xref: /linux/drivers/firmware/cirrus/cs_dsp.c (revision 8770bd8f91749dfd05714447dfbd511147cb9576)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * cs_dsp.c  --  Cirrus Logic DSP firmware support
4  *
5  * Based on sound/soc/codecs/wm_adsp.c
6  *
7  * Copyright 2012 Wolfson Microelectronics plc
8  * Copyright (C) 2015-2021 Cirrus Logic, Inc. and
9  *                         Cirrus Logic International Semiconductor Ltd.
10  */
11 
12 #include <kunit/visibility.h>
13 #include <linux/cleanup.h>
14 #include <linux/ctype.h>
15 #include <linux/debugfs.h>
16 #include <linux/delay.h>
17 #include <linux/math.h>
18 #include <linux/minmax.h>
19 #include <linux/module.h>
20 #include <linux/moduleparam.h>
21 #include <linux/seq_file.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 
25 #include <linux/firmware/cirrus/cs_dsp.h>
26 #include <linux/firmware/cirrus/wmfw.h>
27 
28 #include "cs_dsp.h"
29 
30 /*
31  * When the KUnit test is running the error-case tests will cause a lot
32  * of messages. Rate-limit to prevent overflowing the kernel log buffer
33  * during KUnit test runs.
34  */
35 #if IS_ENABLED(CONFIG_FW_CS_DSP_KUNIT_TEST)
36 bool cs_dsp_suppress_err_messages;
37 EXPORT_SYMBOL_IF_KUNIT(cs_dsp_suppress_err_messages);
38 
39 bool cs_dsp_suppress_warn_messages;
40 EXPORT_SYMBOL_IF_KUNIT(cs_dsp_suppress_warn_messages);
41 
42 bool cs_dsp_suppress_info_messages;
43 EXPORT_SYMBOL_IF_KUNIT(cs_dsp_suppress_info_messages);
44 
45 #define cs_dsp_err(_dsp, fmt, ...) \
46 	do { \
47 		if (!cs_dsp_suppress_err_messages) \
48 			dev_err_ratelimited(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__); \
49 	} while (false)
50 #define cs_dsp_warn(_dsp, fmt, ...) \
51 	do { \
52 		if (!cs_dsp_suppress_warn_messages) \
53 			dev_warn_ratelimited(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__); \
54 	} while (false)
55 #define cs_dsp_info(_dsp, fmt, ...) \
56 	do { \
57 		if (!cs_dsp_suppress_info_messages) \
58 			dev_info_ratelimited(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__); \
59 	} while (false)
60 #define cs_dsp_dbg(_dsp, fmt, ...) \
61 	dev_dbg_ratelimited(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
62 #else
63 #define cs_dsp_err(_dsp, fmt, ...) \
64 	dev_err(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
65 #define cs_dsp_warn(_dsp, fmt, ...) \
66 	dev_warn(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
67 #define cs_dsp_info(_dsp, fmt, ...) \
68 	dev_info(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
69 #define cs_dsp_dbg(_dsp, fmt, ...) \
70 	dev_dbg(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
71 #endif
72 
73 #define ADSP1_CONTROL_1                   0x00
74 #define ADSP1_CONTROL_2                   0x02
75 #define ADSP1_CONTROL_3                   0x03
76 #define ADSP1_CONTROL_4                   0x04
77 #define ADSP1_CONTROL_5                   0x06
78 #define ADSP1_CONTROL_6                   0x07
79 #define ADSP1_CONTROL_7                   0x08
80 #define ADSP1_CONTROL_8                   0x09
81 #define ADSP1_CONTROL_9                   0x0A
82 #define ADSP1_CONTROL_10                  0x0B
83 #define ADSP1_CONTROL_11                  0x0C
84 #define ADSP1_CONTROL_12                  0x0D
85 #define ADSP1_CONTROL_13                  0x0F
86 #define ADSP1_CONTROL_14                  0x10
87 #define ADSP1_CONTROL_15                  0x11
88 #define ADSP1_CONTROL_16                  0x12
89 #define ADSP1_CONTROL_17                  0x13
90 #define ADSP1_CONTROL_18                  0x14
91 #define ADSP1_CONTROL_19                  0x16
92 #define ADSP1_CONTROL_20                  0x17
93 #define ADSP1_CONTROL_21                  0x18
94 #define ADSP1_CONTROL_22                  0x1A
95 #define ADSP1_CONTROL_23                  0x1B
96 #define ADSP1_CONTROL_24                  0x1C
97 #define ADSP1_CONTROL_25                  0x1E
98 #define ADSP1_CONTROL_26                  0x20
99 #define ADSP1_CONTROL_27                  0x21
100 #define ADSP1_CONTROL_28                  0x22
101 #define ADSP1_CONTROL_29                  0x23
102 #define ADSP1_CONTROL_30                  0x24
103 #define ADSP1_CONTROL_31                  0x26
104 
105 /*
106  * ADSP1 Control 19
107  */
108 #define ADSP1_WDMA_BUFFER_LENGTH_MASK     0x00FF  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
109 #define ADSP1_WDMA_BUFFER_LENGTH_SHIFT         0  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
110 #define ADSP1_WDMA_BUFFER_LENGTH_WIDTH         8  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
111 
112 /*
113  * ADSP1 Control 30
114  */
115 #define ADSP1_DBG_CLK_ENA                 0x0008  /* DSP1_DBG_CLK_ENA */
116 #define ADSP1_DBG_CLK_ENA_MASK            0x0008  /* DSP1_DBG_CLK_ENA */
117 #define ADSP1_DBG_CLK_ENA_SHIFT                3  /* DSP1_DBG_CLK_ENA */
118 #define ADSP1_DBG_CLK_ENA_WIDTH                1  /* DSP1_DBG_CLK_ENA */
119 #define ADSP1_SYS_ENA                     0x0004  /* DSP1_SYS_ENA */
120 #define ADSP1_SYS_ENA_MASK                0x0004  /* DSP1_SYS_ENA */
121 #define ADSP1_SYS_ENA_SHIFT                    2  /* DSP1_SYS_ENA */
122 #define ADSP1_SYS_ENA_WIDTH                    1  /* DSP1_SYS_ENA */
123 #define ADSP1_CORE_ENA                    0x0002  /* DSP1_CORE_ENA */
124 #define ADSP1_CORE_ENA_MASK               0x0002  /* DSP1_CORE_ENA */
125 #define ADSP1_CORE_ENA_SHIFT                   1  /* DSP1_CORE_ENA */
126 #define ADSP1_CORE_ENA_WIDTH                   1  /* DSP1_CORE_ENA */
127 #define ADSP1_START                       0x0001  /* DSP1_START */
128 #define ADSP1_START_MASK                  0x0001  /* DSP1_START */
129 #define ADSP1_START_SHIFT                      0  /* DSP1_START */
130 #define ADSP1_START_WIDTH                      1  /* DSP1_START */
131 
132 /*
133  * ADSP1 Control 31
134  */
135 #define ADSP1_CLK_SEL_MASK                0x0007  /* CLK_SEL_ENA */
136 #define ADSP1_CLK_SEL_SHIFT                    0  /* CLK_SEL_ENA */
137 #define ADSP1_CLK_SEL_WIDTH                    3  /* CLK_SEL_ENA */
138 
139 #define ADSP2_CONTROL                     0x0
140 #define ADSP2_CLOCKING                    0x1
141 #define ADSP2V2_CLOCKING                  0x2
142 #define ADSP2_STATUS1                     0x4
143 #define ADSP2_WDMA_CONFIG_1               0x30
144 #define ADSP2_WDMA_CONFIG_2               0x31
145 #define ADSP2V2_WDMA_CONFIG_2             0x32
146 #define ADSP2_RDMA_CONFIG_1               0x34
147 
148 #define ADSP2_SCRATCH0                    0x40
149 #define ADSP2_SCRATCH1                    0x41
150 #define ADSP2_SCRATCH2                    0x42
151 #define ADSP2_SCRATCH3                    0x43
152 
153 #define ADSP2V2_SCRATCH0_1                0x40
154 #define ADSP2V2_SCRATCH2_3                0x42
155 
156 /*
157  * ADSP2 Control
158  */
159 #define ADSP2_MEM_ENA                     0x0010  /* DSP1_MEM_ENA */
160 #define ADSP2_MEM_ENA_MASK                0x0010  /* DSP1_MEM_ENA */
161 #define ADSP2_MEM_ENA_SHIFT                    4  /* DSP1_MEM_ENA */
162 #define ADSP2_MEM_ENA_WIDTH                    1  /* DSP1_MEM_ENA */
163 #define ADSP2_SYS_ENA                     0x0004  /* DSP1_SYS_ENA */
164 #define ADSP2_SYS_ENA_MASK                0x0004  /* DSP1_SYS_ENA */
165 #define ADSP2_SYS_ENA_SHIFT                    2  /* DSP1_SYS_ENA */
166 #define ADSP2_SYS_ENA_WIDTH                    1  /* DSP1_SYS_ENA */
167 #define ADSP2_CORE_ENA                    0x0002  /* DSP1_CORE_ENA */
168 #define ADSP2_CORE_ENA_MASK               0x0002  /* DSP1_CORE_ENA */
169 #define ADSP2_CORE_ENA_SHIFT                   1  /* DSP1_CORE_ENA */
170 #define ADSP2_CORE_ENA_WIDTH                   1  /* DSP1_CORE_ENA */
171 #define ADSP2_START                       0x0001  /* DSP1_START */
172 #define ADSP2_START_MASK                  0x0001  /* DSP1_START */
173 #define ADSP2_START_SHIFT                      0  /* DSP1_START */
174 #define ADSP2_START_WIDTH                      1  /* DSP1_START */
175 
176 /*
177  * ADSP2 clocking
178  */
179 #define ADSP2_CLK_SEL_MASK                0x0007  /* CLK_SEL_ENA */
180 #define ADSP2_CLK_SEL_SHIFT                    0  /* CLK_SEL_ENA */
181 #define ADSP2_CLK_SEL_WIDTH                    3  /* CLK_SEL_ENA */
182 
183 /*
184  * ADSP2V2 clocking
185  */
186 #define ADSP2V2_CLK_SEL_MASK             0x70000  /* CLK_SEL_ENA */
187 #define ADSP2V2_CLK_SEL_SHIFT                 16  /* CLK_SEL_ENA */
188 #define ADSP2V2_CLK_SEL_WIDTH                  3  /* CLK_SEL_ENA */
189 
190 #define ADSP2V2_RATE_MASK                 0x7800  /* DSP_RATE */
191 #define ADSP2V2_RATE_SHIFT                    11  /* DSP_RATE */
192 #define ADSP2V2_RATE_WIDTH                     4  /* DSP_RATE */
193 
194 /*
195  * ADSP2 Status 1
196  */
197 #define ADSP2_RAM_RDY                     0x0001
198 #define ADSP2_RAM_RDY_MASK                0x0001
199 #define ADSP2_RAM_RDY_SHIFT                    0
200 #define ADSP2_RAM_RDY_WIDTH                    1
201 
202 /*
203  * ADSP2 Lock support
204  */
205 #define ADSP2_LOCK_CODE_0                    0x5555
206 #define ADSP2_LOCK_CODE_1                    0xAAAA
207 
208 #define ADSP2_WATCHDOG                       0x0A
209 #define ADSP2_BUS_ERR_ADDR                   0x52
210 #define ADSP2_REGION_LOCK_STATUS             0x64
211 #define ADSP2_LOCK_REGION_1_LOCK_REGION_0    0x66
212 #define ADSP2_LOCK_REGION_3_LOCK_REGION_2    0x68
213 #define ADSP2_LOCK_REGION_5_LOCK_REGION_4    0x6A
214 #define ADSP2_LOCK_REGION_7_LOCK_REGION_6    0x6C
215 #define ADSP2_LOCK_REGION_9_LOCK_REGION_8    0x6E
216 #define ADSP2_LOCK_REGION_CTRL               0x7A
217 #define ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR    0x7C
218 
219 #define ADSP2_REGION_LOCK_ERR_MASK           0x8000
220 #define ADSP2_ADDR_ERR_MASK                  0x4000
221 #define ADSP2_WDT_TIMEOUT_STS_MASK           0x2000
222 #define ADSP2_CTRL_ERR_PAUSE_ENA             0x0002
223 #define ADSP2_CTRL_ERR_EINT                  0x0001
224 
225 #define ADSP2_BUS_ERR_ADDR_MASK              0x00FFFFFF
226 #define ADSP2_XMEM_ERR_ADDR_MASK             0x0000FFFF
227 #define ADSP2_PMEM_ERR_ADDR_MASK             0x7FFF0000
228 #define ADSP2_PMEM_ERR_ADDR_SHIFT            16
229 #define ADSP2_WDT_ENA_MASK                   0xFFFFFFFD
230 
231 #define ADSP2_LOCK_REGION_SHIFT              16
232 
233 /*
234  * Event control messages
235  */
236 #define CS_DSP_FW_EVENT_SHUTDOWN             0x000001
237 
238 /*
239  * HALO system info
240  */
241 #define HALO_AHBM_WINDOW_DEBUG_0             0x02040
242 #define HALO_AHBM_WINDOW_DEBUG_1             0x02044
243 
244 /*
245  * HALO core
246  */
247 #define HALO_SCRATCH1                        0x005c0
248 #define HALO_SCRATCH2                        0x005c8
249 #define HALO_SCRATCH3                        0x005d0
250 #define HALO_SCRATCH4                        0x005d8
251 #define HALO_CCM_CORE_CONTROL                0x41000
252 #define HALO_CORE_SOFT_RESET                 0x00010
253 #define HALO_WDT_CONTROL                     0x47000
254 
255 /*
256  * HALO MPU banks
257  */
258 #define HALO_MPU_XMEM_ACCESS_0               0x43000
259 #define HALO_MPU_YMEM_ACCESS_0               0x43004
260 #define HALO_MPU_WINDOW_ACCESS_0             0x43008
261 #define HALO_MPU_XREG_ACCESS_0               0x4300C
262 #define HALO_MPU_YREG_ACCESS_0               0x43014
263 #define HALO_MPU_XMEM_ACCESS_1               0x43018
264 #define HALO_MPU_YMEM_ACCESS_1               0x4301C
265 #define HALO_MPU_WINDOW_ACCESS_1             0x43020
266 #define HALO_MPU_XREG_ACCESS_1               0x43024
267 #define HALO_MPU_YREG_ACCESS_1               0x4302C
268 #define HALO_MPU_XMEM_ACCESS_2               0x43030
269 #define HALO_MPU_YMEM_ACCESS_2               0x43034
270 #define HALO_MPU_WINDOW_ACCESS_2             0x43038
271 #define HALO_MPU_XREG_ACCESS_2               0x4303C
272 #define HALO_MPU_YREG_ACCESS_2               0x43044
273 #define HALO_MPU_XMEM_ACCESS_3               0x43048
274 #define HALO_MPU_YMEM_ACCESS_3               0x4304C
275 #define HALO_MPU_WINDOW_ACCESS_3             0x43050
276 #define HALO_MPU_XREG_ACCESS_3               0x43054
277 #define HALO_MPU_YREG_ACCESS_3               0x4305C
278 #define HALO_MPU_XM_VIO_ADDR                 0x43100
279 #define HALO_MPU_XM_VIO_STATUS               0x43104
280 #define HALO_MPU_YM_VIO_ADDR                 0x43108
281 #define HALO_MPU_YM_VIO_STATUS               0x4310C
282 #define HALO_MPU_PM_VIO_ADDR                 0x43110
283 #define HALO_MPU_PM_VIO_STATUS               0x43114
284 #define HALO_MPU_LOCK_CONFIG                 0x43140
285 
286 /*
287  * HALO_AHBM_WINDOW_DEBUG_1
288  */
289 #define HALO_AHBM_CORE_ERR_ADDR_MASK         0x0fffff00
290 #define HALO_AHBM_CORE_ERR_ADDR_SHIFT                 8
291 #define HALO_AHBM_FLAGS_ERR_MASK             0x000000ff
292 
293 /*
294  * HALO_CCM_CORE_CONTROL
295  */
296 #define HALO_CORE_RESET                     0x00000200
297 #define HALO_CORE_EN                        0x00000001
298 
299 /*
300  * HALO_CORE_SOFT_RESET
301  */
302 #define HALO_CORE_SOFT_RESET_MASK           0x00000001
303 
304 /*
305  * HALO_WDT_CONTROL
306  */
307 #define HALO_WDT_EN_MASK                    0x00000001
308 
309 /*
310  * HALO_MPU_?M_VIO_STATUS
311  */
312 #define HALO_MPU_VIO_STS_MASK               0x007e0000
313 #define HALO_MPU_VIO_STS_SHIFT                      17
314 #define HALO_MPU_VIO_ERR_WR_MASK            0x00008000
315 #define HALO_MPU_VIO_ERR_SRC_MASK           0x00007fff
316 #define HALO_MPU_VIO_ERR_SRC_SHIFT                   0
317 
318 /*
319  * Write Sequence
320  */
321 #define WSEQ_OP_MAX_WORDS	3
322 #define WSEQ_END_OF_SCRIPT	0xFFFFFF
323 
324 struct cs_dsp_ops {
325 	bool (*validate_version)(struct cs_dsp *dsp, unsigned int version);
326 	unsigned int (*parse_sizes)(struct cs_dsp *dsp,
327 				    const char * const file,
328 				    unsigned int pos,
329 				    const struct firmware *firmware);
330 	int (*setup_algs)(struct cs_dsp *dsp);
331 	unsigned int (*region_to_reg)(struct cs_dsp_region const *mem,
332 				      unsigned int offset);
333 
334 	void (*show_fw_status)(struct cs_dsp *dsp);
335 	void (*stop_watchdog)(struct cs_dsp *dsp);
336 
337 	int (*enable_memory)(struct cs_dsp *dsp);
338 	void (*disable_memory)(struct cs_dsp *dsp);
339 	int (*lock_memory)(struct cs_dsp *dsp, unsigned int lock_regions);
340 
341 	int (*enable_core)(struct cs_dsp *dsp);
342 	void (*disable_core)(struct cs_dsp *dsp);
343 
344 	int (*start_core)(struct cs_dsp *dsp);
345 	void (*stop_core)(struct cs_dsp *dsp);
346 };
347 
348 static const struct cs_dsp_ops cs_dsp_adsp1_ops;
349 static const struct cs_dsp_ops cs_dsp_adsp2_ops[];
350 static const struct cs_dsp_ops cs_dsp_halo_ops;
351 static const struct cs_dsp_ops cs_dsp_halo_ao_ops;
352 
353 struct cs_dsp_alg_region_list_item {
354 	struct list_head list;
355 	struct cs_dsp_alg_region alg_region;
356 };
357 
358 /**
359  * cs_dsp_mem_region_name() - Return a name string for a memory type
360  * @type: the memory type to match
361  *
362  * Return: A const string identifying the memory region.
