1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar 4 * Copyright (C) 2005-2006, Thomas Gleixner, Russell King 5 * 6 * This file contains the interrupt descriptor management code. Detailed 7 * information is available in Documentation/core-api/genericirq.rst 8 * 9 */ 10 #include <linux/irq.h> 11 #include <linux/slab.h> 12 #include <linux/export.h> 13 #include <linux/interrupt.h> 14 #include <linux/kernel_stat.h> 15 #include <linux/maple_tree.h> 16 #include <linux/irqdomain.h> 17 #include <linux/sysfs.h> 18 #include <linux/string_choices.h> 19 20 #include "internals.h" 21 22 /* 23 * lockdep: we want to handle all irq_desc locks as a single lock-class: 24 */ 25 static struct lock_class_key irq_desc_lock_class; 26 27 #if defined(CONFIG_SMP) 28 static int __init irq_affinity_setup(char *str) 29 { 30 alloc_bootmem_cpumask_var(&irq_default_affinity); 31 cpulist_parse(str, irq_default_affinity); 32 /* 33 * Set at least the boot cpu. We don't want to end up with 34 * bugreports caused by random commandline masks 35 */ 36 cpumask_set_cpu(smp_processor_id(), irq_default_affinity); 37 return 1; 38 } 39 __setup("irqaffinity=", irq_affinity_setup); 40 41 static void __init init_irq_default_affinity(void) 42 { 43 if (!cpumask_available(irq_default_affinity)) 44 zalloc_cpumask_var(&irq_default_affinity, GFP_NOWAIT); 45 if (cpumask_empty(irq_default_affinity)) 46 cpumask_setall(irq_default_affinity); 47 } 48 #else 49 static void __init init_irq_default_affinity(void) 50 { 51 } 52 #endif 53 54 #ifdef CONFIG_SMP 55 static int alloc_masks(struct irq_desc *desc, int node) 56 { 57 if (!zalloc_cpumask_var_node(&desc->irq_common_data.affinity, 58 GFP_KERNEL, node)) 59 return -ENOMEM; 60 61 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK 62 if (!zalloc_cpumask_var_node(&desc->irq_common_data.effective_affinity, 63 GFP_KERNEL, node)) { 64 free_cpumask_var(desc->irq_common_data.affinity); 65 return -ENOMEM; 66 } 67 #endif 68 69 #ifdef CONFIG_GENERIC_PENDING_IRQ 70 if (!zalloc_cpumask_var_node(&desc->pending_mask, GFP_KERNEL, node)) { 71 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK 72 free_cpumask_var(desc->irq_common_data.effective_affinity); 73 #endif 74 free_cpumask_var(desc->irq_common_data.affinity); 75 return -ENOMEM; 76 } 77 #endif 78 return 0; 79 } 80 81 static void irq_redirect_work(struct irq_work *work) 82 { 83 handle_irq_desc(container_of(work, struct irq_desc, redirect.work)); 84 } 85 86 static void desc_smp_init(struct irq_desc *desc, int node, const struct cpumask *affinity) 87 { 88 if (!affinity) 89 affinity = irq_default_affinity; 90 cpumask_copy(desc->irq_common_data.affinity, affinity); 91 92 #ifdef CONFIG_GENERIC_PENDING_IRQ 93 cpumask_clear(desc->pending_mask); 94 #endif 95 #ifdef CONFIG_NUMA 96 desc->irq_common_data.node = node; 97 #endif 98 desc->redirect.work = IRQ_WORK_INIT_HARD(irq_redirect_work); 99 } 100 101 static void free_masks(struct irq_desc *desc) 102 { 103 #ifdef CONFIG_GENERIC_PENDING_IRQ 104 free_cpumask_var(desc->pending_mask); 105 #endif 106 free_cpumask_var(desc->irq_common_data.affinity); 107 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK 108 free_cpumask_var(desc->irq_common_data.effective_affinity); 109 #endif 110 } 111 112 #else 113 static inline int 114 alloc_masks(struct irq_desc *desc, int node) { return 0; } 115 static inline void 116 desc_smp_init(struct irq_desc *desc, int node, const struct cpumask *affinity) { } 117 static inline void free_masks(struct irq_desc *desc) { } 118 #endif 119 120 static void desc_set_defaults(unsigned int irq, struct irq_desc *desc, int node, 121 const struct cpumask *affinity, struct module *owner) 122 { 123 desc->irq_common_data.handler_data = NULL; 124 desc->irq_common_data.msi_desc = NULL; 125 126 desc->irq_data.common = &desc->irq_common_data; 127 desc->irq_data.irq = irq; 128 desc->irq_data.chip = &no_irq_chip; 129 desc->irq_data.chip_data = NULL; 130 irq_settings_clr_and_set(desc, ~0, _IRQ_DEFAULT_INIT_FLAGS); 131 irqd_set(&desc->irq_data, IRQD_IRQ_DISABLED); 132 irqd_set(&desc->irq_data, IRQD_IRQ_MASKED); 133 desc->handle_irq = handle_bad_irq; 134 desc->depth = 1; 135 desc->irq_count = 0; 136 desc->irqs_unhandled = 0; 137 desc->tot_count = 0; 138 desc->name = NULL; 139 desc->owner = owner; 140 desc_smp_init(desc, node, affinity); 141 } 142 143 static unsigned int nr_irqs = NR_IRQS; 144 145 /** 146 * irq_get_nr_irqs() - Number of interrupts supported by the system. 147 */ 148 unsigned int irq_get_nr_irqs(void) 149 { 150 return nr_irqs; 151 } 152 EXPORT_SYMBOL_GPL(irq_get_nr_irqs); 153 154 /** 155 * irq_set_nr_irqs() - Set the number of interrupts supported by the system. 156 * @nr: New number of interrupts. 157 * 158 * Return: @nr. 159 */ 160 unsigned int irq_set_nr_irqs(unsigned int nr) 161 { 162 nr_irqs = nr; 163 164 return nr; 165 } 166 EXPORT_SYMBOL_GPL(irq_set_nr_irqs); 167 168 static DEFINE_MUTEX(sparse_irq_lock); 169 static struct maple_tree sparse_irqs = MTREE_INIT_EXT(sparse_irqs, 170 MT_FLAGS_ALLOC_RANGE | 171 MT_FLAGS_LOCK_EXTERN | 172 MT_FLAGS_USE_RCU, 173 sparse_irq_lock); 174 175 static int irq_find_free_area(unsigned int from, unsigned int cnt) 176 { 177 MA_STATE(mas, &sparse_irqs, 0, 0); 178 179 if (mas_empty_area(&mas, from, MAX_SPARSE_IRQS, cnt)) 180 return -ENOSPC; 181 return mas.index; 182 } 183 184 static unsigned int irq_find_at_or_after(unsigned int offset) 185 { 186 unsigned long index = offset; 187 struct irq_desc *desc; 188 189 guard(rcu)(); 190 desc = mt_find(&sparse_irqs, &index, nr_irqs); 191 192 return desc ? irq_desc_get_irq(desc) : nr_irqs; 193 } 194 195 static void irq_insert_desc(unsigned int irq, struct irq_desc *desc) 196 { 197 MA_STATE(mas, &sparse_irqs, irq, irq); 198 WARN_ON(mas_store_gfp(&mas, desc, GFP_KERNEL) != 0); 199 } 200 201 static void delete_irq_desc(unsigned int irq) 202 { 203 MA_STATE(mas, &sparse_irqs, irq, irq); 204 mas_erase(&mas); 205 } 206 207 #ifdef CONFIG_SPARSE_IRQ 208 static const struct kobj_type irq_kobj_type; 209 #endif 210 211 static int init_desc(struct irq_desc *desc, int irq, int node, 212 unsigned int flags, 213 const struct cpumask *affinity, 214 struct module *owner) 215 { 216 desc->kstat_irqs = alloc_percpu(struct irqstat); 217 if (!desc->kstat_irqs) 218 return -ENOMEM; 219 220 if (alloc_masks(desc, node)) { 221 free_percpu(desc->kstat_irqs); 222 return -ENOMEM; 223 } 224 225 raw_spin_lock_init(&desc->lock); 226 lockdep_set_class(&desc->lock, &irq_desc_lock_class); 227 mutex_init(&desc->request_mutex); 228 init_waitqueue_head(&desc->wait_for_threads); 229 desc_set_defaults(irq, desc, node, affinity, owner); 230 irqd_set(&desc->irq_data, flags); 231 irq_resend_init(desc); 232 #ifdef CONFIG_SPARSE_IRQ 233 kobject_init(&desc->kobj, &irq_kobj_type); 234 init_rcu_head(&desc->rcu); 235 #endif 236 237 return 0; 238 } 239 240 #ifdef CONFIG_SPARSE_IRQ 241 242 static void irq_kobj_release(struct kobject *kobj); 243 244 #ifdef CONFIG_SYSFS 245 static struct kobject *irq_kobj_base; 246 247 #define IRQ_ATTR_RO(_name) \ 248 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 249 250 static ssize_t per_cpu_count_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 251 { 252 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj); 253 ssize_t ret = 0; 254 char *p = ""; 255 int cpu; 256 257 for_each_possible_cpu(cpu) { 258 unsigned int c = irq_desc_kstat_cpu(desc, cpu); 259 260 ret += sysfs_emit_at(buf, ret, "%s%u", p, c); 261 p = ","; 262 } 263 264 ret += sysfs_emit_at(buf, ret, "\n"); 265 return ret; 266 } 267 IRQ_ATTR_RO(per_cpu_count); 268 269 static ssize_t chip_name_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 270 { 271 