xref: /linux/mm/internal.h (revision 787fe1d43a21d688afac740f92485e9373d19f01)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* internal.h: mm/ internal definitions
3  *
4  * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 #ifndef __MM_INTERNAL_H
8 #define __MM_INTERNAL_H
9 
10 #include <linux/fs.h>
11 #include <linux/khugepaged.h>
12 #include <linux/mm.h>
13 #include <linux/mm_inline.h>
14 #include <linux/pagemap.h>
15 #include <linux/pagewalk.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/leafops.h>
19 #include <linux/swap_cgroup.h>
20 #include <linux/tracepoint-defs.h>
21 
22 /* Internal core VMA manipulation functions. */
23 #include "vma.h"
24 
25 struct folio_batch;
26 
27 /*
28  * Maintains state across a page table move. The operation assumes both source
29  * and destination VMAs already exist and are specified by the user.
30  *
31  * Partial moves are permitted, but the old and new ranges must both reside
32  * within a VMA.
33  *
34  * mmap lock must be held in write and VMA write locks must be held on any VMA
35  * that is visible.
36  *
37  * Use the PAGETABLE_MOVE() macro to initialise this struct.
38  *
39  * The old_addr and new_addr fields are updated as the page table move is
40  * executed.
41  *
42  * NOTE: The page table move is affected by reading from [old_addr, old_end),
43  * and old_addr may be updated for better page table alignment, so len_in
44  * represents the length of the range being copied as specified by the user.
45  */
46 struct pagetable_move_control {
47 	struct vm_area_struct *old; /* Source VMA. */
48 	struct vm_area_struct *new; /* Destination VMA. */
49 	unsigned long old_addr; /* Address from which the move begins. */
50 	unsigned long old_end; /* Exclusive address at which old range ends. */
51 	unsigned long new_addr; /* Address to move page tables to. */
52 	unsigned long len_in; /* Bytes to remap specified by user. */
53 
54 	bool need_rmap_locks; /* Do rmap locks need to be taken? */
55 	bool for_stack; /* Is this an early temp stack being moved? */
56 };
57 
58 #define PAGETABLE_MOVE(name, old_, new_, old_addr_, new_addr_, len_)	\
59 	struct pagetable_move_control name = {				\
60 		.old = old_,						\
61 		.new = new_,						\
62 		.old_addr = old_addr_,					\
63 		.old_end = (old_addr_) + (len_),			\
64 		.new_addr = new_addr_,					\
65 		.len_in = len_,						\
66 	}
67 
68 /*
69  * The set of flags that only affect watermark checking and reclaim
70  * behaviour. This is used by the MM to obey the caller constraints
71  * about IO, FS and watermark checking while ignoring placement
72  * hints such as HIGHMEM usage.
73  */
74 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
75 			__GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
76 			__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
77 			__GFP_NOLOCKDEP)
78 
79 /* The GFP flags allowed during early boot */
80 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
81 
82 /* Control allocation cpuset and node placement constraints */
83 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
84 
85 /* Do not use these with a slab allocator */
86 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
87 
88 /*
89  * Different from WARN_ON_ONCE(), no warning will be issued
90  * when we specify __GFP_NOWARN.
91  */
92 #define WARN_ON_ONCE_GFP(cond, gfp)	({				\
93 	static bool __section(".data..once") __warned;			\
94 	int __ret_warn_once = !!(cond);					\
95 									\
96 	if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
97 		__warned = true;					\
98 		WARN_ON(1);						\
99 	}								\
100 	unlikely(__ret_warn_once);					\
101 })
102 
103 void page_writeback_init(void);
104 
105 /*
106  * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages,
107  * its nr_pages_mapped would be 0x400000: choose the ENTIRELY_MAPPED bit
108  * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE).  Hugetlb currently
109  * leaves nr_pages_mapped at 0, but avoid surprise if it participates later.
110  */
111 #define ENTIRELY_MAPPED		0x800000
112 #define FOLIO_PAGES_MAPPED	(ENTIRELY_MAPPED - 1)
113 
114 /*
115  * Flags passed to __show_mem() and show_free_areas() to suppress output in
116  * various contexts.
117  */
118 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
119 
120 /*
121  * How many individual pages have an elevated _mapcount.  Excludes
122  * the folio's entire_mapcount.
123  *
124  * Don't use this function outside of debugging code.
125  */
126 static inline int folio_nr_pages_mapped(const struct folio *folio)
127 {
128 	if (IS_ENABLED(CONFIG_NO_PAGE_MAPCOUNT))
129 		return -1;
130 	return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED;
131 }
132 
133 /*
134  * Retrieve the first entry of a folio based on a provided entry within the
135  * folio. We cannot rely on folio->swap as there is no guarantee that it has
136  * been initialized. Used for calling arch_swap_restore()
137  */
138 static inline swp_entry_t folio_swap(swp_entry_t entry,
139 		const struct folio *folio)
140 {
141 	swp_entry_t swap = {
142 		.val = ALIGN_DOWN(entry.val, folio_nr_pages(folio)),
143 	};
144 
145 	return swap;
146 }
147 
148 static inline void *folio_raw_mapping(const struct folio *folio)
149 {
150 	unsigned long mapping = (unsigned long)folio->mapping;
151 
152 	return (void *)(mapping & ~FOLIO_MAPPING_FLAGS);
153 }
154 
155 /*
156  * This is a file-backed mapping, and is about to be memory mapped - invoke its
157  * mmap hook and safely handle error conditions. On error, VMA hooks will be
158  * mutated.
159  *
160  * @file: File which backs the mapping.
161  * @vma:  VMA which we are mapping.
162  *
163  * Returns: 0 if success, error otherwise.
164  */
165 static inline int mmap_file(struct file *file, struct vm_area_struct *vma)
166 {
167 	int err = vfs_mmap(file, vma);
168 
169 	if (likely(!err))
170 		return 0;
171 
172 	/*
173 	 * OK, we tried to call the file hook for mmap(), but an error
174 	 * arose. The mapping is in an inconsistent state and we must not invoke
175 	 * any further hooks on it.
176 	 */
177 	vma->vm_ops = &vma_dummy_vm_ops;
178 
179 	return err;
180 }
181 
182 /*
183  * If the VMA has a close hook then close it, and since closing it might leave
184  * it in an inconsistent state which makes the use of any hooks suspect, clear
185  * them down by installing dummy empty hooks.
186  */
187 static inline void vma_close(struct vm_area_struct *vma)
188 {
189 	if (vma->vm_ops && vma->vm_ops->close) {
190 		vma->vm_ops->close(vma);
191 
192 		/*
193 		 * The mapping is in an inconsistent state, and no further hooks
194 		 * may be invoked upon it.
195 		 */
196 		vma->vm_ops = &vma_dummy_vm_ops;
197 	}
198 }
199 
200 #ifdef CONFIG_MMU
201 
202 static inline void get_anon_vma(struct anon_vma *anon_vma)
203 {
204 	atomic_inc(&anon_vma->refcount);
205 }
206 
207 void __put_anon_vma(struct anon_vma *anon_vma);
208 
209 static inline void put_anon_vma(struct anon_vma *anon_vma)
210 {
211 	if (atomic_dec_and_test(&anon_vma->refcount))
212 		__put_anon_vma(anon_vma);
213 }
214 
215 static inline void anon_vma_lock_write(struct anon_vma *anon_vma)
216 {
217 	down_write(&anon_vma->root->rwsem);
218 }
219 
220 static inline int anon_vma_trylock_write(struct anon_vma *anon_vma)
221 {
222 	return down_write_trylock(&anon_vma->root->rwsem);
223 }
224 
225 static inline void anon_vma_unlock_write(struct anon_vma *anon_vma)
226 {
227 	up_write(&anon_vma->root->rwsem);
228 }
229 
230 static inline void anon_vma_lock_read(struct anon_vma *anon_vma)
231 {
232 	down_read(&anon_vma->root->rwsem);
233 }
234 
235 static inline int anon_vma_trylock_read(struct anon_vma *anon_vma)
236 {
237 	return down_read_trylock(&anon_vma->root->rwsem);
238 }
239 
240 static inline void anon_vma_unlock_read(struct anon_vma *anon_vma)
241 {
242 	up_read(&anon_vma->root->rwsem);
243 }
244 
245 struct anon_vma *folio_get_anon_vma(const struct folio *folio);
246 
247 /* Operations which modify VMAs. */
248 enum vma_operation {
249 	VMA_OP_SPLIT,
250 	VMA_OP_MERGE_UNFAULTED,
251 	VMA_OP_REMAP,
252 	VMA_OP_FORK,
253 };
254 
255 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src,
256 	enum vma_operation operation);
257 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma);
258 int  __anon_vma_prepare(struct vm_area_struct *vma);
259 void unlink_anon_vmas(struct vm_area_struct *vma);
260 
261 static inline int anon_vma_prepare(struct vm_area_struct *vma)
262 {
263 	if (likely(vma->anon_vma))
264 		return 0;
265 
266 	return __anon_vma_prepare(vma);
267 }
268 
269 /* Flags for folio_pte_batch(). */
270 typedef int __bitwise fpb_t;
271 
272 /* Compare PTEs respecting the dirty bit. */
273 #define FPB_RESPECT_DIRTY		((__force fpb_t)BIT(0))
274 
275 /* Compare PTEs respecting the soft-dirty bit. */
276 #define FPB_RESPECT_SOFT_DIRTY		((__force fpb_t)BIT(1))
277 
278 /* Compare PTEs respecting the writable bit. */
279 #define FPB_RESPECT_WRITE		((__force fpb_t)BIT(2))
280 
281 /*
282  * Merge PTE write bits: if any PTE in the batch is writable, modify the
283  * PTE at @ptentp to be writable.
