1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * Copyright (c) 2016-2018 Christoph Hellwig.
5 * All Rights Reserved.
6 */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_btree.h"
16 #include "xfs_bmap_btree.h"
17 #include "xfs_bmap.h"
18 #include "xfs_bmap_util.h"
19 #include "xfs_errortag.h"
20 #include "xfs_error.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_space.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_iomap.h"
25 #include "xfs_trace.h"
26 #include "xfs_quota.h"
27 #include "xfs_rtgroup.h"
28 #include "xfs_dquot_item.h"
29 #include "xfs_dquot.h"
30 #include "xfs_reflink.h"
31 #include "xfs_health.h"
32 #include "xfs_rtbitmap.h"
33
34 #define XFS_ALLOC_ALIGN(mp, off) \
35 (((off) >> mp->m_allocsize_log) << mp->m_allocsize_log)
36
37 static int
xfs_alert_fsblock_zero(xfs_inode_t * ip,xfs_bmbt_irec_t * imap)38 xfs_alert_fsblock_zero(
39 xfs_inode_t *ip,
40 xfs_bmbt_irec_t *imap)
41 {
42 xfs_alert_tag(ip->i_mount, XFS_PTAG_FSBLOCK_ZERO,
43 "Access to block zero in inode %llu "
44 "start_block: %llx start_off: %llx "
45 "blkcnt: %llx extent-state: %x",
46 (unsigned long long)ip->i_ino,
47 (unsigned long long)imap->br_startblock,
48 (unsigned long long)imap->br_startoff,
49 (unsigned long long)imap->br_blockcount,
50 imap->br_state);
51 xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
52 return -EFSCORRUPTED;
53 }
54
55 u64
xfs_iomap_inode_sequence(struct xfs_inode * ip,u16 iomap_flags)56 xfs_iomap_inode_sequence(
57 struct xfs_inode *ip,
58 u16 iomap_flags)
59 {
60 u64 cookie = 0;
61
62 if (iomap_flags & IOMAP_F_XATTR)
63 return READ_ONCE(ip->i_af.if_seq);
64 if ((iomap_flags & IOMAP_F_SHARED) && ip->i_cowfp)
65 cookie = (u64)READ_ONCE(ip->i_cowfp->if_seq) << 32;
66 return cookie | READ_ONCE(ip->i_df.if_seq);
67 }
68
69 /*
70 * Check that the iomap passed to us is still valid for the given offset and
71 * length.
72 */
73 static bool
xfs_iomap_valid(struct inode * inode,const struct iomap * iomap)74 xfs_iomap_valid(
75 struct inode *inode,
76 const struct iomap *iomap)
77 {
78 struct xfs_inode *ip = XFS_I(inode);
79
80 if (iomap->validity_cookie !=
81 xfs_iomap_inode_sequence(ip, iomap->flags)) {
82 trace_xfs_iomap_invalid(ip, iomap);
83 return false;
84 }
85
86 XFS_ERRORTAG_DELAY(ip->i_mount, XFS_ERRTAG_WRITE_DELAY_MS);
87 return true;
88 }
89
90 static const struct iomap_folio_ops xfs_iomap_folio_ops = {
91 .iomap_valid = xfs_iomap_valid,
92 };
93
94 int
xfs_bmbt_to_iomap(struct xfs_inode * ip,struct iomap * iomap,struct xfs_bmbt_irec * imap,unsigned int mapping_flags,u16 iomap_flags,u64 sequence_cookie)95 xfs_bmbt_to_iomap(
96 struct xfs_inode *ip,
97 struct iomap *iomap,
98 struct xfs_bmbt_irec *imap,
99 unsigned int mapping_flags,
100 u16 iomap_flags,
101 u64 sequence_cookie)
102 {
103 struct xfs_mount *mp = ip->i_mount;
104 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
105
106 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) {
107 xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
108 return xfs_alert_fsblock_zero(ip, imap);
109 }
110
111 if (imap->br_startblock == HOLESTARTBLOCK) {
112 iomap->addr = IOMAP_NULL_ADDR;
113 iomap->type = IOMAP_HOLE;
114 } else if (imap->br_startblock == DELAYSTARTBLOCK ||
115 isnullstartblock(imap->br_startblock)) {
116 iomap->addr = IOMAP_NULL_ADDR;
117 iomap->type = IOMAP_DELALLOC;
118 } else {
119 xfs_daddr_t daddr = xfs_fsb_to_db(ip, imap->br_startblock);
120
121 iomap->addr = BBTOB(daddr);
122 if (mapping_flags & IOMAP_DAX)
123 iomap->addr += target->bt_dax_part_off;
124
125 if (imap->br_state == XFS_EXT_UNWRITTEN)
126 iomap->type = IOMAP_UNWRITTEN;
127 else
128 iomap->type = IOMAP_MAPPED;
129
130 /*
131 * Mark iomaps starting at the first sector of a RTG as merge
132 * boundary so that each I/O completions is contained to a
133 * single RTG.
134 */
135 if (XFS_IS_REALTIME_INODE(ip) && xfs_has_rtgroups(mp) &&
136 xfs_rtbno_is_group_start(mp, imap->br_startblock))
137 iomap->flags |= IOMAP_F_BOUNDARY;
138 }
139 iomap->offset = XFS_FSB_TO_B(mp, imap->br_startoff);
140 iomap->length = XFS_FSB_TO_B(mp, imap->br_blockcount);
141 if (mapping_flags & IOMAP_DAX)
142 iomap->dax_dev = target->bt_daxdev;
143 else
144 iomap->bdev = target->bt_bdev;
145 iomap->flags = iomap_flags;
146
147 if (xfs_ipincount(ip) &&
148 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
149 iomap->flags |= IOMAP_F_DIRTY;
150
151 iomap->validity_cookie = sequence_cookie;
152 iomap->folio_ops = &xfs_iomap_folio_ops;
153 return 0;
154 }
155
156 static void
xfs_hole_to_iomap(struct xfs_inode * ip,struct iomap * iomap,xfs_fileoff_t offset_fsb,xfs_fileoff_t end_fsb)157 xfs_hole_to_iomap(
158 struct xfs_inode *ip,
159 struct iomap *iomap,
160 xfs_fileoff_t offset_fsb,
161 xfs_fileoff_t end_fsb)
162 {
163 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
164
165 iomap->addr = IOMAP_NULL_ADDR;
166 iomap->type = IOMAP_HOLE;
167 iomap->offset = XFS_FSB_TO_B(ip->i_mount, offset_fsb);
168 iomap->length = XFS_FSB_TO_B(ip->i_mount, end_fsb - offset_fsb);
169 iomap->bdev = target->bt_bdev;
170 iomap->dax_dev = target->bt_daxdev;
171 }
172
173 static inline xfs_fileoff_t
xfs_iomap_end_fsb(struct xfs_mount * mp,loff_t offset,loff_t count)174 xfs_iomap_end_fsb(
175 struct xfs_mount *mp,
176 loff_t offset,
177 loff_t count)
178 {
179 ASSERT(offset <= mp->m_super->s_maxbytes);
180 return min(XFS_B_TO_FSB(mp, offset + count),
181 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes));
182 }
183
184 static xfs_extlen_t
xfs_eof_alignment(struct xfs_inode * ip)185 xfs_eof_alignment(
186 struct xfs_inode *ip)
187 {
188 struct xfs_mount *mp = ip->i_mount;
189 xfs_extlen_t align = 0;
190
191 if (!XFS_IS_REALTIME_INODE(ip)) {
192 /*
193 * Round up the allocation request to a stripe unit
194 * (m_dalign) boundary if the file size is >= stripe unit
195 * size, and we are allocating past the allocation eof.
