xref: /linux/kernel/audit_tree.c (revision c5c2a8b497d69fb01d2563e383615a4eb69c72bc)
1 // SPDX-License-Identifier: GPL-2.0
2 #include "audit.h"
3 #include <linux/fsnotify_backend.h>
4 #include <linux/namei.h>
5 #include <linux/mount.h>
6 #include <linux/kthread.h>
7 #include <linux/refcount.h>
8 #include <linux/slab.h>
9 
10 struct audit_tree;
11 struct audit_chunk;
12 
13 struct audit_tree {
14 	refcount_t count;
15 	int goner;
16 	struct audit_chunk *root;
17 	struct list_head chunks;
18 	struct list_head rules;
19 	struct list_head list;
20 	struct list_head same_root;
21 	struct rcu_head head;
22 	char pathname[];
23 };
24 
25 struct audit_chunk {
26 	struct list_head hash;
27 	unsigned long key;
28 	struct fsnotify_mark *mark;
29 	struct list_head trees;		/* with root here */
30 	int count;
31 	atomic_long_t refs;
32 	struct rcu_head head;
33 	struct audit_node {
34 		struct list_head list;
35 		struct audit_tree *owner;
36 		unsigned index;		/* index; upper bit indicates 'will prune' */
37 	} owners[] __counted_by(count);
38 };
39 
40 struct audit_tree_mark {
41 	struct fsnotify_mark mark;
42 	struct audit_chunk *chunk;
43 };
44 
45 static LIST_HEAD(tree_list);
46 static LIST_HEAD(prune_list);
47 static struct task_struct *prune_thread;
48 
49 /*
50  * One struct chunk is attached to each inode of interest through
51  * audit_tree_mark (fsnotify mark). We replace struct chunk on tagging /
52  * untagging, the mark is stable as long as there is chunk attached. The
53  * association between mark and chunk is protected by hash_lock and
54  * audit_tree_group->mark_mutex. Thus as long as we hold
55  * audit_tree_group->mark_mutex and check that the mark is alive by
56  * FSNOTIFY_MARK_FLAG_ATTACHED flag check, we are sure the mark points to
57  * the current chunk.
58  *
59  * Rules have pointer to struct audit_tree.
60  * Rules have struct list_head rlist forming a list of rules over
61  * the same tree.
62  * References to struct chunk are collected at audit_inode{,_child}()
63  * time and used in AUDIT_TREE rule matching.
64  * These references are dropped at the same time we are calling
65  * audit_free_names(), etc.
66  *
67  * Cyclic lists galore:
68  * tree.chunks anchors chunk.owners[].list			hash_lock
69  * tree.rules anchors rule.rlist				audit_filter_mutex
70  * chunk.trees anchors tree.same_root				hash_lock
71  * chunk.hash is a hash with middle bits of watch.inode as
72  * a hash function.						RCU, hash_lock
73  *
74  * tree is refcounted; one reference for "some rules on rules_list refer to
75  * it", one for each chunk with pointer to it.
76  *
77  * chunk is refcounted by embedded .refs. Mark associated with the chunk holds
78  * one chunk reference. This reference is dropped either when a mark is going
79  * to be freed (corresponding inode goes away) or when chunk attached to the
80  * mark gets replaced. This reference must be dropped using
81  * audit_mark_put_chunk() to make sure the reference is dropped only after RCU
82  * grace period as it protects RCU readers of the hash table.
83  *
84  * node.index allows to get from node.list to containing chunk.
85  * MSB of that sucker is stolen to mark taggings that we might have to
86  * revert - several operations have very unpleasant cleanup logics and
87  * that makes a difference.  Some.
88  */
89 
90 static struct fsnotify_group *audit_tree_group __ro_after_init;
91 static struct kmem_cache *audit_tree_mark_cachep __ro_after_init;
92 
alloc_tree(const char * s)93 static struct audit_tree *alloc_tree(const char *s)
94 {
95 	struct audit_tree *tree;
96 
97 	tree = kmalloc(struct_size(tree, pathname, strlen(s) + 1), GFP_KERNEL);
98 	if (tree) {
99 		refcount_set(&tree->count, 1);
100 		tree->goner = 0;
101 		INIT_LIST_HEAD(&tree->chunks);
102 		INIT_LIST_HEAD(&tree->rules);
103 		INIT_LIST_HEAD(&tree->list);
104 		INIT_LIST_HEAD(&tree->same_root);
105 		tree->root = NULL;
106 		strcpy(tree->pathname, s);
107 	}
108 	return tree;
109 }
110 
get_tree(struct audit_tree * tree)111 static inline void get_tree(struct audit_tree *tree)
112 {
113 	refcount_inc(&tree->count);
114 }
115 
put_tree(struct audit_tree * tree)116 static inline void put_tree(struct audit_tree *tree)
117 {
118 	if (refcount_dec_and_test(&tree->count))
119 		kfree_rcu(tree, head);
120 }
121 
122 /* to avoid bringing the entire thing in audit.h */
audit_tree_path(struct audit_tree * tree)123 const char *audit_tree_path(struct audit_tree *tree)
124 {
125 	return tree->pathname;
126 }
127 
free_chunk(struct audit_chunk * chunk)128 static void free_chunk(struct audit_chunk *chunk)
129 {
130 	int i;
131 
132 	for (i = 0; i < chunk->count; i++) {
133 		if (chunk->owners[i].owner)
134 			put_tree(chunk->owners[i].owner);
135 	}
136 	kfree(chunk);
137 }
138 
audit_put_chunk(struct audit_chunk * chunk)139 void audit_put_chunk(struct audit_chunk *chunk)
140 {
141 	if (atomic_long_dec_and_test(&chunk->refs))
142 		free_chunk(chunk);
143 }
144 
__put_chunk(struct rcu_head * rcu)145 static void __put_chunk(struct rcu_head *rcu)
146 {
147 	struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
148 	audit_put_chunk(chunk);
149 }
150 
151 /*
152  * Drop reference to the chunk that was held by the mark. This is the reference
153  * that gets dropped after we've removed the chunk from the hash table and we
154  * use it to make sure chunk cannot be freed before RCU grace period expires.