363  */
cs_dsp_mem_region_name(unsigned int type)364 const char *cs_dsp_mem_region_name(unsigned int type)
365 {
366 	switch (type) {
367 	case WMFW_ADSP1_PM:
368 		return "PM";
369 	case WMFW_HALO_PM_PACKED:
370 		return "PM_PACKED";
371 	case WMFW_ADSP1_DM:
372 		return "DM";
373 	case WMFW_ADSP2_XM:
374 		return "XM";
375 	case WMFW_HALO_XM_PACKED:
376 		return "XM_PACKED";
377 	case WMFW_ADSP2_YM:
378 		return "YM";
379 	case WMFW_HALO_YM_PACKED:
380 		return "YM_PACKED";
381 	case WMFW_ADSP1_ZM:
382 		return "ZM";
383 	default:
384 		return NULL;
385 	}
386 }
387 EXPORT_SYMBOL_NS_GPL(cs_dsp_mem_region_name, "FW_CS_DSP");
388 
389 #ifdef CONFIG_DEBUG_FS
cs_dsp_debugfs_save_wmfwname(struct cs_dsp * dsp,const char * s)390 static void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp, const char *s)
391 {
392 	kfree(dsp->wmfw_file_name);
393 	dsp->wmfw_file_name = kstrdup(s, GFP_KERNEL);
394 }
395 
cs_dsp_debugfs_save_binname(struct cs_dsp * dsp,const char * s)396 static void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp, const char *s)
397 {
398 	kfree(dsp->bin_file_name);
399 	dsp->bin_file_name = kstrdup(s, GFP_KERNEL);
400 }
401 
cs_dsp_debugfs_clear(struct cs_dsp * dsp)402 static void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
403 {
404 	kfree(dsp->wmfw_file_name);
405 	kfree(dsp->bin_file_name);
406 	dsp->wmfw_file_name = NULL;
407 	dsp->bin_file_name = NULL;
408 }
409 
cs_dsp_debugfs_string_read(struct cs_dsp * dsp,char __user * user_buf,size_t count,loff_t * ppos,const char ** pstr)410 static ssize_t cs_dsp_debugfs_string_read(struct cs_dsp *dsp,
411 					  char __user *user_buf,
412 					  size_t count, loff_t *ppos,
413 					  const char **pstr)
414 {
415 	const char *str __free(kfree) = NULL;
416 
417 	scoped_guard(mutex, &dsp->pwr_lock) {
418 		if (!*pstr)
419 			return 0;
420 
421 		str = kasprintf(GFP_KERNEL, "%s\n", *pstr);
422 		if (!str)
423 			return -ENOMEM;
424 
425 		return simple_read_from_buffer(user_buf, count, ppos, str, strlen(str));
426 	}
427 }
428 
cs_dsp_debugfs_wmfw_read(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)429 static ssize_t cs_dsp_debugfs_wmfw_read(struct file *file,
430 					char __user *user_buf,
431 					size_t count, loff_t *ppos)
432 {
433 	struct cs_dsp *dsp = file->private_data;
434 
435 	return cs_dsp_debugfs_string_read(dsp, user_buf, count, ppos,
436 					  &dsp->wmfw_file_name);
437 }
438 
cs_dsp_debugfs_bin_read(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)439 static ssize_t cs_dsp_debugfs_bin_read(struct file *file,
440 				       char __user *user_buf,
441 				       size_t count, loff_t *ppos)
442 {
443 	struct cs_dsp *dsp = file->private_data;
444 
445 	return cs_dsp_debugfs_string_read(dsp, user_buf, count, ppos,
446 					  &dsp->bin_file_name);
447 }
448 
449 static const struct {
450 	const char *name;
451 	const struct file_operations fops;
452 } cs_dsp_debugfs_fops[] = {
453 	{
454 		.name = "wmfw_file_name",
455 		.fops = {
456 			.open = simple_open,
457 			.read = cs_dsp_debugfs_wmfw_read,
458 		},
459 	},
460 	{
461 		.name = "bin_file_name",
462 		.fops = {
463 			.open = simple_open,
464 			.read = cs_dsp_debugfs_bin_read,
465 		},
466 	},
467 };
468 
469 static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
470 				 unsigned int off);
471 
cs_dsp_debugfs_read_controls_show(struct seq_file * s,void * ignored)472 static int cs_dsp_debugfs_read_controls_show(struct seq_file *s, void *ignored)
473 {
474 	struct cs_dsp *dsp = s->private;
475 	struct cs_dsp_coeff_ctl *ctl;
476 	unsigned int reg;
477 
478 	guard(mutex)(&dsp->pwr_lock);
479 
480 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
481 		cs_dsp_coeff_base_reg(ctl, &reg, 0);
482 		seq_printf(s, "%22.*s: %#8x %s:%08x %#8x %s %#8x %#4x %c%c%c%c %s %s\n",
483 			   ctl->subname_len, ctl->subname, ctl->len,
484 			   cs_dsp_mem_region_name(ctl->alg_region.type),
485 			   ctl->offset, reg, ctl->fw_name, ctl->alg_region.alg, ctl->type,
486 			   ctl->flags & WMFW_CTL_FLAG_VOLATILE ? 'V' : '-',
487 			   ctl->flags & WMFW_CTL_FLAG_SYS ? 'S' : '-',
488 			   ctl->flags & WMFW_CTL_FLAG_READABLE ? 'R' : '-',
489 			   ctl->flags & WMFW_CTL_FLAG_WRITEABLE ? 'W' : '-',
490 			   ctl->enabled ? "enabled" : "disabled",
491 			   ctl->set ? "dirty" : "clean");
492 	}
493 
494 	return 0;
495 }
496 DEFINE_SHOW_ATTRIBUTE(cs_dsp_debugfs_read_controls);
497 
498 /**
499  * cs_dsp_init_debugfs() - Create and populate DSP representation in debugfs
500  * @dsp: pointer to DSP structure
501  * @debugfs_root: pointer to debugfs directory in which to create this DSP
502  *                representation
503  */
cs_dsp_init_debugfs(struct cs_dsp * dsp,struct dentry * debugfs_root)504 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
505 {
506 	struct dentry *root = NULL;
507 	int i;
508 
509 	root = debugfs_create_dir(dsp->name, debugfs_root);
510 
511 	debugfs_create_bool("booted", 0444, root, &dsp->booted);
512 	debugfs_create_bool("running", 0444, root, &dsp->running);
513 	debugfs_create_x32("fw_id", 0444, root, &dsp->fw_id);
514 	debugfs_create_x32("fw_version", 0444, root, &dsp->fw_id_version);
515 
516 	for (i = 0; i < ARRAY_SIZE(cs_dsp_debugfs_fops); ++i)
517 		debugfs_create_file(cs_dsp_debugfs_fops[i].name, 0444, root,
518 				    dsp, &cs_dsp_debugfs_fops[i].fops);
519 
520 	debugfs_create_file("controls", 0444, root, dsp,
521 			    &cs_dsp_debugfs_read_controls_fops);
522 
523 	dsp->debugfs_root = root;
524 }
525 EXPORT_SYMBOL_NS_GPL(cs_dsp_init_debugfs, "FW_CS_DSP");
526 
527 /**
528  * cs_dsp_cleanup_debugfs() - Removes DSP representation from debugfs
529  * @dsp: pointer to DSP structure
530  */
cs_dsp_cleanup_debugfs(struct cs_dsp * dsp)531 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
532 {
533 	cs_dsp_debugfs_clear(dsp);
534 	debugfs_remove_recursive(dsp->debugfs_root);
535 	dsp->debugfs_root = ERR_PTR(-ENODEV);
536 }
537 EXPORT_SYMBOL_NS_GPL(cs_dsp_cleanup_debugfs, "FW_CS_DSP");
538 #else
cs_dsp_init_debugfs(struct cs_dsp * dsp,struct dentry * debugfs_root)539 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
540 {
541 }
542 EXPORT_SYMBOL_NS_GPL(cs_dsp_init_debugfs, "FW_CS_DSP");
543 
cs_dsp_cleanup_debugfs(struct cs_dsp * dsp)544 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
545 {
546 }
547 EXPORT_SYMBOL_NS_GPL(cs_dsp_cleanup_debugfs, "FW_CS_DSP");
548 
cs_dsp_debugfs_save_wmfwname(struct cs_dsp * dsp,const char * s)549 static inline void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp,
550 						const char *s)
551 {
552 }
553 
cs_dsp_debugfs_save_binname(struct cs_dsp * dsp,const char * s)554 static inline void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp,
555 					       const char *s)
556 {
557 }
558 
cs_dsp_debugfs_clear(struct cs_dsp * dsp)559 static inline void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
560 {
561 }
562 #endif
563 
cs_dsp_find_region(struct cs_dsp * dsp,int type)564 static const struct cs_dsp_region *cs_dsp_find_region(struct cs_dsp *dsp,
565 						      int type)
566 {
567 	int i;
568 
569 	for (i = 0; i < dsp->num_mems; i++)
570 		if (dsp->mem[i].type == type)
571 			return &dsp->mem[i];
572 
573 	return NULL;
574 }
575 
cs_dsp_region_to_reg(struct cs_dsp_region const * mem,unsigned int offset)576 static unsigned int cs_dsp_region_to_reg(struct cs_dsp_region const *mem,
577 					 unsigned int offset)
578 {
579 	switch (mem->type) {
580 	case WMFW_ADSP1_PM:
581 		return mem->base + (offset * 3);
582 	case WMFW_ADSP1_DM:
583 	case WMFW_ADSP2_XM:
584 	case WMFW_ADSP2_YM:
585 	case WMFW_ADSP1_ZM:
586 		return mem->base + (offset * 2);
587 	default:
588 		WARN(1, "Unknown memory region type");
589 		return offset;
590 	}
591 }
592 
cs_dsp_halo_region_to_reg(struct cs_dsp_region const * mem,unsigned int offset)593 static unsigned int cs_dsp_halo_region_to_reg(struct cs_dsp_region const *mem,
594 					      unsigned int offset)
595 {
596 	switch (mem->type) {
597 	case WMFW_ADSP2_XM:
598 	case WMFW_ADSP2_YM:
599 		return mem->base + (offset * 4);
600 	case WMFW_HALO_XM_PACKED:
601 	case WMFW_HALO_YM_PACKED:
602 		return (mem->base + (offset * 3)) & ~0x3;
603 	case WMFW_HALO_PM_PACKED:
604 		return mem->base + (offset * 5);
605 	default:
606 		WARN(1, "Unknown memory region type");
607 		return offset;
608 	}
609 }
610 
cs_dsp_read_fw_status(struct cs_dsp * dsp,int noffs,unsigned int * offs)611 static void cs_dsp_read_fw_status(struct cs_dsp *dsp,
612 				  int noffs, unsigned int *offs)
613 {
614 	unsigned int i;
615 	int ret;
616 
617 	for (i = 0; i < noffs; ++i) {
618 		ret = regmap_read(dsp->regmap, dsp->base + offs[i], &offs[i]);
619 		if (ret) {
620 			cs_dsp_err(dsp, "Failed to read SCRATCH%u: %d\n", i, ret);
621 			return;
622 		}
623 	}
624 }
625 
cs_dsp_adsp2_show_fw_status(struct cs_dsp * dsp)626 static void cs_dsp_adsp2_show_fw_status(struct cs_dsp *dsp)
627 {
628 	unsigned int offs[] = {
629 		ADSP2_SCRATCH0, ADSP2_SCRATCH1, ADSP2_SCRATCH2, ADSP2_SCRATCH3,
630 	};
631 
632 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
633 
634 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
635 		   offs[0], offs[1], offs[2], offs[3]);
636 }
637 
cs_dsp_adsp2v2_show_fw_status(struct cs_dsp * dsp)638 static void cs_dsp_adsp2v2_show_fw_status(struct cs_dsp *dsp)
639 {
640 	unsigned int offs[] = { ADSP2V2_SCRATCH0_1, ADSP2V2_SCRATCH2_3 };
641 
642 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
643 
644 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
645 		   offs[0] & 0xFFFF, offs[0] >> 16,
646 		   offs[1] & 0xFFFF, offs[1] >> 16);
647 }
648 
cs_dsp_halo_show_fw_status(struct cs_dsp * dsp)649 static void cs_dsp_halo_show_fw_status(struct cs_dsp *dsp)
650 {
651 	unsigned int offs[] = {
652 		HALO_SCRATCH1, HALO_SCRATCH2, HALO_SCRATCH3, HALO_SCRATCH4,
653 	};
654 
655 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
656 
657 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
658 		   offs[0], offs[1], offs[2], offs[3]);
659 }
660 
cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl * ctl,unsigned int * reg,unsigned int off)661 static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
662 				 unsigned int off)
663 {
664 	const struct cs_dsp_alg_region *alg_region = &ctl->alg_region;
665 	struct cs_dsp *dsp = ctl->dsp;
666 	const struct cs_dsp_region *mem;
667 
668 	mem = cs_dsp_find_region(dsp, alg_region->type);
669 	if (!mem) {
670 		cs_dsp_err(dsp, "No base for region %x\n",
671 			   alg_region->type);
672 		return -EINVAL;
673 	}
674 
675 	*reg = dsp->ops->region_to_reg(mem, ctl->alg_region.base + ctl->offset + off);
676 
677 	return 0;
678 }
679 
680 /**
681  * cs_dsp_coeff_write_acked_control() - Sends event_id to the acked control
682  * @ctl: pointer to acked coefficient control
683  * @event_id: the value to write to the given acked control
684  *
685  * Once the value has been written to the control the function shall block
686  * until the running firmware acknowledges the write or timeout is exceeded.
687  *
688  * Must be called with pwr_lock held.
689  *
690  * Return: Zero for success, a negative number on error.
691  */
cs_dsp_coeff_write_acked_control(struct cs_dsp_coeff_ctl * ctl,unsigned int event_id)692 int cs_dsp_coeff_write_acked_control(struct cs_dsp_coeff_ctl *ctl, unsigned int event_id)
693 {
694 	struct cs_dsp *dsp = ctl->dsp;
695 	__be32 val = cpu_to_be32(event_id);
696 	unsigned int reg;
697 	int i, ret;
698 
699 	lockdep_assert_held(&dsp->pwr_lock);
700 
701 	if (!dsp->running)
702 		return -EPERM;
703 
704 	ret = cs_dsp_coeff_base_reg(ctl, &reg, 0);
705 	if (ret)
706 		return ret;
707 
708 	cs_dsp_dbg(dsp, "Sending 0x%x to acked control alg 0x%x %s:0x%x\n",
709 		   event_id, ctl->alg_region.alg,
710 		   cs_dsp_mem_region_name(ctl->alg_region.type), ctl->offset);
711 
712 	ret = regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
713 	if (ret) {
714 		cs_dsp_err(dsp, "Failed to write %x: %d\n", reg, ret);
715 		return ret;
716 	}
717 
718 	/*
719 	 * Poll for ack, we initially poll at ~1ms intervals for firmwares
720 	 * that respond quickly, then go to ~10ms polls. A firmware is unlikely
721 	 * to ack instantly so we do the first 1ms delay before reading the
722 	 * control to avoid a pointless bus transaction
723 	 */
724 	for (i = 0; i < CS_DSP_ACKED_CTL_TIMEOUT_MS;) {
725 		switch (i) {
726 		case 0 ... CS_DSP_ACKED_CTL_N_QUICKPOLLS - 1:
727 			usleep_range(1000, 2000);
728 			i++;
729 			break;
730 		default:
731 			usleep_range(10000, 20000);
732 			i += 10;
733 			break;
734 		}
735 
736 		ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
737 		if (ret) {
738 			cs_dsp_err(dsp, "Failed to read %x: %d\n", reg, ret);
739 			return ret;
740 		}
741 
742 		if (val == 0) {
743 			cs_dsp_dbg(dsp, "Acked control ACKED at poll %u\n", i);
744 			return 0;
745 		}
746 	}
747 
748 	cs_dsp_warn(dsp, "Acked control @0x%x alg:0x%x %s:0x%x timed out\n",
749 		    reg, ctl->alg_region.alg,
750 		    cs_dsp_mem_region_name(ctl->alg_region.type),
751 		    ctl->offset);
752 
753 	return -ETIMEDOUT;
754 }
755 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_write_acked_control, "FW_CS_DSP");
756 
cs_dsp_coeff_write_ctrl_raw(struct cs_dsp_coeff_ctl * ctl,unsigned int off,const void * buf,size_t len)757 static int cs_dsp_coeff_write_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
758 				       unsigned int off, const void *buf, size_t len)
759 {
760 	struct cs_dsp *dsp = ctl->dsp;
761 	void *scratch;
762 	int ret;
763 	unsigned int reg;
764 
765 	ret = cs_dsp_coeff_base_reg(ctl, &reg, off);
766 	if (ret)
767 		return ret;
768 
769 	scratch = kmemdup(buf, len, GFP_KERNEL | GFP_DMA);
770 	if (!scratch)
771 		return -ENOMEM;
772 
773 	ret = regmap_raw_write(dsp->regmap, reg, scratch,
774 			       len);
775 	if (ret) {
776 		cs_dsp_err(dsp, "Failed to write %zu bytes to %x: %d\n",
777 			   len, reg, ret);
778 		kfree(scratch);
779 		return ret;
780 	}
781 	cs_dsp_dbg(dsp, "Wrote %zu bytes to %x\n", len, reg);
782 
783 	kfree(scratch);
784 
785 	return 0;
786 }
787 
788 /**
789  * cs_dsp_coeff_write_ctrl() - Writes the given buffer to the given coefficient control
790  * @ctl: pointer to coefficient control
791  * @off: word offset at which data should be written
792  * @buf: the buffer to write to the given control
793  * @len: the length of the buffer in bytes
794  *
795  * Must be called with pwr_lock held.
796  *
797  * Return: < 0 on error, 1 when the control value changed and 0 when it has not.
798  */
cs_dsp_coeff_write_ctrl(struct cs_dsp_coeff_ctl * ctl,unsigned int off,const void * buf,size_t len)799 int cs_dsp_coeff_write_ctrl(struct cs_dsp_coeff_ctl *ctl,
800 			    unsigned int off, const void *buf, size_t len)
801 {
802 	int ret = 0;
803 
804 	if (!ctl)
805 		return -ENOENT;
806 
807 	lockdep_assert_held(&ctl->dsp->pwr_lock);
808 
809 	if (ctl->flags && !(ctl->flags & WMFW_CTL_FLAG_WRITEABLE))
810 		return -EPERM;
811 
812 	if (len + off * sizeof(u32) > ctl->len)
813 		return -EINVAL;
814 
815 	if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
816 		ret = -EPERM;
817 	} else if (buf != ctl->cache) {
818 		if (memcmp(ctl->cache + off * sizeof(u32), buf, len))
819 			memcpy(ctl->cache + off * sizeof(u32), buf, len);
820 		else
821 			return 0;
822 	}
823 
824 	ctl->set = 1;
825 	if (ctl->enabled && ctl->dsp->running)
826 		ret = cs_dsp_coeff_write_ctrl_raw(ctl, off, buf, len);
827 
828 	if (ret < 0)
829 		return ret;
830 
831 	return 1;
832 }
833 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_write_ctrl, "FW_CS_DSP");
834 
835 /**
836  * cs_dsp_coeff_lock_and_write_ctrl() - Writes the given buffer to the given coefficient control
837  * @ctl: pointer to coefficient control
838  * @off: word offset at which data should be written
839  * @buf: the buffer to write to the given control
840  * @len: the length of the buffer in bytes
841  *
842  * Same as cs_dsp_coeff_write_ctrl() but takes pwr_lock.
843  *
844  * Return: A negative number on error, 1 when the control value changed and 0 when it has not.
845  */
cs_dsp_coeff_lock_and_write_ctrl(struct cs_dsp_coeff_ctl * ctl,unsigned int off,const void * buf,size_t len)846 int cs_dsp_coeff_lock_and_write_ctrl(struct cs_dsp_coeff_ctl *ctl,
847 				     unsigned int off, const void *buf, size_t len)
848 {
849 	struct cs_dsp *dsp = ctl->dsp;
850 	int ret;
851 
852 	lockdep_assert_not_held(&dsp->pwr_lock);
853 
854 	mutex_lock(&dsp->pwr_lock);
855 	ret = cs_dsp_coeff_write_ctrl(ctl, off, buf, len);
856 	mutex_unlock(&dsp->pwr_lock);
857 
858 	return ret;
859 }
860 EXPORT_SYMBOL_GPL(cs_dsp_coeff_lock_and_write_ctrl);
861 
cs_dsp_coeff_read_ctrl_raw(struct cs_dsp_coeff_ctl * ctl,unsigned int off,void * buf,size_t len)862 static int cs_dsp_coeff_read_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
863 				      unsigned int off, void *buf, size_t len)
864 {
865 	struct cs_dsp *dsp = ctl->dsp;
866 	void *scratch;
867 	int ret;
868 	unsigned int reg;
869 
870 	ret = cs_dsp_coeff_base_reg(ctl, &reg, off);
871 	if (ret)
872 		return ret;
873 
874 	scratch = kmalloc(len, GFP_KERNEL | GFP_DMA);
875 	if (!scratch)
876 		return -ENOMEM;
877 
878 	ret = regmap_raw_read(dsp->regmap, reg, scratch, len);
879 	if (ret) {
880 		cs_dsp_err(dsp, "Failed to read %zu bytes from %x: %d\n",
881 			   len, reg, ret);
882 		kfree(scratch);
883 		return ret;
884 	}
885 	cs_dsp_dbg(dsp, "Read %zu bytes from %x\n", len, reg);
886 
887 	memcpy(buf, scratch, len);
888 	kfree(scratch);
889 
890 	return 0;
891 }
892 
893 /**
894  * cs_dsp_coeff_read_ctrl() - Reads the given coefficient control into the given buffer
895  * @ctl: pointer to coefficient control
896  * @off: word offset at which data should be read
897  * @buf: the buffer to store to the given control
898  * @len: the length of the buffer in bytes
899  *
900  * Must be called with pwr_lock held.
