xref: /linux/fs/btrfs/relocation.c (revision fd71def6d9abc5ae362fb9995d46049b7b0ed391)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25 #include "backref.h"
26 #include "misc.h"
27 #include "subpage.h"
28 #include "zoned.h"
29 #include "inode-item.h"
30 #include "space-info.h"
31 #include "fs.h"
32 #include "accessors.h"
33 #include "extent-tree.h"
34 #include "root-tree.h"
35 #include "file-item.h"
36 #include "relocation.h"
37 #include "super.h"
38 #include "tree-checker.h"
39 #include "raid-stripe-tree.h"
40 
41 /*
42  * Relocation overview
43  *
44  * [What does relocation do]
45  *
46  * The objective of relocation is to relocate all extents of the target block
47  * group to other block groups.
48  * This is utilized by resize (shrink only), profile converting, compacting
49  * space, or balance routine to spread chunks over devices.
50  *
51  * 		Before		|		After
52  * ------------------------------------------------------------------
53  *  BG A: 10 data extents	| BG A: deleted
54  *  BG B:  2 data extents	| BG B: 10 data extents (2 old + 8 relocated)
55  *  BG C:  1 extents		| BG C:  3 data extents (1 old + 2 relocated)
56  *
57  * [How does relocation work]
58  *
59  * 1.   Mark the target block group read-only
60  *      New extents won't be allocated from the target block group.
61  *
62  * 2.1  Record each extent in the target block group
63  *      To build a proper map of extents to be relocated.
64  *
65  * 2.2  Build data reloc tree and reloc trees
66  *      Data reloc tree will contain an inode, recording all newly relocated
67  *      data extents.
68  *      There will be only one data reloc tree for one data block group.
69  *
70  *      Reloc tree will be a special snapshot of its source tree, containing
71  *      relocated tree blocks.
72  *      Each tree referring to a tree block in target block group will get its
73  *      reloc tree built.
74  *
75  * 2.3  Swap source tree with its corresponding reloc tree
76  *      Each involved tree only refers to new extents after swap.
77  *
78  * 3.   Cleanup reloc trees and data reloc tree.
79  *      As old extents in the target block group are still referenced by reloc
80  *      trees, we need to clean them up before really freeing the target block
81  *      group.
82  *
83  * The main complexity is in steps 2.2 and 2.3.
84  *
85  * The entry point of relocation is relocate_block_group() function.
86  */
87 
88 #define RELOCATION_RESERVED_NODES	256
89 /*
90  * map address of tree root to tree
91  */
92 struct mapping_node {
93 	struct {
94 		struct rb_node rb_node;
95 		u64 bytenr;
96 	}; /* Use rb_simle_node for search/insert */
97 	void *data;
98 };
99 
100 struct mapping_tree {
101 	struct rb_root rb_root;
102 	spinlock_t lock;
103 };
104 
105 /*
106  * present a tree block to process
107  */
108 struct tree_block {
109 	struct {
110 		struct rb_node rb_node;
111 		u64 bytenr;
112 	}; /* Use rb_simple_node for search/insert */
113 	u64 owner;
114 	struct btrfs_key key;
115 	u8 level;
116 	bool key_ready;
117 };
118 
119 #define MAX_EXTENTS 128
120 
121 struct file_extent_cluster {
122 	u64 start;
123 	u64 end;
124 	u64 boundary[MAX_EXTENTS];
125 	unsigned int nr;
126 	u64 owning_root;
127 };
128 
129 /* Stages of data relocation. */
130 enum reloc_stage {
131 	MOVE_DATA_EXTENTS,
132 	UPDATE_DATA_PTRS
133 };
134 
135 struct reloc_control {
136 	/* block group to relocate */
137 	struct btrfs_block_group *block_group;
138 	/* extent tree */
139 	struct btrfs_root *extent_root;
140 	/* inode for moving data */
141 	struct inode *data_inode;
142 
143 	struct btrfs_block_rsv *block_rsv;
144 
145 	struct btrfs_backref_cache backref_cache;
146 
147 	struct file_extent_cluster cluster;
148 	/* tree blocks have been processed */
149 	struct extent_io_tree processed_blocks;
150 	/* map start of tree root to corresponding reloc tree */
151 	struct mapping_tree reloc_root_tree;
152 	/* list of reloc trees */
153 	struct list_head reloc_roots;
154 	/* list of subvolume trees that get relocated */
155 	struct list_head dirty_subvol_roots;
156 	/* size of metadata reservation for merging reloc trees */
157 	u64 merging_rsv_size;
158 	/* size of relocated tree nodes */
159 	u64 nodes_relocated;
160 	/* reserved size for block group relocation*/
161 	u64 reserved_bytes;
162 
163 	u64 search_start;
164 	u64 extents_found;
165 
166 	enum reloc_stage stage;
167 	bool create_reloc_tree;
168 	bool merge_reloc_tree;
169 	bool found_file_extent;
170 };
171 
mark_block_processed(struct reloc_control * rc,struct btrfs_backref_node * node)172 static void mark_block_processed(struct reloc_control *rc,
173 				 struct btrfs_backref_node *node)
174 {
175 	u32 blocksize;
176 
177 	if (node->level == 0 ||
178 	    in_range(node->bytenr, rc->block_group->start,
179 		     rc->block_group->length)) {
180 		blocksize = rc->extent_root->fs_info->nodesize;
181 		set_extent_bit(&rc->processed_blocks, node->bytenr,
182 			       node->bytenr + blocksize - 1, EXTENT_DIRTY, NULL);
183 	}
184 	node->processed = 1;
185 }
186 
187 /*
188  * walk up backref nodes until reach node presents tree root
189  */
walk_up_backref(struct btrfs_backref_node * node,struct btrfs_backref_edge * edges[],int * index)190 static struct btrfs_backref_node *walk_up_backref(
191 		struct btrfs_backref_node *node,
192 		struct btrfs_backref_edge *edges[], int *index)
193 {
194 	struct btrfs_backref_edge *edge;
195 	int idx = *index;
196 
197 	while (!list_empty(&node->upper)) {
198 		edge = list_entry(node->upper.next,
199 				  struct btrfs_backref_edge, list[LOWER]);
200 		edges[idx++] = edge;
201 		node = edge->node[UPPER];
202 	}
203 	BUG_ON(node->detached);
204 	*index = idx;
205 	return node;
206 }
207 
208 /*
209  * walk down backref nodes to find start of next reference path
210  */
walk_down_backref(struct btrfs_backref_edge * edges[],int * index)211 static struct btrfs_backref_node *walk_down_backref(
212 		struct btrfs_backref_edge *edges[], int *index)
213 {
214 	struct btrfs_backref_edge *edge;
215 	struct btrfs_backref_node *lower;
216 	int idx = *index;
217 
218 	while (idx > 0) {
219 		edge = edges[idx - 1];
220 		lower = edge->node[LOWER];
221 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
222 			idx--;
223 			continue;
224 		}
225 		edge = list_entry(edge->list[LOWER].next,
226 				  struct btrfs_backref_edge, list[LOWER]);
227 		edges[idx - 1] = edge;
228 		*index = idx;
229 		return edge->node[UPPER];
230 	}
231 	*index = 0;
232 	return NULL;
233 }
234 
reloc_root_is_dead(const struct btrfs_root * root)235 static bool reloc_root_is_dead(const struct btrfs_root *root)
236 {
237 	/*
238 	 * Pair with set_bit/clear_bit in clean_dirty_subvols and
239 	 * btrfs_update_reloc_root. We need to see the updated bit before
240 	 * trying to access reloc_root
241 	 */
242 	smp_rmb();
243 	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
244 		return true;
245 	return false;
246 }
247 
248 /*
249  * Check if this subvolume tree has valid reloc tree.
250  *
251  * Reloc tree after swap is considered dead, thus not considered as valid.
252  * This is enough for most callers, as they don't distinguish dead reloc root
253  * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
254  * special case.
255  */
have_reloc_root(const struct btrfs_root * root)256 static bool have_reloc_root(const struct btrfs_root *root)
257 {
258 	if (reloc_root_is_dead(root))
259 		return false;
260 	if (!root->reloc_root)
261 		return false;
262 	return true;
263 }
264 
btrfs_should_ignore_reloc_root(const struct btrfs_root * root)265 bool btrfs_should_ignore_reloc_root(const struct btrfs_root *root)
266 {
267 	struct btrfs_root *reloc_root;
268 
269 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
270 		return false;
271 
272 	/* This root has been merged with its reloc tree, we can ignore it */
273 	if (reloc_root_is_dead(root))
274 		return true;
275 
276 	reloc_root = root->reloc_root;
277 	if (!reloc_root)
278 		return false;
279 
280 	if (btrfs_header_generation(reloc_root->commit_root) ==
281 	    root->fs_info->running_transaction->transid)
282 		return false;
283 	/*
284 	 * If there is reloc tree and it was created in previous transaction
285 	 * backref lookup can find the reloc tree, so backref node for the fs
286 	 * tree root is useless for relocation.
287 	 */
288 	return true;
289 }
290 
291 /*
292  * find reloc tree by address of tree root
293  */
find_reloc_root(struct btrfs_fs_info * fs_info,u64 bytenr)294 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
295 {
296 	struct reloc_control *rc = fs_info->reloc_ctl;
297 	struct rb_node *rb_node;
298 	struct mapping_node *node;
299 	struct btrfs_root *root = NULL;
300 
301 	ASSERT(rc);
302 	spin_lock(&rc->reloc_root_tree.lock);
303 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
304 	if (rb_node) {
305 		node = rb_entry(rb_node, struct mapping_node, rb_node);
306 		root = node->data;
307 	}
308 	spin_unlock(&rc->reloc_root_tree.lock);
309 	return btrfs_grab_root(root);
310 }
311 
312 /*
313  * For useless nodes, do two major clean ups:
314  *
315  * - Cleanup the children edges and nodes
316  *   If child node is also orphan (no parent) during cleanup, then the child
317  *   node will also be cleaned up.
318  *
319  * - Freeing up leaves (level 0), keeps nodes detached
320  *   For nodes, the node is still cached as "detached"
321  *
322  * Return false if @node is not in the @useless_nodes list.
323  * Return true if @node is in the @useless_nodes list.
324  */
handle_useless_nodes(struct reloc_control * rc,struct btrfs_backref_node * node)325 static bool handle_useless_nodes(struct reloc_control *rc,
326 				 struct btrfs_backref_node *node)
327 {
328 	struct btrfs_backref_cache *cache = &rc->backref_cache;
329 	struct list_head *useless_node = &cache->useless_node;
330 	bool ret = false;
331 
332 	while (!list_empty(useless_node)) {
333 		struct btrfs_backref_node *cur;
334 
335 		cur = list_first_entry(useless_node, struct btrfs_backref_node,
336 				 list);
337 		list_del_init(&cur->list);
338 
339 		/* Only tree root nodes can be added to @useless_nodes */
340 		ASSERT(list_empty(&cur->upper));
341 
342 		if (cur == node)
343 			ret = true;
344 
345 		/* Cleanup the lower edges */
346 		while (!list_empty(&cur->lower)) {
347 			struct btrfs_backref_edge *edge;
348 			struct btrfs_backref_node *lower;
349 
350 			edge = list_entry(cur->lower.next,
351 					struct btrfs_backref_edge, list[UPPER]);
352 			list_del(&edge->list[UPPER]);
353 			list_del(&edge->list[LOWER]);
354 			lower = edge->node[LOWER];
355 			btrfs_backref_free_edge(cache, edge);
356 
357 			/* Child node is also orphan, queue for cleanup */
358 			if (list_empty(&lower->upper))
359 				list_add(&lower->list, useless_node);
360 		}
361 		/* Mark this block processed for relocation */
362 		mark_block_processed(rc, cur);
363 
364 		/*
365 		 * Backref nodes for tree leaves are deleted from the cache.
366 		 * Backref nodes for upper level tree blocks are left in the
367 		 * cache to avoid unnecessary backref lookup.
368 		 */
369 		if (cur->level > 0) {
370 			cur->detached = 1;
371 		} else {
372 			rb_erase(&cur->rb_node, &cache->rb_root);
373 			btrfs_backref_free_node(cache, cur);
374 		}
375 	}
376 	return ret;
377 }
378 
379 /*
380  * Build backref tree for a given tree block. Root of the backref tree
381  * corresponds the tree block, leaves of the backref tree correspond roots of
382  * b-trees that reference the tree block.
383  *
384  * The basic idea of this function is check backrefs of a given block to find
385  * upper level blocks that reference the block, and then check backrefs of
386  * these upper level blocks recursively. The recursion stops when tree root is
387  * reached or backrefs for the block is cached.
388  *
389  * NOTE: if we find that backrefs for a block are cached, we know backrefs for
390  * all upper level blocks that directly/indirectly reference the block are also
391  * cached.
392  */
build_backref_tree(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_key * node_key,int level,u64 bytenr)393 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
394 			struct btrfs_trans_handle *trans,
395 			struct reloc_control *rc, struct btrfs_key *node_key,
396 			int level, u64 bytenr)
397 {
398 	struct btrfs_backref_iter *iter;
399 	struct btrfs_backref_cache *cache = &rc->backref_cache;
400 	/* For searching parent of TREE_BLOCK_REF */
401 	struct btrfs_path *path;
402 	struct btrfs_backref_node *cur;
403 	struct btrfs_backref_node *node = NULL;
404 	struct btrfs_backref_edge *edge;
405 	int ret;
406 
407 	iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info);
408 	if (!iter)
409 		return ERR_PTR(-ENOMEM);
410 	path = btrfs_alloc_path();
411 	if (!path) {
412 		ret = -ENOMEM;
413 		goto out;
414 	}
415 
416 	node = btrfs_backref_alloc_node(cache, bytenr, level);
417 	if (!node) {
418 		ret = -ENOMEM;
419 		goto out;
420 	}
421 
422 	cur = node;
423 
424 	/* Breadth-first search to build backref cache */
425 	do {
426 		ret = btrfs_backref_add_tree_node(trans, cache, path, iter,
427 						  node_key, cur);
428 		if (ret < 0)
429 			goto out;
430 
431 		edge = list_first_entry_or_null(&cache->pending_edge,
432 				struct btrfs_backref_edge, list[UPPER]);
433 		/*
434 		 * The pending list isn't empty, take the first block to
435 		 * process
436 		 */
437 		if (edge) {
438 			list_del_init(&edge->list[UPPER]);
439 			cur = edge->node[UPPER];
440 		}
441 	} while (edge);
442 
443 	/* Finish the upper linkage of newly added edges/nodes */
444 	ret = btrfs_backref_finish_upper_links(cache, node);
445 	if (ret < 0)
446 		goto out;
447 
448 	if (handle_useless_nodes(rc, node))
449 		node = NULL;
450 out:
451 	btrfs_free_path(iter->path);
452 	kfree(iter);
453 	btrfs_free_path(path);
454 	if (ret) {
455 		btrfs_backref_error_cleanup(cache, node);
456 		return ERR_PTR(ret);
457 	}
458 	ASSERT(!node || !node->detached);
459 	ASSERT(list_empty(&cache->useless_node) &&
460 	       list_empty(&cache->pending_edge));
461 	return node;
462 }
463 
464 /*
465  * helper to add 'address of tree root -> reloc tree' mapping
466  */
__add_reloc_root(struct btrfs_root * root)467 static int __add_reloc_root(struct btrfs_root *root)
468 {
469 	struct btrfs_fs_info *fs_info = root->fs_info;
470 	struct rb_node *rb_node;
471 	struct mapping_node *node;
472 	struct reloc_control *rc = fs_info->reloc_ctl;
473 
474 	node = kmalloc(sizeof(*node), GFP_NOFS);
475 	if (!node)
476 		return -ENOMEM;
477 
478 	node->bytenr = root->commit_root->start;
479 	node->data = root;
480 
481 	spin_lock(&rc->reloc_root_tree.lock);
482 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
483 				   node->bytenr, &node->rb_node);
484 	spin_unlock(&rc->reloc_root_tree.lock);
485 	if (rb_node) {
486 		btrfs_err(fs_info,
487 			    "Duplicate root found for start=%llu while inserting into relocation tree",
488 			    node->bytenr);
489 		return -EEXIST;
490 	}
491 
492 	list_add_tail(&root->root_list, &rc->reloc_roots);
493 	return 0;
494 }
495 
496 /*
497  * helper to delete the 'address of tree root -> reloc tree'
498  * mapping
499  */
__del_reloc_root(struct btrfs_root * root)500 static void __del_reloc_root(struct btrfs_root *root)
501 {
502 	struct btrfs_fs_info *fs_info = root->fs_info;
503 	struct rb_node *rb_node;
504 	struct mapping_node *node = NULL;
505 	struct reloc_control *rc = fs_info->reloc_ctl;
506 	bool put_ref = false;
507 
508 	if (rc && root->node) {
509 		spin_lock(&rc->reloc_root_tree.lock);
510 		rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
511 					   root->commit_root->start);
512 		if (rb_node) {
513 			node = rb_entry(rb_node, struct mapping_node, rb_node);
514 			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
515 			RB_CLEAR_NODE(&node->rb_node);
516 		}
517 		spin_unlock(&rc->reloc_root_tree.lock);
518 		ASSERT(!node || (struct btrfs_root *)node->data == root);
519 	}
520 
521 	/*
522 	 * We only put the reloc root here if it's on the list.  There's a lot
523 	 * of places where the pattern is to splice the rc->reloc_roots, process
524 	 * the reloc roots, and then add the reloc root back onto
525 	 * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
526 	 * list we don't want the reference being dropped, because the guy
527 	 * messing with the list is in charge of the reference.
528 	 */
529 	spin_lock(&fs_info->trans_lock);
530 	if (!list_empty(&root->root_list)) {
531 		put_ref = true;
532 		list_del_init(&root->root_list);
533 	}
534 	spin_unlock(&fs_info->trans_lock);
535 	if (put_ref)
536 		btrfs_put_root(root);
537 	kfree(node);
538 }
539 
540 /*
541  * helper to update the 'address of tree root -> reloc tree'
542  * mapping
543  */
__update_reloc_root(struct btrfs_root * root)544 static int __update_reloc_root(struct btrfs_root *root)
545 {
546 	struct btrfs_fs_info *fs_info = root->fs_info;
547 	struct rb_node *rb_node;
548 	struct mapping_node *node = NULL;
549 	struct reloc_control *rc = fs_info->reloc_ctl;
550 
551 	spin_lock(&rc->reloc_root_tree.lock);
552 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
553 				   root->commit_root->start);
554 	if (rb_node) {
555 		node = rb_entry(rb_node, struct mapping_node, rb_node);
556 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
557 	}
558 	spin_unlock(&rc->reloc_root_tree.lock);
559 
560 	if (!node)
561 		return 0;
562 	BUG_ON((struct btrfs_root *)node->data != root);
563 
564 	spin_lock(&rc->reloc_root_tree.lock);
565 	node->bytenr = root->node->start;
566 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
567 				   node->bytenr, &node->rb_node);
568 	spin_unlock(&rc->reloc_root_tree.lock);
569 	if (rb_node)
570 		btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
571 	return 0;
572 }
573 
create_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)574 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
575 					struct btrfs_root *root, u64 objectid)
576 {
577 	struct btrfs_fs_info *fs_info = root->fs_info;
578 	struct btrfs_root *reloc_root;
579 	struct extent_buffer *eb;
580 	struct btrfs_root_item *root_item;
581 	struct btrfs_key root_key;
582 	int ret = 0;
583 	bool must_abort = false;
584 
585 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
586 	if (!root_item)
587 		return ERR_PTR(-ENOMEM);
588 
589 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
590 	root_key.type = BTRFS_ROOT_ITEM_KEY;
591 	root_key.offset = objectid;
592 
593 	if (btrfs_root_id(root) == objectid) {
594 		u64 commit_root_gen;
595 
596 		/* called by btrfs_init_reloc_root */
597 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
598 				      BTRFS_TREE_RELOC_OBJECTID);
599 		if (ret)
600 			goto fail;
601 
602 		/*
603 		 * Set the last_snapshot field to the generation of the commit
604 		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
605 		 * correctly (returns true) when the relocation root is created
606 		 * either inside the critical section of a transaction commit
607 		 * (through transaction.c:qgroup_account_snapshot()) and when
608 		 * it's created before the transaction commit is started.
