xref: /linux/mm/ksm.c (revision 8804d970fab45726b3c7cd7f240b31122aa94219)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *	Izik Eidus
11  *	Andrea Arcangeli
12  *	Chris Wright
13  *	Hugh Dickins
14  */
15 
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 #include <linux/pagewalk.h>
43 
44 #include <asm/tlbflush.h>
45 #include "internal.h"
46 #include "mm_slot.h"
47 
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/ksm.h>
50 
51 #ifdef CONFIG_NUMA
52 #define NUMA(x)		(x)
53 #define DO_NUMA(x)	do { (x); } while (0)
54 #else
55 #define NUMA(x)		(0)
56 #define DO_NUMA(x)	do { } while (0)
57 #endif
58 
59 typedef u8 rmap_age_t;
60 
61 /**
62  * DOC: Overview
63  *
64  * A few notes about the KSM scanning process,
65  * to make it easier to understand the data structures below:
66  *
67  * In order to reduce excessive scanning, KSM sorts the memory pages by their
68  * contents into a data structure that holds pointers to the pages' locations.
69  *
70  * Since the contents of the pages may change at any moment, KSM cannot just
71  * insert the pages into a normal sorted tree and expect it to find anything.
72  * Therefore KSM uses two data structures - the stable and the unstable tree.
73  *
74  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
75  * by their contents.  Because each such page is write-protected, searching on
76  * this tree is fully assured to be working (except when pages are unmapped),
77  * and therefore this tree is called the stable tree.
78  *
79  * The stable tree node includes information required for reverse
80  * mapping from a KSM page to virtual addresses that map this page.
81  *
82  * In order to avoid large latencies of the rmap walks on KSM pages,
83  * KSM maintains two types of nodes in the stable tree:
84  *
85  * * the regular nodes that keep the reverse mapping structures in a
86  *   linked list
87  * * the "chains" that link nodes ("dups") that represent the same
88  *   write protected memory content, but each "dup" corresponds to a
89  *   different KSM page copy of that content
90  *
91  * Internally, the regular nodes, "dups" and "chains" are represented
92  * using the same struct ksm_stable_node structure.
93  *
94  * In addition to the stable tree, KSM uses a second data structure called the
95  * unstable tree: this tree holds pointers to pages which have been found to
96  * be "unchanged for a period of time".  The unstable tree sorts these pages
97  * by their contents, but since they are not write-protected, KSM cannot rely
98  * upon the unstable tree to work correctly - the unstable tree is liable to
99  * be corrupted as its contents are modified, and so it is called unstable.
100  *
101  * KSM solves this problem by several techniques:
102  *
103  * 1) The unstable tree is flushed every time KSM completes scanning all
104  *    memory areas, and then the tree is rebuilt again from the beginning.
105  * 2) KSM will only insert into the unstable tree, pages whose hash value
106  *    has not changed since the previous scan of all memory areas.
107  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
108  *    colors of the nodes and not on their contents, assuring that even when
109  *    the tree gets "corrupted" it won't get out of balance, so scanning time
110  *    remains the same (also, searching and inserting nodes in an rbtree uses
111  *    the same algorithm, so we have no overhead when we flush and rebuild).
112  * 4) KSM never flushes the stable tree, which means that even if it were to
113  *    take 10 attempts to find a page in the unstable tree, once it is found,
114  *    it is secured in the stable tree.  (When we scan a new page, we first
115  *    compare it against the stable tree, and then against the unstable tree.)
116  *
117  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
118  * stable trees and multiple unstable trees: one of each for each NUMA node.
119  */
120 
121 /**
122  * struct ksm_mm_slot - ksm information per mm that is being scanned
123  * @slot: hash lookup from mm to mm_slot
124  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
125  */
126 struct ksm_mm_slot {
127 	struct mm_slot slot;
128 	struct ksm_rmap_item *rmap_list;
129 };
130 
131 /**
132  * struct ksm_scan - cursor for scanning
133  * @mm_slot: the current mm_slot we are scanning
134  * @address: the next address inside that to be scanned
135  * @rmap_list: link to the next rmap to be scanned in the rmap_list
136  * @seqnr: count of completed full scans (needed when removing unstable node)
137  *
138  * There is only the one ksm_scan instance of this cursor structure.
139  */
140 struct ksm_scan {
141 	struct ksm_mm_slot *mm_slot;
142 	unsigned long address;
143 	struct ksm_rmap_item **rmap_list;
144 	unsigned long seqnr;
145 };
146 
147 /**
148  * struct ksm_stable_node - node of the stable rbtree
149  * @node: rb node of this ksm page in the stable tree
150  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
151  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
152  * @list: linked into migrate_nodes, pending placement in the proper node tree
153  * @hlist: hlist head of rmap_items using this ksm page
154  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
155  * @chain_prune_time: time of the last full garbage collection
156  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
157  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
158  */
159 struct ksm_stable_node {
160 	union {
161 		struct rb_node node;	/* when node of stable tree */
162 		struct {		/* when listed for migration */
163 			struct list_head *head;
164 			struct {
165 				struct hlist_node hlist_dup;
166 				struct list_head list;
167 			};
168 		};
169 	};
170 	struct hlist_head hlist;
171 	union {
172 		unsigned long kpfn;
173 		unsigned long chain_prune_time;
174 	};
175 	/*
176 	 * STABLE_NODE_CHAIN can be any negative number in
177 	 * rmap_hlist_len negative range, but better not -1 to be able
178 	 * to reliably detect underflows.
179 	 */
180 #define STABLE_NODE_CHAIN -1024
181 	int rmap_hlist_len;
182 #ifdef CONFIG_NUMA
183 	int nid;
184 #endif
185 };
186 
187 /**
188  * struct ksm_rmap_item - reverse mapping item for virtual addresses
189  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
190  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
191  * @nid: NUMA node id of unstable tree in which linked (may not match page)
192  * @mm: the memory structure this rmap_item is pointing into
193  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
194  * @oldchecksum: previous checksum of the page at that virtual address
195  * @node: rb node of this rmap_item in the unstable tree
196  * @head: pointer to stable_node heading this list in the stable tree
197  * @hlist: link into hlist of rmap_items hanging off that stable_node
198  * @age: number of scan iterations since creation
199  * @remaining_skips: how many scans to skip
200  */
201 struct ksm_rmap_item {
202 	struct ksm_rmap_item *rmap_list;
203 	union {
204 		struct anon_vma *anon_vma;	/* when stable */
205 #ifdef CONFIG_NUMA
206 		int nid;		/* when node of unstable tree */
207 #endif
208 	};
209 	struct mm_struct *mm;
210 	unsigned long address;		/* + low bits used for flags below */
211 	unsigned int oldchecksum;	/* when unstable */
212 	rmap_age_t age;
213 	rmap_age_t remaining_skips;
214 	union {
215 		struct rb_node node;	/* when node of unstable tree */
216 		struct {		/* when listed from stable tree */
217 			struct ksm_stable_node *head;
218 			struct hlist_node hlist;
219 		};
220 	};
221 };
222 
223 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
224 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
225 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
226 
227 /* The stable and unstable tree heads */
228 static struct rb_root one_stable_tree[1] = { RB_ROOT };
229 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
230 static struct rb_root *root_stable_tree = one_stable_tree;
231 static struct rb_root *root_unstable_tree = one_unstable_tree;
232 
233 /* Recently migrated nodes of stable tree, pending proper placement */
234 static LIST_HEAD(migrate_nodes);
235 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
236 
237 #define MM_SLOTS_HASH_BITS 10
238 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
239 
240 static struct ksm_mm_slot ksm_mm_head = {
241 	.slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
242 };
243 static struct ksm_scan ksm_scan = {
244 	.mm_slot = &ksm_mm_head,
245 };
246 
247 static struct kmem_cache *rmap_item_cache;
248 static struct kmem_cache *stable_node_cache;
249 static struct kmem_cache *mm_slot_cache;
250 
251 /* Default number of pages to scan per batch */
252 #define DEFAULT_PAGES_TO_SCAN 100
253 
254 /* The number of pages scanned */
255 static unsigned long ksm_pages_scanned;
256 
257 /* The number of nodes in the stable tree */
258 static unsigned long ksm_pages_shared;
259 
260 /* The number of page slots additionally sharing those nodes */
261 static unsigned long ksm_pages_sharing;
262 
263 /* The number of nodes in the unstable tree */
264 static unsigned long ksm_pages_unshared;
265 
266 /* The number of rmap_items in use: to calculate pages_volatile */
267 static unsigned long ksm_rmap_items;
268 
269 /* The number of stable_node chains */
270 static unsigned long ksm_stable_node_chains;
271 
272 /* The number of stable_node dups linked to the stable_node chains */
273 static unsigned long ksm_stable_node_dups;
274 
275 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
276 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
277 
278 /* Maximum number of page slots sharing a stable node */
279 static int ksm_max_page_sharing = 256;
280 
281 /* Number of pages ksmd should scan in one batch */
282 static unsigned int ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
283 
284 /* Milliseconds ksmd should sleep between batches */
285 static unsigned int ksm_thread_sleep_millisecs = 20;
286 
287 /* Checksum of an empty (zeroed) page */
288 static unsigned int zero_checksum __read_mostly;
289 
290 /* Whether to merge empty (zeroed) pages with actual zero pages */
291 static bool ksm_use_zero_pages __read_mostly;
292 
293 /* Skip pages that couldn't be de-duplicated previously */
294 /* Default to true at least temporarily, for testing */
295 static bool ksm_smart_scan = true;
296 
297 /* The number of zero pages which is placed by KSM */
298 atomic_long_t ksm_zero_pages = ATOMIC_LONG_INIT(0);
299 
300 /* The number of pages that have been skipped due to "smart scanning" */
301 static unsigned long ksm_pages_skipped;
302 
303 /* Don't scan more than max pages per batch. */
304 static unsigned long ksm_advisor_max_pages_to_scan = 30000;
305 
306 /* Min CPU for scanning pages per scan */
307 #define KSM_ADVISOR_MIN_CPU 10
308 
309 /* Max CPU for scanning pages per scan */
310 static unsigned int ksm_advisor_max_cpu =  70;
311 
312 /* Target scan time in seconds to analyze all KSM candidate pages. */
313 static unsigned long ksm_advisor_target_scan_time = 200;
314 
315 /* Exponentially weighted moving average. */
316 #define EWMA_WEIGHT 30
317 
318 /**
319  * struct advisor_ctx - metadata for KSM advisor
320  * @start_scan: start time of the current scan
321  * @scan_time: scan time of previous scan
322  * @change: change in percent to pages_to_scan parameter
323  * @cpu_time: cpu time consumed by the ksmd thread in the previous scan
324  */
325 struct advisor_ctx {
326 	ktime_t start_scan;
327 	unsigned long scan_time;
328 	unsigned long change;
329 	unsigned long long cpu_time;
330 };
331 static struct advisor_ctx advisor_ctx;
332 
333 /* Define different advisor's */
334 enum ksm_advisor_type {
335 	KSM_ADVISOR_NONE,
336 	KSM_ADVISOR_SCAN_TIME,
337 };
338 static enum ksm_advisor_type ksm_advisor;
339 
340 #ifdef CONFIG_SYSFS
341 /*
342  * Only called through the sysfs control interface:
343  */
344 
345 /* At least scan this many pages per batch. */
346 static unsigned long ksm_advisor_min_pages_to_scan = 500;
347 
set_advisor_defaults(void)348 static void set_advisor_defaults(void)
349 {
350 	if (ksm_advisor == KSM_ADVISOR_NONE) {
351 		ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
352 	} else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) {
353 		advisor_ctx = (const struct advisor_ctx){ 0 };
354 		ksm_thread_pages_to_scan = ksm_advisor_min_pages_to_scan;
355 	}
356 }
357 #endif /* CONFIG_SYSFS */
358 
advisor_start_scan(void)359 static inline void advisor_start_scan(void)
360 {
361 	if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
362 		advisor_ctx.start_scan = ktime_get();
363 }
364 
365 /*
366  * Use previous scan time if available, otherwise use current scan time as an
367  * approximation for the previous scan time.
368  */
prev_scan_time(struct advisor_ctx * ctx,unsigned long scan_time)369 static inline unsigned long prev_scan_time(struct advisor_ctx *ctx,
370 					   unsigned long scan_time)
371 {
372 	return ctx->scan_time ? ctx->scan_time : scan_time;
373 }
374 
375 /* Calculate exponential weighted moving average */
ewma(unsigned long prev,unsigned long curr)376 static unsigned long ewma(unsigned long prev, unsigned long curr)
377 {
378 	return ((100 - EWMA_WEIGHT) * prev + EWMA_WEIGHT * curr) / 100;
379 }
380 
381 /*
382  * The scan time advisor is based on the current scan rate and the target
383  * scan rate.
384  *
385  *      new_pages_to_scan = pages_to_scan * (scan_time / target_scan_time)
386  *
387  * To avoid perturbations it calculates a change factor of previous changes.
388  * A new change factor is calculated for each iteration and it uses an
389  * exponentially weighted moving average. The new pages_to_scan value is
390  * multiplied with that change factor:
391  *
392  *      new_pages_to_scan *= change facor
393  *
394  * The new_pages_to_scan value is limited by the cpu min and max values. It
395  * calculates the cpu percent for the last scan and calculates the new
396  * estimated cpu percent cost for the next scan. That value is capped by the
397  * cpu min and max setting.
398  *
399  * In addition the new pages_to_scan value is capped by the max and min
400  * limits.
401  */
scan_time_advisor(void)402 static void scan_time_advisor(void)
403 {
404 	unsigned int cpu_percent;
405 	unsigned long cpu_time;
406 	unsigned long cpu_time_diff;
407 	unsigned long cpu_time_diff_ms;
408 	unsigned long pages;
409 	unsigned long per_page_cost;
410 	unsigned long factor;
411 	unsigned long change;
412 	unsigned long last_scan_time;
413 	unsigned long scan_time;
414 
415 	/* Convert scan time to seconds */
416 	scan_time = div_s64(ktime_ms_delta(ktime_get(), advisor_ctx.start_scan),
417 			    MSEC_PER_SEC);
418 	scan_time = scan_time ? scan_time : 1;
419 
420 	/* Calculate CPU consumption of ksmd background thread */
421 	cpu_time = task_sched_runtime(current);
422 	cpu_time_diff = cpu_time - advisor_ctx.cpu_time;
423 	cpu_time_diff_ms = cpu_time_diff / 1000 / 1000;
424 
425 	cpu_percent = (cpu_time_diff_ms * 100) / (scan_time * 1000);
426 	cpu_percent = cpu_percent ? cpu_percent : 1;
427 	last_scan_time = prev_scan_time(&advisor_ctx, scan_time);
428 
429 	/* Calculate scan time as percentage of target scan time */
430 	factor = ksm_advisor_target_scan_time * 100 / scan_time;
431 	factor = factor ? factor : 1;
432 
433 	/*
434 	 * Calculate scan time as percentage of last scan time and use
435 	 * exponentially weighted average to smooth it
436 	 */
437 	change = scan_time * 100 / last_scan_time;
438 	change = change ? change : 1;
439 	change = ewma(advisor_ctx.change, change);
440 
441 	/* Calculate new scan rate based on target scan rate. */
442 	pages = ksm_thread_pages_to_scan * 100 / factor;
443 	/* Update pages_to_scan by weighted change percentage. */
444 	pages = pages * change / 100;
445 
446 	/* Cap new pages_to_scan value */
447 	per_page_cost = ksm_thread_pages_to_scan / cpu_percent;
448 	per_page_cost = per_page_cost ? per_page_cost : 1;
449 
450 	pages = min(pages, per_page_cost * ksm_advisor_max_cpu);
451 	pages = max(pages, per_page_cost * KSM_ADVISOR_MIN_CPU);
452 	pages = min(pages, ksm_advisor_max_pages_to_scan);
453 
454 	/* Update advisor context */
455 	advisor_ctx.change = change;
456 	advisor_ctx.scan_time = scan_time;
457 	advisor_ctx.cpu_time = cpu_time;
458 
459 	ksm_thread_pages_to_scan = pages;
460 	trace_ksm_advisor(scan_time, pages, cpu_percent);
461 }
462 
advisor_stop_scan(void)463 static void advisor_stop_scan(void)
464 {
465 	if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
466 		scan_time_advisor();
467 }
468 
469 #ifdef CONFIG_NUMA
470 /* Zeroed when merging across nodes is not allowed */
471 static unsigned int ksm_merge_across_nodes = 1;
472 static int ksm_nr_node_ids = 1;
473 #else
474 #define ksm_merge_across_nodes	1U
475 #define ksm_nr_node_ids		1
476 #endif
477 
478 #define KSM_RUN_STOP	0
479 #define KSM_RUN_MERGE	1
480 #define KSM_RUN_UNMERGE	2
481 #define KSM_RUN_OFFLINE	4
482 static unsigned long ksm_run = KSM_RUN_STOP;
483 static void wait_while_offlining(void);
484 
485 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
486 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
487 static DEFINE_MUTEX(ksm_thread_mutex);
488 static DEFINE_SPINLOCK(ksm_mmlist_lock);
489 
ksm_slab_init(void)490 static int __init ksm_slab_init(void)
491 {
492 	rmap_item_cache = KMEM_CACHE(ksm_rmap_item, 0);
493 	if (!rmap_item_cache)
494 		goto out;
495 
496 	stable_node_cache = KMEM_CACHE(ksm_stable_node, 0);
497 	if (!stable_node_cache)
498 		goto out_free1;
499 
500 	mm_slot_cache = KMEM_CACHE(ksm_mm_slot, 0);
501 	if (!mm_slot_cache)
502 		goto out_free2;
503 
504 	return 0;
505 
506 out_free2:
507 	kmem_cache_destroy(stable_node_cache);
508 out_free1:
509 	kmem_cache_destroy(rmap_item_cache);
510 out:
511 	return -ENOMEM;
512 }
513 
ksm_slab_free(void)514 static void __init ksm_slab_free(void)
515 {
516 	kmem_cache_destroy(mm_slot_cache);
517 	kmem_cache_destroy(stable_node_cache);
518 	kmem_cache_destroy(rmap_item_cache);
519 	mm_slot_cache = NULL;
520 }
521 
is_stable_node_chain(struct ksm_stable_node * chain)522 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
523 {
524 	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
525 }
526 
is_stable_node_dup(struct ksm_stable_node * dup)527 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
528 {
529 	return dup->head == STABLE_NODE_DUP_HEAD;
530 }
531 
stable_node_chain_add_dup(struct ksm_stable_node * dup,struct ksm_stable_node * chain)532 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
533 					     struct ksm_stable_node *chain)
534 {
535 	VM_BUG_ON(is_stable_node_dup(dup));
536 	dup->head = STABLE_NODE_DUP_HEAD;
537 	VM_BUG_ON(!is_stable_node_chain(chain));
538 	hlist_add_head(&dup->hlist_dup, &chain->hlist);
539 	ksm_stable_node_dups++;
540 }
541 
__stable_node_dup_del(struct ksm_stable_node * dup)542 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
543 {
544 	VM_BUG_ON(!is_stable_node_dup(dup));
545 	hlist_del(&dup->hlist_dup);
546 	ksm_stable_node_dups--;
547 }
548 
stable_node_dup_del(struct ksm_stable_node * dup)549 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
550 {
551 	VM_BUG_ON(is_stable_node_chain(dup));
552 	if (is_stable_node_dup(dup))
553 		__stable_node_dup_del(dup);
554 	else
555 		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
556 #ifdef CONFIG_DEBUG_VM
557 	dup->head = NULL;
558 #endif
559 }
560 
alloc_rmap_item(void)561 static inline struct ksm_rmap_item *alloc_rmap_item(void)
562 {
563 	struct ksm_rmap_item *rmap_item;
564 
565 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
566 						__GFP_NORETRY | __GFP_NOWARN);
567 	if (rmap_item)
568 		ksm_rmap_items++;
569 	return rmap_item;
570 }
571 
free_rmap_item(struct ksm_rmap_item * rmap_item)572 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
573 {
574 	ksm_rmap_items--;
575 	rmap_item->mm->ksm_rmap_items--;
576 	rmap_item->mm = NULL;	/* debug safety */
577 	kmem_cache_free(rmap_item_cache, rmap_item);
578 }
579 
alloc_stable_node(void)580 static inline struct ksm_stable_node *alloc_stable_node(void)
581 {
582 	/*
583 	 * The allocation can take too long with GFP_KERNEL when memory is under
584 	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
585 	 * grants access to memory reserves, helping to avoid this problem.
