xref: /linux/kernel/irq/irqdesc.c (revision 3381d7b2b3dd012d366b9ba9339f98d54bea69fd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
5  *
6  * This file contains the interrupt descriptor management code. Detailed
7  * information is available in Documentation/core-api/genericirq.rst
8  *
9  */
10 #include <linux/irq.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/maple_tree.h>
16 #include <linux/irqdomain.h>
17 #include <linux/sysfs.h>
18 #include <linux/string_choices.h>
19 
20 #include "internals.h"
21 
22 /*
23  * lockdep: we want to handle all irq_desc locks as a single lock-class:
24  */
25 static struct lock_class_key irq_desc_lock_class;
26 
27 #if defined(CONFIG_SMP)
28 static int __init irq_affinity_setup(char *str)
29 {
30 	alloc_bootmem_cpumask_var(&irq_default_affinity);
31 	cpulist_parse(str, irq_default_affinity);
32 	/*
33 	 * Set at least the boot cpu. We don't want to end up with
34 	 * bugreports caused by random commandline masks
35 	 */
36 	cpumask_set_cpu(smp_processor_id(), irq_default_affinity);
37 	return 1;
38 }
39 __setup("irqaffinity=", irq_affinity_setup);
40 
41 static void __init init_irq_default_affinity(void)
42 {
43 	if (!cpumask_available(irq_default_affinity))
44 		zalloc_cpumask_var(&irq_default_affinity, GFP_NOWAIT);
45 	if (cpumask_empty(irq_default_affinity))
46 		cpumask_setall(irq_default_affinity);
47 }
48 #else
49 static void __init init_irq_default_affinity(void)
50 {
51 }
52 #endif
53 
54 #ifdef CONFIG_SMP
55 static int alloc_masks(struct irq_desc *desc, int node)
56 {
57 	if (!zalloc_cpumask_var_node(&desc->irq_common_data.affinity,
58 				     GFP_KERNEL, node))
59 		return -ENOMEM;
60 
61 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
62 	if (!zalloc_cpumask_var_node(&desc->irq_common_data.effective_affinity,
63 				     GFP_KERNEL, node)) {
64 		free_cpumask_var(desc->irq_common_data.affinity);
65 		return -ENOMEM;
66 	}
67 #endif
68 
69 #ifdef CONFIG_GENERIC_PENDING_IRQ
70 	if (!zalloc_cpumask_var_node(&desc->pending_mask, GFP_KERNEL, node)) {
71 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
72 		free_cpumask_var(desc->irq_common_data.effective_affinity);
73 #endif
74 		free_cpumask_var(desc->irq_common_data.affinity);
75 		return -ENOMEM;
76 	}
77 #endif
78 	return 0;
79 }
80 
81 static void irq_redirect_work(struct irq_work *work)
82 {
83 	handle_irq_desc(container_of(work, struct irq_desc, redirect.work));
84 }
85 
86 static void desc_smp_init(struct irq_desc *desc, int node, const struct cpumask *affinity)
87 {
88 	if (!affinity)
89 		affinity = irq_default_affinity;
90 	cpumask_copy(desc->irq_common_data.affinity, affinity);
91 
92 #ifdef CONFIG_GENERIC_PENDING_IRQ
93 	cpumask_clear(desc->pending_mask);
94 #endif
95 #ifdef CONFIG_NUMA
96 	desc->irq_common_data.node = node;
97 #endif
98 	desc->redirect.work = IRQ_WORK_INIT_HARD(irq_redirect_work);
99 }
100 
101 static void free_masks(struct irq_desc *desc)
102 {
103 #ifdef CONFIG_GENERIC_PENDING_IRQ
104 	free_cpumask_var(desc->pending_mask);
105 #endif
106 	free_cpumask_var(desc->irq_common_data.affinity);
107 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
108 	free_cpumask_var(desc->irq_common_data.effective_affinity);
109 #endif
110 }
111 
112 #else
113 static inline int
114 alloc_masks(struct irq_desc *desc, int node) { return 0; }
115 static inline void
116 desc_smp_init(struct irq_desc *desc, int node, const struct cpumask *affinity) { }
117 static inline void free_masks(struct irq_desc *desc) { }
118 #endif
119 
120 static void desc_set_defaults(unsigned int irq, struct irq_desc *desc, int node,
121 			      const struct cpumask *affinity, struct module *owner)
122 {
123 	desc->irq_common_data.handler_data = NULL;
124 	desc->irq_common_data.msi_desc = NULL;
125 
126 	desc->irq_data.common = &desc->irq_common_data;
127 	desc->irq_data.irq = irq;
128 	desc->irq_data.chip = &no_irq_chip;
129 	desc->irq_data.chip_data = NULL;
130 	irq_settings_clr_and_set(desc, ~0, _IRQ_DEFAULT_INIT_FLAGS);
131 	irqd_set(&desc->irq_data, IRQD_IRQ_DISABLED);
132 	irqd_set(&desc->irq_data, IRQD_IRQ_MASKED);
133 	desc->handle_irq = handle_bad_irq;
134 	desc->depth = 1;
135 	desc->irq_count = 0;
136 	desc->irqs_unhandled = 0;
137 	desc->tot_count = 0;
138 	desc->name = NULL;
139 	desc->owner = owner;
140 	desc_smp_init(desc, node, affinity);
141 }
142 
143 static unsigned int nr_irqs = NR_IRQS;
144 
145 /**
146  * irq_get_nr_irqs() - Number of interrupts supported by the system.