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj); 272 273 guard(raw_spinlock_irq)(&desc->lock); 274 if (desc->irq_data.chip && desc->irq_data.chip->name) 275 return sysfs_emit(buf, "%s\n", desc->irq_data.chip->name); 276 return 0; 277 } 278 IRQ_ATTR_RO(chip_name); 279 280 static ssize_t hwirq_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 281 { 282 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj); 283 284 guard(raw_spinlock_irq)(&desc->lock); 285 if (desc->irq_data.domain) 286 return sysfs_emit(buf, "%lu\n", desc->irq_data.hwirq); 287 return 0; 288 } 289 IRQ_ATTR_RO(hwirq); 290 291 static ssize_t type_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 292 { 293 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj); 294 295 guard(raw_spinlock_irq)(&desc->lock); 296 return sysfs_emit(buf, "%s\n", irqd_is_level_type(&desc->irq_data) ? "level" : "edge"); 297 298 } 299 IRQ_ATTR_RO(type); 300 301 static ssize_t wakeup_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 302 { 303 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj); 304 305 guard(raw_spinlock_irq)(&desc->lock); 306 return sysfs_emit(buf, "%s\n", str_enabled_disabled(irqd_is_wakeup_set(&desc->irq_data))); 307 } 308 IRQ_ATTR_RO(wakeup); 309 310 static ssize_t name_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 311 { 312 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj); 313 314 guard(raw_spinlock_irq)(&desc->lock); 315 if (desc->name) 316 return sysfs_emit(buf, "%s\n", desc->name); 317 return 0; 318 } 319 IRQ_ATTR_RO(name); 320 321 static ssize_t actions_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) 322 { 323 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj); 324 struct irqaction *action; 325 ssize_t ret = 0; 326 char *p = ""; 327 328 scoped_guard(raw_spinlock_irq, &desc->lock) { 329 for_each_action_of_desc(desc, action) { 330 ret += sysfs_emit_at(buf, ret, "%s%s", p, action->name); 331 p = ","; 332 } 333 } 334 335 if (ret) 336 ret += sysfs_emit_at(buf, ret, "\n"); 337 return ret; 338 } 339 IRQ_ATTR_RO(actions); 340 341 static struct attribute *irq_attrs[] = { 342 &per_cpu_count_attr.attr, 343 &chip_name_attr.attr, 344 &hwirq_attr.attr, 345 &type_attr.attr, 346 &wakeup_attr.attr, 347 &name_attr.attr, 348 &actions_attr.attr, 349 NULL 350 }; 351 ATTRIBUTE_GROUPS(irq); 352 353 static const struct kobj_type irq_kobj_type = { 354 .release = irq_kobj_release, 355 .sysfs_ops = &kobj_sysfs_ops, 356 .default_groups = irq_groups, 357 }; 358 359 static void irq_sysfs_add(int irq, struct irq_desc *desc) 360 { 361 if (irq_kobj_base) { 362 /* 363 * Continue even in case of failure as this is nothing 364 * crucial and failures in the late irq_sysfs_init() 365 * cannot be rolled back. 366 */ 367 if (kobject_add(&desc->kobj, irq_kobj_base, "%d", irq)) 368 pr_warn("Failed to add kobject for irq %d\n", irq); 369 else 370 desc->istate |= IRQS_SYSFS; 371 } 372 } 373 374 static void irq_sysfs_del(struct irq_desc *desc) 375 { 376 /* 377 * Only invoke kobject_del() when kobject_add() was successfully 378 * invoked for the descriptor. This covers both early boot, where 379 * sysfs is not initialized yet, and the case of a failed 380 * kobject_add() invocation. 381 */ 382 if (desc->istate & IRQS_SYSFS) 383 kobject_del(&desc->kobj); 384 } 385 386 static int __init irq_sysfs_init(void) 387 { 388 struct irq_desc *desc; 389 int irq; 390 391 /* Prevent concurrent irq alloc/free */ 392 guard(mutex)(&sparse_irq_lock); 393 irq_kobj_base = kobject_create_and_add("irq", kernel_kobj); 394 if (!irq_kobj_base) 395 return -ENOMEM; 396 397 /* Add the already allocated interrupts */ 398 for_each_irq_desc(irq, desc) 399 irq_sysfs_add(irq, desc); 400 return 0; 401 } 402 postcore_initcall(irq_sysfs_init); 403 404 #else /* !CONFIG_SYSFS */ 405 406 static const struct kobj_type