284  */
285 #define FPB_MERGE_WRITE			((__force fpb_t)BIT(3))
286 
287 /*
288  * Merge PTE young and dirty bits: if any PTE in the batch is young or dirty,
289  * modify the PTE at @ptentp to be young or dirty, respectively.
290  */
291 #define FPB_MERGE_YOUNG_DIRTY		((__force fpb_t)BIT(4))
292 
293 static inline pte_t __pte_batch_clear_ignored(pte_t pte, fpb_t flags)
294 {
295 	if (!(flags & FPB_RESPECT_DIRTY))
296 		pte = pte_mkclean(pte);
297 	if (likely(!(flags & FPB_RESPECT_SOFT_DIRTY)))
298 		pte = pte_clear_soft_dirty(pte);
299 	if (likely(!(flags & FPB_RESPECT_WRITE)))
300 		pte = pte_wrprotect(pte);
301 	return pte_mkold(pte);
302 }
303 
304 /**
305  * folio_pte_batch_flags - detect a PTE batch for a large folio
306  * @folio: The large folio to detect a PTE batch for.
307  * @vma: The VMA. Only relevant with FPB_MERGE_WRITE, otherwise can be NULL.
308  * @ptep: Page table pointer for the first entry.
309  * @ptentp: Pointer to a COPY of the first page table entry whose flags this
310  *	    function updates based on @flags if appropriate.
311  * @max_nr: The maximum number of table entries to consider.
312  * @flags: Flags to modify the PTE batch semantics.
313  *
314  * Detect a PTE batch: consecutive (present) PTEs that map consecutive
315  * pages of the same large folio in a single VMA and a single page table.
316  *
317  * All PTEs inside a PTE batch have the same PTE bits set, excluding the PFN,
318  * the accessed bit, writable bit, dirty bit (unless FPB_RESPECT_DIRTY is set)
319  * and soft-dirty bit (unless FPB_RESPECT_SOFT_DIRTY is set).
320  *
321  * @ptep must map any page of the folio. max_nr must be at least one and
322  * must be limited by the caller so scanning cannot exceed a single VMA and
323  * a single page table.
324  *
325  * Depending on the FPB_MERGE_* flags, the pte stored at @ptentp will
326  * be updated: it's crucial that a pointer to a COPY of the first
327  * page table entry, obtained through ptep_get(), is provided as @ptentp.
328  *
329  * This function will be inlined to optimize based on the input parameters;
330  * consider using folio_pte_batch() instead if applicable.
331  *
332  * Return: the number of table entries in the batch.
333  */
334 static inline unsigned int folio_pte_batch_flags(struct folio *folio,
335 		struct vm_area_struct *vma, pte_t *ptep, pte_t *ptentp,
336 		unsigned int max_nr, fpb_t flags)
337 {
338 	bool any_writable = false, any_young = false, any_dirty = false;
339 	pte_t expected_pte, pte = *ptentp;
340 	unsigned int nr, cur_nr;
341 
342 	VM_WARN_ON_FOLIO(!pte_present(pte), folio);
343 	VM_WARN_ON_FOLIO(!folio_test_large(folio) || max_nr < 1, folio);
344 	VM_WARN_ON_FOLIO(page_folio(pfn_to_page(pte_pfn(pte))) != folio, folio);
345 	/*
346 	 * Ensure this is a pointer to a copy not a pointer into a page table.
347 	 * If this is a stack value, it won't be a valid virtual address, but
348 	 * that's fine because it also cannot be pointing into the page table.
349 	 */
350 	VM_WARN_ON(virt_addr_valid(ptentp) && PageTable(virt_to_page(ptentp)));
351 
352 	/* Limit max_nr to the actual remaining PFNs in the folio we could batch. */
353 	max_nr = min_t(unsigned long, max_nr,
354 		       folio_pfn(folio) + folio_nr_pages(folio) - pte_pfn(pte));
355 
356 	nr = pte_batch_hint(ptep, pte);
357 	expected_pte = __pte_batch_clear_ignored(pte_advance_pfn(pte, nr), flags);
358 	ptep = ptep + nr;
359 
360 	while (nr < max_nr) {
361 		pte = ptep_get(ptep);
362 
363 		if (!pte_same(__pte_batch_clear_ignored(pte, flags), expected_pte))
364 			break;
365 
366 		if (flags & FPB_MERGE_WRITE)
367 			any_writable |= pte_write(pte);
368 		if (flags & FPB_MERGE_YOUNG_DIRTY) {
369 			any_young |= pte_young(pte);
370 			any_dirty |= pte_dirty(pte);
371 		}
372 
373 		cur_nr = pte_batch_hint(ptep, pte);
374 		expected_pte = pte_advance_pfn(expected_pte, cur_nr);
375 		ptep += cur_nr;
376 		nr += cur_nr;
377 	}
378 
379 	if (any_writable)
380 		*ptentp = pte_mkwrite(*ptentp, vma);
381 	if (any_young)
382 		*ptentp = pte_mkyoung(*ptentp);
383 	if (any_dirty)
384 		*ptentp = pte_mkdirty(*ptentp);
385 
386 	return min(nr, max_nr);
387 }
388 
389 unsigned int folio_pte_batch(struct folio *folio, pte_t *ptep, pte_t pte,
390 		unsigned int max_nr);
391 
392 /**
393  * pte_move_swp_offset - Move the swap entry offset field of a swap pte
394  *	 forward or backward by delta
395  * @pte: The initial pte state; must be a swap entry
396  * @delta: The direction and the offset we are moving; forward if delta
397  *	 is positive; backward if delta is negative
398  *
399  * Moves the swap offset, while maintaining all other fields, including
400  * swap type, and any swp pte bits. The resulting pte is returned.
401  */
402 static inline pte_t pte_move_swp_offset(pte_t pte, long delta)
403 {
404 	const softleaf_t entry = softleaf_from_pte(pte);
405 	pte_t new = __swp_entry_to_pte(__swp_entry(swp_type(entry),
406 						   (swp_offset(entry) + delta)));
407 
408 	if (pte_swp_soft_dirty(pte))
409 		new = pte_swp_mksoft_dirty(new);
410 	if (pte_swp_exclusive(pte))
411 		new = pte_swp_mkexclusive(new);
412 	if (pte_swp_uffd_wp(pte))
413 		new = pte_swp_mkuffd_wp(new);
414 
415 	return new;
416 }
417 
418 
419 /**
420  * pte_next_swp_offset - Increment the swap entry offset field of a swap pte.
421  * @pte: The initial pte state; must be a swap entry.
422  *
423  * Increments the swap offset, while maintaining all other fields, including
424  * swap type, and any swp pte bits. The resulting pte is returned.
425  */
426 static inline pte_t pte_next_swp_offset(pte_t pte)
427 {
428 	return pte_move_swp_offset(pte, 1);
429 }
430 
431 /**
432  * swap_pte_batch - detect a PTE batch for a set of contiguous swap entries
433  * @start_ptep: Page table pointer for the first entry.
434  * @max_nr: The maximum number of table entries to consider.