147  */
148 unsigned int irq_get_nr_irqs(void)
149 {
150 	return nr_irqs;
151 }
152 EXPORT_SYMBOL_GPL(irq_get_nr_irqs);
153 
154 /**
155  * irq_set_nr_irqs() - Set the number of interrupts supported by the system.
156  * @nr: New number of interrupts.
157  *
158  * Return: @nr.
159  */
160 unsigned int irq_set_nr_irqs(unsigned int nr)
161 {
162 	nr_irqs = nr;
163 
164 	return nr;
165 }
166 EXPORT_SYMBOL_GPL(irq_set_nr_irqs);
167 
168 static DEFINE_MUTEX(sparse_irq_lock);
169 static struct maple_tree sparse_irqs = MTREE_INIT_EXT(sparse_irqs,
170 					MT_FLAGS_ALLOC_RANGE |
171 					MT_FLAGS_LOCK_EXTERN |
172 					MT_FLAGS_USE_RCU,
173 					sparse_irq_lock);
174 
175 static int irq_find_free_area(unsigned int from, unsigned int cnt)
176 {
177 	MA_STATE(mas, &sparse_irqs, 0, 0);
178 
179 	if (mas_empty_area(&mas, from, MAX_SPARSE_IRQS, cnt))
180 		return -ENOSPC;
181 	return mas.index;
182 }
183 
184 static unsigned int irq_find_at_or_after(unsigned int offset)
185 {
186 	unsigned long index = offset;
187 	struct irq_desc *desc;
188 
189 	guard(rcu)();
190 	desc = mt_find(&sparse_irqs, &index, nr_irqs);
191 
192 	return desc ? irq_desc_get_irq(desc) : nr_irqs;
193 }
194 
195 static void irq_insert_desc(unsigned int irq, struct irq_desc *desc)
196 {
197 	MA_STATE(mas, &sparse_irqs, irq, irq);
198 	WARN_ON(mas_store_gfp(&mas, desc, GFP_KERNEL) != 0);
199 }
200 
201 static void delete_irq_desc(unsigned int irq)
202 {
203 	MA_STATE(mas, &sparse_irqs, irq, irq);
204 	mas_erase(&mas);
205 }
206 
207 #ifdef CONFIG_SPARSE_IRQ
208 static const struct kobj_type irq_kobj_type;
209 #endif
210 
211 static int init_desc(struct irq_desc *desc, int irq, int node,
212 		     unsigned int flags,
213 		     const struct cpumask *affinity,
214 		     struct module *owner)
215 {
216 	desc->kstat_irqs = alloc_percpu(struct irqstat);
217 	if (!desc->kstat_irqs)
218 		return -ENOMEM;
219 
220 	if (alloc_masks(desc, node)) {
221 		free_percpu(desc->kstat_irqs);
222 		return -ENOMEM;
223 	}
224 
225 	raw_spin_lock_init(&desc->lock);
226 	lockdep_set_class(&desc->lock, &irq_desc_lock_class);
227 	mutex_init(&desc->request_mutex);
228 	init_waitqueue_head(&desc->wait_for_threads);
229 	desc_set_defaults(irq, desc, node, affinity, owner);
230 	irqd_set(&desc->irq_data, flags);
231 	irq_resend_init(desc);
232 #ifdef CONFIG_SPARSE_IRQ
233 	kobject_init(&desc->kobj, &irq_kobj_type);
234 	init_rcu_head(&desc->rcu);
235 #endif
236 
237 	return 0;
238 }
239 
240 #ifdef CONFIG_SPARSE_IRQ
241 
242 static void irq_kobj_release(struct kobject *kobj);
243 
244 #ifdef CONFIG_SYSFS
245 static struct kobject *irq_kobj_base;
246 
247 #define IRQ_ATTR_RO(_name) \
248 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
249 
250 static ssize_t per_cpu_count_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
251 {
252 	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
253 	ssize_t ret = 0;
254 	char *p = "";
255 	int cpu;
256 
257 	for_each_possible_cpu(cpu) {
258 		unsigned int c = irq_desc_kstat_cpu(desc, cpu);
259 
260 		ret += sysfs_emit_at(buf, ret, "%s%u", p, c);
261 		p = ",";
262 	}
263 
264 	ret += sysfs_emit_at(buf, ret, "\n");
265 	return ret;
266 }
267 IRQ_ATTR_RO(per_cpu_count);
268 
269 static ssize_t chip_name_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
270 {