196 *
197 * If mounted with the "-o swalloc" option the alignment is
198 * increased from the strip unit size to the stripe width.
199 */
200 if (mp->m_swidth && xfs_has_swalloc(mp))
201 align = mp->m_swidth;
202 else if (mp->m_dalign)
203 align = mp->m_dalign;
204
205 if (align && XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, align))
206 align = 0;
207 }
208
209 return align;
210 }
211
212 /*
213 * Check if last_fsb is outside the last extent, and if so grow it to the next
214 * stripe unit boundary.
215 */
216 xfs_fileoff_t
xfs_iomap_eof_align_last_fsb(struct xfs_inode * ip,xfs_fileoff_t end_fsb)217 xfs_iomap_eof_align_last_fsb(
218 struct xfs_inode *ip,
219 xfs_fileoff_t end_fsb)
220 {
221 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
222 xfs_extlen_t extsz = xfs_get_extsz_hint(ip);
223 xfs_extlen_t align = xfs_eof_alignment(ip);
224 struct xfs_bmbt_irec irec;
225 struct xfs_iext_cursor icur;
226
227 ASSERT(!xfs_need_iread_extents(ifp));
228
229 /*
230 * Always round up the allocation request to the extent hint boundary.
231 */
232 if (extsz) {
233 if (align)
234 align = roundup_64(align, extsz);
235 else
236 align = extsz;
237 }
238
239 if (align) {
240 xfs_fileoff_t aligned_end_fsb = roundup_64(end_fsb, align);
241
242 xfs_iext_last(ifp, &icur);
243 if (!xfs_iext_get_extent(ifp, &icur, &irec) ||
244 aligned_end_fsb >= irec.br_startoff + irec.br_blockcount)
245 return aligned_end_fsb;
246 }
247
248 return end_fsb;
249 }
250
251 int
xfs_iomap_write_direct(struct xfs_inode * ip,xfs_fileoff_t offset_fsb,xfs_fileoff_t count_fsb,unsigned int flags,struct xfs_bmbt_irec * imap,u64 * seq)252 xfs_iomap_write_direct(
253 struct xfs_inode *ip,
254 xfs_fileoff_t offset_fsb,
255 xfs_fileoff_t count_fsb,
256 unsigned int flags,
257 struct xfs_bmbt_irec *imap,
258 u64 *seq)
259 {
260 struct xfs_mount *mp = ip->i_mount;
261 struct xfs_trans *tp;
262 xfs_filblks_t resaligned;
263 int nimaps;
264 unsigned int dblocks, rblocks;
265 bool force = false;
266 int error;
267 int bmapi_flags = XFS_BMAPI_PREALLOC;
268 int nr_exts = XFS_IEXT_ADD_NOSPLIT_CNT;
269
270 ASSERT(count_fsb > 0);
271
272 resaligned = xfs_aligned_fsb_count(offset_fsb, count_fsb,
273 xfs_get_extsz_hint(ip));
274 if (unlikely(XFS_IS_REALTIME_INODE(ip))) {
275 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
276 rblocks = resaligned;
277 } else {
278 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
279 rblocks = 0;
280 }
281
282 error = xfs_qm_dqattach(ip);
283 if (error)
284 return error;
285
286 /*
287 * For DAX, we do not allocate unwritten extents, but instead we zero
288 * the block before we commit the transaction. Ideally we'd like to do
289 * this outside the transaction context, but if we commit and then crash
290 * we may not have zeroed the blocks and this will be exposed on
291 * recovery of the allocation. Hence we must zero before commit.
292 *
293 * Further, if we are mapping unwritten extents here, we need to zero
294 * and convert them to written so that we don't need an unwritten extent
295 * callback for DAX. This also means that we need to be able to dip into
296 * the reserve block pool for bmbt block allocation if there is no space
297 * left but we need to do unwritten extent conversion.
298 */
299 if (flags & IOMAP_DAX) {
300 bmapi_flags = XFS_BMAPI_CONVERT | XFS_BMAPI_ZERO;
301 if (imap->br_state == XFS_EXT_UNWRITTEN) {
302 force = true;
303 nr_exts = XFS_IEXT_WRITE_UNWRITTEN_CNT;
304 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
305 }
306 }
307
308 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, dblocks,
309 rblocks, force, &tp);
310 if (error)
311 return error;
312
313 error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK, nr_exts);
314 if (error)
315 goto out_trans_cancel;
316
317 /*
318 * From this point onwards we overwrite the imap pointer that the
319 * caller gave to us.
320 */
321 nimaps = 1;
322 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, bmapi_flags, 0,
323 imap, &nimaps);
324 if (error)
325 goto out_trans_cancel;
326
327 /*
328 * Complete the transaction
329 */
330 error = xfs_trans_commit(tp);
331 if (error)
332 goto out_unlock;
333
334 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) {
335 xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
336 error = xfs_alert_fsblock_zero(ip, imap);
337 }
338
339 out_unlock:
340 *seq = xfs_iomap_inode_sequence(ip, 0);
341 xfs_iunlock(ip, XFS_ILOCK_EXCL);
342 return error;
343
344 out_trans_cancel:
345 xfs_trans_cancel(tp);
346 goto out_unlock;
347 }
348
349 STATIC bool
xfs_quota_need_throttle(struct xfs_inode * ip,xfs_dqtype_t type,xfs_fsblock_t alloc_blocks)350 xfs_quota_need_throttle(
351 struct xfs_inode *ip,
352 xfs_dqtype_t type,
353 xfs_fsblock_t alloc_blocks)
354 {
355 struct xfs_dquot *dq = xfs_inode_dquot(ip, type);
356 struct xfs_dquot_res *res;
357 struct xfs_dquot_pre *pre;
358
359 if (!dq || !xfs_this_quota_on(ip->i_mount, type))
360 return false;
361
362 if (XFS_IS_REALTIME_INODE(ip)) {
363 res = &dq->q_rtb;
364 pre = &dq->q_rtb_prealloc;
365 } else {
366 res = &dq->q_blk;
367 pre = &dq->q_blk_prealloc;
368 }
369
370 /* no hi watermark, no throttle */
371 if (!pre->q_prealloc_hi_wmark)
372 return false;
373
374 /* under the lo watermark, no throttle */
375 if (res->reserved + alloc_blocks < pre->q_prealloc_lo_wmark)
376 return false;
377
378 return true;
379 }
380
381 STATIC void
xfs_quota_calc_throttle(struct xfs_inode * ip,xfs_dqtype_t type,xfs_fsblock_t * qblocks,int * qshift,int64_t * qfreesp)382 xfs_quota_calc_throttle(
383 struct xfs_inode *ip,
384 xfs_dqtype_t type,
385 xfs_fsblock_t *qblocks,
386 int *qshift,
387 int64_t *qfreesp)
388 {
389 struct xfs_dquot *dq = xfs_inode_dquot(ip, type);
390 struct xfs_dquot_res *res;
391 struct xfs_dquot_pre *pre;
392 int64_t freesp;
393 int shift = 0;
394