435  * @pte: Page table entry for the first entry.
436  *
437  * Detect a batch of contiguous swap entries: consecutive (non-present) PTEs
438  * containing swap entries all with consecutive offsets and targeting the same
439  * swap type, all with matching swp pte bits.
440  *
441  * max_nr must be at least one and must be limited by the caller so scanning
442  * cannot exceed a single page table.
443  *
444  * Return: the number of table entries in the batch.
445  */
446 static inline int swap_pte_batch(pte_t *start_ptep, int max_nr, pte_t pte)
447 {
448 	pte_t expected_pte = pte_next_swp_offset(pte);
449 	const pte_t *end_ptep = start_ptep + max_nr;
450 	const softleaf_t entry = softleaf_from_pte(pte);
451 	pte_t *ptep = start_ptep + 1;
452 	unsigned short cgroup_id;
453 
454 	VM_WARN_ON(max_nr < 1);
455 	VM_WARN_ON(!softleaf_is_swap(entry));
456 
457 	cgroup_id = lookup_swap_cgroup_id(entry);
458 	while (ptep < end_ptep) {
459 		softleaf_t entry;
460 
461 		pte = ptep_get(ptep);
462 
463 		if (!pte_same(pte, expected_pte))
464 			break;
465 		entry = softleaf_from_pte(pte);
466 		if (lookup_swap_cgroup_id(entry) != cgroup_id)
467 			break;
468 		expected_pte = pte_next_swp_offset(expected_pte);
469 		ptep++;
470 	}
471 
472 	return ptep - start_ptep;
473 }
474 #endif /* CONFIG_MMU */
475 
476 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
477 						int nr_throttled);
478 static inline void acct_reclaim_writeback(struct folio *folio)
479 {
480 	pg_data_t *pgdat = folio_pgdat(folio);
481 	int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
482 
483 	if (nr_throttled)
484 		__acct_reclaim_writeback(pgdat, folio, nr_throttled);
485 }
486 
487 static inline void wake_throttle_isolated(pg_data_t *pgdat)
488 {
489 	wait_queue_head_t *wqh;
490 
491 	wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
492 	if (waitqueue_active(wqh))
493 		wake_up(wqh);
494 }
495 
496 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf);
497 static inline vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
498 {
499 	vm_fault_t ret = __vmf_anon_prepare(vmf);
500 
501 	if (unlikely(ret & VM_FAULT_RETRY))
502 		vma_end_read(vmf->vma);
503 	return ret;
504 }
505 
506 vm_fault_t do_swap_page(struct vm_fault *vmf);
507 void folio_rotate_reclaimable(struct folio *folio);
508 bool __folio_end_writeback(struct folio *folio);
509 void deactivate_file_folio(struct folio *folio);
510 void folio_activate(struct folio *folio);
511 
512 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
513 		   struct vm_area_struct *start_vma, unsigned long floor,
514 		   unsigned long ceiling, bool mm_wr_locked);
515 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
516 
517 struct zap_details;
518 void unmap_page_range(struct mmu_gather *tlb,
519 			     struct vm_area_struct *vma,
520 			     unsigned long addr, unsigned long end,
521 			     struct zap_details *details);
522 void zap_page_range_single_batched(struct mmu_gather *tlb,
523 		struct vm_area_struct *vma, unsigned long addr,
524 		unsigned long size, struct zap_details *details);
525 int folio_unmap_invalidate(struct address_space *mapping, struct folio *folio,
526 			   gfp_t gfp);
527 
528 void page_cache_ra_order(struct readahead_control *, struct file_ra_state *);
529 void force_page_cache_ra(struct readahead_control *, unsigned long nr);
530 static inline void force_page_cache_readahead(struct address_space *mapping,
531 		struct file *file, pgoff_t index, unsigned long nr_to_read)
532 {
533 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
534 	force_page_cache_ra(&ractl, nr_to_read);
535 }
536 
537 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
538 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
539 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
540 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
541 void filemap_free_folio(struct address_space *mapping, struct folio *folio);
542 int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
543 bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
544 		loff_t end);
545 long mapping_evict_folio(struct address_space *mapping, struct folio *folio);
546 unsigned long mapping_try_invalidate(struct address_space *mapping,
547 		pgoff_t start, pgoff_t end, unsigned long *nr_failed);
548 
549 /**
550  * folio_evictable - Test whether a folio is evictable.
551  * @folio: The folio to test.
552  *
553  * Test whether @folio is evictable -- i.e., should be placed on
554  * active/inactive lists vs unevictable list.
555  *
556  * Reasons folio might not be evictable:
557  * 1. folio's mapping marked unevictable
558  * 2. One of the pages in the folio is part of an mlocked VMA
559  */
560 static inline bool folio_evictable(struct folio *folio)
561 {
562 	bool ret;
563 
564 	/* Prevent address_space of inode and swap cache from being freed */
565 	rcu_read_lock();
566 	ret = !mapping_unevictable(folio_mapping(folio)) &&
567 			!folio_test_mlocked(folio);
568 	rcu_read_unlock();
569 	return ret;
570 }
571 
572 /*
573  * Turn a non-refcounted page (->_refcount == 0) into refcounted with
574  * a count of one.
575  */
576 static inline void set_page_refcounted(struct page *page)
577 {
578 	VM_BUG_ON_PAGE(PageTail(page), page);
579 	VM_BUG_ON_PAGE(page_ref_count(page), page);
580 	set_page_count(page, 1);
581 }
582 
583 static inline void set_pages_refcounted(struct page *page, unsigned long nr_pages)
584 {
585 	unsigned long pfn = page_to_pfn(page);
586 
587 	for (; nr_pages--; pfn++)
588 		set_page_refcounted(pfn_to_page(pfn));
589 }
590 
591 /*
592  * Return true if a folio needs ->release_folio() calling upon it.
593  */
594 static inline bool folio_needs_release(struct folio *folio)
595 {
596 	struct address_space *mapping = folio_mapping(folio);
597 
598 	return folio_has_private(folio) ||
599 		(mapping && mapping_release_always(mapping));
600 }
601 
602 extern unsigned long highest_memmap_pfn;
603 
604 /*
605  * Maximum number of reclaim retries without progress before the OOM
606  * killer is consider the only way forward.
607  */
608 #define MAX_RECLAIM_RETRIES 16
609 
610 /*
611  * in mm/vmscan.c:
612  */
613 bool folio_isolate_lru(struct folio *folio);
614 void folio_putback_lru(struct folio *folio);
615 extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
616 int user_proactive_reclaim(char *buf,
617 			   struct mem_cgroup *memcg, pg_data_t *pgdat);
618 
619 /*
620  * in mm/rmap.c:
621  */
622 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
623 
624 /*
625  * in mm/page_alloc.c
626  */
627 #define K(x) ((x) << (PAGE_SHIFT-10))
628 
629 extern char * const zone_names[MAX_NR_ZONES];
630 
631 /* perform sanity checks on struct pages being allocated or freed */
632 DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
633 
634 extern int min_free_kbytes;
635 extern int defrag_mode;
636 
637 void setup_per_zone_wmarks(void);
638 void calculate_min_free_kbytes(void);
639 int __meminit init_per_zone_wmark_min(void);
640 void page_alloc_sysctl_init(void);
641 
642 /*
643  * Structure for holding the mostly immutable allocation parameters passed
644  * between functions involved in allocations, including the alloc_pages*
645  * family of functions.
646  *
647  * nodemask, migratetype and highest_zoneidx are initialized only once in
648  * __alloc_pages() and then never change.
649  *
650  * zonelist, preferred_zone and highest_zoneidx are set first in
651  * __alloc_pages() for the fast path, and might be later changed
652  * in __alloc_pages_slowpath(). All other functions pass the whole structure
653  * by a const pointer.
654  */
655 struct alloc_context {
656 	struct zonelist *zonelist;
657 	nodemask_t *nodemask;
658 	struct zoneref *preferred_zoneref;
659 	int migratetype;
660 
661 	/*
662 	 * highest_zoneidx represents highest usable zone index of
663 	 * the allocation request. Due to the nature of the zone,
664 	 * memory on lower zone than the highest_zoneidx will be
665 	 * protected by lowmem_reserve[highest_zoneidx].
666 	 *
667 	 * highest_zoneidx is also used by reclaim/compaction to limit
668 	 * the target zone since higher zone than this index cannot be
669 	 * usable for this allocation request.
