1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * cs_dsp.c -- Cirrus Logic DSP firmware support
4 *
5 * Based on sound/soc/codecs/wm_adsp.c
6 *
7 * Copyright 2012 Wolfson Microelectronics plc
8 * Copyright (C) 2015-2021 Cirrus Logic, Inc. and
9 * Cirrus Logic International Semiconductor Ltd.
10 */
11
12 #include <kunit/visibility.h>
13 #include <linux/cleanup.h>
14 #include <linux/ctype.h>
15 #include <linux/debugfs.h>
16 #include <linux/delay.h>
17 #include <linux/math.h>
18 #include <linux/minmax.h>
19 #include <linux/module.h>
20 #include <linux/moduleparam.h>
21 #include <linux/seq_file.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24
25 #include <linux/firmware/cirrus/cs_dsp.h>
26 #include <linux/firmware/cirrus/wmfw.h>
27
28 #include "cs_dsp.h"
29
30 /*
31 * When the KUnit test is running the error-case tests will cause a lot
32 * of messages. Rate-limit to prevent overflowing the kernel log buffer
33 * during KUnit test runs.
34 */
35 #if IS_ENABLED(CONFIG_FW_CS_DSP_KUNIT_TEST)
36 bool cs_dsp_suppress_err_messages;
37 EXPORT_SYMBOL_IF_KUNIT(cs_dsp_suppress_err_messages);
38
39 bool cs_dsp_suppress_warn_messages;
40 EXPORT_SYMBOL_IF_KUNIT(cs_dsp_suppress_warn_messages);
41
42 bool cs_dsp_suppress_info_messages;
43 EXPORT_SYMBOL_IF_KUNIT(cs_dsp_suppress_info_messages);
44
45 #define cs_dsp_err(_dsp, fmt, ...) \
46 do { \
47 if (!cs_dsp_suppress_err_messages) \
48 dev_err_ratelimited(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__); \
49 } while (false)
50 #define cs_dsp_warn(_dsp, fmt, ...) \
51 do { \
52 if (!cs_dsp_suppress_warn_messages) \
53 dev_warn_ratelimited(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__); \
54 } while (false)
55 #define cs_dsp_info(_dsp, fmt, ...) \
56 do { \
57 if (!cs_dsp_suppress_info_messages) \
58 dev_info_ratelimited(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__); \
59 } while (false)
60 #define cs_dsp_dbg(_dsp, fmt, ...) \
61 dev_dbg_ratelimited(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
62 #else
63 #define cs_dsp_err(_dsp, fmt, ...) \
64 dev_err(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
65 #define cs_dsp_warn(_dsp, fmt, ...) \
66 dev_warn(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
67 #define cs_dsp_info(_dsp, fmt, ...) \
68 dev_info(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
69 #define cs_dsp_dbg(_dsp, fmt, ...) \
70 dev_dbg(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
71 #endif
72
73 #define ADSP1_CONTROL_1 0x00
74 #define ADSP1_CONTROL_2 0x02
75 #define ADSP1_CONTROL_3 0x03
76 #define ADSP1_CONTROL_4 0x04
77 #define ADSP1_CONTROL_5 0x06
78 #define ADSP1_CONTROL_6 0x07
79 #define ADSP1_CONTROL_7 0x08
80 #define ADSP1_CONTROL_8 0x09
81 #define ADSP1_CONTROL_9 0x0A
82 #define ADSP1_CONTROL_10 0x0B
83 #define ADSP1_CONTROL_11 0x0C
84 #define ADSP1_CONTROL_12 0x0D
85 #define ADSP1_CONTROL_13 0x0F
86 #define ADSP1_CONTROL_14 0x10
87 #define ADSP1_CONTROL_15 0x11
88 #define ADSP1_CONTROL_16 0x12
89 #define ADSP1_CONTROL_17 0x13
90 #define ADSP1_CONTROL_18 0x14
91 #define ADSP1_CONTROL_19 0x16
92 #define ADSP1_CONTROL_20 0x17
93 #define ADSP1_CONTROL_21 0x18
94 #define ADSP1_CONTROL_22 0x1A
95 #define ADSP1_CONTROL_23 0x1B
96 #define ADSP1_CONTROL_24 0x1C
97 #define ADSP1_CONTROL_25 0x1E
98 #define ADSP1_CONTROL_26 0x20
99 #define ADSP1_CONTROL_27 0x21
100 #define ADSP1_CONTROL_28 0x22
101 #define ADSP1_CONTROL_29 0x23
102 #define ADSP1_CONTROL_30 0x24
103 #define ADSP1_CONTROL_31 0x26
104
105 /*
106 * ADSP1 Control 19
107 */
108 #define ADSP1_WDMA_BUFFER_LENGTH_MASK 0x00FF /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
109 #define ADSP1_WDMA_BUFFER_LENGTH_SHIFT 0 /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
110 #define ADSP1_WDMA_BUFFER_LENGTH_WIDTH 8 /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
111
112 /*
113 * ADSP1 Control 30
114 */
115 #define ADSP1_DBG_CLK_ENA 0x0008 /* DSP1_DBG_CLK_ENA */
116 #define ADSP1_DBG_CLK_ENA_MASK 0x0008 /* DSP1_DBG_CLK_ENA */
117 #define ADSP1_DBG_CLK_ENA_SHIFT 3 /* DSP1_DBG_CLK_ENA */
118 #define ADSP1_DBG_CLK_ENA_WIDTH 1 /* DSP1_DBG_CLK_ENA */
119 #define ADSP1_SYS_ENA 0x0004 /* DSP1_SYS_ENA */
120 #define ADSP1_SYS_ENA_MASK 0x0004 /* DSP1_SYS_ENA */
121 #define ADSP1_SYS_ENA_SHIFT 2 /* DSP1_SYS_ENA */
122 #define ADSP1_SYS_ENA_WIDTH 1 /* DSP1_SYS_ENA */
123 #define ADSP1_CORE_ENA 0x0002 /* DSP1_CORE_ENA */
124 #define ADSP1_CORE_ENA_MASK 0x0002 /* DSP1_CORE_ENA */
125 #define ADSP1_CORE_ENA_SHIFT 1 /* DSP1_CORE_ENA */
126 #define ADSP1_CORE_ENA_WIDTH 1 /* DSP1_CORE_ENA */
127 #define ADSP1_START 0x0001 /* DSP1_START */
128 #define ADSP1_START_MASK 0x0001 /* DSP1_START */
129 #define ADSP1_START_SHIFT 0 /* DSP1_START */
130 #define ADSP1_START_WIDTH 1 /* DSP1_START */
131
132 /*
133 * ADSP1 Control 31
134 */
135 #define ADSP1_CLK_SEL_MASK 0x0007 /* CLK_SEL_ENA */
136 #define ADSP1_CLK_SEL_SHIFT 0 /* CLK_SEL_ENA */
137 #define ADSP1_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */
138
139 #define ADSP2_CONTROL 0x0
140 #define ADSP2_CLOCKING 0x1
141 #define ADSP2V2_CLOCKING 0x2
142 #define ADSP2_STATUS1 0x4
143 #define ADSP2_WDMA_CONFIG_1 0x30
144 #define ADSP2_WDMA_CONFIG_2 0x31
145 #define ADSP2V2_WDMA_CONFIG_2 0x32
146 #define ADSP2_RDMA_CONFIG_1 0x34
147
148 #define ADSP2_SCRATCH0 0x40
149 #define ADSP2_SCRATCH1 0x41
150 #define ADSP2_SCRATCH2 0x42
151 #define ADSP2_SCRATCH3 0x43
152
153 #define ADSP2V2_SCRATCH0_1 0x40
154 #define ADSP2V2_SCRATCH2_3 0x42
155
156 /*
157 * ADSP2 Control
158 */
159 #define ADSP2_MEM_ENA 0x0010 /* DSP1_MEM_ENA */
160 #define ADSP2_MEM_ENA_MASK 0x0010 /* DSP1_MEM_ENA */
161 #define ADSP2_MEM_ENA_SHIFT 4 /* DSP1_MEM_ENA */
162 #define ADSP2_MEM_ENA_WIDTH 1 /* DSP1_MEM_ENA */
163 #define ADSP2_SYS_ENA 0x0004 /* DSP1_SYS_ENA */
164 #define ADSP2_SYS_ENA_MASK 0x0004 /* DSP1_SYS_ENA */
165 #define ADSP2_SYS_ENA_SHIFT 2 /* DSP1_SYS_ENA */
166 #define ADSP2_SYS_ENA_WIDTH 1 /* DSP1_SYS_ENA */
167 #define ADSP2_CORE_ENA 0x0002 /* DSP1_CORE_ENA */
168 #define ADSP2_CORE_ENA_MASK 0x0002 /* DSP1_CORE_ENA */
169 #define ADSP2_CORE_ENA_SHIFT 1 /* DSP1_CORE_ENA */
170 #define ADSP2_CORE_ENA_WIDTH 1 /* DSP1_CORE_ENA */
171 #define ADSP2_START 0x0001 /* DSP1_START */
172 #define ADSP2_START_MASK 0x0001 /* DSP1_START */
173 #define ADSP2_START_SHIFT 0 /* DSP1_START */
174 #define ADSP2_START_WIDTH 1 /* DSP1_START */
175
176 /*
177 * ADSP2 clocking
178 */
179 #define ADSP2_CLK_SEL_MASK 0x0007 /* CLK_SEL_ENA */
180 #define ADSP2_CLK_SEL_SHIFT 0 /* CLK_SEL_ENA */
181 #define ADSP2_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */
182
183 /*
184 * ADSP2V2 clocking
185 */
186 #define ADSP2V2_CLK_SEL_MASK 0x70000 /* CLK_SEL_ENA */
187 #define ADSP2V2_CLK_SEL_SHIFT 16 /* CLK_SEL_ENA */
188 #define ADSP2V2_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */
189
190 #define ADSP2V2_RATE_MASK 0x7800 /* DSP_RATE */
191 #define ADSP2V2_RATE_SHIFT 11 /* DSP_RATE */
192 #define ADSP2V2_RATE_WIDTH 4 /* DSP_RATE */
193
194 /*
195 * ADSP2 Status 1
196 */
197 #define ADSP2_RAM_RDY 0x0001
198 #define ADSP2_RAM_RDY_MASK 0x0001
199 #define ADSP2_RAM_RDY_SHIFT 0
200 #define ADSP2_RAM_RDY_WIDTH 1
201
202 /*
203 * ADSP2 Lock support
204 */
205 #define ADSP2_LOCK_CODE_0 0x5555
206 #define ADSP2_LOCK_CODE_1 0xAAAA
207
208 #define ADSP2_WATCHDOG 0x0A
209 #define ADSP2_BUS_ERR_ADDR 0x52
210 #define ADSP2_REGION_LOCK_STATUS 0x64
211 #define ADSP2_LOCK_REGION_1_LOCK_REGION_0 0x66
212 #define ADSP2_LOCK_REGION_3_LOCK_REGION_2 0x68
213 #define ADSP2_LOCK_REGION_5_LOCK_REGION_4 0x6A
214 #define ADSP2_LOCK_REGION_7_LOCK_REGION_6 0x6C
215 #define ADSP2_LOCK_REGION_9_LOCK_REGION_8 0x6E
216 #define ADSP2_LOCK_REGION_CTRL 0x7A
217 #define ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR 0x7C
218
219 #define ADSP2_REGION_LOCK_ERR_MASK 0x8000
220 #define ADSP2_ADDR_ERR_MASK 0x4000
221 #define ADSP2_WDT_TIMEOUT_STS_MASK 0x2000
222 #define ADSP2_CTRL_ERR_PAUSE_ENA 0x0002
223 #define ADSP2_CTRL_ERR_EINT 0x0001
224
225 #define ADSP2_BUS_ERR_ADDR_MASK 0x00FFFFFF
226 #define ADSP2_XMEM_ERR_ADDR_MASK 0x0000FFFF
227 #define ADSP2_PMEM_ERR_ADDR_MASK 0x7FFF0000
228 #define ADSP2_PMEM_ERR_ADDR_SHIFT 16
229 #define ADSP2_WDT_ENA_MASK 0xFFFFFFFD
230
231 #define ADSP2_LOCK_REGION_SHIFT 16
232
233 /*
234 * Event control messages
235 */
236 #define CS_DSP_FW_EVENT_SHUTDOWN 0x000001
237
238 /*
239 * HALO system info
240 */
241 #define HALO_AHBM_WINDOW_DEBUG_0 0x02040
242 #define HALO_AHBM_WINDOW_DEBUG_1 0x02044
243
244 /*
245 * HALO core
246 */
247 #define HALO_SCRATCH1 0x005c0
248 #define HALO_SCRATCH2 0x005c8
249 #define HALO_SCRATCH3 0x005d0
250 #define HALO_SCRATCH4 0x005d8
251 #define HALO_CCM_CORE_CONTROL 0x41000
252 #define HALO_CORE_SOFT_RESET 0x00010
253 #define HALO_WDT_CONTROL 0x47000
254
255 /*
256 * HALO MPU banks
257 */
258 #define HALO_MPU_XMEM_ACCESS_0 0x43000
259 #define HALO_MPU_YMEM_ACCESS_0 0x43004
260 #define HALO_MPU_WINDOW_ACCESS_0 0x43008
261 #define HALO_MPU_XREG_ACCESS_0 0x4300C
262 #define HALO_MPU_YREG_ACCESS_0 0x43014
263 #define HALO_MPU_XMEM_ACCESS_1 0x43018
264 #define HALO_MPU_YMEM_ACCESS_1 0x4301C
265 #define HALO_MPU_WINDOW_ACCESS_1 0x43020
266 #define HALO_MPU_XREG_ACCESS_1 0x43024
267 #define HALO_MPU_YREG_ACCESS_1 0x4302C
268 #define HALO_MPU_XMEM_ACCESS_2 0x43030
269 #define HALO_MPU_YMEM_ACCESS_2 0x43034
270 #define HALO_MPU_WINDOW_ACCESS_2 0x43038
271 #define HALO_MPU_XREG_ACCESS_2 0x4303C
272 #define HALO_MPU_YREG_ACCESS_2 0x43044
273 #define HALO_MPU_XMEM_ACCESS_3 0x43048
274 #define HALO_MPU_YMEM_ACCESS_3 0x4304C
275 #define HALO_MPU_WINDOW_ACCESS_3 0x43050
276 #define HALO_MPU_XREG_ACCESS_3 0x43054
277 #define HALO_MPU_YREG_ACCESS_3 0x4305C
278 #define HALO_MPU_XM_VIO_ADDR 0x43100
279 #define HALO_MPU_XM_VIO_STATUS 0x43104
280 #define HALO_MPU_YM_VIO_ADDR 0x43108
281 #define HALO_MPU_YM_VIO_STATUS 0x4310C
282 #define HALO_MPU_PM_VIO_ADDR 0x43110
283 #define HALO_MPU_PM_VIO_STATUS 0x43114
284 #define HALO_MPU_LOCK_CONFIG 0x43140
285
286 /*
287 * HALO_AHBM_WINDOW_DEBUG_1
288 */
289 #define HALO_AHBM_CORE_ERR_ADDR_MASK 0x0fffff00
290 #define HALO_AHBM_CORE_ERR_ADDR_SHIFT 8
291 #define HALO_AHBM_FLAGS_ERR_MASK 0x000000ff
292
293 /*
294 * HALO_CCM_CORE_CONTROL
295 */
296 #define HALO_CORE_RESET 0x00000200
297 #define HALO_CORE_EN 0x00000001
298
299 /*
300 * HALO_CORE_SOFT_RESET
301 */
302 #define HALO_CORE_SOFT_RESET_MASK 0x00000001
303
304 /*
305 * HALO_WDT_CONTROL
306 */
307 #define HALO_WDT_EN_MASK 0x00000001
308
309 /*
310 * HALO_MPU_?M_VIO_STATUS
311 */
312 #define HALO_MPU_VIO_STS_MASK 0x007e0000
313 #define HALO_MPU_VIO_STS_SHIFT 17
314 #define HALO_MPU_VIO_ERR_WR_MASK 0x00008000
315 #define HALO_MPU_VIO_ERR_SRC_MASK 0x00007fff
316 #define HALO_MPU_VIO_ERR_SRC_SHIFT 0
317
318 /*
319 * Write Sequence
320 */
321 #define WSEQ_OP_MAX_WORDS 3
322 #define WSEQ_END_OF_SCRIPT 0xFFFFFF
323
324 struct cs_dsp_ops {
325 bool (*validate_version)(struct cs_dsp *dsp, unsigned int version);
326 unsigned int (*parse_sizes)(struct cs_dsp *dsp,
327 const char * const file,
328 unsigned int pos,
329 const struct firmware *firmware);
330 int (*setup_algs)(struct cs_dsp *dsp);
331 unsigned int (*region_to_reg)(struct cs_dsp_region const *mem,
332 unsigned int offset);
333
334 void (*show_fw_status)(struct cs_dsp *dsp);
335 void (*stop_watchdog)(struct cs_dsp *dsp);
336
337 int (*enable_memory)(struct cs_dsp *dsp);
338 void (*disable_memory)(struct cs_dsp *dsp);
339 int (*lock_memory)(struct cs_dsp *dsp, unsigned int lock_regions);
340
341 int (*enable_core)(struct cs_dsp *dsp);
342 void (*disable_core)(struct cs_dsp *dsp);
343
344 int (*start_core)(struct cs_dsp *dsp);
345 void (*stop_core)(struct cs_dsp *dsp);
346 };
347
348 static const struct cs_dsp_ops cs_dsp_adsp1_ops;
349 static const struct cs_dsp_ops cs_dsp_adsp2_ops[];
350 static const struct cs_dsp_ops cs_dsp_halo_ops;
351 static const struct cs_dsp_ops cs_dsp_halo_ao_ops;
352
353 struct cs_dsp_alg_region_list_item {
354 struct list_head list;
355 struct cs_dsp_alg_region alg_region;
356 };
357
358 /**
359 * cs_dsp_mem_region_name() - Return a name string for a memory type
360 * @type: the memory type to match
361 *
362 * Return: A const string identifying the memory region.