271 	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
272 
273 	guard(raw_spinlock_irq)(&desc->lock);
274 	if (desc->irq_data.chip && desc->irq_data.chip->name)
275 		return sysfs_emit(buf, "%s\n", desc->irq_data.chip->name);
276 	return 0;
277 }
278 IRQ_ATTR_RO(chip_name);
279 
280 static ssize_t hwirq_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
281 {
282 	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
283 
284 	guard(raw_spinlock_irq)(&desc->lock);
285 	if (desc->irq_data.domain)
286 		return sysfs_emit(buf, "%lu\n", desc->irq_data.hwirq);
287 	return 0;
288 }
289 IRQ_ATTR_RO(hwirq);
290 
291 static ssize_t type_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
292 {
293 	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
294 
295 	guard(raw_spinlock_irq)(&desc->lock);
296 	return sysfs_emit(buf, "%s\n", irqd_is_level_type(&desc->irq_data) ? "level" : "edge");
297 
298 }
299 IRQ_ATTR_RO(type);
300 
301 static ssize_t wakeup_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
302 {
303 	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
304 
305 	guard(raw_spinlock_irq)(&desc->lock);
306 	return sysfs_emit(buf, "%s\n", str_enabled_disabled(irqd_is_wakeup_set(&desc->irq_data)));
307 }
308 IRQ_ATTR_RO(wakeup);
309 
310 static ssize_t name_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
311 {
312 	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
313 
314 	guard(raw_spinlock_irq)(&desc->lock);
315 	if (desc->name)
316 		return sysfs_emit(buf, "%s\n", desc->name);
317 	return 0;
318 }
319 IRQ_ATTR_RO(name);
320 
321 static ssize_t actions_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
322 {
323 	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
324 	struct irqaction *action;
325 	ssize_t ret = 0;
326 	char *p = "";
327 
328 	scoped_guard(raw_spinlock_irq, &desc->lock) {
329 		for_each_action_of_desc(desc, action) {
330 			ret += sysfs_emit_at(buf, ret, "%s%s", p, action->name);
331 			p = ",";
332 		}
333 	}
334 
335 	if (ret)
336 		ret += sysfs_emit_at(buf, ret, "\n");
337 	return ret;
338 }
339 IRQ_ATTR_RO(actions);
340 
341 static struct attribute *irq_attrs[] = {
342 	&per_cpu_count_attr.attr,
343 	&chip_name_attr.attr,
344 	&hwirq_attr.attr,
345 	&type_attr.attr,
346 	&wakeup_attr.attr,
347 	&name_attr.attr,
348 	&actions_attr.attr,
349 	NULL
350 };
351 ATTRIBUTE_GROUPS(irq);
352 
353 static const struct kobj_type irq_kobj_type = {
354 	.release	= irq_kobj_release,
355 	.sysfs_ops	= &kobj_sysfs_ops,
356 	.default_groups = irq_groups,
357 };
358 
359 static void irq_sysfs_add(int irq, struct irq_desc *desc)
360 {
361 	if (irq_kobj_base) {
362 		/*
363 		 * Continue even in case of failure as this is nothing
364 		 * crucial and failures in the late irq_sysfs_init()
365 		 * cannot be rolled back.
366 		 */
367 		if (kobject_add(&desc->kobj, irq_kobj_base, "%d", irq))
368 			pr_warn("Failed to add kobject for irq %d\n", irq);
369 		else
370 			desc->istate |= IRQS_SYSFS;
371 	}
372 }
373 
374 static void irq_sysfs_del(struct irq_desc *desc)
375 {
376 	/*
377 	 * Only invoke kobject_del() when kobject_add() was successfully
378 	 * invoked for the descriptor. This covers both early boot, where
379 	 * sysfs is not initialized yet, and the case of a failed
380 	 * kobject_add() invocation.