670 	 */
671 	enum zone_type highest_zoneidx;
672 	bool spread_dirty_pages;
673 };
674 
675 /*
676  * This function returns the order of a free page in the buddy system. In
677  * general, page_zone(page)->lock must be held by the caller to prevent the
678  * page from being allocated in parallel and returning garbage as the order.
679  * If a caller does not hold page_zone(page)->lock, it must guarantee that the
680  * page cannot be allocated or merged in parallel. Alternatively, it must
681  * handle invalid values gracefully, and use buddy_order_unsafe() below.
682  */
683 static inline unsigned int buddy_order(struct page *page)
684 {
685 	/* PageBuddy() must be checked by the caller */
686 	return page_private(page);
687 }
688 
689 /*
690  * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
691  * PageBuddy() should be checked first by the caller to minimize race window,
692  * and invalid values must be handled gracefully.
693  *
694  * READ_ONCE is used so that if the caller assigns the result into a local
695  * variable and e.g. tests it for valid range before using, the compiler cannot
696  * decide to remove the variable and inline the page_private(page) multiple
697  * times, potentially observing different values in the tests and the actual
698  * use of the result.
699  */
700 #define buddy_order_unsafe(page)	READ_ONCE(page_private(page))
701 
702 /*
703  * This function checks whether a page is free && is the buddy
704  * we can coalesce a page and its buddy if
705  * (a) the buddy is not in a hole (check before calling!) &&
706  * (b) the buddy is in the buddy system &&
707  * (c) a page and its buddy have the same order &&
708  * (d) a page and its buddy are in the same zone.
709  *
710  * For recording whether a page is in the buddy system, we set PageBuddy.
711  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
712  *
713  * For recording page's order, we use page_private(page).
714  */
715 static inline bool page_is_buddy(struct page *page, struct page *buddy,
716 				 unsigned int order)
717 {
718 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
719 		return false;
720 
721 	if (buddy_order(buddy) != order)
722 		return false;
723 
724 	/*
725 	 * zone check is done late to avoid uselessly calculating
726 	 * zone/node ids for pages that could never merge.
727 	 */
728 	if (page_zone_id(page) != page_zone_id(buddy))
729 		return false;
730 
731 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
732 
733 	return true;
734 }
735 
736 /*
737  * Locate the struct page for both the matching buddy in our
738  * pair (buddy1) and the combined O(n+1) page they form (page).
739  *
740  * 1) Any buddy B1 will have an order O twin B2 which satisfies
741  * the following equation:
742  *     B2 = B1 ^ (1 << O)
743  * For example, if the starting buddy (buddy2) is #8 its order
744  * 1 buddy is #10:
745  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
746  *
747  * 2) Any buddy B will have an order O+1 parent P which
748  * satisfies the following equation:
749  *     P = B & ~(1 << O)
750  *
751  * Assumption: *_mem_map is contiguous at least up to MAX_PAGE_ORDER
752  */
753 static inline unsigned long
754 __find_buddy_pfn(unsigned long page_pfn, unsigned int order)
755 {
756 	return page_pfn ^ (1 << order);
757 }
758 
759 /*
760  * Find the buddy of @page and validate it.
761  * @page: The input page
762  * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
763  *       function is used in the performance-critical __free_one_page().
764  * @order: The order of the page
765  * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
766  *             page_to_pfn().
767  *
768  * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
769  * not the same as @page. The validation is necessary before use it.
770  *
771  * Return: the found buddy page or NULL if not found.
772  */
773 static inline struct page *find_buddy_page_pfn(struct page *page,
774 			unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
775 {
776 	unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
777 	struct page *buddy;
778 
779 	buddy = page + (__buddy_pfn - pfn);
780 	if (buddy_pfn)
781 		*buddy_pfn = __buddy_pfn;
782 
783 	if (page_is_buddy(page, buddy, order))
784 		return buddy;
785 	return NULL;
786 }
787 
788 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
789 				unsigned long end_pfn, struct zone *zone);
790 
791 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
792 				unsigned long end_pfn, struct zone *zone)
793 {
794 	if (zone->contiguous)
795 		return pfn_to_page(start_pfn);
796 
797 	return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
798 }
799 
800 void set_zone_contiguous(struct zone *zone);
801 bool pfn_range_intersects_zones(int nid, unsigned long start_pfn,
802 			   unsigned long nr_pages);
803 
804 static inline void clear_zone_contiguous(struct zone *zone)
805 {
806 	zone->contiguous = false;
807 }
808 
809 extern int __isolate_free_page(struct page *page, unsigned int order);
810 extern void __putback_isolated_page(struct page *page, unsigned int order,
811 				    int mt);
812 extern void memblock_free_pages(unsigned long pfn, unsigned int order);
813 extern void __free_pages_core(struct page *page, unsigned int order,
814 		enum meminit_context context);
815 
816 /*
817  * This will have no effect, other than possibly generating a warning, if the
818  * caller passes in a non-large folio.
819  */
820 static inline void folio_set_order(struct folio *folio, unsigned int order)
821 {
822 	if (WARN_ON_ONCE(!order || !folio_test_large(folio)))
823 		return;
824 	VM_WARN_ON_ONCE(order > MAX_FOLIO_ORDER);
825 
826 	folio->_flags_1 = (folio->_flags_1 & ~0xffUL) | order;
827 #ifdef NR_PAGES_IN_LARGE_FOLIO
828 	folio->_nr_pages = 1U << order;
829 #endif
830 }
831 
832 bool __folio_unqueue_deferred_split(struct folio *folio);
833 static inline bool folio_unqueue_deferred_split(struct folio *folio)
834 {
835 	if (folio_order(folio) <= 1 || !folio_test_large_rmappable(folio))
836 		return false;
837 
838 	/*
839 	 * At this point, there is no one trying to add the folio to
840 	 * deferred_list. If folio is not in deferred_list, it's safe
841 	 * to check without acquiring the split_queue_lock.
842 	 */
843 	if (data_race(list_empty(&folio->_deferred_list)))
844 		return false;
845 
846 	return __folio_unqueue_deferred_split(folio);
847 }
848 
849 static inline struct folio *page_rmappable_folio(struct page *page)
850 {
851 	struct folio *folio = (struct folio *)page;
852 
853 	if (folio && folio_test_large(folio))
854 		folio_set_large_rmappable(folio);
855 	return folio;
856 }
857 
858 static inline void prep_compound_head(struct page *page, unsigned int order)
859 {
860 	struct folio *folio = (struct folio *)page;
861 
862 	folio_set_order(folio, order);
863 	atomic_set(&folio->_large_mapcount, -1);
864 	if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT))
865 		atomic_set(&folio->_nr_pages_mapped, 0);
866 	if (IS_ENABLED(CONFIG_MM_ID)) {
867 		folio->_mm_ids = 0;
868 		folio->_mm_id_mapcount[0] = -1;
869 		folio->_mm_id_mapcount[1] = -1;
870 	}
871 	if (IS_ENABLED(CONFIG_64BIT) || order > 1) {
872 		atomic_set(&folio->_pincount, 0);
873 		atomic_set(&folio->_entire_mapcount, -1);
874 	}
875 	if (order > 1)
876 		INIT_LIST_HEAD(&folio->_deferred_list);
877 }
878 
879 static inline void prep_compound_tail(struct page *head, int tail_idx)
880 {
881 	struct page *p = head + tail_idx;
882 
883 	p->mapping = TAIL_MAPPING;
884 	set_compound_head(p, head);
885 	set_page_private(p, 0);
886 }
887 
888 void post_alloc_hook(struct page *page, unsigned int order, gfp_t gfp_flags);
889 extern bool free_pages_prepare(struct page *page, unsigned int order);
890 
891 extern int user_min_free_kbytes;
892 
893 struct page *__alloc_frozen_pages_noprof(gfp_t, unsigned int order, int nid,
894 		nodemask_t *);
895 #define __alloc_frozen_pages(...) \
896 	alloc_hooks(__alloc_frozen_pages_noprof(__VA_ARGS__))
897 void free_frozen_pages(struct page *page, unsigned int order);
898 void free_unref_folios(struct folio_batch *fbatch);
899 
900 #ifdef CONFIG_NUMA
901 struct page *alloc_frozen_pages_noprof(gfp_t, unsigned int order);
902 #else
903 static inline struct page *alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order)
904 {
905 	return __alloc_frozen_pages_noprof(gfp, order, numa_node_id(), NULL);
906 }
907 #endif
908 
909 #define alloc_frozen_pages(...) \
910 	alloc_hooks(alloc_frozen_pages_noprof(__VA_ARGS__))
911 
912 struct page *alloc_frozen_pages_nolock_noprof(gfp_t gfp_flags, int nid, unsigned int order);
913 #define alloc_frozen_pages_nolock(...) \
914 	alloc_hooks(alloc_frozen_pages_nolock_noprof(__VA_ARGS__))
915 void free_frozen_pages_nolock(struct page *page, unsigned int order);
916 
917 extern void zone_pcp_reset(struct zone *zone);
918 extern void zone_pcp_disable(struct zone *zone);
919 extern void zone_pcp_enable(struct zone *zone);
920 extern void zone_pcp_init(struct zone *zone);
921 
922 extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
923 			  phys_addr_t min_addr,
924 			  int nid, bool exact_nid);
925 
926 void memmap_init_range(unsigned long, int, unsigned long, unsigned long,
927 		unsigned long, enum meminit_context, struct vmem_altmap *, int,
928 		bool);
929 
930 #ifdef CONFIG_SPARSEMEM
931 void sparse_init(void);
932 #else
933 static inline void sparse_init(void) {}
934 #endif /* CONFIG_SPARSEMEM */
935 
936 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
937 
938 /*
939  * in mm/compaction.c
940  */
941 /*
942  * compact_control is used to track pages being migrated and the free pages
943  * they are being migrated to during memory compaction. The free_pfn starts
944  * at the end of a zone and migrate_pfn begins at the start. Movable pages
945  * are moved to the end of a zone during a compaction run and the run
946  * completes when free_pfn <= migrate_pfn
947  */
948 struct compact_control {
949 	struct list_head freepages[NR_PAGE_ORDERS];	/* List of free pages to migrate to */
950 	struct list_head migratepages;	/* List of pages being migrated */
951 	unsigned int nr_freepages;	/* Number of isolated free pages */
952 	unsigned int nr_migratepages;	/* Number of pages to migrate */
953 	unsigned long free_pfn;		/* isolate_freepages search base */
954 	/*
955 	 * Acts as an in/out parameter to page isolation for migration.