586 	 */
587 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
588 }
589 
free_stable_node(struct ksm_stable_node * stable_node)590 static inline void free_stable_node(struct ksm_stable_node *stable_node)
591 {
592 	VM_BUG_ON(stable_node->rmap_hlist_len &&
593 		  !is_stable_node_chain(stable_node));
594 	kmem_cache_free(stable_node_cache, stable_node);
595 }
596 
597 /*
598  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
599  * page tables after it has passed through ksm_exit() - which, if necessary,
600  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
601  * a special flag: they can just back out as soon as mm_users goes to zero.
602  * ksm_test_exit() is used throughout to make this test for exit: in some
603  * places for correctness, in some places just to avoid unnecessary work.
604  */
ksm_test_exit(struct mm_struct * mm)605 static inline bool ksm_test_exit(struct mm_struct *mm)
606 {
607 	return atomic_read(&mm->mm_users) == 0;
608 }
609 
610 /*
611  * We use break_ksm to break COW on a ksm page by triggering unsharing,
612  * such that the ksm page will get replaced by an exclusive anonymous page.
613  *
614  * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
615  * in case the application has unmapped and remapped mm,addr meanwhile.
616  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
617  * mmap of /dev/mem, where we would not want to touch it.
618  *
619  * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
620  * of the process that owns 'vma'.  We also do not want to enforce
621  * protection keys here anyway.
622  */
break_ksm(struct vm_area_struct * vma,unsigned long addr,bool lock_vma)623 static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma)
624 {
625 	vm_fault_t ret = 0;
626 
627 	if (lock_vma)
628 		vma_start_write(vma);
629 
630 	do {
631 		bool ksm_page = false;
632 		struct folio_walk fw;
633 		struct folio *folio;
634 
635 		cond_resched();
636 		folio = folio_walk_start(&fw, vma, addr,
637 					 FW_MIGRATION | FW_ZEROPAGE);
638 		if (folio) {
639 			/* Small folio implies FW_LEVEL_PTE. */
640 			if (!folio_test_large(folio) &&
641 			    (folio_test_ksm(folio) || is_ksm_zero_pte(fw.pte)))
642 				ksm_page = true;
643 			folio_walk_end(&fw, vma);
644 		}
645 
646 		if (!ksm_page)
647 			return 0;
648 		ret = handle_mm_fault(vma, addr,
649 				      FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
650 				      NULL);
651 	} while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
652 	/*
653 	 * We must loop until we no longer find a KSM page because
654 	 * handle_mm_fault() may back out if there's any difficulty e.g. if
655 	 * pte accessed bit gets updated concurrently.
656 	 *
657 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
658 	 * backing file, which also invalidates anonymous pages: that's
659 	 * okay, that truncation will have unmapped the KSM page for us.
660 	 *
661 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
662 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
663 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
664 	 * to user; and ksmd, having no mm, would never be chosen for that.
665 	 *
666 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
667 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
668 	 * even ksmd can fail in this way - though it's usually breaking ksm
669 	 * just to undo a merge it made a moment before, so unlikely to oom.
670 	 *
671 	 * That's a pity: we might therefore have more kernel pages allocated
672 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
673 	 * will retry to break_cow on each pass, so should recover the page
674 	 * in due course.  The important thing is to not let VM_MERGEABLE
675 	 * be cleared while any such pages might remain in the area.
676 	 */
677 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
678 }
679 
ksm_compatible(const struct file * file,vm_flags_t vm_flags)680 static bool ksm_compatible(const struct file *file, vm_flags_t vm_flags)
681 {
682 	if (vm_flags & (VM_SHARED  | VM_MAYSHARE | VM_SPECIAL |
683 			VM_HUGETLB | VM_DROPPABLE))
684 		return false;		/* just ignore the advice */
685 
686 	if (file_is_dax(file))
687 		return false;
688 
689 #ifdef VM_SAO
690 	if (vm_flags & VM_SAO)
691 		return false;
692 #endif
693 #ifdef VM_SPARC_ADI
694 	if (vm_flags & VM_SPARC_ADI)
695 		return false;
696 #endif
697 
698 	return true;
699 }
700 
vma_ksm_compatible(struct vm_area_struct * vma)701 static bool vma_ksm_compatible(struct vm_area_struct *vma)
702 {
703 	return ksm_compatible(vma->vm_file, vma->vm_flags);
704 }
705 
find_mergeable_vma(struct mm_struct * mm,unsigned long addr)706 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
707 		unsigned long addr)
708 {
709 	struct vm_area_struct *vma;
710 	if (ksm_test_exit(mm))
711 		return NULL;
712 	vma = vma_lookup(mm, addr);
713 	if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
714 		return NULL;
715 	return vma;
716 }
717 
break_cow(struct ksm_rmap_item * rmap_item)718 static void break_cow(struct ksm_rmap_item *rmap_item)
719 {
720 	struct mm_struct *mm = rmap_item->mm;
721 	unsigned long addr = rmap_item->address;
722 	struct vm_area_struct *vma;
723 
724 	/*
725 	 * It is not an accident that whenever we want to break COW
726 	 * to undo, we also need to drop a reference to the anon_vma.
727 	 */
728 	put_anon_vma(rmap_item->anon_vma);
729 
730 	mmap_read_lock(mm);
731 	vma = find_mergeable_vma(mm, addr);
732 	if (vma)
733 		break_ksm(vma, addr, false);
734 	mmap_read_unlock(mm);
735 }
736 
get_mergeable_page(struct ksm_rmap_item * rmap_item)737 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
738 {
739 	struct mm_struct *mm = rmap_item->mm;
740 	unsigned long addr = rmap_item->address;
741 	struct vm_area_struct *vma;
742 	struct page *page = NULL;
743 	struct folio_walk fw;
744 	struct folio *folio;
745 
746 	mmap_read_lock(mm);
747 	vma = find_mergeable_vma(mm, addr);
748 	if (!vma)
749 		goto out;
750 
751 	folio = folio_walk_start(&fw, vma, addr, 0);
752 	if (folio) {
753 		if (!folio_is_zone_device(folio) &&
754 		    folio_test_anon(folio)) {
755 			folio_get(folio);
756 			page = fw.page;
757 		}
758 		folio_walk_end(&fw, vma);
759 	}
760 out:
761 	if (page) {
762 		flush_anon_page(vma, page, addr);
763 		flush_dcache_page(page);
764 	}
765 	mmap_read_unlock(mm);
766 	return page;
767 }
768 
769 /*
770  * This helper is used for getting right index into array of tree roots.
771  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
772  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
773  * every node has its own stable and unstable tree.
774  */
get_kpfn_nid(unsigned long kpfn)775 static inline int get_kpfn_nid(unsigned long kpfn)
776 {
777 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
778 }
779 
alloc_stable_node_chain(struct ksm_stable_node * dup,struct rb_root * root)780 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
781 						   struct rb_root *root)
782 {
783 	struct ksm_stable_node *chain = alloc_stable_node();
784 	VM_BUG_ON(is_stable_node_chain(dup));
785 	if (likely(chain)) {
786 		INIT_HLIST_HEAD(&chain->hlist);
787 		chain->chain_prune_time = jiffies;
788 		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
789 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
790 		chain->nid = NUMA_NO_NODE; /* debug */
791 #endif
792 		ksm_stable_node_chains++;
793 
794 		/*
795 		 * Put the stable node chain in the first dimension of
796 		 * the stable tree and at the same time remove the old
797 		 * stable node.
798 		 */
799 		rb_replace_node(&dup->node, &chain->node, root);
800 
801 		/*
802 		 * Move the old stable node to the second dimension
803 		 * queued in the hlist_dup. The invariant is that all
804 		 * dup stable_nodes in the chain->hlist point to pages
805 		 * that are write protected and have the exact same
806 		 * content.
807 		 */
808 		stable_node_chain_add_dup(dup, chain);
809 	}
810 	return chain;
811 }
812 
free_stable_node_chain(struct ksm_stable_node * chain,struct rb_root * root)813 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
814 					  struct rb_root *root)
815 {
816 	rb_erase(&chain->node, root);
817 	free_stable_node(chain);
818 	ksm_stable_node_chains--;
819 }
820 
remove_node_from_stable_tree(struct ksm_stable_node * stable_node)821 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
822 {
823 	struct ksm_rmap_item *rmap_item;
824 
825 	/* check it's not STABLE_NODE_CHAIN or negative */
826 	BUG_ON(stable_node->rmap_hlist_len < 0);
827 
828 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
829 		if (rmap_item->hlist.next) {
830 			ksm_pages_sharing--;
831 			trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
832 		} else {
833 			ksm_pages_shared--;
834 		}
835 
836 		rmap_item->mm->ksm_merging_pages--;
837 
838 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
839 		stable_node->rmap_hlist_len--;
840 		put_anon_vma(rmap_item->anon_vma);
841 		rmap_item->address &= PAGE_MASK;
842 		cond_resched();
843 	}
844 
845 	/*
846 	 * We need the second aligned pointer of the migrate_nodes
847 	 * list_head to stay clear from the rb_parent_color union
848 	 * (aligned and different than any node) and also different
849 	 * from &migrate_nodes. This will verify that future list.h changes
850 	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
851 	 */
852 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
853 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
854 
855 	trace_ksm_remove_ksm_page(stable_node->kpfn);
856 	if (stable_node->head == &migrate_nodes)
857 		list_del(&stable_node->list);
858 	else
859 		stable_node_dup_del(stable_node);
860 	free_stable_node(stable_node);
861 }
862 
863 enum ksm_get_folio_flags {
864 	KSM_GET_FOLIO_NOLOCK,
865 	KSM_GET_FOLIO_LOCK,
866 	KSM_GET_FOLIO_TRYLOCK
867 };
868 
869 /*
870  * ksm_get_folio: checks if the page indicated by the stable node
871  * is still its ksm page, despite having held no reference to it.
872  * In which case we can trust the content of the page, and it
873  * returns the gotten page; but if the page has now been zapped,
874  * remove the stale node from the stable tree and return NULL.
875  * But beware, the stable node's page might be being migrated.
876  *
877  * You would expect the stable_node to hold a reference to the ksm page.
878  * But if it increments the page's count, swapping out has to wait for
879  * ksmd to come around again before it can free the page, which may take
880  * seconds or even minutes: much too unresponsive.  So instead we use a
881  * "keyhole reference": access to the ksm page from the stable node peeps
882  * out through its keyhole to see if that page still holds the right key,
883  * pointing back to this stable node.  This relies on freeing a PageAnon
884  * page to reset its page->mapping to NULL, and relies on no other use of
885  * a page to put something that might look like our key in page->mapping.
886  * is on its way to being freed; but it is an anomaly to bear in mind.
887  */
ksm_get_folio(struct ksm_stable_node * stable_node,enum ksm_get_folio_flags flags)888 static struct folio *ksm_get_folio(struct ksm_stable_node *stable_node,
889 				 enum ksm_get_folio_flags flags)
890 {
891 	struct folio *folio;
892 	void *expected_mapping;
893 	unsigned long kpfn;
894 
895 	expected_mapping = (void *)((unsigned long)stable_node |
896 					FOLIO_MAPPING_KSM);
897 again:
898 	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
899 	folio = pfn_folio(kpfn);
900 	if (READ_ONCE(folio->mapping) != expected_mapping)
901 		goto stale;
902 
903 	/*
904 	 * We cannot do anything with the page while its refcount is 0.
905 	 * Usually 0 means free, or tail of a higher-order page: in which
906 	 * case this node is no longer referenced, and should be freed;
907 	 * however, it might mean that the page is under page_ref_freeze().
908 	 * The __remove_mapping() case is easy, again the node is now stale;
909 	 * the same is in reuse_ksm_page() case; but if page is swapcache
910 	 * in folio_migrate_mapping(), it might still be our page,
911 	 * in which case it's essential to keep the node.
912 	 */
913 	while (!folio_try_get(folio)) {
914 		/*
915 		 * Another check for folio->mapping != expected_mapping
916 		 * would work here too.  We have chosen to test the
917 		 * swapcache flag to optimize the common case, when the
918 		 * folio is or is about to be freed: the swapcache flag
919 		 * is cleared (under spin_lock_irq) in the ref_freeze
920 		 * section of __remove_mapping(); but anon folio->mapping
921 		 * is reset to NULL later, in free_pages_prepare().
922 		 */
923 		if (!folio_test_swapcache(folio))
924 			goto stale;
925 		cpu_relax();
926 	}
927 
928 	if (READ_ONCE(folio->mapping) != expected_mapping) {
929 		folio_put(folio);
930 		goto stale;
931 	}
932 
933 	if (flags == KSM_GET_FOLIO_TRYLOCK) {
934 		if (!folio_trylock(folio)) {
935 			folio_put(folio);
936 			return ERR_PTR(-EBUSY);
937 		}
938 	} else if (flags == KSM_GET_FOLIO_LOCK)
939 		folio_lock(folio);
940 
941 	if (flags != KSM_GET_FOLIO_NOLOCK) {
942 		if (READ_ONCE(folio->mapping) != expected_mapping) {
943 			folio_unlock(folio);
944 			folio_put(folio);
945 			goto stale;
946 		}
947 	}
948 	return folio;
949 
950 stale:
951 	/*
952 	 * We come here from above when folio->mapping or the swapcache flag
953 	 * suggests that the node is stale; but it might be under migration.
954 	 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
955 	 * before checking whether node->kpfn has been changed.
956 	 */
957 	smp_rmb();
958 	if (READ_ONCE(stable_node->kpfn) != kpfn)
959 		goto again;
960 	remove_node_from_stable_tree(stable_node);
961 	return NULL;
962 }
963 
964 /*
965  * Removing rmap_item from stable or unstable tree.
966  * This function will clean the information from the stable/unstable tree.
967  */
remove_rmap_item_from_tree(struct ksm_rmap_item * rmap_item)968 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
969 {
970 	if (rmap_item->address & STABLE_FLAG) {
971 		struct ksm_stable_node *stable_node;
972 		struct folio *folio;
973 
974 		stable_node = rmap_item->head;
975 		folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
976 		if (!folio)
977 			goto out;
978 
979 		hlist_del(&rmap_item->hlist);
980 		folio_unlock(folio);
981 		folio_put(folio);
982 
983 		if (!hlist_empty(&stable_node->hlist))
984 			ksm_pages_sharing--;
985 		else
986 			ksm_pages_shared--;
987 
988 		rmap_item->mm->ksm_merging_pages--;
989 
990 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
991 		stable_node->rmap_hlist_len--;
992 
993 		put_anon_vma(rmap_item->anon_vma);
994 		rmap_item->head = NULL;
995 		rmap_item->address &= PAGE_MASK;
996 
997 	} else if (rmap_item->address & UNSTABLE_FLAG) {
998 		unsigned char age;
999 		/*
1000 		 * Usually ksmd can and must skip the rb_erase, because
1001 		 * root_unstable_tree was already reset to RB_ROOT.
1002 		 * But be careful when an mm is exiting: do the rb_erase
1003 		 * if this rmap_item was inserted by this scan, rather
1004 		 * than left over from before.