901  *
902  * Return: Zero for success, a negative number on error.
903  */
cs_dsp_coeff_read_ctrl(struct cs_dsp_coeff_ctl * ctl,unsigned int off,void * buf,size_t len)904 int cs_dsp_coeff_read_ctrl(struct cs_dsp_coeff_ctl *ctl,
905 			   unsigned int off, void *buf, size_t len)
906 {
907 	int ret = 0;
908 
909 	if (!ctl)
910 		return -ENOENT;
911 
912 	lockdep_assert_held(&ctl->dsp->pwr_lock);
913 
914 	if (len + off * sizeof(u32) > ctl->len)
915 		return -EINVAL;
916 
917 	if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
918 		if (ctl->enabled && ctl->dsp->running)
919 			return cs_dsp_coeff_read_ctrl_raw(ctl, off, buf, len);
920 		else
921 			return -EPERM;
922 	} else {
923 		if (!ctl->flags && ctl->enabled && ctl->dsp->running)
924 			ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
925 
926 		if (buf != ctl->cache)
927 			memcpy(buf, ctl->cache + off * sizeof(u32), len);
928 	}
929 
930 	return ret;
931 }
932 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_read_ctrl, "FW_CS_DSP");
933 
934 /**
935  * cs_dsp_coeff_lock_and_read_ctrl() - Reads the given coefficient control into the given buffer
936  * @ctl: pointer to coefficient control
937  * @off: word offset at which data should be read
938  * @buf: the buffer to store to the given control
939  * @len: the length of the buffer in bytes
940  *
941  * Same as cs_dsp_coeff_read_ctrl() but takes pwr_lock.
942  *
943  * Return: Zero for success, a negative number on error.
944  */
cs_dsp_coeff_lock_and_read_ctrl(struct cs_dsp_coeff_ctl * ctl,unsigned int off,void * buf,size_t len)945 int cs_dsp_coeff_lock_and_read_ctrl(struct cs_dsp_coeff_ctl *ctl,
946 				    unsigned int off, void *buf, size_t len)
947 {
948 	struct cs_dsp *dsp = ctl->dsp;
949 	int ret;
950 
951 	lockdep_assert_not_held(&dsp->pwr_lock);
952 
953 	mutex_lock(&dsp->pwr_lock);
954 	ret = cs_dsp_coeff_read_ctrl(ctl, off, buf, len);
955 	mutex_unlock(&dsp->pwr_lock);
956 
957 	return ret;
958 }
959 EXPORT_SYMBOL_GPL(cs_dsp_coeff_lock_and_read_ctrl);
960 
cs_dsp_coeff_init_control_caches(struct cs_dsp * dsp)961 static int cs_dsp_coeff_init_control_caches(struct cs_dsp *dsp)
962 {
963 	struct cs_dsp_coeff_ctl *ctl;
964 	int ret;
965 
966 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
967 		if (!ctl->enabled || ctl->set)
968 			continue;
969 		if (ctl->flags & WMFW_CTL_FLAG_VOLATILE)
970 			continue;
971 
972 		/*
973 		 * For readable controls populate the cache from the DSP memory.
974 		 * For non-readable controls the cache was zero-filled when
975 		 * created so we don't need to do anything.
976 		 */
977 		if (!ctl->flags || (ctl->flags & WMFW_CTL_FLAG_READABLE)) {
978 			ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
979 			if (ret < 0)
980 				return ret;
981 		}
982 	}
983 
984 	return 0;
985 }
986 
cs_dsp_coeff_sync_controls(struct cs_dsp * dsp)987 static int cs_dsp_coeff_sync_controls(struct cs_dsp *dsp)
988 {
989 	struct cs_dsp_coeff_ctl *ctl;
990 	int ret;
991 
992 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
993 		if (!ctl->enabled)
994 			continue;
995 		if (ctl->set && !(ctl->flags & WMFW_CTL_FLAG_VOLATILE)) {
996 			ret = cs_dsp_coeff_write_ctrl_raw(ctl, 0, ctl->cache,
997 							  ctl->len);
998 			if (ret < 0)
999 				return ret;
1000 		}
1001 	}
1002 
1003 	return 0;
1004 }
1005 
cs_dsp_signal_event_controls(struct cs_dsp * dsp,unsigned int event)1006 static void cs_dsp_signal_event_controls(struct cs_dsp *dsp,
1007 					 unsigned int event)
1008 {
1009 	struct cs_dsp_coeff_ctl *ctl;
1010 	int ret;
1011 
1012 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
1013 		if (ctl->type != WMFW_CTL_TYPE_HOSTEVENT)
1014 			continue;
1015 
1016 		if (!ctl->enabled)
1017 			continue;
1018 
1019 		ret = cs_dsp_coeff_write_acked_control(ctl, event);
1020 		if (ret)
1021 			cs_dsp_warn(dsp,
1022 				    "Failed to send 0x%x event to alg 0x%x (%d)\n",
1023 				    event, ctl->alg_region.alg, ret);
1024 	}
1025 }
1026 
cs_dsp_free_ctl_blk(struct cs_dsp_coeff_ctl * ctl)1027 static void cs_dsp_free_ctl_blk(struct cs_dsp_coeff_ctl *ctl)
1028 {
1029 	kvfree(ctl->cache);
1030 	kfree(ctl->subname);
1031 	kfree(ctl);
1032 }
1033 
cs_dsp_create_control(struct cs_dsp * dsp,const struct cs_dsp_alg_region * alg_region,unsigned int offset,unsigned int len,const char * subname,unsigned int subname_len,unsigned int flags,unsigned int type)1034 static int cs_dsp_create_control(struct cs_dsp *dsp,
1035 				 const struct cs_dsp_alg_region *alg_region,
1036 				 unsigned int offset, unsigned int len,
1037 				 const char *subname, unsigned int subname_len,
1038 				 unsigned int flags, unsigned int type)
1039 {
1040 	struct cs_dsp_coeff_ctl *ctl;
1041 	int ret;
1042 
1043 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
1044 		if (ctl->fw_name == dsp->fw_name &&
1045 		    ctl->alg_region.alg == alg_region->alg &&
1046 		    ctl->alg_region.type == alg_region->type) {
1047 			if ((!subname && !ctl->subname) ||
1048 			    (subname && (ctl->subname_len == subname_len) &&
1049 			     !strncmp(ctl->subname, subname, ctl->subname_len))) {
1050 				if (!ctl->enabled)
1051 					ctl->enabled = 1;
1052 				return 0;
1053 			}
1054 		}
1055 	}
1056 
1057 	ctl = kzalloc(sizeof(*ctl), GFP_KERNEL);
1058 	if (!ctl)
1059 		return -ENOMEM;
1060 
1061 	ctl->fw_name = dsp->fw_name;
1062 	ctl->alg_region = *alg_region;
1063 	if (subname && dsp->wmfw_ver >= 2) {
1064 		ctl->subname_len = subname_len;
1065 		ctl->subname = kasprintf(GFP_KERNEL, "%.*s", subname_len, subname);
1066 		if (!ctl->subname) {
1067 			ret = -ENOMEM;
1068 			goto err_ctl;
1069 		}
1070 	}
1071 	ctl->enabled = 1;
1072 	ctl->set = 0;
1073 	ctl->dsp = dsp;
1074 
1075 	ctl->flags = flags;
1076 	ctl->type = type;
1077 	ctl->offset = offset;
1078 	ctl->len = len;
1079 	ctl->cache = kvzalloc(ctl->len, GFP_KERNEL);
1080 	if (!ctl->cache) {
1081 		ret = -ENOMEM;
1082 		goto err_ctl_subname;
1083 	}
1084 
1085 	list_add(&ctl->list, &dsp->ctl_list);
1086 
1087 	if (dsp->client_ops->control_add) {
1088 		ret = dsp->client_ops->control_add(ctl);
1089 		if (ret)
1090 			goto err_list_del;
1091 	}
1092 
1093 	return 0;
1094 
1095 err_list_del:
1096 	list_del(&ctl->list);
1097 	kvfree(ctl->cache);
1098 err_ctl_subname:
1099 	kfree(ctl->subname);
1100 err_ctl:
1101 	kfree(ctl);
1102 
1103 	return ret;
1104 }
1105 
1106 struct cs_dsp_coeff_parsed_alg {
1107 	int id;
1108 	const u8 *name;
1109 	int name_len;
1110 	int ncoeff;
1111 };
1112 
1113 struct cs_dsp_coeff_parsed_coeff {
1114 	int offset;
1115 	int mem_type;
1116 	const u8 *name;
1117 	int name_len;
1118 	unsigned int ctl_type;
1119 	int flags;
1120 	int len;
1121 };
1122 
cs_dsp_coeff_parse_string(int bytes,const u8 ** pos,unsigned int avail,const u8 ** str)1123 static int cs_dsp_coeff_parse_string(int bytes, const u8 **pos, unsigned int avail,
1124 				     const u8 **str)
1125 {
1126 	int length, total_field_len;
1127 
1128 	/* String fields are at least one __le32 */
1129 	if (sizeof(__le32) > avail) {
1130 		*pos = NULL;
1131 		return 0;
1132 	}
1133 
1134 	switch (bytes) {
1135 	case 1:
1136 		length = **pos;
1137 		break;
1138 	case 2:
1139 		length = le16_to_cpu(*((__le16 *)*pos));
1140 		break;
1141 	default:
1142 		return 0;
1143 	}
1144 
1145 	total_field_len = ((length + bytes) + 3) & ~0x03;
1146 	if ((unsigned int)total_field_len > avail) {
1147 		*pos = NULL;
1148 		return 0;
1149 	}
1150 
1151 	if (str)
1152 		*str = *pos + bytes;
1153 
1154 	*pos += total_field_len;
1155 
1156 	return length;
1157 }
1158 
cs_dsp_coeff_parse_int(int bytes,const u8 ** pos)1159 static int cs_dsp_coeff_parse_int(int bytes, const u8 **pos)
1160 {
1161 	int val = 0;
1162 
1163 	switch (bytes) {
1164 	case 2:
1165 		val = le16_to_cpu(*((__le16 *)*pos));
1166 		break;
1167 	case 4:
1168 		val = le32_to_cpu(*((__le32 *)*pos));
1169 		break;
1170 	default:
1171 		break;
1172 	}
1173 
1174 	*pos += bytes;
1175 
1176 	return val;
1177 }
1178 
cs_dsp_coeff_parse_alg(struct cs_dsp * dsp,const struct wmfw_region * region,struct cs_dsp_coeff_parsed_alg * blk)1179 static int cs_dsp_coeff_parse_alg(struct cs_dsp *dsp,
1180 				  const struct wmfw_region *region,
1181 				  struct cs_dsp_coeff_parsed_alg *blk)
1182 {
1183 	const struct wmfw_adsp_alg_data *raw;
1184 	unsigned int data_len = le32_to_cpu(region->len);
1185 	unsigned int pos;
1186 	const u8 *tmp;
1187 
1188 	raw = (const struct wmfw_adsp_alg_data *)region->data;
1189 
1190 	switch (dsp->wmfw_ver) {
1191 	case 0:
1192 	case 1:
1193 		if (sizeof(*raw) > data_len)
1194 			return -EOVERFLOW;
1195 
1196 		blk->id = le32_to_cpu(raw->id);
1197 		blk->name = raw->name;
1198 		blk->name_len = strnlen(raw->name, ARRAY_SIZE(raw->name));
1199 		blk->ncoeff = le32_to_cpu(raw->ncoeff);
1200 
1201 		pos = sizeof(*raw);
1202 		break;
1203 	default:
1204 		if (sizeof(raw->id) > data_len)
1205 			return -EOVERFLOW;
1206 
1207 		tmp = region->data;
1208 		blk->id = cs_dsp_coeff_parse_int(sizeof(raw->id), &tmp);
1209 		pos = tmp - region->data;
1210 
1211 		tmp = &region->data[pos];
1212 		blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos,
1213 							  &blk->name);
1214 		if (!tmp)
1215 			return -EOVERFLOW;
1216 
1217 		pos = tmp - region->data;
1218 		cs_dsp_coeff_parse_string(sizeof(u16), &tmp, data_len - pos, NULL);
1219 		if (!tmp)
1220 			return -EOVERFLOW;
1221 
1222 		pos = tmp - region->data;
1223 		if (sizeof(raw->ncoeff) > (data_len - pos))
1224 			return -EOVERFLOW;
1225 
1226 		blk->ncoeff = cs_dsp_coeff_parse_int(sizeof(raw->ncoeff), &tmp);
1227 		pos += sizeof(raw->ncoeff);
1228 		break;
1229 	}
1230 
1231 	if ((int)blk->ncoeff < 0)
1232 		return -EOVERFLOW;
1233 
1234 	cs_dsp_dbg(dsp, "Algorithm ID: %#x\n", blk->id);
1235 	cs_dsp_dbg(dsp, "Algorithm name: %.*s\n", blk->name_len, blk->name);
1236 	cs_dsp_dbg(dsp, "# of coefficient descriptors: %#x\n", blk->ncoeff);
1237 
1238 	return pos;
1239 }
1240 
cs_dsp_coeff_parse_coeff(struct cs_dsp * dsp,const struct wmfw_region * region,unsigned int pos,struct cs_dsp_coeff_parsed_coeff * blk)1241 static int cs_dsp_coeff_parse_coeff(struct cs_dsp *dsp,
1242 				    const struct wmfw_region *region,
1243 				    unsigned int pos,
1244 				    struct cs_dsp_coeff_parsed_coeff *blk)
1245 {
1246 	const struct wmfw_adsp_coeff_data *raw;
1247 	unsigned int data_len = le32_to_cpu(region->len);
1248 	unsigned int blk_len, blk_end_pos;
1249 	const u8 *tmp;
1250 
1251 	raw = (const struct wmfw_adsp_coeff_data *)&region->data[pos];
1252 	if (sizeof(raw->hdr) > (data_len - pos))
1253 		return -EOVERFLOW;
1254 
1255 	blk_len = le32_to_cpu(raw->hdr.size);
1256 	if (blk_len > S32_MAX)
1257 		return -EOVERFLOW;
1258 
1259 	if (blk_len > (data_len - pos - sizeof(raw->hdr)))
1260 		return -EOVERFLOW;
1261 
1262 	blk_end_pos = pos + sizeof(raw->hdr) + blk_len;
1263 
1264 	blk->offset = le16_to_cpu(raw->hdr.offset);
1265 	blk->mem_type = le16_to_cpu(raw->hdr.type);
1266 
1267 	switch (dsp->wmfw_ver) {
1268 	case 0:
1269 	case 1:
1270 		if (sizeof(*raw) > (data_len - pos))
1271 			return -EOVERFLOW;
1272 
1273 		blk->name = raw->name;
1274 		blk->name_len = strnlen(raw->name, ARRAY_SIZE(raw->name));
1275 		blk->ctl_type = le16_to_cpu(raw->ctl_type);
1276 		blk->flags = le16_to_cpu(raw->flags);
1277 		blk->len = le32_to_cpu(raw->len);
1278 		break;
1279 	default:
1280 		pos += sizeof(raw->hdr);
1281 		tmp = &region->data[pos];
1282 		blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos,
1283 							  &blk->name);
1284 		if (!tmp)
1285 			return -EOVERFLOW;
1286 
1287 		pos = tmp - region->data;
1288 		cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos, NULL);
1289 		if (!tmp)
1290 			return -EOVERFLOW;
1291 
1292 		pos = tmp - region->data;
1293 		cs_dsp_coeff_parse_string(sizeof(u16), &tmp, data_len - pos, NULL);
1294 		if (!tmp)
1295 			return -EOVERFLOW;
1296 
1297 		pos = tmp - region->data;
1298 		if (sizeof(raw->ctl_type) + sizeof(raw->flags) + sizeof(raw->len) >
1299 		    (data_len - pos))
1300 			return -EOVERFLOW;
1301 
1302 		blk->ctl_type = cs_dsp_coeff_parse_int(sizeof(raw->ctl_type), &tmp);
1303 		pos += sizeof(raw->ctl_type);
1304 		blk->flags = cs_dsp_coeff_parse_int(sizeof(raw->flags), &tmp);
1305 		pos += sizeof(raw->flags);
1306 		blk->len = cs_dsp_coeff_parse_int(sizeof(raw->len), &tmp);
1307 		break;
1308 	}
1309 
1310 	cs_dsp_dbg(dsp, "\tCoefficient type: %#x\n", blk->mem_type);
1311 	cs_dsp_dbg(dsp, "\tCoefficient offset: %#x\n", blk->offset);
1312 	cs_dsp_dbg(dsp, "\tCoefficient name: %.*s\n", blk->name_len, blk->name);
1313 	cs_dsp_dbg(dsp, "\tCoefficient flags: %#x\n", blk->flags);
1314 	cs_dsp_dbg(dsp, "\tALSA control type: %#x\n", blk->ctl_type);
1315 	cs_dsp_dbg(dsp, "\tALSA control len: %#x\n", blk->len);
1316 
1317 	return blk_end_pos;
1318 }
1319 
cs_dsp_check_coeff_flags(struct cs_dsp * dsp,const struct cs_dsp_coeff_parsed_coeff * coeff_blk,unsigned int f_required,unsigned int f_illegal)1320 static int cs_dsp_check_coeff_flags(struct cs_dsp *dsp,
1321 				    const struct cs_dsp_coeff_parsed_coeff *coeff_blk,
1322 				    unsigned int f_required,
1323 				    unsigned int f_illegal)
1324 {
1325 	if ((coeff_blk->flags & f_illegal) ||
1326 	    ((coeff_blk->flags & f_required) != f_required)) {
1327 		cs_dsp_err(dsp, "Illegal flags 0x%x for control type 0x%x\n",
1328 			   coeff_blk->flags, coeff_blk->ctl_type);
1329 		return -EINVAL;