363 */
cs_dsp_mem_region_name(unsigned int type)364 const char *cs_dsp_mem_region_name(unsigned int type)
365 {
366 switch (type) {
367 case WMFW_ADSP1_PM:
368 return "PM";
369 case WMFW_HALO_PM_PACKED:
370 return "PM_PACKED";
371 case WMFW_ADSP1_DM:
372 return "DM";
373 case WMFW_ADSP2_XM:
374 return "XM";
375 case WMFW_HALO_XM_PACKED:
376 return "XM_PACKED";
377 case WMFW_ADSP2_YM:
378 return "YM";
379 case WMFW_HALO_YM_PACKED:
380 return "YM_PACKED";
381 case WMFW_ADSP1_ZM:
382 return "ZM";
383 default:
384 return NULL;
385 }
386 }
387 EXPORT_SYMBOL_NS_GPL(cs_dsp_mem_region_name, "FW_CS_DSP");
388
389 #ifdef CONFIG_DEBUG_FS
cs_dsp_debugfs_save_wmfwname(struct cs_dsp * dsp,const char * s)390 static void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp, const char *s)
391 {
392 kfree(dsp->wmfw_file_name);
393 dsp->wmfw_file_name = kstrdup(s, GFP_KERNEL);
394 }
395
cs_dsp_debugfs_save_binname(struct cs_dsp * dsp,const char * s)396 static void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp, const char *s)
397 {
398 kfree(dsp->bin_file_name);
399 dsp->bin_file_name = kstrdup(s, GFP_KERNEL);
400 }
401
cs_dsp_debugfs_clear(struct cs_dsp * dsp)402 static void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
403 {
404 kfree(dsp->wmfw_file_name);
405 kfree(dsp->bin_file_name);
406 dsp->wmfw_file_name = NULL;
407 dsp->bin_file_name = NULL;
408 }
409
cs_dsp_debugfs_string_read(struct cs_dsp * dsp,char __user * user_buf,size_t count,loff_t * ppos,const char ** pstr)410 static ssize_t cs_dsp_debugfs_string_read(struct cs_dsp *dsp,
411 char __user *user_buf,
412 size_t count, loff_t *ppos,
413 const char **pstr)
414 {
415 const char *str __free(kfree) = NULL;
416
417 scoped_guard(mutex, &dsp->pwr_lock) {
418 if (!*pstr)
419 return 0;
420
421 str = kasprintf(GFP_KERNEL, "%s\n", *pstr);
422 if (!str)
423 return -ENOMEM;
424
425 return simple_read_from_buffer(user_buf, count, ppos, str, strlen(str));
426 }
427 }
428
cs_dsp_debugfs_wmfw_read(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)429 static ssize_t cs_dsp_debugfs_wmfw_read(struct file *file,
430 char __user *user_buf,
431 size_t count, loff_t *ppos)
432 {
433 struct cs_dsp *dsp = file->private_data;
434
435 return cs_dsp_debugfs_string_read(dsp, user_buf, count, ppos,
436 &dsp->wmfw_file_name);
437 }
438
cs_dsp_debugfs_bin_read(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)439 static ssize_t cs_dsp_debugfs_bin_read(struct file *file,
440 char __user *user_buf,
441 size_t count, loff_t *ppos)
442 {
443 struct cs_dsp *dsp = file->private_data;
444
445 return cs_dsp_debugfs_string_read(dsp, user_buf, count, ppos,
446 &dsp->bin_file_name);
447 }
448
449 static const struct {
450 const char *name;
451 const struct file_operations fops;
452 } cs_dsp_debugfs_fops[] = {
453 {
454 .name = "wmfw_file_name",
455 .fops = {
456 .open = simple_open,
457 .read = cs_dsp_debugfs_wmfw_read,
458 },
459 },
460 {
461 .name = "bin_file_name",
462 .fops = {
463 .open = simple_open,
464 .read = cs_dsp_debugfs_bin_read,
465 },
466 },
467 };
468
469 static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
470 unsigned int off);
471
cs_dsp_debugfs_read_controls_show(struct seq_file * s,void * ignored)472 static int cs_dsp_debugfs_read_controls_show(struct seq_file *s, void *ignored)
473 {
474 struct cs_dsp *dsp = s->private;
475 struct cs_dsp_coeff_ctl *ctl;
476 unsigned int reg;
477
478 guard(mutex)(&dsp->pwr_lock);
479
480 list_for_each_entry(ctl, &dsp->ctl_list, list) {
481 cs_dsp_coeff_base_reg(ctl, ®, 0);
482 seq_printf(s, "%22.*s: %#8x %s:%08x %#8x %s %#8x %#4x %c%c%c%c %s %s\n",
483 ctl->subname_len, ctl->subname, ctl->len,
484 cs_dsp_mem_region_name(ctl->alg_region.type),
485 ctl->offset, reg, ctl->fw_name, ctl->alg_region.alg, ctl->type,
486 ctl->flags & WMFW_CTL_FLAG_VOLATILE ? 'V' : '-',
487 ctl->flags & WMFW_CTL_FLAG_SYS ? 'S' : '-',
488 ctl->flags & WMFW_CTL_FLAG_READABLE ? 'R' : '-',
489 ctl->flags & WMFW_CTL_FLAG_WRITEABLE ? 'W' : '-',
490 ctl->enabled ? "enabled" : "disabled",
491 ctl->set ? "dirty" : "clean");
492 }
493
494 return 0;
495 }
496 DEFINE_SHOW_ATTRIBUTE(cs_dsp_debugfs_read_controls);
497
498 /**
499 * cs_dsp_init_debugfs() - Create and populate DSP representation in debugfs
500 * @dsp: pointer to DSP structure
501 * @debugfs_root: pointer to debugfs directory in which to create this DSP
502 * representation
503 */
cs_dsp_init_debugfs(struct cs_dsp * dsp,struct dentry * debugfs_root)504 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
505 {
506 struct dentry *root = NULL;
507 int i;
508
509 root = debugfs_create_dir(dsp->name, debugfs_root);
510
511 debugfs_create_bool("booted", 0444, root, &dsp->booted);
512 debugfs_create_bool("running", 0444, root, &dsp->running);
513 debugfs_create_x32("fw_id", 0444, root, &dsp->fw_id);
514 debugfs_create_x32("fw_version", 0444, root, &dsp->fw_id_version);
515
516 for (i = 0; i < ARRAY_SIZE(cs_dsp_debugfs_fops); ++i)
517 debugfs_create_file(cs_dsp_debugfs_fops[i].name, 0444, root,
518 dsp, &cs_dsp_debugfs_fops[i].fops);
519
520 debugfs_create_file("controls", 0444, root, dsp,
521 &cs_dsp_debugfs_read_controls_fops);
522
523 dsp->debugfs_root = root;
524 }
525 EXPORT_SYMBOL_NS_GPL(cs_dsp_init_debugfs, "FW_CS_DSP");
526
527 /**
528 * cs_dsp_cleanup_debugfs() - Removes DSP representation from debugfs
529 * @dsp: pointer to DSP structure
530 */
cs_dsp_cleanup_debugfs(struct cs_dsp * dsp)531 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
532 {
533 cs_dsp_debugfs_clear(dsp);
534 debugfs_remove_recursive(dsp->debugfs_root);
535 dsp->debugfs_root = ERR_PTR(-ENODEV);
536 }
537 EXPORT_SYMBOL_NS_GPL(cs_dsp_cleanup_debugfs, "FW_CS_DSP");
538 #else
cs_dsp_init_debugfs(struct cs_dsp * dsp,struct dentry * debugfs_root)539 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
540 {
541 }
542 EXPORT_SYMBOL_NS_GPL(cs_dsp_init_debugfs, "FW_CS_DSP");
543
cs_dsp_cleanup_debugfs(struct cs_dsp * dsp)544 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
545 {
546 }
547 EXPORT_SYMBOL_NS_GPL(cs_dsp_cleanup_debugfs, "FW_CS_DSP");
548
cs_dsp_debugfs_save_wmfwname(struct cs_dsp * dsp,const char * s)549 static inline void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp,
550 const char *s)
551 {
552 }
553
cs_dsp_debugfs_save_binname(struct cs_dsp * dsp,const char * s)554 static inline void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp,
555 const char *s)
556 {
557 }
558
cs_dsp_debugfs_clear(struct cs_dsp * dsp)559 static inline void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
560 {
561 }
562 #endif
563
cs_dsp_find_region(struct cs_dsp * dsp,int type)564 static const struct cs_dsp_region *cs_dsp_find_region(struct cs_dsp *dsp,
565 int type)
566 {
567 int i;
568
569 for (i = 0; i < dsp->num_mems; i++)
570 if (dsp->mem[i].type == type)
571 return &dsp->mem[i];
572
573 return NULL;
574 }
575
cs_dsp_region_to_reg(struct cs_dsp_region const * mem,unsigned int offset)576 static unsigned int cs_dsp_region_to_reg(struct cs_dsp_region const *mem,
577 unsigned int offset)
578 {
579 switch (mem->type) {
580 case WMFW_ADSP1_PM:
581 return mem->base + (offset * 3);
582 case WMFW_ADSP1_DM:
583 case WMFW_ADSP2_XM:
584 case WMFW_ADSP2_YM:
585 case WMFW_ADSP1_ZM:
586 return mem->base + (offset * 2);
587 default:
588 WARN(1, "Unknown memory region type");
589 return offset;
590 }
591 }
592
cs_dsp_halo_region_to_reg(struct cs_dsp_region const * mem,unsigned int offset)593 static unsigned int cs_dsp_halo_region_to_reg(struct cs_dsp_region const *mem,
594 unsigned int offset)
595 {
596 switch (mem->type) {
597 case WMFW_ADSP2_XM:
598 case WMFW_ADSP2_YM:
599 return mem->base + (offset * 4);
600 case WMFW_HALO_XM_PACKED:
601 case WMFW_HALO_YM_PACKED:
602 return (mem->base + (offset * 3)) & ~0x3;
603 case WMFW_HALO_PM_PACKED:
604 return mem->base + (offset * 5);
605 default:
606 WARN(1, "Unknown memory region type");
607 return offset;
608 }
609 }
610
cs_dsp_read_fw_status(struct cs_dsp * dsp,int noffs,unsigned int * offs)611 static void cs_dsp_read_fw_status(struct cs_dsp *dsp,
612 int noffs, unsigned int *offs)
613 {
614 unsigned int i;
615 int ret;
616
617 for (i = 0; i < noffs; ++i) {
618 ret = regmap_read(dsp->regmap, dsp->base + offs[i], &offs[i]);
619 if (ret) {
620 cs_dsp_err(dsp, "Failed to read SCRATCH%u: %d\n", i, ret);
621 return;
622 }
623 }
624 }
625
cs_dsp_adsp2_show_fw_status(struct cs_dsp * dsp)626 static void cs_dsp_adsp2_show_fw_status(struct cs_dsp *dsp)
627 {
628 unsigned int offs[] = {
629 ADSP2_SCRATCH0, ADSP2_SCRATCH1, ADSP2_SCRATCH2, ADSP2_SCRATCH3,
630 };
631
632 cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
633
634 cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
635 offs[0], offs[1], offs[2], offs[3]);
636 }
637
cs_dsp_adsp2v2_show_fw_status(struct cs_dsp * dsp)638 static void cs_dsp_adsp2v2_show_fw_status(struct cs_dsp *dsp)
639 {
640 unsigned int offs[] = { ADSP2V2_SCRATCH0_1, ADSP2V2_SCRATCH2_3 };
641
642 cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
643
644 cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
645 offs[0] & 0xFFFF, offs[0] >> 16,
646 offs[1] & 0xFFFF, offs[1] >> 16);
647 }
648
cs_dsp_halo_show_fw_status(struct cs_dsp * dsp)649 static void cs_dsp_halo_show_fw_status(struct cs_dsp *dsp)
650 {
651 unsigned int offs[] = {
652 HALO_SCRATCH1, HALO_SCRATCH2, HALO_SCRATCH3, HALO_SCRATCH4,
653 };
654
655 cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
656
657 cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
658 offs[0], offs[1], offs[2], offs[3]);
659 }
660
cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl * ctl,unsigned int * reg,unsigned int off)661 static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
662 unsigned int off)
663 {
664 const struct cs_dsp_alg_region *alg_region = &ctl->alg_region;
665 struct cs_dsp *dsp = ctl->dsp;
666 const struct cs_dsp_region *mem;
667
668 mem = cs_dsp_find_region(dsp, alg_region->type);
669 if (!mem) {
670 cs_dsp_err(dsp, "No base for region %x\n",
671 alg_region->type);
672 return -EINVAL;
673 }
674
675 *reg = dsp->ops->region_to_reg(mem, ctl->alg_region.base + ctl->offset + off);
676
677 return 0;
678 }
679
680 /**
681 * cs_dsp_coeff_write_acked_control() - Sends event_id to the acked control
682 * @ctl: pointer to acked coefficient control
683 * @event_id: the value to write to the given acked control
684 *
685 * Once the value has been written to the control the function shall block
686 * until the running firmware acknowledges the write or timeout is exceeded.
687 *
688 * Must be called with pwr_lock held.
689 *
690 * Return: Zero for success, a negative number on error.
691 */
cs_dsp_coeff_write_acked_control(struct cs_dsp_coeff_ctl * ctl,unsigned int event_id)692 int cs_dsp_coeff_write_acked_control(struct cs_dsp_coeff_ctl *ctl, unsigned int event_id)
693 {
694 struct cs_dsp *dsp = ctl->dsp;
695 __be32 val = cpu_to_be32(event_id);
696 unsigned int reg;
697 int i, ret;
698
699 lockdep_assert_held(&dsp->pwr_lock);
700
701 if (!dsp->running)
702 return -EPERM;
703
704 ret = cs_dsp_coeff_base_reg(ctl, ®, 0);
705 if (ret)
706 return ret;
707
708 cs_dsp_dbg(dsp, "Sending 0x%x to acked control alg 0x%x %s:0x%x\n",
709 event_id, ctl->alg_region.alg,
710 cs_dsp_mem_region_name(ctl->alg_region.type), ctl->offset);
711
712 ret = regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
713 if (ret) {
714 cs_dsp_err(dsp, "Failed to write %x: %d\n", reg, ret);
715 return ret;
716 }
717
718 /*
719 * Poll for ack, we initially poll at ~1ms intervals for firmwares
720 * that respond quickly, then go to ~10ms polls. A firmware is unlikely
721 * to ack instantly so we do the first 1ms delay before reading the
722 * control to avoid a pointless bus transaction
723 */
724 for (i = 0; i < CS_DSP_ACKED_CTL_TIMEOUT_MS;) {
725 switch (i) {
726 case 0 ... CS_DSP_ACKED_CTL_N_QUICKPOLLS - 1:
727 usleep_range(1000, 2000);
728 i++;
729 break;
730 default:
731 usleep_range(10000, 20000);
732 i += 10;
733 break;
734 }
735
736 ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
737 if (ret) {
738 cs_dsp_err(dsp, "Failed to read %x: %d\n", reg, ret);
739 return ret;
740 }
741
742 if (val == 0) {
743 cs_dsp_dbg(dsp, "Acked control ACKED at poll %u\n", i);
744 return 0;
745 }
746 }
747
748 cs_dsp_warn(dsp, "Acked control @0x%x alg:0x%x %s:0x%x timed out\n",
749 reg, ctl->alg_region.alg,
750 cs_dsp_mem_region_name(ctl->alg_region.type),
751 ctl->offset);
752
753 return -ETIMEDOUT;
754 }
755 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_write_acked_control, "FW_CS_DSP");
756
cs_dsp_coeff_write_ctrl_raw(struct cs_dsp_coeff_ctl * ctl,unsigned int off,const void * buf,size_t len)757 static int cs_dsp_coeff_write_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
758 unsigned int off, const void *buf, size_t len)
759 {
760 struct cs_dsp *dsp = ctl->dsp;
761 void *scratch;
762 int ret;
763 unsigned int reg;
764
765 ret = cs_dsp_coeff_base_reg(ctl, ®, off);
766 if (ret)
767 return ret;
768
769 scratch = kmemdup(buf, len, GFP_KERNEL | GFP_DMA);
770 if (!scratch)
771 return -ENOMEM;
772
773 ret = regmap_raw_write(dsp->regmap, reg, scratch,
774 len);
775 if (ret) {
776 cs_dsp_err(dsp, "Failed to write %zu bytes to %x: %d\n",
777 len, reg, ret);
778 kfree(scratch);
779 return ret;
780 }
781 cs_dsp_dbg(dsp, "Wrote %zu bytes to %x\n", len, reg);
782
783 kfree(scratch);
784
785 return 0;
786 }
787
788 /**
789 * cs_dsp_coeff_write_ctrl() - Writes the given buffer to the given coefficient control
790 * @ctl: pointer to coefficient control
791 * @off: word offset at which data should be written
792 * @buf: the buffer to write to the given control
793 * @len: the length of the buffer in bytes
794 *
795 * Must be called with pwr_lock held.
796 *
797 * Return: < 0 on error, 1 when the control value changed and 0 when it has not.
798 */
cs_dsp_coeff_write_ctrl(struct cs_dsp_coeff_ctl * ctl,unsigned int off,const void * buf,size_t len)799 int cs_dsp_coeff_write_ctrl(struct cs_dsp_coeff_ctl *ctl,
800 unsigned int off, const void *buf, size_t len)
801 {
802 int ret = 0;
803
804 if (!ctl)
805 return -ENOENT;
806
807 lockdep_assert_held(&ctl->dsp->pwr_lock);
808
809 if (ctl->flags && !(ctl->flags & WMFW_CTL_FLAG_WRITEABLE))
810 return -EPERM;
811
812 if (len + off * sizeof(u32) > ctl->len)
813 return -EINVAL;
814
815 if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
816 ret = -EPERM;
817 } else if (buf != ctl->cache) {
818 if (memcmp(ctl->cache + off * sizeof(u32), buf, len))
819 memcpy(ctl->cache + off * sizeof(u32), buf, len);
820 else
821 return 0;
822 }
823
824 ctl->set = 1;
825 if (ctl->enabled && ctl->dsp->running)
826 ret = cs_dsp_coeff_write_ctrl_raw(ctl, off, buf, len);
827
828 if (ret < 0)
829 return ret;
830
831 return 1;
832 }
833 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_write_ctrl, "FW_CS_DSP");
834
835 /**
836 * cs_dsp_coeff_lock_and_write_ctrl() - Writes the given buffer to the given coefficient control
837 * @ctl: pointer to coefficient control
838 * @off: word offset at which data should be written
839 * @buf: the buffer to write to the given control
840 * @len: the length of the buffer in bytes
841 *
842 * Same as cs_dsp_coeff_write_ctrl() but takes pwr_lock.
843 *
844 * Return: A negative number on error, 1 when the control value changed and 0 when it has not.
845 */
cs_dsp_coeff_lock_and_write_ctrl(struct cs_dsp_coeff_ctl * ctl,unsigned int off,const void * buf,size_t len)846 int cs_dsp_coeff_lock_and_write_ctrl(struct cs_dsp_coeff_ctl *ctl,
847 unsigned int off, const void *buf, size_t len)
848 {
849 struct cs_dsp *dsp = ctl->dsp;
850 int ret;
851
852 lockdep_assert_not_held(&dsp->pwr_lock);
853
854 mutex_lock(&dsp->pwr_lock);
855 ret = cs_dsp_coeff_write_ctrl(ctl, off, buf, len);
856 mutex_unlock(&dsp->pwr_lock);
857
858 return ret;
859 }
860 EXPORT_SYMBOL_GPL(cs_dsp_coeff_lock_and_write_ctrl);
861
cs_dsp_coeff_read_ctrl_raw(struct cs_dsp_coeff_ctl * ctl,unsigned int off,void * buf,size_t len)862 static int cs_dsp_coeff_read_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
863 unsigned int off, void *buf, size_t len)
864 {
865 struct cs_dsp *dsp = ctl->dsp;
866 void *scratch;
867 int ret;
868 unsigned int reg;
869
870 ret = cs_dsp_coeff_base_reg(ctl, ®, off);
871 if (ret)
872 return ret;
873
874 scratch = kmalloc(len, GFP_KERNEL | GFP_DMA);
875 if (!scratch)
876 return -ENOMEM;
877
878 ret = regmap_raw_read(dsp->regmap, reg, scratch, len);
879 if (ret) {
880 cs_dsp_err(dsp, "Failed to read %zu bytes from %x: %d\n",
881 len, reg, ret);
882 kfree(scratch);
883 return ret;
884 }
885 cs_dsp_dbg(dsp, "Read %zu bytes from %x\n", len, reg);
886
887 memcpy(buf, scratch, len);
888 kfree(scratch);
889
890 return 0;
891 }
892
893 /**
894 * cs_dsp_coeff_read_ctrl() - Reads the given coefficient control into the given buffer
895 * @ctl: pointer to coefficient control
896 * @off: word offset at which data should be read
897 * @buf: the buffer to store to the given control
898 * @len: the length of the buffer in bytes
899 *
900 * Must be called with pwr_lock held.
