(folio, eb);
2094 if (!folio_test_dirty(folio))
2095 wbc->nr_to_write -= folio_nr_pages(folio);
2096 bio_add_folio_nofail(&bbio->bio, folio, range_len,
2097 offset_in_folio(folio, range_start));
2098 wbc_account_cgroup_owner(wbc, folio, range_len);
2099 folio_unlock(folio);
2100 }
2101 btrfs_submit_bbio(bbio, 0);
2102 }
2103
2104 /*
2105 * Wait for all eb writeback in the given range to finish.
2106 *
2107 * @fs_info: The fs_info for this file system.
2108 * @start: The offset of the range to start waiting on writeback.
2109 * @end: The end of the range, inclusive. This is meant to be used in
2110 * conjuction with wait_marked_extents, so this will usually be
2111 * the_next_eb->start - 1.
2112 */
btrfs_btree_wait_writeback_range(struct btrfs_fs_info * fs_info,u64 start,u64 end)2113 void btrfs_btree_wait_writeback_range(struct btrfs_fs_info *fs_info, u64 start,
2114 u64 end)
2115 {
2116 struct eb_batch batch;
2117 unsigned long start_index = (start >> fs_info->sectorsize_bits);
2118 unsigned long end_index = (end >> fs_info->sectorsize_bits);
2119
2120 eb_batch_init(&batch);
2121 while (start_index <= end_index) {
2122 struct extent_buffer *eb;
2123 unsigned int nr_ebs;
2124
2125 nr_ebs = buffer_tree_get_ebs_tag(fs_info, &start_index, end_index,
2126 PAGECACHE_TAG_WRITEBACK, &batch);
2127 if (!nr_ebs)
2128 break;
2129
2130 while ((eb = eb_batch_next(&batch)) != NULL)
2131 wait_on_extent_buffer_writeback(eb);
2132 eb_batch_release(&batch);
2133 cond_resched();
2134 }
2135 }
2136
btree_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc)2137 int btree_write_cache_pages(struct address_space *mapping,
2138 struct writeback_control *wbc)
2139 {
2140 struct btrfs_eb_write_context ctx = { .wbc = wbc };
2141 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
2142 int ret = 0;
2143 int done = 0;
2144 int nr_to_write_done = 0;
2145 struct eb_batch batch;
2146 unsigned int nr_ebs;
2147 unsigned long index;
2148 unsigned long end;
2149 int scanned = 0;
2150 xa_mark_t tag;
2151
2152 eb_batch_init(&batch);
2153 if (wbc->range_cyclic) {
2154 index = ((mapping->writeback_index << PAGE_SHIFT) >> fs_info->sectorsize_bits);
2155 end = -1;
2156
2157 /*
2158 * Start from the beginning does not need to cycle over the
2159 * range, mark it as scanned.
2160 */
2161 scanned = (index == 0);
2162 } else {
2163 index = (wbc->range_start >> fs_info->sectorsize_bits);
2164 end = (wbc->range_end >> fs_info->sectorsize_bits);
2165
2166 scanned = 1;
2167 }
2168 if (wbc->sync_mode == WB_SYNC_ALL)
2169 tag = PAGECACHE_TAG_TOWRITE;
2170 else
2171 tag = PAGECACHE_TAG_DIRTY;
2172 btrfs_zoned_meta_io_lock(fs_info);
2173 retry:
2174 if (wbc->sync_mode == WB_SYNC_ALL)
2175 buffer_tree_tag_for_writeback(fs_info, index, end);
2176 while (!done && !nr_to_write_done && (index <= end) &&
2177 (nr_ebs = buffer_tree_get_ebs_tag(fs_info, &index, end, tag, &batch))) {
2178 struct extent_buffer *eb;
2179
2180 while ((eb = eb_batch_next(&batch)) != NULL) {
2181 ctx.eb = eb;
2182
2183 ret = btrfs_check_meta_write_pointer(eb->fs_info, &ctx);
2184 if (ret) {
2185 if (ret == -EBUSY)
2186 ret = 0;
2187
2188 if (ret) {
2189 done = 1;
2190 break;
2191 }
2192 continue;
2193 }
2194
2195 if (!lock_extent_buffer_for_io(eb, wbc))
2196 continue;
2197
2198 /* Implies write in zoned mode. */
2199 if (ctx.zoned_bg) {
2200 /* Mark the last eb in the block group. */
2201 btrfs_schedule_zone_finish_bg(ctx.zoned_bg, eb);
2202 ctx.zoned_bg->meta_write_pointer += eb->len;
2203 }
2204 write_one_eb(eb, wbc);
2205 }
2206 nr_to_write_done = (wbc->nr_to_write <= 0);
2207 eb_batch_release(&batch);
2208 cond_resched();
2209 }
2210 if (!scanned && !done) {
2211 /*
2212 * We hit the last page and there is more work to be done: wrap
2213 * back to the start of the file
2214 */
2215 scanned = 1;
2216 index = 0;
2217 goto retry;
2218 }
2219 /*
2220 * If something went wrong, don't allow any metadata write bio to be
2221 * submitted.
2222 *
2223 * This would prevent use-after-free if we had dirty pages not
2224 * cleaned up, which can still happen by fuzzed images.
2225 *
2226 * - Bad extent tree
2227 * Allowing existing tree block to be allocated for other trees.
2228 *
2229 * - Log tree operations
2230 * Exiting tree blocks get allocated to log tree, bumps its
2231 * generation, then get cleaned in tree re-balance.
2232 * Such tree block will not be written back, since it's clean,
2233 * thus no WRITTEN flag set.
2234 * And after log writes back, this tree block is not traced by
2235 * any dirty extent_io_tree.
2236 *
2237 * - Offending tree block gets re-dirtied from its original owner
2238 * Since it has bumped generation, no WRITTEN flag, it can be
2239 * reused without COWing. This tree block will not be traced
2240 * by btrfs_transaction::dirty_pages.
2241 *
2242 * Now such dirty tree block will not be cleaned by any dirty
2243 * extent io tree. Thus we don't want to submit such wild eb
2244 * if the fs already has error.
2245 *
2246 * We can get ret > 0 from submit_extent_folio() indicating how many ebs
2247 * were submitted. Reset it to 0 to avoid false alerts for the caller.
2248 */
2249 if (ret > 0)
2250 ret = 0;
2251 if (!ret && BTRFS_FS_ERROR(fs_info))
2252 ret = -EROFS;
2253
2254 if (ctx.zoned_bg)
2255 btrfs_put_block_group(ctx.zoned_bg);
2256 btrfs_zoned_meta_io_unlock(fs_info);
2257 return ret;
2258 }
2259
2260 /*
2261 * Walk the list of dirty pages of the given address space and write all of them.
2262 *
2263 * @mapping: address space structure to write
2264 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2265 * @bio_ctrl: holds context for the write, namely the bio
2266 *
2267 * If a page is already under I/O, write_cache_pages() skips it, even
2268 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2269 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2270 * and msync() need to guarantee that all the data which was dirty at the time
2271 * the call was made get new I/O started against them. If wbc->sync_mode is
2272 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2273 * existing IO to complete.
2274 */
extent_write_cache_pages(struct address_space * mapping,struct btrfs_bio_ctrl * bio_ctrl)2275 static int extent_write_cache_pages(struct address_space *mapping,
2276 struct btrfs_bio_ctrl *bio_ctrl)
2277 {
2278 struct writeback_control *wbc = bio_ctrl->wbc;
2279 struct inode *inode = mapping->host;
2280 int ret = 0;
2281 int done = 0;
2282 int nr_to_write_done = 0;
2283 struct folio_batch fbatch;
2284 unsigned int nr_folios;
2285 pgoff_t index;
2286 pgoff_t end; /* Inclusive */
2287 pgoff_t done_index;
2288 int range_whole = 0;
2289 int scanned = 0;
2290 xa_mark_t tag;
2291
2292 /*
2293 * We have to hold onto the inode so that ordered extents can do their
2294 * work when the IO finishes. The alternative to this is failing to add
2295 * an ordered extent if the igrab() fails there and that is a huge pain
2296 * to deal with, so instead just hold onto the inode throughout the
2297 * writepages operation. If it fails here we are freeing up the inode
2298 * anyway and we'd rather not waste our time writing out stuff that is
2299 * going to be truncated anyway.
2300 */
2301 if (!igrab(inode))
2302 return 0;
2303
2304 folio_batch_init(&fbatch);
2305 if (wbc->range_cyclic) {
2306 index = mapping->writeback_index; /* Start from prev offset */
2307 end = -1;
2308 /*
2309 * Start from the beginning does not need to cycle over the
2310 * range, mark it as scanned.
2311 */
2312 scanned = (index == 0);
2313 } else {
2314 index = wbc->range_start >> PAGE_SHIFT;
2315 end = wbc->range_end >> PAGE_SHIFT;
2316 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2317 range_whole = 1;
2318 scanned = 1;
2319 }
2320
2321 /*
2322 * We do the tagged writepage as long as the snapshot flush bit is set
2323 * and we are the first one who do the filemap_flush() on this inode.
2324 *
2325 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2326 * not race in and drop the bit.
2327 */
2328 if (range_whole && wbc->nr_to_write == LONG_MAX &&
2329 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2330 &BTRFS_I(inode)->runtime_flags))
2331 wbc->tagged_writepages = 1;
2332
2333 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2334 tag = PAGECACHE_TAG_TOWRITE;
2335 else
2336 tag = PAGECACHE_TAG_DIRTY;
2337 retry:
2338 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2339 tag_pages_for_writeback(mapping, index, end);
2340 done_index = index;
2341 while (!done && !nr_to_write_done && (index <= end) &&
2342 (nr_folios = filemap_get_folios_tag(mapping, &index,
2343 end, tag, &fbatch))) {
2344 unsigned i;
2345
2346 for (i = 0; i < nr_folios; i++) {
2347 struct folio *folio = fbatch.folios[i];
2348
2349 done_index = folio_next_index(folio);
2350 /*
2351 * At this point we hold neither the i_pages lock nor
2352 * the folio lock: the folio may be truncated or
2353 * invalidated (changing folio->mapping to NULL).