1330 	}
1331 
1332 	return 0;
1333 }
1334 
cs_dsp_parse_coeff(struct cs_dsp * dsp,const struct wmfw_region * region)1335 static int cs_dsp_parse_coeff(struct cs_dsp *dsp,
1336 			      const struct wmfw_region *region)
1337 {
1338 	struct cs_dsp_alg_region alg_region = {};
1339 	struct cs_dsp_coeff_parsed_alg alg_blk;
1340 	struct cs_dsp_coeff_parsed_coeff coeff_blk;
1341 	int i, pos, ret;
1342 
1343 	pos = cs_dsp_coeff_parse_alg(dsp, region, &alg_blk);
1344 	if (pos < 0)
1345 		return pos;
1346 
1347 	for (i = 0; i < alg_blk.ncoeff; i++) {
1348 		pos = cs_dsp_coeff_parse_coeff(dsp, region, pos, &coeff_blk);
1349 		if (pos < 0)
1350 			return pos;
1351 
1352 		switch (coeff_blk.ctl_type) {
1353 		case WMFW_CTL_TYPE_BYTES:
1354 			break;
1355 		case WMFW_CTL_TYPE_ACKED:
1356 			if (coeff_blk.flags & WMFW_CTL_FLAG_SYS)
1357 				continue;	/* ignore */
1358 
1359 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1360 						       WMFW_CTL_FLAG_VOLATILE |
1361 						       WMFW_CTL_FLAG_WRITEABLE |
1362 						       WMFW_CTL_FLAG_READABLE,
1363 						       0);
1364 			if (ret)
1365 				return -EINVAL;
1366 			break;
1367 		case WMFW_CTL_TYPE_HOSTEVENT:
1368 		case WMFW_CTL_TYPE_FWEVENT:
1369 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1370 						       WMFW_CTL_FLAG_SYS |
1371 						       WMFW_CTL_FLAG_VOLATILE |
1372 						       WMFW_CTL_FLAG_WRITEABLE |
1373 						       WMFW_CTL_FLAG_READABLE,
1374 						       0);
1375 			if (ret)
1376 				return -EINVAL;
1377 			break;
1378 		case WMFW_CTL_TYPE_HOST_BUFFER:
1379 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1380 						       WMFW_CTL_FLAG_SYS |
1381 						       WMFW_CTL_FLAG_VOLATILE |
1382 						       WMFW_CTL_FLAG_READABLE,
1383 						       0);
1384 			if (ret)
1385 				return -EINVAL;
1386 			break;
1387 		default:
1388 			cs_dsp_err(dsp, "Unknown control type: %d\n",
1389 				   coeff_blk.ctl_type);
1390 			return -EINVAL;
1391 		}
1392 
1393 		alg_region.type = coeff_blk.mem_type;
1394 		alg_region.alg = alg_blk.id;
1395 
1396 		ret = cs_dsp_create_control(dsp, &alg_region,
1397 					    coeff_blk.offset,
1398 					    coeff_blk.len,
1399 					    coeff_blk.name,
1400 					    coeff_blk.name_len,
1401 					    coeff_blk.flags,
1402 					    coeff_blk.ctl_type);
1403 		if (ret < 0)
1404 			cs_dsp_err(dsp, "Failed to create control: %.*s, %d\n",
1405 				   coeff_blk.name_len, coeff_blk.name, ret);
1406 	}
1407 
1408 	return 0;
1409 }
1410 
cs_dsp_adsp1_parse_sizes(struct cs_dsp * dsp,const char * const file,unsigned int pos,const struct firmware * firmware)1411 static unsigned int cs_dsp_adsp1_parse_sizes(struct cs_dsp *dsp,
1412 					     const char * const file,
1413 					     unsigned int pos,
1414 					     const struct firmware *firmware)
1415 {
1416 	const struct wmfw_adsp1_sizes *adsp1_sizes;
1417 
1418 	adsp1_sizes = (void *)&firmware->data[pos];
1419 	if (sizeof(*adsp1_sizes) > firmware->size - pos) {
1420 		cs_dsp_err(dsp, "%s: file truncated\n", file);
1421 		return 0;
1422 	}
1423 
1424 	cs_dsp_dbg(dsp, "%s: %d DM, %d PM, %d ZM\n", file,
1425 		   le32_to_cpu(adsp1_sizes->dm), le32_to_cpu(adsp1_sizes->pm),
1426 		   le32_to_cpu(adsp1_sizes->zm));
1427 
1428 	return pos + sizeof(*adsp1_sizes);
1429 }
1430 
cs_dsp_adsp2_parse_sizes(struct cs_dsp * dsp,const char * const file,unsigned int pos,const struct firmware * firmware)1431 static unsigned int cs_dsp_adsp2_parse_sizes(struct cs_dsp *dsp,
1432 					     const char * const file,
1433 					     unsigned int pos,
1434 					     const struct firmware *firmware)
1435 {
1436 	const struct wmfw_adsp2_sizes *adsp2_sizes;
1437 
1438 	adsp2_sizes = (void *)&firmware->data[pos];
1439 	if (sizeof(*adsp2_sizes) > firmware->size - pos) {
1440 		cs_dsp_err(dsp, "%s: file truncated\n", file);
1441 		return 0;
1442 	}
1443 
1444 	cs_dsp_dbg(dsp, "%s: %d XM, %d YM %d PM, %d ZM\n", file,
1445 		   le32_to_cpu(adsp2_sizes->xm), le32_to_cpu(adsp2_sizes->ym),
1446 		   le32_to_cpu(adsp2_sizes->pm), le32_to_cpu(adsp2_sizes->zm));
1447 
1448 	return pos + sizeof(*adsp2_sizes);
1449 }
1450 
cs_dsp_validate_version(struct cs_dsp * dsp,unsigned int version)1451 static bool cs_dsp_validate_version(struct cs_dsp *dsp, unsigned int version)
1452 {
1453 	switch (version) {
1454 	case 0:
1455 		cs_dsp_warn(dsp, "Deprecated file format %d\n", version);
1456 		return true;
1457 	case 1:
1458 	case 2:
1459 		return true;
1460 	default:
1461 		return false;
1462 	}
1463 }
1464 
cs_dsp_halo_validate_version(struct cs_dsp * dsp,unsigned int version)1465 static bool cs_dsp_halo_validate_version(struct cs_dsp *dsp, unsigned int version)
1466 {
1467 	switch (version) {
1468 	case 3:
1469 		return true;
1470 	default:
1471 		return false;
1472 	}
1473 }
1474 
cs_dsp_load(struct cs_dsp * dsp,const struct firmware * firmware,const char * file)1475 static int cs_dsp_load(struct cs_dsp *dsp, const struct firmware *firmware,
1476 		       const char *file)
1477 {
1478 	LIST_HEAD(buf_list);
1479 	struct regmap *regmap = dsp->regmap;
1480 	unsigned int pos = 0;
1481 	const struct wmfw_header *header;
1482 	const struct wmfw_footer *footer;
1483 	const struct wmfw_region *region;
1484 	const struct cs_dsp_region *mem;
1485 	const char *region_name;
1486 	u8 *buf __free(kfree) = NULL;
1487 	size_t buf_len = 0;
1488 	size_t region_len;
1489 	unsigned int reg;
1490 	int regions = 0;
1491 	int ret, offset, type;
1492 
1493 	if (!firmware)
1494 		return 0;
1495 
1496 	ret = -EINVAL;
1497 
1498 	if (sizeof(*header) >= firmware->size) {
1499 		ret = -EOVERFLOW;
1500 		goto out_fw;
1501 	}
1502 
1503 	header = (void *)&firmware->data[0];
1504 
1505 	if (memcmp(&header->magic[0], "WMFW", 4) != 0) {
1506 		cs_dsp_err(dsp, "%s: invalid magic\n", file);
1507 		goto out_fw;
1508 	}
1509 
1510 	if (!dsp->ops->validate_version(dsp, header->ver)) {
1511 		cs_dsp_err(dsp, "%s: unknown file format %d\n",
1512 			   file, header->ver);
1513 		goto out_fw;
1514 	}
1515 
1516 	dsp->wmfw_ver = header->ver;
1517 
1518 	if (header->core != dsp->type) {
1519 		cs_dsp_err(dsp, "%s: invalid core %d != %d\n",
1520 			   file, header->core, dsp->type);
1521 		goto out_fw;
1522 	}
1523 
1524 	pos = sizeof(*header);
1525 	pos = dsp->ops->parse_sizes(dsp, file, pos, firmware);
1526 	if ((pos == 0) || (sizeof(*footer) > firmware->size - pos)) {
1527 		ret = -EOVERFLOW;
1528 		goto out_fw;
1529 	}
1530 
1531 	footer = (void *)&firmware->data[pos];
1532 	pos += sizeof(*footer);
1533 
1534 	if (le32_to_cpu(header->len) != pos) {
1535 		ret = -EOVERFLOW;
1536 		goto out_fw;
1537 	}
1538 
1539 	cs_dsp_info(dsp, "%s: format %d timestamp %#llx\n", file, header->ver,
1540 		    le64_to_cpu(footer->timestamp));
1541 
1542 	while (pos < firmware->size) {
1543 		/* Is there enough data for a complete block header? */
1544 		if (sizeof(*region) > firmware->size - pos) {
1545 			ret = -EOVERFLOW;
1546 			goto out_fw;
1547 		}
1548 
1549 		region = (void *)&(firmware->data[pos]);
1550 
1551 		if (le32_to_cpu(region->len) > firmware->size - pos - sizeof(*region)) {
1552 			ret = -EOVERFLOW;
1553 			goto out_fw;
1554 		}
1555 
1556 		region_name = "Unknown";
1557 		reg = 0;
1558 		offset = le32_to_cpu(region->offset) & 0xffffff;
1559 		type = be32_to_cpu(region->type) & 0xff;
1560 
1561 		switch (type) {
1562 		case WMFW_INFO_TEXT:
1563 		case WMFW_NAME_TEXT:
1564 			region_name = "Info/Name";
1565 			cs_dsp_info(dsp, "%s: %.*s\n", file,
1566 				    min(le32_to_cpu(region->len), 100), region->data);
1567 			break;
1568 		case WMFW_ALGORITHM_DATA:
1569 			region_name = "Algorithm";
1570 			ret = cs_dsp_parse_coeff(dsp, region);
1571 			if (ret != 0)
1572 				goto out_fw;
1573 			break;
1574 		case WMFW_ABSOLUTE:
1575 			region_name = "Absolute";
1576 			reg = offset;
1577 			break;
1578 		case WMFW_ADSP1_PM:
1579 		case WMFW_ADSP1_DM:
1580 		case WMFW_ADSP2_XM:
1581 		case WMFW_ADSP2_YM:
1582 		case WMFW_ADSP1_ZM:
1583 		case WMFW_HALO_PM_PACKED:
1584 		case WMFW_HALO_XM_PACKED:
1585 		case WMFW_HALO_YM_PACKED:
1586 			mem = cs_dsp_find_region(dsp, type);
1587 			if (!mem) {
1588 				cs_dsp_err(dsp, "No region of type: %x\n", type);
1589 				ret = -EINVAL;
1590 				goto out_fw;
1591 			}
1592 
1593 			region_name = cs_dsp_mem_region_name(type);
1594 			reg = dsp->ops->region_to_reg(mem, offset);
1595 			break;
1596 		default:
1597 			cs_dsp_warn(dsp,
1598 				    "%s.%d: Unknown region type %x at %d(%x)\n",
1599 				    file, regions, type, pos, pos);
1600 			break;
1601 		}
1602 
1603 		cs_dsp_dbg(dsp, "%s.%d: %d bytes at %d in %s\n", file,
1604 			   regions, le32_to_cpu(region->len), offset,
1605 			   region_name);
1606 
1607 		if (reg) {
1608 			region_len = le32_to_cpu(region->len);
1609 			if (region_len > buf_len) {
1610 				buf_len = round_up(region_len, PAGE_SIZE);
1611 				kfree(buf);
1612 				buf = kmalloc(buf_len, GFP_KERNEL | GFP_DMA);
1613 				if (!buf) {
1614 					ret = -ENOMEM;
1615 					goto out_fw;
1616 				}
1617 			}
1618 
1619 			memcpy(buf, region->data, region_len);
1620 			ret = regmap_raw_write(regmap, reg, buf, region_len);
1621 			if (ret != 0) {
1622 				cs_dsp_err(dsp,
1623 					   "%s.%d: Failed to write %zu bytes at %d in %s: %d\n",
1624 					   file, regions, region_len, offset, region_name, ret);
1625 				goto out_fw;
1626 			}
1627 		}
1628 
1629 		pos += le32_to_cpu(region->len) + sizeof(*region);
1630 		regions++;
1631 	}
1632 
1633 	if (pos > firmware->size)
1634 		cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
1635 			    file, regions, pos - firmware->size);
1636 
1637 	cs_dsp_debugfs_save_wmfwname(dsp, file);
1638 
1639 	ret = 0;
1640 out_fw:
1641 	if (ret == -EOVERFLOW)
1642 		cs_dsp_err(dsp, "%s: file content overflows file data\n", file);
1643 
1644 	return ret;
1645 }
1646 
1647 /**
1648  * cs_dsp_get_ctl() - Finds a matching coefficient control
1649  * @dsp: pointer to DSP structure
1650  * @name: pointer to string to match with a control's subname
1651  * @type: the algorithm type to match
1652  * @alg: the algorithm id to match
1653  *
1654  * Find cs_dsp_coeff_ctl with input name as its subname
1655  *
1656  * Return: pointer to the control on success, NULL if not found
1657  */
cs_dsp_get_ctl(struct cs_dsp * dsp,const char * name,int type,unsigned int alg)1658 struct cs_dsp_coeff_ctl *cs_dsp_get_ctl(struct cs_dsp *dsp, const char *name, int type,
1659 					unsigned int alg)
1660 {
1661 	struct cs_dsp_coeff_ctl *pos, *rslt = NULL;
1662 
1663 	lockdep_assert_held(&dsp->pwr_lock);
1664 
1665 	list_for_each_entry(pos, &dsp->ctl_list, list) {
1666 		if (!pos->subname)
1667 			continue;
1668 		if (strncmp(pos->subname, name, pos->subname_len) == 0 &&
1669 		    pos->fw_name == dsp->fw_name &&
1670 		    pos->alg_region.alg == alg &&
1671 		    pos->alg_region.type == type) {
1672 			rslt = pos;
1673 			break;
1674 		}
1675 	}
1676 
1677 	return rslt;
1678 }
1679 EXPORT_SYMBOL_NS_GPL(cs_dsp_get_ctl, "FW_CS_DSP");
1680 
cs_dsp_ctl_fixup_base(struct cs_dsp * dsp,const struct cs_dsp_alg_region * alg_region)1681 static void cs_dsp_ctl_fixup_base(struct cs_dsp *dsp,
1682 				  const struct cs_dsp_alg_region *alg_region)
1683 {
1684 	struct cs_dsp_coeff_ctl *ctl;
1685 
1686 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
1687 		if (ctl->fw_name == dsp->fw_name &&
1688 		    alg_region->alg == ctl->alg_region.alg &&
1689 		    alg_region->type == ctl->alg_region.type) {
1690 			ctl->alg_region.base = alg_region->base;
1691 		}
1692 	}
1693 }
1694 
cs_dsp_read_algs(struct cs_dsp * dsp,size_t n_algs,const struct cs_dsp_region * mem,unsigned int pos,unsigned int len)1695 static void *cs_dsp_read_algs(struct cs_dsp *dsp, size_t n_algs,
1696 			      const struct cs_dsp_region *mem,
1697 			      unsigned int pos, unsigned int len)
1698 {
1699 	void *alg;
1700 	unsigned int reg;
1701 	int ret;
1702 	__be32 val;
1703 
1704 	if (n_algs == 0) {
1705 		cs_dsp_err(dsp, "No algorithms\n");
1706 		return ERR_PTR(-EINVAL);
1707 	}
1708 
1709 	if (n_algs > 1024) {
1710 		cs_dsp_err(dsp, "Algorithm count %zx excessive\n", n_algs);
1711 		return ERR_PTR(-EINVAL);
1712 	}
1713 
1714 	/* Read the terminator first to validate the length */
1715 	reg = dsp->ops->region_to_reg(mem, pos + len);
1716 
1717 	ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
1718 	if (ret != 0) {
1719 		cs_dsp_err(dsp, "Failed to read algorithm list end: %d\n",
1720 			   ret);
1721 		return ERR_PTR(ret);
1722 	}
1723 
1724 	if (be32_to_cpu(val) != 0xbedead)
1725 		cs_dsp_warn(dsp, "Algorithm list end %x 0x%x != 0xbedead\n",
1726 			    reg, be32_to_cpu(val));
1727 
1728 	/* Convert length from DSP words to bytes */
1729 	len *= sizeof(u32);
1730 
1731 	alg = kzalloc(len, GFP_KERNEL | GFP_DMA);
1732 	if (!alg)
1733 		return ERR_PTR(-ENOMEM);
1734 
1735 	reg = dsp->ops->region_to_reg(mem, pos);
1736 
1737 	ret = regmap_raw_read(dsp->regmap, reg, alg, len);
1738 	if (ret != 0) {
1739 		cs_dsp_err(dsp, "Failed to read algorithm list: %d\n", ret);
1740 		kfree(alg);
1741 		return ERR_PTR(ret);
1742 	}
1743 
1744 	return alg;
1745 }
1746 
1747 /**
1748  * cs_dsp_find_alg_region() - Finds a matching algorithm region
1749  * @dsp: pointer to DSP structure
1750  * @type: the algorithm type to match
1751  * @id: the algorithm id to match
1752  *
1753  * Return: Pointer to matching algorithm region, or NULL if not found.