1005 		 */
1006 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
1007 		BUG_ON(age > 1);
1008 		if (!age)
1009 			rb_erase(&rmap_item->node,
1010 				 root_unstable_tree + NUMA(rmap_item->nid));
1011 		ksm_pages_unshared--;
1012 		rmap_item->address &= PAGE_MASK;
1013 	}
1014 out:
1015 	cond_resched();		/* we're called from many long loops */
1016 }
1017 
remove_trailing_rmap_items(struct ksm_rmap_item ** rmap_list)1018 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
1019 {
1020 	while (*rmap_list) {
1021 		struct ksm_rmap_item *rmap_item = *rmap_list;
1022 		*rmap_list = rmap_item->rmap_list;
1023 		remove_rmap_item_from_tree(rmap_item);
1024 		free_rmap_item(rmap_item);
1025 	}
1026 }
1027 
1028 /*
1029  * Though it's very tempting to unmerge rmap_items from stable tree rather
1030  * than check every pte of a given vma, the locking doesn't quite work for
1031  * that - an rmap_item is assigned to the stable tree after inserting ksm
1032  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
1033  * rmap_items from parent to child at fork time (so as not to waste time
1034  * if exit comes before the next scan reaches it).
1035  *
1036  * Similarly, although we'd like to remove rmap_items (so updating counts
1037  * and freeing memory) when unmerging an area, it's easier to leave that
1038  * to the next pass of ksmd - consider, for example, how ksmd might be
1039  * in cmp_and_merge_page on one of the rmap_items we would be removing.
1040  */
unmerge_ksm_pages(struct vm_area_struct * vma,unsigned long start,unsigned long end,bool lock_vma)1041 static int unmerge_ksm_pages(struct vm_area_struct *vma,
1042 			     unsigned long start, unsigned long end, bool lock_vma)
1043 {
1044 	unsigned long addr;
1045 	int err = 0;
1046 
1047 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
1048 		if (ksm_test_exit(vma->vm_mm))
1049 			break;
1050 		if (signal_pending(current))
1051 			err = -ERESTARTSYS;
1052 		else
1053 			err = break_ksm(vma, addr, lock_vma);
1054 	}
1055 	return err;
1056 }
1057 
1058 static inline
folio_stable_node(const struct folio * folio)1059 struct ksm_stable_node *folio_stable_node(const struct folio *folio)
1060 {
1061 	return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
1062 }
1063 
folio_set_stable_node(struct folio * folio,struct ksm_stable_node * stable_node)1064 static inline void folio_set_stable_node(struct folio *folio,
1065 					 struct ksm_stable_node *stable_node)
1066 {
1067 	VM_WARN_ON_FOLIO(folio_test_anon(folio) && PageAnonExclusive(&folio->page), folio);
1068 	folio->mapping = (void *)((unsigned long)stable_node | FOLIO_MAPPING_KSM);
1069 }
1070 
1071 #ifdef CONFIG_SYSFS
1072 /*
1073  * Only called through the sysfs control interface:
1074  */
remove_stable_node(struct ksm_stable_node * stable_node)1075 static int remove_stable_node(struct ksm_stable_node *stable_node)
1076 {
1077 	struct folio *folio;
1078 	int err;
1079 
1080 	folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
1081 	if (!folio) {
1082 		/*
1083 		 * ksm_get_folio did remove_node_from_stable_tree itself.
1084 		 */
1085 		return 0;
1086 	}
1087 
1088 	/*
1089 	 * Page could be still mapped if this races with __mmput() running in
1090 	 * between ksm_exit() and exit_mmap(). Just refuse to let
1091 	 * merge_across_nodes/max_page_sharing be switched.
1092 	 */
1093 	err = -EBUSY;
1094 	if (!folio_mapped(folio)) {
1095 		/*
1096 		 * The stable node did not yet appear stale to ksm_get_folio(),
1097 		 * since that allows for an unmapped ksm folio to be recognized
1098 		 * right up until it is freed; but the node is safe to remove.
1099 		 * This folio might be in an LRU cache waiting to be freed,
1100 		 * or it might be in the swapcache (perhaps under writeback),
1101 		 * or it might have been removed from swapcache a moment ago.
1102 		 */
1103 		folio_set_stable_node(folio, NULL);
1104 		remove_node_from_stable_tree(stable_node);
1105 		err = 0;
1106 	}
1107 
1108 	folio_unlock(folio);
1109 	folio_put(folio);
1110 	return err;
1111 }
1112 
remove_stable_node_chain(struct ksm_stable_node * stable_node,struct rb_root * root)1113 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
1114 				    struct rb_root *root)
1115 {
1116 	struct ksm_stable_node *dup;
1117 	struct hlist_node *hlist_safe;
1118 
1119 	if (!is_stable_node_chain(stable_node)) {
1120 		VM_BUG_ON(is_stable_node_dup(stable_node));
1121 		if (remove_stable_node(stable_node))
1122 			return true;
1123 		else
1124 			return false;
1125 	}
1126 
1127 	hlist_for_each_entry_safe(dup, hlist_safe,
1128 				  &stable_node->hlist, hlist_dup) {
1129 		VM_BUG_ON(!is_stable_node_dup(dup));
1130 		if (remove_stable_node(dup))
1131 			return true;
1132 	}
1133 	BUG_ON(!hlist_empty(&stable_node->hlist));
1134 	free_stable_node_chain(stable_node, root);
1135 	return false;
1136 }
1137 
remove_all_stable_nodes(void)1138 static int remove_all_stable_nodes(void)
1139 {
1140 	struct ksm_stable_node *stable_node, *next;
1141 	int nid;
1142 	int err = 0;
1143 
1144 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
1145 		while (root_stable_tree[nid].rb_node) {
1146 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
1147 						struct ksm_stable_node, node);
1148 			if (remove_stable_node_chain(stable_node,
1149 						     root_stable_tree + nid)) {
1150 				err = -EBUSY;
1151 				break;	/* proceed to next nid */
1152 			}
1153 			cond_resched();
1154 		}
1155 	}
1156 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
1157 		if (remove_stable_node(stable_node))
1158 			err = -EBUSY;
1159 		cond_resched();
1160 	}
1161 	return err;
1162 }
1163 
unmerge_and_remove_all_rmap_items(void)1164 static int unmerge_and_remove_all_rmap_items(void)
1165 {
1166 	struct ksm_mm_slot *mm_slot;
1167 	struct mm_slot *slot;
1168 	struct mm_struct *mm;
1169 	struct vm_area_struct *vma;
1170 	int err = 0;
1171 
1172 	spin_lock(&ksm_mmlist_lock);
1173 	slot = list_entry(ksm_mm_head.slot.mm_node.next,
1174 			  struct mm_slot, mm_node);
1175 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1176 	spin_unlock(&ksm_mmlist_lock);
1177 
1178 	for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1179 	     mm_slot = ksm_scan.mm_slot) {
1180 		VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1181 
1182 		mm = mm_slot->slot.mm;
1183 		mmap_read_lock(mm);
1184 
1185 		/*
1186 		 * Exit right away if mm is exiting to avoid lockdep issue in
1187 		 * the maple tree
1188 		 */
1189 		if (ksm_test_exit(mm))
1190 			goto mm_exiting;
1191 
1192 		for_each_vma(vmi, vma) {
1193 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1194 				continue;
1195 			err = unmerge_ksm_pages(vma,
1196 						vma->vm_start, vma->vm_end, false);
1197 			if (err)
1198 				goto error;
1199 		}
1200 
1201 mm_exiting:
1202 		remove_trailing_rmap_items(&mm_slot->rmap_list);
1203 		mmap_read_unlock(mm);
1204 
1205 		spin_lock(&ksm_mmlist_lock);
1206 		slot = list_entry(mm_slot->slot.mm_node.next,
1207 				  struct mm_slot, mm_node);
1208 		ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1209 		if (ksm_test_exit(mm)) {
1210 			hash_del(&mm_slot->slot.hash);
1211 			list_del(&mm_slot->slot.mm_node);
1212 			spin_unlock(&ksm_mmlist_lock);
1213 
1214 			mm_slot_free(mm_slot_cache, mm_slot);
1215 			mm_flags_clear(MMF_VM_MERGEABLE, mm);
1216 			mm_flags_clear(MMF_VM_MERGE_ANY, mm);
1217 			mmdrop(mm);
1218 		} else
1219 			spin_unlock(&ksm_mmlist_lock);
1220 	}
1221 
1222 	/* Clean up stable nodes, but don't worry if some are still busy */
1223 	remove_all_stable_nodes();
1224 	ksm_scan.seqnr = 0;
1225 	return 0;
1226 
1227 error:
1228 	mmap_read_unlock(mm);
1229 	spin_lock(&ksm_mmlist_lock);
1230 	ksm_scan.mm_slot = &ksm_mm_head;
1231 	spin_unlock(&ksm_mmlist_lock);
1232 	return err;
1233 }
1234 #endif /* CONFIG_SYSFS */
1235 
calc_checksum(struct page * page)1236 static u32 calc_checksum(struct page *page)
1237 {
1238 	u32 checksum;
1239 	void *addr = kmap_local_page(page);
1240 	checksum = xxhash(addr, PAGE_SIZE, 0);
1241 	kunmap_local(addr);
1242 	return checksum;
1243 }
1244 
write_protect_page(struct vm_area_struct * vma,struct folio * folio,pte_t * orig_pte)1245 static int write_protect_page(struct vm_area_struct *vma, struct folio *folio,
1246 			      pte_t *orig_pte)
1247 {
1248 	struct mm_struct *mm = vma->vm_mm;
1249 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, 0, 0);
1250 	int swapped;
1251 	int err = -EFAULT;
1252 	struct mmu_notifier_range range;
1253 	bool anon_exclusive;
1254 	pte_t entry;
1255 
1256 	if (WARN_ON_ONCE(folio_test_large(folio)))
1257 		return err;
1258 
1259 	pvmw.address = page_address_in_vma(folio, folio_page(folio, 0), vma);
1260 	if (pvmw.address == -EFAULT)
1261 		goto out;
1262 
1263 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1264 				pvmw.address + PAGE_SIZE);
1265 	mmu_notifier_invalidate_range_start(&range);
1266 
1267 	if (!page_vma_mapped_walk(&pvmw))
1268 		goto out_mn;
1269 	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1270 		goto out_unlock;
1271 
1272 	entry = ptep_get(pvmw.pte);
1273 	/*
1274 	 * Handle PFN swap PTEs, such as device-exclusive ones, that actually
1275 	 * map pages: give up just like the next folio_walk would.
1276 	 */
1277 	if (unlikely(!pte_present(entry)))
1278 		goto out_unlock;
1279 
1280 	anon_exclusive = PageAnonExclusive(&folio->page);
1281 	if (pte_write(entry) || pte_dirty(entry) ||
1282 	    anon_exclusive || mm_tlb_flush_pending(mm)) {
1283 		swapped = folio_test_swapcache(folio);
1284 		flush_cache_page(vma, pvmw.address, folio_pfn(folio));
1285 		/*
1286 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1287 		 * take any lock, therefore the check that we are going to make
1288 		 * with the pagecount against the mapcount is racy and
1289 		 * O_DIRECT can happen right after the check.
1290 		 * So we clear the pte and flush the tlb before the check
1291 		 * this assure us that no O_DIRECT can happen after the check
1292 		 * or in the middle of the check.
1293 		 *
1294 		 * No need to notify as we are downgrading page table to read
1295 		 * only not changing it to point to a new page.
1296 		 *
1297 		 * See Documentation/mm/mmu_notifier.rst
1298 		 */
1299 		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1300 		/*
1301 		 * Check that no O_DIRECT or similar I/O is in progress on the
1302 		 * page
1303 		 */
1304 		if (folio_mapcount(folio) + 1 + swapped != folio_ref_count(folio)) {
1305 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1306 			goto out_unlock;
1307 		}
1308 
1309 		/* See folio_try_share_anon_rmap_pte(): clear PTE first. */
1310 		if (anon_exclusive &&
1311 		    folio_try_share_anon_rmap_pte(folio, &folio->page)) {
1312 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1313 			goto out_unlock;
1314 		}
1315 
1316 		if (pte_dirty(entry))
1317 			folio_mark_dirty(folio);
1318 		entry = pte_mkclean(entry);
1319 
1320 		if (pte_write(entry))
1321 			entry = pte_wrprotect(entry);
1322 
1323 		set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1324 	}
1325 	*orig_pte = entry;
1326 	err = 0;
1327 
1328 out_unlock:
1329 	page_vma_mapped_walk_done(&pvmw);
1330 out_mn:
1331 	mmu_notifier_invalidate_range_end(&range);
1332 out:
1333 	return err;
1334 }
1335 
1336 /**
1337  * replace_page - replace page in vma by new ksm page
1338  * @vma:      vma that holds the pte pointing to page
1339  * @page:     the page we are replacing by kpage
1340  * @kpage:    the ksm page we replace page by
1341  * @orig_pte: the original value of the pte
1342  *
1343  * Returns 0 on success, -EFAULT on failure.
1344  */
replace_page(struct vm_area_struct * vma,struct page * page,struct page * kpage,pte_t orig_pte)1345 static int replace_page(struct vm_area_struct *vma, struct page *page,
1346 			struct page *kpage, pte_t orig_pte)
1347 {
1348 	struct folio *kfolio = page_folio(kpage);
1349 	struct mm_struct *mm = vma->vm_mm;
1350 	struct folio *folio = page_folio(page);
1351 	pmd_t *pmd;
1352 	pmd_t pmde;
1353 	pte_t *ptep;
1354 	pte_t newpte;
1355 	spinlock_t *ptl;
1356 	unsigned long addr;
1357 	int err = -EFAULT;
1358 	struct mmu_notifier_range range;
1359 
1360 	addr = page_address_in_vma(folio, page, vma);
1361 	if (addr == -EFAULT)
1362 		goto out;
1363 
1364 	pmd = mm_find_pmd(mm, addr);
1365 	if (!pmd)
1366 		goto out;
1367 	/*
1368 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1369 	 * without holding anon_vma lock for write.  So when looking for a
1370 	 * genuine pmde (in which to find pte), test present and !THP together.
1371 	 */
1372 	pmde = pmdp_get_lockless(pmd);
1373 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1374 		goto out;
1375 
1376 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1377 				addr + PAGE_SIZE);
1378 	mmu_notifier_invalidate_range_start(&range);
1379 
1380 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1381 	if (!ptep)
1382 		goto out_mn;
1383 	if (!pte_same(ptep_get(ptep), orig_pte)) {
1384 		pte_unmap_unlock(ptep, ptl);
1385 		goto out_mn;
1386 	}
1387 	VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1388 	VM_BUG_ON_FOLIO(folio_test_anon(kfolio) && PageAnonExclusive(kpage),
1389 			kfolio);
1390 
1391 	/*
1392 	 * No need to check ksm_use_zero_pages here: we can only have a
1393 	 * zero_page here if ksm_use_zero_pages was enabled already.
1394 	 */
1395 	if (!is_zero_pfn(page_to_pfn(kpage))) {
1396 		folio_get(kfolio);
1397 		folio_add_anon_rmap_pte(kfolio, kpage, vma, addr, RMAP_NONE);
1398 		newpte = mk_pte(kpage, vma->vm_page_prot);
1399 	} else {
1400 		/*
1401 		 * Use pte_mkdirty to mark the zero page mapped by KSM, and then
1402 		 * we can easily track all KSM-placed zero pages by checking if
1403 		 * the dirty bit in zero page's PTE is set.
1404 		 */
1405 		newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot)));
1406 		ksm_map_zero_page(mm);
1407 		/*
1408 		 * We're replacing an anonymous page with a zero page, which is
1409 		 * not anonymous. We need to do proper accounting otherwise we
1410 		 * will get wrong values in /proc, and a BUG message in dmesg
1411 		 * when tearing down the mm.
1412 		 */
1413 		dec_mm_counter(mm, MM_ANONPAGES);
1414 	}
1415 
1416 	flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
1417 	/*
1418 	 * No need to notify as we are replacing a read only page with another
1419 	 * read only page with the same content.
1420 	 *
1421 	 * See Documentation/mm/mmu_notifier.rst
1422 	 */
1423 	ptep_clear_flush(vma, addr, ptep);
1424 	set_pte_at(mm, addr, ptep, newpte);
1425 
1426 	folio_remove_rmap_pte(folio, page, vma);
1427 	if (!folio_mapped(folio))
1428 		folio_free_swap(folio);
1429 	folio_put(folio);
1430 
1431 	pte_unmap_unlock(ptep, ptl);
1432 	err = 0;
1433 out_mn:
1434 	mmu_notifier_invalidate_range_end(&range);
1435 out:
1436 	return err;
1437 }
1438 
1439 /*
1440  * try_to_merge_one_page - take two pages and merge them into one
1441  * @vma: the vma that holds the pte pointing to page
1442  * @page: the PageAnon page that we want to replace with kpage
1443  * @kpage: the KSM page that we want to map instead of page,
1444  *         or NULL the first time when we want to use page as kpage.
1445  *
1446  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1447  */
try_to_merge_one_page(struct vm_area_struct * vma,struct page * page,struct page * kpage)1448 static int try_to_merge_one_page(struct vm_area_struct *vma,
1449 				 struct page *page, struct page *kpage)
1450 {
1451 	struct folio *folio = page_folio(page);
1452 	pte_t orig_pte = __pte(0);
1453 	int err = -EFAULT;
1454 
1455 	if (page == kpage)			/* ksm page forked */
1456 		return 0;
1457 
1458 	if (!folio_test_anon(folio))
1459 		goto out;
1460 
1461 	/*
1462 	 * We need the folio lock to read a stable swapcache flag in
1463 	 * write_protect_page().  We trylock because we don't want to wait
1464 	 * here - we prefer to continue scanning and merging different
1465 	 * pages, then come back to this page when it is unlocked.
1466 	 */
1467 	if (!folio_trylock(folio))
1468 		goto out;
1469 
1470 	if (folio_test_large(folio)) {
1471 		if (split_huge_page(page))
1472 			goto out_unlock;
1473 		folio = page_folio(page);
1474 	}
1475 
1476 	/*
1477 	 * If this anonymous page is mapped only here, its pte may need
1478 	 * to be write-protected.  If it's mapped elsewhere, all of its
1479 	 * ptes are necessarily already write-protected.  But in either
1480 	 * case, we need to lock and check page_count is not raised.