609 		 */
610 		commit_root_gen = btrfs_header_generation(root->commit_root);
611 		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
612 	} else {
613 		/*
614 		 * called by btrfs_reloc_post_snapshot_hook.
615 		 * the source tree is a reloc tree, all tree blocks
616 		 * modified after it was created have RELOC flag
617 		 * set in their headers. so it's OK to not update
618 		 * the 'last_snapshot'.
619 		 */
620 		ret = btrfs_copy_root(trans, root, root->node, &eb,
621 				      BTRFS_TREE_RELOC_OBJECTID);
622 		if (ret)
623 			goto fail;
624 	}
625 
626 	/*
627 	 * We have changed references at this point, we must abort the
628 	 * transaction if anything fails.
629 	 */
630 	must_abort = true;
631 
632 	memcpy(root_item, &root->root_item, sizeof(*root_item));
633 	btrfs_set_root_bytenr(root_item, eb->start);
634 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
635 	btrfs_set_root_generation(root_item, trans->transid);
636 
637 	if (btrfs_root_id(root) == objectid) {
638 		btrfs_set_root_refs(root_item, 0);
639 		memset(&root_item->drop_progress, 0,
640 		       sizeof(struct btrfs_disk_key));
641 		btrfs_set_root_drop_level(root_item, 0);
642 	}
643 
644 	btrfs_tree_unlock(eb);
645 	free_extent_buffer(eb);
646 
647 	ret = btrfs_insert_root(trans, fs_info->tree_root,
648 				&root_key, root_item);
649 	if (ret)
650 		goto fail;
651 
652 	kfree(root_item);
653 
654 	reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
655 	if (IS_ERR(reloc_root)) {
656 		ret = PTR_ERR(reloc_root);
657 		goto abort;
658 	}
659 	set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
660 	btrfs_set_root_last_trans(reloc_root, trans->transid);
661 	return reloc_root;
662 fail:
663 	kfree(root_item);
664 abort:
665 	if (must_abort)
666 		btrfs_abort_transaction(trans, ret);
667 	return ERR_PTR(ret);
668 }
669 
670 /*
671  * create reloc tree for a given fs tree. reloc tree is just a
672  * snapshot of the fs tree with special root objectid.
673  *
674  * The reloc_root comes out of here with two references, one for
675  * root->reloc_root, and another for being on the rc->reloc_roots list.
676  */
btrfs_init_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)677 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
678 			  struct btrfs_root *root)
679 {
680 	struct btrfs_fs_info *fs_info = root->fs_info;
681 	struct btrfs_root *reloc_root;
682 	struct reloc_control *rc = fs_info->reloc_ctl;
683 	struct btrfs_block_rsv *rsv;
684 	int clear_rsv = 0;
685 	int ret;
686 
687 	if (!rc)
688 		return 0;
689 
690 	/*
691 	 * The subvolume has reloc tree but the swap is finished, no need to
692 	 * create/update the dead reloc tree
693 	 */
694 	if (reloc_root_is_dead(root))
695 		return 0;
696 
697 	/*
698 	 * This is subtle but important.  We do not do
699 	 * record_root_in_transaction for reloc roots, instead we record their
700 	 * corresponding fs root, and then here we update the last trans for the
701 	 * reloc root.  This means that we have to do this for the entire life
702 	 * of the reloc root, regardless of which stage of the relocation we are
703 	 * in.
704 	 */
705 	if (root->reloc_root) {
706 		reloc_root = root->reloc_root;
707 		btrfs_set_root_last_trans(reloc_root, trans->transid);
708 		return 0;
709 	}
710 
711 	/*
712 	 * We are merging reloc roots, we do not need new reloc trees.  Also
713 	 * reloc trees never need their own reloc tree.
714 	 */
715 	if (!rc->create_reloc_tree || btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
716 		return 0;
717 
718 	if (!trans->reloc_reserved) {
719 		rsv = trans->block_rsv;
720 		trans->block_rsv = rc->block_rsv;
721 		clear_rsv = 1;
722 	}
723 	reloc_root = create_reloc_root(trans, root, btrfs_root_id(root));
724 	if (clear_rsv)
725 		trans->block_rsv = rsv;
726 	if (IS_ERR(reloc_root))
727 		return PTR_ERR(reloc_root);
728 
729 	ret = __add_reloc_root(reloc_root);
730 	ASSERT(ret != -EEXIST);
731 	if (ret) {
732 		/* Pairs with create_reloc_root */
733 		btrfs_put_root(reloc_root);
734 		return ret;
735 	}
736 	root->reloc_root = btrfs_grab_root(reloc_root);
737 	return 0;
738 }
739 
740 /*
741  * update root item of reloc tree
742  */
btrfs_update_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)743 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
744 			    struct btrfs_root *root)
745 {
746 	struct btrfs_fs_info *fs_info = root->fs_info;
747 	struct btrfs_root *reloc_root;
748 	struct btrfs_root_item *root_item;
749 	int ret;
750 
751 	if (!have_reloc_root(root))
752 		return 0;
753 
754 	reloc_root = root->reloc_root;
755 	root_item = &reloc_root->root_item;
756 
757 	/*
758 	 * We are probably ok here, but __del_reloc_root() will drop its ref of
759 	 * the root.  We have the ref for root->reloc_root, but just in case
760 	 * hold it while we update the reloc root.
761 	 */
762 	btrfs_grab_root(reloc_root);
763 
764 	/* root->reloc_root will stay until current relocation finished */
765 	if (fs_info->reloc_ctl && fs_info->reloc_ctl->merge_reloc_tree &&
766 	    btrfs_root_refs(root_item) == 0) {
767 		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
768 		/*
769 		 * Mark the tree as dead before we change reloc_root so
770 		 * have_reloc_root will not touch it from now on.
771 		 */
772 		smp_wmb();
773 		__del_reloc_root(reloc_root);
774 	}
775 
776 	if (reloc_root->commit_root != reloc_root->node) {
777 		__update_reloc_root(reloc_root);
778 		btrfs_set_root_node(root_item, reloc_root->node);
779 		free_extent_buffer(reloc_root->commit_root);
780 		reloc_root->commit_root = btrfs_root_node(reloc_root);
781 	}
782 
783 	ret = btrfs_update_root(trans, fs_info->tree_root,
784 				&reloc_root->root_key, root_item);
785 	btrfs_put_root(reloc_root);
786 	return ret;
787 }
788 
789 /*
790  * get new location of data
791  */
get_new_location(struct inode * reloc_inode,u64 * new_bytenr,u64 bytenr,u64 num_bytes)792 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
793 			    u64 bytenr, u64 num_bytes)
794 {
795 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
796 	struct btrfs_path *path;
797 	struct btrfs_file_extent_item *fi;
798 	struct extent_buffer *leaf;
799 	int ret;
800 
801 	path = btrfs_alloc_path();
802 	if (!path)
803 		return -ENOMEM;
804 
805 	bytenr -= BTRFS_I(reloc_inode)->reloc_block_group_start;
806 	ret = btrfs_lookup_file_extent(NULL, root, path,
807 			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
808 	if (ret < 0)
809 		goto out;
810 	if (ret > 0) {
811 		ret = -ENOENT;
812 		goto out;
813 	}
814 
815 	leaf = path->nodes[0];
816 	fi = btrfs_item_ptr(leaf, path->slots[0],
817 			    struct btrfs_file_extent_item);
818 
819 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
820 	       btrfs_file_extent_compression(leaf, fi) ||
821 	       btrfs_file_extent_encryption(leaf, fi) ||
822 	       btrfs_file_extent_other_encoding(leaf, fi));
823 
824 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
825 		ret = -EINVAL;
826 		goto out;
827 	}
828 
829 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
830 	ret = 0;
831 out:
832 	btrfs_free_path(path);
833 	return ret;
834 }
835 
836 /*
837  * update file extent items in the tree leaf to point to
838  * the new locations.
839  */
840 static noinline_for_stack
replace_file_extents(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * root,struct extent_buffer * leaf)841 int replace_file_extents(struct btrfs_trans_handle *trans,
842 			 struct reloc_control *rc,
843 			 struct btrfs_root *root,
844 			 struct extent_buffer *leaf)
845 {
846 	struct btrfs_fs_info *fs_info = root->fs_info;
847 	struct btrfs_key key;
848 	struct btrfs_file_extent_item *fi;
849 	struct btrfs_inode *inode = NULL;
850 	u64 parent;
851 	u64 bytenr;
852 	u64 new_bytenr = 0;
853 	u64 num_bytes;
854 	u64 end;
855 	u32 nritems;
856 	u32 i;
857 	int ret = 0;
858 	int first = 1;
859 
860 	if (rc->stage != UPDATE_DATA_PTRS)
861 		return 0;
862 
863 	/* reloc trees always use full backref */
864 	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
865 		parent = leaf->start;
866 	else
867 		parent = 0;
868 
869 	nritems = btrfs_header_nritems(leaf);
870 	for (i = 0; i < nritems; i++) {
871 		struct btrfs_ref ref = { 0 };
872 
873 		cond_resched();
874 		btrfs_item_key_to_cpu(leaf, &key, i);
875 		if (key.type != BTRFS_EXTENT_DATA_KEY)
876 			continue;
877 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
878 		if (btrfs_file_extent_type(leaf, fi) ==
879 		    BTRFS_FILE_EXTENT_INLINE)
880 			continue;
881 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
882 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
883 		if (bytenr == 0)
884 			continue;
885 		if (!in_range(bytenr, rc->block_group->start,
886 			      rc->block_group->length))
887 			continue;
888 
889 		/*
890 		 * if we are modifying block in fs tree, wait for read_folio
891 		 * to complete and drop the extent cache
892 		 */
893 		if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) {
894 			if (first) {
895 				inode = btrfs_find_first_inode(root, key.objectid);
896 				first = 0;
897 			} else if (inode && btrfs_ino(inode) < key.objectid) {
898 				btrfs_add_delayed_iput(inode);
899 				inode = btrfs_find_first_inode(root, key.objectid);
900 			}
901 			if (inode && btrfs_ino(inode) == key.objectid) {
902 				struct extent_state *cached_state = NULL;
903 
904 				end = key.offset +
905 				      btrfs_file_extent_num_bytes(leaf, fi);
906 				WARN_ON(!IS_ALIGNED(key.offset,
907 						    fs_info->sectorsize));
908 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
909 				end--;
910 				/* Take mmap lock to serialize with reflinks. */
911 				if (!down_read_trylock(&inode->i_mmap_lock))
912 					continue;
913 				ret = try_lock_extent(&inode->io_tree, key.offset,
914 						      end, &cached_state);
915 				if (!ret) {
916 					up_read(&inode->i_mmap_lock);
917 					continue;
918 				}
919 
920 				btrfs_drop_extent_map_range(inode, key.offset, end, true);
921 				unlock_extent(&inode->io_tree, key.offset, end,
922 					      &cached_state);
923 				up_read(&inode->i_mmap_lock);
924 			}
925 		}
926 
927 		ret = get_new_location(rc->data_inode, &new_bytenr,
928 				       bytenr, num_bytes);
929 		if (ret) {
930 			/*
931 			 * Don't have to abort since we've not changed anything
932 			 * in the file extent yet.
933 			 */
934 			break;
935 		}
936 
937 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
938 
939 		key.offset -= btrfs_file_extent_offset(leaf, fi);
940 		ref.action = BTRFS_ADD_DELAYED_REF;
941 		ref.bytenr = new_bytenr;
942 		ref.num_bytes = num_bytes;
943 		ref.parent = parent;
944 		ref.owning_root = btrfs_root_id(root);
945 		ref.ref_root = btrfs_header_owner(leaf);
946 		btrfs_init_data_ref(&ref, key.objectid, key.offset,
947 				    btrfs_root_id(root), false);
948 		ret = btrfs_inc_extent_ref(trans, &ref);
949 		if (ret) {
950 			btrfs_abort_transaction(trans, ret);
951 			break;
952 		}
953 
954 		ref.action = BTRFS_DROP_DELAYED_REF;
955 		ref.bytenr = bytenr;
956 		ref.num_bytes = num_bytes;
957 		ref.parent = parent;
958 		ref.owning_root = btrfs_root_id(root);
959 		ref.ref_root = btrfs_header_owner(leaf);
960 		btrfs_init_data_ref(&ref, key.objectid, key.offset,
961 				    btrfs_root_id(root), false);
962 		ret = btrfs_free_extent(trans, &ref);
963 		if (ret) {
964 			btrfs_abort_transaction(trans, ret);
965 			break;
966 		}
967 	}
968 	if (inode)
969 		btrfs_add_delayed_iput(inode);
970 	return ret;
971 }
972 
memcmp_node_keys(const struct extent_buffer * eb,int slot,const struct btrfs_path * path,int level)973 static noinline_for_stack int memcmp_node_keys(const struct extent_buffer *eb,
974 					       int slot, const struct btrfs_path *path,
975 					       int level)
976 {
977 	struct btrfs_disk_key key1;
978 	struct btrfs_disk_key key2;
979 	btrfs_node_key(eb, &key1, slot);
980 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
981 	return memcmp(&key1, &key2, sizeof(key1));
982 }
983 
984 /*
985  * try to replace tree blocks in fs tree with the new blocks
986  * in reloc tree. tree blocks haven't been modified since the
987  * reloc tree was create can be replaced.
988  *
989  * if a block was replaced, level of the block + 1 is returned.
990  * if no block got replaced, 0 is returned. if there are other
991  * errors, a negative error number is returned.
992  */
993 static noinline_for_stack
replace_path(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * dest,struct btrfs_root * src,struct btrfs_path * path,struct btrfs_key * next_key,int lowest_level,int max_level)994 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
995 		 struct btrfs_root *dest, struct btrfs_root *src,
996 		 struct btrfs_path *path, struct btrfs_key *next_key,
997 		 int lowest_level, int max_level)
998 {
999 	struct btrfs_fs_info *fs_info = dest->fs_info;
1000 	struct extent_buffer *eb;
1001 	struct extent_buffer *parent;
1002 	struct btrfs_ref ref = { 0 };
1003 	struct btrfs_key key;
1004 	u64 old_bytenr;
1005 	u64 new_bytenr;
1006 	u64 old_ptr_gen;
1007 	u64 new_ptr_gen;
1008 	u64 last_snapshot;
1009 	u32 blocksize;
1010 	int cow = 0;
1011 	int level;
1012 	int ret;
1013 	int slot;
1014 
1015 	ASSERT(btrfs_root_id(src) == BTRFS_TREE_RELOC_OBJECTID);
1016 	ASSERT(btrfs_root_id(dest) != BTRFS_TREE_RELOC_OBJECTID);
1017 
1018 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1019 again:
1020 	slot = path->slots[lowest_level];
1021 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1022 
1023 	eb = btrfs_lock_root_node(dest);
1024 	level = btrfs_header_level(eb);
1025 
1026 	if (level < lowest_level) {
1027 		btrfs_tree_unlock(eb);
1028 		free_extent_buffer(eb);
1029 		return 0;
1030 	}
1031 
1032 	if (cow) {
1033 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1034 				      BTRFS_NESTING_COW);
1035 		if (ret) {
1036 			btrfs_tree_unlock(eb);
1037 			free_extent_buffer(eb);
1038 			return ret;
1039 		}
1040 	}
1041 
1042 	if (next_key) {
1043 		next_key->objectid = (u64)-1;
1044 		next_key->type = (u8)-1;
1045 		next_key->offset = (u64)-1;
1046 	}
1047 
1048 	parent = eb;
1049 	while (1) {
1050 		level = btrfs_header_level(parent);
1051 		ASSERT(level >= lowest_level);
1052 
1053 		ret = btrfs_bin_search(parent, 0, &key, &slot);
1054 		if (ret < 0)
1055 			break;
1056 		if (ret && slot > 0)
1057 			slot--;
1058 
1059 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1060 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1061 
1062 		old_bytenr = btrfs_node_blockptr(parent, slot);
1063 		blocksize = fs_info->nodesize;
1064 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1065 
1066 		if (level <= max_level) {
1067 			eb = path->nodes[level];
1068 			new_bytenr = btrfs_node_blockptr(eb,
1069 							path->slots[level]);
1070 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1071 							path->slots[level]);
1072 		} else {
1073 			new_bytenr = 0;
1074 			new_ptr_gen = 0;
1075 		}
1076 
1077 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1078 			ret = level;
1079 			break;
1080 		}
1081 
1082 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1083 		    memcmp_node_keys(parent, slot, path, level)) {
1084 			if (level <= lowest_level) {
1085 				ret = 0;
1086 				break;
1087 			}
1088 
1089 			eb = btrfs_read_node_slot(parent, slot);
1090 			if (IS_ERR(eb)) {
1091 				ret = PTR_ERR(eb);
1092 				break;
1093 			}
1094 			btrfs_tree_lock(eb);
1095 			if (cow) {
1096 				ret = btrfs_cow_block(trans, dest, eb, parent,
1097 						      slot, &eb,
1098 						      BTRFS_NESTING_COW);
1099 				if (ret) {
1100 					btrfs_tree_unlock(eb);
1101 					free_extent_buffer(eb);
1102 					break;
1103 				}
1104 			}
1105 
1106 			btrfs_tree_unlock(parent);
1107 			free_extent_buffer(parent);
1108 
1109 			parent = eb;
1110 			continue;
1111 		}
1112 
1113 		if (!cow) {
1114 			btrfs_tree_unlock(parent);
1115 			free_extent_buffer(parent);
1116 			cow = 1;
1117 			goto again;
1118 		}
1119 
1120 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1121 				      path->slots[level]);
1122 		btrfs_release_path(path);
1123 
1124 		path->lowest_level = level;
1125 		set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1126 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1127 		clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1128 		path->lowest_level = 0;
1129 		if (ret) {
1130 			if (ret > 0)
1131 				ret = -ENOENT;
1132 			break;
1133 		}
1134 
1135 		/*
1136 		 * Info qgroup to trace both subtrees.
1137 		 *
1138 		 * We must trace both trees.
1139 		 * 1) Tree reloc subtree
1140 		 *    If not traced, we will leak data numbers
1141 		 * 2) Fs subtree
1142 		 *    If not traced, we will double count old data
1143 		 *
1144 		 * We don't scan the subtree right now, but only record
1145 		 * the swapped tree blocks.
1146 		 * The real subtree rescan is delayed until we have new
1147 		 * CoW on the subtree root node before transaction commit.
1148 		 */
1149 		ret = btrfs_qgroup_add_swapped_blocks(dest,
1150 				rc->block_group, parent, slot,
1151 				path->nodes[level], path->slots[level],
1152 				last_snapshot);
1153 		if (ret < 0)
1154 			break;
1155 		/*
1156 		 * swap blocks in fs tree and reloc tree.