1754  */
cs_dsp_find_alg_region(struct cs_dsp * dsp,int type,unsigned int id)1755 struct cs_dsp_alg_region *cs_dsp_find_alg_region(struct cs_dsp *dsp,
1756 						 int type, unsigned int id)
1757 {
1758 	struct cs_dsp_alg_region_list_item *item;
1759 
1760 	lockdep_assert_held(&dsp->pwr_lock);
1761 
1762 	list_for_each_entry(item, &dsp->alg_regions, list) {
1763 		if (id == item->alg_region.alg && type == item->alg_region.type)
1764 			return &item->alg_region;
1765 	}
1766 
1767 	return NULL;
1768 }
1769 EXPORT_SYMBOL_NS_GPL(cs_dsp_find_alg_region, "FW_CS_DSP");
1770 
cs_dsp_create_region(struct cs_dsp * dsp,int type,__be32 id,__be32 ver,__be32 base)1771 static struct cs_dsp_alg_region *cs_dsp_create_region(struct cs_dsp *dsp,
1772 						      int type, __be32 id,
1773 						      __be32 ver, __be32 base)
1774 {
1775 	struct cs_dsp_alg_region_list_item *item;
1776 
1777 	item = kzalloc(sizeof(*item), GFP_KERNEL);
1778 	if (!item)
1779 		return ERR_PTR(-ENOMEM);
1780 
1781 	item->alg_region.type = type;
1782 	item->alg_region.alg = be32_to_cpu(id);
1783 	item->alg_region.ver = be32_to_cpu(ver);
1784 	item->alg_region.base = be32_to_cpu(base);
1785 
1786 	list_add_tail(&item->list, &dsp->alg_regions);
1787 
1788 	if (dsp->wmfw_ver > 0)
1789 		cs_dsp_ctl_fixup_base(dsp, &item->alg_region);
1790 
1791 	return &item->alg_region;
1792 }
1793 
cs_dsp_free_alg_regions(struct cs_dsp * dsp)1794 static void cs_dsp_free_alg_regions(struct cs_dsp *dsp)
1795 {
1796 	struct cs_dsp_alg_region_list_item *item;
1797 
1798 	while (!list_empty(&dsp->alg_regions)) {
1799 		item = list_first_entry(&dsp->alg_regions,
1800 					struct cs_dsp_alg_region_list_item,
1801 					list);
1802 		list_del(&item->list);
1803 		kfree(item);
1804 	}
1805 }
1806 
cs_dsp_parse_wmfw_id_header(struct cs_dsp * dsp,struct wmfw_id_hdr * fw,int nalgs)1807 static void cs_dsp_parse_wmfw_id_header(struct cs_dsp *dsp,
1808 					struct wmfw_id_hdr *fw, int nalgs)
1809 {
1810 	dsp->fw_id = be32_to_cpu(fw->id);
1811 	dsp->fw_id_version = be32_to_cpu(fw->ver);
1812 
1813 	cs_dsp_info(dsp, "Firmware: %x v%d.%d.%d, %d algorithms\n",
1814 		    dsp->fw_id, (dsp->fw_id_version & 0xff0000) >> 16,
1815 		    (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1816 		    nalgs);
1817 }
1818 
cs_dsp_parse_wmfw_v3_id_header(struct cs_dsp * dsp,struct wmfw_v3_id_hdr * fw,int nalgs)1819 static void cs_dsp_parse_wmfw_v3_id_header(struct cs_dsp *dsp,
1820 					   struct wmfw_v3_id_hdr *fw, int nalgs)
1821 {
1822 	dsp->fw_id = be32_to_cpu(fw->id);
1823 	dsp->fw_id_version = be32_to_cpu(fw->ver);
1824 	dsp->fw_vendor_id = be32_to_cpu(fw->vendor_id);
1825 
1826 	cs_dsp_info(dsp, "Firmware: %x vendor: 0x%x v%d.%d.%d, %d algorithms\n",
1827 		    dsp->fw_id, dsp->fw_vendor_id,
1828 		    (dsp->fw_id_version & 0xff0000) >> 16,
1829 		    (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1830 		    nalgs);
1831 }
1832 
cs_dsp_create_regions(struct cs_dsp * dsp,__be32 id,__be32 ver,int nregions,const int * type,__be32 * base)1833 static int cs_dsp_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
1834 				 int nregions, const int *type, __be32 *base)
1835 {
1836 	struct cs_dsp_alg_region *alg_region;
1837 	int i;
1838 
1839 	for (i = 0; i < nregions; i++) {
1840 		alg_region = cs_dsp_create_region(dsp, type[i], id, ver, base[i]);
1841 		if (IS_ERR(alg_region))
1842 			return PTR_ERR(alg_region);
1843 	}
1844 
1845 	return 0;
1846 }
1847 
cs_dsp_adsp1_setup_algs(struct cs_dsp * dsp)1848 static int cs_dsp_adsp1_setup_algs(struct cs_dsp *dsp)
1849 {
1850 	struct wmfw_adsp1_id_hdr adsp1_id;
1851 	struct wmfw_adsp1_alg_hdr *adsp1_alg;
1852 	struct cs_dsp_alg_region *alg_region;
1853 	const struct cs_dsp_region *mem;
1854 	unsigned int pos, len;
1855 	size_t n_algs;
1856 	int i, ret;
1857 
1858 	mem = cs_dsp_find_region(dsp, WMFW_ADSP1_DM);
1859 	if (WARN_ON(!mem))
1860 		return -EINVAL;
1861 
1862 	ret = regmap_raw_read(dsp->regmap, mem->base, &adsp1_id,
1863 			      sizeof(adsp1_id));
1864 	if (ret != 0) {
1865 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1866 			   ret);
1867 		return ret;
1868 	}
1869 
1870 	n_algs = be32_to_cpu(adsp1_id.n_algs);
1871 
1872 	cs_dsp_parse_wmfw_id_header(dsp, &adsp1_id.fw, n_algs);
1873 
1874 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1875 					  adsp1_id.fw.id, adsp1_id.fw.ver,
1876 					  adsp1_id.zm);
1877 	if (IS_ERR(alg_region))
1878 		return PTR_ERR(alg_region);
1879 
1880 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1881 					  adsp1_id.fw.id, adsp1_id.fw.ver,
1882 					  adsp1_id.dm);
1883 	if (IS_ERR(alg_region))
1884 		return PTR_ERR(alg_region);
1885 
1886 	/* Calculate offset and length in DSP words */
1887 	pos = sizeof(adsp1_id) / sizeof(u32);
1888 	len = (sizeof(*adsp1_alg) * n_algs) / sizeof(u32);
1889 
1890 	adsp1_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1891 	if (IS_ERR(adsp1_alg))
1892 		return PTR_ERR(adsp1_alg);
1893 
1894 	for (i = 0; i < n_algs; i++) {
1895 		cs_dsp_info(dsp, "%d: ID %x v%d.%d.%d DM@%x ZM@%x\n",
1896 			    i, be32_to_cpu(adsp1_alg[i].alg.id),
1897 			    (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff0000) >> 16,
1898 			    (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff00) >> 8,
1899 			    be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff,
1900 			    be32_to_cpu(adsp1_alg[i].dm),
1901 			    be32_to_cpu(adsp1_alg[i].zm));
1902 
1903 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1904 						  adsp1_alg[i].alg.id,
1905 						  adsp1_alg[i].alg.ver,
1906 						  adsp1_alg[i].dm);
1907 		if (IS_ERR(alg_region)) {
1908 			ret = PTR_ERR(alg_region);
1909 			goto out;
1910 		}
1911 		if (dsp->wmfw_ver == 0) {
1912 			if (i + 1 < n_algs) {
1913 				len = be32_to_cpu(adsp1_alg[i + 1].dm);
1914 				len -= be32_to_cpu(adsp1_alg[i].dm);
1915 				len *= 4;
1916 				cs_dsp_create_control(dsp, alg_region, 0,
1917 						      len, NULL, 0, 0,
1918 						      WMFW_CTL_TYPE_BYTES);
1919 			} else {
1920 				cs_dsp_warn(dsp, "Missing length info for region DM with ID %x\n",
1921 					    be32_to_cpu(adsp1_alg[i].alg.id));
1922 			}
1923 		}
1924 
1925 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1926 						  adsp1_alg[i].alg.id,
1927 						  adsp1_alg[i].alg.ver,
1928 						  adsp1_alg[i].zm);
1929 		if (IS_ERR(alg_region)) {
1930 			ret = PTR_ERR(alg_region);
1931 			goto out;
1932 		}
1933 		if (dsp->wmfw_ver == 0) {
1934 			if (i + 1 < n_algs) {
1935 				len = be32_to_cpu(adsp1_alg[i + 1].zm);
1936 				len -= be32_to_cpu(adsp1_alg[i].zm);
1937 				len *= 4;
1938 				cs_dsp_create_control(dsp, alg_region, 0,
1939 						      len, NULL, 0, 0,
1940 						      WMFW_CTL_TYPE_BYTES);
1941 			} else {
1942 				cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
1943 					    be32_to_cpu(adsp1_alg[i].alg.id));
1944 			}
1945 		}
1946 	}
1947 
1948 out:
1949 	kfree(adsp1_alg);
1950 	return ret;
1951 }
1952 
cs_dsp_adsp2_setup_algs(struct cs_dsp * dsp)1953 static int cs_dsp_adsp2_setup_algs(struct cs_dsp *dsp)
1954 {
1955 	struct wmfw_adsp2_id_hdr adsp2_id;
1956 	struct wmfw_adsp2_alg_hdr *adsp2_alg;
1957 	struct cs_dsp_alg_region *alg_region;
1958 	const struct cs_dsp_region *mem;
1959 	unsigned int pos, len;
1960 	size_t n_algs;
1961 	int i, ret;
1962 
1963 	mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
1964 	if (WARN_ON(!mem))
1965 		return -EINVAL;
1966 
1967 	ret = regmap_raw_read(dsp->regmap, mem->base, &adsp2_id,
1968 			      sizeof(adsp2_id));
1969 	if (ret != 0) {
1970 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1971 			   ret);
1972 		return ret;
1973 	}
1974 
1975 	n_algs = be32_to_cpu(adsp2_id.n_algs);
1976 
1977 	cs_dsp_parse_wmfw_id_header(dsp, &adsp2_id.fw, n_algs);
1978 
1979 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
1980 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1981 					  adsp2_id.xm);
1982 	if (IS_ERR(alg_region))
1983 		return PTR_ERR(alg_region);
1984 
1985 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
1986 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1987 					  adsp2_id.ym);
1988 	if (IS_ERR(alg_region))
1989 		return PTR_ERR(alg_region);
1990 
1991 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
1992 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1993 					  adsp2_id.zm);
1994 	if (IS_ERR(alg_region))
1995 		return PTR_ERR(alg_region);
1996 
1997 	/* Calculate offset and length in DSP words */
1998 	pos = sizeof(adsp2_id) / sizeof(u32);
1999 	len = (sizeof(*adsp2_alg) * n_algs) / sizeof(u32);
2000 
2001 	adsp2_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
2002 	if (IS_ERR(adsp2_alg))
2003 		return PTR_ERR(adsp2_alg);
2004 
2005 	for (i = 0; i < n_algs; i++) {
2006 		cs_dsp_dbg(dsp,
2007 			   "%d: ID %x v%d.%d.%d XM@%x YM@%x ZM@%x\n",
2008 			   i, be32_to_cpu(adsp2_alg[i].alg.id),
2009 			   (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff0000) >> 16,
2010 			   (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff00) >> 8,
2011 			   be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff,
2012 			   be32_to_cpu(adsp2_alg[i].xm),
2013 			   be32_to_cpu(adsp2_alg[i].ym),
2014 			   be32_to_cpu(adsp2_alg[i].zm));
2015 
2016 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
2017 						  adsp2_alg[i].alg.id,
2018 						  adsp2_alg[i].alg.ver,
2019 						  adsp2_alg[i].xm);
2020 		if (IS_ERR(alg_region)) {
2021 			ret = PTR_ERR(alg_region);
2022 			goto out;
2023 		}
2024 		if (dsp->wmfw_ver == 0) {
2025 			if (i + 1 < n_algs) {
2026 				len = be32_to_cpu(adsp2_alg[i + 1].xm);
2027 				len -= be32_to_cpu(adsp2_alg[i].xm);
2028 				len *= 4;
2029 				cs_dsp_create_control(dsp, alg_region, 0,
2030 						      len, NULL, 0, 0,
2031 						      WMFW_CTL_TYPE_BYTES);
2032 			} else {
2033 				cs_dsp_warn(dsp, "Missing length info for region XM with ID %x\n",
2034 					    be32_to_cpu(adsp2_alg[i].alg.id));
2035 			}
2036 		}
2037 
2038 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
2039 						  adsp2_alg[i].alg.id,
2040 						  adsp2_alg[i].alg.ver,
2041 						  adsp2_alg[i].ym);
2042 		if (IS_ERR(alg_region)) {
2043 			ret = PTR_ERR(alg_region);
2044 			goto out;
2045 		}
2046 		if (dsp->wmfw_ver == 0) {
2047 			if (i + 1 < n_algs) {
2048 				len = be32_to_cpu(adsp2_alg[i + 1].ym);
2049 				len -= be32_to_cpu(adsp2_alg[i].ym);
2050 				len *= 4;
2051 				cs_dsp_create_control(dsp, alg_region, 0,
2052 						      len, NULL, 0, 0,
2053 						      WMFW_CTL_TYPE_BYTES);
2054 			} else {
2055 				cs_dsp_warn(dsp, "Missing length info for region YM with ID %x\n",
2056 					    be32_to_cpu(adsp2_alg[i].alg.id));
2057 			}
2058 		}
2059 
2060 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
2061 						  adsp2_alg[i].alg.id,
2062 						  adsp2_alg[i].alg.ver,
2063 						  adsp2_alg[i].zm);
2064 		if (IS_ERR(alg_region)) {
2065 			ret = PTR_ERR(alg_region);
2066 			goto out;
2067 		}
2068 		if (dsp->wmfw_ver == 0) {
2069 			if (i + 1 < n_algs) {
2070 				len = be32_to_cpu(adsp2_alg[i + 1].zm);
2071 				len -= be32_to_cpu(adsp2_alg[i].zm);
2072 				len *= 4;
2073 				cs_dsp_create_control(dsp, alg_region, 0,
2074 						      len, NULL, 0, 0,
2075 						      WMFW_CTL_TYPE_BYTES);
2076 			} else {
2077 				cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
2078 					    be32_to_cpu(adsp2_alg[i].alg.id));
2079 			}
2080 		}
2081 	}
2082 
2083 out:
2084 	kfree(adsp2_alg);
2085 	return ret;
2086 }
2087 
cs_dsp_halo_create_regions(struct cs_dsp * dsp,__be32 id,__be32 ver,__be32 xm_base,__be32 ym_base)2088 static int cs_dsp_halo_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
2089 				      __be32 xm_base, __be32 ym_base)
2090 {
2091 	static const int types[] = {
2092 		WMFW_ADSP2_XM, WMFW_HALO_XM_PACKED,
2093 		WMFW_ADSP2_YM, WMFW_HALO_YM_PACKED
2094 	};
2095 	__be32 bases[] = { xm_base, xm_base, ym_base, ym_base };
2096 
2097 	return cs_dsp_create_regions(dsp, id, ver, ARRAY_SIZE(types), types, bases);
2098 }
2099 
cs_dsp_halo_setup_algs(struct cs_dsp * dsp)2100 static int cs_dsp_halo_setup_algs(struct cs_dsp *dsp)
2101 {
2102 	struct wmfw_halo_id_hdr halo_id;
2103 	struct wmfw_halo_alg_hdr *halo_alg;
2104 	const struct cs_dsp_region *mem;
2105 	unsigned int pos, len;
2106 	size_t n_algs;
2107 	int i, ret;
2108 
2109 	mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
2110 	if (WARN_ON(!mem))
2111 		return -EINVAL;
2112 
2113 	ret = regmap_raw_read(dsp->regmap, mem->base, &halo_id,
2114 			      sizeof(halo_id));
2115 	if (ret != 0) {
2116 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
2117 			   ret);
2118 		return ret;
2119 	}
2120 
2121 	n_algs = be32_to_cpu(halo_id.n_algs);
2122 
2123 	cs_dsp_parse_wmfw_v3_id_header(dsp, &halo_id.fw, n_algs);
2124 
2125 	ret = cs_dsp_halo_create_regions(dsp, halo_id.fw.id, halo_id.fw.ver,
2126 					 halo_id.xm_base, halo_id.ym_base);
2127 	if (ret)
2128 		return ret;
2129 
2130 	/* Calculate offset and length in DSP words */
2131 	pos = sizeof(halo_id) / sizeof(u32);
2132 	len = (sizeof(*halo_alg) * n_algs) / sizeof(u32);
2133 
2134 	halo_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
2135 	if (IS_ERR(halo_alg))
2136 		return PTR_ERR(halo_alg);
2137 
2138 	for (i = 0; i < n_algs; i++) {
2139 		cs_dsp_dbg(dsp,
2140 			   "%d: ID %x v%d.%d.%d XM@%x YM@%x\n",
2141 			   i, be32_to_cpu(halo_alg[i].alg.id),
2142 			   (be32_to_cpu(halo_alg[i].alg.ver) & 0xff0000) >> 16,
2143 			   (be32_to_cpu(halo_alg[i].alg.ver) & 0xff00) >> 8,
2144 			   be32_to_cpu(halo_alg[i].alg.ver) & 0xff,
2145 			   be32_to_cpu(halo_alg[i].xm_base),
2146 			   be32_to_cpu(halo_alg[i].ym_base));
2147 
2148 		ret = cs_dsp_halo_create_regions(dsp, halo_alg[i].alg.id,
2149 						 halo_alg[i].alg.ver,
2150 						 halo_alg[i].xm_base,
2151 						 halo_alg[i].ym_base);
2152 		if (ret)
2153 			goto out;
2154 	}
2155 
2156 out:
2157 	kfree(halo_alg);
2158 	return ret;
2159 }
2160 
cs_dsp_load_coeff(struct cs_dsp * dsp,const struct firmware * firmware,const char * file)2161 static int cs_dsp_load_coeff(struct cs_dsp *dsp, const struct firmware *firmware,
2162 			     const char *file)
2163 {
2164 	LIST_HEAD(buf_list);
2165 	struct regmap *regmap = dsp->regmap;
2166 	struct wmfw_coeff_hdr *hdr;
2167 	struct wmfw_coeff_item *blk;
2168 	const struct cs_dsp_region *mem;
2169 	struct cs_dsp_alg_region *alg_region;
2170 	const char *region_name;
2171 	int ret, pos, blocks, type, offset, reg, version;
2172 	u8 *buf __free(kfree) = NULL;
2173 	size_t buf_len = 0;
2174 	size_t region_len;
2175 
2176 	if (!firmware)
2177 		return 0;
2178 
2179 	ret = -EINVAL;
2180 
2181 	if (sizeof(*hdr) >= firmware->size) {
2182 		cs_dsp_err(dsp, "%s: coefficient file too short, %zu bytes\n",
2183 			   file, firmware->size);
2184 		goto out_fw;
2185 	}
2186 
2187 	hdr = (void *)&firmware->data[0];
2188 	if (memcmp(hdr->magic, "WMDR", 4) != 0) {
2189 		cs_dsp_err(dsp, "%s: invalid coefficient magic\n", file);
2190 		goto out_fw;
2191 	}
2192 
2193 	switch (be32_to_cpu(hdr->rev) & 0xff) {
2194 	case 1:
2195 	case 2:
2196 		break;
2197 	default:
2198 		cs_dsp_err(dsp, "%s: Unsupported coefficient file format %d\n",
2199 			   file, be32_to_cpu(hdr->rev) & 0xff);
2200 		ret = -EINVAL;
2201 		goto out_fw;
2202 	}
2203 
2204 	cs_dsp_info(dsp, "%s: v%d.%d.%d\n", file,
2205 		    (le32_to_cpu(hdr->ver) >> 16) & 0xff,
2206 		    (le32_to_cpu(hdr->ver) >>  8) & 0xff,
2207 		    le32_to_cpu(hdr->ver) & 0xff);
2208 
2209 	pos = le32_to_cpu(hdr->len);
2210 
2211 	blocks = 0;
2212 	while (pos < firmware->size) {
2213 		/* Is there enough data for a complete block header? */
2214 		if (sizeof(*blk) > firmware->size - pos) {
2215 			ret = -EOVERFLOW;
2216 			goto out_fw;
2217 		}
2218 
2219 		blk = (void *)(&firmware->data[pos]);
2220 
2221 		if (le32_to_cpu(blk->len) > firmware->size - pos - sizeof(*blk)) {
2222 			ret = -EOVERFLOW;
2223 			goto out_fw;
2224 		}
2225 
2226 		type = le16_to_cpu(blk->type);
2227 		offset = le16_to_cpu(blk->offset);
2228 		version = le32_to_cpu(blk->ver) >> 8;
2229 
2230 		cs_dsp_dbg(dsp, "%s.%d: %x v%d.%d.%d\n",
2231 			   file, blocks, le32_to_cpu(blk->id),
2232 			   (le32_to_cpu(blk->ver) >> 16) & 0xff,
2233 			   (le32_to_cpu(blk->ver) >>  8) & 0xff,
2234 			   le32_to_cpu(blk->ver) & 0xff);
2235 		cs_dsp_dbg(dsp, "%s.%d: %d bytes at 0x%x in %x\n",
2236 			   file, blocks, le32_to_cpu(blk->len), offset, type);
2237 
2238 		reg = 0;
2239 		region_name = "Unknown";
2240 		switch (type) {
2241 		case (WMFW_NAME_TEXT << 8):
2242 			cs_dsp_info(dsp, "%s: %.*s\n", dsp->fw_name,
2243 				    min(le32_to_cpu(blk->len), 100), blk->data);
2244 			break;
2245 		case (WMFW_INFO_TEXT << 8):
2246 		case (WMFW_METADATA << 8):
2247 			break;
2248 		case (WMFW_ABSOLUTE << 8):
2249 			/*
2250 			 * Old files may use this for global
2251 			 * coefficients.
2252 			 */
2253 			if (le32_to_cpu(blk->id) == dsp->fw_id &&
2254 			    offset == 0) {
2255 				region_name = "global coefficients";
2256 				mem = cs_dsp_find_region(dsp, type);
2257 				if (!mem) {
2258 					cs_dsp_err(dsp, "No ZM\n");
2259 					break;
2260 				}
2261 				reg = dsp->ops->region_to_reg(mem, 0);
2262 
2263 			} else {
2264 				region_name = "register";
2265 				reg = offset;
2266 			}
2267 			break;
2268 
2269 		case WMFW_ADSP1_DM:
2270 		case WMFW_ADSP1_ZM:
2271 		case WMFW_ADSP2_XM:
2272 		case WMFW_ADSP2_YM:
2273 		case WMFW_HALO_XM_PACKED:
2274 		case WMFW_HALO_YM_PACKED:
2275 		case WMFW_HALO_PM_PACKED:
2276 			cs_dsp_dbg(dsp, "%s.%d: %d bytes in %x for %x\n",
2277 				   file, blocks, le32_to_cpu(blk->len),
2278 				   type, le32_to_cpu(blk->id));
2279 
2280 			region_name = cs_dsp_mem_region_name(type);
2281 			mem = cs_dsp_find_region(dsp, type);
2282 			if (!mem) {
2283 				cs_dsp_err(dsp, "No base for region %x\n", type);
2284 				break;
2285 			}
2286 
2287 			alg_region = cs_dsp_find_alg_region(dsp, type,
2288 							    le32_to_cpu(blk->id));
2289 			if (alg_region) {
2290 				if (version != alg_region->ver)
2291 					cs_dsp_warn(dsp,
2292 						    "Algorithm coefficient version %d.%d.%d but expected %d.%d.%d\n",
2293 						   (version >> 16) & 0xFF,
2294 						   (version >> 8) & 0xFF,
2295 						   version & 0xFF,
2296 						   (alg_region->ver >> 16) & 0xFF,
2297 						   (alg_region->ver >> 8) & 0xFF,
2298 						   alg_region->ver & 0xFF);
2299 
2300 				reg = alg_region->base;
2301 				reg = dsp->ops->region_to_reg(mem, reg);
2302 				reg += offset;
2303 			} else {
2304 				cs_dsp_err(dsp, "No %s for algorithm %x\n",
2305 					   region_name, le32_to_cpu(blk->id));
2306 			}
2307 			break;
2308 
2309 		default:
2310 			cs_dsp_err(dsp, "%s.%d: Unknown region type %x at %d\n",
2311 				   file, blocks, type, pos);
2312 			break;
2313 		}
2314 
2315 		if (reg) {
2316 			region_len = le32_to_cpu(blk->len);
2317 			if (region_len > buf_len) {
2318 				buf_len = round_up(region_len, PAGE_SIZE);
2319 				kfree(buf);
2320 				buf = kmalloc(buf_len, GFP_KERNEL | GFP_DMA);
2321 				if (!buf) {
2322 					ret = -ENOMEM;
2323 					goto out_fw;
2324 				}
2325 			}
2326 
2327 			memcpy(buf, blk->data, region_len);
2328 
2329 			cs_dsp_dbg(dsp, "%s.%d: Writing %zu bytes at %x\n",
2330 				   file, blocks, region_len, reg);
2331 			ret = regmap_raw_write(regmap, reg, buf, region_len);
2332 			if (ret != 0) {
2333 				cs_dsp_err(dsp,
2334 					   "%s.%d: Failed to write to %x in %s: %d\n",
2335 					   file, blocks, reg, region_name, ret);
2336 			}
2337 		}
2338 
2339 		pos += (le32_to_cpu(blk->len) + sizeof(*blk) + 3) & ~0x03;
2340 		blocks++;
2341 	}
2342 
2343 	if (pos > firmware->size)
2344 		cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
2345 			    file, blocks, pos - firmware->size);
2346 
2347 	cs_dsp_debugfs_save_binname(dsp, file);
2348 
2349 	ret = 0;
2350 out_fw:
2351 	if (ret == -EOVERFLOW)
2352 		cs_dsp_err(dsp, "%s: file content overflows file data\n", file);
2353 
2354 	return ret;
2355 }
2356 
cs_dsp_create_name(struct cs_dsp * dsp)2357 static int cs_dsp_create_name(struct cs_dsp *dsp)
2358 {
2359 	if (!dsp->name) {
2360 		dsp->name = devm_kasprintf(dsp->dev, GFP_KERNEL, "DSP%d",
2361 					   dsp->num);
2362 		if (!dsp->name)
2363 			return -ENOMEM;
2364 	}
2365 
2366 	return 0;
2367 }
2368 
2369 static const struct cs_dsp_client_ops cs_dsp_default_client_ops = {
2370 };
2371 
cs_dsp_common_init(struct cs_dsp * dsp)2372 static int cs_dsp_common_init(struct cs_dsp *dsp)
2373 {
2374 	int ret;
2375 
2376 	ret = cs_dsp_create_name(dsp);
2377 	if (ret)
2378 		return ret;
2379 
2380 	INIT_LIST_HEAD(&dsp->alg_regions);
2381 	INIT_LIST_HEAD(&dsp->ctl_list);
2382 
2383 	mutex_init(&dsp->pwr_lock);
2384 
2385 	if (!dsp->client_ops)
2386 		dsp->client_ops = &cs_dsp_default_client_ops;
2387 
2388 #ifdef CONFIG_DEBUG_FS
2389 	/* Ensure this is invalid if client never provides a debugfs root */
2390 	dsp->debugfs_root = ERR_PTR(-ENODEV);
2391 #endif
2392 
2393 	return 0;
2394 }
2395 
2396 /**
2397  * cs_dsp_adsp1_init() - Initialise a cs_dsp structure representing a ADSP1 device
2398  * @dsp: pointer to DSP structure
2399  *
2400  * Return: Zero for success, a negative number on error.