1481 	 */
1482 	if (write_protect_page(vma, folio, &orig_pte) == 0) {
1483 		if (!kpage) {
1484 			/*
1485 			 * While we hold folio lock, upgrade folio from
1486 			 * anon to a NULL stable_node with the KSM flag set:
1487 			 * stable_tree_insert() will update stable_node.
1488 			 */
1489 			folio_set_stable_node(folio, NULL);
1490 			folio_mark_accessed(folio);
1491 			/*
1492 			 * Page reclaim just frees a clean folio with no dirty
1493 			 * ptes: make sure that the ksm page would be swapped.
1494 			 */
1495 			if (!folio_test_dirty(folio))
1496 				folio_mark_dirty(folio);
1497 			err = 0;
1498 		} else if (pages_identical(page, kpage))
1499 			err = replace_page(vma, page, kpage, orig_pte);
1500 	}
1501 
1502 out_unlock:
1503 	folio_unlock(folio);
1504 out:
1505 	return err;
1506 }
1507 
1508 /*
1509  * This function returns 0 if the pages were merged or if they are
1510  * no longer merging candidates (e.g., VMA stale), -EFAULT otherwise.
1511  */
try_to_merge_with_zero_page(struct ksm_rmap_item * rmap_item,struct page * page)1512 static int try_to_merge_with_zero_page(struct ksm_rmap_item *rmap_item,
1513 				       struct page *page)
1514 {
1515 	struct mm_struct *mm = rmap_item->mm;
1516 	int err = -EFAULT;
1517 
1518 	/*
1519 	 * Same checksum as an empty page. We attempt to merge it with the
1520 	 * appropriate zero page if the user enabled this via sysfs.
1521 	 */
1522 	if (ksm_use_zero_pages && (rmap_item->oldchecksum == zero_checksum)) {
1523 		struct vm_area_struct *vma;
1524 
1525 		mmap_read_lock(mm);
1526 		vma = find_mergeable_vma(mm, rmap_item->address);
1527 		if (vma) {
1528 			err = try_to_merge_one_page(vma, page,
1529 					ZERO_PAGE(rmap_item->address));
1530 			trace_ksm_merge_one_page(
1531 				page_to_pfn(ZERO_PAGE(rmap_item->address)),
1532 				rmap_item, mm, err);
1533 		} else {
1534 			/*
1535 			 * If the vma is out of date, we do not need to
1536 			 * continue.
1537 			 */
1538 			err = 0;
1539 		}
1540 		mmap_read_unlock(mm);
1541 	}
1542 
1543 	return err;
1544 }
1545 
1546 /*
1547  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1548  * but no new kernel page is allocated: kpage must already be a ksm page.
1549  *
1550  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1551  */
try_to_merge_with_ksm_page(struct ksm_rmap_item * rmap_item,struct page * page,struct page * kpage)1552 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1553 				      struct page *page, struct page *kpage)
1554 {
1555 	struct mm_struct *mm = rmap_item->mm;
1556 	struct vm_area_struct *vma;
1557 	int err = -EFAULT;
1558 
1559 	mmap_read_lock(mm);
1560 	vma = find_mergeable_vma(mm, rmap_item->address);
1561 	if (!vma)
1562 		goto out;
1563 
1564 	err = try_to_merge_one_page(vma, page, kpage);
1565 	if (err)
1566 		goto out;
1567 
1568 	/* Unstable nid is in union with stable anon_vma: remove first */
1569 	remove_rmap_item_from_tree(rmap_item);
1570 
1571 	/* Must get reference to anon_vma while still holding mmap_lock */
1572 	rmap_item->anon_vma = vma->anon_vma;
1573 	get_anon_vma(vma->anon_vma);
1574 out:
1575 	mmap_read_unlock(mm);
1576 	trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1577 				rmap_item, mm, err);
1578 	return err;
1579 }
1580 
1581 /*
1582  * try_to_merge_two_pages - take two identical pages and prepare them
1583  * to be merged into one page.
1584  *
1585  * This function returns the kpage if we successfully merged two identical
1586  * pages into one ksm page, NULL otherwise.
1587  *
1588  * Note that this function upgrades page to ksm page: if one of the pages
1589  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1590  */
try_to_merge_two_pages(struct ksm_rmap_item * rmap_item,struct page * page,struct ksm_rmap_item * tree_rmap_item,struct page * tree_page)1591 static struct folio *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1592 					   struct page *page,
1593 					   struct ksm_rmap_item *tree_rmap_item,
1594 					   struct page *tree_page)
1595 {
1596 	int err;
1597 
1598 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1599 	if (!err) {
1600 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1601 							tree_page, page);
1602 		/*
1603 		 * If that fails, we have a ksm page with only one pte
1604 		 * pointing to it: so break it.
1605 		 */
1606 		if (err)
1607 			break_cow(rmap_item);
1608 	}
1609 	return err ? NULL : page_folio(page);
1610 }
1611 
1612 static __always_inline
__is_page_sharing_candidate(struct ksm_stable_node * stable_node,int offset)1613 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1614 {
1615 	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1616 	/*
1617 	 * Check that at least one mapping still exists, otherwise
1618 	 * there's no much point to merge and share with this
1619 	 * stable_node, as the underlying tree_page of the other
1620 	 * sharer is going to be freed soon.
1621 	 */
1622 	return stable_node->rmap_hlist_len &&
1623 		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1624 }
1625 
1626 static __always_inline
is_page_sharing_candidate(struct ksm_stable_node * stable_node)1627 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1628 {
1629 	return __is_page_sharing_candidate(stable_node, 0);
1630 }
1631 
stable_node_dup(struct ksm_stable_node ** _stable_node_dup,struct ksm_stable_node ** _stable_node,struct rb_root * root,bool prune_stale_stable_nodes)1632 static struct folio *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1633 				     struct ksm_stable_node **_stable_node,
1634 				     struct rb_root *root,
1635 				     bool prune_stale_stable_nodes)
1636 {
1637 	struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1638 	struct hlist_node *hlist_safe;
1639 	struct folio *folio, *tree_folio = NULL;
1640 	int found_rmap_hlist_len;
1641 
1642 	if (!prune_stale_stable_nodes ||
1643 	    time_before(jiffies, stable_node->chain_prune_time +
1644 			msecs_to_jiffies(
1645 				ksm_stable_node_chains_prune_millisecs)))
1646 		prune_stale_stable_nodes = false;
1647 	else
1648 		stable_node->chain_prune_time = jiffies;
1649 
1650 	hlist_for_each_entry_safe(dup, hlist_safe,
1651 				  &stable_node->hlist, hlist_dup) {
1652 		cond_resched();
1653 		/*
1654 		 * We must walk all stable_node_dup to prune the stale
1655 		 * stable nodes during lookup.
1656 		 *
1657 		 * ksm_get_folio can drop the nodes from the
1658 		 * stable_node->hlist if they point to freed pages
1659 		 * (that's why we do a _safe walk). The "dup"
1660 		 * stable_node parameter itself will be freed from
1661 		 * under us if it returns NULL.
1662 		 */
1663 		folio = ksm_get_folio(dup, KSM_GET_FOLIO_NOLOCK);
1664 		if (!folio)
1665 			continue;
1666 		/* Pick the best candidate if possible. */
1667 		if (!found || (is_page_sharing_candidate(dup) &&
1668 		    (!is_page_sharing_candidate(found) ||
1669 		     dup->rmap_hlist_len > found_rmap_hlist_len))) {
1670 			if (found)
1671 				folio_put(tree_folio);
1672 			found = dup;
1673 			found_rmap_hlist_len = found->rmap_hlist_len;
1674 			tree_folio = folio;
1675 			/* skip put_page for found candidate */
1676 			if (!prune_stale_stable_nodes &&
1677 			    is_page_sharing_candidate(found))
1678 				break;
1679 			continue;
1680 		}
1681 		folio_put(folio);
1682 	}
1683 
1684 	if (found) {
1685 		if (hlist_is_singular_node(&found->hlist_dup, &stable_node->hlist)) {
1686 			/*
1687 			 * If there's not just one entry it would
1688 			 * corrupt memory, better BUG_ON. In KSM
1689 			 * context with no lock held it's not even
1690 			 * fatal.
1691 			 */
1692 			BUG_ON(stable_node->hlist.first->next);
1693 
1694 			/*
1695 			 * There's just one entry and it is below the
1696 			 * deduplication limit so drop the chain.
1697 			 */
1698 			rb_replace_node(&stable_node->node, &found->node,
1699 					root);
1700 			free_stable_node(stable_node);
1701 			ksm_stable_node_chains--;
1702 			ksm_stable_node_dups--;
1703 			/*
1704 			 * NOTE: the caller depends on the stable_node
1705 			 * to be equal to stable_node_dup if the chain
1706 			 * was collapsed.
1707 			 */
1708 			*_stable_node = found;
1709 			/*
1710 			 * Just for robustness, as stable_node is
1711 			 * otherwise left as a stable pointer, the
1712 			 * compiler shall optimize it away at build
1713 			 * time.
1714 			 */
1715 			stable_node = NULL;
1716 		} else if (stable_node->hlist.first != &found->hlist_dup &&
1717 			   __is_page_sharing_candidate(found, 1)) {
1718 			/*
1719 			 * If the found stable_node dup can accept one
1720 			 * more future merge (in addition to the one
1721 			 * that is underway) and is not at the head of
1722 			 * the chain, put it there so next search will
1723 			 * be quicker in the !prune_stale_stable_nodes
1724 			 * case.
1725 			 *
1726 			 * NOTE: it would be inaccurate to use nr > 1
1727 			 * instead of checking the hlist.first pointer
1728 			 * directly, because in the
1729 			 * prune_stale_stable_nodes case "nr" isn't
1730 			 * the position of the found dup in the chain,
1731 			 * but the total number of dups in the chain.
1732 			 */
1733 			hlist_del(&found->hlist_dup);
1734 			hlist_add_head(&found->hlist_dup,
1735 				       &stable_node->hlist);
1736 		}
1737 	} else {
1738 		/* Its hlist must be empty if no one found. */
1739 		free_stable_node_chain(stable_node, root);
1740 	}
1741 
1742 	*_stable_node_dup = found;
1743 	return tree_folio;
1744 }
1745 
1746 /*
1747  * Like for ksm_get_folio, this function can free the *_stable_node and
1748  * *_stable_node_dup if the returned tree_page is NULL.
1749  *
1750  * It can also free and overwrite *_stable_node with the found
1751  * stable_node_dup if the chain is collapsed (in which case
1752  * *_stable_node will be equal to *_stable_node_dup like if the chain
1753  * never existed). It's up to the caller to verify tree_page is not
1754  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1755  *
1756  * *_stable_node_dup is really a second output parameter of this
1757  * function and will be overwritten in all cases, the caller doesn't
1758  * need to initialize it.
1759  */
__stable_node_chain(struct ksm_stable_node ** _stable_node_dup,struct ksm_stable_node ** _stable_node,struct rb_root * root,bool prune_stale_stable_nodes)1760 static struct folio *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1761 					 struct ksm_stable_node **_stable_node,
1762 					 struct rb_root *root,
1763 					 bool prune_stale_stable_nodes)
1764 {
1765 	struct ksm_stable_node *stable_node = *_stable_node;
1766 
1767 	if (!is_stable_node_chain(stable_node)) {
1768 		*_stable_node_dup = stable_node;
1769 		return ksm_get_folio(stable_node, KSM_GET_FOLIO_NOLOCK);
1770 	}
1771 	return stable_node_dup(_stable_node_dup, _stable_node, root,
1772 			       prune_stale_stable_nodes);
1773 }
1774 
chain_prune(struct ksm_stable_node ** s_n_d,struct ksm_stable_node ** s_n,struct rb_root * root)1775 static __always_inline struct folio *chain_prune(struct ksm_stable_node **s_n_d,
1776 						 struct ksm_stable_node **s_n,
1777 						 struct rb_root *root)
1778 {
1779 	return __stable_node_chain(s_n_d, s_n, root, true);
1780 }
1781 
chain(struct ksm_stable_node ** s_n_d,struct ksm_stable_node ** s_n,struct rb_root * root)1782 static __always_inline struct folio *chain(struct ksm_stable_node **s_n_d,
1783 					   struct ksm_stable_node **s_n,
1784 					   struct rb_root *root)
1785 {
1786 	return __stable_node_chain(s_n_d, s_n, root, false);
1787 }
1788 
1789 /*
1790  * stable_tree_search - search for page inside the stable tree
1791  *
1792  * This function checks if there is a page inside the stable tree
1793  * with identical content to the page that we are scanning right now.
1794  *
1795  * This function returns the stable tree node of identical content if found,
1796  * -EBUSY if the stable node's page is being migrated, NULL otherwise.
1797  */
stable_tree_search(struct page * page)1798 static struct folio *stable_tree_search(struct page *page)
1799 {
1800 	int nid;
1801 	struct rb_root *root;
1802 	struct rb_node **new;
1803 	struct rb_node *parent;
1804 	struct ksm_stable_node *stable_node, *stable_node_dup;
1805 	struct ksm_stable_node *page_node;
1806 	struct folio *folio;
1807 
1808 	folio = page_folio(page);
1809 	page_node = folio_stable_node(folio);
1810 	if (page_node && page_node->head != &migrate_nodes) {
1811 		/* ksm page forked */
1812 		folio_get(folio);
1813 		return folio;
1814 	}
1815 
1816 	nid = get_kpfn_nid(folio_pfn(folio));
1817 	root = root_stable_tree + nid;
1818 again:
1819 	new = &root->rb_node;
1820 	parent = NULL;
1821 
1822 	while (*new) {
1823 		struct folio *tree_folio;
1824 		int ret;
1825 
1826 		cond_resched();
1827 		stable_node = rb_entry(*new, struct ksm_stable_node, node);
1828 		tree_folio = chain_prune(&stable_node_dup, &stable_node, root);
1829 		if (!tree_folio) {
1830 			/*
1831 			 * If we walked over a stale stable_node,
1832 			 * ksm_get_folio() will call rb_erase() and it
1833 			 * may rebalance the tree from under us. So
1834 			 * restart the search from scratch. Returning
1835 			 * NULL would be safe too, but we'd generate
1836 			 * false negative insertions just because some
1837 			 * stable_node was stale.
1838 			 */
1839 			goto again;
1840 		}
1841 
1842 		ret = memcmp_pages(page, &tree_folio->page);
1843 		folio_put(tree_folio);
1844 
1845 		parent = *new;
1846 		if (ret < 0)
1847 			new = &parent->rb_left;
1848 		else if (ret > 0)
1849 			new = &parent->rb_right;
1850 		else {
1851 			if (page_node) {
1852 				VM_BUG_ON(page_node->head != &migrate_nodes);
1853 				/*
1854 				 * If the mapcount of our migrated KSM folio is
1855 				 * at most 1, we can merge it with another
1856 				 * KSM folio where we know that we have space
1857 				 * for one more mapping without exceeding the
1858 				 * ksm_max_page_sharing limit: see
1859 				 * chain_prune(). This way, we can avoid adding
1860 				 * this stable node to the chain.
1861 				 */
1862 				if (folio_mapcount(folio) > 1)
1863 					goto chain_append;
1864 			}
1865 
1866 			if (!is_page_sharing_candidate(stable_node_dup)) {
1867 				/*
1868 				 * If the stable_node is a chain and
1869 				 * we got a payload match in memcmp
1870 				 * but we cannot merge the scanned
1871 				 * page in any of the existing
1872 				 * stable_node dups because they're
1873 				 * all full, we need to wait the
1874 				 * scanned page to find itself a match
1875 				 * in the unstable tree to create a
1876 				 * brand new KSM page to add later to
1877 				 * the dups of this stable_node.
1878 				 */
1879 				return NULL;
1880 			}
1881 
1882 			/*
1883 			 * Lock and unlock the stable_node's page (which
1884 			 * might already have been migrated) so that page
1885 			 * migration is sure to notice its raised count.
1886 			 * It would be more elegant to return stable_node
1887 			 * than kpage, but that involves more changes.
1888 			 */
1889 			tree_folio = ksm_get_folio(stable_node_dup,
1890 						   KSM_GET_FOLIO_TRYLOCK);
1891 
1892 			if (PTR_ERR(tree_folio) == -EBUSY)
1893 				return ERR_PTR(-EBUSY);
1894 
1895 			if (unlikely(!tree_folio))
1896 				/*
1897 				 * The tree may have been rebalanced,
1898 				 * so re-evaluate parent and new.
1899 				 */
1900 				goto again;
1901 			folio_unlock(tree_folio);
1902 
1903 			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1904 			    NUMA(stable_node_dup->nid)) {
1905 				folio_put(tree_folio);
1906 				goto replace;
1907 			}
1908 			return tree_folio;
1909 		}
1910 	}
1911 
1912 	if (!page_node)
1913 		return NULL;
1914 
1915 	list_del(&page_node->list);
1916 	DO_NUMA(page_node->nid = nid);
1917 	rb_link_node(&page_node->node, parent, new);
1918 	rb_insert_color(&page_node->node, root);
1919 out:
1920 	if (is_page_sharing_candidate(page_node)) {
1921 		folio_get(folio);
1922 		return folio;
1923 	} else
1924 		return NULL;
1925 
1926 replace:
1927 	/*
1928 	 * If stable_node was a chain and chain_prune collapsed it,
1929 	 * stable_node has been updated to be the new regular
1930 	 * stable_node. A collapse of the chain is indistinguishable
1931 	 * from the case there was no chain in the stable
1932 	 * rbtree. Otherwise stable_node is the chain and
1933 	 * stable_node_dup is the dup to replace.