2354 */
2355 if (!folio_trylock(folio)) {
2356 submit_write_bio(bio_ctrl, 0);
2357 folio_lock(folio);
2358 }
2359
2360 if (unlikely(folio->mapping != mapping)) {
2361 folio_unlock(folio);
2362 continue;
2363 }
2364
2365 if (!folio_test_dirty(folio)) {
2366 /* Someone wrote it for us. */
2367 folio_unlock(folio);
2368 continue;
2369 }
2370
2371 /*
2372 * For subpage case, compression can lead to mixed
2373 * writeback and dirty flags, e.g:
2374 * 0 32K 64K 96K 128K
2375 * | |//////||/////| |//|
2376 *
2377 * In above case, [32K, 96K) is asynchronously submitted
2378 * for compression, and [124K, 128K) needs to be written back.
2379 *
2380 * If we didn't wait wrtiteback for page 64K, [128K, 128K)
2381 * won't be submitted as the page still has writeback flag
2382 * and will be skipped in the next check.
2383 *
2384 * This mixed writeback and dirty case is only possible for
2385 * subpage case.
2386 *
2387 * TODO: Remove this check after migrating compression to
2388 * regular submission.
2389 */
2390 if (wbc->sync_mode != WB_SYNC_NONE ||
2391 btrfs_is_subpage(inode_to_fs_info(inode), folio)) {
2392 if (folio_test_writeback(folio))
2393 submit_write_bio(bio_ctrl, 0);
2394 folio_wait_writeback(folio);
2395 }
2396
2397 if (folio_test_writeback(folio) ||
2398 !folio_clear_dirty_for_io(folio)) {
2399 folio_unlock(folio);
2400 continue;
2401 }
2402
2403 ret = extent_writepage(folio, bio_ctrl);
2404 if (ret < 0) {
2405 done = 1;
2406 break;
2407 }
2408
2409 /*
2410 * The filesystem may choose to bump up nr_to_write.
2411 * We have to make sure to honor the new nr_to_write
2412 * at any time.
2413 */
2414 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2415 wbc->nr_to_write <= 0);
2416 }
2417 folio_batch_release(&fbatch);
2418 cond_resched();
2419 }
2420 if (!scanned && !done) {
2421 /*
2422 * We hit the last page and there is more work to be done: wrap
2423 * back to the start of the file
2424 */
2425 scanned = 1;
2426 index = 0;
2427
2428 /*
2429 * If we're looping we could run into a page that is locked by a
2430 * writer and that writer could be waiting on writeback for a
2431 * page in our current bio, and thus deadlock, so flush the
2432 * write bio here.
2433 */
2434 submit_write_bio(bio_ctrl, 0);
2435 goto retry;
2436 }
2437
2438 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2439 mapping->writeback_index = done_index;
2440
2441 btrfs_add_delayed_iput(BTRFS_I(inode));
2442 return ret;
2443 }
2444
2445 /*
2446 * Submit the pages in the range to bio for call sites which delalloc range has
2447 * already been ran (aka, ordered extent inserted) and all pages are still
2448 * locked.
2449 */
extent_write_locked_range(struct inode * inode,const struct folio * locked_folio,u64 start,u64 end,struct writeback_control * wbc,bool pages_dirty)2450 void extent_write_locked_range(struct inode *inode, const struct folio *locked_folio,
2451 u64 start, u64 end, struct writeback_control *wbc,
2452 bool pages_dirty)
2453 {
2454 bool found_error = false;
2455 int ret = 0;
2456 struct address_space *mapping = inode->i_mapping;
2457 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2458 const u32 sectorsize = fs_info->sectorsize;
2459 loff_t i_size = i_size_read(inode);
2460 u64 cur = start;
2461 struct btrfs_bio_ctrl bio_ctrl = {
2462 .wbc = wbc,
2463 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2464 };
2465
2466 if (wbc->no_cgroup_owner)
2467 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2468
2469 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
2470
2471 while (cur <= end) {
2472 u64 cur_end;
2473 u32 cur_len;
2474 struct folio *folio;
2475
2476 folio = filemap_get_folio(mapping, cur >> PAGE_SHIFT);
2477
2478 /*
2479 * This shouldn't happen, the pages are pinned and locked, this
2480 * code is just in case, but shouldn't actually be run.
2481 */
2482 if (IS_ERR(folio)) {
2483 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2484 cur_len = cur_end + 1 - cur;
2485 btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL,
2486 cur, cur_len, false);
2487 mapping_set_error(mapping, PTR_ERR(folio));
2488 cur = cur_end;
2489 continue;
2490 }
2491
2492 cur_end = min_t(u64, folio_pos(folio) + folio_size(folio) - 1, end);
2493 cur_len = cur_end + 1 - cur;
2494
2495 ASSERT(folio_test_locked(folio));
2496 if (pages_dirty && folio != locked_folio)
2497 ASSERT(folio_test_dirty(folio));
2498
2499 /*
2500 * Set the submission bitmap to submit all sectors.
2501 * extent_writepage_io() will do the truncation correctly.
2502 */
2503 bio_ctrl.submit_bitmap = (unsigned long)-1;
2504 ret = extent_writepage_io(BTRFS_I(inode), folio, cur, cur_len,
2505 &bio_ctrl, i_size);
2506 if (ret == 1)
2507 goto next_page;
2508
2509 if (ret)
2510 mapping_set_error(mapping, ret);
2511 btrfs_folio_end_lock(fs_info, folio, cur, cur_len);
2512 if (ret < 0)
2513 found_error = true;
2514 next_page:
2515 folio_put(folio);
2516 cur = cur_end + 1;
2517 }
2518
2519 submit_write_bio(&bio_ctrl, found_error ? ret : 0);
2520 }
2521
btrfs_writepages(struct address_space * mapping,struct writeback_control * wbc)2522 int btrfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
2523 {
2524 struct inode *inode = mapping->host;
2525 int ret = 0;
2526 struct btrfs_bio_ctrl bio_ctrl = {
2527 .wbc = wbc,
2528 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2529 };
2530
2531 /*
2532 * Allow only a single thread to do the reloc work in zoned mode to
2533 * protect the write pointer updates.
2534 */
2535 btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2536 ret = extent_write_cache_pages(mapping, &bio_ctrl);
2537 submit_write_bio(&bio_ctrl, ret);
2538 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2539 return ret;
2540 }
2541
btrfs_readahead(struct readahead_control * rac)2542 void btrfs_readahead(struct readahead_control *rac)
2543 {
2544 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD };
2545 struct folio *folio;
2546 struct btrfs_inode *inode = BTRFS_I(rac->mapping->host);
2547 const u64 start = readahead_pos(rac);
2548 const u64 end = start + readahead_length(rac) - 1;
2549 struct extent_state *cached_state = NULL;
2550 struct extent_map *em_cached = NULL;
2551 u64 prev_em_start = (u64)-1;
2552
2553 lock_extents_for_read(inode, start, end, &cached_state);
2554
2555 while ((folio = readahead_folio(rac)) != NULL)
2556 btrfs_do_readpage(folio, &em_cached, &bio_ctrl, &prev_em_start);
2557
2558 btrfs_unlock_extent(&inode->io_tree, start, end, &cached_state);
2559
2560 if (em_cached)
2561 btrfs_free_extent_map(em_cached);
2562 submit_one_bio(&bio_ctrl);
2563 }
2564
2565 /*
2566 * basic invalidate_folio code, this waits on any locked or writeback
2567 * ranges corresponding to the folio, and then deletes any extent state
2568 * records from the tree
2569 */
extent_invalidate_folio(struct extent_io_tree * tree,struct folio * folio,size_t offset)2570 int extent_invalidate_folio(struct extent_io_tree *tree,
2571 struct folio *folio, size_t offset)
2572 {
2573 struct extent_state *cached_state = NULL;
2574 u64 start = folio_pos(folio);
2575 u64 end = start + folio_size(folio) - 1;
2576 size_t blocksize = folio_to_fs_info(folio)->sectorsize;
2577
2578 /* This function is only called for the btree inode */
2579 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2580
2581 start += ALIGN(offset, blocksize);
2582 if (start > end)
2583 return 0;
2584
2585 btrfs_lock_extent(tree, start, end, &cached_state);
2586 folio_wait_writeback(folio);
2587
2588 /*
2589 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2590 * so here we only need to unlock the extent range to free any
2591 * existing extent state.
2592 */
2593 btrfs_unlock_extent(tree, start, end, &cached_state);
2594 return 0;
2595 }
2596
2597 /*
2598 * A helper for struct address_space_operations::release_folio, this tests for
2599 * areas of the folio that are locked or under IO and drops the related state
2600 * bits if it is safe to drop the folio.
2601 */
try_release_extent_state(struct extent_io_tree * tree,struct folio * folio)2602 static bool try_release_extent_state(struct extent_io_tree *tree,
2603 struct folio *folio)
2604 {
2605 struct extent_state *cached_state = NULL;
2606 u64 start = folio_pos(folio);
2607 u64 end = start + folio_size(folio) - 1;
2608 u32 range_bits;
2609 u32 clear_bits;
2610 bool ret = false;
2611 int ret2;
2612
2613 btrfs_get_range_bits(tree, start, end, &range_bits, &cached_state);
2614
2615 /*
2616 * We can release the folio if it's locked only for ordered extent
2617 * completion, since that doesn't require using the folio.
2618 */
2619 if ((range_bits & EXTENT_LOCKED) &&
2620 !(range_bits & EXTENT_FINISHING_ORDERED))
2621 goto out;
2622
2623 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW |
2624 EXTENT_CTLBITS | EXTENT_QGROUP_RESERVED |
2625 EXTENT_FINISHING_ORDERED);
2626 /*
2627 * At this point we can safely clear everything except the locked,
2628 * nodatasum, delalloc new and finishing ordered bits. The delalloc new
2629 * bit will be cleared by ordered extent completion.
2630 */
2631 ret2 = btrfs_clear_extent_bit(tree, start, end, clear_bits, &cached_state);
2632 /*
2633 * If clear_extent_bit failed for enomem reasons, we can't allow the
2634 * release to continue.