2401  */
cs_dsp_adsp1_init(struct cs_dsp * dsp)2402 int cs_dsp_adsp1_init(struct cs_dsp *dsp)
2403 {
2404 	dsp->ops = &cs_dsp_adsp1_ops;
2405 
2406 	return cs_dsp_common_init(dsp);
2407 }
2408 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_init, "FW_CS_DSP");
2409 
2410 /**
2411  * cs_dsp_adsp1_power_up() - Load and start the named firmware
2412  * @dsp: pointer to DSP structure
2413  * @wmfw_firmware: the firmware to be sent
2414  * @wmfw_filename: file name of firmware to be sent
2415  * @coeff_firmware: the coefficient data to be sent
2416  * @coeff_filename: file name of coefficient to data be sent
2417  * @fw_name: the user-friendly firmware name
2418  *
2419  * Return: Zero for success, a negative number on error.
2420  */
cs_dsp_adsp1_power_up(struct cs_dsp * dsp,const struct firmware * wmfw_firmware,const char * wmfw_filename,const struct firmware * coeff_firmware,const char * coeff_filename,const char * fw_name)2421 int cs_dsp_adsp1_power_up(struct cs_dsp *dsp,
2422 			  const struct firmware *wmfw_firmware, const char *wmfw_filename,
2423 			  const struct firmware *coeff_firmware, const char *coeff_filename,
2424 			  const char *fw_name)
2425 {
2426 	unsigned int val;
2427 	int ret;
2428 
2429 	mutex_lock(&dsp->pwr_lock);
2430 
2431 	dsp->fw_name = fw_name;
2432 
2433 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2434 			   ADSP1_SYS_ENA, ADSP1_SYS_ENA);
2435 
2436 	/*
2437 	 * For simplicity set the DSP clock rate to be the
2438 	 * SYSCLK rate rather than making it configurable.
2439 	 */
2440 	if (dsp->sysclk_reg) {
2441 		ret = regmap_read(dsp->regmap, dsp->sysclk_reg, &val);
2442 		if (ret != 0) {
2443 			cs_dsp_err(dsp, "Failed to read SYSCLK state: %d\n", ret);
2444 			goto err_mutex;
2445 		}
2446 
2447 		val = (val & dsp->sysclk_mask) >> dsp->sysclk_shift;
2448 
2449 		ret = regmap_update_bits(dsp->regmap,
2450 					 dsp->base + ADSP1_CONTROL_31,
2451 					 ADSP1_CLK_SEL_MASK, val);
2452 		if (ret != 0) {
2453 			cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2454 			goto err_mutex;
2455 		}
2456 	}
2457 
2458 	ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2459 	if (ret != 0)
2460 		goto err_ena;
2461 
2462 	ret = cs_dsp_adsp1_setup_algs(dsp);
2463 	if (ret != 0)
2464 		goto err_ena;
2465 
2466 	ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2467 	if (ret != 0)
2468 		goto err_ena;
2469 
2470 	/* Initialize caches for enabled and unset controls */
2471 	ret = cs_dsp_coeff_init_control_caches(dsp);
2472 	if (ret != 0)
2473 		goto err_ena;
2474 
2475 	/* Sync set controls */
2476 	ret = cs_dsp_coeff_sync_controls(dsp);
2477 	if (ret != 0)
2478 		goto err_ena;
2479 
2480 	dsp->booted = true;
2481 
2482 	/* Start the core running */
2483 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2484 			   ADSP1_CORE_ENA | ADSP1_START,
2485 			   ADSP1_CORE_ENA | ADSP1_START);
2486 
2487 	dsp->running = true;
2488 
2489 	mutex_unlock(&dsp->pwr_lock);
2490 
2491 	return 0;
2492 
2493 err_ena:
2494 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2495 			   ADSP1_SYS_ENA, 0);
2496 err_mutex:
2497 	mutex_unlock(&dsp->pwr_lock);
2498 	return ret;
2499 }
2500 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_power_up, "FW_CS_DSP");
2501 
2502 /**
2503  * cs_dsp_adsp1_power_down() - Halts the DSP
2504  * @dsp: pointer to DSP structure
2505  */
cs_dsp_adsp1_power_down(struct cs_dsp * dsp)2506 void cs_dsp_adsp1_power_down(struct cs_dsp *dsp)
2507 {
2508 	struct cs_dsp_coeff_ctl *ctl;
2509 
2510 	mutex_lock(&dsp->pwr_lock);
2511 
2512 	dsp->running = false;
2513 	dsp->booted = false;
2514 
2515 	/* Halt the core */
2516 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2517 			   ADSP1_CORE_ENA | ADSP1_START, 0);
2518 
2519 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_19,
2520 			   ADSP1_WDMA_BUFFER_LENGTH_MASK, 0);
2521 
2522 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2523 			   ADSP1_SYS_ENA, 0);
2524 
2525 	list_for_each_entry(ctl, &dsp->ctl_list, list)
2526 		ctl->enabled = 0;
2527 
2528 	cs_dsp_free_alg_regions(dsp);
2529 
2530 	mutex_unlock(&dsp->pwr_lock);
2531 }
2532 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_power_down, "FW_CS_DSP");
2533 
cs_dsp_adsp2v2_enable_core(struct cs_dsp * dsp)2534 static int cs_dsp_adsp2v2_enable_core(struct cs_dsp *dsp)
2535 {
2536 	unsigned int val;
2537 	int ret, count;
2538 
2539 	/* Wait for the RAM to start, should be near instantaneous */
2540 	for (count = 0; count < 10; ++count) {
2541 		ret = regmap_read(dsp->regmap, dsp->base + ADSP2_STATUS1, &val);
2542 		if (ret != 0)
2543 			return ret;
2544 
2545 		if (val & ADSP2_RAM_RDY)
2546 			break;
2547 
2548 		usleep_range(250, 500);
2549 	}
2550 
2551 	if (!(val & ADSP2_RAM_RDY)) {
2552 		cs_dsp_err(dsp, "Failed to start DSP RAM\n");
2553 		return -EBUSY;
2554 	}
2555 
2556 	cs_dsp_dbg(dsp, "RAM ready after %d polls\n", count);
2557 
2558 	return 0;
2559 }
2560 
cs_dsp_adsp2_enable_core(struct cs_dsp * dsp)2561 static int cs_dsp_adsp2_enable_core(struct cs_dsp *dsp)
2562 {
2563 	int ret;
2564 
2565 	ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2566 				 ADSP2_SYS_ENA, ADSP2_SYS_ENA);
2567 	if (ret != 0)
2568 		return ret;
2569 
2570 	return cs_dsp_adsp2v2_enable_core(dsp);
2571 }
2572 
cs_dsp_adsp2_lock(struct cs_dsp * dsp,unsigned int lock_regions)2573 static int cs_dsp_adsp2_lock(struct cs_dsp *dsp, unsigned int lock_regions)
2574 {
2575 	struct regmap *regmap = dsp->regmap;
2576 	unsigned int code0, code1, lock_reg;
2577 
2578 	if (!(lock_regions & CS_ADSP2_REGION_ALL))
2579 		return 0;
2580 
2581 	lock_regions &= CS_ADSP2_REGION_ALL;
2582 	lock_reg = dsp->base + ADSP2_LOCK_REGION_1_LOCK_REGION_0;
2583 
2584 	while (lock_regions) {
2585 		code0 = code1 = 0;
2586 		if (lock_regions & BIT(0)) {
2587 			code0 = ADSP2_LOCK_CODE_0;
2588 			code1 = ADSP2_LOCK_CODE_1;
2589 		}
2590 		if (lock_regions & BIT(1)) {
2591 			code0 |= ADSP2_LOCK_CODE_0 << ADSP2_LOCK_REGION_SHIFT;
2592 			code1 |= ADSP2_LOCK_CODE_1 << ADSP2_LOCK_REGION_SHIFT;
2593 		}
2594 		regmap_write(regmap, lock_reg, code0);
2595 		regmap_write(regmap, lock_reg, code1);
2596 		lock_regions >>= 2;
2597 		lock_reg += 2;
2598 	}
2599 
2600 	return 0;
2601 }
2602 
cs_dsp_adsp2_enable_memory(struct cs_dsp * dsp)2603 static int cs_dsp_adsp2_enable_memory(struct cs_dsp *dsp)
2604 {
2605 	return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2606 				  ADSP2_MEM_ENA, ADSP2_MEM_ENA);
2607 }
2608 
cs_dsp_adsp2_disable_memory(struct cs_dsp * dsp)2609 static void cs_dsp_adsp2_disable_memory(struct cs_dsp *dsp)
2610 {
2611 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2612 			   ADSP2_MEM_ENA, 0);
2613 }
2614 
cs_dsp_adsp2_disable_core(struct cs_dsp * dsp)2615 static void cs_dsp_adsp2_disable_core(struct cs_dsp *dsp)
2616 {
2617 	regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2618 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2619 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_2, 0);
2620 
2621 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2622 			   ADSP2_SYS_ENA, 0);
2623 }
2624 
cs_dsp_adsp2v2_disable_core(struct cs_dsp * dsp)2625 static void cs_dsp_adsp2v2_disable_core(struct cs_dsp *dsp)
2626 {
2627 	regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2628 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2629 	regmap_write(dsp->regmap, dsp->base + ADSP2V2_WDMA_CONFIG_2, 0);
2630 }
2631 
cs_dsp_halo_configure_mpu(struct cs_dsp * dsp,unsigned int lock_regions)2632 static int cs_dsp_halo_configure_mpu(struct cs_dsp *dsp, unsigned int lock_regions)
2633 {
2634 	struct reg_sequence config[] = {
2635 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0x5555 },
2636 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0xAAAA },
2637 		{ dsp->base + HALO_MPU_XMEM_ACCESS_0,   0xFFFFFFFF },
2638 		{ dsp->base + HALO_MPU_YMEM_ACCESS_0,   0xFFFFFFFF },
2639 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_0, lock_regions },
2640 		{ dsp->base + HALO_MPU_XREG_ACCESS_0,   lock_regions },
2641 		{ dsp->base + HALO_MPU_YREG_ACCESS_0,   lock_regions },
2642 		{ dsp->base + HALO_MPU_XMEM_ACCESS_1,   0xFFFFFFFF },
2643 		{ dsp->base + HALO_MPU_YMEM_ACCESS_1,   0xFFFFFFFF },
2644 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_1, lock_regions },
2645 		{ dsp->base + HALO_MPU_XREG_ACCESS_1,   lock_regions },
2646 		{ dsp->base + HALO_MPU_YREG_ACCESS_1,   lock_regions },
2647 		{ dsp->base + HALO_MPU_XMEM_ACCESS_2,   0xFFFFFFFF },
2648 		{ dsp->base + HALO_MPU_YMEM_ACCESS_2,   0xFFFFFFFF },
2649 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_2, lock_regions },
2650 		{ dsp->base + HALO_MPU_XREG_ACCESS_2,   lock_regions },
2651 		{ dsp->base + HALO_MPU_YREG_ACCESS_2,   lock_regions },
2652 		{ dsp->base + HALO_MPU_XMEM_ACCESS_3,   0xFFFFFFFF },
2653 		{ dsp->base + HALO_MPU_YMEM_ACCESS_3,   0xFFFFFFFF },
2654 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_3, lock_regions },
2655 		{ dsp->base + HALO_MPU_XREG_ACCESS_3,   lock_regions },
2656 		{ dsp->base + HALO_MPU_YREG_ACCESS_3,   lock_regions },
2657 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0 },
2658 	};
2659 
2660 	return regmap_multi_reg_write(dsp->regmap, config, ARRAY_SIZE(config));
2661 }
2662 
2663 /**
2664  * cs_dsp_set_dspclk() - Applies the given frequency to the given cs_dsp
2665  * @dsp: pointer to DSP structure
2666  * @freq: clock rate to set
2667  *
2668  * This is only for use on ADSP2 cores.
2669  *
2670  * Return: Zero for success, a negative number on error.
2671  */
cs_dsp_set_dspclk(struct cs_dsp * dsp,unsigned int freq)2672 int cs_dsp_set_dspclk(struct cs_dsp *dsp, unsigned int freq)
2673 {
2674 	int ret;
2675 
2676 	ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CLOCKING,
2677 				 ADSP2_CLK_SEL_MASK,
2678 				 freq << ADSP2_CLK_SEL_SHIFT);
2679 	if (ret)
2680 		cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2681 
2682 	return ret;
2683 }
2684 EXPORT_SYMBOL_NS_GPL(cs_dsp_set_dspclk, "FW_CS_DSP");
2685 
cs_dsp_stop_watchdog(struct cs_dsp * dsp)2686 static void cs_dsp_stop_watchdog(struct cs_dsp *dsp)
2687 {
2688 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_WATCHDOG,
2689 			   ADSP2_WDT_ENA_MASK, 0);
2690 }
2691 
cs_dsp_halo_stop_watchdog(struct cs_dsp * dsp)2692 static void cs_dsp_halo_stop_watchdog(struct cs_dsp *dsp)
2693 {
2694 	regmap_update_bits(dsp->regmap, dsp->base + HALO_WDT_CONTROL,
2695 			   HALO_WDT_EN_MASK, 0);
2696 }
2697 
2698 /**
2699  * cs_dsp_power_up() - Downloads firmware to the DSP
2700  * @dsp: pointer to DSP structure
2701  * @wmfw_firmware: the firmware to be sent
2702  * @wmfw_filename: file name of firmware to be sent
2703  * @coeff_firmware: the coefficient data to be sent
2704  * @coeff_filename: file name of coefficient to data be sent
2705  * @fw_name: the user-friendly firmware name
2706  *
2707  * This function is used on ADSP2 and Halo DSP cores, it powers-up the DSP core
2708  * and downloads the firmware but does not start the firmware running. The
2709  * cs_dsp booted flag will be set once completed and if the core has a low-power
2710  * memory retention mode it will be put into this state after the firmware is
2711  * downloaded.
2712  *
2713  * Return: Zero for success, a negative number on error.
2714  */
cs_dsp_power_up(struct cs_dsp * dsp,const struct firmware * wmfw_firmware,const char * wmfw_filename,const struct firmware * coeff_firmware,const char * coeff_filename,const char * fw_name)2715 int cs_dsp_power_up(struct cs_dsp *dsp,
2716 		    const struct firmware *wmfw_firmware, const char *wmfw_filename,
2717 		    const struct firmware *coeff_firmware, const char *coeff_filename,
2718 		    const char *fw_name)
2719 {
2720 	int ret;
2721 
2722 	mutex_lock(&dsp->pwr_lock);
2723 
2724 	dsp->fw_name = fw_name;
2725 
2726 	if (dsp->ops->enable_memory) {
2727 		ret = dsp->ops->enable_memory(dsp);
2728 		if (ret != 0)
2729 			goto err_mutex;
2730 	}
2731 
2732 	if (dsp->ops->enable_core) {
2733 		ret = dsp->ops->enable_core(dsp);
2734 		if (ret != 0)
2735 			goto err_mem;
2736 	}
2737 
2738 	ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2739 	if (ret != 0)
2740 		goto err_ena;
2741 
2742 	ret = dsp->ops->setup_algs(dsp);
2743 	if (ret != 0)
2744 		goto err_ena;
2745 
2746 	ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2747 	if (ret != 0)
2748 		goto err_ena;
2749 
2750 	/* Initialize caches for enabled and unset controls */
2751 	ret = cs_dsp_coeff_init_control_caches(dsp);
2752 	if (ret != 0)
2753 		goto err_ena;
2754 
2755 	if (dsp->ops->disable_core)
2756 		dsp->ops->disable_core(dsp);
2757 
2758 	dsp->booted = true;
2759 
2760 	mutex_unlock(&dsp->pwr_lock);
2761 
2762 	return 0;
2763 err_ena:
2764 	if (dsp->ops->disable_core)
2765 		dsp->ops->disable_core(dsp);
2766 err_mem:
2767 	if (dsp->ops->disable_memory)
2768 		dsp->ops->disable_memory(dsp);
2769 err_mutex:
2770 	mutex_unlock(&dsp->pwr_lock);
2771 
2772 	return ret;
2773 }
2774 EXPORT_SYMBOL_NS_GPL(cs_dsp_power_up, "FW_CS_DSP");
2775 
2776 /**
2777  * cs_dsp_power_down() - Powers-down the DSP
2778  * @dsp: pointer to DSP structure
2779  *
2780  * cs_dsp_stop() must have been called before this function. The core will be
2781  * fully powered down and so the memory will not be retained.
2782  */
cs_dsp_power_down(struct cs_dsp * dsp)2783 void cs_dsp_power_down(struct cs_dsp *dsp)
2784 {
2785 	struct cs_dsp_coeff_ctl *ctl;
2786 
2787 	mutex_lock(&dsp->pwr_lock);
2788 
2789 	cs_dsp_debugfs_clear(dsp);
2790 
2791 	dsp->fw_id = 0;
2792 	dsp->fw_id_version = 0;
2793 
2794 	dsp->booted = false;
2795 
2796 	if (dsp->ops->disable_memory)
2797 		dsp->ops->disable_memory(dsp);
2798 
2799 	list_for_each_entry(ctl, &dsp->ctl_list, list)
2800 		ctl->enabled = 0;
2801 
2802 	cs_dsp_free_alg_regions(dsp);
2803 
2804 	mutex_unlock(&dsp->pwr_lock);
2805 
2806 	cs_dsp_dbg(dsp, "Shutdown complete\n");
2807 }
2808 EXPORT_SYMBOL_NS_GPL(cs_dsp_power_down, "FW_CS_DSP");
2809 
cs_dsp_adsp2_start_core(struct cs_dsp * dsp)2810 static int cs_dsp_adsp2_start_core(struct cs_dsp *dsp)
2811 {
2812 	return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2813 				  ADSP2_CORE_ENA | ADSP2_START,
2814 				  ADSP2_CORE_ENA | ADSP2_START);
2815 }
2816 
cs_dsp_adsp2_stop_core(struct cs_dsp * dsp)2817 static void cs_dsp_adsp2_stop_core(struct cs_dsp *dsp)
2818 {
2819 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2820 			   ADSP2_CORE_ENA | ADSP2_START, 0);
2821 }
2822 
2823 /**
2824  * cs_dsp_run() - Starts the firmware running
2825  * @dsp: pointer to DSP structure
2826  *
2827  * cs_dsp_power_up() must have previously been called successfully.