155  */
audit_mark_put_chunk(struct audit_chunk * chunk)156 static void audit_mark_put_chunk(struct audit_chunk *chunk)
157 {
158 	call_rcu(&chunk->head, __put_chunk);
159 }
160 
audit_mark(struct fsnotify_mark * mark)161 static inline struct audit_tree_mark *audit_mark(struct fsnotify_mark *mark)
162 {
163 	return container_of(mark, struct audit_tree_mark, mark);
164 }
165 
mark_chunk(struct fsnotify_mark * mark)166 static struct audit_chunk *mark_chunk(struct fsnotify_mark *mark)
167 {
168 	return audit_mark(mark)->chunk;
169 }
170 
audit_tree_destroy_watch(struct fsnotify_mark * mark)171 static void audit_tree_destroy_watch(struct fsnotify_mark *mark)
172 {
173 	kmem_cache_free(audit_tree_mark_cachep, audit_mark(mark));
174 }
175 
alloc_mark(void)176 static struct fsnotify_mark *alloc_mark(void)
177 {
178 	struct audit_tree_mark *amark;
179 
180 	amark = kmem_cache_zalloc(audit_tree_mark_cachep, GFP_KERNEL);
181 	if (!amark)
182 		return NULL;
183 	fsnotify_init_mark(&amark->mark, audit_tree_group);
184 	amark->mark.mask = FS_IN_IGNORED;
185 	return &amark->mark;
186 }
187 
alloc_chunk(int count)188 static struct audit_chunk *alloc_chunk(int count)
189 {
190 	struct audit_chunk *chunk;
191 	int i;
192 
193 	chunk = kzalloc(struct_size(chunk, owners, count), GFP_KERNEL);
194 	if (!chunk)
195 		return NULL;
196 
197 	INIT_LIST_HEAD(&chunk->hash);
198 	INIT_LIST_HEAD(&chunk->trees);
199 	chunk->count = count;
200 	atomic_long_set(&chunk->refs, 1);
201 	for (i = 0; i < count; i++) {
202 		INIT_LIST_HEAD(&chunk->owners[i].list);
203 		chunk->owners[i].index = i;
204 	}
205 	return chunk;
206 }
207 
208 enum {HASH_SIZE = 128};
209 static struct list_head chunk_hash_heads[HASH_SIZE];
210 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
211 
212 /* Function to return search key in our hash from inode. */
inode_to_key(const struct inode * inode)213 static unsigned long inode_to_key(const struct inode *inode)
214 {
215 	/* Use address pointed to by connector->obj as the key */
216 	return (unsigned long)&inode->i_fsnotify_marks;
217 }
218 
chunk_hash(unsigned long key)219 static inline struct list_head *chunk_hash(unsigned long key)
220 {
221 	unsigned long n = key / L1_CACHE_BYTES;
222 	return chunk_hash_heads + n % HASH_SIZE;
223 }
224 
225 /* hash_lock & mark->group->mark_mutex is held by caller */
insert_hash(struct audit_chunk * chunk)226 static void insert_hash(struct audit_chunk *chunk)
227 {
228 	struct list_head *list;
229 
230 	/*
231 	 * Make sure chunk is fully initialized before making it visible in the
232 	 * hash. Pairs with a data dependency barrier in READ_ONCE() in
233 	 * audit_tree_lookup().
234 	 */
235 	smp_wmb();
236 	WARN_ON_ONCE(!chunk->key);
237 	list = chunk_hash(chunk->key);
238 	list_add_rcu(&chunk->hash, list);
239 }
240 
241 /* called under rcu_read_lock */
audit_tree_lookup(const struct inode * inode)242 struct audit_chunk *audit_tree_lookup(const struct inode *inode)
243 {
244 	unsigned long key = inode_to_key(inode);
245 	struct list_head *list = chunk_hash(key);
246 	struct audit_chunk *p;
247 
248 	list_for_each_entry_rcu(p, list, hash) {
249 		/*
250 		 * We use a data dependency barrier in READ_ONCE() to make sure
251 		 * the chunk we see is fully initialized.