381 	 */
382 	if (desc->istate & IRQS_SYSFS)
383 		kobject_del(&desc->kobj);
384 }
385 
386 static int __init irq_sysfs_init(void)
387 {
388 	struct irq_desc *desc;
389 	int irq;
390 
391 	/* Prevent concurrent irq alloc/free */
392 	guard(mutex)(&sparse_irq_lock);
393 	irq_kobj_base = kobject_create_and_add("irq", kernel_kobj);
394 	if (!irq_kobj_base)
395 		return -ENOMEM;
396 
397 	/* Add the already allocated interrupts */
398 	for_each_irq_desc(irq, desc)
399 		irq_sysfs_add(irq, desc);
400 	return 0;
401 }
402 postcore_initcall(irq_sysfs_init);
403 
404 #else /* !CONFIG_SYSFS */
405 
406 static const struct kobj_type irq_kobj_type = {
407 	.release	= irq_kobj_release,
408 };
409 
410 static void irq_sysfs_add(int irq, struct irq_desc *desc) {}
411 static void irq_sysfs_del(struct irq_desc *desc) {}
412 
413 #endif /* CONFIG_SYSFS */
414 
415 struct irq_desc *irq_to_desc(unsigned int irq)
416 {
417 	return mtree_load(&sparse_irqs, irq);
418 }
419 #ifdef CONFIG_KVM_BOOK3S_64_HV_MODULE
420 EXPORT_SYMBOL_GPL(irq_to_desc);
421 #endif
422 
423 void irq_lock_sparse(void)
424 {
425 	mutex_lock(&sparse_irq_lock);
426 }
427 
428 void irq_unlock_sparse(void)
429 {
430 	mutex_unlock(&sparse_irq_lock);
431 }
432 
433 static struct irq_desc *alloc_desc(int irq, int node, unsigned int flags,
434 				   const struct cpumask *affinity,
435 				   struct module *owner)
436 {
437 	struct irq_desc *desc;
438 	int ret;
439 
440 	desc = kzalloc_node(sizeof(*desc), GFP_KERNEL, node);
441 	if (!desc)
442 		return NULL;
443 
444 	ret = init_desc(desc, irq, node, flags, affinity, owner);
445 	if (unlikely(ret)) {
446 		kfree(desc);
447 		return NULL;
448 	}
449 
450 	return desc;
451 }
452 
453 static void irq_kobj_release(struct kobject *kobj)
454 {
455 	struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj);
456 
457 	free_masks(desc);
458 	free_percpu(desc->kstat_irqs);
459 	kfree(desc);
460 }
461 
462 static void delayed_free_desc(struct rcu_head *rhp)
463 {
464 	struct irq_desc *desc = container_of(rhp, struct irq_desc, rcu);
465 
466 	kobject_put(&desc->kobj);
467 }
468 
469 static void free_desc(unsigned int irq)
470 {
471 	struct irq_desc *desc = irq_to_desc(irq);
472 
473 	irq_remove_debugfs_entry(desc);
474 	unregister_irq_proc(irq, desc);
475 
476 	/*
477 	 * sparse_irq_lock protects also show_interrupts() and
478 	 * kstat_irq_usr(). Once we deleted the descriptor from the
479 	 * sparse tree we can free it. Access in proc will fail to
480 	 * lookup the descriptor.
481 	 *
482 	 * The sysfs entry must be serialized against a concurrent
483 	 * irq_sysfs_init() as well.
484 	 */
485 	irq_sysfs_del(desc);
486 	delete_irq_desc(irq);
487 
488 	/*
489 	 * We free the descriptor, masks and stat fields via RCU. That
490 	 * allows demultiplex interrupts to do rcu based management of
491 	 * the child interrupts.
492 	 * This also allows us to use rcu in kstat_irqs_usr().
493 	 */
494 	call_rcu(&desc->rcu, delayed_free_desc);
495 }
496 
497 static int alloc_descs(unsigned int start, unsigned int cnt, int node,
498 		       const struct irq_affinity_desc *affinity,
499 		       struct module *owner)
500 {
501 	struct irq_desc *desc;
502 	int i;
503 
504 	/* Validate affinity mask(s) */
505 	if (affinity) {
506 		for (i = 0; i < cnt; i++) {
507 			if (cpumask_empty(&affinity[i].mask))
508 				return -EINVAL;
509 		}
510 	}
511 
512 	for (i = 0; i < cnt; i++) {
513 		const struct cpumask *mask = NULL;
514 		unsigned int flags = 0;
515 
516 		if (affinity) {
517 			if (affinity->is_managed) {
518 				flags = IRQD_AFFINITY_MANAGED |
519 					IRQD_MANAGED_SHUTDOWN;
520 			}
521 			flags |= IRQD_AFFINITY_SET;
522 			mask = &affinity->mask;
523 			node = cpu_to_node(cpumask_first(mask));
524 			affinity++;
525 		}
526 
527 		desc = alloc_desc(start + i, node, flags, mask, owner);
528 		if (!desc)
529 			goto err;
530 		irq_insert_desc(start + i, desc);
531 		irq_sysfs_add(start + i, desc);
532 		irq_add_debugfs_entry(start + i, desc);
533 	}
534 	return start;
535 
536 err:
537 	for (i--; i >= 0; i--)
538 		free_desc(start + i);
539 	return -ENOMEM;
540 }
541 
542 static bool irq_expand_nr_irqs(unsigned int nr)