1157 		 */
1158 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1159 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1160 
1161 		btrfs_set_node_blockptr(path->nodes[level],
1162 					path->slots[level], old_bytenr);
1163 		btrfs_set_node_ptr_generation(path->nodes[level],
1164 					      path->slots[level], old_ptr_gen);
1165 
1166 		ref.action = BTRFS_ADD_DELAYED_REF;
1167 		ref.bytenr = old_bytenr;
1168 		ref.num_bytes = blocksize;
1169 		ref.parent = path->nodes[level]->start;
1170 		ref.owning_root = btrfs_root_id(src);
1171 		ref.ref_root = btrfs_root_id(src);
1172 		btrfs_init_tree_ref(&ref, level - 1, 0, true);
1173 		ret = btrfs_inc_extent_ref(trans, &ref);
1174 		if (ret) {
1175 			btrfs_abort_transaction(trans, ret);
1176 			break;
1177 		}
1178 
1179 		ref.action = BTRFS_ADD_DELAYED_REF;
1180 		ref.bytenr = new_bytenr;
1181 		ref.num_bytes = blocksize;
1182 		ref.parent = 0;
1183 		ref.owning_root = btrfs_root_id(dest);
1184 		ref.ref_root = btrfs_root_id(dest);
1185 		btrfs_init_tree_ref(&ref, level - 1, 0, true);
1186 		ret = btrfs_inc_extent_ref(trans, &ref);
1187 		if (ret) {
1188 			btrfs_abort_transaction(trans, ret);
1189 			break;
1190 		}
1191 
1192 		/* We don't know the real owning_root, use 0. */
1193 		ref.action = BTRFS_DROP_DELAYED_REF;
1194 		ref.bytenr = new_bytenr;
1195 		ref.num_bytes = blocksize;
1196 		ref.parent = path->nodes[level]->start;
1197 		ref.owning_root = 0;
1198 		ref.ref_root = btrfs_root_id(src);
1199 		btrfs_init_tree_ref(&ref, level - 1, 0, true);
1200 		ret = btrfs_free_extent(trans, &ref);
1201 		if (ret) {
1202 			btrfs_abort_transaction(trans, ret);
1203 			break;
1204 		}
1205 
1206 		/* We don't know the real owning_root, use 0. */
1207 		ref.action = BTRFS_DROP_DELAYED_REF;
1208 		ref.bytenr = old_bytenr;
1209 		ref.num_bytes = blocksize;
1210 		ref.parent = 0;
1211 		ref.owning_root = 0;
1212 		ref.ref_root = btrfs_root_id(dest);
1213 		btrfs_init_tree_ref(&ref, level - 1, 0, true);
1214 		ret = btrfs_free_extent(trans, &ref);
1215 		if (ret) {
1216 			btrfs_abort_transaction(trans, ret);
1217 			break;
1218 		}
1219 
1220 		btrfs_unlock_up_safe(path, 0);
1221 
1222 		ret = level;
1223 		break;
1224 	}
1225 	btrfs_tree_unlock(parent);
1226 	free_extent_buffer(parent);
1227 	return ret;
1228 }
1229 
1230 /*
1231  * helper to find next relocated block in reloc tree
1232  */
1233 static noinline_for_stack
walk_up_reloc_tree(struct btrfs_root * root,struct btrfs_path * path,int * level)1234 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1235 		       int *level)
1236 {
1237 	struct extent_buffer *eb;
1238 	int i;
1239 	u64 last_snapshot;
1240 	u32 nritems;
1241 
1242 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1243 
1244 	for (i = 0; i < *level; i++) {
1245 		free_extent_buffer(path->nodes[i]);
1246 		path->nodes[i] = NULL;
1247 	}
1248 
1249 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1250 		eb = path->nodes[i];
1251 		nritems = btrfs_header_nritems(eb);
1252 		while (path->slots[i] + 1 < nritems) {
1253 			path->slots[i]++;
1254 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1255 			    last_snapshot)
1256 				continue;
1257 
1258 			*level = i;
1259 			return 0;
1260 		}
1261 		free_extent_buffer(path->nodes[i]);
1262 		path->nodes[i] = NULL;
1263 	}
1264 	return 1;
1265 }
1266 
1267 /*
1268  * walk down reloc tree to find relocated block of lowest level
1269  */
1270 static noinline_for_stack
walk_down_reloc_tree(struct btrfs_root * root,struct btrfs_path * path,int * level)1271 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1272 			 int *level)
1273 {
1274 	struct extent_buffer *eb = NULL;
1275 	int i;
1276 	u64 ptr_gen = 0;
1277 	u64 last_snapshot;
1278 	u32 nritems;
1279 
1280 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1281 
1282 	for (i = *level; i > 0; i--) {
1283 		eb = path->nodes[i];
1284 		nritems = btrfs_header_nritems(eb);
1285 		while (path->slots[i] < nritems) {
1286 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1287 			if (ptr_gen > last_snapshot)
1288 				break;
1289 			path->slots[i]++;
1290 		}
1291 		if (path->slots[i] >= nritems) {
1292 			if (i == *level)
1293 				break;
1294 			*level = i + 1;
1295 			return 0;
1296 		}
1297 		if (i == 1) {
1298 			*level = i;
1299 			return 0;
1300 		}
1301 
1302 		eb = btrfs_read_node_slot(eb, path->slots[i]);
1303 		if (IS_ERR(eb))
1304 			return PTR_ERR(eb);
1305 		BUG_ON(btrfs_header_level(eb) != i - 1);
1306 		path->nodes[i - 1] = eb;
1307 		path->slots[i - 1] = 0;
1308 	}
1309 	return 1;
1310 }
1311 
1312 /*
1313  * invalidate extent cache for file extents whose key in range of
1314  * [min_key, max_key)
1315  */
invalidate_extent_cache(struct btrfs_root * root,const struct btrfs_key * min_key,const struct btrfs_key * max_key)1316 static int invalidate_extent_cache(struct btrfs_root *root,
1317 				   const struct btrfs_key *min_key,
1318 				   const struct btrfs_key *max_key)
1319 {
1320 	struct btrfs_fs_info *fs_info = root->fs_info;
1321 	struct btrfs_inode *inode = NULL;
1322 	u64 objectid;
1323 	u64 start, end;
1324 	u64 ino;
1325 
1326 	objectid = min_key->objectid;
1327 	while (1) {
1328 		struct extent_state *cached_state = NULL;
1329 
1330 		cond_resched();
1331 		if (inode)
1332 			iput(&inode->vfs_inode);
1333 
1334 		if (objectid > max_key->objectid)
1335 			break;
1336 
1337 		inode = btrfs_find_first_inode(root, objectid);
1338 		if (!inode)
1339 			break;
1340 		ino = btrfs_ino(inode);
1341 
1342 		if (ino > max_key->objectid) {
1343 			iput(&inode->vfs_inode);
1344 			break;
1345 		}
1346 
1347 		objectid = ino + 1;
1348 		if (!S_ISREG(inode->vfs_inode.i_mode))
1349 			continue;
1350 
1351 		if (unlikely(min_key->objectid == ino)) {
1352 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1353 				continue;
1354 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1355 				start = 0;
1356 			else {
1357 				start = min_key->offset;
1358 				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1359 			}
1360 		} else {
1361 			start = 0;
1362 		}
1363 
1364 		if (unlikely(max_key->objectid == ino)) {
1365 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1366 				continue;
1367 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1368 				end = (u64)-1;
1369 			} else {
1370 				if (max_key->offset == 0)
1371 					continue;
1372 				end = max_key->offset;
1373 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1374 				end--;
1375 			}
1376 		} else {
1377 			end = (u64)-1;
1378 		}
1379 
1380 		/* the lock_extent waits for read_folio to complete */
1381 		lock_extent(&inode->io_tree, start, end, &cached_state);
1382 		btrfs_drop_extent_map_range(inode, start, end, true);
1383 		unlock_extent(&inode->io_tree, start, end, &cached_state);
1384 	}
1385 	return 0;
1386 }
1387 
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)1388 static int find_next_key(struct btrfs_path *path, int level,
1389 			 struct btrfs_key *key)
1390 
1391 {
1392 	while (level < BTRFS_MAX_LEVEL) {
1393 		if (!path->nodes[level])
1394 			break;
1395 		if (path->slots[level] + 1 <
1396 		    btrfs_header_nritems(path->nodes[level])) {
1397 			btrfs_node_key_to_cpu(path->nodes[level], key,
1398 					      path->slots[level] + 1);
1399 			return 0;
1400 		}
1401 		level++;
1402 	}
1403 	return 1;
1404 }
1405 
1406 /*
1407  * Insert current subvolume into reloc_control::dirty_subvol_roots
1408  */
insert_dirty_subvol(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * root)1409 static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1410 			       struct reloc_control *rc,
1411 			       struct btrfs_root *root)
1412 {
1413 	struct btrfs_root *reloc_root = root->reloc_root;
1414 	struct btrfs_root_item *reloc_root_item;
1415 	int ret;
1416 
1417 	/* @root must be a subvolume tree root with a valid reloc tree */
1418 	ASSERT(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID);
1419 	ASSERT(reloc_root);
1420 
1421 	reloc_root_item = &reloc_root->root_item;
1422 	memset(&reloc_root_item->drop_progress, 0,
1423 		sizeof(reloc_root_item->drop_progress));
1424 	btrfs_set_root_drop_level(reloc_root_item, 0);
1425 	btrfs_set_root_refs(reloc_root_item, 0);
1426 	ret = btrfs_update_reloc_root(trans, root);
1427 	if (ret)
1428 		return ret;
1429 
1430 	if (list_empty(&root->reloc_dirty_list)) {
1431 		btrfs_grab_root(root);
1432 		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1433 	}
1434 
1435 	return 0;
1436 }
1437 
clean_dirty_subvols(struct reloc_control * rc)1438 static int clean_dirty_subvols(struct reloc_control *rc)
1439 {
1440 	struct btrfs_root *root;
1441 	struct btrfs_root *next;
1442 	int ret = 0;
1443 	int ret2;
1444 
1445 	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1446 				 reloc_dirty_list) {
1447 		if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) {
1448 			/* Merged subvolume, cleanup its reloc root */
1449 			struct btrfs_root *reloc_root = root->reloc_root;
1450 
1451 			list_del_init(&root->reloc_dirty_list);
1452 			root->reloc_root = NULL;
1453 			/*
1454 			 * Need barrier to ensure clear_bit() only happens after
1455 			 * root->reloc_root = NULL. Pairs with have_reloc_root.
1456 			 */
1457 			smp_wmb();
1458 			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1459 			if (reloc_root) {
1460 				/*
1461 				 * btrfs_drop_snapshot drops our ref we hold for
1462 				 * ->reloc_root.  If it fails however we must
1463 				 * drop the ref ourselves.
1464 				 */
1465 				ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1466 				if (ret2 < 0) {
1467 					btrfs_put_root(reloc_root);
1468 					if (!ret)
1469 						ret = ret2;
1470 				}
1471 			}
1472 			btrfs_put_root(root);
1473 		} else {
1474 			/* Orphan reloc tree, just clean it up */
1475 			ret2 = btrfs_drop_snapshot(root, 0, 1);
1476 			if (ret2 < 0) {
1477 				btrfs_put_root(root);
1478 				if (!ret)
1479 					ret = ret2;
1480 			}
1481 		}
1482 	}
1483 	return ret;
1484 }
1485 
1486 /*
1487  * merge the relocated tree blocks in reloc tree with corresponding
1488  * fs tree.
1489  */
merge_reloc_root(struct reloc_control * rc,struct btrfs_root * root)1490 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1491 					       struct btrfs_root *root)
1492 {
1493 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1494 	struct btrfs_key key;
1495 	struct btrfs_key next_key;
1496 	struct btrfs_trans_handle *trans = NULL;
1497 	struct btrfs_root *reloc_root;
1498 	struct btrfs_root_item *root_item;
1499 	struct btrfs_path *path;
1500 	struct extent_buffer *leaf;
1501 	int reserve_level;
1502 	int level;
1503 	int max_level;
1504 	int replaced = 0;
1505 	int ret = 0;
1506 	u32 min_reserved;
1507 
1508 	path = btrfs_alloc_path();
1509 	if (!path)
1510 		return -ENOMEM;
1511 	path->reada = READA_FORWARD;
1512 
1513 	reloc_root = root->reloc_root;
1514 	root_item = &reloc_root->root_item;
1515 
1516 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1517 		level = btrfs_root_level(root_item);
1518 		atomic_inc(&reloc_root->node->refs);
1519 		path->nodes[level] = reloc_root->node;
1520 		path->slots[level] = 0;
1521 	} else {
1522 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1523 
1524 		level = btrfs_root_drop_level(root_item);
1525 		BUG_ON(level == 0);
1526 		path->lowest_level = level;
1527 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1528 		path->lowest_level = 0;
1529 		if (ret < 0) {
1530 			btrfs_free_path(path);
1531 			return ret;
1532 		}
1533 
1534 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1535 				      path->slots[level]);
1536 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1537 
1538 		btrfs_unlock_up_safe(path, 0);
1539 	}
1540 
1541 	/*
1542 	 * In merge_reloc_root(), we modify the upper level pointer to swap the
1543 	 * tree blocks between reloc tree and subvolume tree.  Thus for tree
1544 	 * block COW, we COW at most from level 1 to root level for each tree.
1545 	 *
1546 	 * Thus the needed metadata size is at most root_level * nodesize,
1547 	 * and * 2 since we have two trees to COW.
1548 	 */
1549 	reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1550 	min_reserved = fs_info->nodesize * reserve_level * 2;
1551 	memset(&next_key, 0, sizeof(next_key));
1552 
1553 	while (1) {
1554 		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
1555 					     min_reserved,
1556 					     BTRFS_RESERVE_FLUSH_LIMIT);
1557 		if (ret)
1558 			goto out;
1559 		trans = btrfs_start_transaction(root, 0);
1560 		if (IS_ERR(trans)) {
1561 			ret = PTR_ERR(trans);
1562 			trans = NULL;
1563 			goto out;
1564 		}
1565 
1566 		/*
1567 		 * At this point we no longer have a reloc_control, so we can't
1568 		 * depend on btrfs_init_reloc_root to update our last_trans.
1569 		 *
1570 		 * But that's ok, we started the trans handle on our
1571 		 * corresponding fs_root, which means it's been added to the
1572 		 * dirty list.  At commit time we'll still call
1573 		 * btrfs_update_reloc_root() and update our root item
1574 		 * appropriately.
1575 		 */
1576 		btrfs_set_root_last_trans(reloc_root, trans->transid);
1577 		trans->block_rsv = rc->block_rsv;
1578 
1579 		replaced = 0;
1580 		max_level = level;
1581 
1582 		ret = walk_down_reloc_tree(reloc_root, path, &level);
1583 		if (ret < 0)
1584 			goto out;
1585 		if (ret > 0)
1586 			break;
1587 
1588 		if (!find_next_key(path, level, &key) &&
1589 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1590 			ret = 0;
1591 		} else {
1592 			ret = replace_path(trans, rc, root, reloc_root, path,
1593 					   &next_key, level, max_level);
1594 		}
1595 		if (ret < 0)
1596 			goto out;
1597 		if (ret > 0) {
1598 			level = ret;
1599 			btrfs_node_key_to_cpu(path->nodes[level], &key,
1600 					      path->slots[level]);
1601 			replaced = 1;
1602 		}
1603 
1604 		ret = walk_up_reloc_tree(reloc_root, path, &level);
1605 		if (ret > 0)
1606 			break;
1607 
1608 		BUG_ON(level == 0);
1609 		/*
1610 		 * save the merging progress in the drop_progress.
1611 		 * this is OK since root refs == 1 in this case.
1612 		 */
1613 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1614 			       path->slots[level]);
1615 		btrfs_set_root_drop_level(root_item, level);
1616 
1617 		btrfs_end_transaction_throttle(trans);
1618 		trans = NULL;
1619 
1620 		btrfs_btree_balance_dirty(fs_info);
1621 
1622 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
1623 			invalidate_extent_cache(root, &key, &next_key);
1624 	}
1625 
1626 	/*
1627 	 * handle the case only one block in the fs tree need to be
1628 	 * relocated and the block is tree root.
1629 	 */
1630 	leaf = btrfs_lock_root_node(root);
1631 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1632 			      BTRFS_NESTING_COW);
1633 	btrfs_tree_unlock(leaf);
1634 	free_extent_buffer(leaf);
1635 out:
1636 	btrfs_free_path(path);
1637 
1638 	if (ret == 0) {
1639 		ret = insert_dirty_subvol(trans, rc, root);
1640 		if (ret)
1641 			btrfs_abort_transaction(trans, ret);
1642 	}
1643 
1644 	if (trans)
1645 		btrfs_end_transaction_throttle(trans);
1646 
1647 	btrfs_btree_balance_dirty(fs_info);
1648 
1649 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
1650 		invalidate_extent_cache(root, &key, &next_key);
1651 
1652 	return ret;
1653 }
1654 
1655 static noinline_for_stack
prepare_to_merge(struct reloc_control * rc,int err)1656 int prepare_to_merge(struct reloc_control *rc, int err)
1657 {
1658 	struct btrfs_root *root = rc->extent_root;
1659 	struct btrfs_fs_info *fs_info = root->fs_info;
1660 	struct btrfs_root *reloc_root;
1661 	struct btrfs_trans_handle *trans;
1662 	LIST_HEAD(reloc_roots);
1663 	u64 num_bytes = 0;
1664 	int ret;
1665 
1666 	mutex_lock(&fs_info->reloc_mutex);
1667 	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1668 	rc->merging_rsv_size += rc->nodes_relocated * 2;
1669 	mutex_unlock(&fs_info->reloc_mutex);
1670 
1671 again:
1672 	if (!err) {
1673 		num_bytes = rc->merging_rsv_size;
1674 		ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
1675 					  BTRFS_RESERVE_FLUSH_ALL);
1676 		if (ret)
1677 			err = ret;
1678 	}
1679 
1680 	trans = btrfs_join_transaction(rc->extent_root);
1681 	if (IS_ERR(trans)) {
1682 		if (!err)
1683 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1684 						num_bytes, NULL);
1685 		return PTR_ERR(trans);
1686 	}
1687 
1688 	if (!err) {
1689 		if (num_bytes != rc->merging_rsv_size) {
1690 			btrfs_end_transaction(trans);
1691 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1692 						num_bytes, NULL);
1693 			goto again;
1694 		}
1695 	}
1696 
1697 	rc->merge_reloc_tree = true;
1698 
1699 	while (!list_empty(&rc->reloc_roots)) {
1700 		reloc_root = list_entry(rc->reloc_roots.next,
1701 					struct btrfs_root, root_list);
1702 		list_del_init(&reloc_root->root_list);
1703 
1704 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1705 				false);
1706 		if (IS_ERR(root)) {
1707 			/*
1708 			 * Even if we have an error we need this reloc root
1709 			 * back on our list so we can clean up properly.