252 		 */
253 		if (READ_ONCE(p->key) == key) {
254 			atomic_long_inc(&p->refs);
255 			return p;
256 		}
257 	}
258 	return NULL;
259 }
260 
audit_tree_match(struct audit_chunk * chunk,struct audit_tree * tree)261 bool audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
262 {
263 	int n;
264 	for (n = 0; n < chunk->count; n++)
265 		if (chunk->owners[n].owner == tree)
266 			return true;
267 	return false;
268 }
269 
270 /* tagging and untagging inodes with trees */
271 
find_chunk(struct audit_node * p)272 static struct audit_chunk *find_chunk(struct audit_node *p)
273 {
274 	int index = p->index & ~(1U<<31);
275 	p -= index;
276 	return container_of(p, struct audit_chunk, owners[0]);
277 }
278 
replace_mark_chunk(struct fsnotify_mark * mark,struct audit_chunk * chunk)279 static void replace_mark_chunk(struct fsnotify_mark *mark,
280 			       struct audit_chunk *chunk)
281 {
282 	struct audit_chunk *old;
283 
284 	assert_spin_locked(&hash_lock);
285 	old = mark_chunk(mark);
286 	audit_mark(mark)->chunk = chunk;
287 	if (chunk)
288 		chunk->mark = mark;
289 	if (old)
290 		old->mark = NULL;
291 }
292 
replace_chunk(struct audit_chunk * new,struct audit_chunk * old)293 static void replace_chunk(struct audit_chunk *new, struct audit_chunk *old)
294 {
295 	struct audit_tree *owner;
296 	int i, j;
297 
298 	new->key = old->key;
299 	list_splice_init(&old->trees, &new->trees);
300 	list_for_each_entry(owner, &new->trees, same_root)
301 		owner->root = new;
302 	for (i = j = 0; j < old->count; i++, j++) {
303 		if (!old->owners[j].owner) {
304 			i--;
305 			continue;
306 		}
307 		owner = old->owners[j].owner;
308 		new->owners[i].owner = owner;
309 		new->owners[i].index = old->owners[j].index - j + i;
310 		if (!owner) /* result of earlier fallback */
311 			continue;
312 		get_tree(owner);
313 		list_replace_init(&old->owners[j].list, &new->owners[i].list);
314 	}
315 	replace_mark_chunk(old->mark, new);
316 	/*
317 	 * Make sure chunk is fully initialized before making it visible in the
318 	 * hash. Pairs with a data dependency barrier in READ_ONCE() in
319 	 * audit_tree_lookup().
320 	 */
321 	smp_wmb();
322 	list_replace_rcu(&old->hash, &new->hash);
323 }
324 
remove_chunk_node(struct audit_chunk * chunk,struct audit_node * p)325 static void remove_chunk_node(struct audit_chunk *chunk, struct audit_node *p)
326 {
327 	struct audit_tree *owner = p->owner;
328 
329 	if (owner->root == chunk) {
330 		list_del_init(&owner->same_root);
331 		owner->root = NULL;
332 	}
333 	list_del_init(&p->list);
334 	p->owner = NULL;
335 	put_tree(owner);
336 }
337 
chunk_count_trees(struct audit_chunk * chunk)338 static int chunk_count_trees(struct audit_chunk *chunk)
339 {
340 	int i;
341 	int ret = 0;
342 
343 	for (i = 0; i < chunk->count; i++)
344 		if (chunk->owners[i].owner)
345 			ret++;
346 	return ret;
347 }
348 
untag_chunk(struct audit_chunk * chunk,struct fsnotify_mark * mark)349 static void untag_chunk(struct audit_chunk *chunk, struct fsnotify_mark *mark)
350 {
351 	struct audit_chunk *new;
352 	int size;
353 
354 	fsnotify_group_lock(audit_tree_group);
355 	/*
356 	 * mark_mutex stabilizes chunk attached to the mark so we can check
357 	 * whether it didn't change while we've dropped hash_lock.
358 	 */
359 	if (!(mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED) ||
360 	    mark_chunk(mark) != chunk)
361 		goto out_mutex;
362 
363 	size = chunk_count_trees(chunk);
364 	if (!size) {
365 		spin_lock(&hash_lock);
366 		list_del_init(&chunk->trees);
367 		list_del_rcu(&chunk->hash);
368 		replace_mark_chunk(mark, NULL);
369 		spin_unlock(&hash_lock);
370 		fsnotify_detach_mark(mark);
371 		fsnotify_group_unlock(audit_tree_group);
372 		audit_mark_put_chunk(chunk);
373 		fsnotify_free_mark(mark);
374 		return;
375 	}
376 
377 	new = alloc_chunk(size);
378 	if (!new)
379 		goto out_mutex;
380 
381 	spin_lock(&hash_lock);
382 	/*
383 	 * This has to go last when updating chunk as once replace_chunk() is
384 	 * called, new RCU readers can see the new chunk.