irq_kobj_type = { 407 .release = irq_kobj_release, 408 }; 409 410 static void irq_sysfs_add(int irq, struct irq_desc *desc) {} 411 static void irq_sysfs_del(struct irq_desc *desc) {} 412 413 #endif /* CONFIG_SYSFS */ 414 415 struct irq_desc *irq_to_desc(unsigned int irq) 416 { 417 return mtree_load(&sparse_irqs, irq); 418 } 419 #ifdef CONFIG_KVM_BOOK3S_64_HV_MODULE 420 EXPORT_SYMBOL_GPL(irq_to_desc); 421 #endif 422 423 void irq_lock_sparse(void) 424 { 425 mutex_lock(&sparse_irq_lock); 426 } 427 428 void irq_unlock_sparse(void) 429 { 430 mutex_unlock(&sparse_irq_lock); 431 } 432 433 static struct irq_desc *alloc_desc(int irq, int node, unsigned int flags, 434 const struct cpumask *affinity, 435 struct module *owner) 436 { 437 struct irq_desc *desc; 438 int ret; 439 440 desc = kzalloc_node(sizeof(*desc), GFP_KERNEL, node); 441 if (!desc) 442 return NULL; 443 444 ret = init_desc(desc, irq, node, flags, affinity, owner); 445 if (unlikely(ret)) { 446 kfree(desc); 447 return NULL; 448 } 449 450 return desc; 451 } 452 453 static void irq_kobj_release(struct kobject *kobj) 454 { 455 struct irq_desc *desc = container_of(kobj, struct irq_desc, kobj); 456 457 free_masks(desc); 458 free_percpu(desc->kstat_irqs); 459 kfree(desc); 460 } 461 462 static void delayed_free_desc(struct rcu_head *rhp) 463 { 464 struct irq_desc *desc = container_of(rhp, struct irq_desc, rcu); 465 466 kobject_put(&desc->kobj); 467 } 468 469 static void free_desc(unsigned int irq) 470 { 471 struct irq_desc *desc = irq_to_desc(irq); 472 473 irq_remove_debugfs_entry(desc); 474 unregister_irq_proc(irq, desc); 475 476 /* 477 * sparse_irq_lock protects also show_interrupts() and 478 * kstat_irq_usr(). Once we deleted the descriptor from the 479 * sparse tree we can free it. Access in proc will fail to 480 * lookup the descriptor. 481 * 482 * The sysfs entry must be serialized against a concurrent 483 * irq_sysfs_init() as well. 484 */ 485 irq_sysfs_del(desc); 486 delete_irq_desc(irq); 487 488 /* 489 * We free the descriptor, masks and stat fields via RCU. That 490 * allows demultiplex interrupts to do rcu based management of 491 * the child interrupts. 492 * This also allows us to use rcu in kstat_irqs_usr(). 493 */ 494 call_rcu(&desc->rcu, delayed_free_desc); 495 } 496 497 static int alloc_descs(unsigned int start, unsigned int cnt, int node, 498 const struct irq_affinity_desc *affinity, 499 struct module *owner) 500 { 501 struct irq_desc *desc; 502 int i; 503 504 /* Validate affinity mask(s) */ 505 if (affinity) { 506 for (i = 0; i < cnt; i++) { 507 if (cpumask_empty(&affinity[i].mask)) 508 return -EINVAL; 509 } 510 } 511 512 for (i = 0; i < cnt; i++) { 513 const struct cpumask *mask = NULL; 514 unsigned int flags = 0; 515 516 if (affinity) { 517 if (affinity->is_managed) { 518 flags = IRQD_AFFINITY_MANAGED | 519 IRQD_MANAGED_SHUTDOWN; 520 } 521 flags |= IRQD_AFFINITY_SET; 522 mask = &affinity->mask; 523 node = cpu_to_node(cpumask_first(mask)); 524 affinity++; 525 } 526 527 desc = alloc_desc(start + i, node, flags, mask, owner); 528 if (!desc) 529 goto err; 530 irq_insert_desc(start + i, desc); 531 irq_sysfs_add(start + i, desc); 532 irq_add_debugfs_entry(start + i, desc); 533 } 534 return start; 535 536 err: 537 for (i--; i >= 0; i--) 538 free_desc(start + i); 539 return -ENOMEM; 540 } 541 542 static bool irq_expand_nr_irqs(unsigned int nr) 543 { 544 if (nr > MAX_SPARSE_IRQS) 545 return false; 546 nr_irqs = nr; 547 return true; 548 } 549 550 int __init early_irq_init(void) 551 { 552 int i, initcnt, node = first_online_node; 553 struct irq_desc *desc; 554 555 init_irq_default_affinity(); 556 557 /* Let arch update nr_irqs and return the nr of preallocated irqs */ 558 initcnt = arch_probe_nr_irqs(); 559 printk(KERN_INFO "NR_IRQS: %d, nr_irqs: %d, preallocated irqs: %d\n", 560 NR_IRQS, nr_irqs, initcnt); 