395 if (!dq) {
396 res = NULL;
397 pre = NULL;
398 } else if (XFS_IS_REALTIME_INODE(ip)) {
399 res = &dq->q_rtb;
400 pre = &dq->q_rtb_prealloc;
401 } else {
402 res = &dq->q_blk;
403 pre = &dq->q_blk_prealloc;
404 }
405
406 /* no dq, or over hi wmark, squash the prealloc completely */
407 if (!res || res->reserved >= pre->q_prealloc_hi_wmark) {
408 *qblocks = 0;
409 *qfreesp = 0;
410 return;
411 }
412
413 freesp = pre->q_prealloc_hi_wmark - res->reserved;
414 if (freesp < pre->q_low_space[XFS_QLOWSP_5_PCNT]) {
415 shift = 2;
416 if (freesp < pre->q_low_space[XFS_QLOWSP_3_PCNT])
417 shift += 2;
418 if (freesp < pre->q_low_space[XFS_QLOWSP_1_PCNT])
419 shift += 2;
420 }
421
422 if (freesp < *qfreesp)
423 *qfreesp = freesp;
424
425 /* only overwrite the throttle values if we are more aggressive */
426 if ((freesp >> shift) < (*qblocks >> *qshift)) {
427 *qblocks = freesp;
428 *qshift = shift;
429 }
430 }
431
432 static int64_t
xfs_iomap_freesp(struct percpu_counter * counter,uint64_t low_space[XFS_LOWSP_MAX],int * shift)433 xfs_iomap_freesp(
434 struct percpu_counter *counter,
435 uint64_t low_space[XFS_LOWSP_MAX],
436 int *shift)
437 {
438 int64_t freesp;
439
440 freesp = percpu_counter_read_positive(counter);
441 if (freesp < low_space[XFS_LOWSP_5_PCNT]) {
442 *shift = 2;
443 if (freesp < low_space[XFS_LOWSP_4_PCNT])
444 (*shift)++;
445 if (freesp < low_space[XFS_LOWSP_3_PCNT])
446 (*shift)++;
447 if (freesp < low_space[XFS_LOWSP_2_PCNT])
448 (*shift)++;
449 if (freesp < low_space[XFS_LOWSP_1_PCNT])
450 (*shift)++;
451 }
452 return freesp;
453 }
454
455 /*
456 * If we don't have a user specified preallocation size, dynamically increase
457 * the preallocation size as the size of the file grows. Cap the maximum size
458 * at a single extent or less if the filesystem is near full. The closer the
459 * filesystem is to being full, the smaller the maximum preallocation.
460 */
461 STATIC xfs_fsblock_t
xfs_iomap_prealloc_size(struct xfs_inode * ip,int whichfork,loff_t offset,loff_t count,struct xfs_iext_cursor * icur)462 xfs_iomap_prealloc_size(
463 struct xfs_inode *ip,
464 int whichfork,
465 loff_t offset,
466 loff_t count,
467 struct xfs_iext_cursor *icur)
468 {
469 struct xfs_iext_cursor ncur = *icur;
470 struct xfs_bmbt_irec prev, got;
471 struct xfs_mount *mp = ip->i_mount;
472 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
473 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
474 int64_t freesp;
475 xfs_fsblock_t qblocks;
476 xfs_fsblock_t alloc_blocks = 0;
477 xfs_extlen_t plen;
478 int shift = 0;
479 int qshift = 0;
480
481 /*
482 * As an exception we don't do any preallocation at all if the file is
483 * smaller than the minimum preallocation and we are using the default
484 * dynamic preallocation scheme, as it is likely this is the only write
485 * to the file that is going to be done.
486 */
487 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_allocsize_blocks))
488 return 0;
489
490 /*
491 * Use the minimum preallocation size for small files or if we are
492 * writing right after a hole.
493 */
494 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_dalign) ||
495 !xfs_iext_prev_extent(ifp, &ncur, &prev) ||
496 prev.br_startoff + prev.br_blockcount < offset_fsb)
497 return mp->m_allocsize_blocks;
498
499 /*
500 * Take the size of the preceding data extents as the basis for the
501 * preallocation size. Note that we don't care if the previous extents
502 * are written or not.
503 */
504 plen = prev.br_blockcount;
505 while (xfs_iext_prev_extent(ifp, &ncur, &got)) {
506 if (plen > XFS_MAX_BMBT_EXTLEN / 2 ||
507 isnullstartblock(got.br_startblock) ||
508 got.br_startoff + got.br_blockcount != prev.br_startoff ||
509 got.br_startblock + got.br_blockcount != prev.br_startblock)
510 break;
511 plen += got.br_blockcount;
512 prev = got;
513 }
514
515 /*
516 * If the size of the extents is greater than half the maximum extent
517 * length, then use the current offset as the basis. This ensures that
518 * for large files the preallocation size always extends to
519 * XFS_BMBT_MAX_EXTLEN rather than falling short due to things like stripe
520 * unit/width alignment of real extents.
521 */
522 alloc_blocks = plen * 2;
523 if (alloc_blocks > XFS_MAX_BMBT_EXTLEN)
524 alloc_blocks = XFS_B_TO_FSB(mp, offset);
525 qblocks = alloc_blocks;
526
527 /*
528 * XFS_BMBT_MAX_EXTLEN is not a power of two value but we round the prealloc
529 * down to the nearest power of two value after throttling. To prevent
530 * the round down from unconditionally reducing the maximum supported
531 * prealloc size, we round up first, apply appropriate throttling, round
532 * down and cap the value to XFS_BMBT_MAX_EXTLEN.
533 */
534 alloc_blocks = XFS_FILEOFF_MIN(roundup_pow_of_two(XFS_MAX_BMBT_EXTLEN),
535 alloc_blocks);
536
537 if (unlikely(XFS_IS_REALTIME_INODE(ip)))
538 freesp = xfs_rtbxlen_to_blen(mp,
539 xfs_iomap_freesp(&mp->m_frextents,
540 mp->m_low_rtexts, &shift));
541 else
542 freesp = xfs_iomap_freesp(&mp->m_fdblocks, mp->m_low_space,
543 &shift);
544
545 /*
546 * Check each quota to cap the prealloc size, provide a shift value to
547 * throttle with and adjust amount of available space.
548 */
549 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_USER, alloc_blocks))
550 xfs_quota_calc_throttle(ip, XFS_DQTYPE_USER, &qblocks, &qshift,
551 &freesp);
552 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_GROUP, alloc_blocks))
553 xfs_quota_calc_throttle(ip, XFS_DQTYPE_GROUP, &qblocks, &qshift,
554 &freesp);
555 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_PROJ, alloc_blocks))
556 xfs_quota_calc_throttle(ip, XFS_DQTYPE_PROJ, &qblocks, &qshift,
557 &freesp);
558
559 /*
560 * The final prealloc size is set to the minimum of free space available
561 * in each of the quotas and the overall filesystem.