543 {
544 	if (nr > MAX_SPARSE_IRQS)
545 		return false;
546 	nr_irqs = nr;
547 	return true;
548 }
549 
550 int __init early_irq_init(void)
551 {
552 	int i, initcnt, node = first_online_node;
553 	struct irq_desc *desc;
554 
555 	init_irq_default_affinity();
556 
557 	/* Let arch update nr_irqs and return the nr of preallocated irqs */
558 	initcnt = arch_probe_nr_irqs();
559 	printk(KERN_INFO "NR_IRQS: %d, nr_irqs: %d, preallocated irqs: %d\n",
560 	       NR_IRQS, nr_irqs, initcnt);
561 
562 	if (WARN_ON(nr_irqs > MAX_SPARSE_IRQS))
563 		nr_irqs = MAX_SPARSE_IRQS;
564 
565 	if (WARN_ON(initcnt > MAX_SPARSE_IRQS))
566 		initcnt = MAX_SPARSE_IRQS;
567 
568 	if (initcnt > nr_irqs)
569 		nr_irqs = initcnt;
570 
571 	for (i = 0; i < initcnt; i++) {
572 		desc = alloc_desc(i, node, 0, NULL, NULL);
573 		irq_insert_desc(i, desc);
574 	}
575 	return arch_early_irq_init();
576 }
577 
578 #else /* !CONFIG_SPARSE_IRQ */
579 
580 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
581 	[0 ... NR_IRQS-1] = {
582 		.handle_irq	= handle_bad_irq,
583 		.depth		= 1,
584 		.lock		= __RAW_SPIN_LOCK_UNLOCKED(irq_desc->lock),
585 	}
586 };
587 
588 int __init early_irq_init(void)
589 {
590 	int count, i, node = first_online_node;
591 	int ret;
592 
593 	init_irq_default_affinity();
594 
595 	printk(KERN_INFO "NR_IRQS: %d\n", NR_IRQS);
596 
597 	count = ARRAY_SIZE(irq_desc);
598 
599 	for (i = 0; i < count; i++) {
600 		ret = init_desc(irq_desc + i, i, node, 0, NULL, NULL);
601 		if (unlikely(ret))
602 			goto __free_desc_res;
603 	}
604 
605 	return arch_early_irq_init();
606 
607 __free_desc_res:
608 	while (--i >= 0) {
609 		free_masks(irq_desc + i);
610 		free_percpu(irq_desc[i].kstat_irqs);
611 	}
612 
613 	return ret;
614 }
615 
616 struct irq_desc *irq_to_desc(unsigned int irq)
617 {
618 	return (irq < NR_IRQS) ? irq_desc + irq : NULL;
619 }
620 EXPORT_SYMBOL(irq_to_desc);
621 
622 static void free_desc(unsigned int irq)
623 {
624 	struct irq_desc *desc = irq_to_desc(irq);
625 	int cpu;
626 
627 	scoped_guard(raw_spinlock_irqsave, &desc->lock)
628 		desc_set_defaults(irq, desc, irq_desc_get_node(desc), NULL, NULL);
629 
630 	for_each_possible_cpu(cpu)
631 		*per_cpu_ptr(desc->kstat_irqs, cpu) = (struct irqstat) { };
632 
633 	delete_irq_desc(irq);
634 }
635 
636 static inline int alloc_descs(unsigned int start, unsigned int cnt, int node,
637 			      const struct irq_affinity_desc *affinity,
638 			      struct module *owner)
639 {
640 	u32 i;
641 
642 	for (i = 0; i < cnt; i++) {
643 		struct irq_desc *desc = irq_to_desc(start + i);
644 
645 		desc->owner = owner;
646 		irq_insert_desc(start + i, desc);
647 	}
648 	return start;
649 }
650 
651 static inline bool irq_expand_nr_irqs(unsigned int nr)
652 {
653 	return false;
654 }
655 
656 void irq_mark_irq(unsigned int irq)
657 {
658 	guard(mutex)(&sparse_irq_lock);
659 	irq_insert_desc(irq, irq_desc + irq);
660 }
661 
662 #endif /* !CONFIG_SPARSE_IRQ */
663 
664 int handle_irq_desc(struct irq_desc *desc)
665 {
666 	struct irq_data *data;
667 
668 	if (!desc)
669 		return -EINVAL;
670 
671 	data = irq_desc_get_irq_data(desc);
672 	if (WARN_ON_ONCE(!in_hardirq() && irqd_is_handle_enforce_irqctx(data)))
673 		return -EPERM;
674 
675 	generic_handle_irq_desc(desc);
676 	return 0;
677 }
678 
679 /**
680  * generic_handle_irq - Invoke the handler for a particular irq
681  * @irq:	The irq number to handle
682  *
683  * Returns:	0 on success, or -EINVAL if conversion has failed
684  *
685  * 		This function must be called from an IRQ context with irq regs
686  * 		initialized.
687   */
688 int generic_handle_irq(unsigned int irq)
689 {
690 	return handle_irq_desc(irq_to_desc(irq));
691 }
692 EXPORT_SYMBOL_GPL(generic_handle_irq);
693 
694 /**
695  * generic_handle_irq_safe - Invoke the handler for a particular irq from any
696  *			     context.
697  * @irq:	The irq number to handle
698  *
699  * Returns:	0 on success, a negative value on error.
700  *
701  * This function can be called from any context (IRQ or process context). It
702  * will report an error if not invoked from IRQ context and the irq has been
703  * marked to enforce IRQ-context only.