901 *
902 * Return: Zero for success, a negative number on error.
903 */
cs_dsp_coeff_read_ctrl(struct cs_dsp_coeff_ctl * ctl,unsigned int off,void * buf,size_t len)904 int cs_dsp_coeff_read_ctrl(struct cs_dsp_coeff_ctl *ctl,
905 unsigned int off, void *buf, size_t len)
906 {
907 int ret = 0;
908
909 if (!ctl)
910 return -ENOENT;
911
912 lockdep_assert_held(&ctl->dsp->pwr_lock);
913
914 if (len + off * sizeof(u32) > ctl->len)
915 return -EINVAL;
916
917 if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
918 if (ctl->enabled && ctl->dsp->running)
919 return cs_dsp_coeff_read_ctrl_raw(ctl, off, buf, len);
920 else
921 return -EPERM;
922 } else {
923 if (!ctl->flags && ctl->enabled && ctl->dsp->running)
924 ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
925
926 if (buf != ctl->cache)
927 memcpy(buf, ctl->cache + off * sizeof(u32), len);
928 }
929
930 return ret;
931 }
932 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_read_ctrl, "FW_CS_DSP");
933
934 /**
935 * cs_dsp_coeff_lock_and_read_ctrl() - Reads the given coefficient control into the given buffer
936 * @ctl: pointer to coefficient control
937 * @off: word offset at which data should be read
938 * @buf: the buffer to store to the given control
939 * @len: the length of the buffer in bytes
940 *
941 * Same as cs_dsp_coeff_read_ctrl() but takes pwr_lock.
942 *
943 * Return: Zero for success, a negative number on error.
944 */
cs_dsp_coeff_lock_and_read_ctrl(struct cs_dsp_coeff_ctl * ctl,unsigned int off,void * buf,size_t len)945 int cs_dsp_coeff_lock_and_read_ctrl(struct cs_dsp_coeff_ctl *ctl,
946 unsigned int off, void *buf, size_t len)
947 {
948 struct cs_dsp *dsp = ctl->dsp;
949 int ret;
950
951 lockdep_assert_not_held(&dsp->pwr_lock);
952
953 mutex_lock(&dsp->pwr_lock);
954 ret = cs_dsp_coeff_read_ctrl(ctl, off, buf, len);
955 mutex_unlock(&dsp->pwr_lock);
956
957 return ret;
958 }
959 EXPORT_SYMBOL_GPL(cs_dsp_coeff_lock_and_read_ctrl);
960
cs_dsp_coeff_init_control_caches(struct cs_dsp * dsp)961 static int cs_dsp_coeff_init_control_caches(struct cs_dsp *dsp)
962 {
963 struct cs_dsp_coeff_ctl *ctl;
964 int ret;
965
966 list_for_each_entry(ctl, &dsp->ctl_list, list) {
967 if (!ctl->enabled || ctl->set)
968 continue;
969 if (ctl->flags & WMFW_CTL_FLAG_VOLATILE)
970 continue;
971
972 /*
973 * For readable controls populate the cache from the DSP memory.
974 * For non-readable controls the cache was zero-filled when
975 * created so we don't need to do anything.
976 */
977 if (!ctl->flags || (ctl->flags & WMFW_CTL_FLAG_READABLE)) {
978 ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
979 if (ret < 0)
980 return ret;
981 }
982 }
983
984 return 0;
985 }
986
cs_dsp_coeff_sync_controls(struct cs_dsp * dsp)987 static int cs_dsp_coeff_sync_controls(struct cs_dsp *dsp)
988 {
989 struct cs_dsp_coeff_ctl *ctl;
990 int ret;
991
992 list_for_each_entry(ctl, &dsp->ctl_list, list) {
993 if (!ctl->enabled)
994 continue;
995 if (ctl->set && !(ctl->flags & WMFW_CTL_FLAG_VOLATILE)) {
996 ret = cs_dsp_coeff_write_ctrl_raw(ctl, 0, ctl->cache,
997 ctl->len);
998 if (ret < 0)
999 return ret;
1000 }
1001 }
1002
1003 return 0;
1004 }
1005
cs_dsp_signal_event_controls(struct cs_dsp * dsp,unsigned int event)1006 static void cs_dsp_signal_event_controls(struct cs_dsp *dsp,
1007 unsigned int event)
1008 {
1009 struct cs_dsp_coeff_ctl *ctl;
1010 int ret;
1011
1012 list_for_each_entry(ctl, &dsp->ctl_list, list) {
1013 if (ctl->type != WMFW_CTL_TYPE_HOSTEVENT)
1014 continue;
1015
1016 if (!ctl->enabled)
1017 continue;
1018
1019 ret = cs_dsp_coeff_write_acked_control(ctl, event);
1020 if (ret)
1021 cs_dsp_warn(dsp,
1022 "Failed to send 0x%x event to alg 0x%x (%d)\n",
1023 event, ctl->alg_region.alg, ret);
1024 }
1025 }
1026
cs_dsp_free_ctl_blk(struct cs_dsp_coeff_ctl * ctl)1027 static void cs_dsp_free_ctl_blk(struct cs_dsp_coeff_ctl *ctl)
1028 {
1029 kvfree(ctl->cache);
1030 kfree(ctl->subname);
1031 kfree(ctl);
1032 }
1033
cs_dsp_create_control(struct cs_dsp * dsp,const struct cs_dsp_alg_region * alg_region,unsigned int offset,unsigned int len,const char * subname,unsigned int subname_len,unsigned int flags,unsigned int type)1034 static int cs_dsp_create_control(struct cs_dsp *dsp,
1035 const struct cs_dsp_alg_region *alg_region,
1036 unsigned int offset, unsigned int len,
1037 const char *subname, unsigned int subname_len,
1038 unsigned int flags, unsigned int type)
1039 {
1040 struct cs_dsp_coeff_ctl *ctl;
1041 int ret;
1042
1043 list_for_each_entry(ctl, &dsp->ctl_list, list) {
1044 if (ctl->fw_name == dsp->fw_name &&
1045 ctl->alg_region.alg == alg_region->alg &&
1046 ctl->alg_region.type == alg_region->type) {
1047 if ((!subname && !ctl->subname) ||
1048 (subname && (ctl->subname_len == subname_len) &&
1049 !strncmp(ctl->subname, subname, ctl->subname_len))) {
1050 if (!ctl->enabled)
1051 ctl->enabled = 1;
1052 return 0;
1053 }
1054 }
1055 }
1056
1057 ctl = kzalloc(sizeof(*ctl), GFP_KERNEL);
1058 if (!ctl)
1059 return -ENOMEM;
1060
1061 ctl->fw_name = dsp->fw_name;
1062 ctl->alg_region = *alg_region;
1063 if (subname && dsp->wmfw_ver >= 2) {
1064 ctl->subname_len = subname_len;
1065 ctl->subname = kasprintf(GFP_KERNEL, "%.*s", subname_len, subname);
1066 if (!ctl->subname) {
1067 ret = -ENOMEM;
1068 goto err_ctl;
1069 }
1070 }
1071 ctl->enabled = 1;
1072 ctl->set = 0;
1073 ctl->dsp = dsp;
1074
1075 ctl->flags = flags;
1076 ctl->type = type;
1077 ctl->offset = offset;
1078 ctl->len = len;
1079 ctl->cache = kvzalloc(ctl->len, GFP_KERNEL);
1080 if (!ctl->cache) {
1081 ret = -ENOMEM;
1082 goto err_ctl_subname;
1083 }
1084
1085 list_add(&ctl->list, &dsp->ctl_list);
1086
1087 if (dsp->client_ops->control_add) {
1088 ret = dsp->client_ops->control_add(ctl);
1089 if (ret)
1090 goto err_list_del;
1091 }
1092
1093 return 0;
1094
1095 err_list_del:
1096 list_del(&ctl->list);
1097 kvfree(ctl->cache);
1098 err_ctl_subname:
1099 kfree(ctl->subname);
1100 err_ctl:
1101 kfree(ctl);
1102
1103 return ret;
1104 }
1105
1106 struct cs_dsp_coeff_parsed_alg {
1107 int id;
1108 const u8 *name;
1109 int name_len;
1110 int ncoeff;
1111 };
1112
1113 struct cs_dsp_coeff_parsed_coeff {
1114 int offset;
1115 int mem_type;
1116 const u8 *name;
1117 int name_len;
1118 unsigned int ctl_type;
1119 int flags;
1120 int len;
1121 };
1122
cs_dsp_coeff_parse_string(int bytes,const u8 ** pos,unsigned int avail,const u8 ** str)1123 static int cs_dsp_coeff_parse_string(int bytes, const u8 **pos, unsigned int avail,
1124 const u8 **str)
1125 {
1126 int length, total_field_len;
1127
1128 /* String fields are at least one __le32 */
1129 if (sizeof(__le32) > avail) {
1130 *pos = NULL;
1131 return 0;
1132 }
1133
1134 switch (bytes) {
1135 case 1:
1136 length = **pos;
1137 break;
1138 case 2:
1139 length = le16_to_cpu(*((__le16 *)*pos));
1140 break;
1141 default:
1142 return 0;
1143 }
1144
1145 total_field_len = ((length + bytes) + 3) & ~0x03;
1146 if ((unsigned int)total_field_len > avail) {
1147 *pos = NULL;
1148 return 0;
1149 }
1150
1151 if (str)
1152 *str = *pos + bytes;
1153
1154 *pos += total_field_len;
1155
1156 return length;
1157 }
1158
cs_dsp_coeff_parse_int(int bytes,const u8 ** pos)1159 static int cs_dsp_coeff_parse_int(int bytes, const u8 **pos)
1160 {
1161 int val = 0;
1162
1163 switch (bytes) {
1164 case 2:
1165 val = le16_to_cpu(*((__le16 *)*pos));
1166 break;
1167 case 4:
1168 val = le32_to_cpu(*((__le32 *)*pos));
1169 break;
1170 default:
1171 break;
1172 }
1173
1174 *pos += bytes;
1175
1176 return val;
1177 }
1178
cs_dsp_coeff_parse_alg(struct cs_dsp * dsp,const struct wmfw_region * region,struct cs_dsp_coeff_parsed_alg * blk)1179 static int cs_dsp_coeff_parse_alg(struct cs_dsp *dsp,
1180 const struct wmfw_region *region,
1181 struct cs_dsp_coeff_parsed_alg *blk)
1182 {
1183 const struct wmfw_adsp_alg_data *raw;
1184 unsigned int data_len = le32_to_cpu(region->len);
1185 unsigned int pos;
1186 const u8 *tmp;
1187
1188 raw = (const struct wmfw_adsp_alg_data *)region->data;
1189
1190 switch (dsp->wmfw_ver) {
1191 case 0:
1192 case 1:
1193 if (sizeof(*raw) > data_len)
1194 return -EOVERFLOW;
1195
1196 blk->id = le32_to_cpu(raw->id);
1197 blk->name = raw->name;
1198 blk->name_len = strnlen(raw->name, ARRAY_SIZE(raw->name));
1199 blk->ncoeff = le32_to_cpu(raw->ncoeff);
1200
1201 pos = sizeof(*raw);
1202 break;
1203 default:
1204 if (sizeof(raw->id) > data_len)
1205 return -EOVERFLOW;
1206
1207 tmp = region->data;
1208 blk->id = cs_dsp_coeff_parse_int(sizeof(raw->id), &tmp);
1209 pos = tmp - region->data;
1210
1211 tmp = ®ion->data[pos];
1212 blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos,
1213 &blk->name);
1214 if (!tmp)
1215 return -EOVERFLOW;
1216
1217 pos = tmp - region->data;
1218 cs_dsp_coeff_parse_string(sizeof(u16), &tmp, data_len - pos, NULL);
1219 if (!tmp)
1220 return -EOVERFLOW;
1221
1222 pos = tmp - region->data;
1223 if (sizeof(raw->ncoeff) > (data_len - pos))
1224 return -EOVERFLOW;
1225
1226 blk->ncoeff = cs_dsp_coeff_parse_int(sizeof(raw->ncoeff), &tmp);
1227 pos += sizeof(raw->ncoeff);
1228 break;
1229 }
1230
1231 if ((int)blk->ncoeff < 0)
1232 return -EOVERFLOW;
1233
1234 cs_dsp_dbg(dsp, "Algorithm ID: %#x\n", blk->id);
1235 cs_dsp_dbg(dsp, "Algorithm name: %.*s\n", blk->name_len, blk->name);
1236 cs_dsp_dbg(dsp, "# of coefficient descriptors: %#x\n", blk->ncoeff);
1237
1238 return pos;
1239 }
1240
cs_dsp_coeff_parse_coeff(struct cs_dsp * dsp,const struct wmfw_region * region,unsigned int pos,struct cs_dsp_coeff_parsed_coeff * blk)1241 static int cs_dsp_coeff_parse_coeff(struct cs_dsp *dsp,
1242 const struct wmfw_region *region,
1243 unsigned int pos,
1244 struct cs_dsp_coeff_parsed_coeff *blk)
1245 {
1246 const struct wmfw_adsp_coeff_data *raw;
1247 unsigned int data_len = le32_to_cpu(region->len);
1248 unsigned int blk_len, blk_end_pos;
1249 const u8 *tmp;
1250
1251 raw = (const struct wmfw_adsp_coeff_data *)®ion->data[pos];
1252 if (sizeof(raw->hdr) > (data_len - pos))
1253 return -EOVERFLOW;
1254
1255 blk_len = le32_to_cpu(raw->hdr.size);
1256 if (blk_len > S32_MAX)
1257 return -EOVERFLOW;
1258
1259 if (blk_len > (data_len - pos - sizeof(raw->hdr)))
1260 return -EOVERFLOW;
1261
1262 blk_end_pos = pos + sizeof(raw->hdr) + blk_len;
1263
1264 blk->offset = le16_to_cpu(raw->hdr.offset);
1265 blk->mem_type = le16_to_cpu(raw->hdr.type);
1266
1267 switch (dsp->wmfw_ver) {
1268 case 0:
1269 case 1:
1270 if (sizeof(*raw) > (data_len - pos))
1271 return -EOVERFLOW;
1272
1273 blk->name = raw->name;
1274 blk->name_len = strnlen(raw->name, ARRAY_SIZE(raw->name));
1275 blk->ctl_type = le16_to_cpu(raw->ctl_type);
1276 blk->flags = le16_to_cpu(raw->flags);
1277 blk->len = le32_to_cpu(raw->len);
1278 break;
1279 default:
1280 pos += sizeof(raw->hdr);
1281 tmp = ®ion->data[pos];
1282 blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos,
1283 &blk->name);
1284 if (!tmp)
1285 return -EOVERFLOW;
1286
1287 pos = tmp - region->data;
1288 cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos, NULL);
1289 if (!tmp)
1290 return -EOVERFLOW;
1291
1292 pos = tmp - region->data;
1293 cs_dsp_coeff_parse_string(sizeof(u16), &tmp, data_len - pos, NULL);
1294 if (!tmp)
1295 return -EOVERFLOW;
1296
1297 pos = tmp - region->data;
1298 if (sizeof(raw->ctl_type) + sizeof(raw->flags) + sizeof(raw->len) >
1299 (data_len - pos))
1300 return -EOVERFLOW;
1301
1302 blk->ctl_type = cs_dsp_coeff_parse_int(sizeof(raw->ctl_type), &tmp);
1303 pos += sizeof(raw->ctl_type);
1304 blk->flags = cs_dsp_coeff_parse_int(sizeof(raw->flags), &tmp);
1305 pos += sizeof(raw->flags);
1306 blk->len = cs_dsp_coeff_parse_int(sizeof(raw->len), &tmp);
1307 break;
1308 }
1309
1310 cs_dsp_dbg(dsp, "\tCoefficient type: %#x\n", blk->mem_type);
1311 cs_dsp_dbg(dsp, "\tCoefficient offset: %#x\n", blk->offset);
1312 cs_dsp_dbg(dsp, "\tCoefficient name: %.*s\n", blk->name_len, blk->name);
1313 cs_dsp_dbg(dsp, "\tCoefficient flags: %#x\n", blk->flags);
1314 cs_dsp_dbg(dsp, "\tALSA control type: %#x\n", blk->ctl_type);
1315 cs_dsp_dbg(dsp, "\tALSA control len: %#x\n", blk->len);
1316
1317 return blk_end_pos;
1318 }
1319
cs_dsp_check_coeff_flags(struct cs_dsp * dsp,const struct cs_dsp_coeff_parsed_coeff * coeff_blk,unsigned int f_required,unsigned int f_illegal)1320 static int cs_dsp_check_coeff_flags(struct cs_dsp *dsp,
1321 const struct cs_dsp_coeff_parsed_coeff *coeff_blk,
1322 unsigned int f_required,
1323 unsigned int f_illegal)
1324 {
1325 if ((coeff_blk->flags & f_illegal) ||
1326 ((coeff_blk->flags & f_required) != f_required)) {