562 *
563 * The shift throttle value is set to the maximum value as determined by
564 * the global low free space values and per-quota low free space values.
565 */
566 alloc_blocks = min(alloc_blocks, qblocks);
567 shift = max(shift, qshift);
568
569 if (shift)
570 alloc_blocks >>= shift;
571 /*
572 * rounddown_pow_of_two() returns an undefined result if we pass in
573 * alloc_blocks = 0.
574 */
575 if (alloc_blocks)
576 alloc_blocks = rounddown_pow_of_two(alloc_blocks);
577 if (alloc_blocks > XFS_MAX_BMBT_EXTLEN)
578 alloc_blocks = XFS_MAX_BMBT_EXTLEN;
579
580 /*
581 * If we are still trying to allocate more space than is
582 * available, squash the prealloc hard. This can happen if we
583 * have a large file on a small filesystem and the above
584 * lowspace thresholds are smaller than XFS_BMBT_MAX_EXTLEN.
585 */
586 while (alloc_blocks && alloc_blocks >= freesp)
587 alloc_blocks >>= 4;
588 if (alloc_blocks < mp->m_allocsize_blocks)
589 alloc_blocks = mp->m_allocsize_blocks;
590 trace_xfs_iomap_prealloc_size(ip, alloc_blocks, shift,
591 mp->m_allocsize_blocks);
592 return alloc_blocks;
593 }
594
595 int
xfs_iomap_write_unwritten(xfs_inode_t * ip,xfs_off_t offset,xfs_off_t count,bool update_isize)596 xfs_iomap_write_unwritten(
597 xfs_inode_t *ip,
598 xfs_off_t offset,
599 xfs_off_t count,
600 bool update_isize)
601 {
602 xfs_mount_t *mp = ip->i_mount;
603 xfs_fileoff_t offset_fsb;
604 xfs_filblks_t count_fsb;
605 xfs_filblks_t numblks_fsb;
606 int nimaps;
607 xfs_trans_t *tp;
608 xfs_bmbt_irec_t imap;
609 struct inode *inode = VFS_I(ip);
610 xfs_fsize_t i_size;
611 uint resblks;
612 int error;
613
614 trace_xfs_unwritten_convert(ip, offset, count);
615
616 offset_fsb = XFS_B_TO_FSBT(mp, offset);
617 count_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
618 count_fsb = (xfs_filblks_t)(count_fsb - offset_fsb);
619
620 /*
621 * Reserve enough blocks in this transaction for two complete extent
622 * btree splits. We may be converting the middle part of an unwritten
623 * extent and in this case we will insert two new extents in the btree
624 * each of which could cause a full split.
625 *
626 * This reservation amount will be used in the first call to
627 * xfs_bmbt_split() to select an AG with enough space to satisfy the
628 * rest of the operation.
629 */
630 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
631
632 /* Attach dquots so that bmbt splits are accounted correctly. */
633 error = xfs_qm_dqattach(ip);
634 if (error)
635 return error;
636
637 do {
638 /*
639 * Set up a transaction to convert the range of extents
640 * from unwritten to real. Do allocations in a loop until
641 * we have covered the range passed in.
642 *
643 * Note that we can't risk to recursing back into the filesystem
644 * here as we might be asked to write out the same inode that we
645 * complete here and might deadlock on the iolock.
646 */
647 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks,
648 0, true, &tp);
649 if (error)
650 return error;
651
652 error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK,
653 XFS_IEXT_WRITE_UNWRITTEN_CNT);
654 if (error)
655 goto error_on_bmapi_transaction;
656
657 /*
658 * Modify the unwritten extent state of the buffer.
659 */
660 nimaps = 1;
661 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb,
662 XFS_BMAPI_CONVERT, resblks, &imap,
663 &nimaps);
664 if (error)
665 goto error_on_bmapi_transaction;
666
667 /*
668 * Log the updated inode size as we go. We have to be careful
669 * to only log it up to the actual write offset if it is
670 * halfway into a block.
671 */
672 i_size = XFS_FSB_TO_B(mp, offset_fsb + count_fsb);
673 if (i_size > offset + count)
674 i_size = offset + count;
675 if (update_isize && i_size > i_size_read(inode))
676 i_size_write(inode, i_size);
677 i_size = xfs_new_eof(ip, i_size);
678 if (i_size) {
679 ip->i_disk_size = i_size;
680 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
681 }
682
683 error = xfs_trans_commit(tp);
684 xfs_iunlock(ip, XFS_ILOCK_EXCL);
685 if (error)
686 return error;
687
688 if (unlikely(!xfs_valid_startblock(ip, imap.br_startblock))) {
689 xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
690 return xfs_alert_fsblock_zero(ip, &imap);
691 }
692
693 if ((numblks_fsb = imap.br_blockcount) == 0) {
694 /*
695 * The numblks_fsb value should always get
696 * smaller, otherwise the loop is stuck.
697 */
698 ASSERT(imap.br_blockcount);
699 break;
700 }
701 offset_fsb += numblks_fsb;
702 count_fsb -= numblks_fsb;
703 } while (count_fsb > 0);
704
705 return 0;
706
707 error_on_bmapi_transaction:
708 xfs_trans_cancel(tp);
709 xfs_iunlock(ip, XFS_ILOCK_EXCL);
710 return error;
711 }
712
713 static inline bool
imap_needs_alloc(struct inode * inode,unsigned flags,struct xfs_bmbt_irec * imap,int nimaps)714 imap_needs_alloc(
715 struct inode *inode,
716 unsigned flags,
717 struct xfs_bmbt_irec *imap,
718 int nimaps)
719 {
720 /* don't allocate blocks when just zeroing */
721 if (flags & IOMAP_ZERO)
722 return false;
723 if (!nimaps ||
724 imap->br_startblock == HOLESTARTBLOCK ||
725 imap->br_startblock == DELAYSTARTBLOCK)
726 return true;
727 /* we convert unwritten extents before copying the data for DAX */
728 if ((flags & IOMAP_DAX) && imap->br_state == XFS_EXT_UNWRITTEN)
729 return true;
730 return false;
731 }
732
733 static inline bool
imap_needs_cow(struct xfs_inode * ip,unsigned int flags,struct xfs_bmbt_irec * imap,int nimaps)734 imap_needs_cow(
735 struct xfs_inode *ip,
736 unsigned int flags,
737 struct xfs_bmbt_irec *imap,
738 int nimaps)
739 {
740 if (!xfs_is_cow_inode(ip))
741 return false;
742
743 /* when zeroing we don't have to COW holes or unwritten extents */
744 if (flags & (IOMAP_UNSHARE | IOMAP_ZERO)) {
745 if (!nimaps ||
746 imap->br_startblock == HOLESTARTBLOCK ||
747 imap->br_state == XFS_EXT_UNWRITTEN)
748 return false;
749 }
750
751 return true;
752 }
753
754 /*
755 * Extents not yet cached requires exclusive access, don't block for
756 * IOMAP_NOWAIT.