2635 */
2636 if (ret2 == 0)
2637 ret = true;
2638 out:
2639 btrfs_free_extent_state(cached_state);
2640
2641 return ret;
2642 }
2643
2644 /*
2645 * a helper for release_folio. As long as there are no locked extents
2646 * in the range corresponding to the page, both state records and extent
2647 * map records are removed
2648 */
try_release_extent_mapping(struct folio * folio,gfp_t mask)2649 bool try_release_extent_mapping(struct folio *folio, gfp_t mask)
2650 {
2651 u64 start = folio_pos(folio);
2652 u64 end = start + folio_size(folio) - 1;
2653 struct btrfs_inode *inode = folio_to_inode(folio);
2654 struct extent_io_tree *io_tree = &inode->io_tree;
2655
2656 while (start <= end) {
2657 const u64 cur_gen = btrfs_get_fs_generation(inode->root->fs_info);
2658 const u64 len = end - start + 1;
2659 struct extent_map_tree *extent_tree = &inode->extent_tree;
2660 struct extent_map *em;
2661
2662 write_lock(&extent_tree->lock);
2663 em = btrfs_lookup_extent_mapping(extent_tree, start, len);
2664 if (!em) {
2665 write_unlock(&extent_tree->lock);
2666 break;
2667 }
2668 if ((em->flags & EXTENT_FLAG_PINNED) || em->start != start) {
2669 write_unlock(&extent_tree->lock);
2670 btrfs_free_extent_map(em);
2671 break;
2672 }
2673 if (btrfs_test_range_bit_exists(io_tree, em->start,
2674 btrfs_extent_map_end(em) - 1,
2675 EXTENT_LOCKED))
2676 goto next;
2677 /*
2678 * If it's not in the list of modified extents, used by a fast
2679 * fsync, we can remove it. If it's being logged we can safely
2680 * remove it since fsync took an extra reference on the em.
2681 */
2682 if (list_empty(&em->list) || (em->flags & EXTENT_FLAG_LOGGING))
2683 goto remove_em;
2684 /*
2685 * If it's in the list of modified extents, remove it only if
2686 * its generation is older then the current one, in which case
2687 * we don't need it for a fast fsync. Otherwise don't remove it,
2688 * we could be racing with an ongoing fast fsync that could miss
2689 * the new extent.
2690 */
2691 if (em->generation >= cur_gen)
2692 goto next;
2693 remove_em:
2694 /*
2695 * We only remove extent maps that are not in the list of
2696 * modified extents or that are in the list but with a
2697 * generation lower then the current generation, so there is no
2698 * need to set the full fsync flag on the inode (it hurts the
2699 * fsync performance for workloads with a data size that exceeds
2700 * or is close to the system's memory).
2701 */
2702 btrfs_remove_extent_mapping(inode, em);
2703 /* Once for the inode's extent map tree. */
2704 btrfs_free_extent_map(em);
2705 next:
2706 start = btrfs_extent_map_end(em);
2707 write_unlock(&extent_tree->lock);
2708
2709 /* Once for us, for the lookup_extent_mapping() reference. */
2710 btrfs_free_extent_map(em);
2711
2712 if (need_resched()) {
2713 /*
2714 * If we need to resched but we can't block just exit
2715 * and leave any remaining extent maps.
2716 */
2717 if (!gfpflags_allow_blocking(mask))
2718 break;
2719
2720 cond_resched();
2721 }
2722 }
2723 return try_release_extent_state(io_tree, folio);
2724 }
2725
extent_buffer_under_io(const struct extent_buffer * eb)2726 static int extent_buffer_under_io(const struct extent_buffer *eb)
2727 {
2728 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
2729 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
2730 }
2731
folio_range_has_eb(struct folio * folio)2732 static bool folio_range_has_eb(struct folio *folio)
2733 {
2734 struct btrfs_subpage *subpage;
2735
2736 lockdep_assert_held(&folio->mapping->i_private_lock);
2737
2738 if (folio_test_private(folio)) {
2739 subpage = folio_get_private(folio);
2740 if (atomic_read(&subpage->eb_refs))
2741 return true;
2742 }
2743 return false;
2744 }
2745
detach_extent_buffer_folio(const struct extent_buffer * eb,struct folio * folio)2746 static void detach_extent_buffer_folio(const struct extent_buffer *eb, struct folio *folio)
2747 {
2748 struct btrfs_fs_info *fs_info = eb->fs_info;
2749 struct address_space *mapping = folio->mapping;
2750 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
2751
2752 /*
2753 * For mapped eb, we're going to change the folio private, which should
2754 * be done under the i_private_lock.
2755 */
2756 if (mapped)
2757 spin_lock(&mapping->i_private_lock);
2758
2759 if (!folio_test_private(folio)) {
2760 if (mapped)
2761 spin_unlock(&mapping->i_private_lock);
2762 return;
2763 }
2764
2765 if (!btrfs_meta_is_subpage(fs_info)) {
2766 /*
2767 * We do this since we'll remove the pages after we've removed
2768 * the eb from the xarray, so we could race and have this page
2769 * now attached to the new eb. So only clear folio if it's
2770 * still connected to this eb.
2771 */
2772 if (folio_test_private(folio) && folio_get_private(folio) == eb) {
2773 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
2774 BUG_ON(folio_test_dirty(folio));
2775 BUG_ON(folio_test_writeback(folio));
2776 /* We need to make sure we haven't be attached to a new eb. */
2777 folio_detach_private(folio);
2778 }
2779 if (mapped)
2780 spin_unlock(&mapping->i_private_lock);
2781 return;
2782 }
2783
2784 /*
2785 * For subpage, we can have dummy eb with folio private attached. In
2786 * this case, we can directly detach the private as such folio is only
2787 * attached to one dummy eb, no sharing.
2788 */
2789 if (!mapped) {
2790 btrfs_detach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA);
2791 return;
2792 }
2793
2794 btrfs_folio_dec_eb_refs(fs_info, folio);
2795
2796 /*
2797 * We can only detach the folio private if there are no other ebs in the
2798 * page range and no unfinished IO.
2799 */
2800 if (!folio_range_has_eb(folio))
2801 btrfs_detach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA);
2802
2803 spin_unlock(&mapping->i_private_lock);
2804 }
2805
2806 /* Release all folios attached to the extent buffer */
btrfs_release_extent_buffer_folios(const struct extent_buffer * eb)2807 static void btrfs_release_extent_buffer_folios(const struct extent_buffer *eb)
2808 {
2809 ASSERT(!extent_buffer_under_io(eb));
2810
2811 for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) {
2812 struct folio *folio = eb->folios[i];
2813
2814 if (!folio)
2815 continue;
2816
2817 detach_extent_buffer_folio(eb, folio);
2818 }
2819 }
2820
2821 /*
2822 * Helper for releasing the extent buffer.
2823 */
btrfs_release_extent_buffer(struct extent_buffer * eb)2824 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
2825 {
2826 btrfs_release_extent_buffer_folios(eb);
2827 btrfs_leak_debug_del_eb(eb);
2828 kmem_cache_free(extent_buffer_cache, eb);
2829 }
2830
__alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)2831 static struct extent_buffer *__alloc_extent_buffer(struct btrfs_fs_info *fs_info,
2832 u64 start)
2833 {
2834 struct extent_buffer *eb = NULL;
2835
2836 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
2837 eb->start = start;
2838 eb->len = fs_info->nodesize;
2839 eb->fs_info = fs_info;
2840 init_rwsem(&eb->lock);
2841
2842 btrfs_leak_debug_add_eb(eb);
2843
2844 spin_lock_init(&eb->refs_lock);
2845 atomic_set(&eb->refs, 1);
2846
2847 ASSERT(eb->len <= BTRFS_MAX_METADATA_BLOCKSIZE);
2848
2849 return eb;
2850 }
2851
2852 /*
2853 * For use in eb allocation error cleanup paths, as btrfs_release_extent_buffer()
2854 * does not call folio_put(), and we need to set the folios to NULL so that
2855 * btrfs_release_extent_buffer() will not detach them a second time.
2856 */
cleanup_extent_buffer_folios(struct extent_buffer * eb)2857 static void cleanup_extent_buffer_folios(struct extent_buffer *eb)
2858 {
2859 const int num_folios = num_extent_folios(eb);
2860
2861 /* We canont use num_extent_folios() as loop bound as eb->folios changes. */
2862 for (int i = 0; i < num_folios; i++) {
2863 ASSERT(eb->folios[i]);
2864 detach_extent_buffer_folio(eb, eb->folios[i]);
2865 folio_put(eb->folios[i]);
2866 eb->folios[i] = NULL;
2867 }
2868 }
2869
btrfs_clone_extent_buffer(const struct extent_buffer * src)2870 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
2871 {
2872 struct extent_buffer *new;
2873 int num_folios;
2874 int ret;
2875
2876 new = __alloc_extent_buffer(src->fs_info, src->start);
2877 if (new == NULL)
2878 return NULL;
2879
2880 /*
2881 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
2882 * btrfs_release_extent_buffer() have different behavior for
2883 * UNMAPPED subpage extent buffer.
2884 */
2885 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
2886
2887 ret = alloc_eb_folio_array(new, false);
2888 if (ret)
2889 goto release_eb;
2890
2891 ASSERT(num_extent_folios(src) == num_extent_folios(new),
2892 "%d != %d", num_extent_folios(src), num_extent_folios(new));
2893 /* Explicitly use the cached num_extent value from now on. */
2894 num_folios = num_extent_folios(src);
2895 for (int i = 0; i < num_folios; i++) {
2896 struct folio *folio = new->folios[i];
2897
2898 ret = attach_extent_buffer_folio(new, folio, NULL);
2899 if (ret < 0)
2900 goto cleanup_folios;
2901 WARN_ON(folio_test_dirty(folio));
2902 }
2903 for (int i = 0; i < num_folios; i++)
2904 folio_put(new->folios[i]);
2905
2906 copy_extent_buffer_full(new, src);
2907 set_extent_buffer_uptodate(new);
2908
2909 return new;
2910
2911 cleanup_folios:
2912 cleanup_extent_buffer_folios(new);
2913 release_eb:
2914 btrfs_release_extent_buffer(new);
2915 return NULL;
2916 }
2917
alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)2918 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
2919 u64 start)
2920 {
2921 struct extent_buffer *eb;
2922 int ret;
2923
2924 eb = __alloc_extent_buffer(fs_info, start);
2925 if (!eb)
2926 return NULL;
2927
2928 ret = alloc_eb_folio_array(eb, false);
2929 if (ret)
2930 goto release_eb;
2931
2932 for (int i = 0; i < num_extent_folios(eb); i++) {
2933 ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL);
2934 if (ret < 0)
2935 goto cleanup_folios;
2936 }
2937 for (int i = 0; i < num_extent_folios(eb); i++)
2938 folio_put(eb->folios[i]);
2939
2940 set_extent_buffer_uptodate(eb);
2941 btrfs_set_header_nritems(eb, 0);
2942 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
2943
2944 return eb;
2945
2946 cleanup_folios:
2947 cleanup_extent_buffer_folios(eb);
2948 release_eb:
2949 btrfs_release_extent_buffer(eb);
2950 return NULL;
2951 }
2952
check_buffer_tree_ref(struct extent_buffer * eb)2953 static void check_buffer_tree_ref(struct extent_buffer *eb)
2954 {
2955 int refs;
2956 /*
2957 * The TREE_REF bit is first set when the extent_buffer is added to the
2958 * xarray. It is also reset, if unset, when a new reference is created
2959 * by find_extent_buffer.