561 562 if (WARN_ON(nr_irqs > MAX_SPARSE_IRQS)) 563 nr_irqs = MAX_SPARSE_IRQS; 564 565 if (WARN_ON(initcnt > MAX_SPARSE_IRQS)) 566 initcnt = MAX_SPARSE_IRQS; 567 568 if (initcnt > nr_irqs) 569 nr_irqs = initcnt; 570 571 for (i = 0; i < initcnt; i++) { 572 desc = alloc_desc(i, node, 0, NULL, NULL); 573 irq_insert_desc(i, desc); 574 } 575 return arch_early_irq_init(); 576 } 577 578 #else /* !CONFIG_SPARSE_IRQ */ 579 580 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = { 581 [0 ... NR_IRQS-1] = { 582 .handle_irq = handle_bad_irq, 583 .depth = 1, 584 .lock = __RAW_SPIN_LOCK_UNLOCKED(irq_desc->lock), 585 } 586 }; 587 588 int __init early_irq_init(void) 589 { 590 int count, i, node = first_online_node; 591 int ret; 592 593 init_irq_default_affinity(); 594 595 printk(KERN_INFO "NR_IRQS: %d\n", NR_IRQS); 596 597 count = ARRAY_SIZE(irq_desc); 598 599 for (i = 0; i < count; i++) { 600 ret = init_desc(irq_desc + i, i, node, 0, NULL, NULL); 601 if (unlikely(ret)) 602 goto __free_desc_res; 603 } 604 605 return arch_early_irq_init(); 606 607 __free_desc_res: 608 while (--i >= 0) { 609 free_masks(irq_desc + i); 610 free_percpu(irq_desc[i].kstat_irqs); 611 } 612 613 return ret; 614 } 615 616 struct irq_desc *irq_to_desc(unsigned int irq) 617 { 618 return (irq < NR_IRQS) ? irq_desc + irq : NULL; 619 } 620 EXPORT_SYMBOL(irq_to_desc); 621 622 static void free_desc(unsigned int irq) 623 { 624 struct irq_desc *desc = irq_to_desc(irq); 625 int cpu; 626 627 scoped_guard(raw_spinlock_irqsave, &desc->lock) 628 desc_set_defaults(irq, desc, irq_desc_get_node(desc), NULL, NULL); 629 630 for_each_possible_cpu(cpu) 631 *per_cpu_ptr(desc->kstat_irqs, cpu) = (struct irqstat) { }; 632 633 delete_irq_desc(irq); 634 } 635 636 static inline int alloc_descs(unsigned int start, unsigned int cnt, int node, 637 const struct irq_affinity_desc *affinity, 638 struct module *owner) 639 { 640 u32 i; 641 642 for (i = 0; i < cnt; i++) { 643 struct irq_desc *desc = irq_to_desc(start + i); 644 645 desc->owner = owner; 646 irq_insert_desc(start + i, desc); 647 } 648 return start; 649 } 650 651 static inline bool irq_expand_nr_irqs(unsigned int nr) 652 { 653 return false; 654 } 655 656 void irq_mark_irq(unsigned int irq) 657 { 658 guard(mutex)(&sparse_irq_lock); 659 irq_insert_desc(irq, irq_desc + irq); 660 } 661 662 #endif /* !CONFIG_SPARSE_IRQ */ 663 664 int handle_irq_desc(struct irq_desc *desc) 665 { 666 struct irq_data *data; 667 668 if (!desc) 669 return -EINVAL; 670 671 data = irq_desc_get_irq_data(desc); 672 if (WARN_ON_ONCE(!in_hardirq() && irqd_is_handle_enforce_irqctx(data))) 673 return -EPERM; 674 675 generic_handle_irq_desc(desc); 676 return 0; 677 } 678 679 /** 680 * generic_handle_irq - Invoke the handler for a particular irq 681 * @irq: The irq number to handle 682 * 683 * Returns: 0 on success, or -EINVAL if conversion has failed 684 * 685 * This function must be called from an IRQ context with irq regs 686 * initialized. 687 */ 688 int generic_handle_irq(unsigned int irq) 689 { 690 return handle_irq_desc(irq_to_desc(irq)); 691 } 692 EXPORT_SYMBOL_GPL(generic_handle_irq); 693 694 /** 695 * generic_handle_irq_safe - Invoke the handler for a particular irq from any 696 * context. 697 * @irq: The irq number to handle 698 * 699 * Returns: 0 on success, a negative value on error. 700 * 701 * This function can be called from any context (IRQ or process context). It 702 * will report an error if not invoked from IRQ context and the irq has been 703 * marked to enforce IRQ-context only. 704 */ 705 int generic_handle_irq_safe(unsigned int irq) 706 { 707 unsigned long flags; 708 int ret; 709 710 local_irq_save(flags); 711 ret = handle_irq_desc(irq_to_desc(irq)); 712 local_irq_restore(flags); 713 return ret; 714 } 715 EXPORT_SYMBOL_GPL(generic_handle_irq_safe); 716 717 #ifdef CONFIG_IRQ_DOMAIN 718 /** 719 * generic_handle_domain_irq - Invoke the handler for a HW irq belonging 720 * to a domain. 