757 *
758 * This is basically an opencoded xfs_ilock_data_map_shared() call, but with
759 * support for IOMAP_NOWAIT.
760 */
761 static int
xfs_ilock_for_iomap(struct xfs_inode * ip,unsigned flags,unsigned * lockmode)762 xfs_ilock_for_iomap(
763 struct xfs_inode *ip,
764 unsigned flags,
765 unsigned *lockmode)
766 {
767 if (flags & IOMAP_NOWAIT) {
768 if (xfs_need_iread_extents(&ip->i_df))
769 return -EAGAIN;
770 if (!xfs_ilock_nowait(ip, *lockmode))
771 return -EAGAIN;
772 } else {
773 if (xfs_need_iread_extents(&ip->i_df))
774 *lockmode = XFS_ILOCK_EXCL;
775 xfs_ilock(ip, *lockmode);
776 }
777
778 return 0;
779 }
780
781 /*
782 * Check that the imap we are going to return to the caller spans the entire
783 * range that the caller requested for the IO.
784 */
785 static bool
imap_spans_range(struct xfs_bmbt_irec * imap,xfs_fileoff_t offset_fsb,xfs_fileoff_t end_fsb)786 imap_spans_range(
787 struct xfs_bmbt_irec *imap,
788 xfs_fileoff_t offset_fsb,
789 xfs_fileoff_t end_fsb)
790 {
791 if (imap->br_startoff > offset_fsb)
792 return false;
793 if (imap->br_startoff + imap->br_blockcount < end_fsb)
794 return false;
795 return true;
796 }
797
798 static int
xfs_direct_write_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)799 xfs_direct_write_iomap_begin(
800 struct inode *inode,
801 loff_t offset,
802 loff_t length,
803 unsigned flags,
804 struct iomap *iomap,
805 struct iomap *srcmap)
806 {
807 struct xfs_inode *ip = XFS_I(inode);
808 struct xfs_mount *mp = ip->i_mount;
809 struct xfs_bmbt_irec imap, cmap;
810 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
811 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length);
812 int nimaps = 1, error = 0;
813 bool shared = false;
814 u16 iomap_flags = 0;
815 unsigned int lockmode;
816 u64 seq;
817
818 ASSERT(flags & (IOMAP_WRITE | IOMAP_ZERO));
819
820 if (xfs_is_shutdown(mp))
821 return -EIO;
822
823 /*
824 * Writes that span EOF might trigger an IO size update on completion,
825 * so consider them to be dirty for the purposes of O_DSYNC even if
826 * there is no other metadata changes pending or have been made here.
827 */
828 if (offset + length > i_size_read(inode))
829 iomap_flags |= IOMAP_F_DIRTY;
830
831 /*
832 * COW writes may allocate delalloc space or convert unwritten COW
833 * extents, so we need to make sure to take the lock exclusively here.
834 */
835 if (xfs_is_cow_inode(ip))
836 lockmode = XFS_ILOCK_EXCL;
837 else
838 lockmode = XFS_ILOCK_SHARED;
839
840 relock:
841 error = xfs_ilock_for_iomap(ip, flags, &lockmode);
842 if (error)
843 return error;
844
845 /*
846 * The reflink iflag could have changed since the earlier unlocked
847 * check, check if it again and relock if needed.
848 */
849 if (xfs_is_cow_inode(ip) && lockmode == XFS_ILOCK_SHARED) {
850 xfs_iunlock(ip, lockmode);
851 lockmode = XFS_ILOCK_EXCL;
852 goto relock;
853 }
854
855 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
856 &nimaps, 0);
857 if (error)
858 goto out_unlock;
859
860 if (imap_needs_cow(ip, flags, &imap, nimaps)) {
861 error = -EAGAIN;
862 if (flags & IOMAP_NOWAIT)
863 goto out_unlock;
864
865 /* may drop and re-acquire the ilock */
866 error = xfs_reflink_allocate_cow(ip, &imap, &cmap, &shared,
867 &lockmode,
868 (flags & IOMAP_DIRECT) || IS_DAX(inode));
869 if (error)
870 goto out_unlock;
871 if (shared)
872 goto out_found_cow;
873 end_fsb = imap.br_startoff + imap.br_blockcount;
874 length = XFS_FSB_TO_B(mp, end_fsb) - offset;
875 }
876
877 if (imap_needs_alloc(inode, flags, &imap, nimaps))
878 goto allocate_blocks;
879
880 /*
881 * NOWAIT and OVERWRITE I/O needs to span the entire requested I/O with
882 * a single map so that we avoid partial IO failures due to the rest of
883 * the I/O range not covered by this map triggering an EAGAIN condition
884 * when it is subsequently mapped and aborting the I/O.
885 */
886 if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY)) {
887 error = -EAGAIN;
888 if (!imap_spans_range(&imap, offset_fsb, end_fsb))
889 goto out_unlock;
890 }
891
892 /*
893 * For overwrite only I/O, we cannot convert unwritten extents without
894 * requiring sub-block zeroing. This can only be done under an
895 * exclusive IOLOCK, hence return -EAGAIN if this is not a written
896 * extent to tell the caller to try again.
897 */
898 if (flags & IOMAP_OVERWRITE_ONLY) {
899 error = -EAGAIN;
900 if (imap.br_state != XFS_EXT_NORM &&
901 ((offset | length) & mp->m_blockmask))
902 goto out_unlock;
903 }
904
905 seq = xfs_iomap_inode_sequence(ip, iomap_flags);
906 xfs_iunlock(ip, lockmode);
907 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap);
908 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags, seq);
909
910 allocate_blocks:
911 error = -EAGAIN;
912 if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY))
913 goto out_unlock;
914
915 /*
916 * We cap the maximum length we map to a sane size to keep the chunks
917 * of work done where somewhat symmetric with the work writeback does.
918 * This is a completely arbitrary number pulled out of thin air as a
919 * best guess for initial testing.
920 *
921 * Note that the values needs to be less than 32-bits wide until the
922 * lower level functions are updated.