2960 *
2961 * It is only cleared in two cases: freeing the last non-tree
2962 * reference to the extent_buffer when its STALE bit is set or
2963 * calling release_folio when the tree reference is the only reference.
2964 *
2965 * In both cases, care is taken to ensure that the extent_buffer's
2966 * pages are not under io. However, release_folio can be concurrently
2967 * called with creating new references, which is prone to race
2968 * conditions between the calls to check_buffer_tree_ref in those
2969 * codepaths and clearing TREE_REF in try_release_extent_buffer.
2970 *
2971 * The actual lifetime of the extent_buffer in the xarray is adequately
2972 * protected by the refcount, but the TREE_REF bit and its corresponding
2973 * reference are not. To protect against this class of races, we call
2974 * check_buffer_tree_ref() from the code paths which trigger io. Note that
2975 * once io is initiated, TREE_REF can no longer be cleared, so that is
2976 * the moment at which any such race is best fixed.
2977 */
2978 refs = atomic_read(&eb->refs);
2979 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
2980 return;
2981
2982 spin_lock(&eb->refs_lock);
2983 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
2984 atomic_inc(&eb->refs);
2985 spin_unlock(&eb->refs_lock);
2986 }
2987
mark_extent_buffer_accessed(struct extent_buffer * eb)2988 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
2989 {
2990 check_buffer_tree_ref(eb);
2991
2992 for (int i = 0; i < num_extent_folios(eb); i++)
2993 folio_mark_accessed(eb->folios[i]);
2994 }
2995
find_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)2996 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
2997 u64 start)
2998 {
2999 struct extent_buffer *eb;
3000
3001 eb = find_extent_buffer_nolock(fs_info, start);
3002 if (!eb)
3003 return NULL;
3004 /*
3005 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
3006 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
3007 * another task running free_extent_buffer() might have seen that flag
3008 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
3009 * writeback flags not set) and it's still in the tree (flag
3010 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
3011 * decrementing the extent buffer's reference count twice. So here we
3012 * could race and increment the eb's reference count, clear its stale
3013 * flag, mark it as dirty and drop our reference before the other task
3014 * finishes executing free_extent_buffer, which would later result in
3015 * an attempt to free an extent buffer that is dirty.
3016 */
3017 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
3018 spin_lock(&eb->refs_lock);
3019 spin_unlock(&eb->refs_lock);
3020 }
3021 mark_extent_buffer_accessed(eb);
3022 return eb;
3023 }
3024
alloc_test_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)3025 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
3026 u64 start)
3027 {
3028 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3029 struct extent_buffer *eb, *exists = NULL;
3030 int ret;
3031
3032 eb = find_extent_buffer(fs_info, start);
3033 if (eb)
3034 return eb;
3035 eb = alloc_dummy_extent_buffer(fs_info, start);
3036 if (!eb)
3037 return ERR_PTR(-ENOMEM);
3038 eb->fs_info = fs_info;
3039 again:
3040 xa_lock_irq(&fs_info->buffer_tree);
3041 exists = __xa_cmpxchg(&fs_info->buffer_tree, start >> fs_info->sectorsize_bits,
3042 NULL, eb, GFP_NOFS);
3043 if (xa_is_err(exists)) {
3044 ret = xa_err(exists);
3045 xa_unlock_irq(&fs_info->buffer_tree);
3046 btrfs_release_extent_buffer(eb);
3047 return ERR_PTR(ret);
3048 }
3049 if (exists) {
3050 if (!atomic_inc_not_zero(&exists->refs)) {
3051 /* The extent buffer is being freed, retry. */
3052 xa_unlock_irq(&fs_info->buffer_tree);
3053 goto again;
3054 }
3055 xa_unlock_irq(&fs_info->buffer_tree);
3056 btrfs_release_extent_buffer(eb);
3057 return exists;
3058 }
3059 xa_unlock_irq(&fs_info->buffer_tree);
3060 check_buffer_tree_ref(eb);
3061
3062 return eb;
3063 #else
3064 /* Stub to avoid linker error when compiled with optimizations turned off. */
3065 return NULL;
3066 #endif
3067 }
3068
grab_extent_buffer(struct btrfs_fs_info * fs_info,struct folio * folio)3069 static struct extent_buffer *grab_extent_buffer(struct btrfs_fs_info *fs_info,
3070 struct folio *folio)
3071 {
3072 struct extent_buffer *exists;
3073
3074 lockdep_assert_held(&folio->mapping->i_private_lock);
3075
3076 /*
3077 * For subpage case, we completely rely on xarray to ensure we don't try
3078 * to insert two ebs for the same bytenr. So here we always return NULL
3079 * and just continue.
3080 */
3081 if (btrfs_meta_is_subpage(fs_info))
3082 return NULL;
3083
3084 /* Page not yet attached to an extent buffer */
3085 if (!folio_test_private(folio))
3086 return NULL;
3087
3088 /*
3089 * We could have already allocated an eb for this folio and attached one
3090 * so lets see if we can get a ref on the existing eb, and if we can we
3091 * know it's good and we can just return that one, else we know we can
3092 * just overwrite folio private.
3093 */
3094 exists = folio_get_private(folio);
3095 if (atomic_inc_not_zero(&exists->refs))
3096 return exists;
3097
3098 WARN_ON(folio_test_dirty(folio));
3099 folio_detach_private(folio);
3100 return NULL;
3101 }
3102
3103 /*
3104 * Validate alignment constraints of eb at logical address @start.
3105 */
check_eb_alignment(struct btrfs_fs_info * fs_info,u64 start)3106 static bool check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
3107 {
3108 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
3109 btrfs_err(fs_info, "bad tree block start %llu", start);
3110 return true;
3111 }
3112
3113 if (fs_info->nodesize < PAGE_SIZE && !IS_ALIGNED(start, fs_info->nodesize)) {
3114 btrfs_err(fs_info,
3115 "tree block is not nodesize aligned, start %llu nodesize %u",
3116 start, fs_info->nodesize);
3117 return true;
3118 }
3119 if (fs_info->nodesize >= PAGE_SIZE &&
3120 !PAGE_ALIGNED(start)) {
3121 btrfs_err(fs_info,
3122 "tree block is not page aligned, start %llu nodesize %u",
3123 start, fs_info->nodesize);
3124 return true;
3125 }
3126 if (!IS_ALIGNED(start, fs_info->nodesize) &&
3127 !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) {
3128 btrfs_warn(fs_info,
3129 "tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance",
3130 start, fs_info->nodesize);
3131 }
3132 return false;
3133 }
3134
3135 /*
3136 * Return 0 if eb->folios[i] is attached to btree inode successfully.
3137 * Return >0 if there is already another extent buffer for the range,
3138 * and @found_eb_ret would be updated.
3139 * Return -EAGAIN if the filemap has an existing folio but with different size
3140 * than @eb.
3141 * The caller needs to free the existing folios and retry using the same order.
3142 */
attach_eb_folio_to_filemap(struct extent_buffer * eb,int i,struct btrfs_subpage * prealloc,struct extent_buffer ** found_eb_ret)3143 static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i,
3144 struct btrfs_subpage *prealloc,
3145 struct extent_buffer **found_eb_ret)
3146 {
3147
3148 struct btrfs_fs_info *fs_info = eb->fs_info;
3149 struct address_space *mapping = fs_info->btree_inode->i_mapping;
3150 const unsigned long index = eb->start >> PAGE_SHIFT;
3151 struct folio *existing_folio;
3152 int ret;
3153
3154 ASSERT(found_eb_ret);
3155
3156 /* Caller should ensure the folio exists. */
3157 ASSERT(eb->folios[i]);
3158
3159 retry:
3160 existing_folio = NULL;
3161 ret = filemap_add_folio(mapping, eb->folios[i], index + i,
3162 GFP_NOFS | __GFP_NOFAIL);
3163 if (!ret)
3164 goto finish;
3165
3166 existing_folio = filemap_lock_folio(mapping, index + i);
3167 /* The page cache only exists for a very short time, just retry. */
3168 if (IS_ERR(existing_folio))
3169 goto retry;
3170
3171 /* For now, we should only have single-page folios for btree inode. */
3172 ASSERT(folio_nr_pages(existing_folio) == 1);
3173
3174 if (folio_size(existing_folio) != eb->folio_size) {
3175 folio_unlock(existing_folio);
3176 folio_put(existing_folio);
3177 return -EAGAIN;
3178 }
3179
3180 finish:
3181 spin_lock(&mapping->i_private_lock);
3182 if (existing_folio && btrfs_meta_is_subpage(fs_info)) {
3183 /* We're going to reuse the existing page, can drop our folio now. */
3184 __free_page(folio_page(eb->folios[i], 0));
3185 eb->folios[i] = existing_folio;
3186 } else if (existing_folio) {
3187 struct extent_buffer *existing_eb;
3188
3189 existing_eb = grab_extent_buffer(fs_info, existing_folio);
3190 if (existing_eb) {
3191 /* The extent buffer still exists, we can use it directly. */
3192 *found_eb_ret = existing_eb;
3193 spin_unlock(&mapping->i_private_lock);
3194 folio_unlock(existing_folio);
3195 folio_put(existing_folio);
3196 return 1;
3197 }
3198 /* The extent buffer no longer exists, we can reuse the folio. */
3199 __free_page(folio_page(eb->folios[i], 0));
3200 eb->folios[i] = existing_folio;
3201 }
3202 eb->folio_size = folio_size(eb->folios[i]);
3203 eb->folio_shift = folio_shift(eb->folios[i]);
3204 /* Should not fail, as we have preallocated the memory. */
3205 ret = attach_extent_buffer_folio(eb, eb->folios[i], prealloc);
3206 ASSERT(!ret);
3207 /*
3208 * To inform we have an extra eb under allocation, so that
3209 * detach_extent_buffer_page() won't release the folio private when the
3210 * eb hasn't been inserted into the xarray yet.
3211 *
3212 * The ref will be decreased when the eb releases the page, in
3213 * detach_extent_buffer_page(). Thus needs no special handling in the
3214 * error path.