956 	 * isolate_migratepages uses it as a search base.
957 	 * isolate_migratepages_block will update the value to the next pfn
958 	 * after the last isolated one.
959 	 */
960 	unsigned long migrate_pfn;
961 	unsigned long fast_start_pfn;	/* a pfn to start linear scan from */
962 	struct zone *zone;
963 	unsigned long total_migrate_scanned;
964 	unsigned long total_free_scanned;
965 	unsigned short fast_search_fail;/* failures to use free list searches */
966 	short search_order;		/* order to start a fast search at */
967 	const gfp_t gfp_mask;		/* gfp mask of a direct compactor */
968 	int order;			/* order a direct compactor needs */
969 	int migratetype;		/* migratetype of direct compactor */
970 	const unsigned int alloc_flags;	/* alloc flags of a direct compactor */
971 	const int highest_zoneidx;	/* zone index of a direct compactor */
972 	enum migrate_mode mode;		/* Async or sync migration mode */
973 	bool ignore_skip_hint;		/* Scan blocks even if marked skip */
974 	bool no_set_skip_hint;		/* Don't mark blocks for skipping */
975 	bool ignore_block_suitable;	/* Scan blocks considered unsuitable */
976 	bool direct_compaction;		/* False from kcompactd or /proc/... */
977 	bool proactive_compaction;	/* kcompactd proactive compaction */
978 	bool whole_zone;		/* Whole zone should/has been scanned */
979 	bool contended;			/* Signal lock contention */
980 	bool finish_pageblock;		/* Scan the remainder of a pageblock. Used
981 					 * when there are potentially transient
982 					 * isolation or migration failures to
983 					 * ensure forward progress.
984 					 */
985 	bool alloc_contig;		/* alloc_contig_range allocation */
986 };
987 
988 /*
989  * Used in direct compaction when a page should be taken from the freelists
990  * immediately when one is created during the free path.
991  */
992 struct capture_control {
993 	struct compact_control *cc;
994 	struct page *page;
995 };
996 
997 unsigned long
998 isolate_freepages_range(struct compact_control *cc,
999 			unsigned long start_pfn, unsigned long end_pfn);
1000 int
1001 isolate_migratepages_range(struct compact_control *cc,
1002 			   unsigned long low_pfn, unsigned long end_pfn);
1003 
1004 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1005 void init_cma_reserved_pageblock(struct page *page);
1006 
1007 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1008 
1009 struct cma;
1010 
1011 #ifdef CONFIG_CMA
1012 bool cma_validate_zones(struct cma *cma);
1013 void *cma_reserve_early(struct cma *cma, unsigned long size);
1014 void init_cma_pageblock(struct page *page);
1015 #else
1016 static inline bool cma_validate_zones(struct cma *cma)
1017 {
1018 	return false;
1019 }
1020 static inline void *cma_reserve_early(struct cma *cma, unsigned long size)
1021 {
1022 	return NULL;
1023 }
1024 static inline void init_cma_pageblock(struct page *page)
1025 {
1026 }
1027 #endif
1028 
1029 
1030 int find_suitable_fallback(struct free_area *area, unsigned int order,
1031 			   int migratetype, bool claimable);
1032 
1033 static inline bool free_area_empty(struct free_area *area, int migratetype)
1034 {
1035 	return list_empty(&area->free_list[migratetype]);
1036 }
1037 
1038 /* mm/util.c */
1039 struct anon_vma *folio_anon_vma(const struct folio *folio);
1040 
1041 #ifdef CONFIG_MMU
1042 void unmap_mapping_folio(struct folio *folio);
1043 extern long populate_vma_page_range(struct vm_area_struct *vma,
1044 		unsigned long start, unsigned long end, int *locked);
1045 extern long faultin_page_range(struct mm_struct *mm, unsigned long start,
1046 		unsigned long end, bool write, int *locked);
1047 bool mlock_future_ok(const struct mm_struct *mm, vm_flags_t vm_flags,
1048 		unsigned long bytes);
1049 
1050 /*
1051  * NOTE: This function can't tell whether the folio is "fully mapped" in the
1052  * range.
1053  * "fully mapped" means all the pages of folio is associated with the page
1054  * table of range while this function just check whether the folio range is
1055  * within the range [start, end). Function caller needs to do page table
1056  * check if it cares about the page table association.
1057  *
1058  * Typical usage (like mlock or madvise) is:
1059  * Caller knows at least 1 page of folio is associated with page table of VMA
1060  * and the range [start, end) is intersect with the VMA range. Caller wants
1061  * to know whether the folio is fully associated with the range. It calls
1062  * this function to check whether the folio is in the range first. Then checks
1063  * the page table to know whether the folio is fully mapped to the range.
1064  */
1065 static inline bool
1066 folio_within_range(struct folio *folio, struct vm_area_struct *vma,
1067 		unsigned long start, unsigned long end)
1068 {
1069 	pgoff_t pgoff, addr;
1070 	unsigned long vma_pglen = vma_pages(vma);
1071 
1072 	VM_WARN_ON_FOLIO(folio_test_ksm(folio), folio);
1073 	if (start > end)
1074 		return false;
1075 
1076 	if (start < vma->vm_start)
1077 		start = vma->vm_start;
1078 
1079 	if (end > vma->vm_end)
1080 		end = vma->vm_end;
1081 
1082 	pgoff = folio_pgoff(folio);
1083 
1084 	/* if folio start address is not in vma range */
1085 	if (!in_range(pgoff, vma->vm_pgoff, vma_pglen))
1086 		return false;
1087 
1088 	addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1089 
1090 	return !(addr < start || end - addr < folio_size(folio));
1091 }
1092 
1093 static inline bool
1094 folio_within_vma(struct folio *folio, struct vm_area_struct *vma)
1095 {
1096 	return folio_within_range(folio, vma, vma->vm_start, vma->vm_end);
1097 }
1098 
1099 /*
1100  * mlock_vma_folio() and munlock_vma_folio():
1101  * should be called with vma's mmap_lock held for read or write,
1102  * under page table lock for the pte/pmd being added or removed.
1103  *
1104  * mlock is usually called at the end of folio_add_*_rmap_*(), munlock at
1105  * the end of folio_remove_rmap_*(); but new anon folios are managed by
1106  * folio_add_lru_vma() calling mlock_new_folio().