923 */
924 length = min_t(loff_t, length, 1024 * PAGE_SIZE);
925 end_fsb = xfs_iomap_end_fsb(mp, offset, length);
926
927 if (offset + length > XFS_ISIZE(ip))
928 end_fsb = xfs_iomap_eof_align_last_fsb(ip, end_fsb);
929 else if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
930 end_fsb = min(end_fsb, imap.br_startoff + imap.br_blockcount);
931 xfs_iunlock(ip, lockmode);
932
933 error = xfs_iomap_write_direct(ip, offset_fsb, end_fsb - offset_fsb,
934 flags, &imap, &seq);
935 if (error)
936 return error;
937
938 trace_xfs_iomap_alloc(ip, offset, length, XFS_DATA_FORK, &imap);
939 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags,
940 iomap_flags | IOMAP_F_NEW, seq);
941
942 out_found_cow:
943 length = XFS_FSB_TO_B(mp, cmap.br_startoff + cmap.br_blockcount);
944 trace_xfs_iomap_found(ip, offset, length - offset, XFS_COW_FORK, &cmap);
945 if (imap.br_startblock != HOLESTARTBLOCK) {
946 seq = xfs_iomap_inode_sequence(ip, 0);
947 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0, seq);
948 if (error)
949 goto out_unlock;
950 }
951 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED);
952 xfs_iunlock(ip, lockmode);
953 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, IOMAP_F_SHARED, seq);
954
955 out_unlock:
956 if (lockmode)
957 xfs_iunlock(ip, lockmode);
958 return error;
959 }
960
961 const struct iomap_ops xfs_direct_write_iomap_ops = {
962 .iomap_begin = xfs_direct_write_iomap_begin,
963 };
964
965 static int
xfs_dax_write_iomap_end(struct inode * inode,loff_t pos,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)966 xfs_dax_write_iomap_end(
967 struct inode *inode,
968 loff_t pos,
969 loff_t length,
970 ssize_t written,
971 unsigned flags,
972 struct iomap *iomap)
973 {
974 struct xfs_inode *ip = XFS_I(inode);
975
976 if (!xfs_is_cow_inode(ip))
977 return 0;
978
979 if (!written) {
980 xfs_reflink_cancel_cow_range(ip, pos, length, true);
981 return 0;
982 }
983
984 return xfs_reflink_end_cow(ip, pos, written);
985 }
986
987 const struct iomap_ops xfs_dax_write_iomap_ops = {
988 .iomap_begin = xfs_direct_write_iomap_begin,
989 .iomap_end = xfs_dax_write_iomap_end,
990 };
991
992 static int
xfs_buffered_write_iomap_begin(struct inode * inode,loff_t offset,loff_t count,unsigned flags,struct iomap * iomap,struct iomap * srcmap)993 xfs_buffered_write_iomap_begin(
994 struct inode *inode,
995 loff_t offset,
996 loff_t count,
997 unsigned flags,
998 struct iomap *iomap,
999 struct iomap *srcmap)
1000 {
1001 struct xfs_inode *ip = XFS_I(inode);
1002 struct xfs_mount *mp = ip->i_mount;
1003 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1004 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, count);
1005 struct xfs_bmbt_irec imap, cmap;
1006 struct xfs_iext_cursor icur, ccur;
1007 xfs_fsblock_t prealloc_blocks = 0;
1008 bool eof = false, cow_eof = false, shared = false;
1009 int allocfork = XFS_DATA_FORK;
1010 int error = 0;
1011 unsigned int lockmode = XFS_ILOCK_EXCL;
1012 unsigned int iomap_flags = 0;
1013 u64 seq;
1014
1015 if (xfs_is_shutdown(mp))
1016 return -EIO;
1017
1018 /* we can't use delayed allocations when using extent size hints */
1019 if (xfs_get_extsz_hint(ip))
1020 return xfs_direct_write_iomap_begin(inode, offset, count,
1021 flags, iomap, srcmap);
1022
1023 error = xfs_qm_dqattach(ip);
1024 if (error)
1025 return error;
1026
1027 error = xfs_ilock_for_iomap(ip, flags, &lockmode);
1028 if (error)
1029 return error;
1030
1031 if (XFS_IS_CORRUPT(mp, !xfs_ifork_has_extents(&ip->i_df)) ||
1032 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BMAPIFORMAT)) {
1033 xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
1034 error = -EFSCORRUPTED;
1035 goto out_unlock;
1036 }
1037
1038 XFS_STATS_INC(mp, xs_blk_mapw);
1039
1040 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
1041 if (error)
1042 goto out_unlock;
1043
1044 /*
1045 * Search the data fork first to look up our source mapping. We
1046 * always need the data fork map, as we have to return it to the
1047 * iomap code so that the higher level write code can read data in to
1048 * perform read-modify-write cycles for unaligned writes.
1049 */
1050 eof = !xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap);
1051 if (eof)
1052 imap.br_startoff = end_fsb; /* fake hole until the end */
1053
1054 /* We never need to allocate blocks for zeroing or unsharing a hole. */
1055 if ((flags & (IOMAP_UNSHARE | IOMAP_ZERO)) &&
1056 imap.br_startoff > offset_fsb) {
1057 xfs_hole_to_iomap(ip, iomap, offset_fsb, imap.br_startoff);
1058 goto out_unlock;
1059 }
1060
1061 /*
1062 * For zeroing, trim a delalloc extent that extends beyond the EOF
1063 * block. If it starts beyond the EOF block, convert it to an
1064 * unwritten extent.
1065 */
1066 if ((flags & IOMAP_ZERO) && imap.br_startoff <= offset_fsb &&
1067 isnullstartblock(imap.br_startblock)) {
1068 xfs_fileoff_t eof_fsb = XFS_B_TO_FSB(mp, XFS_ISIZE(ip));
1069
1070 if (offset_fsb >= eof_fsb)
1071 goto convert_delay;
1072 if (end_fsb > eof_fsb) {
1073 end_fsb = eof_fsb;
1074 xfs_trim_extent(&imap, offset_fsb,
1075 end_fsb - offset_fsb);
1076 }
1077 }
1078
1079 /*
1080 * Search the COW fork extent list even if we did not find a data fork
1081 * extent. This serves two purposes: first this implements the
1082 * speculative preallocation using cowextsize, so that we also unshare
1083 * block adjacent to shared blocks instead of just the shared blocks
1084 * themselves. Second the lookup in the extent list is generally faster
1085 * than going out to the shared extent tree.
1086 */
1087 if (xfs_is_cow_inode(ip)) {
1088 if (!ip->i_cowfp) {
1089 ASSERT(!xfs_is_reflink_inode(ip));
1090 xfs_ifork_init_cow(ip);
1091 }
1092 cow_eof = !xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb,
1093 &ccur, &cmap);
1094 if (!cow_eof && cmap.br_startoff <= offset_fsb) {
1095 trace_xfs_reflink_cow_found(ip, &cmap);
1096 goto found_cow;
1097 }
1098 }
1099
1100 if (imap.br_startoff <= offset_fsb) {
1101 /*
1102 * For reflink files we may need a delalloc reservation when
1103 * overwriting shared extents. This includes zeroing of
1104 * existing extents that contain data.
1105 */
1106 if (!xfs_is_cow_inode(ip) ||
1107 ((flags & IOMAP_ZERO) && imap.br_state != XFS_EXT_NORM)) {
1108 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
1109 &imap);
1110 goto found_imap;
1111 }
1112
1113 xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb);
1114
1115 /* Trim the mapping to the nearest shared extent boundary. */
1116 error = xfs_bmap_trim_cow(ip, &imap, &shared);
1117 if (error)
1118 goto out_unlock;
1119
1120 /* Not shared? Just report the (potentially capped) extent. */
1121 if (!shared) {
1122 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
1123 &imap);
1124 goto found_imap;
1125 }
1126
1127 /*
1128 * Fork all the shared blocks from our write offset until the
1129 * end of the extent.
1130 */
1131 allocfork = XFS_COW_FORK;
1132 end_fsb = imap.br_startoff + imap.br_blockcount;
1133 } else {
1134 /*
1135 * We cap the maximum length we map here to MAX_WRITEBACK_PAGES
1136 * pages to keep the chunks of work done where somewhat
1137 * symmetric with the work writeback does. This is a completely
1138 * arbitrary number pulled out of thin air.