721 * @domain: The domain where to perform the lookup 722 * @hwirq: The HW irq number to convert to a logical one 723 * 724 * Returns: 0 on success, or -EINVAL if conversion has failed 725 * 726 * This function must be called from an IRQ context with irq regs 727 * initialized. 728 */ 729 int generic_handle_domain_irq(struct irq_domain *domain, irq_hw_number_t hwirq) 730 { 731 return handle_irq_desc(irq_resolve_mapping(domain, hwirq)); 732 } 733 EXPORT_SYMBOL_GPL(generic_handle_domain_irq); 734 735 /** 736 * generic_handle_irq_safe - Invoke the handler for a HW irq belonging 737 * to a domain from any context. 738 * @domain: The domain where to perform the lookup 739 * @hwirq: The HW irq number to convert to a logical one 740 * 741 * Returns: 0 on success, a negative value on error. 742 * 743 * This function can be called from any context (IRQ or process 744 * context). If the interrupt is marked as 'enforce IRQ-context only' then 745 * the function must be invoked from hard interrupt context. 746 */ 747 int generic_handle_domain_irq_safe(struct irq_domain *domain, irq_hw_number_t hwirq) 748 { 749 unsigned long flags; 750 int ret; 751 752 local_irq_save(flags); 753 ret = handle_irq_desc(irq_resolve_mapping(domain, hwirq)); 754 local_irq_restore(flags); 755 return ret; 756 } 757 EXPORT_SYMBOL_GPL(generic_handle_domain_irq_safe); 758 759 /** 760 * generic_handle_domain_nmi - Invoke the handler for a HW nmi belonging 761 * to a domain. 762 * @domain: The domain where to perform the lookup 763 * @hwirq: The HW irq number to convert to a logical one 764 * 765 * Returns: 0 on success, or -EINVAL if conversion has failed 766 * 767 * This function must be called from an NMI context with irq regs 768 * initialized. 769 **/ 770 int generic_handle_domain_nmi(struct irq_domain *domain, irq_hw_number_t hwirq) 771 { 772 WARN_ON_ONCE(!in_nmi()); 773 return handle_irq_desc(irq_resolve_mapping(domain, hwirq)); 774 } 775 776 #ifdef CONFIG_SMP 777 static bool demux_redirect_remote(struct irq_desc *desc) 778 { 779 guard(raw_spinlock)(&desc->lock); 780 const struct cpumask *m = irq_data_get_effective_affinity_mask(&desc->irq_data); 781 unsigned int target_cpu = READ_ONCE(desc->redirect.target_cpu); 782 783 if (desc->irq_data.chip->irq_pre_redirect) 784 desc->irq_data.chip->irq_pre_redirect(&desc->irq_data); 785 786 /* 787 * If the interrupt handler is already running on a CPU that's included 788 * in the interrupt's affinity mask, redirection is not necessary. 789 */ 790 if (cpumask_test_cpu(smp_processor_id(), m)) 791 return false; 792 793 /* 794 * The desc->action check protects against IRQ shutdown: __free_irq() sets 795 * desc->action to NULL while holding desc->lock, which we also hold. 796 * 797 * Calling irq_work_queue_on() here is safe w.r.t. CPU unplugging: 798 * - takedown_cpu() schedules multi_cpu_stop() on all active CPUs, 799 * including the one that's taken down. 800 * - multi_cpu_stop() acts like a barrier, which means all active 801 * CPUs go through MULTI_STOP_DISABLE_IRQ and disable hard IRQs 802 * *before* the dying CPU runs take_cpu_down() in MULTI_STOP_RUN. 803 * - Hard IRQs are re-enabled at the end of multi_cpu_stop(), *after* 804 * the dying CPU has run take_cpu_down() in MULTI_STOP_RUN. 805 * - Since we run in hard IRQ context, we run either before or after 806 * take_cpu_down() but never concurrently. 807 * - If we run before take_cpu_down(), the dying CPU hasn't been marked 808 * offline yet (it's marked via take_cpu_down() -> __cpu_disable()), 809 * so the WARN in irq_work_queue_on() can't occur. 810 * - Furthermore, the work item we queue will be flushed later via 811 * take_cpu_down() -> cpuhp_invoke_callback_range_nofail() -> 812 * smpcfd_dying_cpu() -> irq_work_run(). 