385 	 */
386 	replace_chunk(new, chunk);
387 	spin_unlock(&hash_lock);
388 	fsnotify_group_unlock(audit_tree_group);
389 	audit_mark_put_chunk(chunk);
390 	return;
391 
392 out_mutex:
393 	fsnotify_group_unlock(audit_tree_group);
394 }
395 
396 /* Call with group->mark_mutex held, releases it */
create_chunk(struct inode * inode,struct audit_tree * tree)397 static int create_chunk(struct inode *inode, struct audit_tree *tree)
398 {
399 	struct fsnotify_mark *mark;
400 	struct audit_chunk *chunk = alloc_chunk(1);
401 
402 	if (!chunk) {
403 		fsnotify_group_unlock(audit_tree_group);
404 		return -ENOMEM;
405 	}
406 
407 	mark = alloc_mark();
408 	if (!mark) {
409 		fsnotify_group_unlock(audit_tree_group);
410 		kfree(chunk);
411 		return -ENOMEM;
412 	}
413 
414 	if (fsnotify_add_inode_mark_locked(mark, inode, 0)) {
415 		fsnotify_group_unlock(audit_tree_group);
416 		fsnotify_put_mark(mark);
417 		kfree(chunk);
418 		return -ENOSPC;
419 	}
420 
421 	spin_lock(&hash_lock);
422 	if (tree->goner) {
423 		spin_unlock(&hash_lock);
424 		fsnotify_detach_mark(mark);
425 		fsnotify_group_unlock(audit_tree_group);
426 		fsnotify_free_mark(mark);
427 		fsnotify_put_mark(mark);
428 		kfree(chunk);
429 		return 0;
430 	}
431 	replace_mark_chunk(mark, chunk);
432 	chunk->owners[0].index = (1U << 31);
433 	chunk->owners[0].owner = tree;
434 	get_tree(tree);
435 	list_add(&chunk->owners[0].list, &tree->chunks);
436 	if (!tree->root) {
437 		tree->root = chunk;
438 		list_add(&tree->same_root, &chunk->trees);
439 	}
440 	chunk->key = inode_to_key(inode);
441 	/*
442 	 * Inserting into the hash table has to go last as once we do that RCU
443 	 * readers can see the chunk.
444 	 */
445 	insert_hash(chunk);
446 	spin_unlock(&hash_lock);
447 	fsnotify_group_unlock(audit_tree_group);
448 	/*
449 	 * Drop our initial reference. When mark we point to is getting freed,
450 	 * we get notification through ->freeing_mark callback and cleanup
451 	 * chunk pointing to this mark.
452 	 */
453 	fsnotify_put_mark(mark);
454 	return 0;
455 }
456 
457 /* the first tagged inode becomes root of tree */
tag_chunk(struct inode * inode,struct audit_tree * tree)458 static int tag_chunk(struct inode *inode, struct audit_tree *tree)
459 {
460 	struct fsnotify_mark *mark;
461 	struct audit_chunk *chunk, *old;
462 	struct audit_node *p;
463 	int n;
464 
465 	fsnotify_group_lock(audit_tree_group);
466 	mark = fsnotify_find_inode_mark(inode, audit_tree_group);
467 	if (!mark)
468 		return create_chunk(inode, tree);
469 
470 	/*
471 	 * Found mark is guaranteed to be attached and mark_mutex protects mark
472 	 * from getting detached and thus it makes sure there is chunk attached
473 	 * to the mark.
474 	 */
475 	/* are we already there? */
476 	spin_lock(&hash_lock);
477 	old = mark_chunk(mark);
478 	for (n = 0; n < old->count; n++) {
479 		if (old->owners[n].owner == tree) {
480 			spin_unlock(&hash_lock);
481 			fsnotify_group_unlock(audit_tree_group);
482 			fsnotify_put_mark(mark);
483 			return 0;
484 		}
485 	}
486 	spin_unlock(&hash_lock);
487 
488 	chunk = alloc_chunk(old->count + 1);
489 	if (!chunk) {
490 		fsnotify_group_unlock(audit_tree_group);
491 		fsnotify_put_mark(mark);
492 		return -ENOMEM;
493 	}
494 
495 	spin_lock(&hash_lock);
496 	if (tree->goner) {
497 		spin_unlock(&hash_lock);
498 		fsnotify_group_unlock(audit_tree_group);
499 		fsnotify_put_mark(mark);
500 		kfree(chunk);
501 		return 0;
502 	}
503 	p = &chunk->owners[chunk->count - 1];
504 	p->index = (chunk->count - 1) | (1U<<31);
505 	p->owner = tree;
506 	get_tree(tree);
507 	list_add(&p->list, &tree->chunks);
508 	if (!tree->root) {
509 		tree->root = chunk;
510 		list_add(&tree->same_root, &chunk->trees);
511 	}
512 	/*
513 	 * This has to go last when updating chunk as once replace_chunk() is
514 	 * called, new RCU readers can see the new chunk.