704  */
705 int generic_handle_irq_safe(unsigned int irq)
706 {
707 	unsigned long flags;
708 	int ret;
709 
710 	local_irq_save(flags);
711 	ret = handle_irq_desc(irq_to_desc(irq));
712 	local_irq_restore(flags);
713 	return ret;
714 }
715 EXPORT_SYMBOL_GPL(generic_handle_irq_safe);
716 
717 #ifdef CONFIG_IRQ_DOMAIN
718 /**
719  * generic_handle_domain_irq - Invoke the handler for a HW irq belonging
720  *                             to a domain.
721  * @domain:	The domain where to perform the lookup
722  * @hwirq:	The HW irq number to convert to a logical one
723  *
724  * Returns:	0 on success, or -EINVAL if conversion has failed
725  *
726  * 		This function must be called from an IRQ context with irq regs
727  * 		initialized.
728  */
729 int generic_handle_domain_irq(struct irq_domain *domain, irq_hw_number_t hwirq)
730 {
731 	return handle_irq_desc(irq_resolve_mapping(domain, hwirq));
732 }
733 EXPORT_SYMBOL_GPL(generic_handle_domain_irq);
734 
735  /**
736  * generic_handle_irq_safe - Invoke the handler for a HW irq belonging
737  *			     to a domain from any context.
738  * @domain:	The domain where to perform the lookup
739  * @hwirq:	The HW irq number to convert to a logical one
740  *
741  * Returns:	0 on success, a negative value on error.
742  *
743  * This function can be called from any context (IRQ or process
744  * context). If the interrupt is marked as 'enforce IRQ-context only' then
745  * the function must be invoked from hard interrupt context.
746  */
747 int generic_handle_domain_irq_safe(struct irq_domain *domain, irq_hw_number_t hwirq)
748 {
749 	unsigned long flags;
750 	int ret;
751 
752 	local_irq_save(flags);
753 	ret = handle_irq_desc(irq_resolve_mapping(domain, hwirq));
754 	local_irq_restore(flags);
755 	return ret;
756 }
757 EXPORT_SYMBOL_GPL(generic_handle_domain_irq_safe);
758 
759 /**
760  * generic_handle_domain_nmi - Invoke the handler for a HW nmi belonging
761  *                             to a domain.
762  * @domain:	The domain where to perform the lookup
763  * @hwirq:	The HW irq number to convert to a logical one
764  *
765  * Returns:	0 on success, or -EINVAL if conversion has failed
766  *
767  * 		This function must be called from an NMI context with irq regs
768  * 		initialized.
769  **/
770 int generic_handle_domain_nmi(struct irq_domain *domain, irq_hw_number_t hwirq)
771 {
772 	WARN_ON_ONCE(!in_nmi());
773 	return handle_irq_desc(irq_resolve_mapping(domain, hwirq));
774 }
775 
776 #ifdef CONFIG_SMP
777 static bool demux_redirect_remote(struct irq_desc *desc)
778 {
779 	guard(raw_spinlock)(&desc->lock);
780 	const struct cpumask *m = irq_data_get_effective_affinity_mask(&desc->irq_data);
781 	unsigned int target_cpu = READ_ONCE(desc->redirect.target_cpu);
782 
783 	if (desc->irq_data.chip->irq_pre_redirect)
784 		desc->irq_data.chip->irq_pre_redirect(&desc->irq_data);
785 
786 	/*
787 	 * If the interrupt handler is already running on a CPU that's included
788 	 * in the interrupt's affinity mask, redirection is not necessary.
789 	 */
790 	if (cpumask_test_cpu(smp_processor_id(), m))
791 		return false;
792 
793 	/*
794 	 * The desc->action check protects against IRQ shutdown: __free_irq() sets
795 	 * desc->action to NULL while holding desc->lock, which we also hold.
796 	 *
797 	 * Calling irq_work_queue_on() here is safe w.r.t. CPU unplugging:
798 	 *   - takedown_cpu() schedules multi_cpu_stop() on all active CPUs,
799 	 *     including the one that's taken down.
800 	 *   - multi_cpu_stop() acts like a barrier, which means all active
801 	 *     CPUs go through MULTI_STOP_DISABLE_IRQ and disable hard IRQs
802 	 *     *before* the dying CPU runs take_cpu_down() in MULTI_STOP_RUN.
803 	 *   - Hard IRQs are re-enabled at the end of multi_cpu_stop(), *after*
804 	 *     the dying CPU has run take_cpu_down() in MULTI_STOP_RUN.
805 	 *   - Since we run in hard IRQ context, we run either before or after
806 	 *     take_cpu_down() but never concurrently.
807 	 *   - If we run before take_cpu_down(), the dying CPU hasn't been marked
808 	 *     offline yet (it's marked via take_cpu_down() -> __cpu_disable()),
809 	 *     so the WARN in irq_work_queue_on() can't occur.
810 	 *   - Furthermore, the work item we queue will be flushed later via
811 	 *     take_cpu_down() -> cpuhp_invoke_callback_range_nofail() ->
812 	 *     smpcfd_dying_cpu() -> irq_work_run().