1934 	 */
1935 	if (stable_node_dup == stable_node) {
1936 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1937 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1938 		/* there is no chain */
1939 		if (page_node) {
1940 			VM_BUG_ON(page_node->head != &migrate_nodes);
1941 			list_del(&page_node->list);
1942 			DO_NUMA(page_node->nid = nid);
1943 			rb_replace_node(&stable_node_dup->node,
1944 					&page_node->node,
1945 					root);
1946 			if (is_page_sharing_candidate(page_node))
1947 				folio_get(folio);
1948 			else
1949 				folio = NULL;
1950 		} else {
1951 			rb_erase(&stable_node_dup->node, root);
1952 			folio = NULL;
1953 		}
1954 	} else {
1955 		VM_BUG_ON(!is_stable_node_chain(stable_node));
1956 		__stable_node_dup_del(stable_node_dup);
1957 		if (page_node) {
1958 			VM_BUG_ON(page_node->head != &migrate_nodes);
1959 			list_del(&page_node->list);
1960 			DO_NUMA(page_node->nid = nid);
1961 			stable_node_chain_add_dup(page_node, stable_node);
1962 			if (is_page_sharing_candidate(page_node))
1963 				folio_get(folio);
1964 			else
1965 				folio = NULL;
1966 		} else {
1967 			folio = NULL;
1968 		}
1969 	}
1970 	stable_node_dup->head = &migrate_nodes;
1971 	list_add(&stable_node_dup->list, stable_node_dup->head);
1972 	return folio;
1973 
1974 chain_append:
1975 	/*
1976 	 * If stable_node was a chain and chain_prune collapsed it,
1977 	 * stable_node has been updated to be the new regular
1978 	 * stable_node. A collapse of the chain is indistinguishable
1979 	 * from the case there was no chain in the stable
1980 	 * rbtree. Otherwise stable_node is the chain and
1981 	 * stable_node_dup is the dup to replace.
1982 	 */
1983 	if (stable_node_dup == stable_node) {
1984 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1985 		/* chain is missing so create it */
1986 		stable_node = alloc_stable_node_chain(stable_node_dup,
1987 						      root);
1988 		if (!stable_node)
1989 			return NULL;
1990 	}
1991 	/*
1992 	 * Add this stable_node dup that was
1993 	 * migrated to the stable_node chain
1994 	 * of the current nid for this page
1995 	 * content.
1996 	 */
1997 	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1998 	VM_BUG_ON(page_node->head != &migrate_nodes);
1999 	list_del(&page_node->list);
2000 	DO_NUMA(page_node->nid = nid);
2001 	stable_node_chain_add_dup(page_node, stable_node);
2002 	goto out;
2003 }
2004 
2005 /*
2006  * stable_tree_insert - insert stable tree node pointing to new ksm page
2007  * into the stable tree.
2008  *
2009  * This function returns the stable tree node just allocated on success,
2010  * NULL otherwise.
2011  */
stable_tree_insert(struct folio * kfolio)2012 static struct ksm_stable_node *stable_tree_insert(struct folio *kfolio)
2013 {
2014 	int nid;
2015 	unsigned long kpfn;
2016 	struct rb_root *root;
2017 	struct rb_node **new;
2018 	struct rb_node *parent;
2019 	struct ksm_stable_node *stable_node, *stable_node_dup;
2020 	bool need_chain = false;
2021 
2022 	kpfn = folio_pfn(kfolio);
2023 	nid = get_kpfn_nid(kpfn);
2024 	root = root_stable_tree + nid;
2025 again:
2026 	parent = NULL;
2027 	new = &root->rb_node;
2028 
2029 	while (*new) {
2030 		struct folio *tree_folio;
2031 		int ret;
2032 
2033 		cond_resched();
2034 		stable_node = rb_entry(*new, struct ksm_stable_node, node);
2035 		tree_folio = chain(&stable_node_dup, &stable_node, root);
2036 		if (!tree_folio) {
2037 			/*
2038 			 * If we walked over a stale stable_node,
2039 			 * ksm_get_folio() will call rb_erase() and it
2040 			 * may rebalance the tree from under us. So
2041 			 * restart the search from scratch. Returning
2042 			 * NULL would be safe too, but we'd generate
2043 			 * false negative insertions just because some
2044 			 * stable_node was stale.
2045 			 */
2046 			goto again;
2047 		}
2048 
2049 		ret = memcmp_pages(&kfolio->page, &tree_folio->page);
2050 		folio_put(tree_folio);
2051 
2052 		parent = *new;
2053 		if (ret < 0)
2054 			new = &parent->rb_left;
2055 		else if (ret > 0)
2056 			new = &parent->rb_right;
2057 		else {
2058 			need_chain = true;
2059 			break;
2060 		}
2061 	}
2062 
2063 	stable_node_dup = alloc_stable_node();
2064 	if (!stable_node_dup)
2065 		return NULL;
2066 
2067 	INIT_HLIST_HEAD(&stable_node_dup->hlist);
2068 	stable_node_dup->kpfn = kpfn;
2069 	stable_node_dup->rmap_hlist_len = 0;
2070 	DO_NUMA(stable_node_dup->nid = nid);
2071 	if (!need_chain) {
2072 		rb_link_node(&stable_node_dup->node, parent, new);
2073 		rb_insert_color(&stable_node_dup->node, root);
2074 	} else {
2075 		if (!is_stable_node_chain(stable_node)) {
2076 			struct ksm_stable_node *orig = stable_node;
2077 			/* chain is missing so create it */
2078 			stable_node = alloc_stable_node_chain(orig, root);
2079 			if (!stable_node) {
2080 				free_stable_node(stable_node_dup);
2081 				return NULL;
2082 			}
2083 		}
2084 		stable_node_chain_add_dup(stable_node_dup, stable_node);
2085 	}
2086 
2087 	folio_set_stable_node(kfolio, stable_node_dup);
2088 
2089 	return stable_node_dup;
2090 }
2091 
2092 /*
2093  * unstable_tree_search_insert - search for identical page,
2094  * else insert rmap_item into the unstable tree.
2095  *
2096  * This function searches for a page in the unstable tree identical to the
2097  * page currently being scanned; and if no identical page is found in the
2098  * tree, we insert rmap_item as a new object into the unstable tree.
2099  *
2100  * This function returns pointer to rmap_item found to be identical
2101  * to the currently scanned page, NULL otherwise.
2102  *
2103  * This function does both searching and inserting, because they share
2104  * the same walking algorithm in an rbtree.
2105  */
2106 static
unstable_tree_search_insert(struct ksm_rmap_item * rmap_item,struct page * page,struct page ** tree_pagep)2107 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
2108 					      struct page *page,
2109 					      struct page **tree_pagep)
2110 {
2111 	struct rb_node **new;
2112 	struct rb_root *root;
2113 	struct rb_node *parent = NULL;
2114 	int nid;
2115 
2116 	nid = get_kpfn_nid(page_to_pfn(page));
2117 	root = root_unstable_tree + nid;
2118 	new = &root->rb_node;
2119 
2120 	while (*new) {
2121 		struct ksm_rmap_item *tree_rmap_item;
2122 		struct page *tree_page;
2123 		int ret;
2124 
2125 		cond_resched();
2126 		tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
2127 		tree_page = get_mergeable_page(tree_rmap_item);
2128 		if (!tree_page)
2129 			return NULL;
2130 
2131 		/*
2132 		 * Don't substitute a ksm page for a forked page.
2133 		 */
2134 		if (page == tree_page) {
2135 			put_page(tree_page);
2136 			return NULL;
2137 		}
2138 
2139 		ret = memcmp_pages(page, tree_page);
2140 
2141 		parent = *new;
2142 		if (ret < 0) {
2143 			put_page(tree_page);
2144 			new = &parent->rb_left;
2145 		} else if (ret > 0) {
2146 			put_page(tree_page);
2147 			new = &parent->rb_right;
2148 		} else if (!ksm_merge_across_nodes &&
2149 			   page_to_nid(tree_page) != nid) {
2150 			/*
2151 			 * If tree_page has been migrated to another NUMA node,
2152 			 * it will be flushed out and put in the right unstable
2153 			 * tree next time: only merge with it when across_nodes.
2154 			 */
2155 			put_page(tree_page);
2156 			return NULL;
2157 		} else {
2158 			*tree_pagep = tree_page;
2159 			return tree_rmap_item;
2160 		}
2161 	}
2162 
2163 	rmap_item->address |= UNSTABLE_FLAG;
2164 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2165 	DO_NUMA(rmap_item->nid = nid);
2166 	rb_link_node(&rmap_item->node, parent, new);
2167 	rb_insert_color(&rmap_item->node, root);
2168 
2169 	ksm_pages_unshared++;
2170 	return NULL;
2171 }
2172 
2173 /*
2174  * stable_tree_append - add another rmap_item to the linked list of
2175  * rmap_items hanging off a given node of the stable tree, all sharing
2176  * the same ksm page.
2177  */
stable_tree_append(struct ksm_rmap_item * rmap_item,struct ksm_stable_node * stable_node,bool max_page_sharing_bypass)2178 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2179 			       struct ksm_stable_node *stable_node,
2180 			       bool max_page_sharing_bypass)
2181 {
2182 	/*
2183 	 * rmap won't find this mapping if we don't insert the
2184 	 * rmap_item in the right stable_node
2185 	 * duplicate. page_migration could break later if rmap breaks,
2186 	 * so we can as well crash here. We really need to check for
2187 	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2188 	 * for other negative values as an underflow if detected here
2189 	 * for the first time (and not when decreasing rmap_hlist_len)
2190 	 * would be sign of memory corruption in the stable_node.
2191 	 */
2192 	BUG_ON(stable_node->rmap_hlist_len < 0);
2193 
2194 	stable_node->rmap_hlist_len++;
2195 	if (!max_page_sharing_bypass)
2196 		/* possibly non fatal but unexpected overflow, only warn */
2197 		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2198 			     ksm_max_page_sharing);
2199 
2200 	rmap_item->head = stable_node;
2201 	rmap_item->address |= STABLE_FLAG;
2202 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2203 
2204 	if (rmap_item->hlist.next)
2205 		ksm_pages_sharing++;
2206 	else
2207 		ksm_pages_shared++;
2208 
2209 	rmap_item->mm->ksm_merging_pages++;
2210 }
2211 
2212 /*
2213  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2214  * if not, compare checksum to previous and if it's the same, see if page can
2215  * be inserted into the unstable tree, or merged with a page already there and
2216  * both transferred to the stable tree.
2217  *
2218  * @page: the page that we are searching identical page to.
2219  * @rmap_item: the reverse mapping into the virtual address of this page
2220  */
cmp_and_merge_page(struct page * page,struct ksm_rmap_item * rmap_item)2221 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2222 {
2223 	struct folio *folio = page_folio(page);
2224 	struct ksm_rmap_item *tree_rmap_item;
2225 	struct page *tree_page = NULL;
2226 	struct ksm_stable_node *stable_node;
2227 	struct folio *kfolio;
2228 	unsigned int checksum;
2229 	int err;
2230 	bool max_page_sharing_bypass = false;
2231 
2232 	stable_node = folio_stable_node(folio);
2233 	if (stable_node) {
2234 		if (stable_node->head != &migrate_nodes &&
2235 		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2236 		    NUMA(stable_node->nid)) {
2237 			stable_node_dup_del(stable_node);
2238 			stable_node->head = &migrate_nodes;
2239 			list_add(&stable_node->list, stable_node->head);
2240 		}
2241 		if (stable_node->head != &migrate_nodes &&
2242 		    rmap_item->head == stable_node)
2243 			return;
2244 		/*
2245 		 * If it's a KSM fork, allow it to go over the sharing limit
2246 		 * without warnings.
2247 		 */
2248 		if (!is_page_sharing_candidate(stable_node))
2249 			max_page_sharing_bypass = true;
2250 	} else {
2251 		remove_rmap_item_from_tree(rmap_item);
2252 
2253 		/*
2254 		 * If the hash value of the page has changed from the last time
2255 		 * we calculated it, this page is changing frequently: therefore we
2256 		 * don't want to insert it in the unstable tree, and we don't want
2257 		 * to waste our time searching for something identical to it there.
2258 		 */
2259 		checksum = calc_checksum(page);
2260 		if (rmap_item->oldchecksum != checksum) {
2261 			rmap_item->oldchecksum = checksum;
2262 			return;
2263 		}
2264 
2265 		if (!try_to_merge_with_zero_page(rmap_item, page))
2266 			return;
2267 	}
2268 
2269 	/* Start by searching for the folio in the stable tree */
2270 	kfolio = stable_tree_search(page);
2271 	if (kfolio == folio && rmap_item->head == stable_node) {
2272 		folio_put(kfolio);
2273 		return;
2274 	}
2275 
2276 	remove_rmap_item_from_tree(rmap_item);
2277 
2278 	if (kfolio) {
2279 		if (kfolio == ERR_PTR(-EBUSY))
2280 			return;
2281 
2282 		err = try_to_merge_with_ksm_page(rmap_item, page, &kfolio->page);
2283 		if (!err) {
2284 			/*
2285 			 * The page was successfully merged:
2286 			 * add its rmap_item to the stable tree.
2287 			 */
2288 			folio_lock(kfolio);
2289 			stable_tree_append(rmap_item, folio_stable_node(kfolio),
2290 					   max_page_sharing_bypass);
2291 			folio_unlock(kfolio);
2292 		}
2293 		folio_put(kfolio);
2294 		return;
2295 	}
2296 
2297 	tree_rmap_item =
2298 		unstable_tree_search_insert(rmap_item, page, &tree_page);
2299 	if (tree_rmap_item) {
2300 		bool split;
2301 
2302 		kfolio = try_to_merge_two_pages(rmap_item, page,
2303 						tree_rmap_item, tree_page);
2304 		/*
2305 		 * If both pages we tried to merge belong to the same compound
2306 		 * page, then we actually ended up increasing the reference
2307 		 * count of the same compound page twice, and split_huge_page
2308 		 * failed.
2309 		 * Here we set a flag if that happened, and we use it later to
2310 		 * try split_huge_page again. Since we call put_page right
2311 		 * afterwards, the reference count will be correct and
2312 		 * split_huge_page should succeed.
2313 		 */
2314 		split = PageTransCompound(page)
2315 			&& compound_head(page) == compound_head(tree_page);
2316 		put_page(tree_page);
2317 		if (kfolio) {
2318 			/*
2319 			 * The pages were successfully merged: insert new
2320 			 * node in the stable tree and add both rmap_items.
2321 			 */
2322 			folio_lock(kfolio);
2323 			stable_node = stable_tree_insert(kfolio);
2324 			if (stable_node) {
2325 				stable_tree_append(tree_rmap_item, stable_node,
2326 						   false);
2327 				stable_tree_append(rmap_item, stable_node,
2328 						   false);
2329 			}
2330 			folio_unlock(kfolio);
2331 
2332 			/*
2333 			 * If we fail to insert the page into the stable tree,
2334 			 * we will have 2 virtual addresses that are pointing
2335 			 * to a ksm page left outside the stable tree,
2336 			 * in which case we need to break_cow on both.
2337 			 */
2338 			if (!stable_node) {
2339 				break_cow(tree_rmap_item);
2340 				break_cow(rmap_item);
2341 			}
2342 		} else if (split) {
2343 			/*
2344 			 * We are here if we tried to merge two pages and
2345 			 * failed because they both belonged to the same
2346 			 * compound page. We will split the page now, but no
2347 			 * merging will take place.
2348 			 * We do not want to add the cost of a full lock; if
2349 			 * the page is locked, it is better to skip it and
2350 			 * perhaps try again later.
2351 			 */
2352 			if (!folio_trylock(folio))
2353 				return;
2354 			split_huge_page(page);
2355 			folio = page_folio(page);
2356 			folio_unlock(folio);
2357 		}
2358 	}
2359 }
2360 
get_next_rmap_item(struct ksm_mm_slot * mm_slot,struct ksm_rmap_item ** rmap_list,unsigned long addr)2361 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2362 					    struct ksm_rmap_item **rmap_list,
2363 					    unsigned long addr)
2364 {
2365 	struct ksm_rmap_item *rmap_item;
2366 
2367 	while (*rmap_list) {
2368 		rmap_item = *rmap_list;
2369 		if ((rmap_item->address & PAGE_MASK) == addr)
2370 			return rmap_item;
2371 		if (rmap_item->address > addr)
2372 			break;
2373 		*rmap_list = rmap_item->rmap_list;
2374 		remove_rmap_item_from_tree(rmap_item);
2375 		free_rmap_item(rmap_item);
2376 	}
2377 
2378 	rmap_item = alloc_rmap_item();
2379 	if (rmap_item) {
2380 		/* It has already been zeroed */
2381 		rmap_item->mm = mm_slot->slot.mm;
2382 		rmap_item->mm->ksm_rmap_items++;
2383 		rmap_item->address = addr;
2384 		rmap_item->rmap_list = *rmap_list;
2385 		*rmap_list = rmap_item;
2386 	}
2387 	return rmap_item;
2388 }
2389 
2390 /*
2391  * Calculate skip age for the ksm page age. The age determines how often
2392  * de-duplicating has already been tried unsuccessfully. If the age is
2393  * smaller, the scanning of this page is skipped for less scans.
2394  *
2395  * @age: rmap_item age of page
2396  */
skip_age(rmap_age_t age)2397 static unsigned int skip_age(rmap_age_t age)
2398 {
2399 	if (age <= 3)
2400 		return 1;
2401 	if (age <= 5)
2402 		return 2;
2403 	if (age <= 8)
2404 		return 4;
2405 
2406 	return 8;
2407 }
2408 
2409 /*
2410  * Determines if a page should be skipped for the current scan.
2411  *
2412  * @folio: folio containing the page to check
2413  * @rmap_item: associated rmap_item of page
2414  */
should_skip_rmap_item(struct folio * folio,struct ksm_rmap_item * rmap_item)2415 static bool should_skip_rmap_item(struct folio *folio,
2416 				  struct ksm_rmap_item *rmap_item)
2417 {
2418 	rmap_age_t age;
2419 
2420 	if (!ksm_smart_scan)
2421 		return false;
2422 
2423 	/*
2424 	 * Never skip pages that are already KSM; pages cmp_and_merge_page()
2425 	 * will essentially ignore them, but we still have to process them
2426 	 * properly.