1327 cs_dsp_err(dsp, "Illegal flags 0x%x for control type 0x%x\n",
1328 coeff_blk->flags, coeff_blk->ctl_type);
1329 return -EINVAL;
1330 }
1331
1332 return 0;
1333 }
1334
cs_dsp_parse_coeff(struct cs_dsp * dsp,const struct wmfw_region * region)1335 static int cs_dsp_parse_coeff(struct cs_dsp *dsp,
1336 const struct wmfw_region *region)
1337 {
1338 struct cs_dsp_alg_region alg_region = {};
1339 struct cs_dsp_coeff_parsed_alg alg_blk;
1340 struct cs_dsp_coeff_parsed_coeff coeff_blk;
1341 int i, pos, ret;
1342
1343 pos = cs_dsp_coeff_parse_alg(dsp, region, &alg_blk);
1344 if (pos < 0)
1345 return pos;
1346
1347 for (i = 0; i < alg_blk.ncoeff; i++) {
1348 pos = cs_dsp_coeff_parse_coeff(dsp, region, pos, &coeff_blk);
1349 if (pos < 0)
1350 return pos;
1351
1352 switch (coeff_blk.ctl_type) {
1353 case WMFW_CTL_TYPE_BYTES:
1354 break;
1355 case WMFW_CTL_TYPE_ACKED:
1356 if (coeff_blk.flags & WMFW_CTL_FLAG_SYS)
1357 continue; /* ignore */
1358
1359 ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1360 WMFW_CTL_FLAG_VOLATILE |
1361 WMFW_CTL_FLAG_WRITEABLE |
1362 WMFW_CTL_FLAG_READABLE,
1363 0);
1364 if (ret)
1365 return -EINVAL;
1366 break;
1367 case WMFW_CTL_TYPE_HOSTEVENT:
1368 case WMFW_CTL_TYPE_FWEVENT:
1369 ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1370 WMFW_CTL_FLAG_SYS |
1371 WMFW_CTL_FLAG_VOLATILE |
1372 WMFW_CTL_FLAG_WRITEABLE |
1373 WMFW_CTL_FLAG_READABLE,
1374 0);
1375 if (ret)
1376 return -EINVAL;
1377 break;
1378 case WMFW_CTL_TYPE_HOST_BUFFER:
1379 ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1380 WMFW_CTL_FLAG_SYS |
1381 WMFW_CTL_FLAG_VOLATILE |
1382 WMFW_CTL_FLAG_READABLE,
1383 0);
1384 if (ret)
1385 return -EINVAL;
1386 break;
1387 default:
1388 cs_dsp_err(dsp, "Unknown control type: %d\n",
1389 coeff_blk.ctl_type);
1390 return -EINVAL;
1391 }
1392
1393 alg_region.type = coeff_blk.mem_type;
1394 alg_region.alg = alg_blk.id;
1395
1396 ret = cs_dsp_create_control(dsp, &alg_region,
1397 coeff_blk.offset,
1398 coeff_blk.len,
1399 coeff_blk.name,
1400 coeff_blk.name_len,
1401 coeff_blk.flags,
1402 coeff_blk.ctl_type);
1403 if (ret < 0)
1404 cs_dsp_err(dsp, "Failed to create control: %.*s, %d\n",
1405 coeff_blk.name_len, coeff_blk.name, ret);
1406 }
1407
1408 return 0;
1409 }
1410
cs_dsp_adsp1_parse_sizes(struct cs_dsp * dsp,const char * const file,unsigned int pos,const struct firmware * firmware)1411 static unsigned int cs_dsp_adsp1_parse_sizes(struct cs_dsp *dsp,
1412 const char * const file,
1413 unsigned int pos,
1414 const struct firmware *firmware)
1415 {
1416 const struct wmfw_adsp1_sizes *adsp1_sizes;
1417
1418 adsp1_sizes = (void *)&firmware->data[pos];
1419 if (sizeof(*adsp1_sizes) > firmware->size - pos) {
1420 cs_dsp_err(dsp, "%s: file truncated\n", file);
1421 return 0;
1422 }
1423
1424 cs_dsp_dbg(dsp, "%s: %d DM, %d PM, %d ZM\n", file,
1425 le32_to_cpu(adsp1_sizes->dm), le32_to_cpu(adsp1_sizes->pm),
1426 le32_to_cpu(adsp1_sizes->zm));
1427
1428 return pos + sizeof(*adsp1_sizes);
1429 }
1430
cs_dsp_adsp2_parse_sizes(struct cs_dsp * dsp,const char * const file,unsigned int pos,const struct firmware * firmware)1431 static unsigned int cs_dsp_adsp2_parse_sizes(struct cs_dsp *dsp,
1432 const char * const file,
1433 unsigned int pos,
1434 const struct firmware *firmware)
1435 {
1436 const struct wmfw_adsp2_sizes *adsp2_sizes;
1437
1438 adsp2_sizes = (void *)&firmware->data[pos];
1439 if (sizeof(*adsp2_sizes) > firmware->size - pos) {
1440 cs_dsp_err(dsp, "%s: file truncated\n", file);
1441 return 0;
1442 }
1443
1444 cs_dsp_dbg(dsp, "%s: %d XM, %d YM %d PM, %d ZM\n", file,
1445 le32_to_cpu(adsp2_sizes->xm), le32_to_cpu(adsp2_sizes->ym),
1446 le32_to_cpu(adsp2_sizes->pm), le32_to_cpu(adsp2_sizes->zm));
1447
1448 return pos + sizeof(*adsp2_sizes);
1449 }
1450
cs_dsp_validate_version(struct cs_dsp * dsp,unsigned int version)1451 static bool cs_dsp_validate_version(struct cs_dsp *dsp, unsigned int version)
1452 {
1453 switch (version) {
1454 case 0:
1455 cs_dsp_warn(dsp, "Deprecated file format %d\n", version);
1456 return true;
1457 case 1:
1458 case 2:
1459 return true;
1460 default:
1461 return false;
1462 }
1463 }
1464
cs_dsp_halo_validate_version(struct cs_dsp * dsp,unsigned int version)1465 static bool cs_dsp_halo_validate_version(struct cs_dsp *dsp, unsigned int version)
1466 {
1467 switch (version) {
1468 case 3:
1469 return true;
1470 default:
1471 return false;
1472 }
1473 }
1474
cs_dsp_load(struct cs_dsp * dsp,const struct firmware * firmware,const char * file)1475 static int cs_dsp_load(struct cs_dsp *dsp, const struct firmware *firmware,
1476 const char *file)
1477 {
1478 LIST_HEAD(buf_list);
1479 struct regmap *regmap = dsp->regmap;
1480 unsigned int pos = 0;
1481 const struct wmfw_header *header;
1482 const struct wmfw_footer *footer;
1483 const struct wmfw_region *region;
1484 const struct cs_dsp_region *mem;
1485 const char *region_name;
1486 u8 *buf __free(kfree) = NULL;
1487 size_t buf_len = 0;
1488 size_t region_len;
1489 unsigned int reg;
1490 int regions = 0;
1491 int ret, offset, type;
1492
1493 if (!firmware)
1494 return 0;
1495
1496 ret = -EINVAL;
1497
1498 if (sizeof(*header) >= firmware->size) {
1499 ret = -EOVERFLOW;
1500 goto out_fw;
1501 }
1502
1503 header = (void *)&firmware->data[0];
1504
1505 if (memcmp(&header->magic[0], "WMFW", 4) != 0) {
1506 cs_dsp_err(dsp, "%s: invalid magic\n", file);
1507 goto out_fw;
1508 }
1509
1510 if (!dsp->ops->validate_version(dsp, header->ver)) {
1511 cs_dsp_err(dsp, "%s: unknown file format %d\n",
1512 file, header->ver);
1513 goto out_fw;
1514 }
1515
1516 dsp->wmfw_ver = header->ver;
1517
1518 if (header->core != dsp->type) {
1519 cs_dsp_err(dsp, "%s: invalid core %d != %d\n",
1520 file, header->core, dsp->type);
1521 goto out_fw;
1522 }
1523
1524 pos = sizeof(*header);
1525 pos = dsp->ops->parse_sizes(dsp, file, pos, firmware);
1526 if ((pos == 0) || (sizeof(*footer) > firmware->size - pos)) {
1527 ret = -EOVERFLOW;
1528 goto out_fw;
1529 }
1530
1531 footer = (void *)&firmware->data[pos];
1532 pos += sizeof(*footer);
1533
1534 if (le32_to_cpu(header->len) != pos) {
1535 ret = -EOVERFLOW;
1536 goto out_fw;
1537 }
1538
1539 cs_dsp_info(dsp, "%s: format %d timestamp %#llx\n", file, header->ver,
1540 le64_to_cpu(footer->timestamp));
1541
1542 while (pos < firmware->size) {
1543 /* Is there enough data for a complete block header? */
1544 if (sizeof(*region) > firmware->size - pos) {
1545 ret = -EOVERFLOW;
1546 goto out_fw;
1547 }
1548
1549 region = (void *)&(firmware->data[pos]);
1550
1551 if (le32_to_cpu(region->len) > firmware->size - pos - sizeof(*region)) {
1552 ret = -EOVERFLOW;
1553 goto out_fw;
1554 }
1555
1556 region_name = "Unknown";
1557 reg = 0;
1558 offset = le32_to_cpu(region->offset) & 0xffffff;
1559 type = be32_to_cpu(region->type) & 0xff;
1560
1561 switch (type) {
1562 case WMFW_INFO_TEXT:
1563 case WMFW_NAME_TEXT:
1564 region_name = "Info/Name";
1565 cs_dsp_info(dsp, "%s: %.*s\n", file,
1566 min(le32_to_cpu(region->len), 100), region->data);
1567 break;
1568 case WMFW_ALGORITHM_DATA:
1569 region_name = "Algorithm";
1570 ret = cs_dsp_parse_coeff(dsp, region);
1571 if (ret != 0)
1572 goto out_fw;
1573 break;
1574 case WMFW_ABSOLUTE:
1575 region_name = "Absolute";
1576 reg = offset;
1577 break;
1578 case WMFW_ADSP1_PM:
1579 case WMFW_ADSP1_DM:
1580 case WMFW_ADSP2_XM:
1581 case WMFW_ADSP2_YM:
1582 case WMFW_ADSP1_ZM:
1583 case WMFW_HALO_PM_PACKED:
1584 case WMFW_HALO_XM_PACKED:
1585 case WMFW_HALO_YM_PACKED:
1586 mem = cs_dsp_find_region(dsp, type);
1587 if (!mem) {
1588 cs_dsp_err(dsp, "No region of type: %x\n", type);
1589 ret = -EINVAL;
1590 goto out_fw;
1591 }
1592
1593 region_name = cs_dsp_mem_region_name(type);
1594 reg = dsp->ops->region_to_reg(mem, offset);
1595 break;
1596 default:
1597 cs_dsp_warn(dsp,
1598 "%s.%d: Unknown region type %x at %d(%x)\n",
1599 file, regions, type, pos, pos);
1600 break;
1601 }
1602
1603 cs_dsp_dbg(dsp, "%s.%d: %d bytes at %d in %s\n", file,
1604 regions, le32_to_cpu(region->len), offset,
1605 region_name);
1606
1607 if (reg) {
1608 region_len = le32_to_cpu(region->len);
1609 if (region_len > buf_len) {
1610 buf_len = round_up(region_len, PAGE_SIZE);
1611 kfree(buf);
1612 buf = kmalloc(buf_len, GFP_KERNEL | GFP_DMA);
1613 if (!buf) {
1614 ret = -ENOMEM;
1615 goto out_fw;
1616 }
1617 }
1618
1619 memcpy(buf, region->data, region_len);
1620 ret = regmap_raw_write(regmap, reg, buf, region_len);
1621 if (ret != 0) {
1622 cs_dsp_err(dsp,
1623 "%s.%d: Failed to write %zu bytes at %d in %s: %d\n",
1624 file, regions, region_len, offset, region_name, ret);
1625 goto out_fw;
1626 }
1627 }
1628
1629 pos += le32_to_cpu(region->len) + sizeof(*region);
1630 regions++;
1631 }
1632
1633 if (pos > firmware->size)
1634 cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
1635 file, regions, pos - firmware->size);
1636
1637 cs_dsp_debugfs_save_wmfwname(dsp, file);
1638
1639 ret = 0;
1640 out_fw:
1641 if (ret == -EOVERFLOW)
1642 cs_dsp_err(dsp, "%s: file content overflows file data\n", file);
1643
1644 return ret;
1645 }
1646
1647 /**
1648 * cs_dsp_get_ctl() - Finds a matching coefficient control
1649 * @dsp: pointer to DSP structure
1650 * @name: pointer to string to match with a control's subname
1651 * @type: the algorithm type to match
1652 * @alg: the algorithm id to match
1653 *
1654 * Find cs_dsp_coeff_ctl with input name as its subname
1655 *
1656 * Return: pointer to the control on success, NULL if not found
1657 */
cs_dsp_get_ctl(struct cs_dsp * dsp,const char * name,int type,unsigned int alg)1658 struct cs_dsp_coeff_ctl *cs_dsp_get_ctl(struct cs_dsp *dsp, const char *name, int type,
1659 unsigned int alg)
1660 {
1661 struct cs_dsp_coeff_ctl *pos, *rslt = NULL;
1662
1663 lockdep_assert_held(&dsp->pwr_lock);
1664
1665 list_for_each_entry(pos, &dsp->ctl_list, list) {
1666 if (!pos->subname)
1667 continue;
1668 if (strncmp(pos->subname, name, pos->subname_len) == 0 &&
1669 pos->fw_name == dsp->fw_name &&
1670 pos->alg_region.alg == alg &&
1671 pos->alg_region.type == type) {
1672 rslt = pos;
1673 break;
1674 }
1675 }
1676
1677 return rslt;
1678 }
1679 EXPORT_SYMBOL_NS_GPL(cs_dsp_get_ctl, "FW_CS_DSP");
1680
cs_dsp_ctl_fixup_base(struct cs_dsp * dsp,const struct cs_dsp_alg_region * alg_region)1681 static void cs_dsp_ctl_fixup_base(struct cs_dsp *dsp,
1682 const struct cs_dsp_alg_region *alg_region)
1683 {
1684 struct cs_dsp_coeff_ctl *ctl;
1685
1686 list_for_each_entry(ctl, &dsp->ctl_list, list) {
1687 if (ctl->fw_name == dsp->fw_name &&
1688 alg_region->alg == ctl->alg_region.alg &&
1689 alg_region->type == ctl->alg_region.type) {
1690 ctl->alg_region.base = alg_region->base;
1691 }
1692 }
1693 }
1694
cs_dsp_read_algs(struct cs_dsp * dsp,size_t n_algs,const struct cs_dsp_region * mem,unsigned int pos,unsigned int len)1695 static void *cs_dsp_read_algs(struct cs_dsp *dsp, size_t n_algs,
1696 const struct cs_dsp_region *mem,
1697 unsigned int pos, unsigned int len)
1698 {
1699 void *alg;
1700 unsigned int reg;
1701 int ret;
1702 __be32 val;
1703
1704 if (n_algs == 0) {
1705 cs_dsp_err(dsp, "No algorithms\n");
1706 return ERR_PTR(-EINVAL);
1707 }
1708
1709 if (n_algs > 1024) {
1710 cs_dsp_err(dsp, "Algorithm count %zx excessive\n", n_algs);
1711 return ERR_PTR(-EINVAL);
1712 }
1713
1714 /* Read the terminator first to validate the length */
1715 reg = dsp->ops->region_to_reg(mem, pos + len);
1716
1717 ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
1718 if (ret != 0) {
1719 cs_dsp_err(dsp, "Failed to read algorithm list end: %d\n",
1720 ret);
1721 return ERR_PTR(ret);
1722 }
1723
1724 if (be32_to_cpu(val) != 0xbedead)
1725 cs_dsp_warn(dsp, "Algorithm list end %x 0x%x != 0xbedead\n",
1726 reg, be32_to_cpu(val));
1727
1728 /* Convert length from DSP words to bytes */
1729 len *= sizeof(u32);
1730
1731 alg = kzalloc(len, GFP_KERNEL | GFP_DMA);
1732 if (!alg)
1733 return ERR_PTR(-ENOMEM);
1734
1735 reg = dsp->ops->region_to_reg(mem, pos);
1736
1737 ret = regmap_raw_read(dsp->regmap, reg, alg, len);
1738 if (ret != 0) {
1739 cs_dsp_err(dsp, "Failed to read algorithm list: %d\n", ret);
1740 kfree(alg);
1741 return ERR_PTR(ret);
1742 }
1743
1744 return alg;
1745 }
1746
1747 /**
1748 * cs_dsp_find_alg_region() - Finds a matching algorithm region
1749 * @dsp: pointer to DSP structure
1750 * @type: the algorithm type to match
1751 * @id: the algorithm id to match
1752 *
1753 * Return: Pointer to matching algorithm region, or NULL if not found.