813 	 *   - If we run after take_cpu_down(), target_cpu has been already
814 	 *     updated via take_cpu_down() -> __cpu_disable(), which eventually
815 	 *     calls irq_do_set_affinity() during IRQ migration. So, target_cpu
816 	 *     no longer points to the dying CPU in this case.
817 	 */
818 	if (desc->action)
819 		irq_work_queue_on(&desc->redirect.work, target_cpu);
820 
821 	return true;
822 }
823 #else /* CONFIG_SMP */
824 static bool demux_redirect_remote(struct irq_desc *desc)
825 {
826 	return false;
827 }
828 #endif
829 
830 /**
831  * generic_handle_demux_domain_irq - Invoke the handler for a hardware interrupt
832  *				     of a demultiplexing domain.
833  * @domain:	The domain where to perform the lookup
834  * @hwirq:	The hardware interrupt number to convert to a logical one
835  *
836  * Returns:	True on success, or false if lookup has failed
837  */
838 bool generic_handle_demux_domain_irq(struct irq_domain *domain, irq_hw_number_t hwirq)
839 {
840 	struct irq_desc *desc = irq_resolve_mapping(domain, hwirq);
841 
842 	if (unlikely(!desc))
843 		return false;
844 
845 	if (demux_redirect_remote(desc))
846 		return true;
847 
848 	return !handle_irq_desc(desc);
849 }
850 EXPORT_SYMBOL_GPL(generic_handle_demux_domain_irq);
851 
852 #endif
853 
854 /* Dynamic interrupt handling */
855 
856 /**
857  * irq_free_descs - free irq descriptors
858  * @from:	Start of descriptor range
859  * @cnt:	Number of consecutive irqs to free
860  */
861 void irq_free_descs(unsigned int from, unsigned int cnt)
862 {
863 	int i;
864 
865 	if (from >= nr_irqs || (from + cnt) > nr_irqs)
866 		return;
867 
868 	guard(mutex)(&sparse_irq_lock);
869 	for (i = 0; i < cnt; i++)
870 		free_desc(from + i);
871 }
872 EXPORT_SYMBOL_GPL(irq_free_descs);
873 
874 /**
875  * __irq_alloc_descs - allocate and initialize a range of irq descriptors
876  * @irq:	Allocate for specific irq number if irq >= 0
877  * @from:	Start the search from this irq number
878  * @cnt:	Number of consecutive irqs to allocate.
879  * @node:	Preferred node on which the irq descriptor should be allocated
880  * @owner:	Owning module (can be NULL)
881  * @affinity:	Optional pointer to an affinity mask array of size @cnt which
882  *		hints where the irq descriptors should be allocated and which
883  *		default affinities to use
884  *
885  * Returns the first irq number or error code
886  */
887 int __ref __irq_alloc_descs(int irq, unsigned int from, unsigned int cnt, int node,
888 			    struct module *owner, const struct irq_affinity_desc *affinity)
889 {
890 	int start;
891 
892 	if (!cnt)
893 		return -EINVAL;
894 
895 	if (irq >= 0) {
896 		if (from > irq)
897 			return -EINVAL;
898 		from = irq;
899 	} else {
900 		/*
901 		 * For interrupts which are freely allocated the
902 		 * architecture can force a lower bound to the @from
903 		 * argument. x86 uses this to exclude the GSI space.
904 		 */
905 		from = arch_dynirq_lower_bound(from);
906 	}
907 
908 	guard(mutex)(&sparse_irq_lock);
909 
910 	start = irq_find_free_area(from, cnt);
911 	if (irq >=0 && start != irq)
912 		return -EEXIST;
913 
914 	if (start + cnt > nr_irqs) {
915 		if (!irq_expand_nr_irqs(start + cnt))
916 			return -ENOMEM;
917 	}
918 	return alloc_descs(start, cnt, node, affinity, owner);
919 }
920 EXPORT_SYMBOL_GPL(__irq_alloc_descs);
921 
922 /**
923  * irq_get_next_irq - get next allocated irq number
924  * @offset:	where to start the search
925  *
926  * Returns next irq number after offset or nr_irqs if none is found.