1710 			 */
1711 			list_add(&reloc_root->root_list, &reloc_roots);
1712 			btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1713 			if (!err)
1714 				err = PTR_ERR(root);
1715 			break;
1716 		}
1717 
1718 		if (unlikely(root->reloc_root != reloc_root)) {
1719 			if (root->reloc_root) {
1720 				btrfs_err(fs_info,
1721 "reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu",
1722 					  btrfs_root_id(root),
1723 					  btrfs_root_id(root->reloc_root),
1724 					  root->reloc_root->root_key.type,
1725 					  root->reloc_root->root_key.offset,
1726 					  btrfs_root_generation(
1727 						  &root->reloc_root->root_item),
1728 					  btrfs_root_id(reloc_root),
1729 					  reloc_root->root_key.type,
1730 					  reloc_root->root_key.offset,
1731 					  btrfs_root_generation(
1732 						  &reloc_root->root_item));
1733 			} else {
1734 				btrfs_err(fs_info,
1735 "reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu",
1736 					  btrfs_root_id(root),
1737 					  btrfs_root_id(reloc_root),
1738 					  reloc_root->root_key.type,
1739 					  reloc_root->root_key.offset,
1740 					  btrfs_root_generation(
1741 						  &reloc_root->root_item));
1742 			}
1743 			list_add(&reloc_root->root_list, &reloc_roots);
1744 			btrfs_put_root(root);
1745 			btrfs_abort_transaction(trans, -EUCLEAN);
1746 			if (!err)
1747 				err = -EUCLEAN;
1748 			break;
1749 		}
1750 
1751 		/*
1752 		 * set reference count to 1, so btrfs_recover_relocation
1753 		 * knows it should resumes merging
1754 		 */
1755 		if (!err)
1756 			btrfs_set_root_refs(&reloc_root->root_item, 1);
1757 		ret = btrfs_update_reloc_root(trans, root);
1758 
1759 		/*
1760 		 * Even if we have an error we need this reloc root back on our
1761 		 * list so we can clean up properly.
1762 		 */
1763 		list_add(&reloc_root->root_list, &reloc_roots);
1764 		btrfs_put_root(root);
1765 
1766 		if (ret) {
1767 			btrfs_abort_transaction(trans, ret);
1768 			if (!err)
1769 				err = ret;
1770 			break;
1771 		}
1772 	}
1773 
1774 	list_splice(&reloc_roots, &rc->reloc_roots);
1775 
1776 	if (!err)
1777 		err = btrfs_commit_transaction(trans);
1778 	else
1779 		btrfs_end_transaction(trans);
1780 	return err;
1781 }
1782 
1783 static noinline_for_stack
free_reloc_roots(struct list_head * list)1784 void free_reloc_roots(struct list_head *list)
1785 {
1786 	struct btrfs_root *reloc_root, *tmp;
1787 
1788 	list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1789 		__del_reloc_root(reloc_root);
1790 }
1791 
1792 static noinline_for_stack
merge_reloc_roots(struct reloc_control * rc)1793 void merge_reloc_roots(struct reloc_control *rc)
1794 {
1795 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1796 	struct btrfs_root *root;
1797 	struct btrfs_root *reloc_root;
1798 	LIST_HEAD(reloc_roots);
1799 	int found = 0;
1800 	int ret = 0;
1801 again:
1802 	root = rc->extent_root;
1803 
1804 	/*
1805 	 * this serializes us with btrfs_record_root_in_transaction,
1806 	 * we have to make sure nobody is in the middle of
1807 	 * adding their roots to the list while we are
1808 	 * doing this splice
1809 	 */
1810 	mutex_lock(&fs_info->reloc_mutex);
1811 	list_splice_init(&rc->reloc_roots, &reloc_roots);
1812 	mutex_unlock(&fs_info->reloc_mutex);
1813 
1814 	while (!list_empty(&reloc_roots)) {
1815 		found = 1;
1816 		reloc_root = list_entry(reloc_roots.next,
1817 					struct btrfs_root, root_list);
1818 
1819 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1820 					 false);
1821 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1822 			if (WARN_ON(IS_ERR(root))) {
1823 				/*
1824 				 * For recovery we read the fs roots on mount,
1825 				 * and if we didn't find the root then we marked
1826 				 * the reloc root as a garbage root.  For normal
1827 				 * relocation obviously the root should exist in
1828 				 * memory.  However there's no reason we can't
1829 				 * handle the error properly here just in case.
1830 				 */
1831 				ret = PTR_ERR(root);
1832 				goto out;
1833 			}
1834 			if (WARN_ON(root->reloc_root != reloc_root)) {
1835 				/*
1836 				 * This can happen if on-disk metadata has some
1837 				 * corruption, e.g. bad reloc tree key offset.
1838 				 */
1839 				ret = -EINVAL;
1840 				goto out;
1841 			}
1842 			ret = merge_reloc_root(rc, root);
1843 			btrfs_put_root(root);
1844 			if (ret) {
1845 				if (list_empty(&reloc_root->root_list))
1846 					list_add_tail(&reloc_root->root_list,
1847 						      &reloc_roots);
1848 				goto out;
1849 			}
1850 		} else {
1851 			if (!IS_ERR(root)) {
1852 				if (root->reloc_root == reloc_root) {
1853 					root->reloc_root = NULL;
1854 					btrfs_put_root(reloc_root);
1855 				}
1856 				clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
1857 					  &root->state);
1858 				btrfs_put_root(root);
1859 			}
1860 
1861 			list_del_init(&reloc_root->root_list);
1862 			/* Don't forget to queue this reloc root for cleanup */
1863 			list_add_tail(&reloc_root->reloc_dirty_list,
1864 				      &rc->dirty_subvol_roots);
1865 		}
1866 	}
1867 
1868 	if (found) {
1869 		found = 0;
1870 		goto again;
1871 	}
1872 out:
1873 	if (ret) {
1874 		btrfs_handle_fs_error(fs_info, ret, NULL);
1875 		free_reloc_roots(&reloc_roots);
1876 
1877 		/* new reloc root may be added */
1878 		mutex_lock(&fs_info->reloc_mutex);
1879 		list_splice_init(&rc->reloc_roots, &reloc_roots);
1880 		mutex_unlock(&fs_info->reloc_mutex);
1881 		free_reloc_roots(&reloc_roots);
1882 	}
1883 
1884 	/*
1885 	 * We used to have
1886 	 *
1887 	 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
1888 	 *
1889 	 * here, but it's wrong.  If we fail to start the transaction in
1890 	 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
1891 	 * have actually been removed from the reloc_root_tree rb tree.  This is
1892 	 * fine because we're bailing here, and we hold a reference on the root
1893 	 * for the list that holds it, so these roots will be cleaned up when we
1894 	 * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
1895 	 * will be cleaned up on unmount.
1896 	 *
1897 	 * The remaining nodes will be cleaned up by free_reloc_control.
1898 	 */
1899 }
1900 
free_block_list(struct rb_root * blocks)1901 static void free_block_list(struct rb_root *blocks)
1902 {
1903 	struct tree_block *block;
1904 	struct rb_node *rb_node;
1905 	while ((rb_node = rb_first(blocks))) {
1906 		block = rb_entry(rb_node, struct tree_block, rb_node);
1907 		rb_erase(rb_node, blocks);
1908 		kfree(block);
1909 	}
1910 }
1911 
record_reloc_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * reloc_root)1912 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
1913 				      struct btrfs_root *reloc_root)
1914 {
1915 	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
1916 	struct btrfs_root *root;
1917 	int ret;
1918 
1919 	if (btrfs_get_root_last_trans(reloc_root) == trans->transid)
1920 		return 0;
1921 
1922 	root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
1923 
1924 	/*
1925 	 * This should succeed, since we can't have a reloc root without having
1926 	 * already looked up the actual root and created the reloc root for this
1927 	 * root.
1928 	 *
1929 	 * However if there's some sort of corruption where we have a ref to a
1930 	 * reloc root without a corresponding root this could return ENOENT.
1931 	 */
1932 	if (IS_ERR(root)) {
1933 		ASSERT(0);
1934 		return PTR_ERR(root);
1935 	}
1936 	if (root->reloc_root != reloc_root) {
1937 		ASSERT(0);
1938 		btrfs_err(fs_info,
1939 			  "root %llu has two reloc roots associated with it",
1940 			  reloc_root->root_key.offset);
1941 		btrfs_put_root(root);
1942 		return -EUCLEAN;
1943 	}
1944 	ret = btrfs_record_root_in_trans(trans, root);
1945 	btrfs_put_root(root);
1946 
1947 	return ret;
1948 }
1949 
1950 static noinline_for_stack
select_reloc_root(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_backref_edge * edges[])1951 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
1952 				     struct reloc_control *rc,
1953 				     struct btrfs_backref_node *node,
1954 				     struct btrfs_backref_edge *edges[])
1955 {
1956 	struct btrfs_backref_node *next;
1957 	struct btrfs_root *root;
1958 	int index = 0;
1959 	int ret;
1960 
1961 	next = walk_up_backref(node, edges, &index);
1962 	root = next->root;
1963 
1964 	/*
1965 	 * If there is no root, then our references for this block are
1966 	 * incomplete, as we should be able to walk all the way up to a block
1967 	 * that is owned by a root.
1968 	 *
1969 	 * This path is only for SHAREABLE roots, so if we come upon a
1970 	 * non-SHAREABLE root then we have backrefs that resolve improperly.
1971 	 *
1972 	 * Both of these cases indicate file system corruption, or a bug in the
1973 	 * backref walking code.
1974 	 */
1975 	if (unlikely(!root)) {
1976 		btrfs_err(trans->fs_info,
1977 			  "bytenr %llu doesn't have a backref path ending in a root",
1978 			  node->bytenr);
1979 		return ERR_PTR(-EUCLEAN);
1980 	}
1981 	if (unlikely(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))) {
1982 		btrfs_err(trans->fs_info,
1983 			  "bytenr %llu has multiple refs with one ending in a non-shareable root",
1984 			  node->bytenr);
1985 		return ERR_PTR(-EUCLEAN);
1986 	}
1987 
1988 	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
1989 		ret = record_reloc_root_in_trans(trans, root);
1990 		if (ret)
1991 			return ERR_PTR(ret);
1992 		goto found;
1993 	}
1994 
1995 	ret = btrfs_record_root_in_trans(trans, root);
1996 	if (ret)
1997 		return ERR_PTR(ret);
1998 	root = root->reloc_root;
1999 
2000 	/*
2001 	 * We could have raced with another thread which failed, so
2002 	 * root->reloc_root may not be set, return ENOENT in this case.
2003 	 */
2004 	if (!root)
2005 		return ERR_PTR(-ENOENT);
2006 
2007 	if (next->new_bytenr) {
2008 		/*
2009 		 * We just created the reloc root, so we shouldn't have
2010 		 * ->new_bytenr set yet. If it is then we have multiple roots
2011 		 *  pointing at the same bytenr which indicates corruption, or
2012 		 *  we've made a mistake in the backref walking code.
2013 		 */
2014 		ASSERT(next->new_bytenr == 0);
2015 		btrfs_err(trans->fs_info,
2016 			  "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2017 			  node->bytenr, next->bytenr);
2018 		return ERR_PTR(-EUCLEAN);
2019 	}
2020 
2021 	next->new_bytenr = root->node->start;
2022 	btrfs_put_root(next->root);
2023 	next->root = btrfs_grab_root(root);
2024 	ASSERT(next->root);
2025 	mark_block_processed(rc, next);
2026 found:
2027 	next = node;
2028 	/* setup backref node path for btrfs_reloc_cow_block */
2029 	while (1) {
2030 		rc->backref_cache.path[next->level] = next;
2031 		if (--index < 0)
2032 			break;
2033 		next = edges[index]->node[UPPER];
2034 	}
2035 	return root;
2036 }
2037 
2038 /*
2039  * Select a tree root for relocation.
2040  *
2041  * Return NULL if the block is not shareable. We should use do_relocation() in
2042  * this case.
2043  *
2044  * Return a tree root pointer if the block is shareable.
2045  * Return -ENOENT if the block is root of reloc tree.
2046  */
2047 static noinline_for_stack
select_one_root(struct btrfs_backref_node * node)2048 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2049 {
2050 	struct btrfs_backref_node *next;
2051 	struct btrfs_root *root;
2052 	struct btrfs_root *fs_root = NULL;
2053 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2054 	int index = 0;
2055 
2056 	next = node;
2057 	while (1) {
2058 		cond_resched();
2059 		next = walk_up_backref(next, edges, &index);
2060 		root = next->root;
2061 
2062 		/*
2063 		 * This can occur if we have incomplete extent refs leading all
2064 		 * the way up a particular path, in this case return -EUCLEAN.
2065 		 */
2066 		if (!root)
2067 			return ERR_PTR(-EUCLEAN);
2068 
2069 		/* No other choice for non-shareable tree */
2070 		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2071 			return root;
2072 
2073 		if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID)
2074 			fs_root = root;
2075 
2076 		if (next != node)
2077 			return NULL;
2078 
2079 		next = walk_down_backref(edges, &index);
2080 		if (!next || next->level <= node->level)
2081 			break;
2082 	}
2083 
2084 	if (!fs_root)
2085 		return ERR_PTR(-ENOENT);
2086 	return fs_root;
2087 }
2088 
calcu_metadata_size(struct reloc_control * rc,struct btrfs_backref_node * node)2089 static noinline_for_stack u64 calcu_metadata_size(struct reloc_control *rc,
2090 						  struct btrfs_backref_node *node)
2091 {
2092 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2093 	struct btrfs_backref_node *next = node;
2094 	struct btrfs_backref_edge *edge;
2095 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2096 	u64 num_bytes = 0;
2097 	int index = 0;
2098 
2099 	BUG_ON(node->processed);
2100 
2101 	while (next) {
2102 		cond_resched();
2103 		while (1) {
2104 			if (next->processed)
2105 				break;
2106 
2107 			num_bytes += fs_info->nodesize;
2108 
2109 			if (list_empty(&next->upper))
2110 				break;
2111 
2112 			edge = list_entry(next->upper.next,
2113 					struct btrfs_backref_edge, list[LOWER]);
2114 			edges[index++] = edge;
2115 			next = edge->node[UPPER];
2116 		}
2117 		next = walk_down_backref(edges, &index);
2118 	}
2119 	return num_bytes;
2120 }
2121 
refill_metadata_space(struct btrfs_trans_handle * trans,struct reloc_control * rc,u64 num_bytes)2122 static int refill_metadata_space(struct btrfs_trans_handle *trans,
2123 				 struct reloc_control *rc, u64 num_bytes)
2124 {
2125 	struct btrfs_fs_info *fs_info = trans->fs_info;
2126 	int ret;
2127 
2128 	trans->block_rsv = rc->block_rsv;
2129 	rc->reserved_bytes += num_bytes;
2130 
2131 	/*
2132 	 * We are under a transaction here so we can only do limited flushing.
2133 	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2134 	 * transaction and try to refill when we can flush all the things.
2135 	 */
2136 	ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
2137 				     BTRFS_RESERVE_FLUSH_LIMIT);
2138 	if (ret) {
2139 		u64 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2140 
2141 		while (tmp <= rc->reserved_bytes)
2142 			tmp <<= 1;
2143 		/*
2144 		 * only one thread can access block_rsv at this point,
2145 		 * so we don't need hold lock to protect block_rsv.
2146 		 * we expand more reservation size here to allow enough
2147 		 * space for relocation and we will return earlier in
2148 		 * enospc case.
2149 		 */
2150 		rc->block_rsv->size = tmp + fs_info->nodesize *
2151 				      RELOCATION_RESERVED_NODES;
2152 		return -EAGAIN;
2153 	}
2154 
2155 	return 0;
2156 }
2157 
reserve_metadata_space(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node)2158 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2159 				  struct reloc_control *rc,
2160 				  struct btrfs_backref_node *node)
2161 {
2162 	u64 num_bytes;
2163 
2164 	num_bytes = calcu_metadata_size(rc, node) * 2;
2165 	return refill_metadata_space(trans, rc, num_bytes);
2166 }
2167 
2168 /*
2169  * relocate a block tree, and then update pointers in upper level
2170  * blocks that reference the block to point to the new location.
2171  *
2172  * if called by link_to_upper, the block has already been relocated.
2173  * in that case this function just updates pointers.
2174  */
do_relocation(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_key * key,struct btrfs_path * path,int lowest)2175 static int do_relocation(struct btrfs_trans_handle *trans,
2176 			 struct reloc_control *rc,
2177 			 struct btrfs_backref_node *node,
2178 			 struct btrfs_key *key,
2179 			 struct btrfs_path *path, int lowest)
2180 {
2181 	struct btrfs_backref_node *upper;
2182 	struct btrfs_backref_edge *edge;
2183 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2184 	struct btrfs_root *root;
2185 	struct extent_buffer *eb;
2186 	u32 blocksize;
2187 	u64 bytenr;
2188 	int slot;
2189 	int ret = 0;
2190 
2191 	/*
2192 	 * If we are lowest then this is the first time we're processing this
2193 	 * block, and thus shouldn't have an eb associated with it yet.
2194 	 */
2195 	ASSERT(!lowest || !node->eb);
2196 
2197 	path->lowest_level = node->level + 1;
2198 	rc->backref_cache.path[node->level] = node;
2199 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2200 		cond_resched();
2201 
2202 		upper = edge->node[UPPER];
2203 		root = select_reloc_root(trans, rc, upper, edges);
2204 		if (IS_ERR(root)) {
2205 			ret = PTR_ERR(root);
2206 			goto next;
2207 		}
2208 
2209 		if (upper->eb && !upper->locked) {
2210 			if (!lowest) {
2211 				ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2212 				if (ret < 0)
2213 					goto next;
2214 				BUG_ON(ret);
2215 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2216 				if (node->eb->start == bytenr)
2217 					goto next;
2218 			}
2219 			btrfs_backref_drop_node_buffer(upper);
2220 		}
2221 
2222 		if (!upper->eb) {
2223 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2224 			if (ret) {
2225 				if (ret > 0)
2226 					ret = -ENOENT;
2227 
2228 				btrfs_release_path(path);
2229 				break;
2230 			}
2231 
2232 			if (!upper->eb) {
2233 				upper->eb = path->nodes[upper->level];
2234 				path->nodes[upper->level] = NULL;
2235 			} else {
2236 				BUG_ON(upper->eb != path->nodes[upper->level]);
2237 			}
2238 
2239 			upper->locked = 1;
2240 			path->locks[upper->level] = 0;
2241 
2242 			slot = path->slots[upper->level];
2243 			btrfs_release_path(path);
2244 		} else {
2245 			ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2246 			if (ret < 0)
2247 				goto next;
2248 			BUG_ON(ret);
2249 		}
2250 
2251 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2252 		if (lowest) {
2253 			if (bytenr != node->bytenr) {
2254 				btrfs_err(root->fs_info,
2255 		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2256 					  bytenr, node->bytenr, slot,
2257 					  upper->eb->start);
2258 				ret = -EIO;
2259 				goto next;
2260 			}
2261 		} else {
2262 			if (node->eb->start == bytenr)
2263 				goto next;
2264 		}
2265 
2266 		blocksize = root->fs_info->nodesize;
2267 		eb = btrfs_read_node_slot(upper->eb, slot);
2268 		if (IS_ERR(eb)) {
2269 			ret = PTR_ERR(eb);
2270 			goto next;
2271 		}
2272 		btrfs_tree_lock(eb);
2273 
2274 		if (!node->eb) {
2275 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2276 					      slot, &eb, BTRFS_NESTING_COW);
2277 			btrfs_tree_unlock(eb);
2278 			free_extent_buffer(eb);
2279 			if (ret < 0)
2280 				goto next;
2281 			/*
2282 			 * We've just COWed this block, it should have updated
2283 			 * the correct backref node entry.