3215 */
3216 btrfs_folio_inc_eb_refs(fs_info, eb->folios[i]);
3217 spin_unlock(&mapping->i_private_lock);
3218 return 0;
3219 }
3220
alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,u64 owner_root,int level)3221 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3222 u64 start, u64 owner_root, int level)
3223 {
3224 int attached = 0;
3225 struct extent_buffer *eb;
3226 struct extent_buffer *existing_eb = NULL;
3227 struct btrfs_subpage *prealloc = NULL;
3228 u64 lockdep_owner = owner_root;
3229 bool page_contig = true;
3230 int uptodate = 1;
3231 int ret;
3232
3233 if (check_eb_alignment(fs_info, start))
3234 return ERR_PTR(-EINVAL);
3235
3236 #if BITS_PER_LONG == 32
3237 if (start >= MAX_LFS_FILESIZE) {
3238 btrfs_err_rl(fs_info,
3239 "extent buffer %llu is beyond 32bit page cache limit", start);
3240 btrfs_err_32bit_limit(fs_info);
3241 return ERR_PTR(-EOVERFLOW);
3242 }
3243 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3244 btrfs_warn_32bit_limit(fs_info);
3245 #endif
3246
3247 eb = find_extent_buffer(fs_info, start);
3248 if (eb)
3249 return eb;
3250
3251 eb = __alloc_extent_buffer(fs_info, start);
3252 if (!eb)
3253 return ERR_PTR(-ENOMEM);
3254
3255 /*
3256 * The reloc trees are just snapshots, so we need them to appear to be
3257 * just like any other fs tree WRT lockdep.
3258 */
3259 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3260 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3261
3262 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3263
3264 /*
3265 * Preallocate folio private for subpage case, so that we won't
3266 * allocate memory with i_private_lock nor page lock hold.
3267 *
3268 * The memory will be freed by attach_extent_buffer_page() or freed
3269 * manually if we exit earlier.
3270 */
3271 if (btrfs_meta_is_subpage(fs_info)) {
3272 prealloc = btrfs_alloc_subpage(fs_info, PAGE_SIZE, BTRFS_SUBPAGE_METADATA);
3273 if (IS_ERR(prealloc)) {
3274 ret = PTR_ERR(prealloc);
3275 goto out;
3276 }
3277 }
3278
3279 reallocate:
3280 /* Allocate all pages first. */
3281 ret = alloc_eb_folio_array(eb, true);
3282 if (ret < 0) {
3283 btrfs_free_subpage(prealloc);
3284 goto out;
3285 }
3286
3287 /* Attach all pages to the filemap. */
3288 for (int i = 0; i < num_extent_folios(eb); i++) {
3289 struct folio *folio;
3290
3291 ret = attach_eb_folio_to_filemap(eb, i, prealloc, &existing_eb);
3292 if (ret > 0) {
3293 ASSERT(existing_eb);
3294 goto out;
3295 }
3296
3297 /*
3298 * TODO: Special handling for a corner case where the order of
3299 * folios mismatch between the new eb and filemap.
3300 *
3301 * This happens when:
3302 *
3303 * - the new eb is using higher order folio
3304 *
3305 * - the filemap is still using 0-order folios for the range
3306 * This can happen at the previous eb allocation, and we don't
3307 * have higher order folio for the call.
3308 *
3309 * - the existing eb has already been freed
3310 *
3311 * In this case, we have to free the existing folios first, and
3312 * re-allocate using the same order.
3313 * Thankfully this is not going to happen yet, as we're still
3314 * using 0-order folios.
3315 */
3316 if (unlikely(ret == -EAGAIN)) {
3317 DEBUG_WARN("folio order mismatch between new eb and filemap");
3318 goto reallocate;
3319 }
3320 attached++;
3321
3322 /*
3323 * Only after attach_eb_folio_to_filemap(), eb->folios[] is
3324 * reliable, as we may choose to reuse the existing page cache
3325 * and free the allocated page.
3326 */
3327 folio = eb->folios[i];
3328 WARN_ON(btrfs_meta_folio_test_dirty(folio, eb));
3329
3330 /*
3331 * Check if the current page is physically contiguous with previous eb
3332 * page.
3333 * At this stage, either we allocated a large folio, thus @i
3334 * would only be 0, or we fall back to per-page allocation.
3335 */
3336 if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0))
3337 page_contig = false;
3338
3339 if (!btrfs_meta_folio_test_uptodate(folio, eb))
3340 uptodate = 0;
3341
3342 /*
3343 * We can't unlock the pages just yet since the extent buffer
3344 * hasn't been properly inserted into the xarray, this opens a
3345 * race with btree_release_folio() which can free a page while we
3346 * are still filling in all pages for the buffer and we could crash.
3347 */
3348 }
3349 if (uptodate)
3350 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3351 /* All pages are physically contiguous, can skip cross page handling. */
3352 if (page_contig)
3353 eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start);
3354 again:
3355 xa_lock_irq(&fs_info->buffer_tree);
3356 existing_eb = __xa_cmpxchg(&fs_info->buffer_tree,
3357 start >> fs_info->sectorsize_bits, NULL, eb,
3358 GFP_NOFS);
3359 if (xa_is_err(existing_eb)) {
3360 ret = xa_err(existing_eb);
3361 xa_unlock_irq(&fs_info->buffer_tree);
3362 goto out;
3363 }
3364 if (existing_eb) {
3365 if (!atomic_inc_not_zero(&existing_eb->refs)) {
3366 xa_unlock_irq(&fs_info->buffer_tree);
3367 goto again;
3368 }
3369 xa_unlock_irq(&fs_info->buffer_tree);
3370 goto out;
3371 }
3372 xa_unlock_irq(&fs_info->buffer_tree);
3373
3374 /* add one reference for the tree */
3375 check_buffer_tree_ref(eb);
3376
3377 /*
3378 * Now it's safe to unlock the pages because any calls to
3379 * btree_release_folio will correctly detect that a page belongs to a
3380 * live buffer and won't free them prematurely.
3381 */
3382 for (int i = 0; i < num_extent_folios(eb); i++) {
3383 folio_unlock(eb->folios[i]);
3384 /*
3385 * A folio that has been added to an address_space mapping
3386 * should not continue holding the refcount from its original
3387 * allocation indefinitely.
3388 */
3389 folio_put(eb->folios[i]);
3390 }
3391 return eb;
3392
3393 out:
3394 WARN_ON(!atomic_dec_and_test(&eb->refs));
3395
3396 /*
3397 * Any attached folios need to be detached before we unlock them. This
3398 * is because when we're inserting our new folios into the mapping, and
3399 * then attaching our eb to that folio. If we fail to insert our folio
3400 * we'll lookup the folio for that index, and grab that EB. We do not
3401 * want that to grab this eb, as we're getting ready to free it. So we
3402 * have to detach it first and then unlock it.
3403 *
3404 * Note: the bounds is num_extent_pages() as we need to go through all slots.
3405 */
3406 for (int i = 0; i < num_extent_pages(eb); i++) {
3407 struct folio *folio = eb->folios[i];
3408
3409 if (i < attached) {
3410 ASSERT(folio);
3411 detach_extent_buffer_folio(eb, folio);
3412 folio_unlock(folio);
3413 } else if (!folio) {
3414 continue;
3415 }
3416
3417 folio_put(folio);
3418 eb->folios[i] = NULL;
3419 }
3420 btrfs_release_extent_buffer(eb);
3421 if (ret < 0)
3422 return ERR_PTR(ret);
3423 ASSERT(existing_eb);
3424 return existing_eb;
3425 }
3426
btrfs_release_extent_buffer_rcu(struct rcu_head * head)3427 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3428 {
3429 struct extent_buffer *eb =
3430 container_of(head, struct extent_buffer, rcu_head);
3431
3432 kmem_cache_free(extent_buffer_cache, eb);
3433 }
3434
release_extent_buffer(struct extent_buffer * eb)3435 static int release_extent_buffer(struct extent_buffer *eb)
3436 __releases(&eb->refs_lock)
3437 {
3438 lockdep_assert_held(&eb->refs_lock);
3439
3440 WARN_ON(atomic_read(&eb->refs) == 0);
3441 if (atomic_dec_and_test(&eb->refs)) {
3442 struct btrfs_fs_info *fs_info = eb->fs_info;
3443
3444 spin_unlock(&eb->refs_lock);
3445
3446 /*
3447 * We're erasing, theoretically there will be no allocations, so
3448 * just use GFP_ATOMIC.
3449 *
3450 * We use cmpxchg instead of erase because we do not know if
3451 * this eb is actually in the tree or not, we could be cleaning
3452 * up an eb that we allocated but never inserted into the tree.
3453 * Thus use cmpxchg to remove it from the tree if it is there,
3454 * or leave the other entry if this isn't in the tree.
3455 *
3456 * The documentation says that putting a NULL value is the same
3457 * as erase as long as XA_FLAGS_ALLOC is not set, which it isn't
3458 * in this case.
3459 */
3460 xa_cmpxchg_irq(&fs_info->buffer_tree,
3461 eb->start >> fs_info->sectorsize_bits, eb, NULL,
3462 GFP_ATOMIC);
3463
3464 btrfs_leak_debug_del_eb(eb);
3465 /* Should be safe to release folios at this point. */
3466 btrfs_release_extent_buffer_folios(eb);
3467 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3468 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
3469 kmem_cache_free(extent_buffer_cache, eb);
3470 return 1;
3471 }
3472 #endif
3473 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3474 return 1;
3475 }
3476 spin_unlock(&eb->refs_lock);
3477
3478 return 0;
3479 }
3480
free_extent_buffer(struct extent_buffer * eb)3481 void free_extent_buffer(struct extent_buffer *eb)
3482 {
3483 int refs;
3484 if (!eb)
3485 return;
3486
3487 refs = atomic_read(&eb->refs);
3488 while (1) {
3489 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
3490 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
3491 refs == 1))
3492 break;
3493 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
3494 return;
3495 }
3496
3497 spin_lock(&eb->refs_lock);
3498 if (atomic_read(&eb->refs) == 2 &&
3499 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
3500 !extent_buffer_under_io(eb) &&
3501 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3502 atomic_dec(&eb->refs);
3503
3504 /*
3505 * I know this is terrible, but it's temporary until we stop tracking
3506 * the uptodate bits and such for the extent buffers.