1754 */
cs_dsp_find_alg_region(struct cs_dsp * dsp,int type,unsigned int id)1755 struct cs_dsp_alg_region *cs_dsp_find_alg_region(struct cs_dsp *dsp,
1756 int type, unsigned int id)
1757 {
1758 struct cs_dsp_alg_region_list_item *item;
1759
1760 lockdep_assert_held(&dsp->pwr_lock);
1761
1762 list_for_each_entry(item, &dsp->alg_regions, list) {
1763 if (id == item->alg_region.alg && type == item->alg_region.type)
1764 return &item->alg_region;
1765 }
1766
1767 return NULL;
1768 }
1769 EXPORT_SYMBOL_NS_GPL(cs_dsp_find_alg_region, "FW_CS_DSP");
1770
cs_dsp_create_region(struct cs_dsp * dsp,int type,__be32 id,__be32 ver,__be32 base)1771 static struct cs_dsp_alg_region *cs_dsp_create_region(struct cs_dsp *dsp,
1772 int type, __be32 id,
1773 __be32 ver, __be32 base)
1774 {
1775 struct cs_dsp_alg_region_list_item *item;
1776
1777 item = kzalloc(sizeof(*item), GFP_KERNEL);
1778 if (!item)
1779 return ERR_PTR(-ENOMEM);
1780
1781 item->alg_region.type = type;
1782 item->alg_region.alg = be32_to_cpu(id);
1783 item->alg_region.ver = be32_to_cpu(ver);
1784 item->alg_region.base = be32_to_cpu(base);
1785
1786 list_add_tail(&item->list, &dsp->alg_regions);
1787
1788 if (dsp->wmfw_ver > 0)
1789 cs_dsp_ctl_fixup_base(dsp, &item->alg_region);
1790
1791 return &item->alg_region;
1792 }
1793
cs_dsp_free_alg_regions(struct cs_dsp * dsp)1794 static void cs_dsp_free_alg_regions(struct cs_dsp *dsp)
1795 {
1796 struct cs_dsp_alg_region_list_item *item;
1797
1798 while (!list_empty(&dsp->alg_regions)) {
1799 item = list_first_entry(&dsp->alg_regions,
1800 struct cs_dsp_alg_region_list_item,
1801 list);
1802 list_del(&item->list);
1803 kfree(item);
1804 }
1805 }
1806
cs_dsp_parse_wmfw_id_header(struct cs_dsp * dsp,struct wmfw_id_hdr * fw,int nalgs)1807 static void cs_dsp_parse_wmfw_id_header(struct cs_dsp *dsp,
1808 struct wmfw_id_hdr *fw, int nalgs)
1809 {
1810 dsp->fw_id = be32_to_cpu(fw->id);
1811 dsp->fw_id_version = be32_to_cpu(fw->ver);
1812
1813 cs_dsp_info(dsp, "Firmware: %x v%d.%d.%d, %d algorithms\n",
1814 dsp->fw_id, (dsp->fw_id_version & 0xff0000) >> 16,
1815 (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1816 nalgs);
1817 }
1818
cs_dsp_parse_wmfw_v3_id_header(struct cs_dsp * dsp,struct wmfw_v3_id_hdr * fw,int nalgs)1819 static void cs_dsp_parse_wmfw_v3_id_header(struct cs_dsp *dsp,
1820 struct wmfw_v3_id_hdr *fw, int nalgs)
1821 {
1822 dsp->fw_id = be32_to_cpu(fw->id);
1823 dsp->fw_id_version = be32_to_cpu(fw->ver);
1824 dsp->fw_vendor_id = be32_to_cpu(fw->vendor_id);
1825
1826 cs_dsp_info(dsp, "Firmware: %x vendor: 0x%x v%d.%d.%d, %d algorithms\n",
1827 dsp->fw_id, dsp->fw_vendor_id,
1828 (dsp->fw_id_version & 0xff0000) >> 16,
1829 (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1830 nalgs);
1831 }
1832
cs_dsp_create_regions(struct cs_dsp * dsp,__be32 id,__be32 ver,int nregions,const int * type,__be32 * base)1833 static int cs_dsp_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
1834 int nregions, const int *type, __be32 *base)
1835 {
1836 struct cs_dsp_alg_region *alg_region;
1837 int i;
1838
1839 for (i = 0; i < nregions; i++) {
1840 alg_region = cs_dsp_create_region(dsp, type[i], id, ver, base[i]);
1841 if (IS_ERR(alg_region))
1842 return PTR_ERR(alg_region);
1843 }
1844
1845 return 0;
1846 }
1847
cs_dsp_adsp1_setup_algs(struct cs_dsp * dsp)1848 static int cs_dsp_adsp1_setup_algs(struct cs_dsp *dsp)
1849 {
1850 struct wmfw_adsp1_id_hdr adsp1_id;
1851 struct wmfw_adsp1_alg_hdr *adsp1_alg;
1852 struct cs_dsp_alg_region *alg_region;
1853 const struct cs_dsp_region *mem;
1854 unsigned int pos, len;
1855 size_t n_algs;
1856 int i, ret;
1857
1858 mem = cs_dsp_find_region(dsp, WMFW_ADSP1_DM);
1859 if (WARN_ON(!mem))
1860 return -EINVAL;
1861
1862 ret = regmap_raw_read(dsp->regmap, mem->base, &adsp1_id,
1863 sizeof(adsp1_id));
1864 if (ret != 0) {
1865 cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1866 ret);
1867 return ret;
1868 }
1869
1870 n_algs = be32_to_cpu(adsp1_id.n_algs);
1871
1872 cs_dsp_parse_wmfw_id_header(dsp, &adsp1_id.fw, n_algs);
1873
1874 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1875 adsp1_id.fw.id, adsp1_id.fw.ver,
1876 adsp1_id.zm);
1877 if (IS_ERR(alg_region))
1878 return PTR_ERR(alg_region);
1879
1880 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1881 adsp1_id.fw.id, adsp1_id.fw.ver,
1882 adsp1_id.dm);
1883 if (IS_ERR(alg_region))
1884 return PTR_ERR(alg_region);
1885
1886 /* Calculate offset and length in DSP words */
1887 pos = sizeof(adsp1_id) / sizeof(u32);
1888 len = (sizeof(*adsp1_alg) * n_algs) / sizeof(u32);
1889
1890 adsp1_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1891 if (IS_ERR(adsp1_alg))
1892 return PTR_ERR(adsp1_alg);
1893
1894 for (i = 0; i < n_algs; i++) {
1895 cs_dsp_info(dsp, "%d: ID %x v%d.%d.%d DM@%x ZM@%x\n",
1896 i, be32_to_cpu(adsp1_alg[i].alg.id),
1897 (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff0000) >> 16,
1898 (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff00) >> 8,
1899 be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff,
1900 be32_to_cpu(adsp1_alg[i].dm),
1901 be32_to_cpu(adsp1_alg[i].zm));
1902
1903 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1904 adsp1_alg[i].alg.id,
1905 adsp1_alg[i].alg.ver,
1906 adsp1_alg[i].dm);
1907 if (IS_ERR(alg_region)) {
1908 ret = PTR_ERR(alg_region);
1909 goto out;
1910 }
1911 if (dsp->wmfw_ver == 0) {
1912 if (i + 1 < n_algs) {
1913 len = be32_to_cpu(adsp1_alg[i + 1].dm);
1914 len -= be32_to_cpu(adsp1_alg[i].dm);
1915 len *= 4;
1916 cs_dsp_create_control(dsp, alg_region, 0,
1917 len, NULL, 0, 0,
1918 WMFW_CTL_TYPE_BYTES);
1919 } else {
1920 cs_dsp_warn(dsp, "Missing length info for region DM with ID %x\n",
1921 be32_to_cpu(adsp1_alg[i].alg.id));
1922 }
1923 }
1924
1925 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1926 adsp1_alg[i].alg.id,
1927 adsp1_alg[i].alg.ver,
1928 adsp1_alg[i].zm);
1929 if (IS_ERR(alg_region)) {
1930 ret = PTR_ERR(alg_region);
1931 goto out;
1932 }
1933 if (dsp->wmfw_ver == 0) {
1934 if (i + 1 < n_algs) {
1935 len = be32_to_cpu(adsp1_alg[i + 1].zm);
1936 len -= be32_to_cpu(adsp1_alg[i].zm);
1937 len *= 4;
1938 cs_dsp_create_control(dsp, alg_region, 0,
1939 len, NULL, 0, 0,
1940 WMFW_CTL_TYPE_BYTES);
1941 } else {
1942 cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
1943 be32_to_cpu(adsp1_alg[i].alg.id));
1944 }
1945 }
1946 }
1947
1948 out:
1949 kfree(adsp1_alg);
1950 return ret;
1951 }
1952
cs_dsp_adsp2_setup_algs(struct cs_dsp * dsp)1953 static int cs_dsp_adsp2_setup_algs(struct cs_dsp *dsp)
1954 {
1955 struct wmfw_adsp2_id_hdr adsp2_id;
1956 struct wmfw_adsp2_alg_hdr *adsp2_alg;
1957 struct cs_dsp_alg_region *alg_region;
1958 const struct cs_dsp_region *mem;
1959 unsigned int pos, len;
1960 size_t n_algs;
1961 int i, ret;
1962
1963 mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
1964 if (WARN_ON(!mem))
1965 return -EINVAL;
1966
1967 ret = regmap_raw_read(dsp->regmap, mem->base, &adsp2_id,
1968 sizeof(adsp2_id));
1969 if (ret != 0) {
1970 cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1971 ret);
1972 return ret;
1973 }
1974
1975 n_algs = be32_to_cpu(adsp2_id.n_algs);
1976
1977 cs_dsp_parse_wmfw_id_header(dsp, &adsp2_id.fw, n_algs);
1978
1979 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
1980 adsp2_id.fw.id, adsp2_id.fw.ver,
1981 adsp2_id.xm);
1982 if (IS_ERR(alg_region))
1983 return PTR_ERR(alg_region);
1984
1985 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
1986 adsp2_id.fw.id, adsp2_id.fw.ver,
1987 adsp2_id.ym);
1988 if (IS_ERR(alg_region))
1989 return PTR_ERR(alg_region);
1990
1991 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
1992 adsp2_id.fw.id, adsp2_id.fw.ver,
1993 adsp2_id.zm);
1994 if (IS_ERR(alg_region))
1995 return PTR_ERR(alg_region);
1996
1997 /* Calculate offset and length in DSP words */
1998 pos = sizeof(adsp2_id) / sizeof(u32);
1999 len = (sizeof(*adsp2_alg) * n_algs) / sizeof(u32);
2000
2001 adsp2_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
2002 if (IS_ERR(adsp2_alg))
2003 return PTR_ERR(adsp2_alg);
2004
2005 for (i = 0; i < n_algs; i++) {
2006 cs_dsp_dbg(dsp,
2007 "%d: ID %x v%d.%d.%d XM@%x YM@%x ZM@%x\n",
2008 i, be32_to_cpu(adsp2_alg[i].alg.id),
2009 (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff0000) >> 16,
2010 (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff00) >> 8,
2011 be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff,
2012 be32_to_cpu(adsp2_alg[i].xm),
2013 be32_to_cpu(adsp2_alg[i].ym),
2014 be32_to_cpu(adsp2_alg[i].zm));
2015
2016 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
2017 adsp2_alg[i].alg.id,
2018 adsp2_alg[i].alg.ver,
2019 adsp2_alg[i].xm);
2020 if (IS_ERR(alg_region)) {
2021 ret = PTR_ERR(alg_region);
2022 goto out;
2023 }
2024 if (dsp->wmfw_ver == 0) {
2025 if (i + 1 < n_algs) {
2026 len = be32_to_cpu(adsp2_alg[i + 1].xm);
2027 len -= be32_to_cpu(adsp2_alg[i].xm);
2028 len *= 4;
2029 cs_dsp_create_control(dsp, alg_region, 0,
2030 len, NULL, 0, 0,
2031 WMFW_CTL_TYPE_BYTES);
2032 } else {
2033 cs_dsp_warn(dsp, "Missing length info for region XM with ID %x\n",
2034 be32_to_cpu(adsp2_alg[i].alg.id));
2035 }
2036 }
2037
2038 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
2039 adsp2_alg[i].alg.id,
2040 adsp2_alg[i].alg.ver,
2041 adsp2_alg[i].ym);
2042 if (IS_ERR(alg_region)) {
2043 ret = PTR_ERR(alg_region);
2044 goto out;
2045 }
2046 if (dsp->wmfw_ver == 0) {
2047 if (i + 1 < n_algs) {
2048 len = be32_to_cpu(adsp2_alg[i + 1].ym);
2049 len -= be32_to_cpu(adsp2_alg[i].ym);
2050 len *= 4;
2051 cs_dsp_create_control(dsp, alg_region, 0,
2052 len, NULL, 0, 0,
2053 WMFW_CTL_TYPE_BYTES);
2054 } else {
2055 cs_dsp_warn(dsp, "Missing length info for region YM with ID %x\n",
2056 be32_to_cpu(adsp2_alg[i].alg.id));
2057 }
2058 }
2059
2060 alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
2061 adsp2_alg[i].alg.id,
2062 adsp2_alg[i].alg.ver,
2063 adsp2_alg[i].zm);
2064 if (IS_ERR(alg_region)) {
2065 ret = PTR_ERR(alg_region);
2066 goto out;
2067 }
2068 if (dsp->wmfw_ver == 0) {
2069 if (i + 1 < n_algs) {
2070 len = be32_to_cpu(adsp2_alg[i + 1].zm);
2071 len -= be32_to_cpu(adsp2_alg[i].zm);
2072 len *= 4;
2073 cs_dsp_create_control(dsp, alg_region, 0,
2074 len, NULL, 0, 0,
2075 WMFW_CTL_TYPE_BYTES);
2076 } else {
2077 cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
2078 be32_to_cpu(adsp2_alg[i].alg.id));
2079 }
2080 }
2081 }
2082
2083 out:
2084 kfree(adsp2_alg);
2085 return ret;
2086 }
2087
cs_dsp_halo_create_regions(struct cs_dsp * dsp,__be32 id,__be32 ver,__be32 xm_base,__be32 ym_base)2088 static int cs_dsp_halo_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
2089 __be32 xm_base, __be32 ym_base)
2090 {
2091 static const int types[] = {
2092 WMFW_ADSP2_XM, WMFW_HALO_XM_PACKED,
2093 WMFW_ADSP2_YM, WMFW_HALO_YM_PACKED
2094 };
2095 __be32 bases[] = { xm_base, xm_base, ym_base, ym_base };
2096
2097 return cs_dsp_create_regions(dsp, id, ver, ARRAY_SIZE(types), types, bases);
2098 }
2099
cs_dsp_halo_setup_algs(struct cs_dsp * dsp)2100 static int cs_dsp_halo_setup_algs(struct cs_dsp *dsp)
2101 {
2102 struct wmfw_halo_id_hdr halo_id;
2103 struct wmfw_halo_alg_hdr *halo_alg;
2104 const struct cs_dsp_region *mem;
2105 unsigned int pos, len;
2106 size_t n_algs;
2107 int i, ret;
2108
2109 mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
2110 if (WARN_ON(!mem))
2111 return -EINVAL;
2112
2113 ret = regmap_raw_read(dsp->regmap, mem->base, &halo_id,
2114 sizeof(halo_id));
2115 if (ret != 0) {
2116 cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
2117 ret);
2118 return ret;
2119 }
2120
2121 n_algs = be32_to_cpu(halo_id.n_algs);
2122
2123 cs_dsp_parse_wmfw_v3_id_header(dsp, &halo_id.fw, n_algs);
2124
2125 ret = cs_dsp_halo_create_regions(dsp, halo_id.fw.id, halo_id.fw.ver,
2126 halo_id.xm_base, halo_id.ym_base);
2127 if (ret)
2128 return ret;
2129
2130 /* Calculate offset and length in DSP words */
2131 pos = sizeof(halo_id) / sizeof(u32);
2132 len = (sizeof(*halo_alg) * n_algs) / sizeof(u32);
2133
2134 halo_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
2135 if (IS_ERR(halo_alg))
2136 return PTR_ERR(halo_alg);
2137
2138 for (i = 0; i < n_algs; i++) {
2139 cs_dsp_dbg(dsp,
2140 "%d: ID %x v%d.%d.%d XM@%x YM@%x\n",
2141 i, be32_to_cpu(halo_alg[i].alg.id),
2142 (be32_to_cpu(halo_alg[i].alg.ver) & 0xff0000) >> 16,
2143 (be32_to_cpu(halo_alg[i].alg.ver) & 0xff00) >> 8,
2144 be32_to_cpu(halo_alg[i].alg.ver) & 0xff,
2145 be32_to_cpu(halo_alg[i].xm_base),
2146 be32_to_cpu(halo_alg[i].ym_base));
2147
2148 ret = cs_dsp_halo_create_regions(dsp, halo_alg[i].alg.id,
2149 halo_alg[i].alg.ver,
2150 halo_alg[i].xm_base,
2151 halo_alg[i].ym_base);
2152 if (ret)
2153 goto out;
2154 }
2155
2156 out:
2157 kfree(halo_alg);
2158 return ret;
2159 }
2160
cs_dsp_load_coeff(struct cs_dsp * dsp,const struct firmware * firmware,const char * file)2161 static int cs_dsp_load_coeff(struct cs_dsp *dsp, const struct firmware *firmware,
2162 const char *file)
2163 {
2164 LIST_HEAD(buf_list);
2165 struct regmap *regmap = dsp->regmap;
2166 struct wmfw_coeff_hdr *hdr;
2167 struct wmfw_coeff_item *blk;
2168 const struct cs_dsp_region *mem;
2169 struct cs_dsp_alg_region *alg_region;
2170 const char *region_name;
2171 int ret, pos, blocks, type, offset, reg, version;
2172 u8 *buf __free(kfree) = NULL;
2173 size_t buf_len = 0;
2174 size_t region_len;
2175
2176 if (!firmware)
2177 return 0;
2178
2179 ret = -EINVAL;
2180
2181 if (sizeof(*hdr) >= firmware->size) {
2182 cs_dsp_err(dsp, "%s: coefficient file too short, %zu bytes\n",
2183 file, firmware->size);
2184 goto out_fw;
2185 }
2186
2187 hdr = (void *)&firmware->data[0];
2188 if (memcmp(hdr->magic, "WMDR", 4) != 0) {
2189 cs_dsp_err(dsp, "%s: invalid coefficient magic\n", file);
2190 goto out_fw;
2191 }
2192
2193 switch (be32_to_cpu(hdr->rev) & 0xff) {
2194 case 1:
2195 case 2:
2196 break;
2197 default:
2198 cs_dsp_err(dsp, "%s: Unsupported coefficient file format %d\n",
2199 file, be32_to_cpu(hdr->rev) & 0xff);
2200 ret = -EINVAL;
2201 goto out_fw;
2202 }
2203
2204 cs_dsp_info(dsp, "%s: v%d.%d.%d\n", file,
2205 (le32_to_cpu(hdr->ver) >> 16) & 0xff,
2206 (le32_to_cpu(hdr->ver) >> 8) & 0xff,
2207 le32_to_cpu(hdr->ver) & 0xff);
2208
2209 pos = le32_to_cpu(hdr->len);
2210
2211 blocks = 0;
2212 while (pos < firmware->size) {
2213 /* Is there enough data for a complete block header? */
2214 if (sizeof(*blk) > firmware->size - pos) {
2215 ret = -EOVERFLOW;
2216 goto out_fw;
2217 }
2218
2219 blk = (void *)(&firmware->data[pos]);
2220
2221 if (le32_to_cpu(blk->len) > firmware->size - pos - sizeof(*blk)) {
2222 ret = -EOVERFLOW;
2223 goto out_fw;
2224 }
2225
2226 type = le16_to_cpu(blk->type);
2227 offset = le16_to_cpu(blk->offset);
2228 version = le32_to_cpu(blk->ver) >> 8;
2229
2230 cs_dsp_dbg(dsp, "%s.%d: %x v%d.%d.%d\n",
2231 file, blocks, le32_to_cpu(blk->id),
2232 (le32_to_cpu(blk->ver) >> 16) & 0xff,
2233 (le32_to_cpu(blk->ver) >> 8) & 0xff,
2234 le32_to_cpu(blk->ver) & 0xff);
2235 cs_dsp_dbg(dsp, "%s.%d: %d bytes at 0x%x in %x\n",
2236 file, blocks, le32_to_cpu(blk->len), offset, type);
2237
2238 reg = 0;
2239 region_name = "Unknown";
2240 switch (type) {
2241 case (WMFW_NAME_TEXT << 8):
2242 cs_dsp_info(dsp, "%s: %.*s\n", dsp->fw_name,
2243 min(le32_to_cpu(blk->len), 100), blk->data);
2244 break;
2245 case (WMFW_INFO_TEXT << 8):
2246 case (WMFW_METADATA << 8):
2247 break;
2248 case (WMFW_ABSOLUTE << 8):
2249 /*
2250 * Old files may use this for global
2251 * coefficients.
2252 */
2253 if (le32_to_cpu(blk->id) == dsp->fw_id &&
2254 offset == 0) {
2255 region_name = "global coefficients";
2256 mem = cs_dsp_find_region(dsp, type);
2257 if (!mem) {
2258 cs_dsp_err(dsp, "No ZM\n");
2259 break;
2260 }
2261 reg = dsp->ops->region_to_reg(mem, 0);
2262
2263 } else {
2264 region_name = "register";
2265 reg = offset;
2266 }
2267 break;
2268
2269 case WMFW_ADSP1_DM:
2270 case WMFW_ADSP1_ZM:
2271 case WMFW_ADSP2_XM:
2272 case WMFW_ADSP2_YM:
2273 case WMFW_HALO_XM_PACKED:
2274 case WMFW_HALO_YM_PACKED:
2275 case WMFW_HALO_PM_PACKED:
2276 cs_dsp_dbg(dsp, "%s.%d: %d bytes in %x for %x\n",
2277 file, blocks, le32_to_cpu(blk->len),
2278 type, le32_to_cpu(blk->id));
2279
2280 region_name = cs_dsp_mem_region_name(type);
2281 mem = cs_dsp_find_region(dsp, type);
2282 if (!mem) {
2283 cs_dsp_err(dsp, "No base for region %x\n", type);
2284 break;
2285 }
2286
2287 alg_region = cs_dsp_find_alg_region(dsp, type,
2288 le32_to_cpu(blk->id));
2289 if (alg_region) {
2290 if (version != alg_region->ver)
2291 cs_dsp_warn(dsp,
2292 "Algorithm coefficient version %d.%d.%d but expected %d.%d.%d\n",
2293 (version >> 16) & 0xFF,
2294 (version >> 8) & 0xFF,
2295 version & 0xFF,
2296 (alg_region->ver >> 16) & 0xFF,
2297 (alg_region->ver >> 8) & 0xFF,
2298 alg_region->ver & 0xFF);
2299
2300 reg = alg_region->base;
2301 reg = dsp->ops->region_to_reg(mem, reg);
2302 reg += offset;
2303 } else {
2304 cs_dsp_err(dsp, "No %s for algorithm %x\n",
2305 region_name, le32_to_cpu(blk->id));
2306 }
2307 break;
2308
2309 default:
2310 cs_dsp_err(dsp, "%s.%d: Unknown region type %x at %d\n",
2311 file, blocks, type, pos);
2312 break;
2313 }
2314
2315 if (reg) {
2316 region_len = le32_to_cpu(blk->len);
2317 if (region_len > buf_len) {
2318 buf_len = round_up(region_len, PAGE_SIZE);
2319 kfree(buf);
2320 buf = kmalloc(buf_len, GFP_KERNEL | GFP_DMA);
2321 if (!buf) {
2322 ret = -ENOMEM;
2323 goto out_fw;
2324 }
2325 }
2326
2327 memcpy(buf, blk->data, region_len);
2328
2329 cs_dsp_dbg(dsp, "%s.%d: Writing %zu bytes at %x\n",
2330 file, blocks, region_len, reg);
2331 ret = regmap_raw_write(regmap, reg, buf, region_len);
2332 if (ret != 0) {
2333 cs_dsp_err(dsp,
2334 "%s.%d: Failed to write to %x in %s: %d\n",
2335 file, blocks, reg, region_name, ret);
2336 }
2337 }
2338
2339 pos += (le32_to_cpu(blk->len) + sizeof(*blk) + 3) & ~0x03;
2340 blocks++;
2341 }
2342
2343 if (pos > firmware->size)
2344 cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
2345 file, blocks, pos - firmware->size);
2346
2347 cs_dsp_debugfs_save_binname(dsp, file);
2348
2349 ret = 0;
2350 out_fw:
2351 if (ret == -EOVERFLOW)
2352 cs_dsp_err(dsp, "%s: file content overflows file data\n", file);
2353
2354 return ret;
2355 }
2356
cs_dsp_create_name(struct cs_dsp * dsp)2357 static int cs_dsp_create_name(struct cs_dsp *dsp)
2358 {
2359 if (!dsp->name) {
2360 dsp->name = devm_kasprintf(dsp->dev, GFP_KERNEL, "DSP%d",
2361 dsp->num);
2362 if (!dsp->name)
2363 return -ENOMEM;
2364 }
2365
2366 return 0;
2367 }
2368
2369 static const struct cs_dsp_client_ops cs_dsp_default_client_ops = {
2370 };
2371
cs_dsp_common_init(struct cs_dsp * dsp)2372 static int cs_dsp_common_init(struct cs_dsp *dsp)
2373 {
2374 int ret;
2375
2376 ret = cs_dsp_create_name(dsp);
2377 if (ret)
2378 return ret;
2379
2380 INIT_LIST_HEAD(&dsp->alg_regions);
2381 INIT_LIST_HEAD(&dsp->ctl_list);
2382
2383 mutex_init(&dsp->pwr_lock);
2384
2385 if (!dsp->client_ops)
2386 dsp->client_ops = &cs_dsp_default_client_ops;
2387
2388 #ifdef CONFIG_DEBUG_FS
2389 /* Ensure this is invalid if client never provides a debugfs root */
2390 dsp->debugfs_root = ERR_PTR(-ENODEV);
2391 #endif
2392
2393 return 0;
2394 }
2395
2396 /**
2397 * cs_dsp_adsp1_init() - Initialise a cs_dsp structure representing a ADSP1 device
2398 * @dsp: pointer to DSP structure
2399 *
2400 * Return: Zero for success, a negative number on error.