1139 *
1140 * Note that the values needs to be less than 32-bits wide until
1141 * the lower level functions are updated.
1142 */
1143 count = min_t(loff_t, count, 1024 * PAGE_SIZE);
1144 end_fsb = xfs_iomap_end_fsb(mp, offset, count);
1145
1146 if (xfs_is_always_cow_inode(ip))
1147 allocfork = XFS_COW_FORK;
1148 }
1149
1150 if (eof && offset + count > XFS_ISIZE(ip)) {
1151 /*
1152 * Determine the initial size of the preallocation.
1153 * We clean up any extra preallocation when the file is closed.
1154 */
1155 if (xfs_has_allocsize(mp))
1156 prealloc_blocks = mp->m_allocsize_blocks;
1157 else if (allocfork == XFS_DATA_FORK)
1158 prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork,
1159 offset, count, &icur);
1160 else
1161 prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork,
1162 offset, count, &ccur);
1163 if (prealloc_blocks) {
1164 xfs_extlen_t align;
1165 xfs_off_t end_offset;
1166 xfs_fileoff_t p_end_fsb;
1167
1168 end_offset = XFS_ALLOC_ALIGN(mp, offset + count - 1);
1169 p_end_fsb = XFS_B_TO_FSBT(mp, end_offset) +
1170 prealloc_blocks;
1171
1172 align = xfs_eof_alignment(ip);
1173 if (align)
1174 p_end_fsb = roundup_64(p_end_fsb, align);
1175
1176 p_end_fsb = min(p_end_fsb,
1177 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes));
1178 ASSERT(p_end_fsb > offset_fsb);
1179 prealloc_blocks = p_end_fsb - end_fsb;
1180 }
1181 }
1182
1183 /*
1184 * Flag newly allocated delalloc blocks with IOMAP_F_NEW so we punch
1185 * them out if the write happens to fail.
1186 */
1187 iomap_flags |= IOMAP_F_NEW;
1188 if (allocfork == XFS_COW_FORK) {
1189 error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb,
1190 end_fsb - offset_fsb, prealloc_blocks, &cmap,
1191 &ccur, cow_eof);
1192 if (error)
1193 goto out_unlock;
1194
1195 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &cmap);
1196 goto found_cow;
1197 }
1198
1199 error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb,
1200 end_fsb - offset_fsb, prealloc_blocks, &imap, &icur,
1201 eof);
1202 if (error)
1203 goto out_unlock;
1204
1205 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &imap);
1206 found_imap:
1207 seq = xfs_iomap_inode_sequence(ip, iomap_flags);
1208 xfs_iunlock(ip, lockmode);
1209 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags, seq);
1210
1211 convert_delay:
1212 xfs_iunlock(ip, lockmode);
1213 truncate_pagecache(inode, offset);
1214 error = xfs_bmapi_convert_delalloc(ip, XFS_DATA_FORK, offset,
1215 iomap, NULL);
1216 if (error)
1217 return error;
1218
1219 trace_xfs_iomap_alloc(ip, offset, count, XFS_DATA_FORK, &imap);
1220 return 0;
1221
1222 found_cow:
1223 if (imap.br_startoff <= offset_fsb) {
1224 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0,
1225 xfs_iomap_inode_sequence(ip, 0));
1226 if (error)
1227 goto out_unlock;
1228 } else {
1229 xfs_trim_extent(&cmap, offset_fsb,
1230 imap.br_startoff - offset_fsb);
1231 }
1232
1233 iomap_flags |= IOMAP_F_SHARED;
1234 seq = xfs_iomap_inode_sequence(ip, iomap_flags);
1235 xfs_iunlock(ip, lockmode);
1236 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, iomap_flags, seq);
1237
1238 out_unlock:
1239 xfs_iunlock(ip, lockmode);
1240 return error;
1241 }
1242
1243 static void
xfs_buffered_write_delalloc_punch(struct inode * inode,loff_t offset,loff_t length,struct iomap * iomap)1244 xfs_buffered_write_delalloc_punch(
1245 struct inode *inode,
1246 loff_t offset,
1247 loff_t length,
1248 struct iomap *iomap)
1249 {
1250 xfs_bmap_punch_delalloc_range(XFS_I(inode),
1251 (iomap->flags & IOMAP_F_SHARED) ?
1252 XFS_COW_FORK : XFS_DATA_FORK,
1253 offset, offset + length);
1254 }
1255
1256 static int
xfs_buffered_write_iomap_end(struct inode * inode,loff_t offset,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)1257 xfs_buffered_write_iomap_end(
1258 struct inode *inode,
1259 loff_t offset,
1260 loff_t length,
1261 ssize_t written,
1262 unsigned flags,
1263 struct iomap *iomap)
1264 {
1265 loff_t start_byte, end_byte;
1266
1267 /* If we didn't reserve the blocks, we're not allowed to punch them. */
1268 if (iomap->type != IOMAP_DELALLOC || !(iomap->flags & IOMAP_F_NEW))
1269 return 0;
1270
1271 /*
1272 * iomap_page_mkwrite() will never fail in a way that requires delalloc
1273 * extents that it allocated to be revoked. Hence never try to release
1274 * them here.