515 	 */
516 	replace_chunk(chunk, old);
517 	spin_unlock(&hash_lock);
518 	fsnotify_group_unlock(audit_tree_group);
519 	fsnotify_put_mark(mark); /* pair to fsnotify_find_mark */
520 	audit_mark_put_chunk(old);
521 
522 	return 0;
523 }
524 
audit_tree_log_remove_rule(struct audit_context * context,struct audit_krule * rule)525 static void audit_tree_log_remove_rule(struct audit_context *context,
526 				       struct audit_krule *rule)
527 {
528 	struct audit_buffer *ab;
529 
530 	if (!audit_enabled)
531 		return;
532 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
533 	if (unlikely(!ab))
534 		return;
535 	audit_log_format(ab, "op=remove_rule dir=");
536 	audit_log_untrustedstring(ab, rule->tree->pathname);
537 	audit_log_key(ab, rule->filterkey);
538 	audit_log_format(ab, " list=%d res=1", rule->listnr);
539 	audit_log_end(ab);
540 }
541 
kill_rules(struct audit_context * context,struct audit_tree * tree)542 static void kill_rules(struct audit_context *context, struct audit_tree *tree)
543 {
544 	struct audit_krule *rule, *next;
545 	struct audit_entry *entry;
546 
547 	list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
548 		entry = container_of(rule, struct audit_entry, rule);
549 
550 		list_del_init(&rule->rlist);
551 		if (rule->tree) {
552 			/* not a half-baked one */
553 			audit_tree_log_remove_rule(context, rule);
554 			if (entry->rule.exe)
555 				audit_remove_mark(entry->rule.exe);
556 			rule->tree = NULL;
557 			list_del_rcu(&entry->list);
558 			list_del(&entry->rule.list);
559 			call_rcu(&entry->rcu, audit_free_rule_rcu);
560 		}
561 	}
562 }
563 
564 /*
565  * Remove tree from chunks. If 'tagged' is set, remove tree only from tagged
566  * chunks. The function expects tagged chunks are all at the beginning of the
567  * chunks list.
568  */
prune_tree_chunks(struct audit_tree * victim,bool tagged)569 static void prune_tree_chunks(struct audit_tree *victim, bool tagged)
570 {
571 	spin_lock(&hash_lock);
572 	while (!list_empty(&victim->chunks)) {
573 		struct audit_node *p;
574 		struct audit_chunk *chunk;
575 		struct fsnotify_mark *mark;
576 
577 		p = list_first_entry(&victim->chunks, struct audit_node, list);
578 		/* have we run out of marked? */
579 		if (tagged && !(p->index & (1U<<31)))
580 			break;
581 		chunk = find_chunk(p);
582 		mark = chunk->mark;
583 		remove_chunk_node(chunk, p);
584 		/* Racing with audit_tree_freeing_mark()? */
585 		if (!mark)
586 			continue;
587 		fsnotify_get_mark(mark);
588 		spin_unlock(&hash_lock);
589 
590 		untag_chunk(chunk, mark);
591 		fsnotify_put_mark(mark);
592 
593 		spin_lock(&hash_lock);
594 	}
595 	spin_unlock(&hash_lock);
596 }
597 
598 /*
599  * finish killing struct audit_tree
600  */
prune_one(struct audit_tree * victim)601 static void prune_one(struct audit_tree *victim)
602 {
603 	prune_tree_chunks(victim, false);
604 	put_tree(victim);
605 }
606 
607 /* trim the uncommitted chunks from tree */
608 
trim_marked(struct audit_tree * tree)609 static void trim_marked(struct audit_tree *tree)
610 {
611 	struct list_head *p, *q;
612 	spin_lock(&hash_lock);
613 	if (tree->goner) {
614 		spin_unlock(&hash_lock);
615 		return;
616 	}
617 	/* reorder */
618 	for (p = tree->chunks.next; p != &tree->chunks; p = q) {
619 		struct audit_node *node = list_entry(p, struct audit_node, list);
620 		q = p->next;
621 		if (node->index & (1U<<31)) {
622 			list_del_init(p);
623 			list_add(p, &tree->chunks);
624 		}
625 	}
626 	spin_unlock(&hash_lock);
627 
628 	prune_tree_chunks(tree, true);
629 
630 	spin_lock(&hash_lock);
631 	if (!tree->root && !tree->goner) {
632 		tree->goner = 1;
633 		spin_unlock(&hash_lock);
634 		mutex_lock(&audit_filter_mutex);
635 		kill_rules(audit_context(), tree);
636 		list_del_init(&tree->list);
637 		mutex_unlock(&audit_filter_mutex);
638 		prune_one(tree);
639 	} else {
640 		spin_unlock(&hash_lock);
641 	}
642 }
643 
644 static void audit_schedule_prune(void);
645 
646 /* called with audit_filter_mutex */
audit_remove_tree_rule(struct audit_krule * rule)647 int audit_remove_tree_rule(struct audit_krule *rule)
648 {
649 	struct audit_tree *tree;
650 	tree = rule->tree;
651 	if (tree) {
652 		spin_lock(&hash_lock);