3507 */
3508 release_extent_buffer(eb);
3509 }
3510
free_extent_buffer_stale(struct extent_buffer * eb)3511 void free_extent_buffer_stale(struct extent_buffer *eb)
3512 {
3513 if (!eb)
3514 return;
3515
3516 spin_lock(&eb->refs_lock);
3517 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
3518
3519 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3520 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3521 atomic_dec(&eb->refs);
3522 release_extent_buffer(eb);
3523 }
3524
btree_clear_folio_dirty_tag(struct folio * folio)3525 static void btree_clear_folio_dirty_tag(struct folio *folio)
3526 {
3527 ASSERT(!folio_test_dirty(folio));
3528 ASSERT(folio_test_locked(folio));
3529 xa_lock_irq(&folio->mapping->i_pages);
3530 if (!folio_test_dirty(folio))
3531 __xa_clear_mark(&folio->mapping->i_pages, folio->index,
3532 PAGECACHE_TAG_DIRTY);
3533 xa_unlock_irq(&folio->mapping->i_pages);
3534 }
3535
btrfs_clear_buffer_dirty(struct btrfs_trans_handle * trans,struct extent_buffer * eb)3536 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
3537 struct extent_buffer *eb)
3538 {
3539 struct btrfs_fs_info *fs_info = eb->fs_info;
3540
3541 btrfs_assert_tree_write_locked(eb);
3542
3543 if (trans && btrfs_header_generation(eb) != trans->transid)
3544 return;
3545
3546 /*
3547 * Instead of clearing the dirty flag off of the buffer, mark it as
3548 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve
3549 * write-ordering in zoned mode, without the need to later re-dirty
3550 * the extent_buffer.
3551 *
3552 * The actual zeroout of the buffer will happen later in
3553 * btree_csum_one_bio.
3554 */
3555 if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3556 set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags);
3557 return;
3558 }
3559
3560 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
3561 return;
3562
3563 buffer_tree_clear_mark(eb, PAGECACHE_TAG_DIRTY);
3564 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
3565 fs_info->dirty_metadata_batch);
3566
3567 for (int i = 0; i < num_extent_folios(eb); i++) {
3568 struct folio *folio = eb->folios[i];
3569 bool last;
3570
3571 if (!folio_test_dirty(folio))
3572 continue;
3573 folio_lock(folio);
3574 last = btrfs_meta_folio_clear_and_test_dirty(folio, eb);
3575 if (last)
3576 btree_clear_folio_dirty_tag(folio);
3577 folio_unlock(folio);
3578 }
3579 WARN_ON(atomic_read(&eb->refs) == 0);
3580 }
3581
set_extent_buffer_dirty(struct extent_buffer * eb)3582 void set_extent_buffer_dirty(struct extent_buffer *eb)
3583 {
3584 bool was_dirty;
3585
3586 check_buffer_tree_ref(eb);
3587
3588 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3589
3590 WARN_ON(atomic_read(&eb->refs) == 0);
3591 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
3592 WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags));
3593
3594 if (!was_dirty) {
3595 bool subpage = btrfs_meta_is_subpage(eb->fs_info);
3596
3597 /*
3598 * For subpage case, we can have other extent buffers in the
3599 * same page, and in clear_extent_buffer_dirty() we
3600 * have to clear page dirty without subpage lock held.
3601 * This can cause race where our page gets dirty cleared after
3602 * we just set it.
3603 *
3604 * Thankfully, clear_extent_buffer_dirty() has locked
3605 * its page for other reasons, we can use page lock to prevent
3606 * the above race.
3607 */
3608 if (subpage)
3609 folio_lock(eb->folios[0]);
3610 for (int i = 0; i < num_extent_folios(eb); i++)
3611 btrfs_meta_folio_set_dirty(eb->folios[i], eb);
3612 buffer_tree_set_mark(eb, PAGECACHE_TAG_DIRTY);
3613 if (subpage)
3614 folio_unlock(eb->folios[0]);
3615 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
3616 eb->len,
3617 eb->fs_info->dirty_metadata_batch);
3618 }
3619 #ifdef CONFIG_BTRFS_DEBUG
3620 for (int i = 0; i < num_extent_folios(eb); i++)
3621 ASSERT(folio_test_dirty(eb->folios[i]));
3622 #endif
3623 }
3624
clear_extent_buffer_uptodate(struct extent_buffer * eb)3625 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
3626 {
3627
3628 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3629 for (int i = 0; i < num_extent_folios(eb); i++) {
3630 struct folio *folio = eb->folios[i];
3631
3632 if (!folio)
3633 continue;
3634
3635 btrfs_meta_folio_clear_uptodate(folio, eb);
3636 }
3637 }
3638
set_extent_buffer_uptodate(struct extent_buffer * eb)3639 void set_extent_buffer_uptodate(struct extent_buffer *eb)
3640 {
3641
3642 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3643 for (int i = 0; i < num_extent_folios(eb); i++)
3644 btrfs_meta_folio_set_uptodate(eb->folios[i], eb);
3645 }
3646
clear_extent_buffer_reading(struct extent_buffer * eb)3647 static void clear_extent_buffer_reading(struct extent_buffer *eb)
3648 {
3649 clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
3650 smp_mb__after_atomic();
3651 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
3652 }
3653
end_bbio_meta_read(struct btrfs_bio * bbio)3654 static void end_bbio_meta_read(struct btrfs_bio *bbio)
3655 {
3656 struct extent_buffer *eb = bbio->private;
3657 bool uptodate = !bbio->bio.bi_status;
3658
3659 /*
3660 * If the extent buffer is marked UPTODATE before the read operation
3661 * completes, other calls to read_extent_buffer_pages() will return
3662 * early without waiting for the read to finish, causing data races.
3663 */
3664 WARN_ON(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags));
3665
3666 eb->read_mirror = bbio->mirror_num;
3667
3668 if (uptodate &&
3669 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
3670 uptodate = false;
3671
3672 if (uptodate)
3673 set_extent_buffer_uptodate(eb);
3674 else
3675 clear_extent_buffer_uptodate(eb);
3676
3677 clear_extent_buffer_reading(eb);
3678 free_extent_buffer(eb);
3679
3680 bio_put(&bbio->bio);
3681 }
3682
read_extent_buffer_pages_nowait(struct extent_buffer * eb,int mirror_num,const struct btrfs_tree_parent_check * check)3683 int read_extent_buffer_pages_nowait(struct extent_buffer *eb, int mirror_num,
3684 const struct btrfs_tree_parent_check *check)
3685 {
3686 struct btrfs_bio *bbio;
3687
3688 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3689 return 0;
3690
3691 /*
3692 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
3693 * operation, which could potentially still be in flight. In this case
3694 * we simply want to return an error.
3695 */
3696 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
3697 return -EIO;
3698
3699 /* Someone else is already reading the buffer, just wait for it. */
3700 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
3701 return 0;
3702
3703 /*
3704 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above
3705 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have
3706 * started and finished reading the same eb. In this case, UPTODATE
3707 * will now be set, and we shouldn't read it in again.
3708 */
3709 if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) {
3710 clear_extent_buffer_reading(eb);
3711 return 0;
3712 }
3713
3714 eb->read_mirror = 0;
3715 check_buffer_tree_ref(eb);
3716 atomic_inc(&eb->refs);
3717
3718 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
3719 REQ_OP_READ | REQ_META, eb->fs_info,
3720 end_bbio_meta_read, eb);
3721 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
3722 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
3723 bbio->file_offset = eb->start;
3724 memcpy(&bbio->parent_check, check, sizeof(*check));
3725 for (int i = 0; i < num_extent_folios(eb); i++) {
3726 struct folio *folio = eb->folios[i];
3727 u64 range_start = max_t(u64, eb->start, folio_pos(folio));
3728 u32 range_len = min_t(u64, folio_pos(folio) + folio_size(folio),
3729 eb->start + eb->len) - range_start;
3730
3731 bio_add_folio_nofail(&bbio->bio, folio, range_len,
3732 offset_in_folio(folio, range_start));
3733 }
3734 btrfs_submit_bbio(bbio, mirror_num);
3735 return 0;
3736 }
3737
read_extent_buffer_pages(struct extent_buffer * eb,int mirror_num,const struct btrfs_tree_parent_check * check)3738 int read_extent_buffer_pages(struct extent_buffer *eb, int mirror_num,
3739 const struct btrfs_tree_parent_check *check)
3740 {
3741 int ret;
3742
3743 ret = read_extent_buffer_pages_nowait(eb, mirror_num, check);
3744 if (ret < 0)
3745 return ret;
3746
3747 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
3748 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3749 return -EIO;
3750 return 0;
3751 }
3752
report_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)3753 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
3754 unsigned long len)
3755 {
3756 btrfs_warn(eb->fs_info,
3757 "access to eb bytenr %llu len %u out of range start %lu len %lu",
3758 eb->start, eb->len, start, len);
3759 DEBUG_WARN();
3760
3761 return true;
3762 }
3763
3764 /*
3765 * Check if the [start, start + len) range is valid before reading/writing
3766 * the eb.
3767 * NOTE: @start and @len are offset inside the eb, not logical address.
3768 *
3769 * Caller should not touch the dst/src memory if this function returns error.
3770 */
check_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)3771 static inline int check_eb_range(const struct extent_buffer *eb,
3772 unsigned long start, unsigned long len)
3773 {
3774 unsigned long offset;
3775
3776 /* start, start + len should not go beyond eb->len nor overflow */
3777 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
3778 return report_eb_range(eb, start, len);
3779
3780 return false;
3781 }
3782
read_extent_buffer(const struct extent_buffer * eb,void * dstv,unsigned long start,unsigned long len)3783 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
3784 unsigned long start, unsigned long len)
3785 {
3786 const int unit_size = eb->folio_size;
3787 size_t cur;
3788 size_t offset;
3789 char *dst = (char *)dstv;
3790 unsigned long i = get_eb_folio_index(eb, start);
3791
3792 if (check_eb_range(eb, start, len)) {
3793 /*
3794 * Invalid range hit, reset the memory, so callers won't get
3795 * some random garbage for their uninitialized memory.