2284 			 */
2285 			ASSERT(node->eb == eb);
2286 		} else {
2287 			struct btrfs_ref ref = {
2288 				.action = BTRFS_ADD_DELAYED_REF,
2289 				.bytenr = node->eb->start,
2290 				.num_bytes = blocksize,
2291 				.parent = upper->eb->start,
2292 				.owning_root = btrfs_header_owner(upper->eb),
2293 				.ref_root = btrfs_header_owner(upper->eb),
2294 			};
2295 
2296 			btrfs_set_node_blockptr(upper->eb, slot,
2297 						node->eb->start);
2298 			btrfs_set_node_ptr_generation(upper->eb, slot,
2299 						      trans->transid);
2300 			btrfs_mark_buffer_dirty(trans, upper->eb);
2301 
2302 			btrfs_init_tree_ref(&ref, node->level,
2303 					    btrfs_root_id(root), false);
2304 			ret = btrfs_inc_extent_ref(trans, &ref);
2305 			if (!ret)
2306 				ret = btrfs_drop_subtree(trans, root, eb,
2307 							 upper->eb);
2308 			if (ret)
2309 				btrfs_abort_transaction(trans, ret);
2310 		}
2311 next:
2312 		if (!upper->pending)
2313 			btrfs_backref_drop_node_buffer(upper);
2314 		else
2315 			btrfs_backref_unlock_node_buffer(upper);
2316 		if (ret)
2317 			break;
2318 	}
2319 
2320 	if (!ret && node->pending) {
2321 		btrfs_backref_drop_node_buffer(node);
2322 		list_del_init(&node->list);
2323 		node->pending = 0;
2324 	}
2325 
2326 	path->lowest_level = 0;
2327 
2328 	/*
2329 	 * We should have allocated all of our space in the block rsv and thus
2330 	 * shouldn't ENOSPC.
2331 	 */
2332 	ASSERT(ret != -ENOSPC);
2333 	return ret;
2334 }
2335 
link_to_upper(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_path * path)2336 static int link_to_upper(struct btrfs_trans_handle *trans,
2337 			 struct reloc_control *rc,
2338 			 struct btrfs_backref_node *node,
2339 			 struct btrfs_path *path)
2340 {
2341 	struct btrfs_key key;
2342 
2343 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2344 	return do_relocation(trans, rc, node, &key, path, 0);
2345 }
2346 
finish_pending_nodes(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_path * path,int err)2347 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2348 				struct reloc_control *rc,
2349 				struct btrfs_path *path, int err)
2350 {
2351 	LIST_HEAD(list);
2352 	struct btrfs_backref_cache *cache = &rc->backref_cache;
2353 	struct btrfs_backref_node *node;
2354 	int level;
2355 	int ret;
2356 
2357 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2358 		while (!list_empty(&cache->pending[level])) {
2359 			node = list_entry(cache->pending[level].next,
2360 					  struct btrfs_backref_node, list);
2361 			list_move_tail(&node->list, &list);
2362 			BUG_ON(!node->pending);
2363 
2364 			if (!err) {
2365 				ret = link_to_upper(trans, rc, node, path);
2366 				if (ret < 0)
2367 					err = ret;
2368 			}
2369 		}
2370 		list_splice_init(&list, &cache->pending[level]);
2371 	}
2372 	return err;
2373 }
2374 
2375 /*
2376  * mark a block and all blocks directly/indirectly reference the block
2377  * as processed.
2378  */
update_processed_blocks(struct reloc_control * rc,struct btrfs_backref_node * node)2379 static void update_processed_blocks(struct reloc_control *rc,
2380 				    struct btrfs_backref_node *node)
2381 {
2382 	struct btrfs_backref_node *next = node;
2383 	struct btrfs_backref_edge *edge;
2384 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2385 	int index = 0;
2386 
2387 	while (next) {
2388 		cond_resched();
2389 		while (1) {
2390 			if (next->processed)
2391 				break;
2392 
2393 			mark_block_processed(rc, next);
2394 
2395 			if (list_empty(&next->upper))
2396 				break;
2397 
2398 			edge = list_entry(next->upper.next,
2399 					struct btrfs_backref_edge, list[LOWER]);
2400 			edges[index++] = edge;
2401 			next = edge->node[UPPER];
2402 		}
2403 		next = walk_down_backref(edges, &index);
2404 	}
2405 }
2406 
tree_block_processed(u64 bytenr,struct reloc_control * rc)2407 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2408 {
2409 	u32 blocksize = rc->extent_root->fs_info->nodesize;
2410 
2411 	if (test_range_bit(&rc->processed_blocks, bytenr,
2412 			   bytenr + blocksize - 1, EXTENT_DIRTY, NULL))
2413 		return 1;
2414 	return 0;
2415 }
2416 
get_tree_block_key(struct btrfs_fs_info * fs_info,struct tree_block * block)2417 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2418 			      struct tree_block *block)
2419 {
2420 	struct btrfs_tree_parent_check check = {
2421 		.level = block->level,
2422 		.owner_root = block->owner,
2423 		.transid = block->key.offset
2424 	};
2425 	struct extent_buffer *eb;
2426 
2427 	eb = read_tree_block(fs_info, block->bytenr, &check);
2428 	if (IS_ERR(eb))
2429 		return PTR_ERR(eb);
2430 	if (!extent_buffer_uptodate(eb)) {
2431 		free_extent_buffer(eb);
2432 		return -EIO;
2433 	}
2434 	if (block->level == 0)
2435 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2436 	else
2437 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2438 	free_extent_buffer(eb);
2439 	block->key_ready = true;
2440 	return 0;
2441 }
2442 
2443 /*
2444  * helper function to relocate a tree block
2445  */
relocate_tree_block(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_key * key,struct btrfs_path * path)2446 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2447 				struct reloc_control *rc,
2448 				struct btrfs_backref_node *node,
2449 				struct btrfs_key *key,
2450 				struct btrfs_path *path)
2451 {
2452 	struct btrfs_root *root;
2453 	int ret = 0;
2454 
2455 	if (!node)
2456 		return 0;
2457 
2458 	/*
2459 	 * If we fail here we want to drop our backref_node because we are going
2460 	 * to start over and regenerate the tree for it.
2461 	 */
2462 	ret = reserve_metadata_space(trans, rc, node);
2463 	if (ret)
2464 		goto out;
2465 
2466 	BUG_ON(node->processed);
2467 	root = select_one_root(node);
2468 	if (IS_ERR(root)) {
2469 		ret = PTR_ERR(root);
2470 
2471 		/* See explanation in select_one_root for the -EUCLEAN case. */
2472 		ASSERT(ret == -ENOENT);
2473 		if (ret == -ENOENT) {
2474 			ret = 0;
2475 			update_processed_blocks(rc, node);
2476 		}
2477 		goto out;
2478 	}
2479 
2480 	if (root) {
2481 		if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2482 			/*
2483 			 * This block was the root block of a root, and this is
2484 			 * the first time we're processing the block and thus it
2485 			 * should not have had the ->new_bytenr modified.
2486 			 *
2487 			 * However in the case of corruption we could have
2488 			 * multiple refs pointing to the same block improperly,
2489 			 * and thus we would trip over these checks.  ASSERT()
2490 			 * for the developer case, because it could indicate a
2491 			 * bug in the backref code, however error out for a
2492 			 * normal user in the case of corruption.
2493 			 */
2494 			ASSERT(node->new_bytenr == 0);
2495 			if (node->new_bytenr) {
2496 				btrfs_err(root->fs_info,
2497 				  "bytenr %llu has improper references to it",
2498 					  node->bytenr);
2499 				ret = -EUCLEAN;
2500 				goto out;
2501 			}
2502 			ret = btrfs_record_root_in_trans(trans, root);
2503 			if (ret)
2504 				goto out;
2505 			/*
2506 			 * Another thread could have failed, need to check if we
2507 			 * have reloc_root actually set.
2508 			 */
2509 			if (!root->reloc_root) {
2510 				ret = -ENOENT;
2511 				goto out;
2512 			}
2513 			root = root->reloc_root;
2514 			node->new_bytenr = root->node->start;
2515 			btrfs_put_root(node->root);
2516 			node->root = btrfs_grab_root(root);
2517 			ASSERT(node->root);
2518 		} else {
2519 			btrfs_err(root->fs_info,
2520 				  "bytenr %llu resolved to a non-shareable root",
2521 				  node->bytenr);
2522 			ret = -EUCLEAN;
2523 			goto out;
2524 		}
2525 		if (!ret)
2526 			update_processed_blocks(rc, node);
2527 	} else {
2528 		ret = do_relocation(trans, rc, node, key, path, 1);
2529 	}
2530 out:
2531 	if (ret || node->level == 0)
2532 		btrfs_backref_cleanup_node(&rc->backref_cache, node);
2533 	return ret;
2534 }
2535 
relocate_cowonly_block(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct tree_block * block,struct btrfs_path * path)2536 static int relocate_cowonly_block(struct btrfs_trans_handle *trans,
2537 				  struct reloc_control *rc, struct tree_block *block,
2538 				  struct btrfs_path *path)
2539 {
2540 	struct btrfs_fs_info *fs_info = trans->fs_info;
2541 	struct btrfs_root *root;
2542 	u64 num_bytes;
2543 	int nr_levels;
2544 	int ret;
2545 
2546 	root = btrfs_get_fs_root(fs_info, block->owner, true);
2547 	if (IS_ERR(root))
2548 		return PTR_ERR(root);
2549 
2550 	nr_levels = max(btrfs_header_level(root->node) - block->level, 0) + 1;
2551 
2552 	num_bytes = fs_info->nodesize * nr_levels;
2553 	ret = refill_metadata_space(trans, rc, num_bytes);
2554 	if (ret) {
2555 		btrfs_put_root(root);
2556 		return ret;
2557 	}
2558 	path->lowest_level = block->level;
2559 	if (root == root->fs_info->chunk_root)
2560 		btrfs_reserve_chunk_metadata(trans, false);
2561 
2562 	ret = btrfs_search_slot(trans, root, &block->key, path, 0, 1);
2563 	path->lowest_level = 0;
2564 	btrfs_release_path(path);
2565 
2566 	if (root == root->fs_info->chunk_root)
2567 		btrfs_trans_release_chunk_metadata(trans);
2568 	if (ret > 0)
2569 		ret = 0;
2570 	btrfs_put_root(root);
2571 
2572 	return ret;
2573 }
2574 
2575 /*
2576  * relocate a list of blocks
2577  */
2578 static noinline_for_stack
relocate_tree_blocks(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct rb_root * blocks)2579 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2580 			 struct reloc_control *rc, struct rb_root *blocks)
2581 {
2582 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2583 	struct btrfs_backref_node *node;
2584 	struct btrfs_path *path;
2585 	struct tree_block *block;
2586 	struct tree_block *next;
2587 	int ret = 0;
2588 
2589 	path = btrfs_alloc_path();
2590 	if (!path) {
2591 		ret = -ENOMEM;
2592 		goto out_free_blocks;
2593 	}
2594 
2595 	/* Kick in readahead for tree blocks with missing keys */
2596 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2597 		if (!block->key_ready)
2598 			btrfs_readahead_tree_block(fs_info, block->bytenr,
2599 						   block->owner, 0,
2600 						   block->level);
2601 	}
2602 
2603 	/* Get first keys */
2604 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2605 		if (!block->key_ready) {
2606 			ret = get_tree_block_key(fs_info, block);
2607 			if (ret)
2608 				goto out_free_path;
2609 		}
2610 	}
2611 
2612 	/* Do tree relocation */
2613 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2614 		/*
2615 		 * For COWonly blocks, or the data reloc tree, we only need to
2616 		 * COW down to the block, there's no need to generate a backref
2617 		 * tree.
2618 		 */
2619 		if (block->owner &&
2620 		    (!is_fstree(block->owner) ||
2621 		     block->owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) {
2622 			ret = relocate_cowonly_block(trans, rc, block, path);
2623 			if (ret)
2624 				break;
2625 			continue;
2626 		}
2627 
2628 		node = build_backref_tree(trans, rc, &block->key,
2629 					  block->level, block->bytenr);
2630 		if (IS_ERR(node)) {
2631 			ret = PTR_ERR(node);
2632 			goto out;
2633 		}
2634 
2635 		ret = relocate_tree_block(trans, rc, node, &block->key,
2636 					  path);
2637 		if (ret < 0)
2638 			break;
2639 	}
2640 out:
2641 	ret = finish_pending_nodes(trans, rc, path, ret);
2642 
2643 out_free_path:
2644 	btrfs_free_path(path);
2645 out_free_blocks:
2646 	free_block_list(blocks);
2647 	return ret;
2648 }
2649 
prealloc_file_extent_cluster(struct reloc_control * rc)2650 static noinline_for_stack int prealloc_file_extent_cluster(struct reloc_control *rc)
2651 {
2652 	const struct file_extent_cluster *cluster = &rc->cluster;
2653 	struct btrfs_inode *inode = BTRFS_I(rc->data_inode);
2654 	u64 alloc_hint = 0;
2655 	u64 start;
2656 	u64 end;
2657 	u64 offset = inode->reloc_block_group_start;
2658 	u64 num_bytes;
2659 	int nr;
2660 	int ret = 0;
2661 	u64 i_size = i_size_read(&inode->vfs_inode);
2662 	u64 prealloc_start = cluster->start - offset;
2663 	u64 prealloc_end = cluster->end - offset;
2664 	u64 cur_offset = prealloc_start;
2665 
2666 	/*
2667 	 * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2668 	 * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2669 	 * btrfs_do_readpage() call of previously relocated file cluster.
2670 	 *
2671 	 * If the current cluster starts in the above range, btrfs_do_readpage()
2672 	 * will skip the read, and relocate_one_folio() will later writeback
2673 	 * the padding zeros as new data, causing data corruption.
2674 	 *
2675 	 * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2676 	 */
2677 	if (!PAGE_ALIGNED(i_size)) {
2678 		struct address_space *mapping = inode->vfs_inode.i_mapping;
2679 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
2680 		const u32 sectorsize = fs_info->sectorsize;
2681 		struct folio *folio;
2682 
2683 		ASSERT(sectorsize < PAGE_SIZE);
2684 		ASSERT(IS_ALIGNED(i_size, sectorsize));
2685 
2686 		/*
2687 		 * Subpage can't handle page with DIRTY but without UPTODATE
2688 		 * bit as it can lead to the following deadlock:
2689 		 *
2690 		 * btrfs_read_folio()
2691 		 * | Page already *locked*
2692 		 * |- btrfs_lock_and_flush_ordered_range()
2693 		 *    |- btrfs_start_ordered_extent()
2694 		 *       |- extent_write_cache_pages()
2695 		 *          |- lock_page()
2696 		 *             We try to lock the page we already hold.
2697 		 *
2698 		 * Here we just writeback the whole data reloc inode, so that
2699 		 * we will be ensured to have no dirty range in the page, and
2700 		 * are safe to clear the uptodate bits.
2701 		 *
2702 		 * This shouldn't cause too much overhead, as we need to write
2703 		 * the data back anyway.
2704 		 */
2705 		ret = filemap_write_and_wait(mapping);
2706 		if (ret < 0)
2707 			return ret;
2708 
2709 		clear_extent_bits(&inode->io_tree, i_size,
2710 				  round_up(i_size, PAGE_SIZE) - 1,
2711 				  EXTENT_UPTODATE);
2712 		folio = filemap_lock_folio(mapping, i_size >> PAGE_SHIFT);
2713 		/*
2714 		 * If page is freed we don't need to do anything then, as we
2715 		 * will re-read the whole page anyway.
2716 		 */
2717 		if (!IS_ERR(folio)) {
2718 			btrfs_subpage_clear_uptodate(fs_info, folio, i_size,
2719 					round_up(i_size, PAGE_SIZE) - i_size);
2720 			folio_unlock(folio);
2721 			folio_put(folio);
2722 		}
2723 	}
2724 
2725 	BUG_ON(cluster->start != cluster->boundary[0]);
2726 	ret = btrfs_alloc_data_chunk_ondemand(inode,
2727 					      prealloc_end + 1 - prealloc_start);
2728 	if (ret)
2729 		return ret;
2730 
2731 	btrfs_inode_lock(inode, 0);
2732 	for (nr = 0; nr < cluster->nr; nr++) {
2733 		struct extent_state *cached_state = NULL;
2734 
2735 		start = cluster->boundary[nr] - offset;
2736 		if (nr + 1 < cluster->nr)
2737 			end = cluster->boundary[nr + 1] - 1 - offset;
2738 		else
2739 			end = cluster->end - offset;
2740 
2741 		lock_extent(&inode->io_tree, start, end, &cached_state);
2742 		num_bytes = end + 1 - start;
2743 		ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2744 						num_bytes, num_bytes,
2745 						end + 1, &alloc_hint);
2746 		cur_offset = end + 1;
2747 		unlock_extent(&inode->io_tree, start, end, &cached_state);
2748 		if (ret)
2749 			break;
2750 	}
2751 	btrfs_inode_unlock(inode, 0);
2752 
2753 	if (cur_offset < prealloc_end)
2754 		btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2755 					       prealloc_end + 1 - cur_offset);
2756 	return ret;
2757 }
2758 
setup_relocation_extent_mapping(struct reloc_control * rc)2759 static noinline_for_stack int setup_relocation_extent_mapping(struct reloc_control *rc)
2760 {
2761 	struct btrfs_inode *inode = BTRFS_I(rc->data_inode);
2762 	struct extent_map *em;
2763 	struct extent_state *cached_state = NULL;
2764 	u64 offset = inode->reloc_block_group_start;
2765 	u64 start = rc->cluster.start - offset;
2766 	u64 end = rc->cluster.end - offset;
2767 	int ret = 0;
2768 
2769 	em = alloc_extent_map();
2770 	if (!em)
2771 		return -ENOMEM;
2772 
2773 	em->start = start;
2774 	em->len = end + 1 - start;
2775 	em->disk_bytenr = rc->cluster.start;
2776 	em->disk_num_bytes = em->len;
2777 	em->ram_bytes = em->len;
2778 	em->flags |= EXTENT_FLAG_PINNED;
2779 
2780 	lock_extent(&inode->io_tree, start, end, &cached_state);
2781 	ret = btrfs_replace_extent_map_range(inode, em, false);
2782 	unlock_extent(&inode->io_tree, start, end, &cached_state);
2783 	free_extent_map(em);
2784 
2785 	return ret;
2786 }
2787 
2788 /*
2789  * Allow error injection to test balance/relocation cancellation
2790  */
btrfs_should_cancel_balance(const struct btrfs_fs_info * fs_info)2791 noinline int btrfs_should_cancel_balance(const struct btrfs_fs_info *fs_info)
2792 {
2793 	return atomic_read(&fs_info->balance_cancel_req) ||
2794 		atomic_read(&fs_info->reloc_cancel_req) ||
2795 		fatal_signal_pending(current);
2796 }
2797 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2798 
get_cluster_boundary_end(const struct file_extent_cluster * cluster,int cluster_nr)2799 static u64 get_cluster_boundary_end(const struct file_extent_cluster *cluster,
2800 				    int cluster_nr)
2801 {
2802 	/* Last extent, use cluster end directly */
2803 	if (cluster_nr >= cluster->nr - 1)
2804 		return cluster->end;
2805 
2806 	/* Use next boundary start*/
2807 	return cluster->boundary[cluster_nr + 1] - 1;
2808 }
2809 
relocate_one_folio(struct reloc_control * rc,struct file_ra_state * ra,int * cluster_nr,unsigned long index)2810 static int relocate_one_folio(struct reloc_control *rc,
2811 			      struct file_ra_state *ra,
2812 			      int *cluster_nr, unsigned long index)
2813 {
2814 	const struct file_extent_cluster *cluster = &rc->cluster;
2815 	struct inode *inode = rc->data_inode;
2816 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2817 	u64 offset = BTRFS_I(inode)->reloc_block_group_start;
2818 	const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
2819 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2820 	struct folio *folio;
2821 	u64 folio_start;
2822 	u64 folio_end;
2823 	u64 cur;
2824 	int ret;
2825 	const bool use_rst = btrfs_need_stripe_tree_update(fs_info, rc->block_group->flags);
2826 
2827 	ASSERT(index <= last_index);
2828 again:
2829 	folio = filemap_lock_folio(inode->i_mapping, index);
2830 	if (IS_ERR(folio)) {
2831 
2832 		/*
2833 		 * On relocation we're doing readahead on the relocation inode,
2834 		 * but if the filesystem is backed by a RAID stripe tree we can
2835 		 * get ENOENT (e.g. due to preallocated extents not being
2836 		 * mapped in the RST) from the lookup.