1107  */
1108 void mlock_folio(struct folio *folio);
1109 static inline void mlock_vma_folio(struct folio *folio,
1110 				struct vm_area_struct *vma)
1111 {
1112 	/*
1113 	 * The VM_SPECIAL check here serves two purposes.
1114 	 * 1) VM_IO check prevents migration from double-counting during mlock.
1115 	 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
1116 	 *    is never left set on a VM_SPECIAL vma, there is an interval while
1117 	 *    file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
1118 	 *    still be set while VM_SPECIAL bits are added: so ignore it then.
1119 	 */
1120 	if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED))
1121 		mlock_folio(folio);
1122 }
1123 
1124 void munlock_folio(struct folio *folio);
1125 static inline void munlock_vma_folio(struct folio *folio,
1126 					struct vm_area_struct *vma)
1127 {
1128 	/*
1129 	 * munlock if the function is called. Ideally, we should only
1130 	 * do munlock if any page of folio is unmapped from VMA and
1131 	 * cause folio not fully mapped to VMA.
1132 	 *
1133 	 * But it's not easy to confirm that's the situation. So we
1134 	 * always munlock the folio and page reclaim will correct it
1135 	 * if it's wrong.
1136 	 */
1137 	if (unlikely(vma->vm_flags & VM_LOCKED))
1138 		munlock_folio(folio);
1139 }
1140 
1141 void mlock_new_folio(struct folio *folio);
1142 bool need_mlock_drain(int cpu);
1143 void mlock_drain_local(void);
1144 void mlock_drain_remote(int cpu);
1145 
1146 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
1147 
1148 /**
1149  * vma_address - Find the virtual address a page range is mapped at
1150  * @vma: The vma which maps this object.
1151  * @pgoff: The page offset within its object.
1152  * @nr_pages: The number of pages to consider.
1153  *
1154  * If any page in this range is mapped by this VMA, return the first address
1155  * where any of these pages appear.  Otherwise, return -EFAULT.
1156  */
1157 static inline unsigned long vma_address(const struct vm_area_struct *vma,
1158 		pgoff_t pgoff, unsigned long nr_pages)
1159 {
1160 	unsigned long address;
1161 
1162 	if (pgoff >= vma->vm_pgoff) {
1163 		address = vma->vm_start +
1164 			((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1165 		/* Check for address beyond vma (or wrapped through 0?) */
1166 		if (address < vma->vm_start || address >= vma->vm_end)
1167 			address = -EFAULT;
1168 	} else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
1169 		/* Test above avoids possibility of wrap to 0 on 32-bit */
1170 		address = vma->vm_start;
1171 	} else {
1172 		address = -EFAULT;
1173 	}
1174 	return address;
1175 }
1176 
1177 /*
1178  * Then at what user virtual address will none of the range be found in vma?
1179  * Assumes that vma_address() already returned a good starting address.
1180  */
1181 static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
1182 {
1183 	struct vm_area_struct *vma = pvmw->vma;
1184 	pgoff_t pgoff;
1185 	unsigned long address;
1186 
1187 	/* Common case, plus ->pgoff is invalid for KSM */
1188 	if (pvmw->nr_pages == 1)
1189 		return pvmw->address + PAGE_SIZE;
1190 
1191 	pgoff = pvmw->pgoff + pvmw->nr_pages;
1192 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1193 	/* Check for address beyond vma (or wrapped through 0?) */
1194 	if (address < vma->vm_start || address > vma->vm_end)
1195 		address = vma->vm_end;
1196 	return address;
1197 }
1198 
1199 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
1200 						    struct file *fpin)
1201 {
1202 	int flags = vmf->flags;
1203 
1204 	if (fpin)
1205 		return fpin;
1206 
1207 	/*
1208 	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
1209 	 * anything, so we only pin the file and drop the mmap_lock if only
1210 	 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
1211 	 */
1212 	if (fault_flag_allow_retry_first(flags) &&
1213 	    !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
1214 		fpin = get_file(vmf->vma->vm_file);
1215 		release_fault_lock(vmf);
1216 	}
1217 	return fpin;
1218 }
1219 #else /* !CONFIG_MMU */
1220 static inline void unmap_mapping_folio(struct folio *folio) { }
1221 static inline void mlock_new_folio(struct folio *folio) { }
1222 static inline bool need_mlock_drain(int cpu) { return false; }
1223 static inline void mlock_drain_local(void) { }
1224 static inline void mlock_drain_remote(int cpu) { }
1225 static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
1226 {
1227 }
1228 #endif /* !CONFIG_MMU */
1229 
1230 /* Memory initialisation debug and verification */
1231 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1232 DECLARE_STATIC_KEY_TRUE(deferred_pages);
1233 
1234 bool __init deferred_grow_zone(struct zone *zone, unsigned int order);
1235 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1236 
1237 void init_deferred_page(unsigned long pfn, int nid);
1238 
1239 enum mminit_level {
1240 	MMINIT_WARNING,
1241 	MMINIT_VERIFY,
1242 	MMINIT_TRACE
1243 };
1244 
1245 #ifdef CONFIG_DEBUG_MEMORY_INIT
1246 
1247 extern int mminit_loglevel;
1248 
1249 #define mminit_dprintk(level, prefix, fmt, arg...) \
1250 do { \
1251 	if (level < mminit_loglevel) { \
1252 		if (level <= MMINIT_WARNING) \
1253 			pr_warn("mminit::" prefix " " fmt, ##arg);	\
1254 		else \
1255 			printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
1256 	} \
1257 } while (0)
1258 
1259 extern void mminit_verify_pageflags_layout(void);
1260 extern void mminit_verify_zonelist(void);
1261 #else
1262 
1263 static inline void mminit_dprintk(enum mminit_level level,
1264 				const char *prefix, const char *fmt, ...)
1265 {
1266 }
1267 
1268 static inline void mminit_verify_pageflags_layout(void)
1269 {
1270 }
1271 
1272 static inline void mminit_verify_zonelist(void)
1273 {
1274 }
1275 #endif /* CONFIG_DEBUG_MEMORY_INIT */
1276 
1277 #define NODE_RECLAIM_NOSCAN	-2
1278 #define NODE_RECLAIM_FULL	-1
1279 #define NODE_RECLAIM_SOME	0
1280 #define NODE_RECLAIM_SUCCESS	1
1281 
1282 #ifdef CONFIG_NUMA
1283 extern int node_reclaim_mode;
1284 
1285 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
1286 extern int find_next_best_node(int node, nodemask_t *used_node_mask);
1287 #else
1288 #define node_reclaim_mode 0
1289 
1290 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
1291 				unsigned int order)
1292 {
1293 	return NODE_RECLAIM_NOSCAN;
1294 }
1295 static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
1296 {
1297 	return NUMA_NO_NODE;
1298 }
1299 #endif
1300 
1301 static inline bool node_reclaim_enabled(void)
1302 {
1303 	/* Is any node_reclaim_mode bit set? */
1304 	return node_reclaim_mode & (RECLAIM_ZONE|RECLAIM_WRITE|RECLAIM_UNMAP);
1305 }
1306 
1307 /*
1308  * mm/memory-failure.c
1309  */
1310 #ifdef CONFIG_MEMORY_FAILURE
1311 int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill);
1312 void shake_folio(struct folio *folio);
1313 typedef int hwpoison_filter_func_t(struct page *p);
1314 void hwpoison_filter_register(hwpoison_filter_func_t *filter);
1315 void hwpoison_filter_unregister(void);
1316 
1317 #define MAGIC_HWPOISON	0x48575053U	/* HWPS */
1318 void SetPageHWPoisonTakenOff(struct page *page);
1319 void ClearPageHWPoisonTakenOff(struct page *page);
1320 bool take_page_off_buddy(struct page *page);
1321 bool put_page_back_buddy(struct page *page);
1322 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
1323 void add_to_kill_ksm(struct task_struct *tsk, const struct page *p,
1324 		     struct vm_area_struct *vma, struct list_head *to_kill,
1325 		     unsigned long ksm_addr);
1326 unsigned long page_mapped_in_vma(const struct page *page,
1327 		struct vm_area_struct *vma);
1328 
1329 #else
1330 static inline int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill)
1331 {
1332 	return -EBUSY;
1333 }
1334 #endif
1335 
1336 extern unsigned long  __must_check vm_mmap_pgoff(struct file *, unsigned long,
1337         unsigned long, unsigned long,
1338         unsigned long, unsigned long);
1339 
1340 extern void set_pageblock_order(void);
1341 unsigned long reclaim_pages(struct list_head *folio_list);
1342 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1343 					    struct list_head *folio_list);
1344 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1345 #define ALLOC_WMARK_MIN		WMARK_MIN
1346 #define ALLOC_WMARK_LOW		WMARK_LOW
1347 #define ALLOC_WMARK_HIGH	WMARK_HIGH
1348 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1349 
1350 /* Mask to get the watermark bits */
1351 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1352 
1353 /*
1354  * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
1355  * cannot assume a reduced access to memory reserves is sufficient for
1356  * !MMU
1357  */
1358 #ifdef CONFIG_MMU
1359 #define ALLOC_OOM		0x08
1360 #else
1361 #define ALLOC_OOM		ALLOC_NO_WATERMARKS
1362 #endif
1363 
1364 #define ALLOC_NON_BLOCK		 0x10 /* Caller cannot block. Allow access
1365 				       * to 25% of the min watermark or
1366 				       * 62.5% if __GFP_HIGH is set.