3796 */
3797 memset(dstv, 0, len);
3798 return;
3799 }
3800
3801 if (eb->addr) {
3802 memcpy(dstv, eb->addr + start, len);
3803 return;
3804 }
3805
3806 offset = get_eb_offset_in_folio(eb, start);
3807
3808 while (len > 0) {
3809 char *kaddr;
3810
3811 cur = min(len, unit_size - offset);
3812 kaddr = folio_address(eb->folios[i]);
3813 memcpy(dst, kaddr + offset, cur);
3814
3815 dst += cur;
3816 len -= cur;
3817 offset = 0;
3818 i++;
3819 }
3820 }
3821
read_extent_buffer_to_user_nofault(const struct extent_buffer * eb,void __user * dstv,unsigned long start,unsigned long len)3822 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
3823 void __user *dstv,
3824 unsigned long start, unsigned long len)
3825 {
3826 const int unit_size = eb->folio_size;
3827 size_t cur;
3828 size_t offset;
3829 char __user *dst = (char __user *)dstv;
3830 unsigned long i = get_eb_folio_index(eb, start);
3831 int ret = 0;
3832
3833 WARN_ON(start > eb->len);
3834 WARN_ON(start + len > eb->start + eb->len);
3835
3836 if (eb->addr) {
3837 if (copy_to_user_nofault(dstv, eb->addr + start, len))
3838 ret = -EFAULT;
3839 return ret;
3840 }
3841
3842 offset = get_eb_offset_in_folio(eb, start);
3843
3844 while (len > 0) {
3845 char *kaddr;
3846
3847 cur = min(len, unit_size - offset);
3848 kaddr = folio_address(eb->folios[i]);
3849 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
3850 ret = -EFAULT;
3851 break;
3852 }
3853
3854 dst += cur;
3855 len -= cur;
3856 offset = 0;
3857 i++;
3858 }
3859
3860 return ret;
3861 }
3862
memcmp_extent_buffer(const struct extent_buffer * eb,const void * ptrv,unsigned long start,unsigned long len)3863 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
3864 unsigned long start, unsigned long len)
3865 {
3866 const int unit_size = eb->folio_size;
3867 size_t cur;
3868 size_t offset;
3869 char *kaddr;
3870 char *ptr = (char *)ptrv;
3871 unsigned long i = get_eb_folio_index(eb, start);
3872 int ret = 0;
3873
3874 if (check_eb_range(eb, start, len))
3875 return -EINVAL;
3876
3877 if (eb->addr)
3878 return memcmp(ptrv, eb->addr + start, len);
3879
3880 offset = get_eb_offset_in_folio(eb, start);
3881
3882 while (len > 0) {
3883 cur = min(len, unit_size - offset);
3884 kaddr = folio_address(eb->folios[i]);
3885 ret = memcmp(ptr, kaddr + offset, cur);
3886 if (ret)
3887 break;
3888
3889 ptr += cur;
3890 len -= cur;
3891 offset = 0;
3892 i++;
3893 }
3894 return ret;
3895 }
3896
3897 /*
3898 * Check that the extent buffer is uptodate.
3899 *
3900 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
3901 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
3902 */
assert_eb_folio_uptodate(const struct extent_buffer * eb,int i)3903 static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i)
3904 {
3905 struct btrfs_fs_info *fs_info = eb->fs_info;
3906 struct folio *folio = eb->folios[i];
3907
3908 ASSERT(folio);
3909
3910 /*
3911 * If we are using the commit root we could potentially clear a page
3912 * Uptodate while we're using the extent buffer that we've previously
3913 * looked up. We don't want to complain in this case, as the page was
3914 * valid before, we just didn't write it out. Instead we want to catch
3915 * the case where we didn't actually read the block properly, which
3916 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
3917 */
3918 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3919 return;
3920
3921 if (btrfs_meta_is_subpage(fs_info)) {
3922 folio = eb->folios[0];
3923 ASSERT(i == 0);
3924 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio,
3925 eb->start, eb->len)))
3926 btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len);
3927 } else {
3928 WARN_ON(!folio_test_uptodate(folio));
3929 }
3930 }
3931
__write_extent_buffer(const struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len,bool use_memmove)3932 static void __write_extent_buffer(const struct extent_buffer *eb,
3933 const void *srcv, unsigned long start,
3934 unsigned long len, bool use_memmove)
3935 {
3936 const int unit_size = eb->folio_size;
3937 size_t cur;
3938 size_t offset;
3939 char *kaddr;
3940 const char *src = (const char *)srcv;
3941 unsigned long i = get_eb_folio_index(eb, start);
3942 /* For unmapped (dummy) ebs, no need to check their uptodate status. */
3943 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3944
3945 if (check_eb_range(eb, start, len))
3946 return;
3947
3948 if (eb->addr) {
3949 if (use_memmove)
3950 memmove(eb->addr + start, srcv, len);
3951 else
3952 memcpy(eb->addr + start, srcv, len);
3953 return;
3954 }
3955
3956 offset = get_eb_offset_in_folio(eb, start);
3957
3958 while (len > 0) {
3959 if (check_uptodate)
3960 assert_eb_folio_uptodate(eb, i);
3961
3962 cur = min(len, unit_size - offset);
3963 kaddr = folio_address(eb->folios[i]);
3964 if (use_memmove)
3965 memmove(kaddr + offset, src, cur);
3966 else
3967 memcpy(kaddr + offset, src, cur);
3968
3969 src += cur;
3970 len -= cur;
3971 offset = 0;
3972 i++;
3973 }
3974 }
3975
write_extent_buffer(const struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len)3976 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
3977 unsigned long start, unsigned long len)
3978 {
3979 return __write_extent_buffer(eb, srcv, start, len, false);
3980 }
3981
memset_extent_buffer(const struct extent_buffer * eb,int c,unsigned long start,unsigned long len)3982 static void memset_extent_buffer(const struct extent_buffer *eb, int c,
3983 unsigned long start, unsigned long len)
3984 {
3985 const int unit_size = eb->folio_size;
3986 unsigned long cur = start;
3987
3988 if (eb->addr) {
3989 memset(eb->addr + start, c, len);
3990 return;
3991 }
3992
3993 while (cur < start + len) {
3994 unsigned long index = get_eb_folio_index(eb, cur);
3995 unsigned int offset = get_eb_offset_in_folio(eb, cur);
3996 unsigned int cur_len = min(start + len - cur, unit_size - offset);
3997
3998 assert_eb_folio_uptodate(eb, index);
3999 memset(folio_address(eb->folios[index]) + offset, c, cur_len);
4000
4001 cur += cur_len;
4002 }
4003 }
4004
memzero_extent_buffer(const struct extent_buffer * eb,unsigned long start,unsigned long len)4005 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
4006 unsigned long len)
4007 {
4008 if (check_eb_range(eb, start, len))
4009 return;
4010 return memset_extent_buffer(eb, 0, start, len);
4011 }
4012
copy_extent_buffer_full(const struct extent_buffer * dst,const struct extent_buffer * src)4013 void copy_extent_buffer_full(const struct extent_buffer *dst,
4014 const struct extent_buffer *src)
4015 {
4016 const int unit_size = src->folio_size;
4017 unsigned long cur = 0;
4018
4019 ASSERT(dst->len == src->len);
4020
4021 while (cur < src->len) {
4022 unsigned long index = get_eb_folio_index(src, cur);
4023 unsigned long offset = get_eb_offset_in_folio(src, cur);
4024 unsigned long cur_len = min(src->len, unit_size - offset);
4025 void *addr = folio_address(src->folios[index]) + offset;
4026
4027 write_extent_buffer(dst, addr, cur, cur_len);
4028
4029 cur += cur_len;
4030 }
4031 }
4032
copy_extent_buffer(const struct extent_buffer * dst,const struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,unsigned long len)4033 void copy_extent_buffer(const struct extent_buffer *dst,
4034 const struct extent_buffer *src,
4035 unsigned long dst_offset, unsigned long src_offset,
4036 unsigned long len)
4037 {
4038 const int unit_size = dst->folio_size;
4039 u64 dst_len = dst->len;
4040 size_t cur;
4041 size_t offset;
4042 char *kaddr;
4043 unsigned long i = get_eb_folio_index(dst, dst_offset);
4044
4045 if (check_eb_range(dst, dst_offset, len) ||
4046 check_eb_range(src, src_offset, len))
4047 return;
4048
4049 WARN_ON(src->len != dst_len);
4050
4051 offset = get_eb_offset_in_folio(dst, dst_offset);
4052
4053 while (len > 0) {
4054 assert_eb_folio_uptodate(dst, i);
4055
4056 cur = min(len, (unsigned long)(unit_size - offset));
4057
4058 kaddr = folio_address(dst->folios[i]);
4059 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4060
4061 src_offset += cur;
4062 len -= cur;
4063 offset = 0;
4064 i++;
4065 }
4066 }
4067
4068 /*
4069 * Calculate the folio and offset of the byte containing the given bit number.
4070 *
4071 * @eb: the extent buffer
4072 * @start: offset of the bitmap item in the extent buffer
4073 * @nr: bit number
4074 * @folio_index: return index of the folio in the extent buffer that contains
4075 * the given bit number
4076 * @folio_offset: return offset into the folio given by folio_index
4077 *
4078 * This helper hides the ugliness of finding the byte in an extent buffer which
4079 * contains a given bit.
4080 */
eb_bitmap_offset(const struct extent_buffer * eb,unsigned long start,unsigned long nr,unsigned long * folio_index,size_t * folio_offset)4081 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
4082 unsigned long start, unsigned long nr,
4083 unsigned long *folio_index,
4084 size_t *folio_offset)
4085 {
4086 size_t byte_offset = BIT_BYTE(nr);
4087 size_t offset;
4088
4089 /*
4090 * The byte we want is the offset of the extent buffer + the offset of
4091 * the bitmap item in the extent buffer + the offset of the byte in the
4092 * bitmap item.
4093 */
4094 offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset;
4095
4096 *folio_index = offset >> eb->folio_shift;
4097 *folio_offset = offset_in_eb_folio(eb, offset);
4098 }
4099
4100 /*
4101 * Determine whether a bit in a bitmap item is set.
4102 *
4103 * @eb: the extent buffer
4104 * @start: offset of the bitmap item in the extent buffer
4105 * @nr: bit number to test
4106 */
extent_buffer_test_bit(const struct extent_buffer * eb,unsigned long start,unsigned long nr)4107 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
4108 unsigned long nr)
4109 {
4110 unsigned long i;
4111 size_t offset;
4112 u8 *kaddr;
4113
4114 eb_bitmap_offset(eb, start, nr, &i, &offset);
4115 assert_eb_folio_uptodate(eb, i);
4116 kaddr = folio_address(eb->folios[i]);
4117 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
4118 }
4119
extent_buffer_get_byte(const struct extent_buffer * eb,unsigned long bytenr)4120 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
4121 {
4122 unsigned long index = get_eb_folio_index(eb, bytenr);
4123
4124 if (check_eb_range(eb, bytenr, 1))
4125 return NULL;
4126 return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr);
4127 }
4128
4129 /*
4130 * Set an area of a bitmap to 1.