2837 		 *
2838 		 * But readahead doesn't handle the error and submits invalid
2839 		 * reads to the device, causing a assertion failures.
2840 		 */
2841 		if (!use_rst)
2842 			page_cache_sync_readahead(inode->i_mapping, ra, NULL,
2843 						  index, last_index + 1 - index);
2844 		folio = __filemap_get_folio(inode->i_mapping, index,
2845 					    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
2846 					    mask);
2847 		if (IS_ERR(folio))
2848 			return PTR_ERR(folio);
2849 	}
2850 
2851 	WARN_ON(folio_order(folio));
2852 
2853 	if (folio_test_readahead(folio) && !use_rst)
2854 		page_cache_async_readahead(inode->i_mapping, ra, NULL,
2855 					   folio, last_index + 1 - index);
2856 
2857 	if (!folio_test_uptodate(folio)) {
2858 		btrfs_read_folio(NULL, folio);
2859 		folio_lock(folio);
2860 		if (!folio_test_uptodate(folio)) {
2861 			ret = -EIO;
2862 			goto release_folio;
2863 		}
2864 		if (folio->mapping != inode->i_mapping) {
2865 			folio_unlock(folio);
2866 			folio_put(folio);
2867 			goto again;
2868 		}
2869 	}
2870 
2871 	/*
2872 	 * We could have lost folio private when we dropped the lock to read the
2873 	 * folio above, make sure we set_folio_extent_mapped() here so we have any
2874 	 * of the subpage blocksize stuff we need in place.
2875 	 */
2876 	ret = set_folio_extent_mapped(folio);
2877 	if (ret < 0)
2878 		goto release_folio;
2879 
2880 	folio_start = folio_pos(folio);
2881 	folio_end = folio_start + PAGE_SIZE - 1;
2882 
2883 	/*
2884 	 * Start from the cluster, as for subpage case, the cluster can start
2885 	 * inside the folio.
2886 	 */
2887 	cur = max(folio_start, cluster->boundary[*cluster_nr] - offset);
2888 	while (cur <= folio_end) {
2889 		struct extent_state *cached_state = NULL;
2890 		u64 extent_start = cluster->boundary[*cluster_nr] - offset;
2891 		u64 extent_end = get_cluster_boundary_end(cluster,
2892 						*cluster_nr) - offset;
2893 		u64 clamped_start = max(folio_start, extent_start);
2894 		u64 clamped_end = min(folio_end, extent_end);
2895 		u32 clamped_len = clamped_end + 1 - clamped_start;
2896 
2897 		/* Reserve metadata for this range */
2898 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
2899 						      clamped_len, clamped_len,
2900 						      false);
2901 		if (ret)
2902 			goto release_folio;
2903 
2904 		/* Mark the range delalloc and dirty for later writeback */
2905 		lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
2906 			    &cached_state);
2907 		ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
2908 						clamped_end, 0, &cached_state);
2909 		if (ret) {
2910 			clear_extent_bit(&BTRFS_I(inode)->io_tree,
2911 					 clamped_start, clamped_end,
2912 					 EXTENT_LOCKED | EXTENT_BOUNDARY,
2913 					 &cached_state);
2914 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
2915 							clamped_len, true);
2916 			btrfs_delalloc_release_extents(BTRFS_I(inode),
2917 						       clamped_len);
2918 			goto release_folio;
2919 		}
2920 		btrfs_folio_set_dirty(fs_info, folio, clamped_start, clamped_len);
2921 
2922 		/*
2923 		 * Set the boundary if it's inside the folio.
2924 		 * Data relocation requires the destination extents to have the
2925 		 * same size as the source.
2926 		 * EXTENT_BOUNDARY bit prevents current extent from being merged
2927 		 * with previous extent.
2928 		 */
2929 		if (in_range(cluster->boundary[*cluster_nr] - offset, folio_start, PAGE_SIZE)) {
2930 			u64 boundary_start = cluster->boundary[*cluster_nr] -
2931 						offset;
2932 			u64 boundary_end = boundary_start +
2933 					   fs_info->sectorsize - 1;
2934 
2935 			set_extent_bit(&BTRFS_I(inode)->io_tree,
2936 				       boundary_start, boundary_end,
2937 				       EXTENT_BOUNDARY, NULL);
2938 		}
2939 		unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
2940 			      &cached_state);
2941 		btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
2942 		cur += clamped_len;
2943 
2944 		/* Crossed extent end, go to next extent */
2945 		if (cur >= extent_end) {
2946 			(*cluster_nr)++;
2947 			/* Just finished the last extent of the cluster, exit. */
2948 			if (*cluster_nr >= cluster->nr)
2949 				break;
2950 		}
2951 	}
2952 	folio_unlock(folio);
2953 	folio_put(folio);
2954 
2955 	balance_dirty_pages_ratelimited(inode->i_mapping);
2956 	btrfs_throttle(fs_info);
2957 	if (btrfs_should_cancel_balance(fs_info))
2958 		ret = -ECANCELED;
2959 	return ret;
2960 
2961 release_folio:
2962 	folio_unlock(folio);
2963 	folio_put(folio);
2964 	return ret;
2965 }
2966 
relocate_file_extent_cluster(struct reloc_control * rc)2967 static int relocate_file_extent_cluster(struct reloc_control *rc)
2968 {
2969 	struct inode *inode = rc->data_inode;
2970 	const struct file_extent_cluster *cluster = &rc->cluster;
2971 	u64 offset = BTRFS_I(inode)->reloc_block_group_start;
2972 	unsigned long index;
2973 	unsigned long last_index;
2974 	struct file_ra_state *ra;
2975 	int cluster_nr = 0;
2976 	int ret = 0;
2977 
2978 	if (!cluster->nr)
2979 		return 0;
2980 
2981 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
2982 	if (!ra)
2983 		return -ENOMEM;
2984 
2985 	ret = prealloc_file_extent_cluster(rc);
2986 	if (ret)
2987 		goto out;
2988 
2989 	file_ra_state_init(ra, inode->i_mapping);
2990 
2991 	ret = setup_relocation_extent_mapping(rc);
2992 	if (ret)
2993 		goto out;
2994 
2995 	last_index = (cluster->end - offset) >> PAGE_SHIFT;
2996 	for (index = (cluster->start - offset) >> PAGE_SHIFT;
2997 	     index <= last_index && !ret; index++)
2998 		ret = relocate_one_folio(rc, ra, &cluster_nr, index);
2999 	if (ret == 0)
3000 		WARN_ON(cluster_nr != cluster->nr);
3001 out:
3002 	kfree(ra);
3003 	return ret;
3004 }
3005 
relocate_data_extent(struct reloc_control * rc,const struct btrfs_key * extent_key)3006 static noinline_for_stack int relocate_data_extent(struct reloc_control *rc,
3007 					   const struct btrfs_key *extent_key)
3008 {
3009 	struct inode *inode = rc->data_inode;
3010 	struct file_extent_cluster *cluster = &rc->cluster;
3011 	int ret;
3012 	struct btrfs_root *root = BTRFS_I(inode)->root;
3013 
3014 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3015 		ret = relocate_file_extent_cluster(rc);
3016 		if (ret)
3017 			return ret;
3018 		cluster->nr = 0;
3019 	}
3020 
3021 	/*
3022 	 * Under simple quotas, we set root->relocation_src_root when we find
3023 	 * the extent. If adjacent extents have different owners, we can't merge
3024 	 * them while relocating. Handle this by storing the owning root that
3025 	 * started a cluster and if we see an extent from a different root break
3026 	 * cluster formation (just like the above case of non-adjacent extents).
3027 	 *
3028 	 * Without simple quotas, relocation_src_root is always 0, so we should
3029 	 * never see a mismatch, and it should have no effect on relocation
3030 	 * clusters.
3031 	 */
3032 	if (cluster->nr > 0 && cluster->owning_root != root->relocation_src_root) {
3033 		u64 tmp = root->relocation_src_root;
3034 
3035 		/*
3036 		 * root->relocation_src_root is the state that actually affects
3037 		 * the preallocation we do here, so set it to the root owning
3038 		 * the cluster we need to relocate.
3039 		 */
3040 		root->relocation_src_root = cluster->owning_root;
3041 		ret = relocate_file_extent_cluster(rc);
3042 		if (ret)
3043 			return ret;
3044 		cluster->nr = 0;
3045 		/* And reset it back for the current extent's owning root. */
3046 		root->relocation_src_root = tmp;
3047 	}
3048 
3049 	if (!cluster->nr) {
3050 		cluster->start = extent_key->objectid;
3051 		cluster->owning_root = root->relocation_src_root;
3052 	}
3053 	else
3054 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3055 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3056 	cluster->boundary[cluster->nr] = extent_key->objectid;
3057 	cluster->nr++;
3058 
3059 	if (cluster->nr >= MAX_EXTENTS) {
3060 		ret = relocate_file_extent_cluster(rc);
3061 		if (ret)
3062 			return ret;
3063 		cluster->nr = 0;
3064 	}
3065 	return 0;
3066 }
3067 
3068 /*
3069  * helper to add a tree block to the list.
3070  * the major work is getting the generation and level of the block
3071  */
add_tree_block(struct reloc_control * rc,const struct btrfs_key * extent_key,struct btrfs_path * path,struct rb_root * blocks)3072 static int add_tree_block(struct reloc_control *rc,
3073 			  const struct btrfs_key *extent_key,
3074 			  struct btrfs_path *path,
3075 			  struct rb_root *blocks)
3076 {
3077 	struct extent_buffer *eb;
3078 	struct btrfs_extent_item *ei;
3079 	struct btrfs_tree_block_info *bi;
3080 	struct tree_block *block;
3081 	struct rb_node *rb_node;
3082 	u32 item_size;
3083 	int level = -1;
3084 	u64 generation;
3085 	u64 owner = 0;
3086 
3087 	eb =  path->nodes[0];
3088 	item_size = btrfs_item_size(eb, path->slots[0]);
3089 
3090 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3091 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3092 		unsigned long ptr = 0, end;
3093 
3094 		ei = btrfs_item_ptr(eb, path->slots[0],
3095 				struct btrfs_extent_item);
3096 		end = (unsigned long)ei + item_size;
3097 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3098 			bi = (struct btrfs_tree_block_info *)(ei + 1);
3099 			level = btrfs_tree_block_level(eb, bi);
3100 			ptr = (unsigned long)(bi + 1);
3101 		} else {
3102 			level = (int)extent_key->offset;
3103 			ptr = (unsigned long)(ei + 1);
3104 		}
3105 		generation = btrfs_extent_generation(eb, ei);
3106 
3107 		/*
3108 		 * We're reading random blocks without knowing their owner ahead
3109 		 * of time.  This is ok most of the time, as all reloc roots and
3110 		 * fs roots have the same lock type.  However normal trees do
3111 		 * not, and the only way to know ahead of time is to read the
3112 		 * inline ref offset.  We know it's an fs root if
3113 		 *
3114 		 * 1. There's more than one ref.
3115 		 * 2. There's a SHARED_DATA_REF_KEY set.
3116 		 * 3. FULL_BACKREF is set on the flags.
3117 		 *
3118 		 * Otherwise it's safe to assume that the ref offset == the
3119 		 * owner of this block, so we can use that when calling
3120 		 * read_tree_block.
3121 		 */
3122 		if (btrfs_extent_refs(eb, ei) == 1 &&
3123 		    !(btrfs_extent_flags(eb, ei) &
3124 		      BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3125 		    ptr < end) {
3126 			struct btrfs_extent_inline_ref *iref;
3127 			int type;
3128 
3129 			iref = (struct btrfs_extent_inline_ref *)ptr;
3130 			type = btrfs_get_extent_inline_ref_type(eb, iref,
3131 							BTRFS_REF_TYPE_BLOCK);
3132 			if (type == BTRFS_REF_TYPE_INVALID)
3133 				return -EINVAL;
3134 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
3135 				owner = btrfs_extent_inline_ref_offset(eb, iref);
3136 		}
3137 	} else {
3138 		btrfs_print_leaf(eb);
3139 		btrfs_err(rc->block_group->fs_info,
3140 			  "unrecognized tree backref at tree block %llu slot %u",
3141 			  eb->start, path->slots[0]);
3142 		btrfs_release_path(path);
3143 		return -EUCLEAN;
3144 	}
3145 
3146 	btrfs_release_path(path);
3147 
3148 	BUG_ON(level == -1);
3149 
3150 	block = kmalloc(sizeof(*block), GFP_NOFS);
3151 	if (!block)
3152 		return -ENOMEM;
3153 
3154 	block->bytenr = extent_key->objectid;
3155 	block->key.objectid = rc->extent_root->fs_info->nodesize;
3156 	block->key.offset = generation;
3157 	block->level = level;
3158 	block->key_ready = false;
3159 	block->owner = owner;
3160 
3161 	rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3162 	if (rb_node)
3163 		btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3164 				    -EEXIST);
3165 
3166 	return 0;
3167 }
3168 
3169 /*
3170  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3171  */
__add_tree_block(struct reloc_control * rc,u64 bytenr,u32 blocksize,struct rb_root * blocks)3172 static int __add_tree_block(struct reloc_control *rc,
3173 			    u64 bytenr, u32 blocksize,
3174 			    struct rb_root *blocks)
3175 {
3176 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3177 	struct btrfs_path *path;
3178 	struct btrfs_key key;
3179 	int ret;
3180 	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3181 
3182 	if (tree_block_processed(bytenr, rc))
3183 		return 0;
3184 
3185 	if (rb_simple_search(blocks, bytenr))
3186 		return 0;
3187 
3188 	path = btrfs_alloc_path();
3189 	if (!path)
3190 		return -ENOMEM;
3191 again:
3192 	key.objectid = bytenr;
3193 	if (skinny) {
3194 		key.type = BTRFS_METADATA_ITEM_KEY;
3195 		key.offset = (u64)-1;
3196 	} else {
3197 		key.type = BTRFS_EXTENT_ITEM_KEY;
3198 		key.offset = blocksize;
3199 	}
3200 
3201 	path->search_commit_root = 1;
3202 	path->skip_locking = 1;
3203 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3204 	if (ret < 0)
3205 		goto out;
3206 
3207 	if (ret > 0 && skinny) {
3208 		if (path->slots[0]) {
3209 			path->slots[0]--;
3210 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3211 					      path->slots[0]);
3212 			if (key.objectid == bytenr &&
3213 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3214 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3215 			      key.offset == blocksize)))
3216 				ret = 0;
3217 		}
3218 
3219 		if (ret) {
3220 			skinny = false;
3221 			btrfs_release_path(path);
3222 			goto again;
3223 		}
3224 	}
3225 	if (ret) {
3226 		ASSERT(ret == 1);
3227 		btrfs_print_leaf(path->nodes[0]);
3228 		btrfs_err(fs_info,
3229 	     "tree block extent item (%llu) is not found in extent tree",
3230 		     bytenr);
3231 		WARN_ON(1);
3232 		ret = -EINVAL;
3233 		goto out;
3234 	}
3235 
3236 	ret = add_tree_block(rc, &key, path, blocks);
3237 out:
3238 	btrfs_free_path(path);
3239 	return ret;
3240 }
3241 
delete_block_group_cache(struct btrfs_block_group * block_group,struct inode * inode,u64 ino)3242 static int delete_block_group_cache(struct btrfs_block_group *block_group,
3243 				    struct inode *inode,
3244 				    u64 ino)
3245 {
3246 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3247 	struct btrfs_root *root = fs_info->tree_root;
3248 	struct btrfs_trans_handle *trans;
3249 	struct btrfs_inode *btrfs_inode;
3250 	int ret = 0;
3251 
3252 	if (inode)
3253 		goto truncate;
3254 
3255 	btrfs_inode = btrfs_iget(ino, root);
3256 	if (IS_ERR(btrfs_inode))
3257 		return -ENOENT;
3258 	inode = &btrfs_inode->vfs_inode;
3259 
3260 truncate:
3261 	ret = btrfs_check_trunc_cache_free_space(fs_info,
3262 						 &fs_info->global_block_rsv);
3263 	if (ret)
3264 		goto out;
3265 
3266 	trans = btrfs_join_transaction(root);
3267 	if (IS_ERR(trans)) {
3268 		ret = PTR_ERR(trans);
3269 		goto out;
3270 	}
3271 
3272 	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3273 
3274 	btrfs_end_transaction(trans);
3275 	btrfs_btree_balance_dirty(fs_info);
3276 out:
3277 	iput(inode);
3278 	return ret;
3279 }
3280 
3281 /*
3282  * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3283  * cache inode, to avoid free space cache data extent blocking data relocation.