2427 	 */
2428 	if (folio_test_ksm(folio))
2429 		return false;
2430 
2431 	age = rmap_item->age;
2432 	if (age != U8_MAX)
2433 		rmap_item->age++;
2434 
2435 	/*
2436 	 * Smaller ages are not skipped, they need to get a chance to go
2437 	 * through the different phases of the KSM merging.
2438 	 */
2439 	if (age < 3)
2440 		return false;
2441 
2442 	/*
2443 	 * Are we still allowed to skip? If not, then don't skip it
2444 	 * and determine how much more often we are allowed to skip next.
2445 	 */
2446 	if (!rmap_item->remaining_skips) {
2447 		rmap_item->remaining_skips = skip_age(age);
2448 		return false;
2449 	}
2450 
2451 	/* Skip this page */
2452 	ksm_pages_skipped++;
2453 	rmap_item->remaining_skips--;
2454 	remove_rmap_item_from_tree(rmap_item);
2455 	return true;
2456 }
2457 
scan_get_next_rmap_item(struct page ** page)2458 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2459 {
2460 	struct mm_struct *mm;
2461 	struct ksm_mm_slot *mm_slot;
2462 	struct mm_slot *slot;
2463 	struct vm_area_struct *vma;
2464 	struct ksm_rmap_item *rmap_item;
2465 	struct vma_iterator vmi;
2466 	int nid;
2467 
2468 	if (list_empty(&ksm_mm_head.slot.mm_node))
2469 		return NULL;
2470 
2471 	mm_slot = ksm_scan.mm_slot;
2472 	if (mm_slot == &ksm_mm_head) {
2473 		advisor_start_scan();
2474 		trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2475 
2476 		/*
2477 		 * A number of pages can hang around indefinitely in per-cpu
2478 		 * LRU cache, raised page count preventing write_protect_page
2479 		 * from merging them.  Though it doesn't really matter much,
2480 		 * it is puzzling to see some stuck in pages_volatile until
2481 		 * other activity jostles them out, and they also prevented
2482 		 * LTP's KSM test from succeeding deterministically; so drain
2483 		 * them here (here rather than on entry to ksm_do_scan(),
2484 		 * so we don't IPI too often when pages_to_scan is set low).
2485 		 */
2486 		lru_add_drain_all();
2487 
2488 		/*
2489 		 * Whereas stale stable_nodes on the stable_tree itself
2490 		 * get pruned in the regular course of stable_tree_search(),
2491 		 * those moved out to the migrate_nodes list can accumulate:
2492 		 * so prune them once before each full scan.
2493 		 */
2494 		if (!ksm_merge_across_nodes) {
2495 			struct ksm_stable_node *stable_node, *next;
2496 			struct folio *folio;
2497 
2498 			list_for_each_entry_safe(stable_node, next,
2499 						 &migrate_nodes, list) {
2500 				folio = ksm_get_folio(stable_node,
2501 						      KSM_GET_FOLIO_NOLOCK);
2502 				if (folio)
2503 					folio_put(folio);
2504 				cond_resched();
2505 			}
2506 		}
2507 
2508 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2509 			root_unstable_tree[nid] = RB_ROOT;
2510 
2511 		spin_lock(&ksm_mmlist_lock);
2512 		slot = list_entry(mm_slot->slot.mm_node.next,
2513 				  struct mm_slot, mm_node);
2514 		mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2515 		ksm_scan.mm_slot = mm_slot;
2516 		spin_unlock(&ksm_mmlist_lock);
2517 		/*
2518 		 * Although we tested list_empty() above, a racing __ksm_exit
2519 		 * of the last mm on the list may have removed it since then.
2520 		 */
2521 		if (mm_slot == &ksm_mm_head)
2522 			return NULL;
2523 next_mm:
2524 		ksm_scan.address = 0;
2525 		ksm_scan.rmap_list = &mm_slot->rmap_list;
2526 	}
2527 
2528 	slot = &mm_slot->slot;
2529 	mm = slot->mm;
2530 	vma_iter_init(&vmi, mm, ksm_scan.address);
2531 
2532 	mmap_read_lock(mm);
2533 	if (ksm_test_exit(mm))
2534 		goto no_vmas;
2535 
2536 	for_each_vma(vmi, vma) {
2537 		if (!(vma->vm_flags & VM_MERGEABLE))
2538 			continue;
2539 		if (ksm_scan.address < vma->vm_start)
2540 			ksm_scan.address = vma->vm_start;
2541 		if (!vma->anon_vma)
2542 			ksm_scan.address = vma->vm_end;
2543 
2544 		while (ksm_scan.address < vma->vm_end) {
2545 			struct page *tmp_page = NULL;
2546 			struct folio_walk fw;
2547 			struct folio *folio;
2548 
2549 			if (ksm_test_exit(mm))
2550 				break;
2551 
2552 			folio = folio_walk_start(&fw, vma, ksm_scan.address, 0);
2553 			if (folio) {
2554 				if (!folio_is_zone_device(folio) &&
2555 				     folio_test_anon(folio)) {
2556 					folio_get(folio);
2557 					tmp_page = fw.page;
2558 				}
2559 				folio_walk_end(&fw, vma);
2560 			}
2561 
2562 			if (tmp_page) {
2563 				flush_anon_page(vma, tmp_page, ksm_scan.address);
2564 				flush_dcache_page(tmp_page);
2565 				rmap_item = get_next_rmap_item(mm_slot,
2566 					ksm_scan.rmap_list, ksm_scan.address);
2567 				if (rmap_item) {
2568 					ksm_scan.rmap_list =
2569 							&rmap_item->rmap_list;
2570 
2571 					if (should_skip_rmap_item(folio, rmap_item)) {
2572 						folio_put(folio);
2573 						goto next_page;
2574 					}
2575 
2576 					ksm_scan.address += PAGE_SIZE;
2577 					*page = tmp_page;
2578 				} else {
2579 					folio_put(folio);
2580 				}
2581 				mmap_read_unlock(mm);
2582 				return rmap_item;
2583 			}
2584 next_page:
2585 			ksm_scan.address += PAGE_SIZE;
2586 			cond_resched();
2587 		}
2588 	}
2589 
2590 	if (ksm_test_exit(mm)) {
2591 no_vmas:
2592 		ksm_scan.address = 0;
2593 		ksm_scan.rmap_list = &mm_slot->rmap_list;
2594 	}
2595 	/*
2596 	 * Nuke all the rmap_items that are above this current rmap:
2597 	 * because there were no VM_MERGEABLE vmas with such addresses.
2598 	 */
2599 	remove_trailing_rmap_items(ksm_scan.rmap_list);
2600 
2601 	spin_lock(&ksm_mmlist_lock);
2602 	slot = list_entry(mm_slot->slot.mm_node.next,
2603 			  struct mm_slot, mm_node);
2604 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2605 	if (ksm_scan.address == 0) {
2606 		/*
2607 		 * We've completed a full scan of all vmas, holding mmap_lock
2608 		 * throughout, and found no VM_MERGEABLE: so do the same as
2609 		 * __ksm_exit does to remove this mm from all our lists now.
2610 		 * This applies either when cleaning up after __ksm_exit
2611 		 * (but beware: we can reach here even before __ksm_exit),
2612 		 * or when all VM_MERGEABLE areas have been unmapped (and
2613 		 * mmap_lock then protects against race with MADV_MERGEABLE).
2614 		 */
2615 		hash_del(&mm_slot->slot.hash);
2616 		list_del(&mm_slot->slot.mm_node);
2617 		spin_unlock(&ksm_mmlist_lock);
2618 
2619 		mm_slot_free(mm_slot_cache, mm_slot);
2620 		mm_flags_clear(MMF_VM_MERGEABLE, mm);
2621 		mm_flags_clear(MMF_VM_MERGE_ANY, mm);
2622 		mmap_read_unlock(mm);
2623 		mmdrop(mm);
2624 	} else {
2625 		mmap_read_unlock(mm);
2626 		/*
2627 		 * mmap_read_unlock(mm) first because after
2628 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2629 		 * already have been freed under us by __ksm_exit()
2630 		 * because the "mm_slot" is still hashed and
2631 		 * ksm_scan.mm_slot doesn't point to it anymore.
2632 		 */
2633 		spin_unlock(&ksm_mmlist_lock);
2634 	}
2635 
2636 	/* Repeat until we've completed scanning the whole list */
2637 	mm_slot = ksm_scan.mm_slot;
2638 	if (mm_slot != &ksm_mm_head)
2639 		goto next_mm;
2640 
2641 	advisor_stop_scan();
2642 
2643 	trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2644 	ksm_scan.seqnr++;
2645 	return NULL;
2646 }
2647 
2648 /**
2649  * ksm_do_scan  - the ksm scanner main worker function.
2650  * @scan_npages:  number of pages we want to scan before we return.
2651  */
ksm_do_scan(unsigned int scan_npages)2652 static void ksm_do_scan(unsigned int scan_npages)
2653 {
2654 	struct ksm_rmap_item *rmap_item;
2655 	struct page *page;
2656 
2657 	while (scan_npages-- && likely(!freezing(current))) {
2658 		cond_resched();
2659 		rmap_item = scan_get_next_rmap_item(&page);
2660 		if (!rmap_item)
2661 			return;
2662 		cmp_and_merge_page(page, rmap_item);
2663 		put_page(page);
2664 		ksm_pages_scanned++;
2665 	}
2666 }
2667 
ksmd_should_run(void)2668 static int ksmd_should_run(void)
2669 {
2670 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2671 }
2672 
ksm_scan_thread(void * nothing)2673 static int ksm_scan_thread(void *nothing)
2674 {
2675 	unsigned int sleep_ms;
2676 
2677 	set_freezable();
2678 	set_user_nice(current, 5);
2679 
2680 	while (!kthread_should_stop()) {
2681 		mutex_lock(&ksm_thread_mutex);
2682 		wait_while_offlining();
2683 		if (ksmd_should_run())
2684 			ksm_do_scan(ksm_thread_pages_to_scan);
2685 		mutex_unlock(&ksm_thread_mutex);
2686 
2687 		if (ksmd_should_run()) {
2688 			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2689 			wait_event_freezable_timeout(ksm_iter_wait,
2690 				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2691 				msecs_to_jiffies(sleep_ms));
2692 		} else {
2693 			wait_event_freezable(ksm_thread_wait,
2694 				ksmd_should_run() || kthread_should_stop());
2695 		}
2696 	}
2697 	return 0;
2698 }
2699 
__ksm_should_add_vma(const struct file * file,vm_flags_t vm_flags)2700 static bool __ksm_should_add_vma(const struct file *file, vm_flags_t vm_flags)
2701 {
2702 	if (vm_flags & VM_MERGEABLE)
2703 		return false;
2704 
2705 	return ksm_compatible(file, vm_flags);
2706 }
2707 
__ksm_add_vma(struct vm_area_struct * vma)2708 static void __ksm_add_vma(struct vm_area_struct *vma)
2709 {
2710 	if (__ksm_should_add_vma(vma->vm_file, vma->vm_flags))
2711 		vm_flags_set(vma, VM_MERGEABLE);
2712 }
2713 
__ksm_del_vma(struct vm_area_struct * vma)2714 static int __ksm_del_vma(struct vm_area_struct *vma)
2715 {
2716 	int err;
2717 
2718 	if (!(vma->vm_flags & VM_MERGEABLE))
2719 		return 0;
2720 
2721 	if (vma->anon_vma) {
2722 		err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true);
2723 		if (err)
2724 			return err;
2725 	}
2726 
2727 	vm_flags_clear(vma, VM_MERGEABLE);
2728 	return 0;
2729 }
2730 /**
2731  * ksm_vma_flags - Update VMA flags to mark as mergeable if compatible
2732  *
2733  * @mm:       Proposed VMA's mm_struct
2734  * @file:     Proposed VMA's file-backed mapping, if any.
2735  * @vm_flags: Proposed VMA"s flags.
2736  *
2737  * Returns: @vm_flags possibly updated to mark mergeable.
2738  */
ksm_vma_flags(const struct mm_struct * mm,const struct file * file,vm_flags_t vm_flags)2739 vm_flags_t ksm_vma_flags(const struct mm_struct *mm, const struct file *file,
2740 			 vm_flags_t vm_flags)
2741 {
2742 	if (mm_flags_test(MMF_VM_MERGE_ANY, mm) &&
2743 	    __ksm_should_add_vma(file, vm_flags))
2744 		vm_flags |= VM_MERGEABLE;
2745 
2746 	return vm_flags;
2747 }
2748 
ksm_add_vmas(struct mm_struct * mm)2749 static void ksm_add_vmas(struct mm_struct *mm)
2750 {
2751 	struct vm_area_struct *vma;
2752 
2753 	VMA_ITERATOR(vmi, mm, 0);
2754 	for_each_vma(vmi, vma)
2755 		__ksm_add_vma(vma);
2756 }
2757 
ksm_del_vmas(struct mm_struct * mm)2758 static int ksm_del_vmas(struct mm_struct *mm)
2759 {
2760 	struct vm_area_struct *vma;
2761 	int err;
2762 
2763 	VMA_ITERATOR(vmi, mm, 0);
2764 	for_each_vma(vmi, vma) {
2765 		err = __ksm_del_vma(vma);
2766 		if (err)
2767 			return err;
2768 	}
2769 	return 0;
2770 }
2771 
2772 /**
2773  * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2774  *                        compatible VMA's
2775  *
2776  * @mm:  Pointer to mm
2777  *
2778  * Returns 0 on success, otherwise error code
2779  */
ksm_enable_merge_any(struct mm_struct * mm)2780 int ksm_enable_merge_any(struct mm_struct *mm)
2781 {
2782 	int err;
2783 
2784 	if (mm_flags_test(MMF_VM_MERGE_ANY, mm))
2785 		return 0;
2786 
2787 	if (!mm_flags_test(MMF_VM_MERGEABLE, mm)) {
2788 		err = __ksm_enter(mm);
2789 		if (err)
2790 			return err;
2791 	}
2792 
2793 	mm_flags_set(MMF_VM_MERGE_ANY, mm);
2794 	ksm_add_vmas(mm);
2795 
2796 	return 0;
2797 }
2798 
2799 /**
2800  * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2801  *			   previously enabled via ksm_enable_merge_any().
2802  *
2803  * Disabling merging implies unmerging any merged pages, like setting
2804  * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2805  * merging on all compatible VMA's remains enabled.
2806  *
2807  * @mm: Pointer to mm
2808  *
2809  * Returns 0 on success, otherwise error code
2810  */
ksm_disable_merge_any(struct mm_struct * mm)2811 int ksm_disable_merge_any(struct mm_struct *mm)
2812 {
2813 	int err;
2814 
2815 	if (!mm_flags_test(MMF_VM_MERGE_ANY, mm))
2816 		return 0;
2817 
2818 	err = ksm_del_vmas(mm);
2819 	if (err) {
2820 		ksm_add_vmas(mm);
2821 		return err;
2822 	}
2823 
2824 	mm_flags_clear(MMF_VM_MERGE_ANY, mm);
2825 	return 0;
2826 }
2827 
ksm_disable(struct mm_struct * mm)2828 int ksm_disable(struct mm_struct *mm)
2829 {
2830 	mmap_assert_write_locked(mm);
2831 
2832 	if (!mm_flags_test(MMF_VM_MERGEABLE, mm))
2833 		return 0;
2834 	if (mm_flags_test(MMF_VM_MERGE_ANY, mm))
2835 		return ksm_disable_merge_any(mm);
2836 	return ksm_del_vmas(mm);
2837 }
2838 
ksm_madvise(struct vm_area_struct * vma,unsigned long start,unsigned long end,int advice,vm_flags_t * vm_flags)2839 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2840 		unsigned long end, int advice, vm_flags_t *vm_flags)
2841 {
2842 	struct mm_struct *mm = vma->vm_mm;
2843 	int err;
2844 
2845 	switch (advice) {
2846 	case MADV_MERGEABLE:
2847 		if (vma->vm_flags & VM_MERGEABLE)
2848 			return 0;
2849 		if (!vma_ksm_compatible(vma))
2850 			return 0;
2851 
2852 		if (!mm_flags_test(MMF_VM_MERGEABLE, mm)) {
2853 			err = __ksm_enter(mm);
2854 			if (err)
2855 				return err;
2856 		}
2857 
2858 		*vm_flags |= VM_MERGEABLE;
2859 		break;
2860 
2861 	case MADV_UNMERGEABLE:
2862 		if (!(*vm_flags & VM_MERGEABLE))
2863 			return 0;		/* just ignore the advice */
2864 
2865 		if (vma->anon_vma) {
2866 			err = unmerge_ksm_pages(vma, start, end, true);
2867 			if (err)
2868 				return err;
2869 		}
2870 
2871 		*vm_flags &= ~VM_MERGEABLE;
2872 		break;
2873 	}
2874 
2875 	return 0;
2876 }
2877 EXPORT_SYMBOL_GPL(ksm_madvise);
2878 
__ksm_enter(struct mm_struct * mm)2879 int __ksm_enter(struct mm_struct *mm)
2880 {
2881 	struct ksm_mm_slot *mm_slot;
2882 	struct mm_slot *slot;
2883 	int needs_wakeup;
2884 
2885 	mm_slot = mm_slot_alloc(mm_slot_cache);
2886 	if (!mm_slot)
2887 		return -ENOMEM;
2888 
2889 	slot = &mm_slot->slot;
2890 
2891 	/* Check ksm_run too?  Would need tighter locking */
2892 	needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2893 
2894 	spin_lock(&ksm_mmlist_lock);
2895 	mm_slot_insert(mm_slots_hash, mm, slot);
2896 	/*
2897 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2898 	 * insert just behind the scanning cursor, to let the area settle
2899 	 * down a little; when fork is followed by immediate exec, we don't
2900 	 * want ksmd to waste time setting up and tearing down an rmap_list.