2828  *
2829  * Return: Zero for success, a negative number on error.
2830  */
cs_dsp_run(struct cs_dsp * dsp)2831 int cs_dsp_run(struct cs_dsp *dsp)
2832 {
2833 	int ret;
2834 
2835 	mutex_lock(&dsp->pwr_lock);
2836 
2837 	if (!dsp->booted) {
2838 		ret = -EIO;
2839 		goto err;
2840 	}
2841 
2842 	if (dsp->ops->enable_core) {
2843 		ret = dsp->ops->enable_core(dsp);
2844 		if (ret != 0)
2845 			goto err;
2846 	}
2847 
2848 	if (dsp->client_ops->pre_run) {
2849 		ret = dsp->client_ops->pre_run(dsp);
2850 		if (ret)
2851 			goto err;
2852 	}
2853 
2854 	/* Sync set controls */
2855 	ret = cs_dsp_coeff_sync_controls(dsp);
2856 	if (ret != 0)
2857 		goto err;
2858 
2859 	if (dsp->ops->lock_memory) {
2860 		ret = dsp->ops->lock_memory(dsp, dsp->lock_regions);
2861 		if (ret != 0) {
2862 			cs_dsp_err(dsp, "Error configuring MPU: %d\n", ret);
2863 			goto err;
2864 		}
2865 	}
2866 
2867 	if (dsp->ops->start_core) {
2868 		ret = dsp->ops->start_core(dsp);
2869 		if (ret != 0)
2870 			goto err;
2871 	}
2872 
2873 	dsp->running = true;
2874 
2875 	if (dsp->client_ops->post_run) {
2876 		ret = dsp->client_ops->post_run(dsp);
2877 		if (ret)
2878 			goto err;
2879 	}
2880 
2881 	mutex_unlock(&dsp->pwr_lock);
2882 
2883 	return 0;
2884 
2885 err:
2886 	if (dsp->ops->stop_core)
2887 		dsp->ops->stop_core(dsp);
2888 	if (dsp->ops->disable_core)
2889 		dsp->ops->disable_core(dsp);
2890 	mutex_unlock(&dsp->pwr_lock);
2891 
2892 	return ret;
2893 }
2894 EXPORT_SYMBOL_NS_GPL(cs_dsp_run, "FW_CS_DSP");
2895 
2896 /**
2897  * cs_dsp_stop() - Stops the firmware
2898  * @dsp: pointer to DSP structure
2899  *
2900  * Memory will not be disabled so firmware will remain loaded.
2901  */
cs_dsp_stop(struct cs_dsp * dsp)2902 void cs_dsp_stop(struct cs_dsp *dsp)
2903 {
2904 	/* Tell the firmware to cleanup */
2905 	cs_dsp_signal_event_controls(dsp, CS_DSP_FW_EVENT_SHUTDOWN);
2906 
2907 	if (dsp->ops->stop_watchdog)
2908 		dsp->ops->stop_watchdog(dsp);
2909 
2910 	/* Log firmware state, it can be useful for analysis */
2911 	if (dsp->ops->show_fw_status)
2912 		dsp->ops->show_fw_status(dsp);
2913 
2914 	mutex_lock(&dsp->pwr_lock);
2915 
2916 	if (dsp->client_ops->pre_stop)
2917 		dsp->client_ops->pre_stop(dsp);
2918 
2919 	dsp->running = false;
2920 
2921 	if (dsp->ops->stop_core)
2922 		dsp->ops->stop_core(dsp);
2923 	if (dsp->ops->disable_core)
2924 		dsp->ops->disable_core(dsp);
2925 
2926 	if (dsp->client_ops->post_stop)
2927 		dsp->client_ops->post_stop(dsp);
2928 
2929 	mutex_unlock(&dsp->pwr_lock);
2930 
2931 	cs_dsp_dbg(dsp, "Execution stopped\n");
2932 }
2933 EXPORT_SYMBOL_NS_GPL(cs_dsp_stop, "FW_CS_DSP");
2934 
cs_dsp_halo_start_core(struct cs_dsp * dsp)2935 static int cs_dsp_halo_start_core(struct cs_dsp *dsp)
2936 {
2937 	int ret;
2938 
2939 	ret = regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2940 				 HALO_CORE_RESET | HALO_CORE_EN,
2941 				 HALO_CORE_RESET | HALO_CORE_EN);
2942 	if (ret)
2943 		return ret;
2944 
2945 	return regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2946 				  HALO_CORE_RESET, 0);
2947 }
2948 
cs_dsp_halo_stop_core(struct cs_dsp * dsp)2949 static void cs_dsp_halo_stop_core(struct cs_dsp *dsp)
2950 {
2951 	regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2952 			   HALO_CORE_EN, 0);
2953 
2954 	/* reset halo core with CORE_SOFT_RESET */
2955 	regmap_update_bits(dsp->regmap, dsp->base + HALO_CORE_SOFT_RESET,
2956 			   HALO_CORE_SOFT_RESET_MASK, 1);
2957 }
2958 
2959 /**
2960  * cs_dsp_adsp2_init() - Initialise a cs_dsp structure representing a ADSP2 core
2961  * @dsp: pointer to DSP structure
2962  *
2963  * Return: Zero for success, a negative number on error.
2964  */
cs_dsp_adsp2_init(struct cs_dsp * dsp)2965 int cs_dsp_adsp2_init(struct cs_dsp *dsp)
2966 {
2967 	int ret;
2968 
2969 	switch (dsp->rev) {
2970 	case 0:
2971 		/*
2972 		 * Disable the DSP memory by default when in reset for a small
2973 		 * power saving.
2974 		 */
2975 		ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2976 					 ADSP2_MEM_ENA, 0);
2977 		if (ret) {
2978 			cs_dsp_err(dsp,
2979 				   "Failed to clear memory retention: %d\n", ret);
2980 			return ret;
2981 		}
2982 
2983 		dsp->ops = &cs_dsp_adsp2_ops[0];
2984 		break;
2985 	case 1:
2986 		dsp->ops = &cs_dsp_adsp2_ops[1];
2987 		break;
2988 	default:
2989 		dsp->ops = &cs_dsp_adsp2_ops[2];
2990 		break;
2991 	}
2992 
2993 	return cs_dsp_common_init(dsp);
2994 }
2995 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp2_init, "FW_CS_DSP");
2996 
2997 /**
2998  * cs_dsp_halo_init() - Initialise a cs_dsp structure representing a HALO Core DSP
2999  * @dsp: pointer to DSP structure
3000  *
3001  * Return: Zero for success, a negative number on error.
3002  */
cs_dsp_halo_init(struct cs_dsp * dsp)3003 int cs_dsp_halo_init(struct cs_dsp *dsp)
3004 {
3005 	if (dsp->no_core_startstop)
3006 		dsp->ops = &cs_dsp_halo_ao_ops;
3007 	else
3008 		dsp->ops = &cs_dsp_halo_ops;
3009 
3010 	return cs_dsp_common_init(dsp);
3011 }
3012 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_init, "FW_CS_DSP");
3013 
3014 /**
3015  * cs_dsp_remove() - Clean a cs_dsp before deletion
3016  * @dsp: pointer to DSP structure
3017  */
cs_dsp_remove(struct cs_dsp * dsp)3018 void cs_dsp_remove(struct cs_dsp *dsp)
3019 {
3020 	struct cs_dsp_coeff_ctl *ctl;
3021 
3022 	while (!list_empty(&dsp->ctl_list)) {
3023 		ctl = list_first_entry(&dsp->ctl_list, struct cs_dsp_coeff_ctl, list);
3024 
3025 		if (dsp->client_ops->control_remove)
3026 			dsp->client_ops->control_remove(ctl);
3027 
3028 		list_del(&ctl->list);
3029 		cs_dsp_free_ctl_blk(ctl);
3030 	}
3031 }
3032 EXPORT_SYMBOL_NS_GPL(cs_dsp_remove, "FW_CS_DSP");
3033 
3034 /**
3035  * cs_dsp_read_raw_data_block() - Reads a block of data from DSP memory
3036  * @dsp: pointer to DSP structure
3037  * @mem_type: the type of DSP memory containing the data to be read
3038  * @mem_addr: the address of the data within the memory region
3039  * @num_words: the length of the data to read
3040  * @data: a buffer to store the fetched data
3041  *
3042  * If this is used to read unpacked 24-bit memory, each 24-bit DSP word will
3043  * occupy 32-bits in data (MSbyte will be 0). This padding can be removed using
3044  * cs_dsp_remove_padding()
3045  *
3046  * Return: Zero for success, a negative number on error.
3047  */
cs_dsp_read_raw_data_block(struct cs_dsp * dsp,int mem_type,unsigned int mem_addr,unsigned int num_words,__be32 * data)3048 int cs_dsp_read_raw_data_block(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr,
3049 			       unsigned int num_words, __be32 *data)
3050 {
3051 	struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
3052 	unsigned int reg;
3053 	int ret;
3054 
3055 	lockdep_assert_held(&dsp->pwr_lock);
3056 
3057 	if (!mem)
3058 		return -EINVAL;
3059 
3060 	reg = dsp->ops->region_to_reg(mem, mem_addr);
3061 
3062 	ret = regmap_raw_read(dsp->regmap, reg, data,
3063 			      sizeof(*data) * num_words);
3064 	if (ret < 0)
3065 		return ret;
3066 
3067 	return 0;
3068 }
3069 EXPORT_SYMBOL_NS_GPL(cs_dsp_read_raw_data_block, "FW_CS_DSP");
3070 
3071 /**
3072  * cs_dsp_read_data_word() - Reads a word from DSP memory
3073  * @dsp: pointer to DSP structure
3074  * @mem_type: the type of DSP memory containing the data to be read
3075  * @mem_addr: the address of the data within the memory region
3076  * @data: a buffer to store the fetched data
3077  *
3078  * Return: Zero for success, a negative number on error.
3079  */
cs_dsp_read_data_word(struct cs_dsp * dsp,int mem_type,unsigned int mem_addr,u32 * data)3080 int cs_dsp_read_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 *data)
3081 {
3082 	__be32 raw;
3083 	int ret;
3084 
3085 	ret = cs_dsp_read_raw_data_block(dsp, mem_type, mem_addr, 1, &raw);
3086 	if (ret < 0)
3087 		return ret;
3088 
3089 	*data = be32_to_cpu(raw) & 0x00ffffffu;
3090 
3091 	return 0;
3092 }
3093 EXPORT_SYMBOL_NS_GPL(cs_dsp_read_data_word, "FW_CS_DSP");
3094 
3095 /**
3096  * cs_dsp_write_data_word() - Writes a word to DSP memory
3097  * @dsp: pointer to DSP structure
3098  * @mem_type: the type of DSP memory containing the data to be written
3099  * @mem_addr: the address of the data within the memory region
3100  * @data: the data to be written
3101  *
3102  * Return: Zero for success, a negative number on error.
3103  */
cs_dsp_write_data_word(struct cs_dsp * dsp,int mem_type,unsigned int mem_addr,u32 data)3104 int cs_dsp_write_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 data)
3105 {
3106 	struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
3107 	__be32 val = cpu_to_be32(data & 0x00ffffffu);
3108 	unsigned int reg;
3109 
3110 	lockdep_assert_held(&dsp->pwr_lock);
3111 
3112 	if (!mem)
3113 		return -EINVAL;
3114 
3115 	reg = dsp->ops->region_to_reg(mem, mem_addr);
3116 
3117 	return regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
3118 }
3119 EXPORT_SYMBOL_NS_GPL(cs_dsp_write_data_word, "FW_CS_DSP");
3120 
3121 /**
3122  * cs_dsp_remove_padding() - Convert unpacked words to packed bytes
3123  * @buf: buffer containing DSP words read from DSP memory
3124  * @nwords: number of words to convert
3125  *
3126  * DSP words from the register map have pad bytes and the data bytes
3127  * are in swapped order. This swaps to the native endian order and
3128  * strips the pad bytes.
3129  */
cs_dsp_remove_padding(u32 * buf,int nwords)3130 void cs_dsp_remove_padding(u32 *buf, int nwords)
3131 {
3132 	const __be32 *pack_in = (__be32 *)buf;
3133 	u8 *pack_out = (u8 *)buf;
3134 	int i;
3135 
3136 	for (i = 0; i < nwords; i++) {
3137 		u32 word = be32_to_cpu(*pack_in++);
3138 		*pack_out++ = (u8)word;
3139 		*pack_out++ = (u8)(word >> 8);
3140 		*pack_out++ = (u8)(word >> 16);
3141 	}
3142 }
3143 EXPORT_SYMBOL_NS_GPL(cs_dsp_remove_padding, "FW_CS_DSP");
3144 
3145 /**
3146  * cs_dsp_adsp2_bus_error() - Handle a DSP bus error interrupt
3147  * @dsp: pointer to DSP structure
3148  *
3149  * The firmware and DSP state will be logged for future analysis.
3150  */
cs_dsp_adsp2_bus_error(struct cs_dsp * dsp)3151 void cs_dsp_adsp2_bus_error(struct cs_dsp *dsp)
3152 {
3153 	unsigned int val;
3154 	struct regmap *regmap = dsp->regmap;
3155 	int ret = 0;
3156 
3157 	mutex_lock(&dsp->pwr_lock);
3158 
3159 	ret = regmap_read(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL, &val);
3160 	if (ret) {
3161 		cs_dsp_err(dsp,
3162 			   "Failed to read Region Lock Ctrl register: %d\n", ret);
3163 		goto error;
3164 	}
3165 
3166 	if (val & ADSP2_WDT_TIMEOUT_STS_MASK) {
3167 		cs_dsp_err(dsp, "watchdog timeout error\n");
3168 		dsp->ops->stop_watchdog(dsp);
3169 		if (dsp->client_ops->watchdog_expired)
3170 			dsp->client_ops->watchdog_expired(dsp);
3171 	}
3172 
3173 	if (val & (ADSP2_ADDR_ERR_MASK | ADSP2_REGION_LOCK_ERR_MASK)) {
3174 		if (val & ADSP2_ADDR_ERR_MASK)
3175 			cs_dsp_err(dsp, "bus error: address error\n");
3176 		else
3177 			cs_dsp_err(dsp, "bus error: region lock error\n");
3178 
3179 		ret = regmap_read(regmap, dsp->base + ADSP2_BUS_ERR_ADDR, &val);
3180 		if (ret) {
3181 			cs_dsp_err(dsp,
3182 				   "Failed to read Bus Err Addr register: %d\n",
3183 				   ret);
3184 			goto error;
3185 		}
3186 
3187 		cs_dsp_err(dsp, "bus error address = 0x%x\n",
3188 			   val & ADSP2_BUS_ERR_ADDR_MASK);
3189 
3190 		ret = regmap_read(regmap,
3191 				  dsp->base + ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR,
3192 				  &val);
3193 		if (ret) {
3194 			cs_dsp_err(dsp,
3195 				   "Failed to read Pmem Xmem Err Addr register: %d\n",
3196 				   ret);
3197 			goto error;
3198 		}
3199 
3200 		cs_dsp_err(dsp, "xmem error address = 0x%x\n",
3201 			   val & ADSP2_XMEM_ERR_ADDR_MASK);
3202 		cs_dsp_err(dsp, "pmem error address = 0x%x\n",
3203 			   (val & ADSP2_PMEM_ERR_ADDR_MASK) >>
3204 			   ADSP2_PMEM_ERR_ADDR_SHIFT);
3205 	}
3206 
3207 	regmap_update_bits(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL,
3208 			   ADSP2_CTRL_ERR_EINT, ADSP2_CTRL_ERR_EINT);
3209 
3210 error:
3211 	mutex_unlock(&dsp->pwr_lock);
3212 }
3213 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp2_bus_error, "FW_CS_DSP");
3214 
3215 /**
3216  * cs_dsp_halo_bus_error() - Handle a DSP bus error interrupt
3217  * @dsp: pointer to DSP structure
3218  *
3219  * The firmware and DSP state will be logged for future analysis.
3220  */
cs_dsp_halo_bus_error(struct cs_dsp * dsp)3221 void cs_dsp_halo_bus_error(struct cs_dsp *dsp)
3222 {
3223 	struct regmap *regmap = dsp->regmap;
3224 	unsigned int fault[6];
3225 	struct reg_sequence clear[] = {
3226 		{ dsp->base + HALO_MPU_XM_VIO_STATUS,     0x0 },
3227 		{ dsp->base + HALO_MPU_YM_VIO_STATUS,     0x0 },
3228 		{ dsp->base + HALO_MPU_PM_VIO_STATUS,     0x0 },
3229 	};
3230 	int ret;
3231 
3232 	mutex_lock(&dsp->pwr_lock);
3233 
3234 	ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_1,
3235 			  fault);
3236 	if (ret) {
3237 		cs_dsp_warn(dsp, "Failed to read AHB DEBUG_1: %d\n", ret);
3238 		goto exit_unlock;
3239 	}
3240 
3241 	cs_dsp_warn(dsp, "AHB: STATUS: 0x%x ADDR: 0x%x\n",
3242 		    *fault & HALO_AHBM_FLAGS_ERR_MASK,
3243 		    (*fault & HALO_AHBM_CORE_ERR_ADDR_MASK) >>
3244 		    HALO_AHBM_CORE_ERR_ADDR_SHIFT);
3245 
3246 	ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_0,
3247 			  fault);
3248 	if (ret) {
3249 		cs_dsp_warn(dsp, "Failed to read AHB DEBUG_0: %d\n", ret);
3250 		goto exit_unlock;
3251 	}
3252 
3253 	cs_dsp_warn(dsp, "AHB: SYS_ADDR: 0x%x\n", *fault);
3254 
3255 	ret = regmap_bulk_read(regmap, dsp->base + HALO_MPU_XM_VIO_ADDR,
3256 			       fault, ARRAY_SIZE(fault));
3257 	if (ret) {
3258 		cs_dsp_warn(dsp, "Failed to read MPU fault info: %d\n", ret);
3259 		goto exit_unlock;
3260 	}
3261 
3262 	cs_dsp_warn(dsp, "XM: STATUS:0x%x ADDR:0x%x\n", fault[1], fault[0]);
3263 	cs_dsp_warn(dsp, "YM: STATUS:0x%x ADDR:0x%x\n", fault[3], fault[2]);
3264 	cs_dsp_warn(dsp, "PM: STATUS:0x%x ADDR:0x%x\n", fault[5], fault[4]);
3265 
3266 	ret = regmap_multi_reg_write(dsp->regmap, clear, ARRAY_SIZE(clear));
3267 	if (ret)
3268 		cs_dsp_warn(dsp, "Failed to clear MPU status: %d\n", ret);
3269 
3270 exit_unlock:
3271 	mutex_unlock(&dsp->pwr_lock);
3272 }
3273 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_bus_error, "FW_CS_DSP");
3274 
3275 /**
3276  * cs_dsp_halo_wdt_expire() - Handle DSP watchdog expiry
3277  * @dsp: pointer to DSP structure
3278  *
3279  * This is logged for future analysis.