927  */
928 unsigned int irq_get_next_irq(unsigned int offset)
929 {
930 	return irq_find_at_or_after(offset);
931 }
932 
933 struct irq_desc *__irq_get_desc_lock(unsigned int irq, unsigned long *flags, bool bus,
934 				     unsigned int check)
935 {
936 	struct irq_desc *desc;
937 
938 	desc = irq_to_desc(irq);
939 	if (!desc)
940 		return NULL;
941 
942 	if (check & _IRQ_DESC_CHECK) {
943 		if ((check & _IRQ_DESC_PERCPU) && !irq_settings_is_per_cpu_devid(desc))
944 			return NULL;
945 
946 		if (!(check & _IRQ_DESC_PERCPU) && irq_settings_is_per_cpu_devid(desc))
947 			return NULL;
948 	}
949 
950 	if (bus)
951 		chip_bus_lock(desc);
952 	raw_spin_lock_irqsave(&desc->lock, *flags);
953 
954 	return desc;
955 }
956 
957 void __irq_put_desc_unlock(struct irq_desc *desc, unsigned long flags, bool bus)
958 	__releases(&desc->lock)
959 {
960 	raw_spin_unlock_irqrestore(&desc->lock, flags);
961 	if (bus)
962 		chip_bus_sync_unlock(desc);
963 }
964 
965 int irq_set_percpu_devid(unsigned int irq)
966 {
967 	struct irq_desc *desc = irq_to_desc(irq);
968 
969 	if (!desc || desc->percpu_enabled)
970 		return -EINVAL;
971 
972 	desc->percpu_enabled = kzalloc(sizeof(*desc->percpu_enabled), GFP_KERNEL);
973 
974 	if (!desc->percpu_enabled)
975 		return -ENOMEM;
976 
977 	irq_set_percpu_devid_flags(irq);
978 	return 0;
979 }
980 
981 void kstat_incr_irq_this_cpu(unsigned int irq)
982 {
983 	kstat_incr_irqs_this_cpu(irq_to_desc(irq));
984 }
985 
986 /**
987  * kstat_irqs_cpu - Get the statistics for an interrupt on a cpu
988  * @irq:	The interrupt number
989  * @cpu:	The cpu number
990  *
991  * Returns the sum of interrupt counts on @cpu since boot for
992  * @irq. The caller must ensure that the interrupt is not removed
993  * concurrently.
994  */
995 unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
996 {
997 	struct irq_desc *desc = irq_to_desc(irq);
998 
999 	return desc && desc->kstat_irqs ? per_cpu(desc->kstat_irqs->cnt, cpu) : 0;
1000 }
1001 
1002 static unsigned int kstat_irqs_desc(struct irq_desc *desc, const struct cpumask *cpumask)
1003 {
1004 	unsigned int sum = 0;
1005 	int cpu;
1006 
1007 	if (!irq_settings_is_per_cpu_devid(desc) &&
1008 	    !irq_settings_is_per_cpu(desc) &&
1009 	    !irq_is_nmi(desc))
1010 		return data_race(desc->tot_count);
1011 
1012 	for_each_cpu(cpu, cpumask)
1013 		sum += data_race(per_cpu(desc->kstat_irqs->cnt, cpu));
1014 	return sum;
1015 }
1016 
1017 static unsigned int kstat_irqs(unsigned int irq)
1018 {
1019 	struct irq_desc *desc = irq_to_desc(irq);
1020 
1021 	if (!desc || !desc->kstat_irqs)
1022 		return 0;
1023 	return kstat_irqs_desc(desc, cpu_possible_mask);
1024 }
1025 
1026 #ifdef CONFIG_GENERIC_IRQ_STAT_SNAPSHOT
1027 
1028 void kstat_snapshot_irqs(void)
1029 {
1030 	struct irq_desc *desc;
1031 	unsigned int irq;
1032 
1033 	for_each_irq_desc(irq, desc) {
1034 		if (!desc->kstat_irqs)
1035 			continue;
1036 		this_cpu_write(desc->kstat_irqs->ref, this_cpu_read(desc->kstat_irqs->cnt));
1037 	}
1038 }
1039 
1040 unsigned int kstat_get_irq_since_snapshot(unsigned int irq)
1041 {
1042 	struct irq_desc *desc = irq_to_desc(irq);
1043 
1044 	if (!desc || !desc->kstat_irqs)
1045 		return 0;
1046 	return this_cpu_read(desc->kstat_irqs->cnt) - this_cpu_read(desc->kstat_irqs->ref);
1047 }
1048 
1049 #endif
1050 
1051 /**
1052  * kstat_irqs_usr - Get the statistics for an interrupt from thread context
1053  * @irq:	The interrupt number
1054  *
1055  * Returns the sum of interrupt counts on all cpus since boot for @irq.
1056  *
1057  * It uses rcu to protect the access since a concurrent removal of an
1058  * interrupt descriptor is observing an rcu grace period before
1059  * delayed_free_desc()/irq_kobj_release().
1060  */
1061 unsigned int kstat_irqs_usr(unsigned int irq)
1062 {
1063 	unsigned int sum;
1064 
1065 	rcu_read_lock();
1066 	sum = kstat_irqs(irq);
1067 	rcu_read_unlock();
1068 	return sum;
1069 }
1070 
1071 #ifdef CONFIG_LOCKDEP
1072 void __irq_set_lockdep_class(unsigned int irq, struct lock_class_key *lock_class,
1073 			     struct lock_class_key *request_class)
1074 {
1075 	struct irq_desc *desc = irq_to_desc(irq);
1076 
1077 	if (desc) {
1078 		lockdep_set_class(&desc->lock, lock_class);
1079 		lockdep_set_class(&desc->request_mutex, request_class);
1080 	}
1081 }
1082 EXPORT_SYMBOL_GPL(__irq_set_lockdep_class);
1083 #endif
1084