1275 */
1276 if (flags & IOMAP_FAULT)
1277 return 0;
1278
1279 /* Nothing to do if we've written the entire delalloc extent */
1280 start_byte = iomap_last_written_block(inode, offset, written);
1281 end_byte = round_up(offset + length, i_blocksize(inode));
1282 if (start_byte >= end_byte)
1283 return 0;
1284
1285 /* For zeroing operations the callers already hold invalidate_lock. */
1286 if (flags & (IOMAP_UNSHARE | IOMAP_ZERO)) {
1287 rwsem_assert_held_write(&inode->i_mapping->invalidate_lock);
1288 iomap_write_delalloc_release(inode, start_byte, end_byte, flags,
1289 iomap, xfs_buffered_write_delalloc_punch);
1290 } else {
1291 filemap_invalidate_lock(inode->i_mapping);
1292 iomap_write_delalloc_release(inode, start_byte, end_byte, flags,
1293 iomap, xfs_buffered_write_delalloc_punch);
1294 filemap_invalidate_unlock(inode->i_mapping);
1295 }
1296
1297 return 0;
1298 }
1299
1300 const struct iomap_ops xfs_buffered_write_iomap_ops = {
1301 .iomap_begin = xfs_buffered_write_iomap_begin,
1302 .iomap_end = xfs_buffered_write_iomap_end,
1303 };
1304
1305 static int
xfs_read_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1306 xfs_read_iomap_begin(
1307 struct inode *inode,
1308 loff_t offset,
1309 loff_t length,
1310 unsigned flags,
1311 struct iomap *iomap,
1312 struct iomap *srcmap)
1313 {
1314 struct xfs_inode *ip = XFS_I(inode);
1315 struct xfs_mount *mp = ip->i_mount;
1316 struct xfs_bmbt_irec imap;
1317 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1318 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length);
1319 int nimaps = 1, error = 0;
1320 bool shared = false;
1321 unsigned int lockmode = XFS_ILOCK_SHARED;
1322 u64 seq;
1323
1324 ASSERT(!(flags & (IOMAP_WRITE | IOMAP_ZERO)));
1325
1326 if (xfs_is_shutdown(mp))
1327 return -EIO;
1328
1329 error = xfs_ilock_for_iomap(ip, flags, &lockmode);
1330 if (error)
1331 return error;
1332 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
1333 &nimaps, 0);
1334 if (!error && ((flags & IOMAP_REPORT) || IS_DAX(inode)))
1335 error = xfs_reflink_trim_around_shared(ip, &imap, &shared);
1336 seq = xfs_iomap_inode_sequence(ip, shared ? IOMAP_F_SHARED : 0);
1337 xfs_iunlock(ip, lockmode);
1338
1339 if (error)
1340 return error;
1341 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap);
1342 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags,
1343 shared ? IOMAP_F_SHARED : 0, seq);
1344 }
1345
1346 const struct iomap_ops xfs_read_iomap_ops = {
1347 .iomap_begin = xfs_read_iomap_begin,
1348 };
1349
1350 static int
xfs_seek_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1351 xfs_seek_iomap_begin(
1352 struct inode *inode,
1353 loff_t offset,
1354 loff_t length,
1355 unsigned flags,
1356 struct iomap *iomap,
1357 struct iomap *srcmap)
1358 {
1359 struct xfs_inode *ip = XFS_I(inode);
1360 struct xfs_mount *mp = ip->i_mount;
1361 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1362 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length);
1363 xfs_fileoff_t cow_fsb = NULLFILEOFF, data_fsb = NULLFILEOFF;
1364 struct xfs_iext_cursor icur;
1365 struct xfs_bmbt_irec imap, cmap;
1366 int error = 0;
1367 unsigned lockmode;
1368 u64 seq;
1369
1370 if (xfs_is_shutdown(mp))
1371 return -EIO;
1372
1373 lockmode = xfs_ilock_data_map_shared(ip);
1374 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
1375 if (error)
1376 goto out_unlock;
1377
1378 if (xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) {
1379 /*
1380 * If we found a data extent we are done.
1381 */
1382 if (imap.br_startoff <= offset_fsb)
1383 goto done;
1384 data_fsb = imap.br_startoff;
1385 } else {
1386 /*
1387 * Fake a hole until the end of the file.
1388 */
1389 data_fsb = xfs_iomap_end_fsb(mp, offset, length);
1390 }
1391
1392 /*
1393 * If a COW fork extent covers the hole, report it - capped to the next
1394 * data fork extent:
1395 */
1396 if (xfs_inode_has_cow_data(ip) &&
1397 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap))
1398 cow_fsb = cmap.br_startoff;
1399 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
1400 if (data_fsb < cow_fsb + cmap.br_blockcount)
1401 end_fsb = min(end_fsb, data_fsb);
1402 xfs_trim_extent(&cmap, offset_fsb, end_fsb - offset_fsb);
1403 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED);
1404 error = xfs_bmbt_to_iomap(ip, iomap, &cmap, flags,
1405 IOMAP_F_SHARED, seq);
1406 /*
1407 * This is a COW extent, so we must probe the page cache
1408 * because there could be dirty page cache being backed
1409 * by this extent.
1410 */
1411 iomap->type = IOMAP_UNWRITTEN;
1412 goto out_unlock;
1413 }
1414
1415 /*
1416 * Else report a hole, capped to the next found data or COW extent.
1417 */
1418 if (cow_fsb != NULLFILEOFF && cow_fsb < data_fsb)
1419 imap.br_blockcount = cow_fsb - offset_fsb;
1420 else
1421 imap.br_blockcount = data_fsb - offset_fsb;
1422 imap.br_startoff = offset_fsb;
1423 imap.br_startblock = HOLESTARTBLOCK;
1424 imap.br_state = XFS_EXT_NORM;
1425 done:
1426 seq = xfs_iomap_inode_sequence(ip, 0);
1427 xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb);
1428 error = xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0, seq);
1429 out_unlock:
1430 xfs_iunlock(ip, lockmode);
1431 return error;
1432 }
1433
1434 const struct iomap_ops xfs_seek_iomap_ops = {
1435 .iomap_begin = xfs_seek_iomap_begin,
1436 };
1437
1438 static int
xfs_xattr_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1439 xfs_xattr_iomap_begin(
1440 struct inode *inode,
1441 loff_t offset,
1442 loff_t length,
1443 unsigned flags,
1444 struct iomap *iomap,
1445 struct iomap *srcmap)
1446 {
1447 struct xfs_inode *ip = XFS_I(inode);
1448 struct xfs_mount *mp = ip->i_mount;
1449 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1450 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length);
1451 struct xfs_bmbt_irec imap;
1452 int nimaps = 1, error = 0;
1453 unsigned lockmode;
1454 int seq;
1455
1456 if (xfs_is_shutdown(mp))
1457 return -EIO;
1458
1459 lockmode = xfs_ilock_attr_map_shared(ip);
1460
1461 /* if there are no attribute fork or extents, return ENOENT */
1462 if (!xfs_inode_has_attr_fork(ip) || !ip->i_af.if_nextents) {
1463 error = -ENOENT;
1464 goto out_unlock;
1465 }
1466
1467 ASSERT(ip->i_af.if_format != XFS_DINODE_FMT_LOCAL);
1468 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
1469 &nimaps, XFS_BMAPI_ATTRFORK);
1470 out_unlock:
1471
1472 seq = xfs_iomap_inode_sequence(ip, IOMAP_F_XATTR);
1473 xfs_iunlock(ip, lockmode);
1474
1475 if (error)
1476 return error;
1477 ASSERT(nimaps);
1478 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, IOMAP_F_XATTR, seq);
1479 }
1480
1481 const struct iomap_ops xfs_xattr_iomap_ops = {
1482 .iomap_begin = xfs_xattr_iomap_begin,
1483 };
1484
1485 int
xfs_zero_range(struct xfs_inode * ip,loff_t pos,loff_t len,bool * did_zero)1486 xfs_zero_range(
1487 struct xfs_inode *ip,
1488 loff_t pos,
1489 loff_t len,
1490 bool *did_zero)
1491 {
1492 struct inode *inode = VFS_I(ip);
1493
1494 xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL);
1495
1496 if (IS_DAX(inode))
1497 return dax_zero_range(inode, pos, len, did_zero,
1498 &xfs_dax_write_iomap_ops);
1499 return iomap_zero_range(inode, pos, len, did_zero,
1500 &xfs_buffered_write_iomap_ops);
1501 }
1502
1503 int
xfs_truncate_page(struct xfs_inode * ip,loff_t pos,bool * did_zero)1504 xfs_truncate_page(
1505 struct xfs_inode *ip,
1506 loff_t pos,
1507 bool *did_zero)
1508 {
1509 struct inode *inode = VFS_I(ip);
1510
1511 if (IS_DAX(inode))
1512 return dax_truncate_page(inode, pos, did_zero,
1513 &xfs_dax_write_iomap_ops);
1514 return iomap_truncate_page(inode, pos, did_zero,
1515 &xfs_buffered_write_iomap_ops);
1516 }
1517