2901 	 *
2902 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2903 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2904 	 * missed: then we might as well insert at the end of the list.
2905 	 */
2906 	if (ksm_run & KSM_RUN_UNMERGE)
2907 		list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2908 	else
2909 		list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2910 	spin_unlock(&ksm_mmlist_lock);
2911 
2912 	mm_flags_set(MMF_VM_MERGEABLE, mm);
2913 	mmgrab(mm);
2914 
2915 	if (needs_wakeup)
2916 		wake_up_interruptible(&ksm_thread_wait);
2917 
2918 	trace_ksm_enter(mm);
2919 	return 0;
2920 }
2921 
__ksm_exit(struct mm_struct * mm)2922 void __ksm_exit(struct mm_struct *mm)
2923 {
2924 	struct ksm_mm_slot *mm_slot;
2925 	struct mm_slot *slot;
2926 	int easy_to_free = 0;
2927 
2928 	/*
2929 	 * This process is exiting: if it's straightforward (as is the
2930 	 * case when ksmd was never running), free mm_slot immediately.
2931 	 * But if it's at the cursor or has rmap_items linked to it, use
2932 	 * mmap_lock to synchronize with any break_cows before pagetables
2933 	 * are freed, and leave the mm_slot on the list for ksmd to free.
2934 	 * Beware: ksm may already have noticed it exiting and freed the slot.
2935 	 */
2936 
2937 	spin_lock(&ksm_mmlist_lock);
2938 	slot = mm_slot_lookup(mm_slots_hash, mm);
2939 	if (slot) {
2940 		mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2941 		if (ksm_scan.mm_slot != mm_slot) {
2942 			if (!mm_slot->rmap_list) {
2943 				hash_del(&slot->hash);
2944 				list_del(&slot->mm_node);
2945 				easy_to_free = 1;
2946 			} else {
2947 				list_move(&slot->mm_node,
2948 					  &ksm_scan.mm_slot->slot.mm_node);
2949 			}
2950 		}
2951 	}
2952 	spin_unlock(&ksm_mmlist_lock);
2953 
2954 	if (easy_to_free) {
2955 		mm_slot_free(mm_slot_cache, mm_slot);
2956 		mm_flags_clear(MMF_VM_MERGE_ANY, mm);
2957 		mm_flags_clear(MMF_VM_MERGEABLE, mm);
2958 		mmdrop(mm);
2959 	} else if (mm_slot) {
2960 		mmap_write_lock(mm);
2961 		mmap_write_unlock(mm);
2962 	}
2963 
2964 	trace_ksm_exit(mm);
2965 }
2966 
ksm_might_need_to_copy(struct folio * folio,struct vm_area_struct * vma,unsigned long addr)2967 struct folio *ksm_might_need_to_copy(struct folio *folio,
2968 			struct vm_area_struct *vma, unsigned long addr)
2969 {
2970 	struct page *page = folio_page(folio, 0);
2971 	struct anon_vma *anon_vma = folio_anon_vma(folio);
2972 	struct folio *new_folio;
2973 
2974 	if (folio_test_large(folio))
2975 		return folio;
2976 
2977 	if (folio_test_ksm(folio)) {
2978 		if (folio_stable_node(folio) &&
2979 		    !(ksm_run & KSM_RUN_UNMERGE))
2980 			return folio;	/* no need to copy it */
2981 	} else if (!anon_vma) {
2982 		return folio;		/* no need to copy it */
2983 	} else if (folio->index == linear_page_index(vma, addr) &&
2984 			anon_vma->root == vma->anon_vma->root) {
2985 		return folio;		/* still no need to copy it */
2986 	}
2987 	if (PageHWPoison(page))
2988 		return ERR_PTR(-EHWPOISON);
2989 	if (!folio_test_uptodate(folio))
2990 		return folio;		/* let do_swap_page report the error */
2991 
2992 	new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr);
2993 	if (new_folio &&
2994 	    mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL)) {
2995 		folio_put(new_folio);
2996 		new_folio = NULL;
2997 	}
2998 	if (new_folio) {
2999 		if (copy_mc_user_highpage(folio_page(new_folio, 0), page,
3000 								addr, vma)) {
3001 			folio_put(new_folio);
3002 			return ERR_PTR(-EHWPOISON);
3003 		}
3004 		folio_set_dirty(new_folio);
3005 		__folio_mark_uptodate(new_folio);
3006 		__folio_set_locked(new_folio);
3007 #ifdef CONFIG_SWAP
3008 		count_vm_event(KSM_SWPIN_COPY);
3009 #endif
3010 	}
3011 
3012 	return new_folio;
3013 }
3014 
rmap_walk_ksm(struct folio * folio,struct rmap_walk_control * rwc)3015 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
3016 {
3017 	struct ksm_stable_node *stable_node;
3018 	struct ksm_rmap_item *rmap_item;
3019 	int search_new_forks = 0;
3020 
3021 	VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
3022 
3023 	/*
3024 	 * Rely on the page lock to protect against concurrent modifications
3025 	 * to that page's node of the stable tree.
3026 	 */
3027 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3028 
3029 	stable_node = folio_stable_node(folio);
3030 	if (!stable_node)
3031 		return;
3032 again:
3033 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3034 		struct anon_vma *anon_vma = rmap_item->anon_vma;
3035 		struct anon_vma_chain *vmac;
3036 		struct vm_area_struct *vma;
3037 
3038 		cond_resched();
3039 		if (!anon_vma_trylock_read(anon_vma)) {
3040 			if (rwc->try_lock) {
3041 				rwc->contended = true;
3042 				return;
3043 			}
3044 			anon_vma_lock_read(anon_vma);
3045 		}
3046 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
3047 					       0, ULONG_MAX) {
3048 			unsigned long addr;
3049 
3050 			cond_resched();
3051 			vma = vmac->vma;
3052 
3053 			/* Ignore the stable/unstable/sqnr flags */
3054 			addr = rmap_item->address & PAGE_MASK;
3055 
3056 			if (addr < vma->vm_start || addr >= vma->vm_end)
3057 				continue;
3058 			/*
3059 			 * Initially we examine only the vma which covers this
3060 			 * rmap_item; but later, if there is still work to do,
3061 			 * we examine covering vmas in other mms: in case they
3062 			 * were forked from the original since ksmd passed.
3063 			 */
3064 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
3065 				continue;
3066 
3067 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
3068 				continue;
3069 
3070 			if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
3071 				anon_vma_unlock_read(anon_vma);
3072 				return;
3073 			}
3074 			if (rwc->done && rwc->done(folio)) {
3075 				anon_vma_unlock_read(anon_vma);
3076 				return;
3077 			}
3078 		}
3079 		anon_vma_unlock_read(anon_vma);
3080 	}
3081 	if (!search_new_forks++)
3082 		goto again;
3083 }
3084 
3085 #ifdef CONFIG_MEMORY_FAILURE
3086 /*
3087  * Collect processes when the error hit an ksm page.
3088  */
collect_procs_ksm(const struct folio * folio,const struct page * page,struct list_head * to_kill,int force_early)3089 void collect_procs_ksm(const struct folio *folio, const struct page *page,
3090 		struct list_head *to_kill, int force_early)
3091 {
3092 	struct ksm_stable_node *stable_node;
3093 	struct ksm_rmap_item *rmap_item;
3094 	struct vm_area_struct *vma;
3095 	struct task_struct *tsk;
3096 
3097 	stable_node = folio_stable_node(folio);
3098 	if (!stable_node)
3099 		return;
3100 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3101 		struct anon_vma *av = rmap_item->anon_vma;
3102 
3103 		anon_vma_lock_read(av);
3104 		rcu_read_lock();
3105 		for_each_process(tsk) {
3106 			struct anon_vma_chain *vmac;
3107 			unsigned long addr;
3108 			struct task_struct *t =
3109 				task_early_kill(tsk, force_early);
3110 			if (!t)
3111 				continue;
3112 			anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
3113 						       ULONG_MAX)
3114 			{
3115 				vma = vmac->vma;
3116 				if (vma->vm_mm == t->mm) {
3117 					addr = rmap_item->address & PAGE_MASK;
3118 					add_to_kill_ksm(t, page, vma, to_kill,
3119 							addr);
3120 				}
3121 			}
3122 		}
3123 		rcu_read_unlock();
3124 		anon_vma_unlock_read(av);
3125 	}
3126 }
3127 #endif
3128 
3129 #ifdef CONFIG_MIGRATION
folio_migrate_ksm(struct folio * newfolio,struct folio * folio)3130 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
3131 {
3132 	struct ksm_stable_node *stable_node;
3133 
3134 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3135 	VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
3136 	VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
3137 
3138 	stable_node = folio_stable_node(folio);
3139 	if (stable_node) {
3140 		VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
3141 		stable_node->kpfn = folio_pfn(newfolio);
3142 		/*
3143 		 * newfolio->mapping was set in advance; now we need smp_wmb()
3144 		 * to make sure that the new stable_node->kpfn is visible
3145 		 * to ksm_get_folio() before it can see that folio->mapping
3146 		 * has gone stale (or that the swapcache flag has been cleared).
3147 		 */
3148 		smp_wmb();
3149 		folio_set_stable_node(folio, NULL);
3150 	}
3151 }
3152 #endif /* CONFIG_MIGRATION */
3153 
3154 #ifdef CONFIG_MEMORY_HOTREMOVE
wait_while_offlining(void)3155 static void wait_while_offlining(void)
3156 {
3157 	while (ksm_run & KSM_RUN_OFFLINE) {
3158 		mutex_unlock(&ksm_thread_mutex);
3159 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
3160 			    TASK_UNINTERRUPTIBLE);
3161 		mutex_lock(&ksm_thread_mutex);
3162 	}
3163 }
3164 
stable_node_dup_remove_range(struct ksm_stable_node * stable_node,unsigned long start_pfn,unsigned long end_pfn)3165 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
3166 					 unsigned long start_pfn,
3167 					 unsigned long end_pfn)
3168 {
3169 	if (stable_node->kpfn >= start_pfn &&
3170 	    stable_node->kpfn < end_pfn) {
3171 		/*
3172 		 * Don't ksm_get_folio, page has already gone:
3173 		 * which is why we keep kpfn instead of page*
3174 		 */
3175 		remove_node_from_stable_tree(stable_node);
3176 		return true;
3177 	}
3178 	return false;
3179 }
3180 
stable_node_chain_remove_range(struct ksm_stable_node * stable_node,unsigned long start_pfn,unsigned long end_pfn,struct rb_root * root)3181 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
3182 					   unsigned long start_pfn,
3183 					   unsigned long end_pfn,
3184 					   struct rb_root *root)
3185 {
3186 	struct ksm_stable_node *dup;
3187 	struct hlist_node *hlist_safe;
3188 
3189 	if (!is_stable_node_chain(stable_node)) {
3190 		VM_BUG_ON(is_stable_node_dup(stable_node));
3191 		return stable_node_dup_remove_range(stable_node, start_pfn,
3192 						    end_pfn);
3193 	}
3194 
3195 	hlist_for_each_entry_safe(dup, hlist_safe,
3196 				  &stable_node->hlist, hlist_dup) {
3197 		VM_BUG_ON(!is_stable_node_dup(dup));
3198 		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3199 	}
3200 	if (hlist_empty(&stable_node->hlist)) {
3201 		free_stable_node_chain(stable_node, root);
3202 		return true; /* notify caller that tree was rebalanced */
3203 	} else
3204 		return false;
3205 }
3206 
ksm_check_stable_tree(unsigned long start_pfn,unsigned long end_pfn)3207 static void ksm_check_stable_tree(unsigned long start_pfn,
3208 				  unsigned long end_pfn)
3209 {
3210 	struct ksm_stable_node *stable_node, *next;
3211 	struct rb_node *node;
3212 	int nid;
3213 
3214 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3215 		node = rb_first(root_stable_tree + nid);
3216 		while (node) {
3217 			stable_node = rb_entry(node, struct ksm_stable_node, node);
3218 			if (stable_node_chain_remove_range(stable_node,
3219 							   start_pfn, end_pfn,
3220 							   root_stable_tree +
3221 							   nid))
3222 				node = rb_first(root_stable_tree + nid);
3223 			else
3224 				node = rb_next(node);
3225 			cond_resched();
3226 		}
3227 	}
3228 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3229 		if (stable_node->kpfn >= start_pfn &&
3230 		    stable_node->kpfn < end_pfn)
3231 			remove_node_from_stable_tree(stable_node);
3232 		cond_resched();
3233 	}
3234 }
3235 
ksm_memory_callback(struct notifier_block * self,unsigned long action,void * arg)3236 static int ksm_memory_callback(struct notifier_block *self,
3237 			       unsigned long action, void *arg)
3238 {
3239 	struct memory_notify *mn = arg;
3240 
3241 	switch (action) {
3242 	case MEM_GOING_OFFLINE:
3243 		/*
3244 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3245 		 * and remove_all_stable_nodes() while memory is going offline:
3246 		 * it is unsafe for them to touch the stable tree at this time.
3247 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
3248 		 * which do not need the ksm_thread_mutex are all safe.
3249 		 */
3250 		mutex_lock(&ksm_thread_mutex);
3251 		ksm_run |= KSM_RUN_OFFLINE;
3252 		mutex_unlock(&ksm_thread_mutex);
3253 		break;
3254 
3255 	case MEM_OFFLINE:
3256 		/*
3257 		 * Most of the work is done by page migration; but there might
3258 		 * be a few stable_nodes left over, still pointing to struct
3259 		 * pages which have been offlined: prune those from the tree,
3260 		 * otherwise ksm_get_folio() might later try to access a
3261 		 * non-existent struct page.
3262 		 */
3263 		ksm_check_stable_tree(mn->start_pfn,
3264 				      mn->start_pfn + mn->nr_pages);
3265 		fallthrough;
3266 	case MEM_CANCEL_OFFLINE:
3267 		mutex_lock(&ksm_thread_mutex);
3268 		ksm_run &= ~KSM_RUN_OFFLINE;
3269 		mutex_unlock(&ksm_thread_mutex);
3270 
3271 		smp_mb();	/* wake_up_bit advises this */
3272 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3273 		break;
3274 	}
3275 	return NOTIFY_OK;
3276 }
3277 #else
wait_while_offlining(void)3278 static void wait_while_offlining(void)
3279 {
3280 }
3281 #endif /* CONFIG_MEMORY_HOTREMOVE */
3282 
3283 #ifdef CONFIG_PROC_FS
3284 /*
3285  * The process is mergeable only if any VMA is currently
3286  * applicable to KSM.
3287  *
3288  * The mmap lock must be held in read mode.
3289  */
ksm_process_mergeable(struct mm_struct * mm)3290 bool ksm_process_mergeable(struct mm_struct *mm)
3291 {
3292 	struct vm_area_struct *vma;
3293 
3294 	mmap_assert_locked(mm);
3295 	VMA_ITERATOR(vmi, mm, 0);
3296 	for_each_vma(vmi, vma)
3297 		if (vma->vm_flags & VM_MERGEABLE)
3298 			return true;
3299 
3300 	return false;
3301 }
3302 
ksm_process_profit(struct mm_struct * mm)3303 long ksm_process_profit(struct mm_struct *mm)
3304 {
3305 	return (long)(mm->ksm_merging_pages + mm_ksm_zero_pages(mm)) * PAGE_SIZE -
3306 		mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3307 }
3308 #endif /* CONFIG_PROC_FS */
3309 
3310 #ifdef CONFIG_SYSFS
3311 /*
3312  * This all compiles without CONFIG_SYSFS, but is a waste of space.
3313  */
3314 
3315 #define KSM_ATTR_RO(_name) \
3316 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3317 #define KSM_ATTR(_name) \
3318 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3319 
sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3320 static ssize_t sleep_millisecs_show(struct kobject *kobj,
3321 				    struct kobj_attribute *attr, char *buf)
3322 {
3323 	return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3324 }
3325 
sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3326 static ssize_t sleep_millisecs_store(struct kobject *kobj,
3327 				     struct kobj_attribute *attr,
3328 				     const char *buf, size_t count)
3329 {
3330 	unsigned int msecs;
3331 	int err;
3332 
3333 	err = kstrtouint(buf, 10, &msecs);
3334 	if (err)
3335 		return -EINVAL;
3336 
3337 	ksm_thread_sleep_millisecs = msecs;
3338 	wake_up_interruptible(&ksm_iter_wait);
3339 
3340 	return count;
3341 }
3342 KSM_ATTR(sleep_millisecs);
3343 
pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3344 static ssize_t pages_to_scan_show(struct kobject *kobj,
3345 				  struct kobj_attribute *attr, char *buf)
3346 {
3347 	return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3348 }
3349 
pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3350 static ssize_t pages_to_scan_store(struct kobject *kobj,
3351 				   struct kobj_attribute *attr,
3352 				   const char *buf, size_t count)
3353 {
3354 	unsigned int nr_pages;
3355 	int err;
3356 
3357 	if (ksm_advisor != KSM_ADVISOR_NONE)
3358 		return -EINVAL;
3359 
3360 	err = kstrtouint(buf, 10, &nr_pages);
3361 	if (err)
3362 		return -EINVAL;
3363 
3364 	ksm_thread_pages_to_scan = nr_pages;
3365 
3366 	return count;
3367 }
3368 KSM_ATTR(pages_to_scan);
3369 
run_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3370 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3371 			char *buf)
3372 {
3373 	return sysfs_emit(buf, "%lu\n", ksm_run);
3374 }
3375 
run_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3376 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3377 			 const char *buf, size_t count)
3378 {
3379 	unsigned int flags;
3380 	int err;
3381 
3382 	err = kstrtouint(buf, 10, &flags);
3383 	if (err)
3384 		return -EINVAL;
3385 	if (flags > KSM_RUN_UNMERGE)
3386 		return -EINVAL;
3387 
3388 	/*
3389 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3390 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3391 	 * breaking COW to free the pages_shared (but leaves mm_slots
3392 	 * on the list for when ksmd may be set running again).