653 		list_del_init(&rule->rlist);
654 		if (list_empty(&tree->rules) && !tree->goner) {
655 			tree->root = NULL;
656 			list_del_init(&tree->same_root);
657 			tree->goner = 1;
658 			list_move(&tree->list, &prune_list);
659 			rule->tree = NULL;
660 			spin_unlock(&hash_lock);
661 			audit_schedule_prune();
662 			return 1;
663 		}
664 		rule->tree = NULL;
665 		spin_unlock(&hash_lock);
666 		return 1;
667 	}
668 	return 0;
669 }
670 
audit_trim_trees(void)671 void audit_trim_trees(void)
672 {
673 	struct list_head cursor;
674 
675 	mutex_lock(&audit_filter_mutex);
676 	list_add(&cursor, &tree_list);
677 	while (cursor.next != &tree_list) {
678 		struct audit_tree *tree;
679 		struct path path;
680 		struct audit_node *node;
681 		struct path *paths;
682 		struct path array[16];
683 		int err;
684 
685 		tree = container_of(cursor.next, struct audit_tree, list);
686 		get_tree(tree);
687 		list_move(&cursor, &tree->list);
688 		mutex_unlock(&audit_filter_mutex);
689 
690 		err = kern_path(tree->pathname, 0, &path);
691 		if (err)
692 			goto skip_it;
693 
694 		paths = collect_paths(&path, array, 16);
695 		path_put(&path);
696 		if (IS_ERR(paths))
697 			goto skip_it;
698 
699 		spin_lock(&hash_lock);
700 		list_for_each_entry(node, &tree->chunks, list) {
701 			struct audit_chunk *chunk = find_chunk(node);
702 			/* this could be NULL if the watch is dying else where... */
703 			node->index |= 1U<<31;
704 			for (struct path *p = paths; p->dentry; p++) {
705 				struct inode *inode = p->dentry->d_inode;
706 				if (inode_to_key(inode) == chunk->key) {
707 					node->index &= ~(1U<<31);
708 					break;
709 				}
710 			}
711 		}
712 		spin_unlock(&hash_lock);
713 		trim_marked(tree);
714 		drop_collected_paths(paths, array);
715 skip_it:
716 		put_tree(tree);
717 		mutex_lock(&audit_filter_mutex);
718 	}
719 	list_del(&cursor);
720 	mutex_unlock(&audit_filter_mutex);
721 }
722 
audit_make_tree(struct audit_krule * rule,char * pathname,u32 op)723 int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
724 {
725 
726 	if (pathname[0] != '/' ||
727 	    (rule->listnr != AUDIT_FILTER_EXIT &&
728 	     rule->listnr != AUDIT_FILTER_URING_EXIT) ||
729 	    op != Audit_equal ||
730 	    rule->inode_f || rule->watch || rule->tree)
731 		return -EINVAL;
732 	rule->tree = alloc_tree(pathname);
733 	if (!rule->tree)
734 		return -ENOMEM;
735 	return 0;
736 }
737 
audit_put_tree(struct audit_tree * tree)738 void audit_put_tree(struct audit_tree *tree)
739 {
740 	put_tree(tree);
741 }
742 
tag_mounts(struct path * paths,struct audit_tree * tree)743 static int tag_mounts(struct path *paths, struct audit_tree *tree)
744 {
745 	for (struct path *p = paths; p->dentry; p++) {
746 		int err = tag_chunk(p->dentry->d_inode, tree);
747 		if (err)
748 			return err;
749 	}
750 	return 0;
751 }
752 
753 /*
754  * That gets run when evict_chunk() ends up needing to kill audit_tree.
755  * Runs from a separate thread.
756  */
prune_tree_thread(void * unused)757 static int prune_tree_thread(void *unused)
758 {
759 	for (;;) {
760 		if (list_empty(&prune_list)) {
761 			set_current_state(TASK_INTERRUPTIBLE);
762 			schedule();
763 		}
764 
765 		audit_ctl_lock();
766 		mutex_lock(&audit_filter_mutex);
767 
768 		while (!list_empty(&prune_list)) {
769 			struct audit_tree *victim;
770 
771 			victim = list_entry(prune_list.next,
772 					struct audit_tree, list);
773 			list_del_init(&victim->list);
774 
775 			mutex_unlock(&audit_filter_mutex);
776 
777 			prune_one(victim);
778 
779 			mutex_lock(&audit_filter_mutex);
780 		}
781 
782 		mutex_unlock(&audit_filter_mutex);
783 		audit_ctl_unlock();
784 	}
785 	return 0;
786 }
787 
audit_launch_prune(void)788 static int audit_launch_prune(void)
789 {
790 	if (prune_thread)
791 		return 0;
792 	prune_thread = kthread_run(prune_tree_thread, NULL,
793 				"audit_prune_tree");
794 	if (IS_ERR(prune_thread)) {
795 		pr_err("cannot start thread audit_prune_tree");
796 		prune_thread = NULL;
797 		return -ENOMEM;
798 	}
799 	return 0;
800 }
801 
802 /* called with audit_filter_mutex */
audit_add_tree_rule(struct audit_krule * rule)803 int audit_add_tree_rule(struct audit_krule *rule)
804 {
805 	struct audit_tree *seed = rule->tree, *tree;