813 * - If we run after take_cpu_down(), target_cpu has been already 814 * updated via take_cpu_down() -> __cpu_disable(), which eventually 815 * calls irq_do_set_affinity() during IRQ migration. So, target_cpu 816 * no longer points to the dying CPU in this case. 817 */ 818 if (desc->action) 819 irq_work_queue_on(&desc->redirect.work, target_cpu); 820 821 return true; 822 } 823 #else /* CONFIG_SMP */ 824 static bool demux_redirect_remote(struct irq_desc *desc) 825 { 826 return false; 827 } 828 #endif 829 830 /** 831 * generic_handle_demux_domain_irq - Invoke the handler for a hardware interrupt 832 * of a demultiplexing domain. 833 * @domain: The domain where to perform the lookup 834 * @hwirq: The hardware interrupt number to convert to a logical one 835 * 836 * Returns: True on success, or false if lookup has failed 837 */ 838 bool generic_handle_demux_domain_irq(struct irq_domain *domain, irq_hw_number_t hwirq) 839 { 840 struct irq_desc *desc = irq_resolve_mapping(domain, hwirq); 841 842 if (unlikely(!desc)) 843 return false; 844 845 if (demux_redirect_remote(desc)) 846 return true; 847 848 return !handle_irq_desc(desc); 849 } 850 EXPORT_SYMBOL_GPL(generic_handle_demux_domain_irq); 851 852 #endif 853 854 /* Dynamic interrupt handling */ 855 856 /** 857 * irq_free_descs - free irq descriptors 858 * @from: Start of descriptor range 859 * @cnt: Number of consecutive irqs to free 860 */ 861 void irq_free_descs(unsigned int from, unsigned int cnt) 862 { 863 int i; 864 865 if (from >= nr_irqs || (from + cnt) > nr_irqs) 866 return; 867 868 guard(mutex)(&sparse_irq_lock); 869 for (i = 0; i < cnt; i++) 870 free_desc(from + i); 871 } 872 EXPORT_SYMBOL_GPL(irq_free_descs); 873 874 /** 875 * __irq_alloc_descs - allocate and initialize a range of irq descriptors 876 * @irq: Allocate for specific irq number if irq >= 0 877 * @from: Start the search from this irq number 878 * @cnt: Number of consecutive irqs to allocate. 879 * @node: Preferred node on which the irq descriptor should be allocated 880 * @owner: Owning module (can be NULL) 881 * @affinity: Optional pointer to an affinity mask array of size @cnt which 882 * hints where the irq descriptors should be allocated and which 883 * default affinities to use 884 * 885 * Returns the first irq number or error code 886 */ 887 int __ref __irq_alloc_descs(int irq, unsigned int from, unsigned int cnt, int node, 888 struct module *owner, const struct irq_affinity_desc *affinity) 889 { 890 int start; 891 892 if (!cnt) 893 return -EINVAL; 894 895 if (irq >= 0) { 896 if (from > irq) 897 return -EINVAL; 898 from = irq; 899 } else { 900 /* 901 * For interrupts which are freely allocated the 902 * architecture can force a lower bound to the @from 903 * argument. x86 uses this to exclude the GSI space. 904 */ 905 from = arch_dynirq_lower_bound(from); 906 } 907 908 guard(mutex)(&sparse_irq_lock); 909 910 start = irq_find_free_area(from, cnt); 911 if (irq >=0 && start != irq) 912 return -EEXIST; 913 914 if (start + cnt > nr_irqs) { 915 if (!irq_expand_nr_irqs(start + cnt)) 916 return -ENOMEM; 917 } 918 return alloc_descs(start, cnt, node, affinity, owner); 919 } 920 EXPORT_SYMBOL_GPL(__irq_alloc_descs); 921 922 /** 923 * irq_get_next_irq - get next allocated irq number 924 * @offset: where to start the search 925 * 926 * Returns next irq number after offset or nr_irqs if none is found. 927 */ 928 unsigned int irq_get_next_irq(unsigned int offset) 929 { 930 return irq_find_at_or_after(offset); 931 } 932 933 struct irq_desc *__irq_get_desc_lock(unsigned int irq, unsigned long *flags, bool bus, 934 unsigned int check) 935 { 936 struct irq_desc *desc; 937 938 desc = irq_to_desc(irq); 939 if (!desc) 940 return NULL; 941 942 if (check & _IRQ_DESC_CHECK) { 943 if ((check & _IRQ_DESC_PERCPU) && !irq_settings_is_per_cpu_devid(desc)) 944 return NULL; 945 946 if (!