2401 */
cs_dsp_adsp1_init(struct cs_dsp * dsp)2402 int cs_dsp_adsp1_init(struct cs_dsp *dsp)
2403 {
2404 dsp->ops = &cs_dsp_adsp1_ops;
2405
2406 return cs_dsp_common_init(dsp);
2407 }
2408 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_init, "FW_CS_DSP");
2409
2410 /**
2411 * cs_dsp_adsp1_power_up() - Load and start the named firmware
2412 * @dsp: pointer to DSP structure
2413 * @wmfw_firmware: the firmware to be sent
2414 * @wmfw_filename: file name of firmware to be sent
2415 * @coeff_firmware: the coefficient data to be sent
2416 * @coeff_filename: file name of coefficient to data be sent
2417 * @fw_name: the user-friendly firmware name
2418 *
2419 * Return: Zero for success, a negative number on error.
2420 */
cs_dsp_adsp1_power_up(struct cs_dsp * dsp,const struct firmware * wmfw_firmware,const char * wmfw_filename,const struct firmware * coeff_firmware,const char * coeff_filename,const char * fw_name)2421 int cs_dsp_adsp1_power_up(struct cs_dsp *dsp,
2422 const struct firmware *wmfw_firmware, const char *wmfw_filename,
2423 const struct firmware *coeff_firmware, const char *coeff_filename,
2424 const char *fw_name)
2425 {
2426 unsigned int val;
2427 int ret;
2428
2429 mutex_lock(&dsp->pwr_lock);
2430
2431 dsp->fw_name = fw_name;
2432
2433 regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2434 ADSP1_SYS_ENA, ADSP1_SYS_ENA);
2435
2436 /*
2437 * For simplicity set the DSP clock rate to be the
2438 * SYSCLK rate rather than making it configurable.
2439 */
2440 if (dsp->sysclk_reg) {
2441 ret = regmap_read(dsp->regmap, dsp->sysclk_reg, &val);
2442 if (ret != 0) {
2443 cs_dsp_err(dsp, "Failed to read SYSCLK state: %d\n", ret);
2444 goto err_mutex;
2445 }
2446
2447 val = (val & dsp->sysclk_mask) >> dsp->sysclk_shift;
2448
2449 ret = regmap_update_bits(dsp->regmap,
2450 dsp->base + ADSP1_CONTROL_31,
2451 ADSP1_CLK_SEL_MASK, val);
2452 if (ret != 0) {
2453 cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2454 goto err_mutex;
2455 }
2456 }
2457
2458 ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2459 if (ret != 0)
2460 goto err_ena;
2461
2462 ret = cs_dsp_adsp1_setup_algs(dsp);
2463 if (ret != 0)
2464 goto err_ena;
2465
2466 ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2467 if (ret != 0)
2468 goto err_ena;
2469
2470 /* Initialize caches for enabled and unset controls */
2471 ret = cs_dsp_coeff_init_control_caches(dsp);
2472 if (ret != 0)
2473 goto err_ena;
2474
2475 /* Sync set controls */
2476 ret = cs_dsp_coeff_sync_controls(dsp);
2477 if (ret != 0)
2478 goto err_ena;
2479
2480 dsp->booted = true;
2481
2482 /* Start the core running */
2483 regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2484 ADSP1_CORE_ENA | ADSP1_START,
2485 ADSP1_CORE_ENA | ADSP1_START);
2486
2487 dsp->running = true;
2488
2489 mutex_unlock(&dsp->pwr_lock);
2490
2491 return 0;
2492
2493 err_ena:
2494 regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2495 ADSP1_SYS_ENA, 0);
2496 err_mutex:
2497 mutex_unlock(&dsp->pwr_lock);
2498 return ret;
2499 }
2500 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_power_up, "FW_CS_DSP");
2501
2502 /**
2503 * cs_dsp_adsp1_power_down() - Halts the DSP
2504 * @dsp: pointer to DSP structure
2505 */
cs_dsp_adsp1_power_down(struct cs_dsp * dsp)2506 void cs_dsp_adsp1_power_down(struct cs_dsp *dsp)
2507 {
2508 struct cs_dsp_coeff_ctl *ctl;
2509
2510 mutex_lock(&dsp->pwr_lock);
2511
2512 dsp->running = false;
2513 dsp->booted = false;
2514
2515 /* Halt the core */
2516 regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2517 ADSP1_CORE_ENA | ADSP1_START, 0);
2518
2519 regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_19,
2520 ADSP1_WDMA_BUFFER_LENGTH_MASK, 0);
2521
2522 regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2523 ADSP1_SYS_ENA, 0);
2524
2525 list_for_each_entry(ctl, &dsp->ctl_list, list)
2526 ctl->enabled = 0;
2527
2528 cs_dsp_free_alg_regions(dsp);
2529
2530 mutex_unlock(&dsp->pwr_lock);
2531 }
2532 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_power_down, "FW_CS_DSP");
2533
cs_dsp_adsp2v2_enable_core(struct cs_dsp * dsp)2534 static int cs_dsp_adsp2v2_enable_core(struct cs_dsp *dsp)
2535 {
2536 unsigned int val;
2537 int ret, count;
2538
2539 /* Wait for the RAM to start, should be near instantaneous */
2540 for (count = 0; count < 10; ++count) {
2541 ret = regmap_read(dsp->regmap, dsp->base + ADSP2_STATUS1, &val);
2542 if (ret != 0)
2543 return ret;
2544
2545 if (val & ADSP2_RAM_RDY)
2546 break;
2547
2548 usleep_range(250, 500);
2549 }
2550
2551 if (!(val & ADSP2_RAM_RDY)) {
2552 cs_dsp_err(dsp, "Failed to start DSP RAM\n");
2553 return -EBUSY;
2554 }
2555
2556 cs_dsp_dbg(dsp, "RAM ready after %d polls\n", count);
2557
2558 return 0;
2559 }
2560
cs_dsp_adsp2_enable_core(struct cs_dsp * dsp)2561 static int cs_dsp_adsp2_enable_core(struct cs_dsp *dsp)
2562 {
2563 int ret;
2564
2565 ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2566 ADSP2_SYS_ENA, ADSP2_SYS_ENA);
2567 if (ret != 0)
2568 return ret;
2569
2570 return cs_dsp_adsp2v2_enable_core(dsp);
2571 }
2572
cs_dsp_adsp2_lock(struct cs_dsp * dsp,unsigned int lock_regions)2573 static int cs_dsp_adsp2_lock(struct cs_dsp *dsp, unsigned int lock_regions)
2574 {
2575 struct regmap *regmap = dsp->regmap;
2576 unsigned int code0, code1, lock_reg;
2577
2578 if (!(lock_regions & CS_ADSP2_REGION_ALL))
2579 return 0;
2580
2581 lock_regions &= CS_ADSP2_REGION_ALL;
2582 lock_reg = dsp->base + ADSP2_LOCK_REGION_1_LOCK_REGION_0;
2583
2584 while (lock_regions) {
2585 code0 = code1 = 0;
2586 if (lock_regions & BIT(0)) {
2587 code0 = ADSP2_LOCK_CODE_0;
2588 code1 = ADSP2_LOCK_CODE_1;
2589 }
2590 if (lock_regions & BIT(1)) {
2591 code0 |= ADSP2_LOCK_CODE_0 << ADSP2_LOCK_REGION_SHIFT;
2592 code1 |= ADSP2_LOCK_CODE_1 << ADSP2_LOCK_REGION_SHIFT;
2593 }
2594 regmap_write(regmap, lock_reg, code0);
2595 regmap_write(regmap, lock_reg, code1);
2596 lock_regions >>= 2;
2597 lock_reg += 2;
2598 }
2599
2600 return 0;
2601 }
2602
cs_dsp_adsp2_enable_memory(struct cs_dsp * dsp)2603 static int cs_dsp_adsp2_enable_memory(struct cs_dsp *dsp)
2604 {
2605 return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2606 ADSP2_MEM_ENA, ADSP2_MEM_ENA);
2607 }
2608
cs_dsp_adsp2_disable_memory(struct cs_dsp * dsp)2609 static void cs_dsp_adsp2_disable_memory(struct cs_dsp *dsp)
2610 {
2611 regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2612 ADSP2_MEM_ENA, 0);
2613 }
2614
cs_dsp_adsp2_disable_core(struct cs_dsp * dsp)2615 static void cs_dsp_adsp2_disable_core(struct cs_dsp *dsp)
2616 {
2617 regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2618 regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2619 regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_2, 0);
2620
2621 regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2622 ADSP2_SYS_ENA, 0);
2623 }
2624
cs_dsp_adsp2v2_disable_core(struct cs_dsp * dsp)2625 static void cs_dsp_adsp2v2_disable_core(struct cs_dsp *dsp)
2626 {
2627 regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2628 regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2629 regmap_write(dsp->regmap, dsp->base + ADSP2V2_WDMA_CONFIG_2, 0);
2630 }
2631
cs_dsp_halo_configure_mpu(struct cs_dsp * dsp,unsigned int lock_regions)2632 static int cs_dsp_halo_configure_mpu(struct cs_dsp *dsp, unsigned int lock_regions)
2633 {
2634 struct reg_sequence config[] = {
2635 { dsp->base + HALO_MPU_LOCK_CONFIG, 0x5555 },
2636 { dsp->base + HALO_MPU_LOCK_CONFIG, 0xAAAA },
2637 { dsp->base + HALO_MPU_XMEM_ACCESS_0, 0xFFFFFFFF },
2638 { dsp->base + HALO_MPU_YMEM_ACCESS_0, 0xFFFFFFFF },
2639 { dsp->base + HALO_MPU_WINDOW_ACCESS_0, lock_regions },
2640 { dsp->base + HALO_MPU_XREG_ACCESS_0, lock_regions },
2641 { dsp->base + HALO_MPU_YREG_ACCESS_0, lock_regions },
2642 { dsp->base + HALO_MPU_XMEM_ACCESS_1, 0xFFFFFFFF },
2643 { dsp->base + HALO_MPU_YMEM_ACCESS_1, 0xFFFFFFFF },
2644 { dsp->base + HALO_MPU_WINDOW_ACCESS_1, lock_regions },
2645 { dsp->base + HALO_MPU_XREG_ACCESS_1, lock_regions },
2646 { dsp->base + HALO_MPU_YREG_ACCESS_1, lock_regions },
2647 { dsp->base + HALO_MPU_XMEM_ACCESS_2, 0xFFFFFFFF },
2648 { dsp->base + HALO_MPU_YMEM_ACCESS_2, 0xFFFFFFFF },
2649 { dsp->base + HALO_MPU_WINDOW_ACCESS_2, lock_regions },
2650 { dsp->base + HALO_MPU_XREG_ACCESS_2, lock_regions },
2651 { dsp->base + HALO_MPU_YREG_ACCESS_2, lock_regions },
2652 { dsp->base + HALO_MPU_XMEM_ACCESS_3, 0xFFFFFFFF },
2653 { dsp->base + HALO_MPU_YMEM_ACCESS_3, 0xFFFFFFFF },
2654 { dsp->base + HALO_MPU_WINDOW_ACCESS_3, lock_regions },
2655 { dsp->base + HALO_MPU_XREG_ACCESS_3, lock_regions },
2656 { dsp->base + HALO_MPU_YREG_ACCESS_3, lock_regions },
2657 { dsp->base + HALO_MPU_LOCK_CONFIG, 0 },
2658 };
2659
2660 return regmap_multi_reg_write(dsp->regmap, config, ARRAY_SIZE(config));
2661 }
2662
2663 /**
2664 * cs_dsp_set_dspclk() - Applies the given frequency to the given cs_dsp
2665 * @dsp: pointer to DSP structure
2666 * @freq: clock rate to set
2667 *
2668 * This is only for use on ADSP2 cores.
2669 *
2670 * Return: Zero for success, a negative number on error.
2671 */
cs_dsp_set_dspclk(struct cs_dsp * dsp,unsigned int freq)2672 int cs_dsp_set_dspclk(struct cs_dsp *dsp, unsigned int freq)
2673 {
2674 int ret;
2675
2676 ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CLOCKING,
2677 ADSP2_CLK_SEL_MASK,
2678 freq << ADSP2_CLK_SEL_SHIFT);
2679 if (ret)
2680 cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2681
2682 return ret;
2683 }
2684 EXPORT_SYMBOL_NS_GPL(cs_dsp_set_dspclk, "FW_CS_DSP");
2685
cs_dsp_stop_watchdog(struct cs_dsp * dsp)2686 static void cs_dsp_stop_watchdog(struct cs_dsp *dsp)
2687 {
2688 regmap_update_bits(dsp->regmap, dsp->base + ADSP2_WATCHDOG,
2689 ADSP2_WDT_ENA_MASK, 0);
2690 }
2691
cs_dsp_halo_stop_watchdog(struct cs_dsp * dsp)2692 static void cs_dsp_halo_stop_watchdog(struct cs_dsp *dsp)
2693 {
2694 regmap_update_bits(dsp->regmap, dsp->base + HALO_WDT_CONTROL,
2695 HALO_WDT_EN_MASK, 0);
2696 }
2697
2698 /**
2699 * cs_dsp_power_up() - Downloads firmware to the DSP
2700 * @dsp: pointer to DSP structure
2701 * @wmfw_firmware: the firmware to be sent
2702 * @wmfw_filename: file name of firmware to be sent
2703 * @coeff_firmware: the coefficient data to be sent
2704 * @coeff_filename: file name of coefficient to data be sent
2705 * @fw_name: the user-friendly firmware name
2706 *
2707 * This function is used on ADSP2 and Halo DSP cores, it powers-up the DSP core
2708 * and downloads the firmware but does not start the firmware running. The
2709 * cs_dsp booted flag will be set once completed and if the core has a low-power
2710 * memory retention mode it will be put into this state after the firmware is
2711 * downloaded.
2712 *
2713 * Return: Zero for success, a negative number on error.
2714 */
cs_dsp_power_up(struct cs_dsp * dsp,const struct firmware * wmfw_firmware,const char * wmfw_filename,const struct firmware * coeff_firmware,const char * coeff_filename,const char * fw_name)2715 int cs_dsp_power_up(struct cs_dsp *dsp,
2716 const struct firmware *wmfw_firmware, const char *wmfw_filename,
2717 const struct firmware *coeff_firmware, const char *coeff_filename,
2718 const char *fw_name)
2719 {
2720 int ret;
2721
2722 mutex_lock(&dsp->pwr_lock);
2723
2724 dsp->fw_name = fw_name;
2725
2726 if (dsp->ops->enable_memory) {
2727 ret = dsp->ops->enable_memory(dsp);
2728 if (ret != 0)
2729 goto err_mutex;
2730 }
2731
2732 if (dsp->ops->enable_core) {
2733 ret = dsp->ops->enable_core(dsp);
2734 if (ret != 0)
2735 goto err_mem;
2736 }
2737
2738 ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2739 if (ret != 0)
2740 goto err_ena;
2741
2742 ret = dsp->ops->setup_algs(dsp);
2743 if (ret != 0)
2744 goto err_ena;
2745
2746 ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2747 if (ret != 0)
2748 goto err_ena;
2749
2750 /* Initialize caches for enabled and unset controls */
2751 ret = cs_dsp_coeff_init_control_caches(dsp);
2752 if (ret != 0)
2753 goto err_ena;
2754
2755 if (dsp->ops->disable_core)
2756 dsp->ops->disable_core(dsp);
2757
2758 dsp->booted = true;
2759
2760 mutex_unlock(&dsp->pwr_lock);
2761
2762 return 0;
2763 err_ena:
2764 if (dsp->ops->disable_core)
2765 dsp->ops->disable_core(dsp);
2766 err_mem:
2767 if (dsp->ops->disable_memory)
2768 dsp->ops->disable_memory(dsp);
2769 err_mutex:
2770 mutex_unlock(&dsp->pwr_lock);
2771
2772 return ret;
2773 }
2774 EXPORT_SYMBOL_NS_GPL(cs_dsp_power_up, "FW_CS_DSP");
2775
2776 /**
2777 * cs_dsp_power_down() - Powers-down the DSP
2778 * @dsp: pointer to DSP structure
2779 *
2780 * cs_dsp_stop() must have been called before this function. The core will be
2781 * fully powered down and so the memory will not be retained.
2782 */
cs_dsp_power_down(struct cs_dsp * dsp)2783 void cs_dsp_power_down(struct cs_dsp *dsp)
2784 {
2785 struct cs_dsp_coeff_ctl *ctl;
2786
2787 mutex_lock(&dsp->pwr_lock);
2788
2789 cs_dsp_debugfs_clear(dsp);
2790
2791 dsp->fw_id = 0;
2792 dsp->fw_id_version = 0;
2793
2794 dsp->booted = false;
2795
2796 if (dsp->ops->disable_memory)
2797 dsp->ops->disable_memory(dsp);
2798
2799 list_for_each_entry(ctl, &dsp->ctl_list, list)
2800 ctl->enabled = 0;
2801
2802 cs_dsp_free_alg_regions(dsp);
2803
2804 mutex_unlock(&dsp->pwr_lock);
2805
2806 cs_dsp_dbg(dsp, "Shutdown complete\n");
2807 }
2808 EXPORT_SYMBOL_NS_GPL(cs_dsp_power_down, "FW_CS_DSP");
2809
cs_dsp_adsp2_start_core(struct cs_dsp * dsp)2810 static int cs_dsp_adsp2_start_core(struct cs_dsp *dsp)
2811 {
2812 return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2813 ADSP2_CORE_ENA | ADSP2_START,
2814 ADSP2_CORE_ENA | ADSP2_START);
2815 }
2816
cs_dsp_adsp2_stop_core(struct cs_dsp * dsp)2817 static void cs_dsp_adsp2_stop_core(struct cs_dsp *dsp)
2818 {
2819 regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2820 ADSP2_CORE_ENA | ADSP2_START, 0);
2821 }
2822
2823 /**
2824 * cs_dsp_run() - Starts the firmware running
2825 * @dsp: pointer to DSP structure
2826 *
2827 * cs_dsp_power_up() must have previously been called successfully.