806 	struct path path;
807 	struct path array[16];
808 	struct path *paths;
809 	int err;
810 
811 	rule->tree = NULL;
812 	list_for_each_entry(tree, &tree_list, list) {
813 		if (!strcmp(seed->pathname, tree->pathname)) {
814 			put_tree(seed);
815 			rule->tree = tree;
816 			list_add(&rule->rlist, &tree->rules);
817 			return 0;
818 		}
819 	}
820 	tree = seed;
821 	list_add(&tree->list, &tree_list);
822 	list_add(&rule->rlist, &tree->rules);
823 	/* do not set rule->tree yet */
824 	mutex_unlock(&audit_filter_mutex);
825 
826 	if (unlikely(!prune_thread)) {
827 		err = audit_launch_prune();
828 		if (err)
829 			goto Err;
830 	}
831 
832 	err = kern_path(tree->pathname, 0, &path);
833 	if (err)
834 		goto Err;
835 	paths = collect_paths(&path, array, 16);
836 	path_put(&path);
837 	if (IS_ERR(paths)) {
838 		err = PTR_ERR(paths);
839 		goto Err;
840 	}
841 
842 	get_tree(tree);
843 	err = tag_mounts(paths, tree);
844 	drop_collected_paths(paths, array);
845 
846 	if (!err) {
847 		struct audit_node *node;
848 		spin_lock(&hash_lock);
849 		list_for_each_entry(node, &tree->chunks, list)
850 			node->index &= ~(1U<<31);
851 		spin_unlock(&hash_lock);
852 	} else {
853 		trim_marked(tree);
854 		goto Err;
855 	}
856 
857 	mutex_lock(&audit_filter_mutex);
858 	if (list_empty(&rule->rlist)) {
859 		put_tree(tree);
860 		return -ENOENT;
861 	}
862 	rule->tree = tree;
863 	put_tree(tree);
864 
865 	return 0;
866 Err:
867 	mutex_lock(&audit_filter_mutex);
868 	list_del_init(&tree->list);
869 	list_del_init(&tree->rules);
870 	put_tree(tree);
871 	return err;
872 }
873 
audit_tag_tree(char * old,char * new)874 int audit_tag_tree(char *old, char *new)
875 {
876 	struct list_head cursor, barrier;
877 	int failed = 0;
878 	struct path path1, path2;
879 	struct path array[16];
880 	struct path *paths;
881 	int err;
882 
883 	err = kern_path(new, 0, &path2);
884 	if (err)
885 		return err;
886 	paths = collect_paths(&path2, array, 16);
887 	path_put(&path2);
888 	if (IS_ERR(paths))
889 		return PTR_ERR(paths);
890 
891 	err = kern_path(old, 0, &path1);
892 	if (err) {
893 		drop_collected_paths(paths, array);
894 		return err;
895 	}
896 
897 	mutex_lock(&audit_filter_mutex);
898 	list_add(&barrier, &tree_list);
899 	list_add(&cursor, &barrier);
900 
901 	while (cursor.next != &tree_list) {
902 		struct audit_tree *tree;
903 		int good_one = 0;
904 
905 		tree = container_of(cursor.next, struct audit_tree, list);
906 		get_tree(tree);
907 		list_move(&cursor, &tree->list);
908 		mutex_unlock(&audit_filter_mutex);
909 
910 		err = kern_path(tree->pathname, 0, &path2);
911 		if (!err) {
912 			good_one = path_is_under(&path1, &path2);
913 			path_put(&path2);
914 		}
915 
916 		if (!good_one) {
917 			put_tree(tree);
918 			mutex_lock(&audit_filter_mutex);
919 			continue;
920 		}
921 
922 		failed = tag_mounts(paths, tree);
923 		if (failed) {
924 			put_tree(tree);
925 			mutex_lock(&audit_filter_mutex);
926 			break;
927 		}
928 
929 		mutex_lock(&audit_filter_mutex);
930 		spin_lock(&hash_lock);
931 		if (!tree->goner) {
932 			list_move(&tree->list, &tree_list);
933 		}
934 		spin_unlock(&hash_lock);
935 		put_tree(tree);
936 	}
937 
938 	while (barrier.prev != &tree_list) {
939 		struct audit_tree *tree;
940 
941 		tree = container_of(barrier.prev, struct audit_tree, list);
942 		get_tree(tree);
943 		list_move(&tree->list, &barrier);
944 		mutex_unlock(&audit_filter_mutex);
945 
946 		if (!failed) {
947 			struct audit_node *node;
948 			spin_lock(&hash_lock);
949 			list_for_each_entry(node, &tree->chunks, list)
950 				node->index &= ~(1U<<31);
951 			spin_unlock(&hash_lock);
952 		} else {
953 			trim_marked(tree);
954 		}
955 
956 		put_tree(tree);
957 		mutex_lock(&audit_filter_mutex);
958 	}
959 	list_del(&barrier);
960 	list_del(&cursor);
961 	mutex_unlock(&audit_filter_mutex);
962 	path_put(&path1);
963 	drop_collected_paths(paths, array);
964 	return failed;
965 }
966 
967 
audit_schedule_prune(void)968 static void audit_schedule_prune(void)
969 {
970 	wake_up_process(prune_thread);
971 }
972 
973 /*
974  * ... and that one is done if evict_chunk() decides to delay until the end
975  * of syscall.  Runs synchronously.