4131 *
4132 * @eb: the extent buffer
4133 * @start: offset of the bitmap item in the extent buffer
4134 * @pos: bit number of the first bit
4135 * @len: number of bits to set
4136 */
extent_buffer_bitmap_set(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)4137 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4138 unsigned long pos, unsigned long len)
4139 {
4140 unsigned int first_byte = start + BIT_BYTE(pos);
4141 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4142 const bool same_byte = (first_byte == last_byte);
4143 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4144 u8 *kaddr;
4145
4146 if (same_byte)
4147 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4148
4149 /* Handle the first byte. */
4150 kaddr = extent_buffer_get_byte(eb, first_byte);
4151 *kaddr |= mask;
4152 if (same_byte)
4153 return;
4154
4155 /* Handle the byte aligned part. */
4156 ASSERT(first_byte + 1 <= last_byte);
4157 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4158
4159 /* Handle the last byte. */
4160 kaddr = extent_buffer_get_byte(eb, last_byte);
4161 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
4162 }
4163
4164
4165 /*
4166 * Clear an area of a bitmap.
4167 *
4168 * @eb: the extent buffer
4169 * @start: offset of the bitmap item in the extent buffer
4170 * @pos: bit number of the first bit
4171 * @len: number of bits to clear
4172 */
extent_buffer_bitmap_clear(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)4173 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4174 unsigned long start, unsigned long pos,
4175 unsigned long len)
4176 {
4177 unsigned int first_byte = start + BIT_BYTE(pos);
4178 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4179 const bool same_byte = (first_byte == last_byte);
4180 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4181 u8 *kaddr;
4182
4183 if (same_byte)
4184 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4185
4186 /* Handle the first byte. */
4187 kaddr = extent_buffer_get_byte(eb, first_byte);
4188 *kaddr &= ~mask;
4189 if (same_byte)
4190 return;
4191
4192 /* Handle the byte aligned part. */
4193 ASSERT(first_byte + 1 <= last_byte);
4194 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4195
4196 /* Handle the last byte. */
4197 kaddr = extent_buffer_get_byte(eb, last_byte);
4198 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
4199 }
4200
areas_overlap(unsigned long src,unsigned long dst,unsigned long len)4201 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4202 {
4203 unsigned long distance = (src > dst) ? src - dst : dst - src;
4204 return distance < len;
4205 }
4206
memcpy_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)4207 void memcpy_extent_buffer(const struct extent_buffer *dst,
4208 unsigned long dst_offset, unsigned long src_offset,
4209 unsigned long len)
4210 {
4211 const int unit_size = dst->folio_size;
4212 unsigned long cur_off = 0;
4213
4214 if (check_eb_range(dst, dst_offset, len) ||
4215 check_eb_range(dst, src_offset, len))
4216 return;
4217
4218 if (dst->addr) {
4219 const bool use_memmove = areas_overlap(src_offset, dst_offset, len);
4220
4221 if (use_memmove)
4222 memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4223 else
4224 memcpy(dst->addr + dst_offset, dst->addr + src_offset, len);
4225 return;
4226 }
4227
4228 while (cur_off < len) {
4229 unsigned long cur_src = cur_off + src_offset;
4230 unsigned long folio_index = get_eb_folio_index(dst, cur_src);
4231 unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src);
4232 unsigned long cur_len = min(src_offset + len - cur_src,
4233 unit_size - folio_off);
4234 void *src_addr = folio_address(dst->folios[folio_index]) + folio_off;
4235 const bool use_memmove = areas_overlap(src_offset + cur_off,
4236 dst_offset + cur_off, cur_len);
4237
4238 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4239 use_memmove);
4240 cur_off += cur_len;
4241 }
4242 }
4243
memmove_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)4244 void memmove_extent_buffer(const struct extent_buffer *dst,
4245 unsigned long dst_offset, unsigned long src_offset,
4246 unsigned long len)
4247 {
4248 unsigned long dst_end = dst_offset + len - 1;
4249 unsigned long src_end = src_offset + len - 1;
4250
4251 if (check_eb_range(dst, dst_offset, len) ||
4252 check_eb_range(dst, src_offset, len))
4253 return;
4254
4255 if (dst_offset < src_offset) {
4256 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4257 return;
4258 }
4259
4260 if (dst->addr) {
4261 memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4262 return;
4263 }
4264
4265 while (len > 0) {
4266 unsigned long src_i;
4267 size_t cur;
4268 size_t dst_off_in_folio;
4269 size_t src_off_in_folio;
4270 void *src_addr;
4271 bool use_memmove;
4272
4273 src_i = get_eb_folio_index(dst, src_end);
4274
4275 dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end);
4276 src_off_in_folio = get_eb_offset_in_folio(dst, src_end);
4277
4278 cur = min_t(unsigned long, len, src_off_in_folio + 1);
4279 cur = min(cur, dst_off_in_folio + 1);
4280
4281 src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio -
4282 cur + 1;
4283 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4284 cur);
4285
4286 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4287 use_memmove);
4288
4289 dst_end -= cur;
4290 src_end -= cur;
4291 len -= cur;
4292 }
4293 }
4294
try_release_subpage_extent_buffer(struct folio * folio)4295 static int try_release_subpage_extent_buffer(struct folio *folio)
4296 {
4297 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
4298 struct extent_buffer *eb;
4299 unsigned long start = (folio_pos(folio) >> fs_info->sectorsize_bits);
4300 unsigned long index = start;
4301 unsigned long end = index + (PAGE_SIZE >> fs_info->sectorsize_bits) - 1;
4302 int ret;
4303
4304 xa_lock_irq(&fs_info->buffer_tree);
4305 xa_for_each_range(&fs_info->buffer_tree, index, eb, start, end) {
4306 /*
4307 * The same as try_release_extent_buffer(), to ensure the eb
4308 * won't disappear out from under us.
4309 */
4310 spin_lock(&eb->refs_lock);
4311 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4312 spin_unlock(&eb->refs_lock);
4313 continue;
4314 }
4315
4316 /*
4317 * If tree ref isn't set then we know the ref on this eb is a
4318 * real ref, so just return, this eb will likely be freed soon
4319 * anyway.
4320 */
4321 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4322 spin_unlock(&eb->refs_lock);
4323 break;
4324 }
4325
4326 /*
4327 * Here we don't care about the return value, we will always
4328 * check the folio private at the end. And
4329 * release_extent_buffer() will release the refs_lock.
4330 */
4331 xa_unlock_irq(&fs_info->buffer_tree);
4332 release_extent_buffer(eb);
4333 xa_lock_irq(&fs_info->buffer_tree);
4334 }
4335 xa_unlock_irq(&fs_info->buffer_tree);
4336
4337 /*
4338 * Finally to check if we have cleared folio private, as if we have
4339 * released all ebs in the page, the folio private should be cleared now.
4340 */
4341 spin_lock(&folio->mapping->i_private_lock);
4342 if (!folio_test_private(folio))
4343 ret = 1;
4344 else
4345 ret = 0;
4346 spin_unlock(&folio->mapping->i_private_lock);
4347 return ret;
4348
4349 }
4350
try_release_extent_buffer(struct folio * folio)4351 int try_release_extent_buffer(struct folio *folio)
4352 {
4353 struct extent_buffer *eb;
4354
4355 if (btrfs_meta_is_subpage(folio_to_fs_info(folio)))
4356 return try_release_subpage_extent_buffer(folio);
4357
4358 /*
4359 * We need to make sure nobody is changing folio private, as we rely on
4360 * folio private as the pointer to extent buffer.
4361 */
4362 spin_lock(&folio->mapping->i_private_lock);
4363 if (!folio_test_private(folio)) {
4364 spin_unlock(&folio->mapping->i_private_lock);
4365 return 1;
4366 }
4367
4368 eb = folio_get_private(folio);
4369 BUG_ON(!eb);
4370
4371 /*
4372 * This is a little awful but should be ok, we need to make sure that
4373 * the eb doesn't disappear out from under us while we're looking at
4374 * this page.
4375 */
4376 spin_lock(&eb->refs_lock);
4377 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4378 spin_unlock(&eb->refs_lock);
4379 spin_unlock(&folio->mapping->i_private_lock);
4380 return 0;
4381 }
4382 spin_unlock(&folio->mapping->i_private_lock);
4383
4384 /*
4385 * If tree ref isn't set then we know the ref on this eb is a real ref,
4386 * so just return, this page will likely be freed soon anyway.
4387 */
4388 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4389 spin_unlock(&eb->refs_lock);
4390 return 0;
4391 }
4392
4393 return release_extent_buffer(eb);
4394 }
4395
4396 /*
4397 * Attempt to readahead a child block.
4398 *
4399 * @fs_info: the fs_info
4400 * @bytenr: bytenr to read
4401 * @owner_root: objectid of the root that owns this eb
4402 * @gen: generation for the uptodate check, can be 0
4403 * @level: level for the eb
4404 *
4405 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
4406 * normal uptodate check of the eb, without checking the generation. If we have
4407 * to read the block we will not block on anything.
4408 */
btrfs_readahead_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,u64 gen,int level)4409 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
4410 u64 bytenr, u64 owner_root, u64 gen, int level)
4411 {
4412 struct btrfs_tree_parent_check check = {
4413 .level = level,
4414 .transid = gen
4415 };
4416 struct extent_buffer *eb;
4417 int ret;
4418
4419 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
4420 if (IS_ERR(eb))
4421 return;
4422
4423 if (btrfs_buffer_uptodate(eb, gen, 1)) {
4424 free_extent_buffer(eb);
4425 return;
4426 }
4427
4428 ret = read_extent_buffer_pages_nowait(eb, 0, &check);
4429 if (ret < 0)
4430 free_extent_buffer_stale(eb);
4431 else
4432 free_extent_buffer(eb);
4433 }
4434
4435 /*
4436 * Readahead a node's child block.
4437 *
4438 * @node: parent node we're reading from
4439 * @slot: slot in the parent node for the child we want to read
4440 *
4441 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
4442 * the slot in the node provided.
4443 */
btrfs_readahead_node_child(struct extent_buffer * node,int slot)4444 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
4445 {
4446 btrfs_readahead_tree_block(node->fs_info,
4447 btrfs_node_blockptr(node, slot),
4448 btrfs_header_owner(node),
4449 btrfs_node_ptr_generation(node, slot),
4450 btrfs_header_level(node) - 1);
4451 }
4452