2828 *
2829 * Return: Zero for success, a negative number on error.
2830 */
cs_dsp_run(struct cs_dsp * dsp)2831 int cs_dsp_run(struct cs_dsp *dsp)
2832 {
2833 int ret;
2834
2835 mutex_lock(&dsp->pwr_lock);
2836
2837 if (!dsp->booted) {
2838 ret = -EIO;
2839 goto err;
2840 }
2841
2842 if (dsp->ops->enable_core) {
2843 ret = dsp->ops->enable_core(dsp);
2844 if (ret != 0)
2845 goto err;
2846 }
2847
2848 if (dsp->client_ops->pre_run) {
2849 ret = dsp->client_ops->pre_run(dsp);
2850 if (ret)
2851 goto err;
2852 }
2853
2854 /* Sync set controls */
2855 ret = cs_dsp_coeff_sync_controls(dsp);
2856 if (ret != 0)
2857 goto err;
2858
2859 if (dsp->ops->lock_memory) {
2860 ret = dsp->ops->lock_memory(dsp, dsp->lock_regions);
2861 if (ret != 0) {
2862 cs_dsp_err(dsp, "Error configuring MPU: %d\n", ret);
2863 goto err;
2864 }
2865 }
2866
2867 if (dsp->ops->start_core) {
2868 ret = dsp->ops->start_core(dsp);
2869 if (ret != 0)
2870 goto err;
2871 }
2872
2873 dsp->running = true;
2874
2875 if (dsp->client_ops->post_run) {
2876 ret = dsp->client_ops->post_run(dsp);
2877 if (ret)
2878 goto err;
2879 }
2880
2881 mutex_unlock(&dsp->pwr_lock);
2882
2883 return 0;
2884
2885 err:
2886 if (dsp->ops->stop_core)
2887 dsp->ops->stop_core(dsp);
2888 if (dsp->ops->disable_core)
2889 dsp->ops->disable_core(dsp);
2890 mutex_unlock(&dsp->pwr_lock);
2891
2892 return ret;
2893 }
2894 EXPORT_SYMBOL_NS_GPL(cs_dsp_run, "FW_CS_DSP");
2895
2896 /**
2897 * cs_dsp_stop() - Stops the firmware
2898 * @dsp: pointer to DSP structure
2899 *
2900 * Memory will not be disabled so firmware will remain loaded.
2901 */
cs_dsp_stop(struct cs_dsp * dsp)2902 void cs_dsp_stop(struct cs_dsp *dsp)
2903 {
2904 /* Tell the firmware to cleanup */
2905 cs_dsp_signal_event_controls(dsp, CS_DSP_FW_EVENT_SHUTDOWN);
2906
2907 if (dsp->ops->stop_watchdog)
2908 dsp->ops->stop_watchdog(dsp);
2909
2910 /* Log firmware state, it can be useful for analysis */
2911 if (dsp->ops->show_fw_status)
2912 dsp->ops->show_fw_status(dsp);
2913
2914 mutex_lock(&dsp->pwr_lock);
2915
2916 if (dsp->client_ops->pre_stop)
2917 dsp->client_ops->pre_stop(dsp);
2918
2919 dsp->running = false;
2920
2921 if (dsp->ops->stop_core)
2922 dsp->ops->stop_core(dsp);
2923 if (dsp->ops->disable_core)
2924 dsp->ops->disable_core(dsp);
2925
2926 if (dsp->client_ops->post_stop)
2927 dsp->client_ops->post_stop(dsp);
2928
2929 mutex_unlock(&dsp->pwr_lock);
2930
2931 cs_dsp_dbg(dsp, "Execution stopped\n");
2932 }
2933 EXPORT_SYMBOL_NS_GPL(cs_dsp_stop, "FW_CS_DSP");
2934
cs_dsp_halo_start_core(struct cs_dsp * dsp)2935 static int cs_dsp_halo_start_core(struct cs_dsp *dsp)
2936 {
2937 int ret;
2938
2939 ret = regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2940 HALO_CORE_RESET | HALO_CORE_EN,
2941 HALO_CORE_RESET | HALO_CORE_EN);
2942 if (ret)
2943 return ret;
2944
2945 return regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2946 HALO_CORE_RESET, 0);
2947 }
2948
cs_dsp_halo_stop_core(struct cs_dsp * dsp)2949 static void cs_dsp_halo_stop_core(struct cs_dsp *dsp)
2950 {
2951 regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2952 HALO_CORE_EN, 0);
2953
2954 /* reset halo core with CORE_SOFT_RESET */
2955 regmap_update_bits(dsp->regmap, dsp->base + HALO_CORE_SOFT_RESET,
2956 HALO_CORE_SOFT_RESET_MASK, 1);
2957 }
2958
2959 /**
2960 * cs_dsp_adsp2_init() - Initialise a cs_dsp structure representing a ADSP2 core
2961 * @dsp: pointer to DSP structure
2962 *
2963 * Return: Zero for success, a negative number on error.
2964 */
cs_dsp_adsp2_init(struct cs_dsp * dsp)2965 int cs_dsp_adsp2_init(struct cs_dsp *dsp)
2966 {
2967 int ret;
2968
2969 switch (dsp->rev) {
2970 case 0:
2971 /*
2972 * Disable the DSP memory by default when in reset for a small
2973 * power saving.
2974 */
2975 ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2976 ADSP2_MEM_ENA, 0);
2977 if (ret) {
2978 cs_dsp_err(dsp,
2979 "Failed to clear memory retention: %d\n", ret);
2980 return ret;
2981 }
2982
2983 dsp->ops = &cs_dsp_adsp2_ops[0];
2984 break;
2985 case 1:
2986 dsp->ops = &cs_dsp_adsp2_ops[1];
2987 break;
2988 default:
2989 dsp->ops = &cs_dsp_adsp2_ops[2];
2990 break;
2991 }
2992
2993 return cs_dsp_common_init(dsp);
2994 }
2995 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp2_init, "FW_CS_DSP");
2996
2997 /**
2998 * cs_dsp_halo_init() - Initialise a cs_dsp structure representing a HALO Core DSP
2999 * @dsp: pointer to DSP structure
3000 *
3001 * Return: Zero for success, a negative number on error.
3002 */
cs_dsp_halo_init(struct cs_dsp * dsp)3003 int cs_dsp_halo_init(struct cs_dsp *dsp)
3004 {
3005 if (dsp->no_core_startstop)
3006 dsp->ops = &cs_dsp_halo_ao_ops;
3007 else
3008 dsp->ops = &cs_dsp_halo_ops;
3009
3010 return cs_dsp_common_init(dsp);
3011 }
3012 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_init, "FW_CS_DSP");
3013
3014 /**
3015 * cs_dsp_remove() - Clean a cs_dsp before deletion
3016 * @dsp: pointer to DSP structure
3017 */
cs_dsp_remove(struct cs_dsp * dsp)3018 void cs_dsp_remove(struct cs_dsp *dsp)
3019 {
3020 struct cs_dsp_coeff_ctl *ctl;
3021
3022 while (!list_empty(&dsp->ctl_list)) {
3023 ctl = list_first_entry(&dsp->ctl_list, struct cs_dsp_coeff_ctl, list);
3024
3025 if (dsp->client_ops->control_remove)
3026 dsp->client_ops->control_remove(ctl);
3027
3028 list_del(&ctl->list);
3029 cs_dsp_free_ctl_blk(ctl);
3030 }
3031 }
3032 EXPORT_SYMBOL_NS_GPL(cs_dsp_remove, "FW_CS_DSP");
3033
3034 /**
3035 * cs_dsp_read_raw_data_block() - Reads a block of data from DSP memory
3036 * @dsp: pointer to DSP structure
3037 * @mem_type: the type of DSP memory containing the data to be read
3038 * @mem_addr: the address of the data within the memory region
3039 * @num_words: the length of the data to read
3040 * @data: a buffer to store the fetched data
3041 *
3042 * If this is used to read unpacked 24-bit memory, each 24-bit DSP word will
3043 * occupy 32-bits in data (MSbyte will be 0). This padding can be removed using
3044 * cs_dsp_remove_padding()
3045 *
3046 * Return: Zero for success, a negative number on error.
3047 */
cs_dsp_read_raw_data_block(struct cs_dsp * dsp,int mem_type,unsigned int mem_addr,unsigned int num_words,__be32 * data)3048 int cs_dsp_read_raw_data_block(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr,
3049 unsigned int num_words, __be32 *data)
3050 {
3051 struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
3052 unsigned int reg;
3053 int ret;
3054
3055 lockdep_assert_held(&dsp->pwr_lock);
3056
3057 if (!mem)
3058 return -EINVAL;
3059
3060 reg = dsp->ops->region_to_reg(mem, mem_addr);
3061
3062 ret = regmap_raw_read(dsp->regmap, reg, data,
3063 sizeof(*data) * num_words);
3064 if (ret < 0)
3065 return ret;
3066
3067 return 0;
3068 }
3069 EXPORT_SYMBOL_NS_GPL(cs_dsp_read_raw_data_block, "FW_CS_DSP");
3070
3071 /**
3072 * cs_dsp_read_data_word() - Reads a word from DSP memory
3073 * @dsp: pointer to DSP structure
3074 * @mem_type: the type of DSP memory containing the data to be read
3075 * @mem_addr: the address of the data within the memory region
3076 * @data: a buffer to store the fetched data
3077 *
3078 * Return: Zero for success, a negative number on error.
3079 */
cs_dsp_read_data_word(struct cs_dsp * dsp,int mem_type,unsigned int mem_addr,u32 * data)3080 int cs_dsp_read_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 *data)
3081 {
3082 __be32 raw;
3083 int ret;
3084
3085 ret = cs_dsp_read_raw_data_block(dsp, mem_type, mem_addr, 1, &raw);
3086 if (ret < 0)
3087 return ret;
3088
3089 *data = be32_to_cpu(raw) & 0x00ffffffu;
3090
3091 return 0;
3092 }
3093 EXPORT_SYMBOL_NS_GPL(cs_dsp_read_data_word, "FW_CS_DSP");
3094
3095 /**
3096 * cs_dsp_write_data_word() - Writes a word to DSP memory
3097 * @dsp: pointer to DSP structure
3098 * @mem_type: the type of DSP memory containing the data to be written
3099 * @mem_addr: the address of the data within the memory region
3100 * @data: the data to be written
3101 *
3102 * Return: Zero for success, a negative number on error.
3103 */
cs_dsp_write_data_word(struct cs_dsp * dsp,int mem_type,unsigned int mem_addr,u32 data)3104 int cs_dsp_write_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 data)
3105 {
3106 struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
3107 __be32 val = cpu_to_be32(data & 0x00ffffffu);
3108 unsigned int reg;
3109
3110 lockdep_assert_held(&dsp->pwr_lock);
3111
3112 if (!mem)
3113 return -EINVAL;
3114
3115 reg = dsp->ops->region_to_reg(mem, mem_addr);
3116
3117 return regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
3118 }
3119 EXPORT_SYMBOL_NS_GPL(cs_dsp_write_data_word, "FW_CS_DSP");
3120
3121 /**
3122 * cs_dsp_remove_padding() - Convert unpacked words to packed bytes
3123 * @buf: buffer containing DSP words read from DSP memory
3124 * @nwords: number of words to convert
3125 *
3126 * DSP words from the register map have pad bytes and the data bytes
3127 * are in swapped order. This swaps to the native endian order and
3128 * strips the pad bytes.
3129 */
cs_dsp_remove_padding(u32 * buf,int nwords)3130 void cs_dsp_remove_padding(u32 *buf, int nwords)
3131 {
3132 const __be32 *pack_in = (__be32 *)buf;
3133 u8 *pack_out = (u8 *)buf;
3134 int i;
3135
3136 for (i = 0; i < nwords; i++) {
3137 u32 word = be32_to_cpu(*pack_in++);
3138 *pack_out++ = (u8)word;
3139 *pack_out++ = (u8)(word >> 8);
3140 *pack_out++ = (u8)(word >> 16);
3141 }
3142 }
3143 EXPORT_SYMBOL_NS_GPL(cs_dsp_remove_padding, "FW_CS_DSP");
3144
3145 /**
3146 * cs_dsp_adsp2_bus_error() - Handle a DSP bus error interrupt
3147 * @dsp: pointer to DSP structure
3148 *
3149 * The firmware and DSP state will be logged for future analysis.
3150 */
cs_dsp_adsp2_bus_error(struct cs_dsp * dsp)3151 void cs_dsp_adsp2_bus_error(struct cs_dsp *dsp)
3152 {
3153 unsigned int val;
3154 struct regmap *regmap = dsp->regmap;
3155 int ret = 0;
3156
3157 mutex_lock(&dsp->pwr_lock);
3158
3159 ret = regmap_read(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL, &val);
3160 if (ret) {
3161 cs_dsp_err(dsp,
3162 "Failed to read Region Lock Ctrl register: %d\n", ret);
3163 goto error;
3164 }
3165
3166 if (val & ADSP2_WDT_TIMEOUT_STS_MASK) {
3167 cs_dsp_err(dsp, "watchdog timeout error\n");
3168 dsp->ops->stop_watchdog(dsp);
3169 if (dsp->client_ops->watchdog_expired)
3170 dsp->client_ops->watchdog_expired(dsp);
3171 }
3172
3173 if (val & (ADSP2_ADDR_ERR_MASK | ADSP2_REGION_LOCK_ERR_MASK)) {
3174 if (val & ADSP2_ADDR_ERR_MASK)
3175 cs_dsp_err(dsp, "bus error: address error\n");
3176 else
3177 cs_dsp_err(dsp, "bus error: region lock error\n");
3178
3179 ret = regmap_read(regmap, dsp->base + ADSP2_BUS_ERR_ADDR, &val);
3180 if (ret) {
3181 cs_dsp_err(dsp,
3182 "Failed to read Bus Err Addr register: %d\n",
3183 ret);
3184 goto error;
3185 }
3186
3187 cs_dsp_err(dsp, "bus error address = 0x%x\n",
3188 val & ADSP2_BUS_ERR_ADDR_MASK);
3189
3190 ret = regmap_read(regmap,
3191 dsp->base + ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR,
3192 &val);
3193 if (ret) {
3194 cs_dsp_err(dsp,
3195 "Failed to read Pmem Xmem Err Addr register: %d\n",
3196 ret);
3197 goto error;
3198 }
3199
3200 cs_dsp_err(dsp, "xmem error address = 0x%x\n",
3201 val & ADSP2_XMEM_ERR_ADDR_MASK);
3202 cs_dsp_err(dsp, "pmem error address = 0x%x\n",
3203 (val & ADSP2_PMEM_ERR_ADDR_MASK) >>
3204 ADSP2_PMEM_ERR_ADDR_SHIFT);
3205 }
3206
3207 regmap_update_bits(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL,
3208 ADSP2_CTRL_ERR_EINT, ADSP2_CTRL_ERR_EINT);
3209
3210 error:
3211 mutex_unlock(&dsp->pwr_lock);
3212 }
3213 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp2_bus_error, "FW_CS_DSP");
3214
3215 /**
3216 * cs_dsp_halo_bus_error() - Handle a DSP bus error interrupt
3217 * @dsp: pointer to DSP structure
3218 *
3219 * The firmware and DSP state will be logged for future analysis.
3220 */
cs_dsp_halo_bus_error(struct cs_dsp * dsp)3221 void cs_dsp_halo_bus_error(struct cs_dsp *dsp)
3222 {
3223 struct regmap *regmap = dsp->regmap;
3224 unsigned int fault[6];
3225 struct reg_sequence clear[] = {
3226 { dsp->base + HALO_MPU_XM_VIO_STATUS, 0x0 },
3227 { dsp->base + HALO_MPU_YM_VIO_STATUS, 0x0 },
3228 { dsp->base + HALO_MPU_PM_VIO_STATUS, 0x0 },
3229 };
3230 int ret;
3231
3232 mutex_lock(&dsp->pwr_lock);
3233
3234 ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_1,
3235 fault);
3236 if (ret) {
3237 cs_dsp_warn(dsp, "Failed to read AHB DEBUG_1: %d\n", ret);
3238 goto exit_unlock;
3239 }
3240
3241 cs_dsp_warn(dsp, "AHB: STATUS: 0x%x ADDR: 0x%x\n",
3242 *fault & HALO_AHBM_FLAGS_ERR_MASK,
3243 (*fault & HALO_AHBM_CORE_ERR_ADDR_MASK) >>
3244 HALO_AHBM_CORE_ERR_ADDR_SHIFT);
3245
3246 ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_0,
3247 fault);
3248 if (ret) {
3249 cs_dsp_warn(dsp, "Failed to read AHB DEBUG_0: %d\n", ret);
3250 goto exit_unlock;
3251 }
3252
3253 cs_dsp_warn(dsp, "AHB: SYS_ADDR: 0x%x\n", *fault);
3254
3255 ret = regmap_bulk_read(regmap, dsp->base + HALO_MPU_XM_VIO_ADDR,
3256 fault, ARRAY_SIZE(fault));
3257 if (ret) {
3258 cs_dsp_warn(dsp, "Failed to read MPU fault info: %d\n", ret);
3259 goto exit_unlock;
3260 }
3261
3262 cs_dsp_warn(dsp, "XM: STATUS:0x%x ADDR:0x%x\n", fault[1], fault[0]);
3263 cs_dsp_warn(dsp, "YM: STATUS:0x%x ADDR:0x%x\n", fault[3], fault[2]);
3264 cs_dsp_warn(dsp, "PM: STATUS:0x%x ADDR:0x%x\n", fault[5], fault[4]);
3265
3266 ret = regmap_multi_reg_write(dsp->regmap, clear, ARRAY_SIZE(clear));
3267 if (ret)
3268 cs_dsp_warn(dsp, "Failed to clear MPU status: %d\n", ret);
3269
3270 exit_unlock:
3271 mutex_unlock(&dsp->pwr_lock);
3272 }
3273 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_bus_error, "FW_CS_DSP");
3274
3275 /**
3276 * cs_dsp_halo_wdt_expire() - Handle DSP watchdog expiry
3277 * @dsp: pointer to DSP structure
3278 *
3279 * This is logged for future analysis.