3393 	 */
3394 
3395 	mutex_lock(&ksm_thread_mutex);
3396 	wait_while_offlining();
3397 	if (ksm_run != flags) {
3398 		ksm_run = flags;
3399 		if (flags & KSM_RUN_UNMERGE) {
3400 			set_current_oom_origin();
3401 			err = unmerge_and_remove_all_rmap_items();
3402 			clear_current_oom_origin();
3403 			if (err) {
3404 				ksm_run = KSM_RUN_STOP;
3405 				count = err;
3406 			}
3407 		}
3408 	}
3409 	mutex_unlock(&ksm_thread_mutex);
3410 
3411 	if (flags & KSM_RUN_MERGE)
3412 		wake_up_interruptible(&ksm_thread_wait);
3413 
3414 	return count;
3415 }
3416 KSM_ATTR(run);
3417 
3418 #ifdef CONFIG_NUMA
merge_across_nodes_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3419 static ssize_t merge_across_nodes_show(struct kobject *kobj,
3420 				       struct kobj_attribute *attr, char *buf)
3421 {
3422 	return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3423 }
3424 
merge_across_nodes_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3425 static ssize_t merge_across_nodes_store(struct kobject *kobj,
3426 				   struct kobj_attribute *attr,
3427 				   const char *buf, size_t count)
3428 {
3429 	int err;
3430 	unsigned long knob;
3431 
3432 	err = kstrtoul(buf, 10, &knob);
3433 	if (err)
3434 		return err;
3435 	if (knob > 1)
3436 		return -EINVAL;
3437 
3438 	mutex_lock(&ksm_thread_mutex);
3439 	wait_while_offlining();
3440 	if (ksm_merge_across_nodes != knob) {
3441 		if (ksm_pages_shared || remove_all_stable_nodes())
3442 			err = -EBUSY;
3443 		else if (root_stable_tree == one_stable_tree) {
3444 			struct rb_root *buf;
3445 			/*
3446 			 * This is the first time that we switch away from the
3447 			 * default of merging across nodes: must now allocate
3448 			 * a buffer to hold as many roots as may be needed.
3449 			 * Allocate stable and unstable together:
3450 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
3451 			 */
3452 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3453 				      GFP_KERNEL);
3454 			/* Let us assume that RB_ROOT is NULL is zero */
3455 			if (!buf)
3456 				err = -ENOMEM;
3457 			else {
3458 				root_stable_tree = buf;
3459 				root_unstable_tree = buf + nr_node_ids;
3460 				/* Stable tree is empty but not the unstable */
3461 				root_unstable_tree[0] = one_unstable_tree[0];
3462 			}
3463 		}
3464 		if (!err) {
3465 			ksm_merge_across_nodes = knob;
3466 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3467 		}
3468 	}
3469 	mutex_unlock(&ksm_thread_mutex);
3470 
3471 	return err ? err : count;
3472 }
3473 KSM_ATTR(merge_across_nodes);
3474 #endif
3475 
use_zero_pages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3476 static ssize_t use_zero_pages_show(struct kobject *kobj,
3477 				   struct kobj_attribute *attr, char *buf)
3478 {
3479 	return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3480 }
use_zero_pages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3481 static ssize_t use_zero_pages_store(struct kobject *kobj,
3482 				   struct kobj_attribute *attr,
3483 				   const char *buf, size_t count)
3484 {
3485 	int err;
3486 	bool value;
3487 
3488 	err = kstrtobool(buf, &value);
3489 	if (err)
3490 		return -EINVAL;
3491 
3492 	ksm_use_zero_pages = value;
3493 
3494 	return count;
3495 }
3496 KSM_ATTR(use_zero_pages);
3497 
max_page_sharing_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3498 static ssize_t max_page_sharing_show(struct kobject *kobj,
3499 				     struct kobj_attribute *attr, char *buf)
3500 {
3501 	return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3502 }
3503 
max_page_sharing_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3504 static ssize_t max_page_sharing_store(struct kobject *kobj,
3505 				      struct kobj_attribute *attr,
3506 				      const char *buf, size_t count)
3507 {
3508 	int err;
3509 	int knob;
3510 
3511 	err = kstrtoint(buf, 10, &knob);
3512 	if (err)
3513 		return err;
3514 	/*
3515 	 * When a KSM page is created it is shared by 2 mappings. This
3516 	 * being a signed comparison, it implicitly verifies it's not
3517 	 * negative.
3518 	 */
3519 	if (knob < 2)
3520 		return -EINVAL;
3521 
3522 	if (READ_ONCE(ksm_max_page_sharing) == knob)
3523 		return count;
3524 
3525 	mutex_lock(&ksm_thread_mutex);
3526 	wait_while_offlining();
3527 	if (ksm_max_page_sharing != knob) {
3528 		if (ksm_pages_shared || remove_all_stable_nodes())
3529 			err = -EBUSY;
3530 		else
3531 			ksm_max_page_sharing = knob;
3532 	}
3533 	mutex_unlock(&ksm_thread_mutex);
3534 
3535 	return err ? err : count;
3536 }
3537 KSM_ATTR(max_page_sharing);
3538 
pages_scanned_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3539 static ssize_t pages_scanned_show(struct kobject *kobj,
3540 				  struct kobj_attribute *attr, char *buf)
3541 {
3542 	return sysfs_emit(buf, "%lu\n", ksm_pages_scanned);
3543 }
3544 KSM_ATTR_RO(pages_scanned);
3545 
pages_shared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3546 static ssize_t pages_shared_show(struct kobject *kobj,
3547 				 struct kobj_attribute *attr, char *buf)
3548 {
3549 	return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3550 }
3551 KSM_ATTR_RO(pages_shared);
3552 
pages_sharing_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3553 static ssize_t pages_sharing_show(struct kobject *kobj,
3554 				  struct kobj_attribute *attr, char *buf)
3555 {
3556 	return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3557 }
3558 KSM_ATTR_RO(pages_sharing);
3559 
pages_unshared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3560 static ssize_t pages_unshared_show(struct kobject *kobj,
3561 				   struct kobj_attribute *attr, char *buf)
3562 {
3563 	return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3564 }
3565 KSM_ATTR_RO(pages_unshared);
3566 
pages_volatile_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3567 static ssize_t pages_volatile_show(struct kobject *kobj,
3568 				   struct kobj_attribute *attr, char *buf)
3569 {
3570 	long ksm_pages_volatile;
3571 
3572 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3573 				- ksm_pages_sharing - ksm_pages_unshared;
3574 	/*
3575 	 * It was not worth any locking to calculate that statistic,
3576 	 * but it might therefore sometimes be negative: conceal that.
3577 	 */
3578 	if (ksm_pages_volatile < 0)
3579 		ksm_pages_volatile = 0;
3580 	return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3581 }
3582 KSM_ATTR_RO(pages_volatile);
3583 
pages_skipped_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3584 static ssize_t pages_skipped_show(struct kobject *kobj,
3585 				  struct kobj_attribute *attr, char *buf)
3586 {
3587 	return sysfs_emit(buf, "%lu\n", ksm_pages_skipped);
3588 }
3589 KSM_ATTR_RO(pages_skipped);
3590 
ksm_zero_pages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3591 static ssize_t ksm_zero_pages_show(struct kobject *kobj,
3592 				struct kobj_attribute *attr, char *buf)
3593 {
3594 	return sysfs_emit(buf, "%ld\n", atomic_long_read(&ksm_zero_pages));
3595 }
3596 KSM_ATTR_RO(ksm_zero_pages);
3597 
general_profit_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3598 static ssize_t general_profit_show(struct kobject *kobj,
3599 				   struct kobj_attribute *attr, char *buf)
3600 {
3601 	long general_profit;
3602 
3603 	general_profit = (ksm_pages_sharing + atomic_long_read(&ksm_zero_pages)) * PAGE_SIZE -
3604 				ksm_rmap_items * sizeof(struct ksm_rmap_item);
3605 
3606 	return sysfs_emit(buf, "%ld\n", general_profit);
3607 }
3608 KSM_ATTR_RO(general_profit);
3609 
stable_node_dups_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3610 static ssize_t stable_node_dups_show(struct kobject *kobj,
3611 				     struct kobj_attribute *attr, char *buf)
3612 {
3613 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3614 }
3615 KSM_ATTR_RO(stable_node_dups);
3616 
stable_node_chains_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3617 static ssize_t stable_node_chains_show(struct kobject *kobj,
3618 				       struct kobj_attribute *attr, char *buf)
3619 {
3620 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3621 }
3622 KSM_ATTR_RO(stable_node_chains);
3623 
3624 static ssize_t
stable_node_chains_prune_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3625 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3626 					struct kobj_attribute *attr,
3627 					char *buf)
3628 {
3629 	return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3630 }
3631 
3632 static ssize_t
stable_node_chains_prune_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3633 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3634 					 struct kobj_attribute *attr,
3635 					 const char *buf, size_t count)
3636 {
3637 	unsigned int msecs;
3638 	int err;
3639 
3640 	err = kstrtouint(buf, 10, &msecs);
3641 	if (err)
3642 		return -EINVAL;
3643 
3644 	ksm_stable_node_chains_prune_millisecs = msecs;
3645 
3646 	return count;
3647 }
3648 KSM_ATTR(stable_node_chains_prune_millisecs);
3649 
full_scans_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3650 static ssize_t full_scans_show(struct kobject *kobj,
3651 			       struct kobj_attribute *attr, char *buf)
3652 {
3653 	return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3654 }
3655 KSM_ATTR_RO(full_scans);
3656 
smart_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3657 static ssize_t smart_scan_show(struct kobject *kobj,
3658 			       struct kobj_attribute *attr, char *buf)
3659 {
3660 	return sysfs_emit(buf, "%u\n", ksm_smart_scan);
3661 }
3662 
smart_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3663 static ssize_t smart_scan_store(struct kobject *kobj,
3664 				struct kobj_attribute *attr,
3665 				const char *buf, size_t count)
3666 {
3667 	int err;
3668 	bool value;
3669 
3670 	err = kstrtobool(buf, &value);
3671 	if (err)
3672 		return -EINVAL;
3673 
3674 	ksm_smart_scan = value;
3675 	return count;
3676 }
3677 KSM_ATTR(smart_scan);
3678 
advisor_mode_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3679 static ssize_t advisor_mode_show(struct kobject *kobj,
3680 				 struct kobj_attribute *attr, char *buf)
3681 {
3682 	const char *output;
3683 
3684 	if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
3685 		output = "none [scan-time]";
3686 	else
3687 		output = "[none] scan-time";
3688 
3689 	return sysfs_emit(buf, "%s\n", output);
3690 }
3691 
advisor_mode_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3692 static ssize_t advisor_mode_store(struct kobject *kobj,
3693 				  struct kobj_attribute *attr, const char *buf,
3694 				  size_t count)
3695 {
3696 	enum ksm_advisor_type curr_advisor = ksm_advisor;
3697 
3698 	if (sysfs_streq("scan-time", buf))
3699 		ksm_advisor = KSM_ADVISOR_SCAN_TIME;
3700 	else if (sysfs_streq("none", buf))
3701 		ksm_advisor = KSM_ADVISOR_NONE;
3702 	else
3703 		return -EINVAL;
3704 
3705 	/* Set advisor default values */
3706 	if (curr_advisor != ksm_advisor)
3707 		set_advisor_defaults();
3708 
3709 	return count;
3710 }
3711 KSM_ATTR(advisor_mode);
3712 
advisor_max_cpu_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3713 static ssize_t advisor_max_cpu_show(struct kobject *kobj,
3714 				    struct kobj_attribute *attr, char *buf)
3715 {
3716 	return sysfs_emit(buf, "%u\n", ksm_advisor_max_cpu);
3717 }
3718 
advisor_max_cpu_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3719 static ssize_t advisor_max_cpu_store(struct kobject *kobj,
3720 				     struct kobj_attribute *attr,
3721 				     const char *buf, size_t count)
3722 {
3723 	int err;
3724 	unsigned long value;
3725 
3726 	err = kstrtoul(buf, 10, &value);
3727 	if (err)
3728 		return -EINVAL;
3729 
3730 	ksm_advisor_max_cpu = value;
3731 	return count;
3732 }
3733 KSM_ATTR(advisor_max_cpu);
3734 
advisor_min_pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3735 static ssize_t advisor_min_pages_to_scan_show(struct kobject *kobj,
3736 					struct kobj_attribute *attr, char *buf)
3737 {
3738 	return sysfs_emit(buf, "%lu\n", ksm_advisor_min_pages_to_scan);
3739 }
3740 
advisor_min_pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3741 static ssize_t advisor_min_pages_to_scan_store(struct kobject *kobj,
3742 					struct kobj_attribute *attr,
3743 					const char *buf, size_t count)
3744 {
3745 	int err;
3746 	unsigned long value;
3747 
3748 	err = kstrtoul(buf, 10, &value);
3749 	if (err)
3750 		return -EINVAL;
3751 
3752 	ksm_advisor_min_pages_to_scan = value;
3753 	return count;
3754 }
3755 KSM_ATTR(advisor_min_pages_to_scan);
3756 
advisor_max_pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3757 static ssize_t advisor_max_pages_to_scan_show(struct kobject *kobj,
3758 					struct kobj_attribute *attr, char *buf)
3759 {
3760 	return sysfs_emit(buf, "%lu\n", ksm_advisor_max_pages_to_scan);
3761 }
3762 
advisor_max_pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3763 static ssize_t advisor_max_pages_to_scan_store(struct kobject *kobj,
3764 					struct kobj_attribute *attr,
3765 					const char *buf, size_t count)
3766 {
3767 	int err;
3768 	unsigned long value;
3769 
3770 	err = kstrtoul(buf, 10, &value);
3771 	if (err)
3772 		return -EINVAL;
3773 
3774 	ksm_advisor_max_pages_to_scan = value;
3775 	return count;
3776 }
3777 KSM_ATTR(advisor_max_pages_to_scan);
3778 
advisor_target_scan_time_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3779 static ssize_t advisor_target_scan_time_show(struct kobject *kobj,
3780 					     struct kobj_attribute *attr, char *buf)
3781 {
3782 	return sysfs_emit(buf, "%lu\n", ksm_advisor_target_scan_time);
3783 }
3784 
advisor_target_scan_time_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3785 static ssize_t advisor_target_scan_time_store(struct kobject *kobj,
3786 					      struct kobj_attribute *attr,
3787 					      const char *buf, size_t count)
3788 {
3789 	int err;
3790 	unsigned long value;
3791 
3792 	err = kstrtoul(buf, 10, &value);
3793 	if (err)
3794 		return -EINVAL;
3795 	if (value < 1)
3796 		return -EINVAL;
3797 
3798 	ksm_advisor_target_scan_time = value;
3799 	return count;
3800 }
3801 KSM_ATTR(advisor_target_scan_time);
3802 
3803 static struct attribute *ksm_attrs[] = {
3804 	&sleep_millisecs_attr.attr,
3805 	&pages_to_scan_attr.attr,
3806 	&run_attr.attr,
3807 	&pages_scanned_attr.attr,
3808 	&pages_shared_attr.attr,
3809 	&pages_sharing_attr.attr,
3810 	&pages_unshared_attr.attr,
3811 	&pages_volatile_attr.attr,
3812 	&pages_skipped_attr.attr,
3813 	&ksm_zero_pages_attr.attr,
3814 	&full_scans_attr.attr,
3815 #ifdef CONFIG_NUMA
3816 	&merge_across_nodes_attr.attr,
3817 #endif
3818 	&max_page_sharing_attr.attr,
3819 	&stable_node_chains_attr.attr,
3820 	&stable_node_dups_attr.attr,
3821 	&stable_node_chains_prune_millisecs_attr.attr,
3822 	&use_zero_pages_attr.attr,
3823 	&general_profit_attr.attr,
3824 	&smart_scan_attr.attr,
3825 	&advisor_mode_attr.attr,
3826 	&advisor_max_cpu_attr.attr,
3827 	&advisor_min_pages_to_scan_attr.attr,
3828 	&advisor_max_pages_to_scan_attr.attr,
3829 	&advisor_target_scan_time_attr.attr,
3830 	NULL,
3831 };
3832 
3833 static const struct attribute_group ksm_attr_group = {
3834 	.attrs = ksm_attrs,
3835 	.name = "ksm",
3836 };
3837 #endif /* CONFIG_SYSFS */
3838 
ksm_init(void)3839 static int __init ksm_init(void)
3840 {
3841 	struct task_struct *ksm_thread;
3842 	int err;
3843 
3844 	/* The correct value depends on page size and endianness */
3845 	zero_checksum = calc_checksum(ZERO_PAGE(0));
3846 	/* Default to false for backwards compatibility */
3847 	ksm_use_zero_pages = false;
3848 
3849 	err = ksm_slab_init();
3850 	if (err)
3851 		goto out;
3852 
3853 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3854 	if (IS_ERR(ksm_thread)) {
3855 		pr_err("ksm: creating kthread failed\n");
3856 		err = PTR_ERR(ksm_thread);
3857 		goto out_free;
3858 	}
3859 
3860 #ifdef CONFIG_SYSFS
3861 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3862 	if (err) {
3863 		pr_err("ksm: register sysfs failed\n");
3864 		kthread_stop(ksm_thread);
3865 		goto out_free;
3866 	}
3867 #else
3868 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3869 
3870 #endif /* CONFIG_SYSFS */
3871 
3872 #ifdef CONFIG_MEMORY_HOTREMOVE
3873 	/* There is no significance to this priority 100 */
3874 	hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3875 #endif
3876 	return 0;
3877 
3878 out_free:
3879 	ksm_slab_free();
3880 out:
3881 	return err;
3882 }
3883 subsys_initcall(ksm_init);
3884