(check & _IRQ_DESC_PERCPU) && irq_settings_is_per_cpu_devid(desc)) 947 return NULL; 948 } 949 950 if (bus) 951 chip_bus_lock(desc); 952 raw_spin_lock_irqsave(&desc->lock, *flags); 953 954 return desc; 955 } 956 957 void __irq_put_desc_unlock(struct irq_desc *desc, unsigned long flags, bool bus) 958 __releases(&desc->lock) 959 { 960 raw_spin_unlock_irqrestore(&desc->lock, flags); 961 if (bus) 962 chip_bus_sync_unlock(desc); 963 } 964 965 int irq_set_percpu_devid(unsigned int irq) 966 { 967 struct irq_desc *desc = irq_to_desc(irq); 968 969 if (!desc || desc->percpu_enabled) 970 return -EINVAL; 971 972 desc->percpu_enabled = kzalloc(sizeof(*desc->percpu_enabled), GFP_KERNEL); 973 974 if (!desc->percpu_enabled) 975 return -ENOMEM; 976 977 irq_set_percpu_devid_flags(irq); 978 return 0; 979 } 980 981 void kstat_incr_irq_this_cpu(unsigned int irq) 982 { 983 kstat_incr_irqs_this_cpu(irq_to_desc(irq)); 984 } 985 986 /** 987 * kstat_irqs_cpu - Get the statistics for an interrupt on a cpu 988 * @irq: The interrupt number 989 * @cpu: The cpu number 990 * 991 * Returns the sum of interrupt counts on @cpu since boot for 992 * @irq. The caller must ensure that the interrupt is not removed 993 * concurrently. 994 */ 995 unsigned int kstat_irqs_cpu(unsigned int irq, int cpu) 996 { 997 struct irq_desc *desc = irq_to_desc(irq); 998 999 return desc && desc->kstat_irqs ? per_cpu(desc->kstat_irqs->cnt, cpu) : 0; 1000 } 1001 1002 static unsigned int kstat_irqs_desc(struct irq_desc *desc, const struct cpumask *cpumask) 1003 { 1004 unsigned int sum = 0; 1005 int cpu; 1006 1007 if (!irq_settings_is_per_cpu_devid(desc) && 1008 !irq_settings_is_per_cpu(desc) && 1009 !irq_is_nmi(desc)) 1010 return data_race(desc->tot_count); 1011 1012 for_each_cpu(cpu, cpumask) 1013 sum += data_race(per_cpu(desc->kstat_irqs->cnt, cpu)); 1014 return sum; 1015 } 1016 1017 static unsigned int kstat_irqs(unsigned int irq) 1018 { 1019 struct irq_desc *desc = irq_to_desc(irq); 1020 1021 if (!desc || !desc->kstat_irqs) 1022 return 0; 1023 return kstat_irqs_desc(desc, cpu_possible_mask); 1024 } 1025 1026 #ifdef CONFIG_GENERIC_IRQ_STAT_SNAPSHOT 1027 1028 void kstat_snapshot_irqs(void) 1029 { 1030 struct irq_desc *desc; 1031 unsigned int irq; 1032 1033 for_each_irq_desc(irq, desc) { 1034 if (!desc->kstat_irqs) 1035 continue; 1036 this_cpu_write(desc->kstat_irqs->ref, this_cpu_read(desc->kstat_irqs->cnt)); 1037 } 1038 } 1039 1040 unsigned int kstat_get_irq_since_snapshot(unsigned int irq) 1041 { 1042 struct irq_desc *desc = irq_to_desc(irq); 1043 1044 if (!desc || !desc->kstat_irqs) 1045 return 0; 1046 return this_cpu_read(desc->kstat_irqs->cnt) - this_cpu_read(desc->kstat_irqs->ref); 1047 } 1048 1049 #endif 1050 1051 /** 1052 * kstat_irqs_usr - Get the statistics for an interrupt from thread context 1053 * @irq: The interrupt number 1054 * 1055 * Returns the sum of interrupt counts on all cpus since boot for @irq. 1056 * 1057 * It uses rcu to protect the access since a concurrent removal of an 1058 * interrupt descriptor is observing an rcu grace period before 1059 * delayed_free_desc()/irq_kobj_release(). 1060 */ 1061 unsigned int kstat_irqs_usr(unsigned int irq) 1062 { 1063 unsigned int sum; 1064 1065 rcu_read_lock(); 1066 sum = kstat_irqs(irq); 1067 rcu_read_unlock(); 1068 return sum; 1069 } 1070 1071 #ifdef CONFIG_LOCKDEP 1072 void __irq_set_lockdep_class(unsigned int irq, struct lock_class_key *lock_class, 1073 struct lock_class_key *request_class) 1074 { 1075 struct irq_desc *desc = irq_to_desc(irq); 1076 1077 if (desc) { 1078 lockdep_set_class(&desc->lock, lock_class); 1079 lockdep_set_class(&desc->request_mutex, request_class); 1080 } 1081 } 1082 EXPORT_SYMBOL_GPL(__irq_set_lockdep_class); 1083 #endif 1084