3280 */
cs_dsp_halo_wdt_expire(struct cs_dsp * dsp)3281 void cs_dsp_halo_wdt_expire(struct cs_dsp *dsp)
3282 {
3283 mutex_lock(&dsp->pwr_lock);
3284
3285 cs_dsp_warn(dsp, "WDT Expiry Fault\n");
3286
3287 dsp->ops->stop_watchdog(dsp);
3288 if (dsp->client_ops->watchdog_expired)
3289 dsp->client_ops->watchdog_expired(dsp);
3290
3291 mutex_unlock(&dsp->pwr_lock);
3292 }
3293 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_wdt_expire, "FW_CS_DSP");
3294
3295 static const struct cs_dsp_ops cs_dsp_adsp1_ops = {
3296 .validate_version = cs_dsp_validate_version,
3297 .parse_sizes = cs_dsp_adsp1_parse_sizes,
3298 .region_to_reg = cs_dsp_region_to_reg,
3299 };
3300
3301 static const struct cs_dsp_ops cs_dsp_adsp2_ops[] = {
3302 {
3303 .parse_sizes = cs_dsp_adsp2_parse_sizes,
3304 .validate_version = cs_dsp_validate_version,
3305 .setup_algs = cs_dsp_adsp2_setup_algs,
3306 .region_to_reg = cs_dsp_region_to_reg,
3307
3308 .show_fw_status = cs_dsp_adsp2_show_fw_status,
3309
3310 .enable_memory = cs_dsp_adsp2_enable_memory,
3311 .disable_memory = cs_dsp_adsp2_disable_memory,
3312
3313 .enable_core = cs_dsp_adsp2_enable_core,
3314 .disable_core = cs_dsp_adsp2_disable_core,
3315
3316 .start_core = cs_dsp_adsp2_start_core,
3317 .stop_core = cs_dsp_adsp2_stop_core,
3318
3319 },
3320 {
3321 .parse_sizes = cs_dsp_adsp2_parse_sizes,
3322 .validate_version = cs_dsp_validate_version,
3323 .setup_algs = cs_dsp_adsp2_setup_algs,
3324 .region_to_reg = cs_dsp_region_to_reg,
3325
3326 .show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3327
3328 .enable_memory = cs_dsp_adsp2_enable_memory,
3329 .disable_memory = cs_dsp_adsp2_disable_memory,
3330 .lock_memory = cs_dsp_adsp2_lock,
3331
3332 .enable_core = cs_dsp_adsp2v2_enable_core,
3333 .disable_core = cs_dsp_adsp2v2_disable_core,
3334
3335 .start_core = cs_dsp_adsp2_start_core,
3336 .stop_core = cs_dsp_adsp2_stop_core,
3337 },
3338 {
3339 .parse_sizes = cs_dsp_adsp2_parse_sizes,
3340 .validate_version = cs_dsp_validate_version,
3341 .setup_algs = cs_dsp_adsp2_setup_algs,
3342 .region_to_reg = cs_dsp_region_to_reg,
3343
3344 .show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3345 .stop_watchdog = cs_dsp_stop_watchdog,
3346
3347 .enable_memory = cs_dsp_adsp2_enable_memory,
3348 .disable_memory = cs_dsp_adsp2_disable_memory,
3349 .lock_memory = cs_dsp_adsp2_lock,
3350
3351 .enable_core = cs_dsp_adsp2v2_enable_core,
3352 .disable_core = cs_dsp_adsp2v2_disable_core,
3353
3354 .start_core = cs_dsp_adsp2_start_core,
3355 .stop_core = cs_dsp_adsp2_stop_core,
3356 },
3357 };
3358
3359 static const struct cs_dsp_ops cs_dsp_halo_ops = {
3360 .parse_sizes = cs_dsp_adsp2_parse_sizes,
3361 .validate_version = cs_dsp_halo_validate_version,
3362 .setup_algs = cs_dsp_halo_setup_algs,
3363 .region_to_reg = cs_dsp_halo_region_to_reg,
3364
3365 .show_fw_status = cs_dsp_halo_show_fw_status,
3366 .stop_watchdog = cs_dsp_halo_stop_watchdog,
3367
3368 .lock_memory = cs_dsp_halo_configure_mpu,
3369
3370 .start_core = cs_dsp_halo_start_core,
3371 .stop_core = cs_dsp_halo_stop_core,
3372 };
3373
3374 static const struct cs_dsp_ops cs_dsp_halo_ao_ops = {
3375 .parse_sizes = cs_dsp_adsp2_parse_sizes,
3376 .validate_version = cs_dsp_halo_validate_version,
3377 .setup_algs = cs_dsp_halo_setup_algs,
3378 .region_to_reg = cs_dsp_halo_region_to_reg,
3379 .show_fw_status = cs_dsp_halo_show_fw_status,
3380 };
3381
3382 /**
3383 * cs_dsp_chunk_write() - Format data to a DSP memory chunk
3384 * @ch: Pointer to the chunk structure
3385 * @nbits: Number of bits to write
3386 * @val: Value to write
3387 *
3388 * This function sequentially writes values into the format required for DSP
3389 * memory, it handles both inserting of the padding bytes and converting to
3390 * big endian. Note that data is only committed to the chunk when a whole DSP
3391 * words worth of data is available.
3392 *
3393 * Return: Zero for success, a negative number on error.
3394 */
cs_dsp_chunk_write(struct cs_dsp_chunk * ch,int nbits,u32 val)3395 int cs_dsp_chunk_write(struct cs_dsp_chunk *ch, int nbits, u32 val)
3396 {
3397 int nwrite, i;
3398
3399 nwrite = min(CS_DSP_DATA_WORD_BITS - ch->cachebits, nbits);
3400
3401 ch->cache <<= nwrite;
3402 ch->cache |= val >> (nbits - nwrite);
3403 ch->cachebits += nwrite;
3404 nbits -= nwrite;
3405
3406 if (ch->cachebits == CS_DSP_DATA_WORD_BITS) {
3407 if (cs_dsp_chunk_end(ch))
3408 return -ENOSPC;
3409
3410 ch->cache &= 0xFFFFFF;
3411 for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3412 *ch->data++ = (ch->cache & 0xFF000000) >> CS_DSP_DATA_WORD_BITS;
3413
3414 ch->bytes += sizeof(ch->cache);
3415 ch->cachebits = 0;
3416 }
3417
3418 if (nbits)
3419 return cs_dsp_chunk_write(ch, nbits, val);
3420
3421 return 0;
3422 }
3423 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_write, "FW_CS_DSP");
3424
3425 /**
3426 * cs_dsp_chunk_flush() - Pad remaining data with zero and commit to chunk
3427 * @ch: Pointer to the chunk structure
3428 *
3429 * As cs_dsp_chunk_write only writes data when a whole DSP word is ready to
3430 * be written out it is possible that some data will remain in the cache, this
3431 * function will pad that data with zeros upto a whole DSP word and write out.
3432 *
3433 * Return: Zero for success, a negative number on error.
3434 */
cs_dsp_chunk_flush(struct cs_dsp_chunk * ch)3435 int cs_dsp_chunk_flush(struct cs_dsp_chunk *ch)
3436 {
3437 if (!ch->cachebits)
3438 return 0;
3439
3440 return cs_dsp_chunk_write(ch, CS_DSP_DATA_WORD_BITS - ch->cachebits, 0);
3441 }
3442 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_flush, "FW_CS_DSP");
3443
3444 /**
3445 * cs_dsp_chunk_read() - Parse data from a DSP memory chunk
3446 * @ch: Pointer to the chunk structure
3447 * @nbits: Number of bits to read
3448 *
3449 * This function sequentially reads values from a DSP memory formatted buffer,
3450 * it handles both removing of the padding bytes and converting from big endian.
3451 *
3452 * Return: A negative number is returned on error, otherwise the read value.
3453 */
cs_dsp_chunk_read(struct cs_dsp_chunk * ch,int nbits)3454 int cs_dsp_chunk_read(struct cs_dsp_chunk *ch, int nbits)
3455 {
3456 int nread, i;
3457 u32 result;
3458
3459 if (!ch->cachebits) {
3460 if (cs_dsp_chunk_end(ch))
3461 return -ENOSPC;
3462
3463 ch->cache = 0;
3464 ch->cachebits = CS_DSP_DATA_WORD_BITS;
3465
3466 for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3467 ch->cache |= *ch->data++;
3468
3469 ch->bytes += sizeof(ch->cache);
3470 }
3471
3472 nread = min(ch->cachebits, nbits);
3473 nbits -= nread;
3474
3475 result = ch->cache >> ((sizeof(ch->cache) * BITS_PER_BYTE) - nread);
3476 ch->cache <<= nread;
3477 ch->cachebits -= nread;
3478
3479 if (nbits)
3480 result = (result << nbits) | cs_dsp_chunk_read(ch, nbits);
3481
3482 return result;
3483 }
3484 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_read, "FW_CS_DSP");
3485
3486
3487 struct cs_dsp_wseq_op {
3488 struct list_head list;
3489 u32 address;
3490 u32 data;
3491 u16 offset;
3492 u8 operation;
3493 };
3494
cs_dsp_wseq_clear(struct cs_dsp * dsp,struct cs_dsp_wseq * wseq)3495 static void cs_dsp_wseq_clear(struct cs_dsp *dsp, struct cs_dsp_wseq *wseq)
3496 {
3497 struct cs_dsp_wseq_op *op, *op_tmp;
3498
3499 list_for_each_entry_safe(op, op_tmp, &wseq->ops, list) {
3500 list_del(&op->list);
3501 devm_kfree(dsp->dev, op);
3502 }
3503 }
3504
cs_dsp_populate_wseq(struct cs_dsp * dsp,struct cs_dsp_wseq * wseq)3505 static int cs_dsp_populate_wseq(struct cs_dsp *dsp, struct cs_dsp_wseq *wseq)
3506 {
3507 struct cs_dsp_wseq_op *op = NULL;
3508 struct cs_dsp_chunk chunk;
3509 u8 *words;
3510 int ret;
3511
3512 if (!wseq->ctl) {
3513 cs_dsp_err(dsp, "No control for write sequence\n");
3514 return -EINVAL;
3515 }
3516
3517 words = kzalloc(wseq->ctl->len, GFP_KERNEL);
3518 if (!words)
3519 return -ENOMEM;
3520
3521 ret = cs_dsp_coeff_read_ctrl(wseq->ctl, 0, words, wseq->ctl->len);
3522 if (ret) {
3523 cs_dsp_err(dsp, "Failed to read %s: %d\n", wseq->ctl->subname, ret);
3524 goto err_free;
3525 }
3526
3527 INIT_LIST_HEAD(&wseq->ops);
3528
3529 chunk = cs_dsp_chunk(words, wseq->ctl->len);
3530
3531 while (!cs_dsp_chunk_end(&chunk)) {
3532 op = devm_kzalloc(dsp->dev, sizeof(*op), GFP_KERNEL);
3533 if (!op) {
3534 ret = -ENOMEM;
3535 goto err_free;
3536 }
3537
3538 op->offset = cs_dsp_chunk_bytes(&chunk);
3539 op->operation = cs_dsp_chunk_read(&chunk, 8);
3540
3541 switch (op->operation) {
3542 case CS_DSP_WSEQ_END:
3543 op->data = WSEQ_END_OF_SCRIPT;
3544 break;
3545 case CS_DSP_WSEQ_UNLOCK:
3546 op->data = cs_dsp_chunk_read(&chunk, 16);
3547 break;
3548 case CS_DSP_WSEQ_ADDR8:
3549 op->address = cs_dsp_chunk_read(&chunk, 8);
3550 op->data = cs_dsp_chunk_read(&chunk, 32);
3551 break;
3552 case CS_DSP_WSEQ_H16:
3553 case CS_DSP_WSEQ_L16:
3554 op->address = cs_dsp_chunk_read(&chunk, 24);
3555 op->data = cs_dsp_chunk_read(&chunk, 16);
3556 break;
3557 case CS_DSP_WSEQ_FULL:
3558 op->address = cs_dsp_chunk_read(&chunk, 32);
3559 op->data = cs_dsp_chunk_read(&chunk, 32);
3560 break;
3561 default:
3562 ret = -EINVAL;
3563 cs_dsp_err(dsp, "Unsupported op: %X\n", op->operation);
3564 devm_kfree(dsp->dev, op);
3565 goto err_free;
3566 }
3567
3568 list_add_tail(&op->list, &wseq->ops);
3569
3570 if (op->operation == CS_DSP_WSEQ_END)
3571 break;
3572 }
3573
3574 if (op && op->operation != CS_DSP_WSEQ_END) {
3575 cs_dsp_err(dsp, "%s missing end terminator\n", wseq->ctl->subname);
3576 ret = -ENOENT;
3577 }
3578
3579 err_free:
3580 kfree(words);
3581
3582 return ret;
3583 }
3584
3585 /**
3586 * cs_dsp_wseq_init() - Initialize write sequences contained within the loaded DSP firmware
3587 * @dsp: Pointer to DSP structure
3588 * @wseqs: List of write sequences to initialize
3589 * @num_wseqs: Number of write sequences to initialize
3590 *
3591 * Return: Zero for success, a negative number on error.
3592 */
cs_dsp_wseq_init(struct cs_dsp * dsp,struct cs_dsp_wseq * wseqs,unsigned int num_wseqs)3593 int cs_dsp_wseq_init(struct cs_dsp *dsp, struct cs_dsp_wseq *wseqs, unsigned int num_wseqs)
3594 {
3595 int i, ret;
3596
3597 lockdep_assert_held(&dsp->pwr_lock);
3598
3599 for (i = 0; i < num_wseqs; i++) {
3600 ret = cs_dsp_populate_wseq(dsp, &wseqs[i]);
3601 if (ret) {
3602 cs_dsp_wseq_clear(dsp, &wseqs[i]);
3603 return ret;
3604 }
3605 }
3606
3607 return 0;
3608 }
3609 EXPORT_SYMBOL_NS_GPL(cs_dsp_wseq_init, "FW_CS_DSP");
3610
cs_dsp_wseq_find_op(u32 addr,u8 op_code,struct list_head * wseq_ops)3611 static struct cs_dsp_wseq_op *cs_dsp_wseq_find_op(u32 addr, u8 op_code,
3612 struct list_head *wseq_ops)
3613 {
3614 struct cs_dsp_wseq_op *op;
3615
3616 list_for_each_entry(op, wseq_ops, list) {
3617 if (op->operation == op_code && op->address == addr)
3618 return op;
3619 }
3620
3621 return NULL;
3622 }
3623
3624 /**
3625 * cs_dsp_wseq_write() - Add or update an entry in a write sequence
3626 * @dsp: Pointer to a DSP structure
3627 * @wseq: Write sequence to write to
3628 * @addr: Address of the register to be written to
3629 * @data: Data to be written
3630 * @op_code: The type of operation of the new entry
3631 * @update: If true, searches for the first entry in the write sequence with
3632 * the same address and op_code, and replaces it. If false, creates a new entry
3633 * at the tail
3634 *
3635 * This function formats register address and value pairs into the format
3636 * required for write sequence entries, and either updates or adds the
3637 * new entry into the write sequence.
3638 *
3639 * If update is set to true and no matching entry is found, it will add a new entry.
3640 *
3641 * Return: Zero for success, a negative number on error.
3642 */
cs_dsp_wseq_write(struct cs_dsp * dsp,struct cs_dsp_wseq * wseq,u32 addr,u32 data,u8 op_code,bool update)3643 int cs_dsp_wseq_write(struct cs_dsp *dsp, struct cs_dsp_wseq *wseq,
3644 u32 addr, u32 data, u8 op_code, bool update)
3645 {
3646 struct cs_dsp_wseq_op *op_end, *op_new = NULL;
3647 u32 words[WSEQ_OP_MAX_WORDS];
3648 struct cs_dsp_chunk chunk;
3649 int new_op_size, ret;
3650
3651 if (update)
3652 op_new = cs_dsp_wseq_find_op(addr, op_code, &wseq->ops);
3653
3654 /* If entry to update is not found, treat it as a new operation */
3655 if (!op_new) {
3656 op_end = cs_dsp_wseq_find_op(0, CS_DSP_WSEQ_END, &wseq->ops);
3657 if (!op_end) {
3658 cs_dsp_err(dsp, "Missing terminator for %s\n", wseq->ctl->subname);
3659 return -EINVAL;
3660 }
3661
3662 op_new = devm_kzalloc(dsp->dev, sizeof(*op_new), GFP_KERNEL);
3663 if (!op_new)
3664 return -ENOMEM;
3665
3666 op_new->operation = op_code;
3667 op_new->address = addr;
3668 op_new->offset = op_end->offset;
3669 update = false;
3670 }
3671
3672 op_new->data = data;
3673
3674 chunk = cs_dsp_chunk(words, sizeof(words));
3675 cs_dsp_chunk_write(&chunk, 8, op_new->operation);
3676
3677 switch (op_code) {
3678 case CS_DSP_WSEQ_FULL:
3679 cs_dsp_chunk_write(&chunk, 32, op_new->address);
3680 cs_dsp_chunk_write(&chunk, 32, op_new->data);
3681 break;
3682 case CS_DSP_WSEQ_L16:
3683 case CS_DSP_WSEQ_H16:
3684 cs_dsp_chunk_write(&chunk, 24, op_new->address);
3685 cs_dsp_chunk_write(&chunk, 16, op_new->data);
3686 break;
3687 default:
3688 ret = -EINVAL;
3689 cs_dsp_err(dsp, "Operation %X not supported\n", op_code);
3690 goto op_new_free;
3691 }
3692
3693 new_op_size = cs_dsp_chunk_bytes(&chunk);
3694
3695 if (!update) {
3696 if (wseq->ctl->len - op_end->offset < new_op_size) {
3697 cs_dsp_err(dsp, "Not enough memory in %s for entry\n", wseq->ctl->subname);
3698 ret = -E2BIG;
3699 goto op_new_free;
3700 }
3701
3702 op_end->offset += new_op_size;
3703
3704 ret = cs_dsp_coeff_write_ctrl(wseq->ctl, op_end->offset / sizeof(u32),
3705 &op_end->data, sizeof(u32));
3706 if (ret)
3707 goto op_new_free;
3708
3709 list_add_tail(&op_new->list, &op_end->list);
3710 }
3711
3712 ret = cs_dsp_coeff_write_ctrl(wseq->ctl, op_new->offset / sizeof(u32),
3713 words, new_op_size);
3714 if (ret)
3715 goto op_new_free;
3716
3717 return 0;
3718
3719 op_new_free:
3720 devm_kfree(dsp->dev, op_new);
3721
3722 return ret;
3723 }
3724 EXPORT_SYMBOL_NS_GPL(cs_dsp_wseq_write, "FW_CS_DSP");
3725
3726 /**
3727 * cs_dsp_wseq_multi_write() - Add or update multiple entries in a write sequence
3728 * @dsp: Pointer to a DSP structure
3729 * @wseq: Write sequence to write to
3730 * @reg_seq: List of address-data pairs
3731 * @num_regs: Number of address-data pairs
3732 * @op_code: The types of operations of the new entries
3733 * @update: If true, searches for the first entry in the write sequence with
3734 * the same address and op_code, and replaces it. If false, creates a new entry
3735 * at the tail
3736 *
3737 * This function calls cs_dsp_wseq_write() for multiple address-data pairs.
3738 *
3739 * Return: Zero for success, a negative number on error.
3740 */
cs_dsp_wseq_multi_write(struct cs_dsp * dsp,struct cs_dsp_wseq * wseq,const struct reg_sequence * reg_seq,int num_regs,u8 op_code,bool update)3741 int cs_dsp_wseq_multi_write(struct cs_dsp *dsp, struct cs_dsp_wseq *wseq,
3742 const struct reg_sequence *reg_seq, int num_regs,
3743 u8 op_code, bool update)
3744 {
3745 int i, ret;
3746
3747 for (i = 0; i < num_regs; i++) {
3748 ret = cs_dsp_wseq_write(dsp, wseq, reg_seq[i].reg,
3749 reg_seq[i].def, op_code, update);
3750 if (ret)
3751 return ret;
3752 }
3753
3754 return 0;
3755 }
3756 EXPORT_SYMBOL_NS_GPL(cs_dsp_wseq_multi_write, "FW_CS_DSP");
3757
3758 MODULE_DESCRIPTION("Cirrus Logic DSP Support");
3759 MODULE_AUTHOR("Simon Trimmer <simont@opensource.cirrus.com>");
3760 MODULE_LICENSE("GPL v2");
3761