976  */
audit_kill_trees(struct audit_context * context)977 void audit_kill_trees(struct audit_context *context)
978 {
979 	struct list_head *list = &context->killed_trees;
980 
981 	audit_ctl_lock();
982 	mutex_lock(&audit_filter_mutex);
983 
984 	while (!list_empty(list)) {
985 		struct audit_tree *victim;
986 
987 		victim = list_entry(list->next, struct audit_tree, list);
988 		kill_rules(context, victim);
989 		list_del_init(&victim->list);
990 
991 		mutex_unlock(&audit_filter_mutex);
992 
993 		prune_one(victim);
994 
995 		mutex_lock(&audit_filter_mutex);
996 	}
997 
998 	mutex_unlock(&audit_filter_mutex);
999 	audit_ctl_unlock();
1000 }
1001 
1002 /*
1003  *  Here comes the stuff asynchronous to auditctl operations
1004  */
1005 
evict_chunk(struct audit_chunk * chunk)1006 static void evict_chunk(struct audit_chunk *chunk)
1007 {
1008 	struct audit_tree *owner;
1009 	struct list_head *postponed = audit_killed_trees();
1010 	int need_prune = 0;
1011 	int n;
1012 
1013 	mutex_lock(&audit_filter_mutex);
1014 	spin_lock(&hash_lock);
1015 	while (!list_empty(&chunk->trees)) {
1016 		owner = list_entry(chunk->trees.next,
1017 				   struct audit_tree, same_root);
1018 		owner->goner = 1;
1019 		owner->root = NULL;
1020 		list_del_init(&owner->same_root);
1021 		spin_unlock(&hash_lock);
1022 		if (!postponed) {
1023 			kill_rules(audit_context(), owner);
1024 			list_move(&owner->list, &prune_list);
1025 			need_prune = 1;
1026 		} else {
1027 			list_move(&owner->list, postponed);
1028 		}
1029 		spin_lock(&hash_lock);
1030 	}
1031 	list_del_rcu(&chunk->hash);
1032 	for (n = 0; n < chunk->count; n++)
1033 		list_del_init(&chunk->owners[n].list);
1034 	spin_unlock(&hash_lock);
1035 	mutex_unlock(&audit_filter_mutex);
1036 	if (need_prune)
1037 		audit_schedule_prune();
1038 }
1039 
audit_tree_handle_event(struct fsnotify_mark * mark,u32 mask,struct inode * inode,struct inode * dir,const struct qstr * file_name,u32 cookie)1040 static int audit_tree_handle_event(struct fsnotify_mark *mark, u32 mask,
1041 				   struct inode *inode, struct inode *dir,
1042 				   const struct qstr *file_name, u32 cookie)
1043 {
1044 	return 0;
1045 }
1046 
audit_tree_freeing_mark(struct fsnotify_mark * mark,struct fsnotify_group * group)1047 static void audit_tree_freeing_mark(struct fsnotify_mark *mark,
1048 				    struct fsnotify_group *group)
1049 {
1050 	struct audit_chunk *chunk;
1051 
1052 	fsnotify_group_lock(mark->group);
1053 	spin_lock(&hash_lock);
1054 	chunk = mark_chunk(mark);
1055 	replace_mark_chunk(mark, NULL);
1056 	spin_unlock(&hash_lock);
1057 	fsnotify_group_unlock(mark->group);
1058 	if (chunk) {
1059 		evict_chunk(chunk);
1060 		audit_mark_put_chunk(chunk);
1061 	}
1062 
1063 	/*
1064 	 * We are guaranteed to have at least one reference to the mark from
1065 	 * either the inode or the caller of fsnotify_destroy_mark().
1066 	 */
1067 	BUG_ON(refcount_read(&mark->refcnt) < 1);
1068 }
1069 
1070 static const struct fsnotify_ops audit_tree_ops = {
1071 	.handle_inode_event = audit_tree_handle_event,
1072 	.freeing_mark = audit_tree_freeing_mark,
1073 	.free_mark = audit_tree_destroy_watch,
1074 };
1075 
audit_tree_init(void)1076 static int __init audit_tree_init(void)
1077 {
1078 	int i;
1079 
1080 	audit_tree_mark_cachep = KMEM_CACHE(audit_tree_mark, SLAB_PANIC);
1081 
1082 	audit_tree_group = fsnotify_alloc_group(&audit_tree_ops, 0);
1083 	if (IS_ERR(audit_tree_group))
1084 		audit_panic("cannot initialize fsnotify group for rectree watches");
1085 
1086 	for (i = 0; i < HASH_SIZE; i++)
1087 		INIT_LIST_HEAD(&chunk_hash_heads[i]);
1088 
1089 	return 0;
1090 }
1091 __initcall(audit_tree_init);
1092