1367 				       */
1368 #define ALLOC_MIN_RESERVE	 0x20 /* __GFP_HIGH set. Allow access to 50%
1369 				       * of the min watermark.
1370 				       */
1371 #define ALLOC_CPUSET		 0x40 /* check for correct cpuset */
1372 #define ALLOC_CMA		 0x80 /* allow allocations from CMA areas */
1373 #ifdef CONFIG_ZONE_DMA32
1374 #define ALLOC_NOFRAGMENT	0x100 /* avoid mixing pageblock types */
1375 #else
1376 #define ALLOC_NOFRAGMENT	  0x0
1377 #endif
1378 #define ALLOC_HIGHATOMIC	0x200 /* Allows access to MIGRATE_HIGHATOMIC */
1379 #define ALLOC_TRYLOCK		0x400 /* Only use spin_trylock in allocation path */
1380 #define ALLOC_KSWAPD		0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
1381 
1382 /* Flags that allow allocations below the min watermark. */
1383 #define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM)
1384 
1385 enum ttu_flags;
1386 struct tlbflush_unmap_batch;
1387 
1388 
1389 /*
1390  * only for MM internal work items which do not depend on
1391  * any allocations or locks which might depend on allocations
1392  */
1393 extern struct workqueue_struct *mm_percpu_wq;
1394 
1395 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1396 void try_to_unmap_flush(void);
1397 void try_to_unmap_flush_dirty(void);
1398 void flush_tlb_batched_pending(struct mm_struct *mm);
1399 #else
1400 static inline void try_to_unmap_flush(void)
1401 {
1402 }
1403 static inline void try_to_unmap_flush_dirty(void)
1404 {
1405 }
1406 static inline void flush_tlb_batched_pending(struct mm_struct *mm)
1407 {
1408 }
1409 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
1410 
1411 extern const struct trace_print_flags pageflag_names[];
1412 extern const struct trace_print_flags vmaflag_names[];
1413 extern const struct trace_print_flags gfpflag_names[];
1414 
1415 void setup_zone_pageset(struct zone *zone);
1416 
1417 struct migration_target_control {
1418 	int nid;		/* preferred node id */
1419 	nodemask_t *nmask;
1420 	gfp_t gfp_mask;
1421 	enum migrate_reason reason;
1422 };
1423 
1424 /*
1425  * mm/filemap.c
1426  */
1427 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
1428 			      struct folio *folio, loff_t fpos, size_t size);
1429 
1430 /*
1431  * mm/vmalloc.c
1432  */
1433 #ifdef CONFIG_MMU
1434 void __init vmalloc_init(void);
1435 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1436 	pgprot_t prot, struct page **pages, unsigned int page_shift, gfp_t gfp_mask);
1437 unsigned int get_vm_area_page_order(struct vm_struct *vm);
1438 #else
1439 static inline void vmalloc_init(void)
1440 {
1441 }
1442 
1443 static inline
1444 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1445 	pgprot_t prot, struct page **pages, unsigned int page_shift, gfp_t gfp_mask)
1446 {
1447 	return -EINVAL;
1448 }
1449 #endif
1450 
1451 int __must_check __vmap_pages_range_noflush(unsigned long addr,
1452 			       unsigned long end, pgprot_t prot,
1453 			       struct page **pages, unsigned int page_shift);
1454 
1455 void vunmap_range_noflush(unsigned long start, unsigned long end);
1456 
1457 void __vunmap_range_noflush(unsigned long start, unsigned long end);
1458 
1459 static inline bool vma_is_single_threaded_private(struct vm_area_struct *vma)
1460 {
1461 	if (vma->vm_flags & VM_SHARED)
1462 		return false;
1463 
1464 	return atomic_read(&vma->vm_mm->mm_users) == 1;
1465 }
1466 
1467 #ifdef CONFIG_NUMA_BALANCING
1468 bool folio_can_map_prot_numa(struct folio *folio, struct vm_area_struct *vma,
1469 		bool is_private_single_threaded);
1470 
1471 #else
1472 static inline bool folio_can_map_prot_numa(struct folio *folio,
1473 		struct vm_area_struct *vma, bool is_private_single_threaded)
1474 {
1475 	return false;
1476 }
1477 #endif
1478 
1479 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
1480 		      unsigned long addr, int *flags, bool writable,
1481 		      int *last_cpupid);
1482 
1483 void free_zone_device_folio(struct folio *folio);
1484 int migrate_device_coherent_folio(struct folio *folio);
1485 
1486 struct vm_struct *__get_vm_area_node(unsigned long size,
1487 				     unsigned long align, unsigned long shift,
1488 				     unsigned long vm_flags, unsigned long start,
1489 				     unsigned long end, int node, gfp_t gfp_mask,
1490 				     const void *caller);
1491 
1492 /*
1493  * mm/gup.c
1494  */
1495 int __must_check try_grab_folio(struct folio *folio, int refs,
1496 				unsigned int flags);
1497 
1498 /*
1499  * mm/huge_memory.c
1500  */
1501 void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1502 	       pud_t *pud, bool write);
1503 bool touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1504 	       pmd_t *pmd, bool write);
1505 
1506 /*
1507  * Parses a string with mem suffixes into its order. Useful to parse kernel
1508  * parameters.
1509  */
1510 static inline int get_order_from_str(const char *size_str,
1511 				     unsigned long valid_orders)
1512 {
1513 	unsigned long size;
1514 	char *endptr;
1515 	int order;
1516 
1517 	size = memparse(size_str, &endptr);
1518 
1519 	if (!is_power_of_2(size))
1520 		return -EINVAL;
1521 	order = get_order(size);
1522 	if (BIT(order) & ~valid_orders)
1523 		return -EINVAL;
1524 
1525 	return order;
1526 }
1527 
1528 enum {
1529 	/* mark page accessed */
1530 	FOLL_TOUCH = 1 << 16,
1531 	/* a retry, previous pass started an IO */
1532 	FOLL_TRIED = 1 << 17,
1533 	/* we are working on non-current tsk/mm */
1534 	FOLL_REMOTE = 1 << 18,
1535 	/* pages must be released via unpin_user_page */
1536 	FOLL_PIN = 1 << 19,
1537 	/* gup_fast: prevent fall-back to slow gup */
1538 	FOLL_FAST_ONLY = 1 << 20,
1539 	/* allow unlocking the mmap lock */
1540 	FOLL_UNLOCKABLE = 1 << 21,
1541 	/* VMA lookup+checks compatible with MADV_POPULATE_(READ|WRITE) */
1542 	FOLL_MADV_POPULATE = 1 << 22,
1543 };
1544 
1545 #define INTERNAL_GUP_FLAGS (FOLL_TOUCH | FOLL_TRIED | FOLL_REMOTE | FOLL_PIN | \
1546 			    FOLL_FAST_ONLY | FOLL_UNLOCKABLE | \
1547 			    FOLL_MADV_POPULATE)
1548 
1549 /*
1550  * Indicates for which pages that are write-protected in the page table,
1551  * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
1552  * GUP pin will remain consistent with the pages mapped into the page tables
1553  * of the MM.