3284  */
delete_v1_space_cache(struct extent_buffer * leaf,struct btrfs_block_group * block_group,u64 data_bytenr)3285 static int delete_v1_space_cache(struct extent_buffer *leaf,
3286 				 struct btrfs_block_group *block_group,
3287 				 u64 data_bytenr)
3288 {
3289 	u64 space_cache_ino;
3290 	struct btrfs_file_extent_item *ei;
3291 	struct btrfs_key key;
3292 	bool found = false;
3293 	int i;
3294 	int ret;
3295 
3296 	if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3297 		return 0;
3298 
3299 	for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3300 		u8 type;
3301 
3302 		btrfs_item_key_to_cpu(leaf, &key, i);
3303 		if (key.type != BTRFS_EXTENT_DATA_KEY)
3304 			continue;
3305 		ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3306 		type = btrfs_file_extent_type(leaf, ei);
3307 
3308 		if ((type == BTRFS_FILE_EXTENT_REG ||
3309 		     type == BTRFS_FILE_EXTENT_PREALLOC) &&
3310 		    btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3311 			found = true;
3312 			space_cache_ino = key.objectid;
3313 			break;
3314 		}
3315 	}
3316 	if (!found)
3317 		return -ENOENT;
3318 	ret = delete_block_group_cache(block_group, NULL, space_cache_ino);
3319 	return ret;
3320 }
3321 
3322 /*
3323  * helper to find all tree blocks that reference a given data extent
3324  */
add_data_references(struct reloc_control * rc,const struct btrfs_key * extent_key,struct btrfs_path * path,struct rb_root * blocks)3325 static noinline_for_stack int add_data_references(struct reloc_control *rc,
3326 						  const struct btrfs_key *extent_key,
3327 						  struct btrfs_path *path,
3328 						  struct rb_root *blocks)
3329 {
3330 	struct btrfs_backref_walk_ctx ctx = { 0 };
3331 	struct ulist_iterator leaf_uiter;
3332 	struct ulist_node *ref_node = NULL;
3333 	const u32 blocksize = rc->extent_root->fs_info->nodesize;
3334 	int ret = 0;
3335 
3336 	btrfs_release_path(path);
3337 
3338 	ctx.bytenr = extent_key->objectid;
3339 	ctx.skip_inode_ref_list = true;
3340 	ctx.fs_info = rc->extent_root->fs_info;
3341 
3342 	ret = btrfs_find_all_leafs(&ctx);
3343 	if (ret < 0)
3344 		return ret;
3345 
3346 	ULIST_ITER_INIT(&leaf_uiter);
3347 	while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) {
3348 		struct btrfs_tree_parent_check check = { 0 };
3349 		struct extent_buffer *eb;
3350 
3351 		eb = read_tree_block(ctx.fs_info, ref_node->val, &check);
3352 		if (IS_ERR(eb)) {
3353 			ret = PTR_ERR(eb);
3354 			break;
3355 		}
3356 		ret = delete_v1_space_cache(eb, rc->block_group,
3357 					    extent_key->objectid);
3358 		free_extent_buffer(eb);
3359 		if (ret < 0)
3360 			break;
3361 		ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3362 		if (ret < 0)
3363 			break;
3364 	}
3365 	if (ret < 0)
3366 		free_block_list(blocks);
3367 	ulist_free(ctx.refs);
3368 	return ret;
3369 }
3370 
3371 /*
3372  * helper to find next unprocessed extent
3373  */
3374 static noinline_for_stack
find_next_extent(struct reloc_control * rc,struct btrfs_path * path,struct btrfs_key * extent_key)3375 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3376 		     struct btrfs_key *extent_key)
3377 {
3378 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3379 	struct btrfs_key key;
3380 	struct extent_buffer *leaf;
3381 	u64 start, end, last;
3382 	int ret;
3383 
3384 	last = rc->block_group->start + rc->block_group->length;
3385 	while (1) {
3386 		bool block_found;
3387 
3388 		cond_resched();
3389 		if (rc->search_start >= last) {
3390 			ret = 1;
3391 			break;
3392 		}
3393 
3394 		key.objectid = rc->search_start;
3395 		key.type = BTRFS_EXTENT_ITEM_KEY;
3396 		key.offset = 0;
3397 
3398 		path->search_commit_root = 1;
3399 		path->skip_locking = 1;
3400 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3401 					0, 0);
3402 		if (ret < 0)
3403 			break;
3404 next:
3405 		leaf = path->nodes[0];
3406 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3407 			ret = btrfs_next_leaf(rc->extent_root, path);
3408 			if (ret != 0)
3409 				break;
3410 			leaf = path->nodes[0];
3411 		}
3412 
3413 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3414 		if (key.objectid >= last) {
3415 			ret = 1;
3416 			break;
3417 		}
3418 
3419 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3420 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3421 			path->slots[0]++;
3422 			goto next;
3423 		}
3424 
3425 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3426 		    key.objectid + key.offset <= rc->search_start) {
3427 			path->slots[0]++;
3428 			goto next;
3429 		}
3430 
3431 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3432 		    key.objectid + fs_info->nodesize <=
3433 		    rc->search_start) {
3434 			path->slots[0]++;
3435 			goto next;
3436 		}
3437 
3438 		block_found = find_first_extent_bit(&rc->processed_blocks,
3439 						    key.objectid, &start, &end,
3440 						    EXTENT_DIRTY, NULL);
3441 
3442 		if (block_found && start <= key.objectid) {
3443 			btrfs_release_path(path);
3444 			rc->search_start = end + 1;
3445 		} else {
3446 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3447 				rc->search_start = key.objectid + key.offset;
3448 			else
3449 				rc->search_start = key.objectid +
3450 					fs_info->nodesize;
3451 			memcpy(extent_key, &key, sizeof(key));
3452 			return 0;
3453 		}
3454 	}
3455 	btrfs_release_path(path);
3456 	return ret;
3457 }
3458 
set_reloc_control(struct reloc_control * rc)3459 static void set_reloc_control(struct reloc_control *rc)
3460 {
3461 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3462 
3463 	mutex_lock(&fs_info->reloc_mutex);
3464 	fs_info->reloc_ctl = rc;
3465 	mutex_unlock(&fs_info->reloc_mutex);
3466 }
3467 
unset_reloc_control(struct reloc_control * rc)3468 static void unset_reloc_control(struct reloc_control *rc)
3469 {
3470 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3471 
3472 	mutex_lock(&fs_info->reloc_mutex);
3473 	fs_info->reloc_ctl = NULL;
3474 	mutex_unlock(&fs_info->reloc_mutex);
3475 }
3476 
3477 static noinline_for_stack
prepare_to_relocate(struct reloc_control * rc)3478 int prepare_to_relocate(struct reloc_control *rc)
3479 {
3480 	struct btrfs_trans_handle *trans;
3481 	int ret;
3482 
3483 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3484 					      BTRFS_BLOCK_RSV_TEMP);
3485 	if (!rc->block_rsv)
3486 		return -ENOMEM;
3487 
3488 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3489 	rc->search_start = rc->block_group->start;
3490 	rc->extents_found = 0;
3491 	rc->nodes_relocated = 0;
3492 	rc->merging_rsv_size = 0;
3493 	rc->reserved_bytes = 0;
3494 	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3495 			      RELOCATION_RESERVED_NODES;
3496 	ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
3497 				     rc->block_rsv, rc->block_rsv->size,
3498 				     BTRFS_RESERVE_FLUSH_ALL);
3499 	if (ret)
3500 		return ret;
3501 
3502 	rc->create_reloc_tree = true;
3503 	set_reloc_control(rc);
3504 
3505 	trans = btrfs_join_transaction(rc->extent_root);
3506 	if (IS_ERR(trans)) {
3507 		unset_reloc_control(rc);
3508 		/*
3509 		 * extent tree is not a ref_cow tree and has no reloc_root to
3510 		 * cleanup.  And callers are responsible to free the above
3511 		 * block rsv.
3512 		 */
3513 		return PTR_ERR(trans);
3514 	}
3515 
3516 	ret = btrfs_commit_transaction(trans);
3517 	if (ret)
3518 		unset_reloc_control(rc);
3519 
3520 	return ret;
3521 }
3522 
relocate_block_group(struct reloc_control * rc)3523 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3524 {
3525 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3526 	struct rb_root blocks = RB_ROOT;
3527 	struct btrfs_key key;
3528 	struct btrfs_trans_handle *trans = NULL;
3529 	struct btrfs_path *path;
3530 	struct btrfs_extent_item *ei;
3531 	u64 flags;
3532 	int ret;
3533 	int err = 0;
3534 	int progress = 0;
3535 
3536 	path = btrfs_alloc_path();
3537 	if (!path)
3538 		return -ENOMEM;
3539 	path->reada = READA_FORWARD;
3540 
3541 	ret = prepare_to_relocate(rc);
3542 	if (ret) {
3543 		err = ret;
3544 		goto out_free;
3545 	}
3546 
3547 	while (1) {
3548 		rc->reserved_bytes = 0;
3549 		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
3550 					     rc->block_rsv->size,
3551 					     BTRFS_RESERVE_FLUSH_ALL);
3552 		if (ret) {
3553 			err = ret;
3554 			break;
3555 		}
3556 		progress++;
3557 		trans = btrfs_start_transaction(rc->extent_root, 0);
3558 		if (IS_ERR(trans)) {
3559 			err = PTR_ERR(trans);
3560 			trans = NULL;
3561 			break;
3562 		}
3563 restart:
3564 		if (rc->backref_cache.last_trans != trans->transid)
3565 			btrfs_backref_release_cache(&rc->backref_cache);
3566 		rc->backref_cache.last_trans = trans->transid;
3567 
3568 		ret = find_next_extent(rc, path, &key);
3569 		if (ret < 0)
3570 			err = ret;
3571 		if (ret != 0)
3572 			break;
3573 
3574 		rc->extents_found++;
3575 
3576 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3577 				    struct btrfs_extent_item);
3578 		flags = btrfs_extent_flags(path->nodes[0], ei);
3579 
3580 		/*
3581 		 * If we are relocating a simple quota owned extent item, we
3582 		 * need to note the owner on the reloc data root so that when
3583 		 * we allocate the replacement item, we can attribute it to the
3584 		 * correct eventual owner (rather than the reloc data root).
3585 		 */
3586 		if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE) {
3587 			struct btrfs_root *root = BTRFS_I(rc->data_inode)->root;
3588 			u64 owning_root_id = btrfs_get_extent_owner_root(fs_info,
3589 								 path->nodes[0],
3590 								 path->slots[0]);
3591 
3592 			root->relocation_src_root = owning_root_id;
3593 		}
3594 
3595 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3596 			ret = add_tree_block(rc, &key, path, &blocks);
3597 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3598 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3599 			ret = add_data_references(rc, &key, path, &blocks);
3600 		} else {
3601 			btrfs_release_path(path);
3602 			ret = 0;
3603 		}
3604 		if (ret < 0) {
3605 			err = ret;
3606 			break;
3607 		}
3608 
3609 		if (!RB_EMPTY_ROOT(&blocks)) {
3610 			ret = relocate_tree_blocks(trans, rc, &blocks);
3611 			if (ret < 0) {
3612 				if (ret != -EAGAIN) {
3613 					err = ret;
3614 					break;
3615 				}
3616 				rc->extents_found--;
3617 				rc->search_start = key.objectid;
3618 			}
3619 		}
3620 
3621 		btrfs_end_transaction_throttle(trans);
3622 		btrfs_btree_balance_dirty(fs_info);
3623 		trans = NULL;
3624 
3625 		if (rc->stage == MOVE_DATA_EXTENTS &&
3626 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3627 			rc->found_file_extent = true;
3628 			ret = relocate_data_extent(rc, &key);
3629 			if (ret < 0) {
3630 				err = ret;
3631 				break;
3632 			}
3633 		}
3634 		if (btrfs_should_cancel_balance(fs_info)) {
3635 			err = -ECANCELED;
3636 			break;
3637 		}
3638 	}
3639 	if (trans && progress && err == -ENOSPC) {
3640 		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3641 		if (ret == 1) {
3642 			err = 0;
3643 			progress = 0;
3644 			goto restart;
3645 		}
3646 	}
3647 
3648 	btrfs_release_path(path);
3649 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3650 
3651 	if (trans) {
3652 		btrfs_end_transaction_throttle(trans);
3653 		btrfs_btree_balance_dirty(fs_info);
3654 	}
3655 
3656 	if (!err) {
3657 		ret = relocate_file_extent_cluster(rc);
3658 		if (ret < 0)
3659 			err = ret;
3660 	}
3661 
3662 	rc->create_reloc_tree = false;
3663 	set_reloc_control(rc);
3664 
3665 	btrfs_backref_release_cache(&rc->backref_cache);
3666 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3667 
3668 	/*
3669 	 * Even in the case when the relocation is cancelled, we should all go
3670 	 * through prepare_to_merge() and merge_reloc_roots().
3671 	 *
3672 	 * For error (including cancelled balance), prepare_to_merge() will
3673 	 * mark all reloc trees orphan, then queue them for cleanup in
3674 	 * merge_reloc_roots()
3675 	 */
3676 	err = prepare_to_merge(rc, err);
3677 
3678 	merge_reloc_roots(rc);
3679 
3680 	rc->merge_reloc_tree = false;
3681 	unset_reloc_control(rc);
3682 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3683 
3684 	/* get rid of pinned extents */
3685 	trans = btrfs_join_transaction(rc->extent_root);
3686 	if (IS_ERR(trans)) {
3687 		err = PTR_ERR(trans);
3688 		goto out_free;
3689 	}
3690 	ret = btrfs_commit_transaction(trans);
3691 	if (ret && !err)
3692 		err = ret;
3693 out_free:
3694 	ret = clean_dirty_subvols(rc);
3695 	if (ret < 0 && !err)
3696 		err = ret;
3697 	btrfs_free_block_rsv(fs_info, rc->block_rsv);
3698 	btrfs_free_path(path);
3699 	return err;
3700 }
3701 
__insert_orphan_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)3702 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3703 				 struct btrfs_root *root, u64 objectid)
3704 {
3705 	struct btrfs_path *path;
3706 	struct btrfs_inode_item *item;
3707 	struct extent_buffer *leaf;
3708 	int ret;
3709 
3710 	path = btrfs_alloc_path();
3711 	if (!path)
3712 		return -ENOMEM;
3713 
3714 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3715 	if (ret)
3716 		goto out;
3717 
3718 	leaf = path->nodes[0];
3719 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3720 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3721 	btrfs_set_inode_generation(leaf, item, 1);
3722 	btrfs_set_inode_size(leaf, item, 0);
3723 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3724 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3725 					  BTRFS_INODE_PREALLOC);
3726 out:
3727 	btrfs_free_path(path);
3728 	return ret;
3729 }
3730 
delete_orphan_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)3731 static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3732 				struct btrfs_root *root, u64 objectid)
3733 {
3734 	struct btrfs_path *path;
3735 	struct btrfs_key key;
3736 	int ret = 0;
3737 
3738 	path = btrfs_alloc_path();
3739 	if (!path) {
3740 		ret = -ENOMEM;
3741 		goto out;
3742 	}
3743 
3744 	key.objectid = objectid;
3745 	key.type = BTRFS_INODE_ITEM_KEY;
3746 	key.offset = 0;
3747 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3748 	if (ret) {
3749 		if (ret > 0)
3750 			ret = -ENOENT;
3751 		goto out;
3752 	}
3753 	ret = btrfs_del_item(trans, root, path);
3754 out:
3755 	if (ret)
3756 		btrfs_abort_transaction(trans, ret);
3757 	btrfs_free_path(path);
3758 }
3759 
3760 /*
3761  * helper to create inode for data relocation.
3762  * the inode is in data relocation tree and its link count is 0
3763  */
create_reloc_inode(const struct btrfs_block_group * group)3764 static noinline_for_stack struct inode *create_reloc_inode(
3765 					const struct btrfs_block_group *group)
3766 {
3767 	struct btrfs_fs_info *fs_info = group->fs_info;
3768 	struct btrfs_inode *inode = NULL;
3769 	struct btrfs_trans_handle *trans;
3770 	struct btrfs_root *root;
3771 	u64 objectid;
3772 	int ret = 0;
3773 
3774 	root = btrfs_grab_root(fs_info->data_reloc_root);
3775 	trans = btrfs_start_transaction(root, 6);
3776 	if (IS_ERR(trans)) {
3777 		btrfs_put_root(root);
3778 		return ERR_CAST(trans);
3779 	}
3780 
3781 	ret = btrfs_get_free_objectid(root, &objectid);
3782 	if (ret)
3783 		goto out;
3784 
3785 	ret = __insert_orphan_inode(trans, root, objectid);
3786 	if (ret)
3787 		goto out;
3788 
3789 	inode = btrfs_iget(objectid, root);
3790 	if (IS_ERR(inode)) {
3791 		delete_orphan_inode(trans, root, objectid);
3792 		ret = PTR_ERR(inode);
3793 		inode = NULL;
3794 		goto out;
3795 	}
3796 	inode->reloc_block_group_start = group->start;
3797 
3798 	ret = btrfs_orphan_add(trans, inode);
3799 out:
3800 	btrfs_put_root(root);
3801 	btrfs_end_transaction(trans);
3802 	btrfs_btree_balance_dirty(fs_info);
3803 	if (ret) {
3804 		if (inode)
3805 			iput(&inode->vfs_inode);
3806 		inode = ERR_PTR(ret);
3807 	}
3808 	return &inode->vfs_inode;
3809 }
3810 
3811 /*
3812  * Mark start of chunk relocation that is cancellable. Check if the cancellation
3813  * has been requested meanwhile and don't start in that case.
3814  *
3815  * Return:
3816  *   0             success
3817  *   -EINPROGRESS  operation is already in progress, that's probably a bug
3818  *   -ECANCELED    cancellation request was set before the operation started
3819  */
reloc_chunk_start(struct btrfs_fs_info * fs_info)3820 static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3821 {
3822 	if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3823 		/* This should not happen */
3824 		btrfs_err(fs_info, "reloc already running, cannot start");
3825 		return -EINPROGRESS;
3826 	}
3827 
3828 	if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3829 		btrfs_info(fs_info, "chunk relocation canceled on start");
3830 		/*
3831 		 * On cancel, clear all requests but let the caller mark
3832 		 * the end after cleanup operations.
3833 		 */
3834 		atomic_set(&fs_info->reloc_cancel_req, 0);
3835 		return -ECANCELED;
3836 	}
3837 	return 0;
3838 }
3839 
3840 /*
3841  * Mark end of chunk relocation that is cancellable and wake any waiters.
3842  */
reloc_chunk_end(struct btrfs_fs_info * fs_info)3843 static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3844 {
3845 	/* Requested after start, clear bit first so any waiters can continue */
3846 	if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3847 		btrfs_info(fs_info, "chunk relocation canceled during operation");
3848 	clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3849 	atomic_set(&fs_info->reloc_cancel_req, 0);
3850 }
3851 
alloc_reloc_control(struct btrfs_fs_info * fs_info)3852 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3853 {
3854 	struct reloc_control *rc;
3855 
3856 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3857 	if (!rc)
3858 		return NULL;
3859 
3860 	INIT_LIST_HEAD(&rc->reloc_roots);
3861 	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3862 	btrfs_backref_init_cache(fs_info, &rc->backref_cache, true);
3863 	rc->reloc_root_tree.rb_root = RB_ROOT;
3864 	spin_lock_init(&rc->reloc_root_tree.lock);
3865 	extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS);
3866 	return rc;
3867 }
3868 
free_reloc_control(struct reloc_control * rc)3869 static void free_reloc_control(struct reloc_control *rc)
3870 {
3871 	struct mapping_node *node, *tmp;
3872 
3873 	free_reloc_roots(&rc->reloc_roots);
3874 	rbtree_postorder_for_each_entry_safe(node, tmp,
3875 			&rc->reloc_root_tree.rb_root, rb_node)
3876 		kfree(node);
3877 
3878 	kfree(rc);
3879 }
3880 
3881 /*
3882  * Print the block group being relocated
3883  */
describe_relocation(struct btrfs_block_group * block_group)3884 static void describe_relocation(struct btrfs_block_group *block_group)
3885 {
3886 	char buf[128] = {'\0'};
3887 
3888 	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3889 
3890 	btrfs_info(block_group->fs_info, "relocating block group %llu flags %s",
3891 		   block_group->start, buf);
3892 }
3893 
stage_to_string(enum reloc_stage stage)3894 static const char *stage_to_string(enum reloc_stage stage)
3895 {
3896 	if (stage == MOVE_DATA_EXTENTS)
3897 		return "move data extents";
3898 	if (stage == UPDATE_DATA_PTRS)
3899 		return "update data pointers";
3900 	return "unknown";
3901 }
3902 
3903 /*
3904  * function to relocate all extents in a block group.
3905  */
btrfs_relocate_block_group(struct btrfs_fs_info * fs_info,u64 group_start)3906 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3907 {
3908 	struct btrfs_block_group *bg;
3909 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
3910 	struct reloc_control *rc;
3911 	struct inode *inode;
3912 	struct btrfs_path *path;
3913 	int ret;
3914 	int rw = 0;
3915 	int err = 0;
3916 
3917 	/*
3918 	 * This only gets set if we had a half-deleted snapshot on mount.  We
3919 	 * cannot allow relocation to start while we're still trying to clean up
3920 	 * these pending deletions.