3280  */
cs_dsp_halo_wdt_expire(struct cs_dsp * dsp)3281 void cs_dsp_halo_wdt_expire(struct cs_dsp *dsp)
3282 {
3283 	mutex_lock(&dsp->pwr_lock);
3284 
3285 	cs_dsp_warn(dsp, "WDT Expiry Fault\n");
3286 
3287 	dsp->ops->stop_watchdog(dsp);
3288 	if (dsp->client_ops->watchdog_expired)
3289 		dsp->client_ops->watchdog_expired(dsp);
3290 
3291 	mutex_unlock(&dsp->pwr_lock);
3292 }
3293 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_wdt_expire, "FW_CS_DSP");
3294 
3295 static const struct cs_dsp_ops cs_dsp_adsp1_ops = {
3296 	.validate_version = cs_dsp_validate_version,
3297 	.parse_sizes = cs_dsp_adsp1_parse_sizes,
3298 	.region_to_reg = cs_dsp_region_to_reg,
3299 };
3300 
3301 static const struct cs_dsp_ops cs_dsp_adsp2_ops[] = {
3302 	{
3303 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3304 		.validate_version = cs_dsp_validate_version,
3305 		.setup_algs = cs_dsp_adsp2_setup_algs,
3306 		.region_to_reg = cs_dsp_region_to_reg,
3307 
3308 		.show_fw_status = cs_dsp_adsp2_show_fw_status,
3309 
3310 		.enable_memory = cs_dsp_adsp2_enable_memory,
3311 		.disable_memory = cs_dsp_adsp2_disable_memory,
3312 
3313 		.enable_core = cs_dsp_adsp2_enable_core,
3314 		.disable_core = cs_dsp_adsp2_disable_core,
3315 
3316 		.start_core = cs_dsp_adsp2_start_core,
3317 		.stop_core = cs_dsp_adsp2_stop_core,
3318 
3319 	},
3320 	{
3321 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3322 		.validate_version = cs_dsp_validate_version,
3323 		.setup_algs = cs_dsp_adsp2_setup_algs,
3324 		.region_to_reg = cs_dsp_region_to_reg,
3325 
3326 		.show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3327 
3328 		.enable_memory = cs_dsp_adsp2_enable_memory,
3329 		.disable_memory = cs_dsp_adsp2_disable_memory,
3330 		.lock_memory = cs_dsp_adsp2_lock,
3331 
3332 		.enable_core = cs_dsp_adsp2v2_enable_core,
3333 		.disable_core = cs_dsp_adsp2v2_disable_core,
3334 
3335 		.start_core = cs_dsp_adsp2_start_core,
3336 		.stop_core = cs_dsp_adsp2_stop_core,
3337 	},
3338 	{
3339 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3340 		.validate_version = cs_dsp_validate_version,
3341 		.setup_algs = cs_dsp_adsp2_setup_algs,
3342 		.region_to_reg = cs_dsp_region_to_reg,
3343 
3344 		.show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3345 		.stop_watchdog = cs_dsp_stop_watchdog,
3346 
3347 		.enable_memory = cs_dsp_adsp2_enable_memory,
3348 		.disable_memory = cs_dsp_adsp2_disable_memory,
3349 		.lock_memory = cs_dsp_adsp2_lock,
3350 
3351 		.enable_core = cs_dsp_adsp2v2_enable_core,
3352 		.disable_core = cs_dsp_adsp2v2_disable_core,
3353 
3354 		.start_core = cs_dsp_adsp2_start_core,
3355 		.stop_core = cs_dsp_adsp2_stop_core,
3356 	},
3357 };
3358 
3359 static const struct cs_dsp_ops cs_dsp_halo_ops = {
3360 	.parse_sizes = cs_dsp_adsp2_parse_sizes,
3361 	.validate_version = cs_dsp_halo_validate_version,
3362 	.setup_algs = cs_dsp_halo_setup_algs,
3363 	.region_to_reg = cs_dsp_halo_region_to_reg,
3364 
3365 	.show_fw_status = cs_dsp_halo_show_fw_status,
3366 	.stop_watchdog = cs_dsp_halo_stop_watchdog,
3367 
3368 	.lock_memory = cs_dsp_halo_configure_mpu,
3369 
3370 	.start_core = cs_dsp_halo_start_core,
3371 	.stop_core = cs_dsp_halo_stop_core,
3372 };
3373 
3374 static const struct cs_dsp_ops cs_dsp_halo_ao_ops = {
3375 	.parse_sizes = cs_dsp_adsp2_parse_sizes,
3376 	.validate_version = cs_dsp_halo_validate_version,
3377 	.setup_algs = cs_dsp_halo_setup_algs,
3378 	.region_to_reg = cs_dsp_halo_region_to_reg,
3379 	.show_fw_status = cs_dsp_halo_show_fw_status,
3380 };
3381 
3382 /**
3383  * cs_dsp_chunk_write() - Format data to a DSP memory chunk
3384  * @ch: Pointer to the chunk structure
3385  * @nbits: Number of bits to write
3386  * @val: Value to write
3387  *
3388  * This function sequentially writes values into the format required for DSP
3389  * memory, it handles both inserting of the padding bytes and converting to
3390  * big endian. Note that data is only committed to the chunk when a whole DSP
3391  * words worth of data is available.
3392  *
3393  * Return: Zero for success, a negative number on error.
3394  */
cs_dsp_chunk_write(struct cs_dsp_chunk * ch,int nbits,u32 val)3395 int cs_dsp_chunk_write(struct cs_dsp_chunk *ch, int nbits, u32 val)
3396 {
3397 	int nwrite, i;
3398 
3399 	nwrite = min(CS_DSP_DATA_WORD_BITS - ch->cachebits, nbits);
3400 
3401 	ch->cache <<= nwrite;
3402 	ch->cache |= val >> (nbits - nwrite);
3403 	ch->cachebits += nwrite;
3404 	nbits -= nwrite;
3405 
3406 	if (ch->cachebits == CS_DSP_DATA_WORD_BITS) {
3407 		if (cs_dsp_chunk_end(ch))
3408 			return -ENOSPC;
3409 
3410 		ch->cache &= 0xFFFFFF;
3411 		for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3412 			*ch->data++ = (ch->cache & 0xFF000000) >> CS_DSP_DATA_WORD_BITS;
3413 
3414 		ch->bytes += sizeof(ch->cache);
3415 		ch->cachebits = 0;
3416 	}
3417 
3418 	if (nbits)
3419 		return cs_dsp_chunk_write(ch, nbits, val);
3420 
3421 	return 0;
3422 }
3423 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_write, "FW_CS_DSP");
3424 
3425 /**
3426  * cs_dsp_chunk_flush() - Pad remaining data with zero and commit to chunk
3427  * @ch: Pointer to the chunk structure
3428  *
3429  * As cs_dsp_chunk_write only writes data when a whole DSP word is ready to
3430  * be written out it is possible that some data will remain in the cache, this
3431  * function will pad that data with zeros upto a whole DSP word and write out.
3432  *
3433  * Return: Zero for success, a negative number on error.
3434  */
cs_dsp_chunk_flush(struct cs_dsp_chunk * ch)3435 int cs_dsp_chunk_flush(struct cs_dsp_chunk *ch)
3436 {
3437 	if (!ch->cachebits)
3438 		return 0;
3439 
3440 	return cs_dsp_chunk_write(ch, CS_DSP_DATA_WORD_BITS - ch->cachebits, 0);
3441 }
3442 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_flush, "FW_CS_DSP");
3443 
3444 /**
3445  * cs_dsp_chunk_read() - Parse data from a DSP memory chunk
3446  * @ch: Pointer to the chunk structure
3447  * @nbits: Number of bits to read
3448  *
3449  * This function sequentially reads values from a DSP memory formatted buffer,
3450  * it handles both removing of the padding bytes and converting from big endian.
3451  *
3452  * Return: A negative number is returned on error, otherwise the read value.
3453  */
cs_dsp_chunk_read(struct cs_dsp_chunk * ch,int nbits)3454 int cs_dsp_chunk_read(struct cs_dsp_chunk *ch, int nbits)
3455 {
3456 	int nread, i;
3457 	u32 result;
3458 
3459 	if (!ch->cachebits) {
3460 		if (cs_dsp_chunk_end(ch))
3461 			return -ENOSPC;
3462 
3463 		ch->cache = 0;
3464 		ch->cachebits = CS_DSP_DATA_WORD_BITS;
3465 
3466 		for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3467 			ch->cache |= *ch->data++;
3468 
3469 		ch->bytes += sizeof(ch->cache);
3470 	}
3471 
3472 	nread = min(ch->cachebits, nbits);
3473 	nbits -= nread;
3474 
3475 	result = ch->cache >> ((sizeof(ch->cache) * BITS_PER_BYTE) - nread);
3476 	ch->cache <<= nread;
3477 	ch->cachebits -= nread;
3478 
3479 	if (nbits)
3480 		result = (result << nbits) | cs_dsp_chunk_read(ch, nbits);
3481 
3482 	return result;
3483 }
3484 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_read, "FW_CS_DSP");
3485 
3486 
3487 struct cs_dsp_wseq_op {
3488 	struct list_head list;
3489 	u32 address;
3490 	u32 data;
3491 	u16 offset;
3492 	u8 operation;
3493 };
3494 
cs_dsp_wseq_clear(struct cs_dsp * dsp,struct cs_dsp_wseq * wseq)3495 static void cs_dsp_wseq_clear(struct cs_dsp *dsp, struct cs_dsp_wseq *wseq)
3496 {
3497 	struct cs_dsp_wseq_op *op, *op_tmp;
3498 
3499 	list_for_each_entry_safe(op, op_tmp, &wseq->ops, list) {
3500 		list_del(&op->list);
3501 		devm_kfree(dsp->dev, op);
3502 	}
3503 }
3504 
cs_dsp_populate_wseq(struct cs_dsp * dsp,struct cs_dsp_wseq * wseq)3505 static int cs_dsp_populate_wseq(struct cs_dsp *dsp, struct cs_dsp_wseq *wseq)
3506 {
3507 	struct cs_dsp_wseq_op *op = NULL;
3508 	struct cs_dsp_chunk chunk;
3509 	u8 *words;
3510 	int ret;
3511 
3512 	if (!wseq->ctl) {
3513 		cs_dsp_err(dsp, "No control for write sequence\n");
3514 		return -EINVAL;
3515 	}
3516 
3517 	words = kzalloc(wseq->ctl->len, GFP_KERNEL);
3518 	if (!words)
3519 		return -ENOMEM;
3520 
3521 	ret = cs_dsp_coeff_read_ctrl(wseq->ctl, 0, words, wseq->ctl->len);
3522 	if (ret) {
3523 		cs_dsp_err(dsp, "Failed to read %s: %d\n", wseq->ctl->subname, ret);
3524 		goto err_free;
3525 	}
3526 
3527 	INIT_LIST_HEAD(&wseq->ops);
3528 
3529 	chunk = cs_dsp_chunk(words, wseq->ctl->len);
3530 
3531 	while (!cs_dsp_chunk_end(&chunk)) {
3532 		op = devm_kzalloc(dsp->dev, sizeof(*op), GFP_KERNEL);
3533 		if (!op) {
3534 			ret = -ENOMEM;
3535 			goto err_free;
3536 		}
3537 
3538 		op->offset = cs_dsp_chunk_bytes(&chunk);
3539 		op->operation = cs_dsp_chunk_read(&chunk, 8);
3540 
3541 		switch (op->operation) {
3542 		case CS_DSP_WSEQ_END:
3543 			op->data = WSEQ_END_OF_SCRIPT;
3544 			break;
3545 		case CS_DSP_WSEQ_UNLOCK:
3546 			op->data = cs_dsp_chunk_read(&chunk, 16);
3547 			break;
3548 		case CS_DSP_WSEQ_ADDR8:
3549 			op->address = cs_dsp_chunk_read(&chunk, 8);
3550 			op->data = cs_dsp_chunk_read(&chunk, 32);
3551 			break;
3552 		case CS_DSP_WSEQ_H16:
3553 		case CS_DSP_WSEQ_L16:
3554 			op->address = cs_dsp_chunk_read(&chunk, 24);
3555 			op->data = cs_dsp_chunk_read(&chunk, 16);
3556 			break;
3557 		case CS_DSP_WSEQ_FULL:
3558 			op->address = cs_dsp_chunk_read(&chunk, 32);
3559 			op->data = cs_dsp_chunk_read(&chunk, 32);
3560 			break;
3561 		default:
3562 			ret = -EINVAL;
3563 			cs_dsp_err(dsp, "Unsupported op: %X\n", op->operation);
3564 			devm_kfree(dsp->dev, op);
3565 			goto err_free;
3566 		}
3567 
3568 		list_add_tail(&op->list, &wseq->ops);
3569 
3570 		if (op->operation == CS_DSP_WSEQ_END)
3571 			break;
3572 	}
3573 
3574 	if (op && op->operation != CS_DSP_WSEQ_END) {
3575 		cs_dsp_err(dsp, "%s missing end terminator\n", wseq->ctl->subname);
3576 		ret = -ENOENT;
3577 	}
3578 
3579 err_free:
3580 	kfree(words);
3581 
3582 	return ret;
3583 }
3584 
3585 /**
3586  * cs_dsp_wseq_init() - Initialize write sequences contained within the loaded DSP firmware
3587  * @dsp: Pointer to DSP structure
3588  * @wseqs: List of write sequences to initialize
3589  * @num_wseqs: Number of write sequences to initialize
3590  *
3591  * Return: Zero for success, a negative number on error.
3592  */
cs_dsp_wseq_init(struct cs_dsp * dsp,struct cs_dsp_wseq * wseqs,unsigned int num_wseqs)3593 int cs_dsp_wseq_init(struct cs_dsp *dsp, struct cs_dsp_wseq *wseqs, unsigned int num_wseqs)
3594 {
3595 	int i, ret;
3596 
3597 	lockdep_assert_held(&dsp->pwr_lock);
3598 
3599 	for (i = 0; i < num_wseqs; i++) {
3600 		ret = cs_dsp_populate_wseq(dsp, &wseqs[i]);
3601 		if (ret) {
3602 			cs_dsp_wseq_clear(dsp, &wseqs[i]);
3603 			return ret;
3604 		}
3605 	}
3606 
3607 	return 0;
3608 }
3609 EXPORT_SYMBOL_NS_GPL(cs_dsp_wseq_init, "FW_CS_DSP");
3610 
cs_dsp_wseq_find_op(u32 addr,u8 op_code,struct list_head * wseq_ops)3611 static struct cs_dsp_wseq_op *cs_dsp_wseq_find_op(u32 addr, u8 op_code,
3612 						  struct list_head *wseq_ops)
3613 {
3614 	struct cs_dsp_wseq_op *op;
3615 
3616 	list_for_each_entry(op, wseq_ops, list) {
3617 		if (op->operation == op_code && op->address == addr)
3618 			return op;
3619 	}
3620 
3621 	return NULL;
3622 }
3623 
3624 /**
3625  * cs_dsp_wseq_write() - Add or update an entry in a write sequence
3626  * @dsp: Pointer to a DSP structure
3627  * @wseq: Write sequence to write to
3628  * @addr: Address of the register to be written to
3629  * @data: Data to be written
3630  * @op_code: The type of operation of the new entry
3631  * @update: If true, searches for the first entry in the write sequence with
3632  * the same address and op_code, and replaces it. If false, creates a new entry
3633  * at the tail
3634  *
3635  * This function formats register address and value pairs into the format
3636  * required for write sequence entries, and either updates or adds the
3637  * new entry into the write sequence.
3638  *
3639  * If update is set to true and no matching entry is found, it will add a new entry.
3640  *
3641  * Return: Zero for success, a negative number on error.
3642  */
cs_dsp_wseq_write(struct cs_dsp * dsp,struct cs_dsp_wseq * wseq,u32 addr,u32 data,u8 op_code,bool update)3643 int cs_dsp_wseq_write(struct cs_dsp *dsp, struct cs_dsp_wseq *wseq,
3644 		      u32 addr, u32 data, u8 op_code, bool update)
3645 {
3646 	struct cs_dsp_wseq_op *op_end, *op_new = NULL;
3647 	u32 words[WSEQ_OP_MAX_WORDS];
3648 	struct cs_dsp_chunk chunk;
3649 	int new_op_size, ret;
3650 
3651 	if (update)
3652 		op_new = cs_dsp_wseq_find_op(addr, op_code, &wseq->ops);
3653 
3654 	/* If entry to update is not found, treat it as a new operation */
3655 	if (!op_new) {
3656 		op_end = cs_dsp_wseq_find_op(0, CS_DSP_WSEQ_END, &wseq->ops);
3657 		if (!op_end) {
3658 			cs_dsp_err(dsp, "Missing terminator for %s\n", wseq->ctl->subname);
3659 			return -EINVAL;
3660 		}
3661 
3662 		op_new = devm_kzalloc(dsp->dev, sizeof(*op_new), GFP_KERNEL);
3663 		if (!op_new)
3664 			return -ENOMEM;
3665 
3666 		op_new->operation = op_code;
3667 		op_new->address = addr;
3668 		op_new->offset = op_end->offset;
3669 		update = false;
3670 	}
3671 
3672 	op_new->data = data;
3673 
3674 	chunk = cs_dsp_chunk(words, sizeof(words));
3675 	cs_dsp_chunk_write(&chunk, 8, op_new->operation);
3676 
3677 	switch (op_code) {
3678 	case CS_DSP_WSEQ_FULL:
3679 		cs_dsp_chunk_write(&chunk, 32, op_new->address);
3680 		cs_dsp_chunk_write(&chunk, 32, op_new->data);
3681 		break;
3682 	case CS_DSP_WSEQ_L16:
3683 	case CS_DSP_WSEQ_H16:
3684 		cs_dsp_chunk_write(&chunk, 24, op_new->address);
3685 		cs_dsp_chunk_write(&chunk, 16, op_new->data);
3686 		break;
3687 	default:
3688 		ret = -EINVAL;
3689 		cs_dsp_err(dsp, "Operation %X not supported\n", op_code);
3690 		goto op_new_free;
3691 	}
3692 
3693 	new_op_size = cs_dsp_chunk_bytes(&chunk);
3694 
3695 	if (!update) {
3696 		if (wseq->ctl->len - op_end->offset < new_op_size) {
3697 			cs_dsp_err(dsp, "Not enough memory in %s for entry\n", wseq->ctl->subname);
3698 			ret = -E2BIG;
3699 			goto op_new_free;
3700 		}
3701 
3702 		op_end->offset += new_op_size;
3703 
3704 		ret = cs_dsp_coeff_write_ctrl(wseq->ctl, op_end->offset / sizeof(u32),
3705 					      &op_end->data, sizeof(u32));
3706 		if (ret)
3707 			goto op_new_free;
3708 
3709 		list_add_tail(&op_new->list, &op_end->list);
3710 	}
3711 
3712 	ret = cs_dsp_coeff_write_ctrl(wseq->ctl, op_new->offset / sizeof(u32),
3713 				      words, new_op_size);
3714 	if (ret)
3715 		goto op_new_free;
3716 
3717 	return 0;
3718 
3719 op_new_free:
3720 	devm_kfree(dsp->dev, op_new);
3721 
3722 	return ret;
3723 }
3724 EXPORT_SYMBOL_NS_GPL(cs_dsp_wseq_write, "FW_CS_DSP");
3725 
3726 /**
3727  * cs_dsp_wseq_multi_write() - Add or update multiple entries in a write sequence
3728  * @dsp: Pointer to a DSP structure
3729  * @wseq: Write sequence to write to
3730  * @reg_seq: List of address-data pairs
3731  * @num_regs: Number of address-data pairs
3732  * @op_code: The types of operations of the new entries
3733  * @update: If true, searches for the first entry in the write sequence with
3734  * the same address and op_code, and replaces it. If false, creates a new entry
3735  * at the tail
3736  *
3737  * This function calls cs_dsp_wseq_write() for multiple address-data pairs.
3738  *
3739  * Return: Zero for success, a negative number on error.
3740  */
cs_dsp_wseq_multi_write(struct cs_dsp * dsp,struct cs_dsp_wseq * wseq,const struct reg_sequence * reg_seq,int num_regs,u8 op_code,bool update)3741 int cs_dsp_wseq_multi_write(struct cs_dsp *dsp, struct cs_dsp_wseq *wseq,
3742 			    const struct reg_sequence *reg_seq, int num_regs,
3743 			    u8 op_code, bool update)
3744 {
3745 	int i, ret;
3746 
3747 	for (i = 0; i < num_regs; i++) {
3748 		ret = cs_dsp_wseq_write(dsp, wseq, reg_seq[i].reg,
3749 					reg_seq[i].def, op_code, update);
3750 		if (ret)
3751 			return ret;
3752 	}
3753 
3754 	return 0;
3755 }
3756 EXPORT_SYMBOL_NS_GPL(cs_dsp_wseq_multi_write, "FW_CS_DSP");
3757 
3758 MODULE_DESCRIPTION("Cirrus Logic DSP Support");
3759 MODULE_AUTHOR("Simon Trimmer <simont@opensource.cirrus.com>");
3760 MODULE_LICENSE("GPL v2");
3761