1554  *
1555  * Temporary unmapping of PageAnonExclusive() pages or clearing of
1556  * PageAnonExclusive() has to protect against concurrent GUP:
1557  * * Ordinary GUP: Using the PT lock
1558  * * GUP-fast and fork(): mm->write_protect_seq
1559  * * GUP-fast and KSM or temporary unmapping (swap, migration): see
1560  *    folio_try_share_anon_rmap_*()
1561  *
1562  * Must be called with the (sub)page that's actually referenced via the
1563  * page table entry, which might not necessarily be the head page for a
1564  * PTE-mapped THP.
1565  *
1566  * If the vma is NULL, we're coming from the GUP-fast path and might have
1567  * to fallback to the slow path just to lookup the vma.
1568  */
1569 static inline bool gup_must_unshare(struct vm_area_struct *vma,
1570 				    unsigned int flags, struct page *page)
1571 {
1572 	/*
1573 	 * FOLL_WRITE is implicitly handled correctly as the page table entry
1574 	 * has to be writable -- and if it references (part of) an anonymous
1575 	 * folio, that part is required to be marked exclusive.
1576 	 */
1577 	if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
1578 		return false;
1579 	/*
1580 	 * Note: PageAnon(page) is stable until the page is actually getting
1581 	 * freed.
1582 	 */
1583 	if (!PageAnon(page)) {
1584 		/*
1585 		 * We only care about R/O long-term pining: R/O short-term
1586 		 * pinning does not have the semantics to observe successive
1587 		 * changes through the process page tables.
1588 		 */
1589 		if (!(flags & FOLL_LONGTERM))
1590 			return false;
1591 
1592 		/* We really need the vma ... */
1593 		if (!vma)
1594 			return true;
1595 
1596 		/*
1597 		 * ... because we only care about writable private ("COW")
1598 		 * mappings where we have to break COW early.
1599 		 */
1600 		return is_cow_mapping(vma->vm_flags);
1601 	}
1602 
1603 	/* Paired with a memory barrier in folio_try_share_anon_rmap_*(). */
1604 	if (IS_ENABLED(CONFIG_HAVE_GUP_FAST))
1605 		smp_rmb();
1606 
1607 	/*
1608 	 * Note that KSM pages cannot be exclusive, and consequently,
1609 	 * cannot get pinned.
1610 	 */
1611 	return !PageAnonExclusive(page);
1612 }
1613 
1614 extern bool mirrored_kernelcore;
1615 bool memblock_has_mirror(void);
1616 void memblock_free_all(void);
1617 
1618 static __always_inline void vma_set_range(struct vm_area_struct *vma,
1619 					  unsigned long start, unsigned long end,
1620 					  pgoff_t pgoff)
1621 {
1622 	vma->vm_start = start;
1623 	vma->vm_end = end;
1624 	vma->vm_pgoff = pgoff;
1625 }
1626 
1627 static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
1628 {
1629 	/*
1630 	 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
1631 	 * enablements, because when without soft-dirty being compiled in,
1632 	 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
1633 	 * will be constantly true.
1634 	 */
1635 	if (!pgtable_supports_soft_dirty())
1636 		return false;
1637 
1638 	/*
1639 	 * Soft-dirty is kind of special: its tracking is enabled when the
1640 	 * vma flags not set.
1641 	 */
1642 	return !(vma->vm_flags & VM_SOFTDIRTY);
1643 }
1644 
1645 static inline bool pmd_needs_soft_dirty_wp(struct vm_area_struct *vma, pmd_t pmd)
1646 {
1647 	return vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd);
1648 }
1649 
1650 static inline bool pte_needs_soft_dirty_wp(struct vm_area_struct *vma, pte_t pte)
1651 {
1652 	return vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte);
1653 }
1654 
1655 void __meminit __init_single_page(struct page *page, unsigned long pfn,
1656 				unsigned long zone, int nid);
1657 void __meminit __init_page_from_nid(unsigned long pfn, int nid);
1658 
1659 /* shrinker related functions */
1660 unsigned long shrink_slab(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg,
1661 			  int priority);
1662 
1663 int shmem_add_to_page_cache(struct folio *folio,
1664 			    struct address_space *mapping,
1665 			    pgoff_t index, void *expected, gfp_t gfp);
1666 int shmem_inode_acct_blocks(struct inode *inode, long pages);
1667 bool shmem_recalc_inode(struct inode *inode, long alloced, long swapped);
1668 
1669 #ifdef CONFIG_SHRINKER_DEBUG
1670 static inline __printf(2, 0) int shrinker_debugfs_name_alloc(
1671 			struct shrinker *shrinker, const char *fmt, va_list ap)
1672 {
1673 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
1674 
1675 	return shrinker->name ? 0 : -ENOMEM;
1676 }
1677 
1678 static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1679 {
1680 	kfree_const(shrinker->name);
1681 	shrinker->name = NULL;
1682 }
1683 
1684 extern int shrinker_debugfs_add(struct shrinker *shrinker);
1685 extern struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1686 					      int *debugfs_id);
1687 extern void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1688 				    int debugfs_id);
1689 #else /* CONFIG_SHRINKER_DEBUG */
1690 static inline int shrinker_debugfs_add(struct shrinker *shrinker)
1691 {
1692 	return 0;
1693 }
1694 static inline int shrinker_debugfs_name_alloc(struct shrinker *shrinker,
1695 					      const char *fmt, va_list ap)
1696 {
1697 	return 0;
1698 }
1699 static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1700 {
1701 }
1702 static inline struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1703 						     int *debugfs_id)
1704 {
1705 	*debugfs_id = -1;
1706 	return NULL;
1707 }
1708 static inline void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1709 					   int debugfs_id)
1710 {
1711 }
1712 #endif /* CONFIG_SHRINKER_DEBUG */
1713 
1714 /* Only track the nodes of mappings with shadow entries */
1715 void workingset_update_node(struct xa_node *node);
1716 extern struct list_lru shadow_nodes;
1717 #define mapping_set_update(xas, mapping) do {			\
1718 	if (!dax_mapping(mapping) && !shmem_mapping(mapping)) {	\
1719 		xas_set_update(xas, workingset_update_node);	\
1720 		xas_set_lru(xas, &shadow_nodes);		\
1721 	}							\
1722 } while (0)
1723 
1724 /* mremap.c */
1725 unsigned long move_page_tables(struct pagetable_move_control *pmc);
1726 
1727 #ifdef CONFIG_UNACCEPTED_MEMORY
1728 void accept_page(struct page *page);
1729 #else /* CONFIG_UNACCEPTED_MEMORY */
1730 static inline void accept_page(struct page *page)
1731 {
1732 }
1733 #endif /* CONFIG_UNACCEPTED_MEMORY */
1734 
1735 /* pagewalk.c */
1736 int walk_page_range_mm_unsafe(struct mm_struct *mm, unsigned long start,
1737 		unsigned long end, const struct mm_walk_ops *ops,
1738 		void *private);
1739 int walk_page_range_vma_unsafe(struct vm_area_struct *vma, unsigned long start,
1740 		unsigned long end, const struct mm_walk_ops *ops,
1741 		void *private);
1742 int walk_page_range_debug(struct mm_struct *mm, unsigned long start,
1743 			  unsigned long end, const struct mm_walk_ops *ops,
1744 			  pgd_t *pgd, void *private);
1745 
1746 void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm);
1747 int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm);
1748 
1749 void remap_pfn_range_prepare(struct vm_area_desc *desc, unsigned long pfn);
1750 int remap_pfn_range_complete(struct vm_area_struct *vma, unsigned long addr,
1751 		unsigned long pfn, unsigned long size, pgprot_t pgprot);
1752 
1753 static inline void io_remap_pfn_range_prepare(struct vm_area_desc *desc,
1754 		unsigned long orig_pfn, unsigned long size)
1755 {
1756 	const unsigned long pfn = io_remap_pfn_range_pfn(orig_pfn, size);
1757 
1758 	return remap_pfn_range_prepare(desc, pfn);
1759 }
1760 
1761 static inline int io_remap_pfn_range_complete(struct vm_area_struct *vma,
1762 		unsigned long addr, unsigned long orig_pfn, unsigned long size,
1763 		pgprot_t orig_prot)
1764 {
1765 	const unsigned long pfn = io_remap_pfn_range_pfn(orig_pfn, size);
1766 	const pgprot_t prot = pgprot_decrypted(orig_prot);
1767 
1768 	return remap_pfn_range_complete(vma, addr, pfn, size, prot);
1769 }
1770 
1771 #endif	/* __MM_INTERNAL_H */
1772