3921 	 */
3922 	ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
3923 	if (ret)
3924 		return ret;
3925 
3926 	/* We may have been woken up by close_ctree, so bail if we're closing. */
3927 	if (btrfs_fs_closing(fs_info))
3928 		return -EINTR;
3929 
3930 	bg = btrfs_lookup_block_group(fs_info, group_start);
3931 	if (!bg)
3932 		return -ENOENT;
3933 
3934 	/*
3935 	 * Relocation of a data block group creates ordered extents.  Without
3936 	 * sb_start_write(), we can freeze the filesystem while unfinished
3937 	 * ordered extents are left. Such ordered extents can cause a deadlock
3938 	 * e.g. when syncfs() is waiting for their completion but they can't
3939 	 * finish because they block when joining a transaction, due to the
3940 	 * fact that the freeze locks are being held in write mode.
3941 	 */
3942 	if (bg->flags & BTRFS_BLOCK_GROUP_DATA)
3943 		ASSERT(sb_write_started(fs_info->sb));
3944 
3945 	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
3946 		btrfs_put_block_group(bg);
3947 		return -ETXTBSY;
3948 	}
3949 
3950 	rc = alloc_reloc_control(fs_info);
3951 	if (!rc) {
3952 		btrfs_put_block_group(bg);
3953 		return -ENOMEM;
3954 	}
3955 
3956 	ret = reloc_chunk_start(fs_info);
3957 	if (ret < 0) {
3958 		err = ret;
3959 		goto out_put_bg;
3960 	}
3961 
3962 	rc->extent_root = extent_root;
3963 	rc->block_group = bg;
3964 
3965 	ret = btrfs_inc_block_group_ro(rc->block_group, true);
3966 	if (ret) {
3967 		err = ret;
3968 		goto out;
3969 	}
3970 	rw = 1;
3971 
3972 	path = btrfs_alloc_path();
3973 	if (!path) {
3974 		err = -ENOMEM;
3975 		goto out;
3976 	}
3977 
3978 	inode = lookup_free_space_inode(rc->block_group, path);
3979 	btrfs_free_path(path);
3980 
3981 	if (!IS_ERR(inode))
3982 		ret = delete_block_group_cache(rc->block_group, inode, 0);
3983 	else
3984 		ret = PTR_ERR(inode);
3985 
3986 	if (ret && ret != -ENOENT) {
3987 		err = ret;
3988 		goto out;
3989 	}
3990 
3991 	rc->data_inode = create_reloc_inode(rc->block_group);
3992 	if (IS_ERR(rc->data_inode)) {
3993 		err = PTR_ERR(rc->data_inode);
3994 		rc->data_inode = NULL;
3995 		goto out;
3996 	}
3997 
3998 	describe_relocation(rc->block_group);
3999 
4000 	btrfs_wait_block_group_reservations(rc->block_group);
4001 	btrfs_wait_nocow_writers(rc->block_group);
4002 	btrfs_wait_ordered_roots(fs_info, U64_MAX, rc->block_group);
4003 
4004 	ret = btrfs_zone_finish(rc->block_group);
4005 	WARN_ON(ret && ret != -EAGAIN);
4006 
4007 	while (1) {
4008 		enum reloc_stage finishes_stage;
4009 
4010 		mutex_lock(&fs_info->cleaner_mutex);
4011 		ret = relocate_block_group(rc);
4012 		mutex_unlock(&fs_info->cleaner_mutex);
4013 		if (ret < 0)
4014 			err = ret;
4015 
4016 		finishes_stage = rc->stage;
4017 		/*
4018 		 * We may have gotten ENOSPC after we already dirtied some
4019 		 * extents.  If writeout happens while we're relocating a
4020 		 * different block group we could end up hitting the
4021 		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4022 		 * btrfs_reloc_cow_block.  Make sure we write everything out
4023 		 * properly so we don't trip over this problem, and then break
4024 		 * out of the loop if we hit an error.
4025 		 */
4026 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4027 			ret = btrfs_wait_ordered_range(BTRFS_I(rc->data_inode), 0,
4028 						       (u64)-1);
4029 			if (ret)
4030 				err = ret;
4031 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4032 						 0, -1);
4033 			rc->stage = UPDATE_DATA_PTRS;
4034 		}
4035 
4036 		if (err < 0)
4037 			goto out;
4038 
4039 		if (rc->extents_found == 0)
4040 			break;
4041 
4042 		btrfs_info(fs_info, "found %llu extents, stage: %s",
4043 			   rc->extents_found, stage_to_string(finishes_stage));
4044 	}
4045 
4046 	WARN_ON(rc->block_group->pinned > 0);
4047 	WARN_ON(rc->block_group->reserved > 0);
4048 	WARN_ON(rc->block_group->used > 0);
4049 out:
4050 	if (err && rw)
4051 		btrfs_dec_block_group_ro(rc->block_group);
4052 	iput(rc->data_inode);
4053 out_put_bg:
4054 	btrfs_put_block_group(bg);
4055 	reloc_chunk_end(fs_info);
4056 	free_reloc_control(rc);
4057 	return err;
4058 }
4059 
mark_garbage_root(struct btrfs_root * root)4060 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4061 {
4062 	struct btrfs_fs_info *fs_info = root->fs_info;
4063 	struct btrfs_trans_handle *trans;
4064 	int ret, err;
4065 
4066 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4067 	if (IS_ERR(trans))
4068 		return PTR_ERR(trans);
4069 
4070 	memset(&root->root_item.drop_progress, 0,
4071 		sizeof(root->root_item.drop_progress));
4072 	btrfs_set_root_drop_level(&root->root_item, 0);
4073 	btrfs_set_root_refs(&root->root_item, 0);
4074 	ret = btrfs_update_root(trans, fs_info->tree_root,
4075 				&root->root_key, &root->root_item);
4076 
4077 	err = btrfs_end_transaction(trans);
4078 	if (err)
4079 		return err;
4080 	return ret;
4081 }
4082 
4083 /*
4084  * recover relocation interrupted by system crash.
4085  *
4086  * this function resumes merging reloc trees with corresponding fs trees.
4087  * this is important for keeping the sharing of tree blocks
4088  */
btrfs_recover_relocation(struct btrfs_fs_info * fs_info)4089 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
4090 {
4091 	LIST_HEAD(reloc_roots);
4092 	struct btrfs_key key;
4093 	struct btrfs_root *fs_root;
4094 	struct btrfs_root *reloc_root;
4095 	struct btrfs_path *path;
4096 	struct extent_buffer *leaf;
4097 	struct reloc_control *rc = NULL;
4098 	struct btrfs_trans_handle *trans;
4099 	int ret2;
4100 	int ret = 0;
4101 
4102 	path = btrfs_alloc_path();
4103 	if (!path)
4104 		return -ENOMEM;
4105 	path->reada = READA_BACK;
4106 
4107 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4108 	key.type = BTRFS_ROOT_ITEM_KEY;
4109 	key.offset = (u64)-1;
4110 
4111 	while (1) {
4112 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4113 					path, 0, 0);
4114 		if (ret < 0)
4115 			goto out;
4116 		if (ret > 0) {
4117 			if (path->slots[0] == 0)
4118 				break;
4119 			path->slots[0]--;
4120 		}
4121 		ret = 0;
4122 		leaf = path->nodes[0];
4123 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4124 		btrfs_release_path(path);
4125 
4126 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4127 		    key.type != BTRFS_ROOT_ITEM_KEY)
4128 			break;
4129 
4130 		reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key);
4131 		if (IS_ERR(reloc_root)) {
4132 			ret = PTR_ERR(reloc_root);
4133 			goto out;
4134 		}
4135 
4136 		set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4137 		list_add(&reloc_root->root_list, &reloc_roots);
4138 
4139 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4140 			fs_root = btrfs_get_fs_root(fs_info,
4141 					reloc_root->root_key.offset, false);
4142 			if (IS_ERR(fs_root)) {
4143 				ret = PTR_ERR(fs_root);
4144 				if (ret != -ENOENT)
4145 					goto out;
4146 				ret = mark_garbage_root(reloc_root);
4147 				if (ret < 0)
4148 					goto out;
4149 				ret = 0;
4150 			} else {
4151 				btrfs_put_root(fs_root);
4152 			}
4153 		}
4154 
4155 		if (key.offset == 0)
4156 			break;
4157 
4158 		key.offset--;
4159 	}
4160 	btrfs_release_path(path);
4161 
4162 	if (list_empty(&reloc_roots))
4163 		goto out;
4164 
4165 	rc = alloc_reloc_control(fs_info);
4166 	if (!rc) {
4167 		ret = -ENOMEM;
4168 		goto out;
4169 	}
4170 
4171 	ret = reloc_chunk_start(fs_info);
4172 	if (ret < 0)
4173 		goto out_end;
4174 
4175 	rc->extent_root = btrfs_extent_root(fs_info, 0);
4176 
4177 	set_reloc_control(rc);
4178 
4179 	trans = btrfs_join_transaction(rc->extent_root);
4180 	if (IS_ERR(trans)) {
4181 		ret = PTR_ERR(trans);
4182 		goto out_unset;
4183 	}
4184 
4185 	rc->merge_reloc_tree = true;
4186 
4187 	while (!list_empty(&reloc_roots)) {
4188 		reloc_root = list_entry(reloc_roots.next,
4189 					struct btrfs_root, root_list);
4190 		list_del(&reloc_root->root_list);
4191 
4192 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4193 			list_add_tail(&reloc_root->root_list,
4194 				      &rc->reloc_roots);
4195 			continue;
4196 		}
4197 
4198 		fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4199 					    false);
4200 		if (IS_ERR(fs_root)) {
4201 			ret = PTR_ERR(fs_root);
4202 			list_add_tail(&reloc_root->root_list, &reloc_roots);
4203 			btrfs_end_transaction(trans);
4204 			goto out_unset;
4205 		}
4206 
4207 		ret = __add_reloc_root(reloc_root);
4208 		ASSERT(ret != -EEXIST);
4209 		if (ret) {
4210 			list_add_tail(&reloc_root->root_list, &reloc_roots);
4211 			btrfs_put_root(fs_root);
4212 			btrfs_end_transaction(trans);
4213 			goto out_unset;
4214 		}
4215 		fs_root->reloc_root = btrfs_grab_root(reloc_root);
4216 		btrfs_put_root(fs_root);
4217 	}
4218 
4219 	ret = btrfs_commit_transaction(trans);
4220 	if (ret)
4221 		goto out_unset;
4222 
4223 	merge_reloc_roots(rc);
4224 
4225 	unset_reloc_control(rc);
4226 
4227 	trans = btrfs_join_transaction(rc->extent_root);
4228 	if (IS_ERR(trans)) {
4229 		ret = PTR_ERR(trans);
4230 		goto out_clean;
4231 	}
4232 	ret = btrfs_commit_transaction(trans);
4233 out_clean:
4234 	ret2 = clean_dirty_subvols(rc);
4235 	if (ret2 < 0 && !ret)
4236 		ret = ret2;
4237 out_unset:
4238 	unset_reloc_control(rc);
4239 out_end:
4240 	reloc_chunk_end(fs_info);
4241 	free_reloc_control(rc);
4242 out:
4243 	free_reloc_roots(&reloc_roots);
4244 
4245 	btrfs_free_path(path);
4246 
4247 	if (ret == 0) {
4248 		/* cleanup orphan inode in data relocation tree */
4249 		fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4250 		ASSERT(fs_root);
4251 		ret = btrfs_orphan_cleanup(fs_root);
4252 		btrfs_put_root(fs_root);
4253 	}
4254 	return ret;
4255 }
4256 
4257 /*
4258  * helper to add ordered checksum for data relocation.
4259  *
4260  * cloning checksum properly handles the nodatasum extents.
4261  * it also saves CPU time to re-calculate the checksum.
4262  */
btrfs_reloc_clone_csums(struct btrfs_ordered_extent * ordered)4263 int btrfs_reloc_clone_csums(struct btrfs_ordered_extent *ordered)
4264 {
4265 	struct btrfs_inode *inode = ordered->inode;
4266 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4267 	u64 disk_bytenr = ordered->file_offset + inode->reloc_block_group_start;
4268 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, disk_bytenr);
4269 	LIST_HEAD(list);
4270 	int ret;
4271 
4272 	ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4273 				      disk_bytenr + ordered->num_bytes - 1,
4274 				      &list, false);
4275 	if (ret < 0) {
4276 		btrfs_mark_ordered_extent_error(ordered);
4277 		return ret;
4278 	}
4279 
4280 	while (!list_empty(&list)) {
4281 		struct btrfs_ordered_sum *sums =
4282 			list_entry(list.next, struct btrfs_ordered_sum, list);
4283 
4284 		list_del_init(&sums->list);
4285 
4286 		/*
4287 		 * We need to offset the new_bytenr based on where the csum is.
4288 		 * We need to do this because we will read in entire prealloc
4289 		 * extents but we may have written to say the middle of the
4290 		 * prealloc extent, so we need to make sure the csum goes with
4291 		 * the right disk offset.
4292 		 *
4293 		 * We can do this because the data reloc inode refers strictly
4294 		 * to the on disk bytes, so we don't have to worry about
4295 		 * disk_len vs real len like with real inodes since it's all
4296 		 * disk length.
4297 		 */
4298 		sums->logical = ordered->disk_bytenr + sums->logical - disk_bytenr;
4299 		btrfs_add_ordered_sum(ordered, sums);
4300 	}
4301 
4302 	return 0;
4303 }
4304 
btrfs_reloc_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct extent_buffer * buf,struct extent_buffer * cow)4305 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4306 			  struct btrfs_root *root,
4307 			  const struct extent_buffer *buf,
4308 			  struct extent_buffer *cow)
4309 {
4310 	struct btrfs_fs_info *fs_info = root->fs_info;
4311 	struct reloc_control *rc;
4312 	struct btrfs_backref_node *node;
4313 	int first_cow = 0;
4314 	int level;
4315 	int ret = 0;
4316 
4317 	rc = fs_info->reloc_ctl;
4318 	if (!rc)
4319 		return 0;
4320 
4321 	BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
4322 
4323 	level = btrfs_header_level(buf);
4324 	if (btrfs_header_generation(buf) <=
4325 	    btrfs_root_last_snapshot(&root->root_item))
4326 		first_cow = 1;
4327 
4328 	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID && rc->create_reloc_tree) {
4329 		WARN_ON(!first_cow && level == 0);
4330 
4331 		node = rc->backref_cache.path[level];
4332 
4333 		/*
4334 		 * If node->bytenr != buf->start and node->new_bytenr !=
4335 		 * buf->start then we've got the wrong backref node for what we
4336 		 * expected to see here and the cache is incorrect.
4337 		 */
4338 		if (unlikely(node->bytenr != buf->start && node->new_bytenr != buf->start)) {
4339 			btrfs_err(fs_info,
4340 "bytenr %llu was found but our backref cache was expecting %llu or %llu",
4341 				  buf->start, node->bytenr, node->new_bytenr);
4342 			return -EUCLEAN;
4343 		}
4344 
4345 		btrfs_backref_drop_node_buffer(node);
4346 		atomic_inc(&cow->refs);
4347 		node->eb = cow;
4348 		node->new_bytenr = cow->start;
4349 
4350 		if (!node->pending) {
4351 			list_move_tail(&node->list,
4352 				       &rc->backref_cache.pending[level]);
4353 			node->pending = 1;
4354 		}
4355 
4356 		if (first_cow)
4357 			mark_block_processed(rc, node);
4358 
4359 		if (first_cow && level > 0)
4360 			rc->nodes_relocated += buf->len;
4361 	}
4362 
4363 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4364 		ret = replace_file_extents(trans, rc, root, cow);
4365 	return ret;
4366 }
4367 
4368 /*
4369  * called before creating snapshot. it calculates metadata reservation
4370  * required for relocating tree blocks in the snapshot
4371  */
btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot * pending,u64 * bytes_to_reserve)4372 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4373 			      u64 *bytes_to_reserve)
4374 {
4375 	struct btrfs_root *root = pending->root;
4376 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4377 
4378 	if (!rc || !have_reloc_root(root))
4379 		return;
4380 
4381 	if (!rc->merge_reloc_tree)
4382 		return;
4383 
4384 	root = root->reloc_root;
4385 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4386 	/*
4387 	 * relocation is in the stage of merging trees. the space
4388 	 * used by merging a reloc tree is twice the size of
4389 	 * relocated tree nodes in the worst case. half for cowing
4390 	 * the reloc tree, half for cowing the fs tree. the space
4391 	 * used by cowing the reloc tree will be freed after the
4392 	 * tree is dropped. if we create snapshot, cowing the fs
4393 	 * tree may use more space than it frees. so we need
4394 	 * reserve extra space.
4395 	 */
4396 	*bytes_to_reserve += rc->nodes_relocated;
4397 }
4398 
4399 /*
4400  * called after snapshot is created. migrate block reservation
4401  * and create reloc root for the newly created snapshot
4402  *
4403  * This is similar to btrfs_init_reloc_root(), we come out of here with two
4404  * references held on the reloc_root, one for root->reloc_root and one for
4405  * rc->reloc_roots.
4406  */
btrfs_reloc_post_snapshot(struct btrfs_trans_handle * trans,struct btrfs_pending_snapshot * pending)4407 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4408 			       struct btrfs_pending_snapshot *pending)
4409 {
4410 	struct btrfs_root *root = pending->root;
4411 	struct btrfs_root *reloc_root;
4412 	struct btrfs_root *new_root;
4413 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4414 	int ret;
4415 
4416 	if (!rc || !have_reloc_root(root))
4417 		return 0;
4418 
4419 	rc = root->fs_info->reloc_ctl;
4420 	rc->merging_rsv_size += rc->nodes_relocated;
4421 
4422 	if (rc->merge_reloc_tree) {
4423 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4424 					      rc->block_rsv,
4425 					      rc->nodes_relocated, true);
4426 		if (ret)
4427 			return ret;
4428 	}
4429 
4430 	new_root = pending->snap;
4431 	reloc_root = create_reloc_root(trans, root->reloc_root, btrfs_root_id(new_root));
4432 	if (IS_ERR(reloc_root))
4433 		return PTR_ERR(reloc_root);
4434 
4435 	ret = __add_reloc_root(reloc_root);
4436 	ASSERT(ret != -EEXIST);
4437 	if (ret) {
4438 		/* Pairs with create_reloc_root */
4439 		btrfs_put_root(reloc_root);
4440 		return ret;
4441 	}
4442 	new_root->reloc_root = btrfs_grab_root(reloc_root);
4443 	return 0;
4444 }
4445 
4446 /*
4447  * Get the current bytenr for the block group which is being relocated.
4448  *
4449  * Return U64_MAX if no running relocation.
4450  */
btrfs_get_reloc_bg_bytenr(const struct btrfs_fs_info * fs_info)4451 u64 btrfs_get_reloc_bg_bytenr(const struct btrfs_fs_info *fs_info)
4452 {
4453 	u64 logical = U64_MAX;
4454 
4455 	lockdep_assert_held(&fs_info->reloc_mutex);
4456 
4457 	if (fs_info->reloc_ctl && fs_info->reloc_ctl->block_group)
4458 		logical = fs_info->reloc_ctl->block_group->start;
4459 	return logical;
4460 }
4461